From 8c235107cb44192b039025d0d51ca697856e9106 Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Thu, 28 Dec 2023 05:47:13 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?164b223e7bc45b83147097f723eed06d5b9b5ada=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5547548 -> 5547548 bytes ivy/.doctrees/index.doctree | Bin 674193 -> 674193 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index 9f790fb4c0f256bb2533ce4744150deeaaa90567..af7219c0d6260b339eee21dc8c52aa3fcf801183 100644 GIT binary patch delta 138 zcmbRCl6Bfk)(zK8*o{+@Oij#g9I8aN f2A9KBP1g9I8aN f2A9KBP15MElez6?9JsStg!%*N)HGC delta 47 qcmeyfi0RKFrVa6i>?vl67KtW_o6`(WGr>5MElez6?9JsStg!&63J@Ov diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index 31d1af456cc6243ceac498235125c8a30b50def7..1c8f0e7e5b48e4eddb12144e234ab3da6eed25ca 100644 GIT binary patch delta 47 qcmdmgiE;lW#tmVr?8d1{rY7b_n`2c|nPHsCCp9c!?9CjS<_-XYfew8D delta 47 qcmdmgiE;lW#tmVr>?vl67KtW_n`2c|nPHsCCp9c!?9CjS<_-XuK@XGw diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index 9d5662cef836a5e7cd5d7f7f938aa8b16fc9f5aa..3933c6e59e9c988986390a028c29ee977d975103 100644 GIT binary patch delta 39 lcmX@o&UB=mX+s|er*Uecg=MN~is9zz9Eyxc+=HCVRR9Vj43hu= delta 39 lcmX@o&UB=mX+s|eXNs9+vO!8piqYoj9Eyxc+=HCVRR9lW4Cw#> diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index 7cbdf2b902b73d5db66cf314fbfa5eb4db47e55e..43e21ffd8019492343db797c05ef92e345741556 100644 GIT binary patch delta 869 zcmY+Cy-Ncz0L4jeP(hGV5C^O1Uyw`A(m`kkm#%_>;9xy-MXESBbP(J`aBwM-F4r$V zX%|bubS*dtI%u~db#PW%baOK8HJ8iyUM~FZy_a?^+^&W1o1F5Y}D=E-Tq6eI(+(jOALLGj=!!UX-N~aExEfg8%{# z5$s_BCW63WcBCH@pNS^st5bR(s zMv2Rjgbo4*$Avz?G6kkyTQ-7n5@BfoYV#8lx?tREODz26!db7b8v^Alm}+$i$(t4o z?aHB%HLPp1;DZRVf*>LJaZ!N$?B4TY#j=7p+WW!|J*`(Dt5=L?d5e0pOkEi&kTwgZ zh@02OYEsUh3w0x`bZH#0>7IXySlT5ad8}{vKS#)D%Z(pHHZbslTapyd{2J-cf78ep A3jhEB delta 873 zcmY+Cy-UMD7{h#tD zmslyoRW4h*?=Jr;h1iFuGg>NzkM1VU&WD19qHP#A(p;ZA@kwhyUu2=zpWVv~9UOefi1ve#Pb zi$i2H1d&aW|E3TYAHTXV=9P9j;2b$znyiu15Fi%Dbh6_xwhY;Is3mf!Bu5Gi8Z#Zg zu^Sb#%ZxlB43(sPP%Hw7Y;$}^H z_Bp2GU1sJ=;$cFUp)ZJXEv=>4W^r#~b`VTh@z4a7#289Jd`t6hx$z^h_#;o;OtVS; ISIT|<102^Qwg3PC diff --git a/ivy/.doctrees/environment.pickle b/ivy/.doctrees/environment.pickle index 61214669d2d384ac8b6fb238c3dc6401a58948d4..374f03958fbeb467abc5faba6229848cf583d3ad 100644 GIT binary patch literal 5547548 zcmc${37jNHS|6(W7+s@V+SO5-)k-s3P4ziFJz9;9m9&yp$7&_*p_R0?*;QFx*ogf0ULuc#+>Fb24lkmW6a@az<&RKd=Z(E zRgs-pRbBhAcQjKG`9;JRUwrZ1@%a~i=F)S{J%|4{xF+f}g7%rR-`)wjVY}tGd&9xu z_w|Ej?J?`8uNofvg5lZW(ZTs%r!#zZaHtkmdtKkJ1>ND`It`=W3!3Fh$Llqk!NzcK zN#%uJ_c{D)_*MAu+=b!bf=1Z#hl7i{{dU{OhZpRI-RRT*p7y;VxBQV&h*M&zZYT-!@;!%OZc(M&%I5o!|vL` zI=8$t>8{P7yHwTB^_-iF^yf7A9lVbc%W!@&*KH=9AP(ckD`SRm*o zX{hMwReF0JADh@i)784E8g}+J`n?|EXoOU-;9wK~zO1zu^{`Fdh+gU7nc{0<{water@sGp7Rh34s z)wF-~AXs}r_y@FHO3kj#XifG!-}fdbVf>Uq7Onk?wziu^Jhd}OA%j}g#94EVlm zz}(#hb#BpJaTHB%=3{?wrJ8mXdtDEjAY&f3EAh_-p|vvp%JX`R?yr#{bal6ckf$TT)cM~|69TT zy8dRr>2>ctfxoZee<$(3b^Pzt;v$A>JS8LegDce3wvw3*uGoqew!My5_JZ;j=Vdy3 zgKLrR73EMRs+)4yi$BBVNTk3pWLOyc52gc?NE@+0Ep_>0?K?^?vqB>`vG+6I|myz6h&o8hiP{MzbDePd;*zU!z^D(&fS4ohfVLUWiz2@l9p7w*8=e|b9W6yNx#O;#Ts=`; z+*n=rR!`RItBa@BYrZ}1@!bZHAfsPERI0-y)Fl)1f?+K8D0?d zKs$r0!3s-{hSff=XdHcV_RAG1*1a9l#&Cd*leNfgq0pt~-I63>&(^D@>?4q!>|it#C*JF zr-3UCjL8FHZZ>yWMGkF+c|C`+qaJfbVss+eSsax?WX}A{$K|JX)heX$kn4i zOLu>8b1W}HKI4IZtq%gJ2YwBd^G>h1>+MB6W{T5LPV`zaVcnE`8}|^3d~0xR(ngv# zKVOslT=VN*zezduLfqXgkD_dV1BNR>U!^#k;8eU)-?ri5EQ0&;T77nKLn7N&K=-Xq z4}#knh=vzD@W2BlNSao=e@3wn&}kX$-fxE(`bH!0R=WOc{h;gP-lxto9GnB0+mdXn z4IB@@3BKP^7vwEuZ!$*%;o;#PZrYzCN+GzQ{4vN=L@TRC#!?dDeGp%O_8* zEiJ8_SYGB*-|3iZwd;=!w{~iA`NZm})wPwA{LD3+!ZRty9_}ROxW2x+vbM5x0^i;2 z7!Cq|P)&by^2Flu()#k+^71KsUN=0dxjyb?eI~7T59d+R7(v6KP*~rcT3%XPSvd*1S|lD^$ZL9gkVoyoPOY6hwSH=84H7jmeuraIB(e>KhmCyI#8%wo(HD?u9Rc%IsQ#Pwcgv)|ldCw; z>tq8rI3@@YJM{%7wz#&2`K@zFE<%jLZf|s)ldDUs>r3mvJCBF!U_}%zA`u5Itgo!B zt)2uCFM&yBj7M7%l|cI|uniokCD1X)Q;6pPK5nrrmWaJtK6P?+F%wt)`!HOtQ-dj3>sGhIT@f|lY%}a^>VH%&9LbfwmP@gl+ZIA}$Tu zHUCVxi&KOfBC!qOC_)CSP!0`Xs#09wEOdy9l1JKJ%db?1gF7p`U9S@xlFIitL+BRK z1Ld~A8~-|tyg`X7iEUPcaNyU2GqEHC0r#@Ku;1%%`0#_4KE5{>R4RDyr4@$a^I_niSM%JOCPO#WcB0Q zFFh7w-dP_miwbN$dg-a|nU~&oeCcDsejlw=dR?#Tn~&Ak*J*@-GXECSH$E<5AxtUmEledoCk0w)Vu z->p>|;cle|B_HA+H1AMJr4YF;tM~m{|H;Rm+1_|*pYKmv6ZYCvL~)_e@_5*k?(PkXkERmzw&&rx%^b$V^v_sdJ^a!Ko_%TW{Tt6cjh#7_`IVSjB7ZZs z9*7Q1^6dj0#(zC{?ZZn?u5Z262c+!r1wq(kW$nJ~nGb&8#eVQa=j3ZJrreV`eyfGk z2uue!Mds7Z4=p{mcidmx3pZhOIUI}S{u#dtegGw*?SntVHWD{M-iH-w_^}^7|D1CU zmCL0!q2shmLA&%w2vho-C0Ho#yRSs6$e}|e{NMdvsR1r<`iQZNRN1c##H))_8xxhG zL<}RwPNHc%v5~y-MhRwLdL)*qEF9JUAe*|k1g7Aheik;|V{bwiZ{nmLJtC+$a&PGf z{Q&7cj7T<5-0dGSQoZ@u@(10Mm~ z2um;GuIb`JynmswD)=6Q6V#zM`=#BW)@z(Ta$;@qNU7n|wtD&quJa=!gKUKG)wJ#_ zEvZprx=4}4?(VKxjiOkZ-f9b)F!NRm@{6IWnQbVW-RUEk7p#8a?&%{iO?CG=J->Fm z1;3v6-cl#1_WE7_IFO+Ks{7Jx5J9o?+d{(kFUV^3zc#uL9Kt@p$c?Q4nh%X0(>FD7 z9>Uqyjl?c!ugZ`~~>`gLCg3ZoLTSrO$ty_sY>B{x~-D z;a|{3u*agR*MT(gR)27@ZJ)mi&M#QWp8#`sg!(%eI)+&W8>>jmn|dndpT@ueBe4c; zeY5#C!`{GI_I?n#`su9g#Pix=d#@GtIrw$Ta1GVD z1z8#%jfxns&wUpbw&OMX*gnufW2Lb=I3I_0`0S^LjgyV_tvzf!{yw-GSf+;%L}NUI zjnBfpjJ;KTPc+uH&g#AwYeW37@mceI<5c55^Y_7p@bP-^KgX?uOVuxxdaE~lHtu!_ zSoUTg@(>8lZx7?&FH-_3PXl(a?*#+$4JisY)Oy2N-V-*qh$yhGFk)`3=){ z_6^vw&L-eXxG-qmf_{xd3W@i1NM=f85&f5jvWs;eE`4x|)kyo;rgE=pi`DS$cv6R2 zUIf)g+0zFXDj7W)^%BlXHEn$j&=`MoMHKeCkVB(>9ip|O&kK}fKRAqG;2Tg3qs9rt zQBrQfi+>5&=(h4o4K6ANoxL_90}gNX;XB3Pw3}~);r6f}4{?9$H*?SgScO z*EDcVDK}tDv0yVAG06wRw{d?A@G9eKuWTUf0w*XL>xymP?Ngu>1y^H*q9q(SnA{VW?6e8_G|Z zOzRRD5pbby?+xEp{jSvi))x=frGCCH{WJD>6W5|{yhv^eYeTQqcL(kZ{0&+~2bbnk z=Nc?-`8>#V`!wI$^3DV;^krO#$E%*cKm6ghH}P#UVRcDY0F}NzFd}Qzt9fZw{MSH$ z=GIESyG%9enInp!o z0^=I%=L)Ulbc>$<+M|B5gV)(zG#3#E{-uToD|66!TORBcm#CNqG4?<%!G^-mpxB$A zu&i5!{ws(wX}~-HWRb=L|03 z?~17(Qaw~;z;Nrz^RSWpgWq10v{=yyakKtVxsV&H@z0m3uY@TKajzO^GC_lf;nrIu z7t<)x3#QZzB8Dnh-)X@nxs2E1udY%Es5x6$)#I2IO zzDv~SP}cSDMgow9saUMxF+<}B=AwY5bbISpJ#mn?i9CrvklA%YG6EfyV%oMUT>K|( z3<$E#)ie6RK(Gg1uFu~22Gl?n$d-P`BKi1(2yzTo{=@d^l&R5zrIdG@j;>S7#OakL zsPa%UhEFB;w5(WheuOCS{t!VrLAmsxp+>I$x8lt>tboHfQtbvRyk%rZq#e?_*zFK_ zmEN(d)%UcH(Jn$u3PexDX9cg*+0~4v(0HivaLm82QUakOaB;>ZyuI<^#z#!Q#!h3` z{N2Ps0W>^-Lg7iH#8Hi2ZI`NHa2ZwACjm?eGuNS>mtk9XBmHpbUQ4o~DMk$Kz1Oy3nO!{cls6KM%Cv6ga!-GI^m-@1;AX263<3x^)jil~55RuBc6usmM}2#j^{u+iIl-XaSKcxR#&G9D z@B#P!?BG_bD;PR-7zn8_nZiM!dt7Jr&?ZDgZsF5wt%eBh(<?z!hs>7LT_3d>PR^Y&Vads?a^yrATjo&^spqZd0qq~ak; zZ}7LX+MuU8lzL$aBnrf_Yurz!ebxXjJ@Uc}C4;b1STD5!2Qv&!2l-gm9F^X9^n=g5 zpca0%^kO`tPl_G!lQ1sz8ZuL%k{Z8WI22=5=EDz<$|v`lVGMFX98s@SZNhe0I<1#e zR{!Jzk22Z|$RswUkEiAem7_$NyuPP!+YEO65@xEl3nrhV8jEHSS~vkg=4fV6lcmQ- zDFwd_Pg8gA1x-*7H=8l2GHB;9ui7|Dgq2P|puPq*@NgVGcI>?h&RLsa1Yp2Ob7J7V zYPT0kk3fFiK%g!t0;XfHMDi@jc`XGImI=Y!ua!$54Vul;hF|K?-U@mE4XL4f4X;<) z1s-(ILs%JDOuwo6v`g^4Z>Zjif?({&x)sU7oaTdlbJJCm0wiCy@9uFZaKIXk*GLqE3ukK$aUJid)4%1_RpzU81}dq3&BxBYy$SQ4sRJu)Z{gUAibU@qv3{Q zfA7^BBQ43VM9gDkE$PnWDIDFflt;i(0Et#^@{mWv>Z9Z!>L)`0h;G9moRI7j|E-SV zd&Nu-6h0c3cKwpl+e_H$5{JR!l5xQz0zAUIEW4conrJFgS)Esp)_cp`X*b#^Drro&>WI1`|9A zf(Z-<7bX~wVtIFe;^^I__c(VGKi_@qX!)LFcOO$=!Ar2CnmOjcOR-gM=qRZi8-p&Z z2Ij#Rgb;~LlEurfCc7sqe}CA=PG}lS8aKn9wE>C%Q;iA2tu`5v$a_5O2`yS###>P2&uI~*Kv6rDM!u%L}FN9>YX1uaWQkCjfJK3%%|?n$A` z>5jS1lN1gV*hpXWxPpXoz$(Fg>gx32VrrMRkgh`S*~nBGnp z)KrAVai-L;Rb9WhTtOc}hYBdKF;^}_V5f0ZNL-u}_WdrQZcg!)qw zfz=bjz_9T>jeppWl?-u7$XY9j@%ch!d`@%~$^Kv%CB$f$%OV)75|uzSI!P2sBQR)yKM#^8LOo0fP)#l-?2Wgc_PXUak0nG;CJ)A;fvQtB>N`MT)+T*Wa z4^>HWqBRfR8$0D|Z6rug@!07qr*FH{LS};M`_RgQADvjh)*WxPn#Zf0Br|eipvHmd z!qk;!KyCdf!={N&BxSu!+AcS3eOklbj=#Ca{LTQVisViv7SVUat%;dI zbOBm9V*}NVrW-t?u%<9>2>zuII^E6h|M1gKm!5t2na4`^KlaSSPd@$7!;e1t{9`Y? z@W3#h!u845+QZfJk-9Lr?&*i0ef+}@KaNkIe)^$iP!7AB)@PSv2>%QY8ytkt6ff!2 zV2sBvph_a+Drt^IJZ_6}M-47!0318&1VNMdcMb( zO8eE)t{letfRpAgp)U?U!eDqQ)*W`c;V!bx!duUV1r#|DPunp^jw)hq76Kz zfSZ%w=@h4XNb>BGPp`JS;JOF>Jaw)NZ8agr(#KU|_TFk?Dk+@;PhB|n5i(O?%fxje zEjJ}2>6Qc`gY!OdhoNy^^%`O6eky~BO#YYvyd~*~z&!eTVCRA5RHpj)L){-zeh2A% zDUOo1N5;oa2&A}Qm7f_hp6r3)2phLU?j*l273+D zmmxo-V}Rr4!&RoD!^pnv@8Q_g)UFRMM#Kobm0YFzTUf_xz_$?Sc`+|kghzsVQS=Gg zDtPn~M*Yx)$V_;~qgN|5=`hy!@*biCy&BRSAu!>hH%qy_3W_b}8ojaF>4?#M+&OK) zU9I|LVc|Nq?uUmv*rDir4zn|kP=6Dv3b)~I(&zBnq(Kp*N;1`LN4LBkPmW9Bfo`T{ zvtzlAX;g#I5H&3C@EwvOuL6Sm?Ksa&rIYCxiP+^oxKnp7y3`}Ozn0p_df*9yA%Gb( zCSxt$)9Z1r!DIYp2QpF{>DX%gAtH<}ja!tj_1gHKrX$3yXSdz}d!bZvUD6CDNW;Ez zGGFMokAt1W-EK;{>EVojcW~}f((THmn+kz)j0(V&BBZo; z*|cAkj3dsx!6m$Cp1_7BYkgsBty#{fO$0V6T ztO6a@Z7RM=MH(gFU9Q`du*c}_5S0rOMeRDf*`=*rO$9~?gVdsE*JGZj3e_~Hxbb@9 z4fFTGjqHzQSLB;Ghy`D@f-^oM1`Gp^dz$F3L`;qQywgAfL~+_Ayv@4LlFWC+R6@h< zfajz%DYXjDDo%UFb(G949`8;wUfd6CI~G|gqN72mII)s0V=&adTMFD5jLx2f+$Ausiie3yr-;0ZtYJNVl{_6e z2#L%;KCrH(VbrapgCqq}X`m2lM0q$`HE<<>Fd+`P`XL4)`Q-JAdNt}2THdo@q0A1F zH%Mz>%-TDzZ*(|`&4~0}w*nOFK{N*LMkFTcKB8%Xjba{A*xW%}p2Ee}U9d(Z5}ev! zExW6Ddx{7W;S!sC8gIs1-8dV6+W5TW*T0hd_4AVsUy%Izg~?yPDEaFbCx88tcjMb* z5Z{q>{?2%i!Hvnu=G+n<5ceM3meB<}q9oS1CqoMi6W;m)=-%;6x4sbniY<^^UzGaS z7pMO9CHPlj@Z0)S`k$Xp|MM;UbL(yXp^bhtmzuv1u1}mv+RUi#!2~*rf+6$;Y~0%g zaUqvaSr07H@H$n6N&-3=B3z+;-fF)>wQts2qYXEx21L-Yz!Wc1UA*hd6V`UE>S8Y2 zXb-bs;H25F!HudNoRvmSM4y}M*c$$@>H=x0B4KId21glT-edW*3zg{-e}TmbK7T|L z4bHE#B?$@?01S&1)zFSZ z6c}zNi%CeByxLrAGJ?{YGFvO-5Qq}>*X+wo5Mpl#p9AuWao_e+FW#l$+J#k1f`CRvafA~yyW63Z9PdN^#}Ne zS;%#9jtFd4EQKLqt4XFrl0>4D_K@nb8JlQgIM>H;1no-DNbaGy)!3r6$uz0dLHeiB z2AanixEcl*K(@4EdK38KAJYMmg9}&7CtwbUxz^3`NVxG(b1lM|i~F8fUF;-%x1J&* zp0=@(q#=$4nkN$o+D!P7X+Y+B`Q6d0_a#(%Lp%Z8=vK$AFSx)$yR~lk^-zXSL^%6g zH2zV-YPUkpvco@&e=Sh@#Y2-9uHL%kZ^mslSd(sE zq0pm5Fe5Fcpto$1ee1`e(8sg5#Rex*JuJsk-71kDZ%y@5>0~D1gJQaMd~x@f0*MS5 zLr_o$1!jKj#Rfu*Acr$rsNo@Ms)2|{RfMOs30iEIkgbStk`mXk6CgZz96iV{nD|_*D5q*ma&dmm!bz`srW9GzpD+ za1k6nEQ|AOV`XrqB!-k@YxBj=X}hzjKH9jhal_Wvaqs@F7S5oaJ5lY1V7;Q; zd0Kt3G5vNANq23OFF`2;rO%I&k&XEUnNsc;(yfeyJLG$|D{WrXSPW`+<}PKj5w@EU zmO)%ky5PoDk6iPO8_O!cR8?W%Z^OY61;J{b!+*q1Cl1fl6VCfzV$?GD& zMTHw62M2KBwqs?C-Jr9ujC+OkKj31;-xn*}Au0r;WZeC(MWCROYdri6rV-#)gh>&! z50ZSw^|`$}E;x2OW}UE!;h>fa&#zzmvQ3ovbEhW>9L%bD87^DZbhNi0Z(Cl^4wTUol5YjotilnYc9cFKjR zdX<|?VCyQI{&j5Rs|t3CrKSE+N9-CCvT&2qd=hrmD0Y|fSeJ6OqdR9DL4!Kij7?kF z-^27C%bDK3x1^dS&1S>F)43>wU!ysf|9)Fz6M#8!BfDdFaU#vCZHcf<)NdQe)JEW>FLf8BbPq)Ck>`lZK_B8736VA8 zI*JavuH8tjG(8#DbnWh{ZfqjdsO&b_F;(##=>9CHl_8F1OSaNdhKHGT1|+Zta8SJ+ zwa%OeNtXe2O;$HShk$zrK~nRSRq4Xm2(VzM0y@DNR3U~Z)mG8fjDR>U4fhMesZ|~Y z&qY}`sUK*-*8hfKz_rQdj&UK$w27uwMA9)|xS*xz!*nd8rdM?vG7k)j@X4WGT)seW zzAZk;PT1W*I;k1r1s5Xh=}jn^M7=t8*U4e`o2zLnn^e?o+|G%hhrknEu6SX$!FqEn z{4jVz%{}|z?<)n^Ya9-$xo7~VHWia|k!|%Y^RkE<$UKE|{~^~Xu?XM-8#k7Xd0dsS zkAFU(YuJMKG1nYzWKBpAd{P4D!X@a*&gEwdzFO8rUN2J-YA7cJqZnhD80`mcr=q6b z>zZyZOk99FoY6zBuM4nBxXL&!52C$@q9YgD1dJ?*U{Xcsp%C-*a1f!6=u2!=#$__W zlmLp)FW`zA4!+cdp%gj5y@hvx;I=^}a~BEQosnjjbcR(y*%IyF=!69GV^n=b%6KU| z3#x}vTz9HbG3~krj~mP8Z;$~Iy$d6jc+N6-)g;)$vk4j7moF%!dz2Bqn;|0Qii0RR zghgctgd(d>$tf*vW~AOJA@SJZrdA%>!UaN|cgZCC6K*aK2cO8L<2;bIENk_Jp05sF z{tZIQGlUQqnWoQ(^eYFdwltmIt-d_5k)bN2iO2;%-J{&>S42C{Fg~Tb7XY}U!tr@{ zqis}Gj`mt`^>+~`ZH!M3yU(f!M0LpDLfc;C0-Qp#-MQTHa2v!< zGn7WvwQ0CtaAE19&3GBhwGJEXf>dG89bLK^gZFUoK^NcxH<8f-wb=?`TyQytEO|U{ zJ*L;wyUT4Cg^cxk9eyQB;>pFP97@VYk#CW-_b3;ocIPq@VU$JkxWibeGTf*RaA!H; zN+;+bHiRi;wOw~cN}}~ozu6ux7``?ITDLJlrKSe)0qG_`J=AE3Y4At^Xon}V z&Mw>5S+~K64+he#=~}Sq(RY*UgtQ}u z=X}~XRNtqltV!R^(Jgk7OPngIQJXxb6pYED6>Ap1%gE~Nqp*<2r>&W%yu?j#)eMC< z_uMq2UMtp@^2IP?%*n-^=~#x82mc%2AOq)|Rw>^^3?x_^9>yFTv{kEHr&TL(F`d-r zOv}@lMTnp-RQqJIF&Uimj2F0tD7h-Hi%ws2o8t0_$hz#kDxW-aIy>xp)V0@kJ0eHg zC`gbYLFH<p``*(#4MT3UdO!6YDBxg!y(Q5G=qc!JB1WiynM%CZ1w&D6Y+60Ud}~AHh;Bo zWsCCtHidawDD%w<)AAf#-jHNkD62CZyerXq=tV)CA4ExPvwHdm@BY%Yly!8AiJj`U zt-$pIj1^FRR3KX}(P%dq-ZjU;;Xg7&ngV>245rs&Gzs*Y!hR)Xq<~c#=1OKqAs;+e zH|ySO8P*kh(@~@*2?fesuiaTfpQ;GK7!K}@N0p3L0+LOP2~~cgjkZW6kUh|3v%=!Q z9S{>|P00l5C>uou4{wW`E<=XSp=YbPjHEO;;+=x!BsUyOM+^tojL&#D$oGaAyRzuo z2`g1*4tuL(3v^W8+JPwMyy2}t3m4w4X2xOAA5uis%0ot$%*YoS+|daIPLyaYMkmAr z9il5{98tsnU8^>2>gGmFAAN(f2jSUn2lyHl7auj6CsKcsRIE&8xuW)Y$8UkbhA;KJjv&P#@cuU^+wxBRHO;E#lm^ z2+_4;DZ01%N+2no27>J2q<=Nnd_@kfA=CuX8r(e1h&xK?#J0uE0pdBdlv;(iKkUSO z3>TLVtSVj9z0%K@6v5!MXHrNK;n&7yoV~rVE}*u^?nh}{KOk)FPDVW3zB+nb;UX8#25)RY_JyGpMl^HWM!w9|5;i;i3g|zU(}n}5-ys)HTGMa_ z2^J(&V{xzy4x731qTzQgRHaUq={PPlBONM(N2c`v*AVF*w4~$xdOS6f!E+N`(FM#R zbA&6Y2a-W7Fh)ataJqBt1x{!_?zX{J=4U~vtFXuX5a-FneFnV4-^CMT?B2t{qKihz zt&AUe`p1f>o?M^6x6}=W(N2_VP?qiDMH<#FBnF( z;h>qjbJL6CQCNpwW2{R`MVa3L0UO^M4%XFj3P>!5mX$W3rdC+*GX6R(>SVZSaEXO$ZKMT# zJEJBFK%@(fsSvdQWj@?tk}=b9At7!oZ+X>>d)!=GuJ28o2@cX*;Q604_l39*pqFFs)izt_zOUj9Sd78_`6DsoOc7$2;uyGK4Vj zth{KU7@KNpS#qV1yW(J?y>)a6{iQ~G98=T~ISX#DCM5oD7L&s-Wfp$Wf3G0%7-idV zD4iyQT(J-}SX4%LoE-G=T+Tg-j~Ajef<@s?m4&Lvgne@>EwXeGN$NJY`cer~^5L|O z76zFyQ6HpoEHNCqoPW!S6|qP@Z~A!Tt|{HU9POZ9Of$fZ>J%_63^*Yta%>r|lb8kO z8-OMa>p}qvev%MOo5<+_EU2_0NgTJJQQd53G33edw0ZlSE!b8i*Z$d^)6uZ{ zsO<<5ZjzRZ8$1)1E}Khv)Os1iZjdt z^c+sBc&L(P%1-W#cgSV?6o;y?EU->K(CrjOCSWc|Q$~#=lxiBh$3;yJEl&ar^6vwi zH@NmYMSFHj5gWSr({C4K)a8w zfuN~wT4JFY3x;)AJCJ+GMDp>X5Nj0{#6w5cWJ6V<5Mc|fx?R9oFqvsUJjr@xBC~%yPs5Q}^$$~g)GUgv95scAF>na6z9KCm)9M+n42#)gX*Z z4&jW{Y;Tf|baM8hg~cTpu>eHHuQ>$-n-{xIgx$_3DiL9Qa17)OGr6o755&D7H$#&< z?uB@98RB~Z+Dp=p6p_;+6=x#clZodRT-Zny!Fl50+G1IOZN;fZOkp;^m?30hqZ@j) zD*SY)^p1owP@~fjFae9!YOu4SO!j3jEoGe=nIR$r`Emm*_-M0`)3#xA57*S~_A+u%e4k-Mx2vNz zD(~ZE9ACZKjpK2rOZ~)D>Ij764XD!Xhl7vip4oktnj$~l4;)akDDu5+M(%PgI|bTw zEK3w4AI$I&HMo56e#jbwg`M@S>m+Y`(A?dTyF25cr%#>>R=NlD3nhR%i@Z(1-C-!@y#$3YiyI=9B7n-^4E{=7 zAzsaE!A9o8G`X33RI;xP8=)pzRQ3b8Qd)O21yqsA<~Y0Ylrq+{Z>UEH4=+O3qO)2O zGWbr;Wm;fjo@SBDJH1h^txT^nWjI6~57vF5QJI&5Q%NX5yGFPGhmJFrAo#J;kQM^9 zWz9K&J--FZ5tF+Xt8baA9nMWBml|x&ojZcv87ZwuH%1meyeA}LlcDLawaaaU5(R1|F>S0F@ukggnh_d@a^_;wCi;|7D*r6 z<32e$MkVU_)u7IY#X8JE&2Y7VeRmqcA7G`!tYJ!2WnvzpU$)!Ep z6=dkonKNi+;hL^#qu~=)7GwBKw%ICh1l>pZ(t_8O;bAz~QQKS~pk_P-m~#;!U6sH} z)x;X_Ef(~|@;krW6UHoj7$<#rsyLpp2`Pdy6xn8 zs4|}uQx@sj8Sn%~eETMIaW$Jh(g~0(s*rJg<`JqDhGF7`X}!!h1jNq&+^NPr5jWk% z8w$!5MfJt$^eM32Mj2+}(^aAnAvLMG5Y{5ZO?c{T*)m$%_cB%LqDZZ=RG;sWnM|!j zOtJ@#X@w-`A2mzA$=w30ZyC?BAmP~=#gH$*qj=HQyFX_F$48HxS{FH4k>XQfi7;T;#LYk2%@O1VpExeRq=0uB|uMrCzYGZTDI zctK18>WapMP?a1G@&gbJ&Rqye@o&=+C8?Twz)wb+Zec1%IfGsG6j(($HX(W`y+u>~ zN~{g-pRsD>GwMZlK~OmS`DhHwz5=Y|DI4QqHm5BVwj}2v7W-J&1m3;41{nUaEb-fM z=tqV)GXWjZNsm{koetO0C@t4cj`k^6k;)uIDsW(avZK-pT znuwJ^X;kMy7E8SggtU~S1`6ymd3RUwqR)kn1Y&Gk@>5pbw44lUS_l}H04HU;}6 z&fwo<^lKlSIloXz`r341*q+j8E|7Lep-YB8q97BuH6ESJIg0`%*Q+rWsi?vED^O=( z%7x^RFMwG-&0Kt2eesls{jxmKd0e z6RR&?$5Jw5zHpPxK~nUs*$Ik21l2~9@f}WUXMxL4ML(F!{52PEum_$kT-f;jt(v+S z!9N8iUdLl@0T>&e6jdJUe1&T=!4W<%c$M*Vm?>3A5i;K!HoXpN{2vnAnolbG-B|XX zCFVvb<LjLY($v%_|Iu~-W|uLPe`0$2Fv*vu zZ1Sw`60m1@@{GI085OqQj+i#YwRVtCCxuP!PIkhTjk07?K@UJ=H`TTgK9FApb9y31 zB_6T;;IKHY&IL}kT#Fz}RLdWn$ zxa{ZiZi4nL7-xcWq7&T45cpBLrj~m_x%TF^JfYaT=Mqx6B?r_<|)=EEWhmS zAovvps>s5fylr1cCthY9jUsSr(D^cIxY+S6HPBx6`?9etq_G(DtI4D zDoiC#n^Dy@)Vg8eQA5&^ z5IXw787WX`nyfwXW<06GiM6yPQ`slL;QNn6pYbnIt?yNNPD6V z+eL~zWADlQ?F`!uM!r_MURLqJLfmK>nHyj!c&?q&&((?oxJa|{8GfI5oi5bIjo?y$`rzT%p!-CpJk$&zg63_O{D5w?9~_Na`}xvCmH za6H6zQmAv@FZpg2RoID#%qcqTD-^Pk64E|;5+`H1 zE)@W2d>nR(Az`)l;Yj;^X|z|Rn#T`O+@xK385k|d{)$wQwMo~7U;99%ef=$9L|#sK z_dX1Z0d_5fTQZ==DR@~M=o;T@RuxYa&vgRITZ!GyJAmE?XPie`yKqe^-J^{6mZ68T zBJgN`-Hw33&qn2{FZrzLH@8uz0I$sa7-ADfL5~JhD(gohnNuJ+(v7 zsV^yyVMcW%9ud1{pli~jeY9I_o~i{TLx^hgbn-NGNy^(2W7oLZkygii1}GLr7v@sO zUAmPwl-A_j^aAuKRw!ddqyWtndrCM3ymnGq6RcyNh^=X6FnwGDuY64MlWJM}DFb826#%va!%zn6Ebz6VEO_NjaX@GGnyK-Zq+5&RKI1)Y?dbF+lNo&8 z_3=JW7xyIo2J}Ws?sEnPOn{Uf4?)~0T%UTPXBJnhA#PLN8KRqV;DYqT{+5l->B8Mm z#Zcw`WJrevaDfXETAyV8W^9p~G_7AQmKZmd)ft4OjLSZ$LhOuawWz`c(rPaAJs?O9 z&Yg~jb^(bSks_Z|ElPR6^BGd6?I?8-XhTxS$3YPg*FoyIsaCe1Va4S3<@?~`{501> zQ&Wk1mUp(mHP&4$H&+xvha%-S(_&uk)Y9F{8(t4(jA|8K57MdJScKpNZ&}6QR)iWN z?_a5{uQpkPAWG{Nv~Sq0v?GeLk&y>sBiA_v`${s}{oKuniG#sjOnRyN+98AlhJ$%0 z8MOF{91GB)6b+mkMqf|T<&tZfObF&&#MZWJktAniB%j46+qEHaV;T17k#qqkjb#ga zTE3J2sI+xeY4LKAA)bHi;YXi&Y(BAud`Ctlj*5w7%1yR(6JyJp5|TEn-Rt5eJW}S` z^O~ysvhMB_i7kcIwS87|8FrWLJ^k*J^HNS7&g^}(yJ^EgdDCmP;OpqRR%G{Ih#9JD zwsueJ9ShW=uT`r3s0ZhS`Ci3*%G=y7>Ti2HsPUtU>@cQMVohefJ5?;fd?+-|)p8Y# zPJGy^6dJq%Mp@0KznBp#Jlp*e9?icc4<$RRD-;lTC=To&g_|hd342oP6k?py+c3dB zg)BC67?V@OH7^vg1L}MsDg;hjWP#=Tc+Haqhnx$sScZ$&+mCX4(E^=nWm5$$>edD0?AkEK>?6D_+i_|W#Er%|uNpVTLGlcsntOm-6UqP}EPR6?w zLuN9T{YbA-&4U)-Q8ll>OmcoyI22D~13Tj6V$rt1dBQ-vuk1kkig@Nl>l{SR~OSDQx8Ez7vNX3F1j%e0!hL`=f6(k>=A!x3c;8xA!HRZSsZSj_eir8i84f1&jU1051*cGqJ z@na|%UcY_0QLW!;qNXWhfEaPiN)AZUN9`MU#4-dHYcHMiv`jmga}npk^cQR|>{Q_G z%+DH}keKW|VW;iElBZoru$qzD!8Z--xqKl_H!i3t5=eJ9uG%68cQRZ=FbOj%%)|*7 zP7hPTrWw}l323OU>J}V`B(HU>A~>4%FrrKg5-6PB@`4&ns?O|Or>b*3=&>9X+gb71 zuZq#bna7@MiI!68727Xvd^T~d+3{qn{mWU45dkUuU`-`HE3v6Xi;VgJl;JcSsZ#`=4cCBsl8A>jy0@ zK`cg|&l$Cx0?`WNm6eFF3Fd?Uv4HMm-jj z&z$c{os1xKSr4i*`J#84ZM%?}Vx;Nr6upY@X`4aj4qJ_OB>tpdnnb_88?+x1hu+Q@7Js&hCGQ;c{d8`wiQA4L7soB8;7NO;b4%oP#Y@@ni z@6=+(0W;T$3!-ULc?}t7eS&R6xDfO=R13_or5Eru5P9jcK6zHceOaoF(hS+H;I6`% z&~GAkMiq2-3V{Vyr<^emwBeIr#tVeNB)Ux3MOs=Pex`KJx##fz+`$;x{772LZ9X`8 zeSB(c-$=$D7sP=n2%#%X+@;t8WsdQ}f0iDTaTQHKSBPHiyk5krng`Po-cr$kP3_!u zdbsj{T6TvjgBG1pkGY%H4FlNN@T}?dXGfK|Pd)MIWQPUll&4VaG7?^zuMAj{r;E{~ zt}&}`8MT_g$ys>DY3|t9hQ!ws*#RLzv2)qEgVunq$yv=1S#WXZyJjr%c0o)n*Xmn_ z%c_a#!ljD{wV6USEUNrm7B*E!KM|+%3B%^Vxu~)`tK9e|u9Eo`gsJwakD84bu{jqw zCUFf-o)wj8>m)yGtDG3H7zonLGgx$i>G0I@JTN|0Cj%T&EPB++qAT31Y9~N&^0Ia! zU{TGAW2>gekcizjE4ffvdWVCeGNrakWYoAb0*niu?r+hDt1vg*ra&Fw z5q)n5>QJU^o$l+}n{bEK1xnRuRD z?5X&N_yhrs&f+2kWQ`!AD9gAor>&>p&L#ywv`Xm&R$w}$eDG#e6}Dc#ogY*1R4C($ zi>4h`dHcwHZZ@CR$Nbon^o8I$1oq5Fsw$MX5qa;+gD-Q9J<*TvnCl&(WAGc=mq+>^ zQzb<~5>_vm#i>zF#o5+QT-dVP%ljy`69|Ex3jVdKv8_nOlxSh4vc#lAiuw#}K?Ri% znv5hpWn+i7pxjLPG+ktvZ;BjBGd+38XCc0}Qru|t-4@~I%Ga7NF6N;!%ixnZB{p1# z*rxlb>&-L}H63Cg_khuw43B965c(V{<=tt9uu z@?WI5|76KRsNLHR`^_dwt&0?rJnvWUpEr*$S|%qr`lVumS{MWFghjP4Mwis}=y>rY zKdB7Hn1G8&__N{0;Ka#H<9WC!F>WlQz?7YH?*vuk<^wT~yb0|L8B#vTuvtNV;Vzy_ zcfRsE+NZqRfJ}pYhY%;wIYIkka4pwv$Acv}H7rr&6l`*>z*SZ;L`;mzK(~#-PPrrd zwvd*xvhGq>W$ga6ycg=T7LTruNfwRgQEJrO?DYU8M)+!$1y6Kojw?l z)8Z6YO>|8@ZiEHC%{&@ZR*&gJm)ecf_BNVfbsNLv>p`_IYy6 z%x)LIk#SCpOsW6^DI+HNl(AU!0}njI1D0Xxm_V4Oy=FNpmoO2!ohV3} zq2yEph6(X<5O3268XN+Mkw9nhl(NEhgL;~K6O$R{EdW#{QSOIDo_wtzfXh&7HHzEF zf+(oEfbw?;E8HPQ`r!$AD*nl<>9aBgZWzq^v)q;G(9-=3+4&qa-2--?CLOW|Q&cg@ z6?8pl4~i1gO2%vO_6eQ(v33~#`fEj8wAsAJo(Gs13-%~p)(PQ~fCGp>Wl2rTH8(AwLlpuE*wM#Px1m^!(`zQ=mxtqv#@pcZF6g@QDiR2(rb z@lDrZvrp&@aYEIw*>AOJc%lj&=8lx!H`i&iCpN0SA+wi#_kC$Y0}6Fs#P9i>V#;uxnG} zrMmDHHzLGN0^<+*F0o(1a2Dvua(LUumo&*!i*$r+A$f$%c3aHRvz3!gYxUyK9Qea)MdA{4Enpicd~e*VPQh@3l{Kqyxj65S0z87&CAl>q zF)_3?q`}Z>Qb?1$YYWpopse9xrP<|YTo0`!qxvXDGrg=6^C?pYYSe$Ot1he6sWx~+ z5ZcnNk+CJw?$g?78}O{d_JrHQ=^c)z=fZB>SVpxg*q>RC%Iz!CQ#Pp2#@W6CS0WcW z$swN3{&Q6eRxdjlQF_z>NqrN&yd<8J5E+PUs;fH3x1|Qx6zp~u|AWAyxc7o>2b=yjcHeH;2!hE=NIhC;VW`2uuE z(zsl4qSEwU-(yL1-`gZ3aEcYNiQ0wsxKTX`!~_lJD=1oLbV5MQH<)B$KcT_NDZ&}Y zG!CUxR*dZdF8Fa{8IQ5HD&{3m=jqPdzQm{odS!^It`;k?9~rxrdv{6MN7RACOE5hU zfTYLHdYyVQ!;VW*OdTd$l6E1`?wo!EC3gHOqJ>Glf{Zp3*fyf~O@LaHQQU=Q!D604 z9fTpVgrh*M^E9=gOGOMf5cmLPsU!jzBbBY_y~X5Z+YI_H;1`KJng_Lv&jCiFxbqo~$UNJUztlg7h<<;(p7J-s0QJHPg6} zSD7v}nMCC$g?|=Mvkc+;-KTyefBg%frEyiUraCrmP%AC_8Tqo3gFG&}BM% zlCp5xb(!s3!nX?_5<~wWv?28Ge%JT=`dT{OJ^~s1R;P!<>+}Q0_p%FbaU&uSRcYvh zO^8;{*yx04r&*$aFsMZ3cBko8O{TxdbJ-$rhU}|;R(i5JE>5Yizr9p?aTr+lT z-yN@qR@r7}WSL$7m^sbai3MwT+u&+a%KH)kvHfp9;ZD~=1K;*og3s8!%Hy&TBOhr-) zlMzV75le06U%S?}xKL!TH&wcr>bWc<-)EZMvD{(O-BEPf+pNRsl;J3}XSgt7(94pJ zb#WTU_T`US;Z+skPq+w$H$);Cs`&Qwx`u$}u)l>JfHcg{td-5D=ZE7P(4TZY}$ zx^bLCSU2Ei*N5cYt@tQ8gsVK$F}kGRrWb28AJ=p`3u9r}HE!IjQN}?hl8cjW+8Yef z`PByRu&)>##$(|<#1CK*VU?+U!?VMqgG*K6nQ|8nl&xDXMsc;PM5>inxyr5DaO-O? z!q2zJ&*K>|^69U!kB({-6RrII(-uf;q+hrY-QVGspXI~v;)mKvn}kW0gU()iW4QGe zTlE9A3{*w%+9Hg6kZtJ6HoZQ}QQng^@dZ0|$9%Fu!1@r3uXOqT=#>S zLy+1au=$%U*qWsj!)}00;3^hFM* zYq5-bdPW(g`Rck$@Ri=G@voLeRf3*Wi^=z2SerZkg<2rwT>Fb3B-%4)HX7SvX7(*a zMW!-4;<+*({RBTcA^01g+#2GgcS);o>;b9O5S2*7Ze%|G2CgjgeB!Zql8M1IEPJOnn?630m;h}qKuCv~UH z*xfnlyKCWe{=i65DEi5Hq^#*wexi z8KLrbo0JiVBJh@U;}tx}4{lCC$MrxBKF%jTG(+RG7b_!4Josf%PM7)QF2d9VpY_R- zGFd>~HXofJdaUhojg#=I__I%QEPW(7*8Z+2GuY2_QLD+SN4|2Fdotg?hu>Ng9r<=y z@EspY^Vtnt-*V=Vj%U5imw$y{>ePHLaao^OSbOmI#maWrZ3mv|{gdQTR&TfS&-DH| zF2>p_tM_=J5A)F@{OEcmiIYfaS)^@Q1dESyw%5ds64#={pTFQ|?=meC_CHopL4Z8V zu6L=fDank(**{3{ALEiG!OCt-C+3fRDmDl;vyYI7#9%Z50Lsy-s)@|vtGMtyX>x29 zV|n-j>^C_hu^~+`BduXsD|?2B6dgYsj_R)z3cHW4j%F#lGPUzLwV6Qj;)klu+$RBf z0YOTXn>~Z{2JSmcW110oKg3mw9dt@~>N6@%0`M0}VPe>x7NGLx3AC>!rObpuOCb}G z*Koz6F-|!_TZtB!|AUJbQ{j{_jj>1_vU_IUlqCK|0epc}lXu|ur5dF^$YQ^az-HQE zai$5hSGdDstD6#aX~Ty={d!_>wmC}Xl0x4Pb9-kZ8CwOH8J@!#&a@>`y;Du_>xsmf zmMei8GPOS-w3&E9VxU*kdj}N`F_%oa$8>5dP`@(sNz*YH0`7dyY$pCK>gYURg@aMt+y{XjD{LZA=CrG@Yq%R z#l*0@+&LpA#;@G}L`HBR<#AJ2?=N!72eNr1SMZ;5zLF}QX9Xjf19umWb3Re``ZchK(@}lx;F{+K*)FG3jbA- zZ{9^&i1)--`R9{(599==uJrFF3J!#yja}`p9N3IgSNyjS?15ZF>8t)fbI-(ApM8$U zwCeGDd8~^nMJBh$dpURU10V1h)sD8@$v{8P#fY!#fCoZAyIosWhI@!yYA)-FD+9_v zADiDmcnnEJFUUY|@m%=hhN2WU$F{l%HAuO$)L`dvu)JEgwhd-{9J|#bIFI;}EY{S_ zQ~$8P&4D~7wEPMOxJ%(F@vti($v>6DUEMn+_Fi-Jc6~8sAX?(r&X?k8{Tdk$+!Y)N z$x^bPe}msTLkryB!jheocM}kw;Ne{El2|75$9-K|VXo$u1Tg%@W_ff!`IyjxC}6 zGM87B7)FG!FXtM|1t%NJSy%I`qJ*0grM{YTEqdO@q^18#6crseB@o@pam9o(Lc10R zbSgxr@1ph5KILkwQwj8JdqjX(1P%^# zJJdY*CPJ4C!GnNqDr*QIdtbsw{6^El{&R#T zj=X80LG(r#byaV{KbR3%xM>0VU6R@KGsBA;jZKvJ5~TeX0&^xz6~exb7`NgrUguJ$ zKk2#>s!Z-vq_pWt1F-Z(_m^Dd^rS&R7HPaN8#IKxNj|?U@*RXW{UVWfsOi5=%+CZ! z%d796jV3UoK0@qjEVU;~`~%Kx`g=qrz6+!`Iko9oY?4AR;C`J1<`mar+lGs0#EmFZ zq#~_Vu^j>V6hS(L{rIa~kor_vP=AkuL z-6`M}oU1ceTwwnJ@!-^)CxmTL=tYD%3nt8bt#U^)+YTW+)3hg?ZCs>Q;CkG<54i-7 z3E?IWEC}GE1nj&5ivmv0>R;#Lo%i!3uqw#O*Sz?lStnO#RRvk-<)qP%&4593X6$kl zT)Up@rwRY#2LT`1kNr*u1z1peLlLbW;r$$8maPgBZ2a!5Cjg)joNms6b+&Hhp3QPz zQ?Jg*-ZePenP5hhq^_dC{48P4aAjs0q*?=UivuDq|Uj z0{8kP^vqEAWHmkjcZ5-W4W~MbNCA-JBE_i#Ab?TM_u8y5&1=IJ6ZmEBzSBrmaQ9O% z`A~7t?(_{i{B9ntSwsS)i?AX~!m-aK4rXDBu<*xBz;PP>gfpInaBcV&lPS%LXB+O= zB|aeZS;QF|`pEhCbHa8S8Vgd04SSTNU*UGnBG-^IMqbetPO(hLv)pd!iX{$G`KDRt zo*uy>mM@!?$kUL=$mNb%i7^d-gkb&$p*teEAML?Nr#6bI}gyv>Oc_rU69(I#iHc4MjJwJDrvHWD^oBTHM z=d5Q_0GvkLSCD9&=9MBaD)fZP+Wv@uoDQ8_Kt`glAnV+5hd}mZ%mf8Lb&UU&D>Y%#ozSMLcQR+789ibVDaz*WxDZ6wT{Wv3bRQoue*U{0@5E|=0X z>$j_@n{K=_f5_E3ZNRzkXfRg`kY(OP4Qo2Q^}?Rlw90@Bz}rcTQv!6dpYNKUT+)(- zz3l(RS-O?$yxkR`ZYum9f}L)kM{24IGQWsxcd|z-a?d5NSj}Z`LtkjWNB-lK1FY`3 z&`>>FCbyhP)Dwc!K{G!?UM@gbSs_ZnN`z;C|s?z=isD_-_O^E5&S9HMD05ZPo*< z%R$O=Z{qoInvW*flvII9fqN}ggjv}t6LJOIjhQ~338ooD@SNhA4FUNtDcH`+X#xmS znm63Yy_p>zUdxjCz0Tt|D{BoR1m0<@*PnC2vyvhnUz6$mV@_|@4Q~38)(g%d9nLC` z5S&ywl{sE@5Qh&h9SXE}bBeQWuzDO>;C!74#z1cJJyl zcRiOoE4PXI8>rV>)wZbrco4E%^;C&Hz zOI+@(im!UOET#DV2DjO*x>--tI8F0b`*^jnpC(+lIAML43m2Jsc2$KRAyVC(aU!TD zOHSEde~_4+eX4QHiR{-8WuKo(rfR#6BCdY+y|Sblnd))EbzcpWOf^+i;r9+^|3~UA z{A+HNn<-5)Q@awwkRY959Cne3Ttao#Xn5&>W@}Y%_!*+r?I)N70poQYev0hReSb^@ zIIj3`j5D1bU{VX>w>U$$;6KR>ttt_pPr9F-n(X=!KT43Z^OBLu5-*aF+;_<&OGmhY z9QfZMyx9+Ysv1R`FlVPs`_USi?1xB5vva+%0vNwUdYT;xsnQsK!MS>_OotRR$*G-S z_f6fb)wmYL1;q9z=QdD0&h1>#=G?|f-g%b2{&ze+{#=JkB)%(X4&IpCU^E8l^Y+X0 z#Ue&ZmDqTI!_9ADcw)wsM7f(}IKPoN(3()jmyh(9^ji`={XCGJ;RAa#eCj^z!!xVa7C6K~wKYsMb;2Sg~}8jBW8 z^s-L1vVlzTXeCN#Sn2-5Vt0#~Yp%p^I+hz=3y$B-)S7;)7-KXrCK;@q#@@GaukxR( zoP4BI>i^&8dZIb((Y6;v$d=rI)6H)pKC}y?Z!Lw&|Az~#&2MO%6z}IU^KY5Sk=erH zcKH-~uOe?u3zPh5l79aEIr(_7(ZX-QC#AGG@A$mP1O*~6m@dWjw}`)a5Mw87?jfB< zuy!>^$rpYn$C_wzi0zkgUM0tv2OHGmn9{Z~+D~$a=D4b!j#aye*X2CN(L(Q~+@*P( zTa7)bYb&_>1b3=B2Ohz)Ea@UBe~;TVk0+Knl&;)TChD4VSPmk{C3#-IG>I5`6De{Z z*R}mQ8Ph~b{WEgE&&iOH@u6;TmGdCVov^!s1Sb13`EOiazA|f>V{^p-t8W=88LH}t zoPdAB!SdAz3&3Q9#nl$yTTC&Uejq~~|1Y;HpZiWb&_>WkJ{T$q3I1N@X!FA#{1{s@ z&}$rMepJD-c!>w}FS%J;xrcgM99F|Va=6-In+2I9cBYx-SH74P9d`GV-Q^w+eQ(xvmgh>_r`Ic=ZYG`}?=%q2gMZ0E+$phk{KsVIs+q9NpX1eZ z;Lz*(;``Udc))~n?}nYQ-!rH3&$xnoJ~P!AW}^>r59Tz6+2=o=#~6NV!>_?euVdB! zHuvM8ce`$O`=4+H&XQayU*2Rp0q8nQ=l2Lc-(ol!c)6QjL~)F5{r@CUc=1w)pZq2Qhr{GxNA*%}NYo zyn&mNA0jZ>rf`sc+m`N5bC`pcCEGr7Do`5SI`2YhoAWs6T#kVEx%>IH#K~~hRr*WH z&GGvj=b-sjH)bdc#L_`C6oS_bWs&rI(Dz}tt)cszeZJvovQ3DZ0q^tFF8up>>_XHt zZ2b=@VdXm#(oyjF+E&2Bfs%ro{zlg;d$p|)r$op%Am%#x_ihTrq$6&4y=nvTCXgkK zQRuG`k@?YNv#k{FAT8SeDao&ZL^IPeYk{{}hxR3yy^;X{1-RU7LmGqf87^?%qam_J z*7hgdz5F<(*>;a{JQcX>iPo@fqEfz*3!V27!O#eU(d7<)j*C4r=OdymSGc~~h|@ww zDGXSekp75AbZ5@vH-Kym9Ci^KR%wMTSi)qhe}^ooH|Nn=>Lc))@Do?;c#~h}%JZW# zXCt%ih6f_6bUp1_{qX04Gi`VAc$`vv*15)fL-LGk#BhEU>W_^10MF38DZ1rtqcH4F zjgIR|Iv@UPh~jzgs{{a6Vo&1j9CY4S0Ngn~1ZaJBUL>C9y|=0)LNaETW4<=$^D1Me z7yD-<83JJ$zsOXZ*z0!efjlFxG)QW$l7J}!(4R%tJF*~ zoPFbMa=8Tz7AjXYUksO&)<%B=mpTFhv_SJPS5?5cGtnU12rCbCh4LSz%;0>hA#I(S zXn^LDwS=oETo-VnOf~`@jqZd&6yd^3u=N$(l7k+~4AbT-n(@Z`2=P`xjh$#!Q7a64 zjY^gdTBH0H?DT;V)-GI>HVYIyNG zYX6k%G5=DZo`7Hrscw^WVmabwva|eX)merN<9M)Z=DxnL*>AORDv^aI_vqi_PUeef zGpsLcR}l-TUSE#jS@PQ^{NpK7?L1LiQw98Goqsz2!4jmtG4H`}S;r;z9w*V{t1{E? zU_HQ9m^StNI2V|2)0$yS80#SJ$=>}8FW-3*3T61FRvfP5ftdGTeSIU|Mm*-<_A}ry z&ZGUCB$NDz=jn%P_}&f*xtbEx-#70w(6CPT&in^UPWRs=h2+bE(_=DN6uMuV_m(L` zOcl008SgQUmv8x>eqpU}$44nkt?UHcwEXDj>4)oh`j}nLh0RlLFvgF1eB6$6arwsC zSr(`5E!rRuR(5z02SGi*e8ZVJv<~vv-X#5c6-uw`JRnRThP$FgDl)oQ- zpRO*cd@j}7gB@ZM^=v!V5bxstMLq9_esG)xxq#oU;D^Xw#}z%Iw`%K0fg z>fdui4tS8|(Lru0#*!vl39BHZyiL^M;YqOenOn~}_Z z4SXrp1|TE!+Y@mn&Yw^BU6jfHKy=1Z?o^?`CnwM zDTB9c#{Vv6__8W{=2HPlIqLD14kpQ|0tPbJ9~G0MrX37#1$V2VuTyHD=T7Ix=1xDD z_ILgOF_^EwOg&B?B@%Q=f&Vc7p^VG_dTvz#{+jIdM0C*rfrQ9=)H31|9BqC$wChZK zE4k17hHCjRV{4=GyGVign%}gPfu!!Fw9rqGH0HNoYOG{sADu4}IhrBFcat>cibTd+ z3V(W)8xoMBO zE}(rftW8oipQN{5Yy1>pJu)qPgucX|mrv*@LuVtQy{~&St{;8)0vBh5G zF_Odc(?UbB#V(#6?{_+oxgZO*J1ESl_x^*kps(t|hg_*^CbLCQPfa<=D!fv^1_zbf|)mH>7v^24v;moGJ zB{;LLU-!X|x;*dIJ}SQ$v-6jbYNuUu1EFz{qx2+yfNP$1XY|!&b|xlHA)wp1{->uz zrvY8_QAsw*JNZJcd{&rHJ#CoVoaeMm#muwc!4pK9sVsAn&aB1)hur|&L4ibX1Mi_G z+(pp(saZB3wihwNs4SEAECjF3I2O1IXvmoMX4Bx}D_s`*2KQ##%UpxxD>h)5)n#*4>m%St>D3R?(Ni|z!Rf5Hsh-~t7-Wn;ykL2 z%JwcIfHlkcRnBZ$?8{T1cv=xP%VSsZd4%YEo~^)vBhywpId-*tFTs9z%1!NbkxjeL zz4d*wAQc;p5VbB6K#Yj>ZwT(ODd%dynd|x-QuDMN5f2>+K9MkJ#H=fb$!TvH0`$*R zeWkxL`vlIn1oRgW^t4Qepbf)KK%PfFHto?-AY+l@mpHp=j}Ae>+yQ086m9%wf}55d z8gQsi9|EigMNF9NeS|vgrAnyeu)M3RZMkXIZNWn~RlH7Mf&4$D%2}of7e1W$y`beI z`aEM;317TH@ z!28HP9-5YYFic+X`3=P9w3?$PA|wpOk(`ea-qdVOh%$bA_&EZbR)?2t5`BgJIngyW zKO3?9R77^vpm%4v7wFZYYc1K3w@D_`t{LE(P`+hrLqeMN+6E-!g-Yi3gIwyge3lUV zt&Y|Lzn-9`RaODYmYn_88wx5v&Z?46ELQkVQu4Ht ziGa+$QSakMKQkpS5a8o?>K=hkD^dv1^i{Y{fX6hMn@12C+L3-~3QiPbYA-klJ0t7^gC~#S1kst^tMG!>=3rGj)MHCQ`4$`}HDN^42 z=gijJB)cKJ-R0xU{AW&?Gkxyt+_@>8V%e_7beIhj!mE{O!U-`mis02;)tC~uqX0C& zCFyj*YEOz!VOaB=j|+yAn-=q;Oj6o;x%%uT#;tHVr3*OvW!;Y+80DsX6S$Ys=fvS* z{_=J2@rmcsd=0JE??RUQWW{Yi{$XNsTPN)uMlQ9-b{Fi~?t$!2e1vk&qHZKkTI$3- zOX4+EtK+n9@em`l_Qc_waoFQoZ3g_*-m7um6mAF>TffnP2yIK@B^=eBeVwyz@R#T6 z<6gCfLjA)6?0kEGoWDw)i}w_x?JS-^ZnYQF&gB+AQHJ5OAa-VN!%^*ZzjJ2AiGoN= z6XI&Wiw>kc9y@1~yEe|uSliN023VT{r{n437VsFKxzcvPXzG-!{rlF_&>B*w1S~fNUPh^EcOq9y0QUiM z30#AtsZ#>-rax&o4Bnz z$Yqn!;^R1$VSNScrcSBSy>i?`jIf$I!>{G~wDTy`R4RetLDoA_yTI4f8GiV_HOrle znX!MCI^B&e+m!I7)awnRpP5f`9!k9dbGUfSG@r_j%_R+^W6?A;AFY#n@!6K|gQLGZ^gK;;?6p_B3=QJyEO-3SaXv)NyBW2GEToQ zokB0rT*)V6hTiNE=l;am1W}4&>kFl)lP_sbLD^|eQ7N&i7bhUOGzY=khFUEyNxPOG z6Stz!G?zBX>1*Y(1*~cQ0PBi1Ywi}I)HF{3C2dchZw`q9UP*kqB52S<>#NpGP8(4_pL;LhLTVY)iZLnh3DJUXLYaU>Z5B+F?1Ec0ot%M})BGtnS#!}k^RIQIQ(jWhA+f>1 z<`;sC!5PiIZMmC7s{$=dA942Ha#cXT)G%g#2YWAas9EZk#FO>RW-Pn_bDF);Nps?( zB3RY&yf_@zG)HMCt=V{%2E(gndk~#hJBu;mz8JbSOsu8Yq05Q3hvbdWWf^k9-;ccr z&0!&VJ9M**`8WLlv<1zsoV+2vHH0&k19mijdQ9Rb8p%TAv|c`QCh;QTt8p~TTHcxy zW@86~i+00I-VQep7&G_epI}aN-5_(3lv`G>_91tg^OtzKF<*_MY0Ap>2^6PZEf*7X zg=3n}Ypz)opI+svTnHCm)gXV%l?@I<+tBXQ)=VXrXUpjI9js~Bs|(h2=8HIbBDb&X zoOv|dmUyFc-Z^XC9!`yti;j^;M{=h|RxQos&D5|aUUB3$vI;rXe5y?1k_+>_7M9^P z4nC#Wig|5+7gjX8x)Z*HMwrhPUO<*oY9?A-GsY!z1m4uAXS)zxsMz$2MpqGEqrofj z_>1%YK9VIqdVvQ}am$CCD9WKh^7!tI_Hci3)(Efh1dIE3bR#07hDtk4VTX^WIAO=~ zT0H!-yrUNd8+Dw`$&k>90L!QLDq1VniR44#BE^?YbkXA2t+`z2p}r3sXyU8`n(rC5 zcF9DfK2nEY6r~$nq0ufCgLvsgeDF`!!YDK;r)!fMhq!i4)TDe<(ER>o1DA3kE786z zZ(;>9%Gt6^SR+X_;)K#-iGT}O>}vB4GV%ZOfbMdz_aGly<-7m4GBBS9v@3<1XcD9U zZ$5|@Zt%@0I~R(>g{tHNmK?g^*if3y&4iCQM4}%~cNofctf1hkB%y(mgkl^MgB|yo zvq++15(;(>Ek(1lq> z>jB~NNw~oe_hfhgWRogH%UNn!h=$}8_yZ~UjvnXpOB6~u@&+>>O*}q?63jCbP$Z=_ zMdd|0Y;p_a%4o}p7gELTEYjItNV}4zU{IX6)=B*0s}IBVNo;ow^2QCs(N$iGifw*z z|D;@P6oD7jHH}-O#XARfjcRe?g<*M-O8UMhaZ#~P9VsqA5)(B0eF}bSmzy|PBEFa< z&-VExUT$K!D87+m&RQo3metIf=urU?(R%aNTp@VLizUY*lT}8&nCshIiTKczU9oIL zdW|*HOWaC`*afn9JP&^G3fy@=qGJOrH#FHbAi)Aw zK28hxoA0iP0JD&V85Ut4DcSZpq-kY~kF|=|F~zBH+0e3MPr{nnC>r*?NuZ^O*#LJxi<_4$ zKUb_o66Lj%h=|mM`^ET2n-`w9kb^{I#TEtXRUFP{*CS99iO3?8;w^f;Ih#2kThZc! zr5X70O2a==FPGRf)^>n&iNvI3$$gD%X_=HA!B6_j&OSoMYH65EP%nPwWh5)+gD+(? z6j8f$7n=0vJ@`{25kY-;Y(y;XyNJ<=*H^3q(i13YSr?bv_}gBxwhaE4)UYluz+z{0 zkgB33B^sRQnWFY|BmKi7#VKx97zhQ;^vw!V@YlpFTSjAthWaIPW^LHk8V?p{MuWwJ z51heTS0=DGv2w;9u{gbN=>dnZ6xPb4EFYuwQE@m56`0F>uRDIg$K#(6-CWd z)$qVh*0!kUzVjX}3LL&mrlS+<;Ez*4G*Sa`pjcnFTRNV5=PY-7_5OOl@kW5`C^(?~> z>uy7a8aSzIeq`_y<1ee{vu}9T3DQ@bxe#Zy#B6F=OkG4$*3z(%6?Vge{G)>Oqilw{ z+sKu5sId_r5fbNzAA{tNnD@}Zt)stn7WTC{?HLV6t=8;?#H!D7xodt1YFe{NvJHf+ zS+SkjeK9wgGbFp*G-Sm(nb?U3MuZ{pC^6QH3g-QUSo3es1E6T_t9FWFAQe;n5V09V z1D;IkG&HOuft`k>0ZG{g_7!3$D~6-U5WdsIyqviP)4rCbVka(Yn~Dcr5jpY?w>&C5 zK`M~cCHL>w9kiV)YnQ9llnySF>hBC2brX1*cDF<-$#C)Su7t2^9;i!0wF#r=-)W8y0t ziVGJECB)**Fi%JsN&=k$Dh2dAxTS%Pid-7X0R4ctvOtr8$^rchZh4>p#8m*Q2rCtV zR)bp!Xai7XAO+kiKp7EN73i$!V1{Zy@4`xTpa7m;as3PK80o8+UYoJMpYXkHbJ0Q2q%;WdP~}^b5FsfsVo6TR@+{Nh5>B=3J2;76ah35a*;q6knS*`V~C3a`WJE0K=DW|2B-kIu|REL zWjN3V#Ek&D1T+$81yCH&5TH>&r(th2&^Xw87wAWD#{j*Jxc7jT1C0f`42^L>O%OL8 z=r6=g0BQjb-UsRjG!bYr?0o=~4(LN5e{d%OodlW;R2pasP%R)8=u@DnK!cH*5$FTN zO#=!B`Uq$#&~%``flNS6fo1?bLb@LVg}};8pc06S2g-v#v+(CH#C-x31Krs`pF(2} zP;PKP1zG?!7w81!<^fHI+bh$bAje5xUEPV!-_ds4&pCK;MJ=9nef@tN{8E zaVvogK;Hv(fW{9%w@|-70+j^!C!o6Et^&#iv>NCxiZY(t>*h=po{+ z0+oi`H6SCd!pgrummv2D$OJ2of$jl40lEUYr$Fa{{v!k{&w%`(`yA*rG+qGBM%+uF zSZJilBL4gVjkG{J5tj}q9pusj-2%!06a_08f$AbI6VN+A3eX*JGXoWd`7A)CU@t4s z50J|S^b~Q~fqnwY0rWn&Ie~7#ms~)#5tke2Ams7@T|``7piV&ffXV{p2bu~G3IMf& zMnRzWfeHbsK!t%GL#_x=5Oj+IodUNQ&$ zt^$<>S_xDRXcO#}2dam-3P1;8r6SOOh^qv&9;hk)d8vsbQGu>&~2dVK;3|9 z02M|WK0x_U_P#)cfNBEmMVZ#3IB3)c8imyA0R0DUU7$6Hs|S<@_UZ%Wf<^H*XYay@}^0`&qa0PdSW=a7%yK+D1H1N1lI`T}K!<+p%pf!mL`(CrWOJJ0~2 z?T{M?v;}f+1N{Q-AfRY)2Lsgr@&md7?mIyHq2Uh{4-^2@A1Dy$AmoC8euGy!pel$9 z2D*s2Awc6`IRt12kRGTvtQdf<01X8S2MPu12`gbh$6+NL=o#W7fHFWX5~vj7h5;Rh zA+H zK)*xoJ)oM98w>OgxZ{B0VR<~zMaWG6`WABU11&||M4+39`v9mZ;ywiW9abg*)c|)g z(0p*G0ObKvfd(OssX)I%&IptVo=yYG0=bWX219N-&=-(10r`MC1E?|LJ_g#1bY}tu zATA#0HsWRh9RT_Ss0r-N26_UyIY0w}J_Q;EG#BVO5D&={aEf&PWuGN5WeUjb!-#@9fxkXsJ) z0l41)odfq5$Fe?eX#N)&|<{>1k?p_tAM5>ZZ%L> zpr3(e0j&Y54zw01JzK!QBZ|1ZWq~ui)+m8Vs}tXcy34px+?359klX{R%V?Xg|;_ zc>fzvLCF0M)C}kV&=8=5Kssm~0=fnC2aqqghk6KFEfEudpS{{UTr z+-;!Th`R$c1aWtPS|aWq&<^-~A1D`c{s71Xxrad8!TlGg75sYy^b62qpawusfPMyg z3REAu{{i_U?io-s#61Vvh;&~76+vn*f$}0QO;+*e3&^Df>I~gq@z2O15O0jNDR zG6L;JTqdA{@KgcH4=b60N`jjOXf8Ce0mabO^fnfZhPg4|Ec81%UQIt{~7eph7^A;1&jY4paoFC{R(LLy#*5v>m88 zPB2W-C zDgnI(R2gU_xK)5E162iD1XK+uC#+NldI?kmC^L``kP74rGy|w6P*v#G0?G?dYXjlS zm4-S%_mFN~pk9!x2ZXOO8tMb#qltzFKm{Pz5U2xCBcN}PMq{9I&}{;QZ|NDD0=)%p zGoT94Xbv<8a&G|TL|hA?%aCgc^dV3yAbi)%&>E;aEsKp94(* z!u{5U_kormZX!@ISpER0F?2r!iUXPi)DUPg(0pi20m=sNRiMn^P6gTyt`X=d&@`aD z;C=+O6>-ynnjp>uG#+RM&|z>t2HFo_W&+`!S3^9|48+X>!j-CqPk`c}F&pRsxO0GT z1*zdvpxcO>3v?H0%mcy&ord{9rJ?&75H89zd=9i48Vi6zps^6BFVG^O_CSk)ZbI%0 zpznZ|0JQ~oDbQz#`x0m~(pU!MgSfANsw3`epaY0o4wM1t8=!1J-vZ&5Ji~WDfzVh1 z^c&Jx36vIb-vjLc`T=Mfbbkc847s0xt|4v}P#EG?1Fb{c&p>0Ky9Ou=&|09!;I0G8 z2#xhXAA!38=svg`fpCMAVG~d+xSN4mLSqY1Wyt*kv;t@=kP&Db(0Ryh2kL^j9YC4U znsx%=HXg$+phK{{8>kZG_5f{!?p~nr;O+y;3iK-wE@?6B2U>-=-+;zK_jjPD&^-WD z2i$`|i+~ORbqDtkphiH4fu@4{C(s(8BS3v%?=PUSh&u}OCE|_&?MB>jpio#j0dxg% zCxKc*?iA2apwmEpkUImE5oK@|Xb0l{26_Rxb3nO(&I7Fl_X5xXpo>7Kkj5pTDUiDi zGzf85fVM*JDo_icYe0)2cO57jH^(|Kw;qi3)BeQM?f{feGD`g=n2qh$UOxrhPeNL`T;!y+6(S; zpbJ1RfQAFT1WE&+(_|BWE+Z~25MG)yqyq|omGnS4fHDA`fm}vH@G29~Pe2OLK5#Pw zbwykjpoNIb3N#E>vH^VulpUxixH*8fK_e&7VQ_N+M z2UUO+maH-QEM^#=MCs1MMW(C7=a7xvx)!WlS2KcFzg z^#}SGXaLar&=?4G1aWTzeUG?7Kt*ABFwh*t`2ih6+&e%Y0r>-c0d4@$cd!x&pp0Y15<;2RMwmqa#D~;Uj&-%lmZwNnm{E^v1%Dk#vGb97&7soYq*#k*UW^i4o!8 z<#psmM#gu}V$AOlO_!NKzK8?E;6L0yIxtEfDN;&r%;&%r=OshpJEt=iaEOnLiwQyc z84{$AgM324(Jk>ZqlgZvE;KT+t@zGOV~zR6d2gHpj6k}eycyVedN*6!H zsK_D{=U|MP<)PeY9EvgK^p6#1Wb{Ge>SCQZ78-9%rw@uZ=Fo@vi(^oDwNE4vAEGzr z)`{0(@NM8Yad0(6CyIB9u|S{@7%DEm5JyS<{DXqTp=WWST>NBX_DFHW9AEJAi;W76 zHx>?wiHVGE?CUF{qkXspd?KQT_{JM^LXy7uDZWrEbh{a|M+FDk=vFlA;xsM}pA8k~ z{`I<;U@{<%`S^y!goVNq^z1C<6z4i)#b?y;>09K&uvD}oV@{zHqmL19{EfsZFOiMB z(c=9CalGC>HV87-z7pcn0`sv@Anj;ha zimNJVpFQXc>MP=XIx8dbG7XWmfftC^j;x&7{*ByHKi03=}4)G=tRk8=CfM0u6<-pYp zB&iZF?}U3K`6f~CTs}wCW|Ew`<}Oi2;w@~#dZme~ewoX9Hc58sk%nykN4z<+SaJ^W zetM5{w3Vp&wXTxQ3M5&){Y9cmP#$LVdq&hhM7>pkOFo438f{?SZlVU%c}bF$NpjZA zheSmZZ}K3n_lLy0JB|IUO}zKJaS0A1YE4(JzeYqYSjl<#lswzo@CDh#@A0bAVJ4@y zm?Rhb-6q~FN?}<6Eo4fGqMwfF<({Q>|2^B%toqG zWMN^VFw>|?{!zt=!VIJ;OVcrh`At=d*Dgdn%x9_+KD!`Mm|Ik3{;5(#VMbDwpG+l) z!sU?EX=Zm^#* zM7{f01(Iw*dTmy655Tz`Rk?no2Jz~Wa!pGRkeAR&|N`o_Hp)bV zB2|c2k|eK`tVUEvvKcdvOSd%f#?&f6Je(|2l|yT464j4*3m@>wSnCMOGGsHYDmQS(zKqfT-(4b*WyTsP{;6 za49Y`1KGSDQki%?i1&M?Iz-JRJ*6*u7DUvEaPDI`=_T6P6>ewSh?l)lS<>rERw`uT z@wzUhpf2McHXfp}Qwt4a+Yf1>b&q$+y{wIB-5L82FLY)cfL z5>%yD#z92k=}T39xWx5`rzkOk)o(*QJe8<#t>&!Vcb zVHB4qo^M6VdW-88&ts}Gu1x@0!E>&vJX^%A08h-SGCK{oWIUyb91YZwB%W4PC0p4> zMBzzURgQ(S9-glS)thStPl3X-4+oPZp2Jk7Q12+B@D!>lvkGuY;Hgfur6YRc?IG&F zDXocWNvZoEoJ7=@M2##nfhg?esLHKLKM;i-HdT3Ecr;Pi!4YLvehu@;X5$Lq5|xX1 z`Ha(v!tRx-^pBlI6!xA}rQf*4L}3R^RYK3qAPRe0Von`Bn<(swsmg;L9}|VWC{?My zdKppJ)e^H|nngrmcTcqPT4RaA&XcN4PxBK|*x?ehjP47fu*)TQ3zrau{XtbJ@ZK1r zuur8b1Lv(G3j2SmvV6;jM7<=vLW?=Q7esX(_7U;cl3tU6CZe!2s4AP*szhPOOU&WL zeCq&fs6h6m`)5R9e^OPNhfO1DD(Qs{dY7nB;?3&w0a4gJ6zhot z3y9iHlG~QQPt+pvWyJVTh^k3?ai$eSVP{k1wh-6mT%y)x=hlOLJ~1=eM<;4?BaeLDi1$l=&L8$B zRi)j{wxoxhHdXm%D3>R85>@48p+3aJ4xXyaojIN;><_9+sn$HwV&_e?v!!#1hn+=L zX)^O|qRx^!%AR4bPgV52*OT5`MEx;>TX{wDQ=Jn{yk|u9+|InNl-`Mt zc}CbryxwQJlH^UYa;0%Q%Mp#z^byXO)sMGdycA{&H6i0 z_#H)6_BFadR3O>>@9jT`!mm84Qn|n(qQ;V*-|+PP@SM7Ws4v^!Bp!aJP?dU96yo8R z5mgyn_c8IVvE;TBL}erDhsm5eey35DMIl#+hu>RNrAz)hM71Q(CVYF1sJ2AqI=hLe zw3I^6pZ_E(3sL)9oFxjsx2THG<>y4*C!6tIE)#`cdBi-{{T5N($!3w$naS&E#4Gyz zFXF8us`SXyM4cze0mW|<6-y};o^q8a{Fb9C!#AcSE00O}Go7geq*wOug2bCoRI9&h5S5v%WQ+A7>TA+Fx2z~p4T-mT z21~Xj-t9)Eh!;n^;_aFDIoWKtrYi9o6R+(*)rrC{)2gz1Pc@>(vz6vWh+0B=^P8|_ z4&u!?T9|k}h#I@U0#SvDdJ<5KsIN&+|9x(vS`qcLT7sxflzRKGa}l+c^h~F?B)%fv z=QUWe81Zh-=G1WlK~)+p$Vqzm-Cgv?y_JX>LA+`HOsyyCcCiA)!x;wAvO2OJP7#P_ z(dC>!J*BWFgzE^u+lwdts#Qo2ry#^=^J@;G7La76>+D%LQBAgFCmzleh?U1qwu0a2 zRpnxJuCb?N^I^9cJc?Pi_%);dvLAlMkp)yGx zCtg7xZUt$G*Jdc!3QpRHxoSx>k{m;lS=Z=@>Oj=^&)X1%lP+RKox3+tIAxG<|1ssK^lH?<@RXJJ&OT)|+Xz9DML!nQ==bdlH-Slx)I56I@Ek3)(2mZ(aR zfkfpZy~z{xMB!A8SlzE2Lev1VqVHuO>O<0t&L2h8CgOEn5=IoxFsVwKr;UmFiKrZx zIY&5wqbf(P4<+7ZqC&@ZC#nKjIozf*QRPT)_{Mfb;S7|j3|sjIQN>7a(T)K`l_YB0 zeNG*xo5VAh(v^7KiI?rWH;Jl3yds->5ruO`sa1u&9 z|8?UU+eMPCTJ#~ww}?8_y(3XL-6ftM@^WqZ5U)r{E>E0uEO;b&{yU<7W_s^M4|@yQdI^(}m)>>d?DHMG~*j{dl6X6Ls~f zk*M}W{WE?5WC&yLAOH@%xy-D~SqKXq0Kj>?s){|bI&&Lrpm-OcM zoIn)L5vt06_ZJaWnIw;NSVPoAvXXW0mqcwR-f#cTCF&4aDOYSdQF`JHFF2JboYWNa zdzaBf?IG&wsE>)NO4QS$TZpPbRPO8_5v5Xk4IgkF^(X4Umd}VcgQyKLn~6F^dN~WR zFVBd|@q8xno|EL0m!A;zlBiBsHV{>xsBw{#iTaeN6P3Rq>MydAuPv7#PB^JbP;XwX z;VhDc5dPEe?QimIsN#NiFewyJ{Cvo@BzcW&Hfg$-D4ZM@H1Mse^s(et0Th?^aTdHzvjUk(TcPt~l!Nj|BjaRWt ziT7chJj7c-Hd`&>5e#S5#mb`{x2%yQIcdS4B>5*vp1j93c7&*23pjtxNpir~XGpRc zQN1%~?T;svhLn1pOQ(s~fb{wg%t$<(@)kQ$Z@wU&o+LBpK13AGhl{1K^L^j8K zc9*DDWM$g3mqZ;Sy+#x75Y>{XsQr(K>P(V(_vfVadXtqm_2-FqmLwnD2zBk|53yWg> zdqljl^DYwaA@OvhxXsTd>RH_1#H&v!boy8!J-khzDx>!vCm!BQ5WoD)K1@^;N%pI8 zfvCxpLh1ImiNZO4RmrjODN+AY3MbCyBAZ{3-tNjdh{73svFk99OLqzJ)Q;S;_L0rr zUAvHEELj;eqZLsB#Pf+MMHJouQk5U)mn3R2Nw&SodcTw8Ze4HU1rxQ&*oY{+-=iv1 z%he$&3#DFVO-rKM6Xo|!6Qa%$^+ubvM2(>og5#SL^#$2%8(oYjydR`0yPnr0sxk38 z{ZN9a=A`%C7Y&KRn@OtjYo+o;6(Qc515JriNbhM#W1>0|uhha$L=7X}%ZQppbs_3d z_pU@uC&^E~Wa>G2oiU^q@yZgfRd`3Dx{=<^FB=fGizI(&+<~a=M9uty%j^b8emHp; z@v0NAaKH9M)gUVUqDZ2)Pztdt1Bv>D^mNad`j@D4Gu|NH2SlCB(1xfdM7{Z>22s_B z%AKFl-`OKQAFY0FjX13t~gQGsdNKNwoG zxj#=uqV|#A{d0AR!kc5NGDcsTsPx1edy-3jKUvxIoXh1mqV%2gB#F0~#4g9`zC`JW z*J|J>qOy{eS=j~?^)02o^f41qH2OG05iDa|((=kMyB;MP~mqg_uYV2ognIcJDrX@t--B4Bec+by7HK!as_g_fV zDw0gMY&=mXh<9N40-~0a&3nV967?+ ztRxv)f^)lscypF;jp5yU@%!dvF5Q(R+3oG=WaTPRow9QY;vIgmkCK)1kc+G|_v5yU zH||xXZ`@OiPxWP=I7r3F;U;?xR0$RUq1BRPLhR*s`mx=s{csx*phhSm8bNsl-)wqCX&=w zm_gLLoTJKr5cLj8em`y>QMZW-uFvi4H?pZa!M*Wg;#J(hy{ZCPIhc;yS$U#{yf{c! z>XBZT0Ur}Jg?JD9?k5VjG>9kKkvyIqB%688&m+mh*RteCgfnDoM5?sz$l@ zo+L+_xXoW7DraG)-Y06@`HLiZntb`^BThXXS(&<+OX4SzJU0F>k}O5kn}#DqiM=|J z+nT2?5rvybRHgSKZdskk%4hk{67L71>g{B`i$vWlb%uCTDfK%K&k=Qrc%^IqN>mx* zsa^IE^_0>pScZK$L+KS-&%MJ$l1m$N9qlB^mBl#^x5#F@B3#yGi7FEDH`xp&$u{v^ zM|a4|OWk4Oou?E|J&hPZvPT*8Sz@2!O=_&2_lB>DZexs<{Rk}N-)%Vh&eej3BS z6#hs&<*OTH^Ab_rZ*!UbLXwAf@o7-p0;eh;Ug1-g@svWl$-HjGt!(0VuI@7_z0*Vu z>(70&3R#Kz_DkYbB`Utc5Tf3u^cI)mUuEYJ@9#b*iMN4xMXU12zKN)y8oaAAj#6LT z{3@3j)%*0H<4Nxyk_?@}CrLgho6Gz0NrX2^Z*&>1P2A}wPS~t&Nmf1~y?T%NOz9A! zS`Og8S(WsPHRkfft!t`M@hsQF+r)d4^FCQAO1>;#!@u``PF6l!#pf>45>?rs_i59U zXZq-}1F*+Zk9b8I@RN6I;w?KgmTbOD)Zpq|f(l8-cMhW5;x>knil z=L+5}>_yZPg-;C}C7Ze4W?n|34(=R9eoiLI+4ugU^a_&A_YQQU6y6}oWhDwxNvt5M z?(Vci^(0BdA^u$^Kk=&e%SpV4WHaj5L1c3^@jl#8m(u&0sF;7Rlh^BrdbWmV*Z|VY zePdro^NQ9FqmF`IuY|C1!!4~ik4FZuGp z6`n2T5f!7JrQGJHHrTTj|BC+?=@rXT3VN}|>_OtY-{M=f;eq02)p%pJK=FNTKJ*VN zNEhrc?otiX2gbzD6t7L-mU3|~vS6jh+a)vOKZx%oZWT={Y)%(1QdIQu!6m}JbZdBE zC_YOR%~z{)6fU?H?>@vE%Su7>)z|*??GOi{s#?}8_YB($o9MJZd~nKi1ufHb^|3GA zsw!TUAU~^U$yr^nl{L{D2JZDBldK2#mBCr*K{5pw7^UMYnb8=^Xg3BsnItOAR?bA1 z0=l~?zAL&Pe0ar-*|siYG6iZYYodDz-CYPLWFfe(Ep~Q$Z@BIOC$|8<#hGz?fuodo`4Hy9cv9pdS8ndnwG3rI1%Xj`)d}+VwGhey{6+ zb*tNlpbG9D07|%hHvC6=;LM|%E8}Dm&#U&2Y9VfK1-m_<_g8j%Lx^;HJv?-K8Ps-r z84UA)w%Ew+rSR$Nm;X+-mfO4JNm&ZMS{u>f;!MBn~FZP(D!2^Jsnj)>Ba5-Ew#Jw``F`I;4t&3(n!rhP*q z;6_YDL};LYV2IAQ2VL*vTgRtXO`lqId`H%=>l>;M@Z~#?5G%gV8yQE-s`}0)7!!*t zk7V-f@nhs)wL3`Zsa?PYZe}tvxBIKKI3D%z2)Eu5{Zfk^$QM- z7~vN|cRz^|Zz1c|)e>*0m5+oqB(A*j7qPW%itLpu%S4|LvdyX8&pg(`wB3A5-Hp7u z?q0CIC#%ix7qw&gJ_nMZqz20u9kN$c*PDsYh=#tQd)vdv@4 zq_1pz1?6mn7VAeVZ*k`@o@6x#V}3Lh6)kT*#tp;PQ+9SEkbH`bit?vNa1(vt)-!5h zsK?a8QHOEEt^_Up$=7z=b!x$**`sCU*&K;8(N}%lI*rbB7zCXfIiJf4e8uU^_CeFN z$-kcT+HDTZlMYmq-8VKy9~vzlCB^<#c#yBSU|U@4P1sLd(H;~k`*bNyX&VU>ebN98 zqJ*8OPMpP!4f7M*J>vRp>htBa`QqN}5M5}bxG$Y2flji47q%0RjEcZ*-fXE=3ODy+ zbYYROLhf`(p%HypWJFX9whd8&?DGWab5T2=amY9dmz2w#oswwy|Nafo;h2?9lcC)2s zDYWDt9YdbHl|p^1Cw>7D5iz2e{3HEzBV%+?;aqn{`<`a*;v!x9o>oYX2)jGTl0WGxo5Yucd^LxxzI+ZHKO+D^ortleRSR3CiS$UfEO)eF=1P(?|*tOUh{ z`-kZR{kY`0%MXwVn+wmIcmZS{S1l}@=n#ER{Fq@L2q(zuu^%pU zBLj7jmO;hnQh}Q2<1`o<%$~_fKp*ZOC0??iW?4&Q-DkKie7NIJBce^{YD9`TLVOY- z+BarcP?)dy`URJUL6(Mju&`uH{0bvJieSyu9w#zoqOVfHP0g(f>mn!2KU^Of8)`kT zueoc(i)0D1JjOI4!P$E%cIS>)X_1s9- zvqzN01z8q}99@pq`9}qcFVgV)GRZuN+6yOf0@Y5?L|+U;ORXda47>WUwp42wS_Wr3 zNv=5?DJSY8m(0Go&pA{Zelg%mYvIs26BYbRcFtrio^n<&o3nyboXt!ZnHlp4?U)(M z2y1Q?8s%&qhBYhNT5T3V@%E0hh1f^t#3Q;$G3m7%n&&xZtA3`lRli1B^oWw}Crj4c z%pBUG-7sN%O@q%BPb!d?&Q{}#qy@utG5$Pmt#!7``AI>KXc&8C_T1Sp#(Gl2z^4E( zMY^*4!ZPxqYUcy7l?OR@9uj z#`B7en2Ej%jntEn7bjuGRT%u-tNEjx)dO46MDk-JVxliHBlY&q?GlB=MMlJg=%V$} zVy`Gl>_QI_+f2T8TY~b0oH*VQ9V51t#9u#L)FFQp@Qu_*>gXGr96@zjj~})ZQz08T zXDVg@aW*$N)PD$XZM99|CLyXs-WkFxQ$=>1q&EM|52%){ums0*N68i~t0=MTh=Pk1 zUqGdtr&6x2^Mx!)~XtqO}2F8|5^ks9joc~{nH=L-YM1RaS zZ@^fp&vAn`;jb&9{&AMg+of_?OXkVXQchIb=AB+knsz^o<(AoT{{YxjW-gh2D89g~ z55*^U{esaKM?^#ozKl=VWl5UywaAX|=%|E~R z2I0CPGeuSJ`Y32J^z@hp(ONbL*GqynK3ypZ4DMoXb44Xg+!Li2KOl=QSVx_A}Zb;602*BoNeanNN zWh@dymH25;OsLd{O@=o;ruChXtxt0%;+=JyHB55FYAc#ZCE19W4BvUox-?3bLn31d zEsKJq#7jToz=y*kESZr!(G^v<6t1Xj?sBtV4Z5%vl0SVW)`jg)Ul>!;;S(vyB$lQo zL$s`fl)iwb3y-DW+KjFzZutQ((Ozvb^pLGJsgYn zPJOT8=WUbWBPZH^f_@PifvX~Utyxh{dC3e?Lqa10{6l%En}S}PYR`E1Rw>q}?tfs| zCkxI!GxSY!uT0@&MN2gC4l&m#`gRg4M~z-NL>I1$@(;D`mMIzCo47ov;OSDl;LDBo zj%*F7Gd8)t7EZX*cil#U^>hl#(PStmOTwiEgvoGUs+rf$mX)#N&Vb1fAY0u3Z?B_| zbk6lMO;|6f(?U{X_A)kgxwF0M-r_6uGGpsh8Ddqq6&3 zPzKq8%u|WOCXjU_+4x!(!Wm^jn12>^OkN)@j!yddhYryNMA2Csqvj;9{xONmVtmNjkauaO^nUYofr+l<^Wv;WSO^-)AOQoLxd$8DVAr>2C@ zVV0swe%0^d^Iav+E3(R-=h8;c>-l3mujh~VJeNL`Z7H$A$ojlvek4h?y@JijjDxQ+ zX&?9H`jY28;T>>aX=IkKahMxd^27IQU!7NXU$flddE>*?WcCtY<6`AE&zn=iJkO<% zJg?0>m8IknPi}Q&`FMmgpGarqPfdv}cICMXI$y2%>6}DX z&MNLoKb@P?Kj3;@CvnQirfL&=eal9~WSB2gcUS3Wc600d+Re4!(9QX8EA#KdNRx`K zFV4-m|J<#8ud$nR|5UEo+*9}C-Q4q*xOwEu;pY7JaBI&m?B?8m?be>(%FS)BlN@>6 z)AQH5x$eJm^SE2g&H0aUbL*Sp=JFrm*1o^q&80tDrk`rdIM=R;PA7Nr-1WercXQ|4 z;^yklAj{u9L;nI<`YGP62$u%j<9-%5H{NV+PXDQ!8}ENIeHUs!#VxI&n+J;RZZ7M_ zZq9#%Ti2+^-JJV0Zq5BBxicW&s<7XG<_ibx4qD(%G21(-6r{;++1B9WcprHUPfW~w#krPwl5bZzEn&-r?<84?rt6q zUdYy6TaIZ-j)U|C8UB(qzsNk!&CkaZ+&cFZbZb*D;B8I)xSI#^Z)EyjGxOc^wi^Dx z&BMXBZXFJCxw(CR@78&LfSV_>58d4MHo0{&=p}RSHDlXP(&1EF`?h9L+sv?WaJsSa!-J16g-I{tex0d`hIjXs@F&TzS551{W=gNNIO+JtG_?GaCoXEVXR7ZPZ>&@?l z<5*_d_yg+Aw$K6~zh z>n%C_d#;CNy>NmmCw&nk;7*TThT@H}0ZdI8PLpK6_|~T6sV${M-v$)=TNLc_En8bA7bVmu&Be-DYaJtNgWDQ7plWe%OmvB@&iQQN%`bmeJv#wBJ1Cox-uD> z$VT9vqf|TH-mVVI(n{uQxb`jFnW8mT)Eahpu(GpeGJGH#Od0Lo6&R%xFP27x^LtS* zWs$kl;k>fZxa)AtcsHk?Tc)4L5F0K&UeA?v)9InWe5bG7xohjMx7N=_CHaLX%P43v ztae}0?Pc*KKLDnBu5Zg+yR&yRl|J}rcW1lzziq!`X)>Hhy3TCR5|xmmiF84`7sUBnEBIT0rnrsM(ED;mj)KFU1Uh*U4YiZ*9W#-&D zO5T-4=1w1K$#O`f+WZ4!^uuZCCBF>6RaRRfgRae;!mp>xg}86Lc_fogKIn!mFb-&=yh!K7fk+Qaz z%2X2Rq(Qpj`as$L7s%2nscqlpbiy4u5;}W+*kOy|%BN_1c!4+iN|~D?NASAV9(=FO$Q%(eq~Yf4#Oh z^l_MZTzlLy8A?fg?_1vndTpKk?1l5ib%$Bl)pj<+YunjInR7S1&OXFzo4CIhHt~C} zK0TX{GbJ*^Y3z5ISGBJ8r(a|NoAnb((Tz{ak6yhv&6#tpaE!0IhxkyI?W@_b{NCr_ zy+$K2zn^4RiF`~Xp|r^`+iS@T61|9DE6OLD``ZxToQ5lNIVU zJtd1AIaA_rio0j~S4h+?F$6P2?TDt%QepTM2iO4yRyEIbBvx3RIta+e}{8+ZtjwZ)=FVysb%WmkvAA z{2g8|xgjgZ#jOLAp}MyfQjL^5Y%*+-ozB(ga+Bc~7e+POE3m%I^RKscoDaOs;V0ha za5ZmpI9m2PXHG@izQ|(qwv6si`4Yq@g@eogdvo%-w>=dN^tMLSB;|9Id$u?CdD~+2 zwrs<$PUI=>YbHZ_Sw_wbfwu3z?U$|B={H0ymo7N>4vJOWrC(buY9_;P(nD8s_DEJj zxy0Y>vlfKq2#eh>Db}B0Y$RRvLzhDTv&tHExBuVD;lguU$dDA4@IhDfY~GAoDD^zI zM8?TFGat7~>gO+;*LB~JP0n*O*39FJ{!dpLmF+Mmhb!~ucT!cB@Wq3!9$#~R%KUk5 z+bZbsZL7DeWoNcv94--<tMi}xl&krZ~(E7HS6?p3fmkP@wvmtq~4 z?cSN6x)a=-vd-hX^+1pJaEEO9&aB&P@0=R!@j1Kk|MJjexRvsx%>6m_SJpjcKXzuy zOnCouO^+WDb+XW%X}Q)16q6x7g?d$Fd73XNN^%Kexmfk09N?VMvfdRqE9DK!wc@bM z5{a}wyHVS=6dy-QzucCi|Wtd|u_@60PH&^;?bz~ExxJ{#ur$SaIPPuL)ii}!eT7~9W->|l z*K6$K)YCg?UJE zuSwyYGB|~PnhY0H*wRv*LzCg=|9>bdC6n};Ik$|*bb-I+vdaB~VkOyBy`~b+c}&sW z^|tn(N#5_^`s9&SYC7|?ZGxSs98%e9n%H4)TVwt1ZJoGA3TG>m;U6z~Ag$?bgF`LZ zhTK0Tz3>=M>UfMNb3A70GD;4P?r$gcJ*IY!dWc9{Cxtww7iaRA+9~8QwR6W~JXzy0 zo^{@BP#uKg; zUTdp$<*aRakMX3Q$F!3v9#bayo zKc={EyG4C*=H`3VW)cw{+4?iep!zhi$dL74|m+VL_6=^{`bCnTj4$T z7XE#=kNyWeXOZYJo;;Sd;{JWkezJGCZ*^dDy9crE9iDH<@zMQ_p|;1&n1$u0w;L8s zb=^B(q>+uWrEf%JjBiLpbc`-2CL$s<&_6Il=i4JLCL|)Qb!*Eduj z;2TNNi1iJR4GYjkMboyt<|>`H?;WqdH5RmaJn*CKcwH2Xm<;!2`%DdwoV|w1dWodb zSrwb5abkI~+@)mqD}=_kUTv<>GMX=nO-{#h2ei|v*nFwiXujAhxm4txsKz>p-^gxv z8=u`3woaF2sO6?^qqDz*JG{WB{Zg_{f9MchK$JhJI@^@3S13AN{0_$uoNj|Q_ux7G!n^J15T})FKcDP$>$UqL zvD0NCepVbVhCqEpI1Pg)!@qI_GheT1*U79uLfWUMxfNm+4)Bkr_Fyu!kt4R|Kw(wT zXb(;&@tMOK$u0xjsVoiDWY{XRo5VhXwS$`s$K+yE^B9HIf7{V2HKqdRGoO@yoOy>{ zZ89{G1*SQy28*#OB1%6>7vvYC3m0R(uemaf9aA{#21bO2>H=fXC8F#XzEFTlGYaP}K6v)0?BQ$(WSu49j>9A) z?kh}QCqcHCC#7R8F58jO$r>;jCd%S*@hp|o_WQ~zOQu+D)Dunyr8p9O@}PsRn5+OG_)zv}~2LnIKO}UrKAW zNcP3@?Sa!$_O%t3)k8~8l4;L&YkHHRii^D^nXxIs7+W^HR}8C;NJGC)(^={{|Pw%4EiO+vVFPX}YLv%$T>LeRU%Pb&<3lp|yyU znKBv1x!CD6E7aPgE!`-+!zo6M24FMbiW@tUZvfUk0+Zo$*#OKRYtk^EaQ$sEyeV_5 zIdsTo8RZ|O*M-N(M~MrmI2>p`vs%l}?m6CeHPS$9*h)mtZcKIU9)If|fGg+d9fl9> zhqgqVwHX3j(z9tf#>OrbPJ(IJm6Ej^gUU?Tgyc4Qi=|bfZ7`%iIk6dQ_YpnD_Tb%?X9jvlCs-7sqaEtwVhA2k7-y_ zv@9f=x{yG^@zJG5ZTlqmN%DiYwGWsKL!@{zlb%h9J3XCMl>@xyG{pnF&B$spT$aPT z=FYjbfbAcI-j<0Zv#@e(p-yL_sGK`fV+oqXOlLQsi78dqiusp8jVaYKu84tpal!Ql+df5xG~4W0Sz#TlCTrO=q~x5_uxYgM&J|M$M>CV*sGLuVvv&zQ zj!#r{OuR8Svxmg$gLKgxRg|L~I|eaLhJqfQ>o;Vs+c?pQ^uy!){KZIO?e0;2`tX>j z2*3K4PPszbd!?DByA#gnL}!kP@S`BgUmuQ1BT^r!!-7h9fREiNCVlhFf&Z+WGE2eT9zjBmnV+^ zvBu2$@W9a6AYD+r;hSt}(im2VKOe;Rimz-)OO6}-sVN!0Vk#2{XF2$WgLkRC4B0t2 z!9i!{UFYB*4#L@3I~Hld)X&VD%0W@){m8r@n3}}F+bp6o^(F_KInu~fX%1#{bC8dNP_}ZKgEkzr700+l7GLj{uIXKCY>6lu`K@0~in0J>8q%KFk$C25X z>d4eC7U{~=ha4>9WWQ(XM-B?JUIz|Ja%4xAEX~wmHr9`+^URyf3V$)rpLs`_8pR@4 zS>!qg?{TDoC3`S6lX*cLC|p?EnCiMB7AG{5MV>RS9#eZcn8!gzR#?Wt zVvg*@)O)NqfvHnW-D2uXroLo_FbHrAGdw5*VYgRC6fXGtRm-C1%PQ|mZ5&ylgLu!@7n%)89I zN=#MeU?WG4Vaf3ve8#-ZO!+W%iQPTGRAz2`)mdZ*2Ul6-H?|qZ!AHz{%2XYuKH=ac zN1kSz={PvRy!jktW|6O%*N~~UOvN$vIZHNX>M1)ho<){0F9%aSI4I1)*UW3hK_^yU z%e=3cD#la{i%j9j5lpS;U^EBmxIpx*u!SQtaO47x4Cf#VM`q*TDNFvxK|>bV&QxQj zA~@OOOr>FJ6K8V_M|R-Azc!Mg9E@bi%N$f-k#fvC#V!?NUP%rHF|RvQRhW9r)Q22Y zSN(ToxJ0)GusvG*kImAv24d%dxN515sJ_nz2@E40b zWRb%h`2mZ(7!_X+b( zaO$5j70kgkmMqPZ`#JJ1N7iC$EAv7)@(~AlxK^e!FNP%tGqsed1uS`olO4&Ce{$pz z4w`dhGY%TEdIRQdXFWYf?qKQ?OSWQ>W6W#GL1&Ka%_3(xGB*c#IWRHrUk>`PLMaXc zIr3+wuCu}nrZzG)ghl*0@*YS2!qg+C9x^qXgZiv+g`LmIWfsMelUX4bNB+wSUofu- zM=oJ%A4|rvNB~ot+2&%7{GB6%IoQU$EUez1gL52=kqNQnZkBA!RCDGX;K(9ODa`B0 z)G(&Ha4?-CpR?(*Om$=4E{@#J!3~bA&QuK!wy?r4%=?#v4>)+jK{XDdS;5HEe%ABh z;5xfIkap~KgReN4#CnBTArnUy;>bH3 ztl^*=i~P;OdX6l^L4OWD=3p&bDa^rt99f?AHgV*;9K6Gkw>kJtT4AaJiV4zeWQ@M+*nH|6D*hA8IEmI-liimkNb-~~qpad4g^uW;}_2dCLeIu`kfBTI3h za==$-89K4Z4;)v@LHScKn=lkdD4KI4R% zFmD-CdD%(`oEV+^+S8(J8j{K3SOC0>dk^B;bA^v~NT?Kd)SJw`W zJFW%NQUO{hQl+I7hZdJor<=_t*5AZewi+30#mhoEyIphKS+zPhc&$b8IID#MNCDn{e z*fyMP$FuDTHeO@L?KqYd36Z!<^oH%%&{P}?#X^A!+C97|uq3|xG#dX$XVR*t(AN1B zk97rp&@5YMHY_v@7QQ+xv<4P>E*AR07W#IU1%&3)ss}=wVxjL~p|4<}@w3p=ve3`6 z(9l`c4{Ge&F z9)jD}K+*mKdioUjm?v3>Ze$XOYXjiRU;c+{Dy2IKVKU477 zCqQ4~2R#Z49SIBHO4jfAIS^L#<1Kt`SRo*M=UC_wS?Ez(_|UP?yjy$Vrxb2;fzY$D z{)6>j{9v@tLfdHt;ekGig-;5*A+<2HXW`q`Is@^Yg&%Z#PjBiF>;!3$wp=tv%J&%ByYeE^Fv6Ej0M(#%j(Rz)~izx=G_$tj}4mfKTAWL!(a zkded2hiu%y#-SuF`4zG84jX&1-&bsW$3`tlP9Z07kUiM8lKoC*qbK{_&VIMC?RYj0 z;2AO{3$P!ih{(2-gM7h3zG7n;J3{+WkQr<{ zi~TCtz!VYrJ<7JdImq_>zyfxBlWmwHqL6r#$@qu;c3|7nY^-1-n;*D_jmz0_Pqr=N z=Z<3Adu;obZCA7HYJQ-Gjn~A??N$F`nq+tfCi@)t#86~SmjZ9S=!{!Q7i z#+OgsB)ch>)}1!ghvLik%4vw(lSh=0Vvcwc8=cs=g(H4|Bi^5lTiLN22l<^H?_$Tj z*l|8Pu3{s^#@!rbKQ^9a$D{axS!`JB_a__Yv4P1W67Wn8vYL(2{P@*u9Kyyf{J_Tv z8;6AArpKYg$v^`}23jvN(0-AD7L1H390W}n+2*oiFSemoBS*ArWZccRec11FwxLNN zKQszt+{1qJ*?5{A59g4WJfa|I0m)dvel={MIUz?hjAWoyBm*rA8E6^FIGOz-Y(on} zj!&^8+D)wrAUJ zY@5b5Odb(KC$`OGV=M>xk!>GxWV6}!0sGy=jxn~y*_gqOcd%_!w%y6b$84O+#ymE* z;yC|iV=6!Q4BNipAV08UKQ?}5qn!Qbvh7lS;8C`{o_L%Swva<+v12ydf*cZ)N0j!% z+3#jHE@Qu!+4zzj3)#Tr5j`-4ZKFA|@oco?2lCk{VB=>F*~G?l4tWaO?qy>wJ2vnG zce3#Z`+dfKTeGb{8xOGKVI1;EHZEenhuAilZJ0bFabIK`CXdLrEeCm=4NM-9Udm=QuZE<3;wnkc~VJavl5a%(n4tTf(-BIpheoVe*KCIFf^0 z$$rIbo54nRHm+m8F>LI~kKe<7*Rrh_+v+*UiR`$DZTGQp2pgC@BHA!Nu!m!OdgT(7l&NO#?Bn%F}96hTa;c+W@xx!M5Yr*oGZ3c|?yt$&T~bKnI*02eWM` z8^id4QOtfB+Zx%pfP*Y%8zztF@k7|wnIFjGAn&p~{|PVe*LB&u3dD8((tBG7kA1JO0RyL)rES`&F|eJ~1g4OdgSO8vEgkn`{TM?JBli z!XYtvM1G6e@ilgQosHeuaU>f%^W!_QA106JxiC9o@`!Aoa>y|peUA?D!KqKFqe?+4d{j&Shgq zegKn46d5Lu$cVAy3H$&ikI3;ie&7oB!&fvpUdgs+IAj9{DQ6odk0{9H?DzsZRoK9&F2HzsYP{$Tkc^P>|Eu@gI(QbGA)m zzbD!8F*d$t$8Fg*h>cbJz{BkK8ym;6@h2PGuo346n%MRnKR1{SOdgRe`?KG!9P%0V z!vGNZWwPx#4)Q!3m^>msjE|5}z(H>0$E(=!B{nW);|TT}#UV$sBZiLXag0)tF_rx= zc|^9Z>^FxU&*sPXWm^yS`5_?C^C{P++K5@N^YYz$yO zOde63XS3rkY&^-v(`;@BEW4UomRgUuoeqa!X#N-kA4Po0* z_WPHO;cT48eoOiB9og|sHVWABO15G0h$6d%9lu}$lSkxO%0V!BL^ezwk?{&gox#Sn zY#h(eb>jze*s&Ws{=mlFY)s=IYuLDt9XDfRUpCHU;~tKsI~(iRaSML#L3TWpjf2_o zdp4d=#KN{MImi}l?7)5}vJI0*l%kh7Bqoo@hRGu`=5vr3`<=_SgV}hGV;RH7zwB7S z##(m#oQc4uZ)ea(s&!E@ER>_Pd5{9r=MSY|CW7EH%Wa9vSZUx)!XWN5p9Knxc@`#@M zjvX)Nkh9qjlSkxt4*ONHF_8T*c|?8(unm((WV@Jyv|}TaBin&(W7&2n8@cR=$s>9$ zhi!}4xSoSt!ck-Lh=Lr>ejl)L8wZ)i#+w{6n~f9Lu`7oh#f~?#F_RrTv+Y+7c^BJO zvT-jP^IY!;Yh&DW^VMPkZSx!e?&`X)2*P1N-Es!L@WCKzw;qwjF||1_m5y zj|1k%0*m6&2HJDJyn1C*Ua*>uX^4etmmj#?I;A&e66S;!VmAyh}37y$E7ed zv4F>$a_RyUxSrlv3L7sEG!+Eu>to?^dpHrpjG18?WIS+rQ*JO4h{s6)!r8Tf8b)~) z4RuLNc_6qT7OF&;hNj&5Koz`NByK3TCortjh>2yl&Lmj9(mIO_689W3nmSd4Dg(Bd zwC^`#enl%`trZl&x}JVWQ0qc6kxLhoNe^Gj#^r2W$;Q>T(O_Lmrga_tkPO#SP75;h zX{e=>V~D(2lwcGm94z({=WdEsBTkMiPDzU#?%a4>N&lftU$`_Bi^el(i~oY=YQrV* zvXc7-nL8&CcU6E7l(dJ^3o2BAY&*$`cZ3uBwUV_c4c5wVZDrJ8{X@z6j?7w87mMN) z7S;=KgFd^Du5#}smvBjdsut~}_j9fPGJnySy{Z3}>*78QLN3(3Jl%tkf zC!wBak*bdvCBBQ2bb?&rdN*HGmNB37Y(rgLG)7k;B+B2ce-o6_>>+1Cp{-Lh=9h=- zP43xB?v-*iC=FBHr|sPlugZV0lK*6xzl*b-bGI)wN-28E^`W3XO6iZ(QRl&^ic6K$ zx66g!)6{(#^P`odjB4u|9ChJ%r6{+_xlmjliv}u!)ZURIHXDKEO7`Pr_Fl<%a{X`Q zWlC8NkZWZRv+vcAq91s(Qj(M8T|^H@VDk;XtI+^nLEN_xLiirKOh1<~4&SNChR zlKLUJDDs1W+6-F8M5hw*_X78YURN?V$%*c1RsuTcCgAxsuvRHbnJh{tQxvz3{9Y-; zxpG02pruIhBK)nSUngflcQXr82$J7d*IPVK&WCJw?srwPJ|eSrKp(Z1P9i@Rg9~Y{JY5f9q@Xj zR?N36B{*MJ%pD=YdaA-Ir3hHeEPTXwf(X@tcy*vW;@Lhur3%f{G;3LE@CoBVAaQMX62n}`2tARBAh zg{o07uX;(@+}d#El2L|8Ib~)~Z5@e7W9a{|@gE!QC=fYj+D2jwJ)0~?HRkG<*a&S-4V?7C1eTp13M5H&bLIA$u! zGNmM+$dVLIol-V_aUFe5(#e)aHVjgdk6Uk1*fT)65!!na3q)GxjEo7FLK=J>+<-dL ze}Ey`sDxygq-iQW_~2II4nCN6p}@H%>Xzx4G>Wk)3n!>9pVpL`t*Krkz^PHr{z5} zL|Cg7;ZHf=yG)%j$nFTCKZ0&Rpq37+H>CJpDaFCE6onH*^-zD9@G`jnR&swK7eZ%e zXNa_~nF0Bm>Gc1XvJk}+V}ZJAG(bUTFRZJQ{ZTpli%}29M(KcY>VKGRUq2=Lg))25 ztWbm+zKXJW)Xo^CKSW9Xy`1r-RO@Oh0QnVHDwHBTk&Xz}f%>wFXeeH0 zH@y`V<_Fq)hG2a|%={3)N-4)%asl+GN;hZ(y`SG%` z4e|PD4Qb)=>e%#Q;ADel z8iET*N%PI|hE%_qQdwV3nVj!Mk!V%M{CKpoz9z8PARnhBFO(CWZD+c{ zI#bCySx#~uQtQ(62PuhhGKx^gipJ5wK4r~o=UWdpEKrh9l~Y|bjRqR%gTr0R7Awh* zlgaaF*%Hl5Ma`u{$0~`hkvlzk)X9v~YC^M@bEcB`RyoD_l~GzP5s60YjOu-flKFO- zxv)M)%7m{5H@I(9a(9J+QR^t_dzI9aWa=DhKWOCCNb!?O+CFk_=LYC2(m8hd zs*-oIT(Pri!trV&v1^p1WpZNkCp6Rs?fd2p=5LkEI0s5loduP&F`>MnlGY#@)PE_d z_emqsb3FTjx&3r~v9)p;cbGu;tVd(vrKGk!dZL|`5}Y8vRQYr2y_h#sGUISBp}_OU z)_E}xRx$_V^3EC)h?{C;S0yPbkbqG zx+)en$G*#z#9yUBOg&zAmmsPnUMANw zkP}@%bGx*q#r0Wrj*|K;xuEmCNB6H#GFQmVSyj$2_gj^uIKfa*Az7~Bf(MnPkIE^{ zrSGVksN*GmM#;OkT&=Q4yEmY49a;Y>$#K%AP@}Wm4O8J3x?a~=a@EQU)4s1z#L)-nt|b0PF5@ih?J;_{TPjI+ zkW-rl{cMm9Q<6R{lXjdCUR*XI5T=jwsxo^4#0W!#QKkqRY~*)^EL!d)nx3ImfrdP@ zOnIz{WT!FT$!zS!##A<@+eTu{cP3eA%r`rY7Y&V-ebxfyi9tS};%L1R%P;vgGI@bL zFg1r(k(>1|qNKiD&hJj+X@I7ormQYdUtLxmieO^cNd6L~413DS&zlj8R$?irL42H& zc$xgh7qs+H%ru{+q&`YcbHQjjz$51VmcLX<{azZWo=ih>A$uIb$ncw#)ZeC&YFhDC zTQ(;UcdYHZPf2~Xoa&CWwl7qN3@@`)jPo^rN-Ki=t`*D8ky3=$WfAgexlu*f#r&O;IVv+#zSrAp-{+cx!RwUNN6WRY zLrcEf>rR}NE^kX++tNdR<%(MrJgxXKHEb6p`*m{qbL{T~v#xEfr0tnTqOq`MLX4Vp z+H_#DZ>MD6RA$e?qH4!5!){7i+(ImL*9&;jGHSY^UM4H4i?e0wIkc;U#_hsEGqd+r zQcsepOYItlcZ0}&G^LuoDpUw|6HXAx5@=j zI=QwkLX(|kbL;3183+HBO8#!y;%k_{cPLg)+nValWtF!nnSYlvzjO?p7(=?YEYZ{& zRsSI+|6OvB-V+joAx0KBD<-E_G60NFoD*aEDysOgS zO_aHj-k+4bp)`2Mg&JMQ5B#U(y<4thCF7RR8H%)XF4fflG!51Q7%;*RgSfZ6pSy zZz2l~NFO4zX2nB}eQEd8v#kfB{gUpIBUbpV%1GE8BU!B^{a8+EULaPrsG6?gG_v@0 zCGjqD1<$1wYjjYAS+r}Fyrpu2I|nc&Pm@jdQJY?eDSfXLVviiLs5{pLXrVcTpq0<` zPhy131;~FZg?K|Qfv$D2hFV$~u|6^Kx7Jnr_hc~&?ZmSfMkVa3Vb$5-z7^&pGLFVq*{8ADvwq0;vOF>X%hY_Iu=_F5t~hsON@i zdrnC`U#8B-N&a+BUcg*)`nHn!X*tX7`W-euVLwyS9xm7KtXR~sxaVgjDK57aK3cQg zed&z;x-Qg1a@n?TZaFY1|@q$PI$Ka^*&0;irc+~SFEL|oz?6# zCHGTue&@z%xlm}SIWBUclJ_!MrFC@=4Y=Oy>y%;)kqf*8!!ua@j4wgQlBtzS`WI#T zzI2^dBpjr9+{D)KmTz=ABaXh9jo#B^N_j4j4xA6^{5F0`$=@i~irm_0Ejn;U zy5Cpw9w@&Beb+NO;i{HjDdl-pE{7~S=h^JQ{%(?Pu(9bSa-n3>P@+*F1p~~k-hU(; zjZC*AXEHL`$YvwgHWDM#`DCGy=?`SiT9k$~Yd9 z&ZjA>j0CF8w{Q!k5V>;V3rEw!Sw6YX6+O5V@XNHb|1YKce< zIx5>cO(sQO@Fw)HNkdpQ)xvJ-4C6|*orsQoeCpR-* zZ>qM#m7KfDY3)3^k#?fsy!0|U7R&48*CwS9)8vHbLbo{A(44R2eNJAp*;2iO(FW(5 z?5maZo#bQ}kHggko-6k5P_oaI*|Taw0dq{|VI}EUxw@6whYnL4P8XQOohAOflK)3J z(U}3qH{&}>&JSfJihVAPG{fW6D4#2-XQz=|+FWFGP<~Nzejpcdc8#lh(r%!xdvcSU z$utmQ&YzYjIb(84+qbL`q1C1?{nbk;KwK7}w0W&_LWdYd-CxN+L(cRZIykz)F=@4f zlJ*Wc*+ubCAQr4fHFGS|7^5WLR8Dirw1%2;>i>G})|;-Rzf-2qYz&y&NDfePek^ll z(Uo&%$0V#IJyj;nnL=d%BYM zZ<#lHE=`M>tQRR+r^@egZm^-o^+|udlJ^-owOOu4>TV_JH*)1Fofx7+e*+Oum+E?1$=*+9Pqpdx110s(GIi19+AubLx>xjmtt2l`qtu%}qUi!X>I0es z%6};N=gNuiIB7{;l(t93!*S1wm%WXycXp}#w&l=U?(B+oRMI{wr#!R9G3(q{$@#jR z)U0^Gu?b~cCFwWvhiqx$1KP8EcTw^$l&g47h=z$BpBfXCv{`aqXVy9sIXt+KjeznHy#W`Lbwk)N-G%Akkhg1Skg*ce_h)aj!?>TxLhN;(%ELDV(B8n z7o96j7LG3aHA?oE zW%g{k5X^Db?48VdcDsyr8Tf0t8q9B9{8G;JtWdbhJQVa1Wtt0R(t=o&mJd_U!f|x| z3rgx|H?X% zUn8BCgX5&JIzGN2w1|F})X*ekEF8?3&+mXC(*UJRKg$)rrLm_~0pJLdm?XT-S;s@p@Vf+hCt9WK_6`O7h2L@+|a!4AMDD(l6xd*0mg` zZ_sTj>uI9{N->_7)p@o}ZzR4}$yy_`=1~)kPg`?9;SeS9sd7;lH-FXFMHe}m>l2jh zf62+t3ObJoh1IhQYaX%Xmva!lG5(CMPkc9@4-VkzKP6UYBw?|R)@W(WY{-SXULUldD2WGAqiRH`26M((f$i zLHpKa;S!*?Qh@R4q`w}EaxvV}7jMms5mxLAH6^6m35 zXnlw|e=|??mzQJ#uvXmOb1Xq~dVp!%U?#f5{!O0(<0>CfXdI90w_>kCdxn zFZ(r2BO4YdWw}zW4yAmxAKguXNmj=JuZxxZ#d2P>xAVfjmBXVR9IF&yhAcoKP3_q_ zfx3o9(|o3qySvQY$xb|W-m(a;_uvwx4A;pOAS+Bu#*KvEs3aXDlNQ?vugAT>6=8EM z>s}@Mp0Xn95T;4&)Hjtqsg&Rzx!}9iHqd9UUF%5{bWLhPHPM)X z?M`%5$yzJ3<|EPW^d72Y&X=>hTcXXP1LYDDcyt_3RLW5(%h4s#O0B2+c8*etzvSxQ zBO!%d2~y|B6-r6g$&%#arh*E`=8{{LygSP^F)tj)dP&D;+=EKu$K(VzSAg~Czh{(E zjF6Mx#eN;uJG}L#Qi`bDQOScAj)WZtuzjK=ep^m{zMXswIvahnAC=4*a*_*M#x-lr zIof}f+z-lw7n#ARxm2%kh|w9`U<2%j$t5rV9}ZZSOwBKM7wx6Xe4znpBzt)i_GFuV z#y+ORRwuI4xO*2iy0OuNjb65q7zX5`ieYF&HK$18ak$SLmF(h&{U24f*y$7Z~cvy>tf$;I6f z(`*^@Q?A~auN0v~79nq81FaKx9`qhj5>JWml+^#qHEze|k(B0L z0(P&ESC%FY0;fW;k2*vDo|4sFy7tQl(av|C6Py~QS4({4C0TJ#K+3-L60g-%Em&K zA$loec4egZGw!@<>N}+*H_DRagcegT!PJ`Tl(eOCfp2POKsuvYc|&#Gm0M+Da;oU6 zWXA|r7bWd}a_!5v^T5@2-(1OjoLuO1JwReOlTLmJWAcTnV2esHUWV&t&?pQTw{)0F7bWf`lUOo^qX1j4kB~mxGT4$E@FBO4@#Mq36_uXvwAdNpzBu z_C2|SYIipR=0Qg1DrtMkWnGf&XVLy$vy*kDlD>~j-?K%<+5Pd9`t3HQC5Zd8f-+&?6A%OJH2nScckpRw>BeeM$Y!q%4h@KbV#$=A?oHj7JU7uA@P?@@Y%cL|7!?;FXrz!;)md1mHA%r&|w# z`=z}=u7z2yoL{aaT`Z?Ht2|V14x?PABz;)c^Er*~iyUrN(jFqGHK)Q&d%u#lv;1=9 z;6}}eIdr;ONt-8Er%v`sUo>jOS9Z8B@O@n=!@IH!-COhu%`)&1H}9P@8ke<7LB`91 zbCVymfMlJI14xRQUDPxJ-~#y7Qdl{NXxRE0!?-5wAmS^CM zs+zmR&r`DZlr>C;`oID#;EP0SY34dWlQ2e|yGkj+rm_UZkzuK7{OwBi`{X*1Pn-T5 zY43$&RAQBq`2xAz>2tt!tKf4=+II3+d0{#4f^{jkx0T%e)5vVvWfBfnM;wO-ex_tT zMy_NfbcQFL9f)0Su7v-rq<>6Kcp zNL(I_8?BUNkSs}Y%ZHn5P-2>r{UlilwJm5l9&_@ub49Oe+wo36LOVnpP;vQHK5`f z0t{6O@T#2i1%ZkHb?9BUqwlVyK31-Kd1GnCu* zDfcYs&z0mIe7pM=EVf~rWP8^_Q{!*^qg|q9aqe{2O(kz?79aeIe$rU>b9TbDKQAzro zoYh7ARp3#>j#iTYDCc$wZL+3;w&qT{k@nM-^h4#e7mlXg=Z*GKr zE9p;@OFMtIeMPdf1^Gb9Trb!0qN#yeS|34UJ#@~3k?UV8$q$l~-JV(yy6`PhRvC#d zDx=L<_XHTPLIA&ryDp`M!I}2Iy`bzVwy01yP z!A6)D%Q>Ivyc1xUDT}o=*=cxr02|w|F^G-rY$GweJd`Xny!@J+?YW6V;*H`SMUS^0 zP4>(Cy3AV|kA$(R5X0K^p=TZjIz`F9yPVhg3u1KsYH)#LAMUh`0p60!ySQcjO^i;eG)nyiCHrWZy|B807WI0h{9PsY zUUJrBx{L~*4q}Q$F>6A*5NRi%`91oDQj9rr1fvb=hQRUAx*|7NKiB<$v==L>v?6v16iCDMm+Gj2ybn*?F7mrb^n=<)ZIMcNWu@ z6<$s6@e&MBitw8(0!AdvW^P9%>0J5ED_l^GtGj89bHLpEI#$WuHx2IQ+D3aP3~e_< z$sLq4JGt}F<83=o$-h!gdk5O{9u0=+L(x7DH|RKS!BR@_mHeW0u&+|X1Rb6AP(|OY z=1#FiN(s)8^Pt3DX^ht1sT-8sKgpTit>p@7`*K-Qxv?l6yJ7Zm?@`L}u$%{pZE7{N^B>3hySjT% zC`I^P&WiSlTLry49j_<__*Kq>Oy^CkA1XP|l{vfD*xN~{dyj?ol=HPA+JEod!}X0) zkR9cBFZmKUR;K-_zX4;ILuWCZ;(`_8xL>7t^u6!39L_K5;ytWWQ2QJ00CwMdJuKXWi@S_FAO` z&&c&WCl+!YW_5^3yTQh%8{|5eMQxmUcHOC_FxJszrvd6?**Kn!6WKV~HWCBWr;vpP zsLSO%=t`4*w2;6aO$t>(!%}@{Fc$``px9cESNj#?Az9gbiQzod?OLT6m&-*^Mn{NJ zn;UGPSzsDsX`Th<`-EK6Rd*=`dOGNf!loN3uYV)O%cA`w1*Id(#^!}zK{zxXyuMI7(4^+~PrUrB72;Cch znEa~chT}o{pfHCo+bemmkZW}@H8{M-CmeK~FWy_p{*+w3b1OW~Mjoi-9U-S0H^(~F zyz6BBos@FyE|+={O}k?V+kJKQI3@Xua^~mJ;eGBpH&aR6Lr!&e^^!WraQQ(>)?B&F zvnylHF~bE)*2!{Ovz9tHl`U41E|imsQDMu_V8<#+r^uw4R-^fWbf%K?G&y%O8!eOb z5+&z9avMSCD%UNEhpWuVwi}hio6CvKUQF{1=34Q4m8{d!DAvlb+3R^y$@!$5#qI6A z#oCKePzsbzm5!%RY>dV1O)?;N>97yi`gx*z2`=?Bs z6>xqqPg0U@lLl!d6f-k;u97q^zeQe4D9e?!O=+Yx6st5fMpQ}qocz|N*qnT*l6kPq zoQ)5q2BTATqLTG1xsRTUjz+oTn2&Rmy!*?An@=M@bbAJkIT$IvLdm?VT$|~=bqurI zsw90zF5Ik&aHToc_@I*Xd%0{&8l$mt>~;58llqL3K2uI}hX8H)#_1k3+EEw9Q3FO% zziCRa!A5?clPh0lg=3ZUSEel1hh(RL-;db%n2k@__}n%U1HWIAg$90~mpOAdAB-&c zot|zz(Ce4>cexJaSHz-qw35LwpP03qjyWVJI5Spje!+B5au&!{t~s@iB?Ntx%s0wf zr7+NFFV%`h967y>lDkUI>CUyZwS>0Qr+(LVRtoWwEQHs2GUJuBm&&yHp_=kgh3i1y zSxV+3Iso}(-_;pcNEnlK!e@$lZ$%}MwbP!#R zLmhrH=|&XSEYWdFQJ$BTYU&+TXDP|2$~B-1ZP%o;6tF@smCm_TDaC7Y7Gzd9mPg&B z6Jy+(pT` zzs#Ae=Z+rK=1T6z<##N{<9L?sl(YxQNzS5=LUWPnZc5Ux(;y|zVa8|3WF_ghGHD4f z{qg)1-CIdNQ&uEJv*`%ec&N<2NzF)mP)R;Su3XtM%5n2ks7}cml5;!@?WB>^!<3}U zWzrmv6KPIT(hiV|*L|?&xk}PcWc{4wI>GEpCF$96277h>9NmK3lv4a6OVRw9?dXO* zq-1_lX3mDjG~cCXm8?(8tjUiqM~dH4a&Iehw<__L?ysZ7KUGTcxBP~A9whdYlJ{9T z^;u!(cgBB8(ps6+^Qfny-F3aL?c_|(LPKGw>>f(eSLDPNrW&8!O3D4KoZ$8``&2wy zo)m}$Dg!~YTQb}fV1o@1|03)50=jjfI$j+M*P17QPcTKYb|pKF6OUwL6dR-27;77e zapLi0p>g6YxjeFhA;&DxYd2 zB5*}2@Dy&SIV%v+;A4qLOq(euZf1uz4?DD zsqd8Yo^GgUaGVH`KT6j?y(1?$n-c6;q|jB#dc9n~GpT+VMcYrwd83@tqUt~`ZBX-= zvLB)(KP{cYrRHfzBgrF`tZU>X(-r|bVh2|pH9BuJ+f&JYpsZDAoRV~n+&`hqoE)8^x0R$@%e5`LF6PYN&y=hm z$w|$NHWa?~OMrro9 zdn#FrW!AjvK&-+=ytR_}Rat=-fY_suw^vfXAiqxeEjN`L?d51C^B}oq7gATKwxK2z zb1v7MrsV!kex2KwM*_hGH39GL@BT^whRBKU(30(Fr(7DXS}DO$x!`FLICX`MLT^yA z{wuTQ$3iu9xFfaD2J=x$=HW7PG3`%{(#VuY*Z(w=eS;1Eo+sCXyt-(dPCj(p;eNR( zkaaHEY4G=aHde545gV7-Mq=>yGP2O%?^0RiWQXIlnZ+oCTj=4|qrZMxca#eOqX~fu zY~3*j;2%&@zbRAGnFo$->+B_6wOdw<1(E%z3R|!D!w4^R%4HdEs~^j!HGZ<+~|~OXW&c z7@=<~UIuHH@fJ$%zvV>dwU<^V4>D&FZ8*dQxEb>oJ6_?dmE?EJ zsBnM*w@*Sqt)lJ`D2f3v9{Su@nAQtv2PH&y#)+P!fMH6Vr!p)GXMrlJxmBsxp1}n&Y>PO42jaNNF$>HY?N7O42Rm z%9Kf3*?4VES8{G4bLP^g=P>#NHFz&l^6ns)Y9^hNVQ^lrczt-@t)%WG z&j*ww+5s>6$CdOi$<;a2dBV-hO3rR_lC#1!0kc|tpd@`j{>(1LJy*4fyC5n;=EX~2 zoBSJWaCW|2^*UD7HPB9X5-!jf2uA|t5p&$-UsE*eXR^~U?XPV7&c>f?th0^8Fzr8N zp<&vXTnDAA>{V3bY(Ftk8- zCI7)Pf3batH=Wi?Q?QN?xh<9K@5y?vbIVs`B!rTPSBD+T=Z7hU7$XajMb{LY1NNho zr2oqKUf7ayN3Ks%a#zUQr7hgy+QyJ$jqScl{HY%ezf^>wE^?g|z_MsJv6%kT_rb29_~-65AskHkICX7;$+i))mU^pz#) zR3EL!xOq*8nhmeqxKk;^NwN%f9W_5f9#OKsB6ntb*e#`48(vUKvZq`P-_0r$vm!A>bADOX|!%>ZVFz{*vE!+%$pSa*HtBP#bwNKq}E>j{25AFzLj5y&SDKXP$|UbvJhF&1xB^Al%$a~N+C#>W7GPkV1Vxa zSzjqEQp)m!Tnjrif34Y@EocJW9F;ppDZ$z-@g?kIpXZZa$LtKHI7iDhqNDI;T&xt~ zC%H`WNi)!gOub`-^adsK&oXmQr(U)@&F&`R9;GNR$uCKEz%?%Ygp&0YnYByHhir_u z^0~(kUQtT%hg=NFsc`2+&xcC#edHIQi1u!VNh`Ta{Tn6u=`wjQX9a9XQ3L-}%F-a$ zg?#(-fCd)L@q?W4y1wGqS)xkJ43wLkos^uz;h^VOp!ITRzs%$0vRL1thV@GNi?YQxK6^4v z=9r&hM=Dt#k+a+Dc-~W$v~S7Ho9AsKE0nw!$-F5KPrO#iy=%5uz*%DgakG5yQj%Vi zMuNviF&rPKfpJr{KdR*JD8EoCZ&`U!$=yXxx7Uet?2nX1xjj3b_bPc0$PqgQUVV`#m9#75!QmBqeQC8nhlK?$1@y4wMVo^ZTV-$@`gH#NM6x zsFL^qIl(ChLJn1O_muTlif+h>O6H5@+U4;HbB>a=oy=N1ecbG^Ws@71l#L73M2$D< z3X^?hixQ=c<&+$4e{oc1owlot4~&%ax() z(80q;l#N?bOZQ3#%Npa*UG-t}EU58HF+PyR=s13Hpr(#anxGe>!fwdSQkbO_;WoJ{ zwx2?4rbs1Lhsw%n(N@qDV7^j-S+W3wo8JZ2+H*p+@o0<|Q7%eDaYvNmy(zydUFS5= z%MlJl;$@?$jG7C~sIW_vVr0u=Y%w}WcNO5IIAoL2w8hI7h3l)!_8h&BA=Gh7p-zyC zu3%M1ap<*4XfPxBmnvl#C6|fang<|4a}^H7 z$|l#=$D$Pt_O2O2pqrEe-7E{#Z+vaVp!(<_G9VHiNrAc&t_x9*C{z}%g}{bP_bFwX zDHl|?c`-VyiSmfMVbn3?Zjd3zQ%X5H%X!mlQbSc0aZf-msFji#7YffYWO+>~%dhf# z)2XGt*c~D}XABuWQp#|boF8TO%80Vrp(=Yx3O0GM9>FKoTxSRMJEcG?Wq~@(nO-() z{ER81$BrLSHYZ%~_=;Jll;B=jf*!P%fO-SdX`K$KS(@8#$q=J(@+Ry0s^xM8X^%n} z9SJR_a-bfX7Ezagjxwerrru$HQXikU)YC?;m zu?19pBO$k{-A*aUYFUutDS@R+&~Y43>x*JW{n$;(zLl(0OZ(Yv&luVg>K^`>tmOYt z?z;Cjs>ePP$3&y?dhc$?-b!hHkt^$fW_60DB~Vr!2rp@iL zSDNi^os#+mxq{|QY@quc%-;NAO4>PcinpZ^?ocF(r4&>YL0TsjjnInwXl)=;MgwE^ zOY7YSI7unoa5+!<^6;3g+{>bsBp_@235i|K#%p}8Ql8`G%qkgzPHc1SHJ7nnsic2G zrZ2E7rh7=}HYN3Ia!Hg7$BWT25MyNgLrVJXWc@i1W5&sxM`gw6&{P^7T6@I#@uXmr zryHU@s}ya8ELt{1Ghf@cl&qce!~xtA?xmyK;Tn+oR7wAaTpcWJQXeGiO40JM34Ny;nTMBeL!W|EE z8{C!y9S?LF&;fYjW}uVcc0bT;pw&PR!S{8bCb+EyDg*i+=v?^z4YUq!`F-iiK=qjLH zfNlpmA8f0Dx}X9-2Xr}n-v&Axv3v%!2yQOHg3xS3JeGlJ}K-PoOB!JfKRjRRBE!v=FEW zxwZ^wCxkm0=oG|q9?*V3R{^~R-`j!e@a!s}IM8!I@51+EpiSWR8_=adnVZv3Jy3g~ zJrJ%p(2ppEfk4~CcPF4_@Er$K2)CI)li_v{(35y#0nk*qEe1Lc=vbg@AnBPvx5Dib zpxc3N1nQ3X?gg3z^dwLp_`V7>8PBc(Dudg%K(B)BFQ9$kmfMeh)*@VIpc4?wW%K|g2ViS9uEAl#NfJHTxi(9=Mp zfK~v_0?I}#^MS4biU3^>-z7kM!tFSqWr*)Aprhb+DbRaxy9wx9xZMYIHQb)E5n_1_ zs0QdGpx1%E1BwEz13DT{)IXK$cMKtZ5RKy^U3K;XlG9)Or9 z0qqZTF3_#;y%MNfHvQZN^gDbX0=f&n&jRfQ-?xC~!}n95RX{%hg@FD8x*JavZACx( z0rdcS7QR~n9hFT#!+~Z2?Ez%v(9cw$KY{iGIuED{s4FU8JF0K! ze}Ps3-Ggw?0nG<`8|Z2Heg^%C}9%ySk zI~wQ_JTVO@2(&-Y<3QCwCnH<~Py}vA0kzMgpVNSzg71Yumx1Ftpdkpi66i&s$AB&X zdI_iz;ob*25YK)E^eTLR2U-H(f&ujN0Z=!foe*vdpj@~O1zL(Hb_e4b)&w*SZs!9%hd1hKpiXeR1864D!$4#4#PdKu!tEWP55e|1 z&}_K<0`vjGwHru3H^H|ACt-`POfaH|9g;@LRRA9&&jpu-XF6rh`d zE&#d=;jRIC8R$-+FX8(LP$AF@K+hnScY&tB?F*pMVEYwlJkTcF(oZ|YQVNt0v?)*l z&;X#H@$8O3O+aITrsLTeK&Qa%K%jepETFaUT?EvCSdIa@6X*<}KM?L>pwAHQ2B59s zb`Ma0peKMHfbT0nhvC@|fsO?F2IwM$`xEFPxaAC@pTThJ1oSCVUIz3c+y(*V<JnEfbIp_6EQytbPvM43Un>p)&TW_ z+qXdVc;YXh6XBb?9sMkVTW6sAfHng<1ZXhOCMbnnfx?Jo63{C6&IQVXZ#mE<@Qni1 z0v!sJ58o4k3W3f6`U}rq0kjV2R-m2n#DhSO!R;BK5pa7GC<;kG0eTy5KLTaI?O&h= zk&}f(=;tu__5qp%v<;Aj_;v;Qwj0naxJ?GS188rc#dtOd^chec(3W`OFra=2cM{NhNYS}Ky%6q7pgusi z0Ud~N4*^Yw+p|Ce;Pw{KA8`8==s2LCfVP3}e?VU%=AvQr^CWzG0L=s13aBGWe>l)! zxa|Qn6lf~YFvPMS&?v}U1#}tQmI5^b9S?K?o>&gF7;cvVJq+HPfewM&{Xm@&%W9xJ zJn=fvyFhD!#shs1^b(%^8>kL$`NQd_2&gO2M4)~^B|t-f<{{>hK$`>Y3Dgg09?tQodUO$fhyp39#Bujd==29K(_yyZ104?Z4W4KMx(n!h zpo#Fk8t8kt-2t>4(8ECQ06h=X8|WRNUw}Rb>Ht}O0XhS2?RKP}-iWURXm6liKuZv= zKhQY{w*$~Ska-Ny`EZ*KR0(td(3f~N3{-|^8-bpK@6kX%!uNEbp>Vqh=n;gw9;h0= zcLV(n^f*ul)S;JwPD8j4fa>w=*FXos?GK=<;Fi4;{ak`)I|BUxN&5mVhVL+-*Wfz} z=yjkeK)b_tU!ajdl|VZq<~Yz!2zLa~V~Fn*pfG$d0D2s5*8qKrXYT|WgC`yVdJExR z02&SSF3?`^{Q_tXp7<5$L-=m8GySv&Dh28Yv?#^d!|e&6-{JNO(64a&5a?W> zZ-910EPn!hj@-!Eg?>sQ)@GS#60kI4MDuwR|px+S7M4&4WZVpfn_y&Nkgj+4p zGkEq8pawi~Do{DxRscN&-fMv_hwoiLFTnRvph}<@fgVM;_ki*d^Oryqfqnz}2q<#| z{Tzl^+5=sIXL|!Zg=Yr>jey%uK)WN{IG`8dI}@k}+ztZDMYsh(li{`)Xd&E=1)2hM zCeUf{y#(kVNN^+2=5V_gXd1#j3G^g&F$aN$;E6h*5PS~tY-2MZq1uEK|ezt>e51?1zwiVE`a2pQv3wS30Wx;ngP(IMXKzWe92Iwld zEd_cT=y;&rfR+P|1iB2U1n6d0paR#YYk+^ec;yCcmj8HTlPiUxHQ}P5#ciS zpdb4p>S7@KUg(}c_Fc_e1HB5~?SWoEETe%2;n`_G_D#S00}X*&HPBFmYXJHe=qRA! zK&Jtnhj5nzEk(??0PP6h2Y}uLdK#zzzHb0s3Ac}d>{~E@0J;Uf{{Vdfgo__7`}RiM z#Aub`3EYcl*_RvQoslaOa%UZn_;Br<)eW)WDmW_# zzPO*w>IPrjnr8g~ge%OfyMb`Am^BSg;JPns4G=EivhIT~F2%Ao1Hvs;*1kZvIm$W{ z2)8*|_kaUeD_PxvaM_Wy4!-??wm^Ki4#;{CzPO^tIur=^=2!>A7Z=%B-vi-x8S8mG ziz{EOGvS7NSgbAa1a3#MwgAF?CDslIhg(Ff6XAwSJuLfX4&1L{y@Y3R>xE@sU4g48 zEc-qQTnb^$#}l}NfiF_PEeO`RaKn8B*1@zd4sy3X2f``p*3m#X+1z>`vfxm0YZE+y)4Z)a;EU6=t-e4w)7m--2&_F>UD z=h@m5PvGoj>oy=9foy#OgoBB#lM(YKw$}O}i+*s1taUnk zak8uR1blI>s`V|N#o?yb=0G@c)QZ3t=Y3i~;E7{^?87t906H4saPp+}6MS(Jr1dip z4q~)k!m~IW(Ru~w6`()hi_-$Feef)f?z2t@!ohh~1H$Euryu(?x=ujD;9CY{AKW$w zXnVMg0Ls7<6M=rtqM!YM>;t{3fX2bM9_XTM`Z*HFK7Z;|ptm5)3fmXxTA*FC>E|w> zYvA@MP)Ee_B2X8&y$6(;O+Q}(WdZ#LbUje!1o}A!;o1Z3jc0oU-2&f%KsUp8C!qV` zI}Ye}xXlFm6zCwJhvB;b$UdrKG0<|vax9R2oWq$w_8|+G01dzsHv$a=x)P#}9p=7~TT|KE1t!wd21AWv0UA{83>ESt(ow}GHt6f z+^|U6`W4T91aueNutwNg352z}*1bSjD{GY_92Tuw_rnd#M6GS$hIN|OY9Oqcw6+2V zRxeui5=5*Vw0^-8SgB`i1%!oj)(dz7YuT(haKpkeYdGAnWXn1pZdg5KJpqKpOxA1g z#kwMEJ8)nbkF^2_OKU89eGFE)SZ^R47MnCQWz|P%FANU2ZU@Ixdegbqh2;&ANT_~( zBpk0_e%5l&1F-FY`3Nze*1gxH2-d%;G+tL7u3bEs4r;HZJ$dovO&x-?d6O=8nO_%( z1*+&gqUsb6voLgzd}SyWsttxx1>>{0>8cw0cy!l! z+BTZ<=+w|qjMnlkKcOjy_#0y3XZ*@)KV{MwsW3yBqyO(*B@WJWDt@5M)0AuOdM2fNXF5a}0ol7Ti(t`HL za!%|xipO8}d6v30l;SZ;tf_rJlx?dNEKf|O52v6^KH5Kdr}%0`EhTTwX~~_q@7zhZ(7W1& z?n;8Y=@>_>MVIdm=6Qv$4y(8=WdxPy4e%vDWX4quj3`@s#C$sqd^wx7>T$ z%&JErn!@^gfq| z@1kf!Nvyw9(Og8y%BG1M7c83=1>S1bEnJ^ey5${>6to!fT6_uluF!4PEq$Dq7T^PkHbr{fp)lTe z9rji;dn?q8EpGGOOLR%7Eo_RKn|J||3TKoZh5z!|;0mYrdNRVHda8XFn@jbC zeCM2J$y;+M9#i#{*?pY#B*xv-Dfcf-no4NC@0b%gl~h6pv^9#P65=|hQbN0Fq#z}f zvvHMBNlOREeR0b*l#~t8x0$3+I?XL3OJ`JIkABUSZO#0onz_u5;(tKRlp0BQD3)h@ z7mZ7?JmovDycNqzipMCIrjE8^F~oPPlE?kir>ROF@g1{El|0neD3Yp#>yb*8T&$6T zRLO@MSCtel4aK5#Gh!sXz}%#gKV`${k+EKSBp3_X8=k!eVw?R2+mf+hMpgAtAvq+h zzpj3w_9RtErX58}6|xZrT#J$kcPNl;eV2(#fei4SQ{D=sJH=y^N>iz=K$5b%wZ~Te zxzp4h{d~vl(jH}Y6e$NIHh71$Bacre^UG1z`;t8V+HqG|@9jHR(k<&Qc3C@9;4bmm z{v}AW#Ao=9`TxDdyCz2_QOJgI_ezDk(09x(b@84Z#m4IzlyJl9S;k$a`hDYEW!#aX@Yh*Rw~RZq>K3Fb z=~DmfX_j=6@0kDJOS)sSG4(9%G5XRTEp6@uI#b~83hd@zf;3Bf7vC|bDDgJ5 z&7Ii@9qGHKdRDWh-MxAO%|ilS9f4*) z9xm`+u+?f3by-`hOtKqrh#iIh?B3v?khyj-I647W`Ys4p196$}Jn}3{>vW38>;x3p z4FuPo1Z}bpaIt^dH1)&^-!Z%N#CdIvBB>|1-l+7%VvQ8^$xyVB^+aX3w$i)@^)>CRP<(R4!GK;h#25Rq;<-OFh|`|HY-g@fPUv=Ym%W57(FQ5dT^2 zwIbVcmoTr*Z6&o~|id79-s(09zPCShZjbBAPC+pDY()|d5xzB9$U;dhsHXUEWC ziuZay{{p00-t&CNoT9wj(0(Vo0Nfz7A&R7Sd8e%kD)FiC&c^Kml+?wdHPQM|hP|J{ zJVW*p-!;~=x;1H*DkQ{9NM|%b9({rf+ggi~eS-7tC{p$bHr^;xsgZO?*Wgj#MdRuk ztn!^#o~3KuOz{}yl31!>i0^JX9`H|}rYgDDcg!wTva+pFBvlF5Bb6#SM1!v`&Gx^LQ<_Y&YF+SJtz#HBD4}Rs`aZF3q)-|F$*nlbU3m9mW5ECZU2!rre=O zw(wmrE=95#MX@2iG1^l+rXu0->ekY`^++H8>}l$eUcO^?>5=YjjUuT>xE87O$RBO3 z%ZV<@R~uK4WQSd&5<$wx|L;)=mddE09zBqQ+gjpDy>Xx&MM}M~F-IlrG&?lLalXsK zr7@27ok^apffb{8i~>oFN^nsnXp;k&NBE~rQ&k-1J7$-vSZYVH@w%7A{9*4^!gr7; z{@ylM3E%2FL((nb)}sKx9F^FwtqDnV0lwR~U4U*a8z|PZeXH*bziP^} z-Zjlod{Z>9$M?5!Yg3ZkUynIat&*LD9(EKdI|&=F9ceBqbMKm?&oIV!QMp=_QNHuc zv$Un>SN)ExmJP_;IIGVS=E|GdMTFX^$=cDpv``RZIO&x>hY8c=03gO=|BAQr&-#+`i?n8X}6)(PB#496tp3VO&QY*$Z16!h`2$Hx8mD724Y$e3Rqt~WK#C6o?- zeIw6$*EHVi8>D5arPoJDi|1flHWtmOx*p#m7q&Iqliwoe+fn=vD43#Tx*huDQQw8) z(kH8YXOw5TS~pWXMxiA3cPC|ccUT|r&z+|FxYu{gF7>gptx+V^2iG8#`Zz};1*wmf z8+V+vG)zk_%A?VU=bDRI8%Bj_mT!gQws`3-x@c?eC$-2rJBpNAWFwAfP}#IfyF-&~ z;k#^Hnq)JI!e5`xTa&b>cuY;gN6i@GyOl{F|MY1plU}}Kb}5tYb`%@0Pue9hnYx}5 zpGhM5YtUUKKFxQ=q+8(k9c-xoh%l;7G znUikWZ|WHSFcRV}|Hb|VNwfSLe8-%k{M*n2NOmH)0ck@N$#IZB+S-gI#z9WrxSfbD z_GyLGg9udy>{I{kKBO@t@}Tbu>{KLw5DjjpDMhf~+>A7*oS_|rgu6PHYHj8b+{9CC#g(&*irlsD3ijLWII&I7~cirQX!*!=aXldT7xMbqfDAg zc+Rz@#1hoW0n*+4Q>UpocJUpvOL6Sj)+mySgX@nB1lI*(Y9E}`52Uv4WVZ=8`)Z$UkkZ1IaOszqk%;v_msG^I&A_9CMWSaD90X@t@<~XJ@#|yIZRP)z)cnm--<8 zGNf7R1AWKrYCSe~sdrC~r?$>DN68=M^L)pg zqV(I)@F)8Y+;p@dilpXwr>)8hQc&OF_>J3l=+(TUCu9El*OXo2yB2#^!KOKiFP3Im zlcJ`(qU^%9RoJm6oHG{9aA=1_YNvfT7b`<{uYNxw*9yoN)7QPG1rE@l; zC^p1rO?!&R)H&SQ@lJ=kv(v}F9BC??UcO^?DV*+YjUuUVxMryo&L3^9--*u7NgKDb z(h48J-~J>xLLG(M%mDq+}t})HDaTwLT;@&4G3l{{xz)xtLmK zfJ4n3=ew9(YUXI)Ip*1{STTynR5Ltv>{W^hA(EY%Bm4`Irj9wxcg!vwv$U;IBy|ke zDV2`dPa_3&YG!X-9a9jk4S8LF_5>wkLnxNEPaQ+B^zJ`u9EIZQEZ4#sk@~4)EGws+~r;BUw|~ryU2IU|L^79B{}e#s?5je z%Y2mYj7j(H<{pAaBHZP^n|~qFEcab}$DE?v+t9oxdkEZ6v>}S*kn00&Ral9ykcT$z zut$C{P@6Fy)3wHz$C17(tY>X&^1LCnW!1;}mxPdHESS+4c}&wTYir#}_7D!SqxfIw zArv$x+tF-X>AOT+&BkTE^U1SNtWvk?V|M9{^Xw=# zUjLvyH?PgP0ljknH|Gr4n^3*>~8 zVdFI{n8IqA7;2RXjuz%%-^Jx>VGi`2Yn~mm|R8Gc987*9ug907|?+B1OY*| zKu8D#l1U&z5Dc9=-FIfX)6+fll4MX25CpMNJ~E&P3Zf{=Cn~ZFf*=T@xUaZ@ioyp1 z3Zf$NpIcRZ>(;HhGj*!&?at4m(@AFLtyAxL>(r^euo`g0OoHwoji`tmbWXz?q8W5f zK_g2+XM-sO4?0v^Rzc@L8!KSSGS%9kGfNCQaVr#=l-g^oj%fu}?=;;tre5H2 z<|+cQ1H>86MSh$i)el9O2hc8(BFuegzLZ`r+zdEkgqcgmDpD2X*m4iv1kKoT7aCcL zEw`IO@Yq82WEESkw6OwW%g0(f*)i3-@*`?v$Eopz6`RfJaC{uGox_xS9#LK+5Rnn3 zh3g{V8D8~JG}#O787Z3V0T8$>PaRFB1CAI?=;rjG^>QHD4PUxuAlVg-ECrHX2t@0W zRJJ)i$XLkVCxS(|4qozi7n&Dce+M_G2kRhv{RF%XnqEH+jofyx2R5e%Sqpjo9DC2d z7tM{X=fj)RgY}TTzYTAPruXY;es6H^EtY^biRg3YZqR=`N*lE zx!C#(QxEXO;HLy4GBIdf-vRCsDjynL{1@#W)@nAu$!qH2*U)S!JzRJeaKsFO#*|P6 z@djwdlvmKmQcU@qDFlxxR7+Mdih~J6WaMb!kivVftsaUOo6vrc;>AWZN9uU78gRsT;lI~bmxIJ<_);~4 z#3^WGDM)M}5UuMJ_E#R1$Zhws_+DGs z(|6l@`VKTFx}H|N*QW6Ht@!daz5P`*a)h_>z4jG5kJ@RJ_g{f$0JKlQV-@(Q;y}|H zu~EgM*4_y^CtvDuD}i+kd1Ub~s1YtyDb;6nVL7o<++#Fij_?mtPw>&j-w8xyj?lV} zgt|#2Ae1pIJRR#MsYjU)5V)*L>FL6Fz!5VBdZtX}MP>w_k(`S+LNnORLL*DTX1XZ^ zk1U<>ut2k<+HB%G~4OGXB@Fb`7~SeUUJp3vgY@^=b`Jq zX@Y1KC(BMXbw3X&CliRskkZ0o$JAieL&4-6v|prP@?JDo>R?g;9KkQ_0??rK@-So@ zzI4qfQb!|8QKUj3TGx97cH0D53;FyeunN}}C7<7j=0?}&;oUaDddS|t0dI$<_pe7I zM|j_$1K@oK4I%~*JWoBzv?8nz>1*xm_tbnT@>-;4p(;4xDpl98dYq4%r#bQcXH)Wd zKk`Qc5!sKlF1So%o}pC_#gr-U!Ma9@DH8!Aj->QoK$zH%u($aH&#~fpIyw$tyk;mF zjYgJ2$xfyaJd{u!S%s1(P1Vdo$+ue@N~U|e{v!`Bt_Diu2qvp6*3n=qY2dithy&eK zrYhjkWF>)!j3zD2O2Iq9%7@}f8SNb@o)pn+DSL~;>3}1~6FQkD+ArrOd3^br0i_3x zECrM-foNUlF_+#QAaWM+`88k@u0={dzY5KauFvO_(_^Yy$ezCvZ-u7kx1*8U?)e4$ z4uN64|ERt9A4apI>-|N<`%yKK74RV55={l%k4BDAfI%j}lL^|57(noG$#T<*uw-I! zYv;CRk9b4$_>I``rBq*IjYUGijKtgyJqFCirQJ+WJgImSfrv~hTGz`oofN2lsE>Io z+DTF$vlva7($9r?fFtG=^o*Iphs*{(SlJtIgJyi$6OAmzm)%VvczmIXvWhQnSjLxu z)(%$Y`0*uj#8LoWaru!_cvkCkO>ts|Exo3C;1MQAAa;NV({$4?Lzhd@ZjwUGC1}Q! zo-Pamju>L-`kcy(QjEC>Z-i!yxd4qU#hCL!YS_;Q{Ai0Tt~4iInVCh76R3MAq3Wm#**WMYItWk^Mgo zZ-}PI^c+z1U-Kps(>6*@^}L@ zV@eMiS&AuHQwSbYsFti^%5obkAf{Z^+Vj^ly_ho0eCy3n9b7h~lw9Kki?w5rC2pGa zCQ~2qsB$BLh>R*N9G-xO#OjCQ$`8>VlH$taXugzAF5C+^VqBR+wx@(^AP1Jm@D^wW zmPgRYQeb(AK(wwSSt#Uqg7iba|1VgEYn_tsUqkbw>-*j1tw};%WEK1qZ;Pf1UO^*A zsKB6a;N1%iDh3cdWxc_)A}nQ{Gail`&w%uGAMfIx#f8fkjT+T=dtp0#Y#fS|_~OFC zs9)J5>Kj)AWMh`sz4STNKBv2=yfo;DO;`mh&UK!+Ti*|rRJ> zfr5Ay3wGC-x_}3ks|ZA7U}Gi2nj2le(__BsddS{?25*O^ z_n$^1x83`Jamxq_Sm;Bn1+&n|5h^f940vuqyA%Tm zK5n_vRL*SNaz$%5Bu>uux!KL^kfv}w;pu4UDs|UbX)z&2jH4TUM_j5u)l@+|qd1vB zL}nDN>t3b=Djw=n&Oy6H>Qml}W=iSVLIH5ZT!P+?9WY)FA=~hUYle_I8d(Y<6;lWv zLa2tULdZ!rR>1INYioxm(~hp^i@AKMH+6KeoZT#LD7+Wy5=? z$Up8(K9pK(>|WmDR<`8btxIxlHQ!rW(#;CZbkjlwAvOmbjR_SO?p$+AS(n}2e0PZ3 zk?o-(Y0U7Z^qg!hGvHL5-ikBO#}Mxzh><}f)?o;l$Jq5~C%f4#A5ai--HdcL7JB7q<9yQybDfz71(-AYW~^_s8K^=vB(UCiFOkYhael zn}^dSyzo;W;+KXHjS0nkwU)`(+`(WbLLV(#roO|T`jja| z;?z&tP;s)r_>0$m;`2iES(O;&<2q`jOquDGrZn+jv)mLS%rs8{bemdZQg^*rga>}T zuqE^^c&tF1yVbPW76}!Fzm0C`O3K7j`UX=cm-0P>M+$m6KOQ|b7WtV(e;HnQfL9*M zr6pVY1~YZ9%!pwI@6X7N_FR7_?I@Mg{a{BL{ui=CZp+u&6Mc;-1aHe%5s26`hDA@Ed(Em+Prd}n z$y4WkGPSv{+*h#`Yk_yhJrF%!~NQhpK2mmTqdDT`e3_nAV39bpg% zy(mUgQQGbdAh;ESrWIka^fRs9^far>*^=*tmJWlnTA!O*Ue38fP<&S}5vdIk2~!CY+`(m_x4tKQwuW9 zn@l<4G;cJ8NSx+L%@J*w>JKJH^<;k}tEBq_rd)Bl&ozZeobClYoE+yC2VgwgoLm#9 zGry1+`@04L3nXJ;fAeZIoFin&UAh;DTo2F|l9bVbmm5TZAf@$+| zCB1&Y&E|XZS;&X`2l6mqC^quZxmdD?#u7g%uDC@=)^eGx<;vzITZj>vDl>xYd8bAQ z8J;3L-U$q|%;^40q}Rgic;{8imkZ5zuXxxk%mN&Nu*T?)eD3XXp0I~KYrC03@TRgW zfrvd126|5w=sgz7i6iw@(wp5T)4Rfy8y*jrnL;E^@93^~h2&dEjNdUGr7hX4OmMF$ zJDlL0DMXlHgWiI7I5hScKyWKwGwnH9hx13H4#!~oAXyijyk>Rkm~8{avX@f`t@QeM zRMbfMT})syyT6!m{ZfSxspwO#HI)We*EOaP+^<)eLNLFsXxY5lQrM)xj+C&oB*fK| zV3^uTRuDq_b$-Y^?VUdPd{3?J0a|cnaf8IRfGr&r=QG1{S#3oP_Cwv=XBBc>sY+ef8brH(j~!osBPc*xhPe z_%qPRj1wL-rc*U0b$Z3cigi%mI8s}=iH_~4lhUNY z{u)z?xucIah2V}(h~kOs`<%)^sykm3$G_FYc%IY&2P7*4X;P#_He61KY~u`qlihC$ zkvQ4okJ;vUOYb7pS0+aFgbue^phWa`QdEFOmh$>aRsjP7J$@E3C&rNY=pJ@Lp`{TfFoIv*J*Ji}^;>XZtNFn190@2D0 zbSi9_qu#2>X()4;bs7pdVj4Ql+cn3EjmSmq$$V*eGFz964%;dg^k5SSrkX%L3J|g6 zqmrMdlG`MFUnz1@e9^i&DH@sa!o%rQQwSc^sfMhA`d_IGqjFN?vE%HMtIe%6zJn^l z#LhaXe=Iqwq>DL_qe9_n*h`ZR6fSk{YfL@BJNM%Wgh5C&ohX~LfrTcI-R6-3F;f~y zjM%w;VD#warAy5A+cR4*h2Sl$mpUg(+p)M{b-ugeRPv!@b$g3kQ1nZeTyU8we_Y&` znnEP*f?2^Hmr;M3{bq4ubbFG{PA`a4SaW zV@%s&)S&!NiTQr`LHSdr{^BnGohd}(WUB||<9n0p!-pG`kAYHg86}I3oai^1LWGGn zXc)Y0(E*hK1h?WLlD`=o8f1g=l#^;ka97LxiWR>jOjW{#b|`^}WH|m4EQ?lF%B7m>(5rOrY*Rd3 z7uEufKxJcoM-Q{Y&k~(t#Ie_n_9UNX3c=gaDFh-?@TPs#ypzhX@4DPW&J=*;mFNFH z0A_ zWtyw*7X+e(o!vOq*zdpbuv~Z^a0JpC<2xe9d#~BE_fJy@-dbKE5V7}SlUKp%%e+&} zpB3H!yhmR=U6;)D6gYAjC{&u?*bPdy90crY3XwSB6W0#Z^8GU1D-xr7Qb(B=DUrR* zlqnt?mYPC@$u{Utc#lLQlmP^{;-{v~l=Vo(F)bZ&rPkDowS1cH=l8eqr&cyQ3US`- zeenpaagg6b2^;$RJzFwtTfcWrkhhyZ<9Axs5j&|tQx$O`ZXpmY?4%|xgWHhcNb!bu ztr4<;YvSR$@L|9a`>9DC4k->Z${e*MC@JF&Zn+kCa`=TloQ9` zN@jU<$F`y)(|eC8H(a83nL;E_@3Emx{!b-HZ?9^P|L;t>;q?C66e3KoK|jK~A{vJb zAh;D((~7XJ=r^tHil!g4Eelsa^}4B*_kCE zcg7>5#$)8m{u;_&4*Q`WeGZXpmY>{Ax5aq@5n8qCIc_tvrtRoT4*;^6TY@o-xB zHsFX|&7zKeZbZ6yqbj?CKrw^EHZpL`;-A7o%PpvGLw+iH6lo33H+H7B*DO1EyL*1^jHaQ`#h{@gG4$v z%DOH;0R2Kqybs~siLpMV!#ia*&@5CU{9UGOal+S|LL^T37_!q%=z-st7}H}r$aXe4 z4;?h+hf}=86e3Kq!JI0emZejB1`yneFPl!GuxZ(qt(}&g;BA*A4{Hh{x-}jVHQwe= z&V~;G_*+hvkaGc*iZk+i7GE_L3D?=p1fqqLx6{0kNC-|XFFIARFZxM5G#4HO9C5yO zI*E#oM{7Du%9R4+5AE4}+!TVhm&XW1>{GNe$<0~bggH$E%AtExUxi}hn5UJQpGB|G zf}&X-;1w;A|FS7_T*@z*LL^T9EVu|9#)+lP?jQ^lYuUc=WZ{BhQtZ!$jaPXX6nbUD zsF0N{(LWCiuuOnwn?fW`|MXQQ=&0cx!PFYJ)>qDnG3SWHxSs(VhH1g+epawV{Gq0- zaorzm3K1sWpr7Zd0_{i)Ah;DbnKodSDtxK6slqfipn{m{O-hTZs>h?M#-4$Mq4_uq z8%~vaGv1u^$Xiq^rUKy_D-(#wG$FFPGCr2M>#@ahH$0B%&8tD;TdowsSk%!=SW83o(u{{RH$qazEyP-b6Vbf=ec2R(N7w(Q zoW*zdNK-=VRT6p@N~?B9Noa;A3}7y!meEV(mzj*_P#Fn79ix;yLz_|>LnihGMGs$( zSzbNrCBZh~*LUuxi5+PW^Jq;%Kc7%tCPv)FLo1X-vpBc|cz|HiY!S7Se%Ih?PRBWWO}m) z%E|0XJiHbhz!BJM%;@kq_2v$uC$!7}}yIptv~ZYh=nJUShf2lp>zQeAE;|n`PtS#x$}_d8`W;=*#;m?o5>H{pHE9 z+f0e#T;D<QMG+2=K zEs#?3pV~A0BU1>j=I>J{#g~%PV7*Jz6+CvN_@ zUonM9+!5q%DUW&BuLwstoLYF+eYa9lQ5@cfhK$=I9kwj`WlQw$3I9EPJhYi#=&L)B-asAdMPX0`MMw%xCj8k~Kop7COP* z%Sk2ed&3Mm7z2k~m@#B$zxN)bXAH^aJ!2%9ECh=zv-tU@5Q#fzmY0@g$j+@ybIm~T z$I*%T!`y+jDtUtr&u-)E$-5I z@cDy7U4d8CIB`p0aGas<`g%XYuaXb^h_}-)=Tvg}v#3))IOH}a=S$gQJ?Hj7FsTlK z5rt>Ktiu0!U!I3AZex7EvklHP*ZPKze*^w&jLSN3>n0p5ZA|oT*66L2>!sXKW3;yw zYUo3av3>bm&MggH+?c|k**|=!F}_sq?{+J0Zs-J9#H;0NP-M9To^|lv zK=6-0j2I*4fGtK2<}qR>fryR~Pk{F#<3izg@LfbmC_L@`{9B;N!k^(!BogfBYk2r$ zAl`9zxMl{f$oHDP(Iwm7FXB#}K;S66KrJmC?wP&R`*IX~aSJcOzmq^w_#6DGq0&v^ zW%$mA3a`M|iwplCe|{Cdo-nHLPx6<4!PkvLh1cMtupB^HJ5h!Ykf&w7Wl9fc_?xB>VTKJl44!||Fk}G1tvJ=RB5W|askMF1BshlPJyKGs z!SErt&FzhNMAVq=_cX9|-+P6GlqAGPMVIm)Qx>_R{zV{K*rm)Shuw;B;XrSSJUW|# zos$BmyPp|P=$i^S0)ve?^uQY_JWXG`^$M5gtKm0|@-oird{YSCM&=TT*t?stE6Ul; zp*Q4?hN9x=ZDh*Fb-W@juQUJ9;z3D&c%s2VQZ*evKploR0(-juX>0OGHSxd5^lQaA}EXZnRp4){M)_P7K7 zVhRy;guUS}NnT7e~C zlVukFHUiPYo^-+nw^S`xPTC+Ict0r~dJD?{M;sE(gk5=Fi4|}A4*f&3(LC zSZLge8KW>YGm^i-H(@E$RQrz#wLu=t4z!6w$Oz5cfqzSEZ6a9`of8RER z;Em&31S0-Oc)YW1KwO4+5lV_963Q%(?I@7aq_p*UQ+~KapEZR@oZ<;^#4g*{S;&hE zYO|_I(LAw(l$iEPl&GE##ad=aQ%oTer+Pf4x@VgZHV#URX$TvhZ_`kqMDzisEOAZm zX9^J}+MrwJJv$Bl1`yne&zd$)*0Vp*+NGZ<-rN>!zi0bgf{Q<;c(l~O@3s*-EJZiJ z*;FiCZ+!%!h28vQ?~DVv13mn1#7E-cxo|e%2+TF6zyo%HLZx>5VS64gHih6V=0XAy zdv`w--iv@6?_uMkyvz2hP-GnazD)Tv?^%dou@dPwn=;15dy^?d;-t?w$<5X)Rqy2i z)n%VQNsMn)1e}f7}!zaq1@=UC$S5aGY8kpS_wGavrA zKMSeu5s48#tD{PaCMys{R}KH)7x+&0I=MTSWFhkQn>Bvd3aP6VhS|qqscfTvH~wGtM@J zNZc6{POid(o=z2x>;#8HpG%DUi5>MSJmE=7lyv_YQ=T~0*O@{jPW5aWW@_F`l1{OC zbSlXDqlvLThsB#v;gSO$Hf4`H;6YP}#2qjNMx{OZ-a5T1NYMLpi81fJs~#*>qWl?C zzBuJin?fW``DAj}VKc1=YJFNgsT6Wb2YG|7S*S$#WGLA(k(^)(kvQSgy4;#~j1ewb z@{W3lQGNf!IG^58qUFM!O0-;w_9dpAah<=-6e3K!!K5djH>I;_1`yl|*L1YU=1s3@ z?Y!yaliVU)sg_Hf0?HENW+5I$HRdSyii~(Zv)5D*TvIs$5ji(nNZ@?tAQZ{ZXYvEq z!dftFi}B75kYmxVRAQ9qW9v8qVF8 zg~!2r-3+`z+V4QP@qRX~{#kFt182i4nS2SXpwq+fOegu3gVev$UoY138Mb4{|NT%M zF#C)=^Z21|f$;FYq-JrnPN?I9UMX);*Jx{>Q_JMaZZ(sKOT3+24yw8PyOUNMJcZvZ%UNcL!YNcNq&hh&3f z2F}Hv=ONmii=|D}D&RUcR=~N~7h1aoWg47M5-wN>W=;=6U1FHe4{Smi=4JxM!&b`@HeIq zJSX`Tfrx!&YN0pkE#}Ffw=(EGV($He3wL(Fx`~iWjNKB8t`+nzBBNj52=D1~FS<94 zkQ}lzSYi~jxTr^&LL}~xnJdcP@kg3ikc>{ecXgk{+%OZ)kHKZQtmw2iOp&)&yxEjE z&V7d|MB?1fd|zC?1WXO400!|G=&H|!JyygV>Q~h z7(j3+3KYfY*^yN4tHnvIA!o1$kW%kGvXt`}u9oZ9W!QWkqMY z{i20_P?0~JXDSn}v~vhV3-gD$^kP?Uy$)VWQMcmH#zS*qJKzW$Hs*EE%Uq#&a%d~M z6@S{E+fSK7@b+^xfrve?m~#q@q*8e}59+yq2~X_Fz6~YEkSHsBFb8fBcVPPgoCNK2 z(@ojSar9fJ^l^26(-b0c5A3om)m1K~SJb^LV_|y8_ks{_o=waN^E;e$2@J?J4H(7| ze>P>2JK~R~5Q#ftezPf*%C%vd!<4N_H3xWvg*6ATV1y|D$ z{MqXn==)C1Wxmwbe625aOb;Bm%e$qlc*1wT#2m9v2fS-b4NCWt2dA0_r9FeZi}afY zNrRxYDa*Xc>}v{Ra3#DhCLKnSKE4>%n zy@@1oq5D@c`BQ(%Z6r7U+>~JM=ARIV7LIer9|J+LvTjg3Q2pp=^d_D z;J{#-eaZu>SM6zh*%X4emX`=b>_ghIC%}uKRgvvQ+u}*uWws}Gz*SyO6)t>%uQJmM zpkT{9eV!>q@=R~&gDb^FrjJUH>6%v@42N}HZiiB zmtYjV7b(3y`4lvUt1Y2NPpF;-23Rm=eS}KGzf? z%&|d&%X4Jf?;1dGD}HF&=dkqZp;o6?-rTCUONBfNvn-brCsw}^kCycJ$Ow6YB8mRG zsZhAq?j#T`%&w*cR{+KI^|$fxTlgN}2-G#Eb_5sx6y5$4_Duf56oR*xpAv}J6ReSj z4Lc3SlWfVn&w^Ka$u_-oVDp;PE&bP&IWFVZOd%2{e`3T~ZLh>gpVToN*?T~_mI>}| zrVxpfJ7xM{DD80#}& zJ(zC7O*c2;N`a-I#&J-eX;^%oA%Dj!msa4{};voN*CdU6RWOJEUJ{(7ffWtR7 zOK!Ntltb=@i%cOBcSCB8w^=()ua_j7{D@B?qW)JB^T!??WY>6_?&l^O{fKjh>kGbQ z$|`rv7fm4&cg)B)e*QQyXUyqfZfIWjnI_kLN-g6DrtEPCe9sgjaRg17zEYZZ!4`tPPZa#y@)3X!-gG#;Fqe^ye1fVmz0#WZ;i*%4?cB52h|1;+=|;w2Q+NzWb$}8B{Ksa;$)BPu~#>@!>gNc zEp*g{?#9m)Ok7)XQ}7^4_~y_P<55-Msnc@F&9H)mF}`AYq{~zcyh)!xAfky(;F#Pd zD3TwOo9{2J@`^7ZSEZ5zWQ!ucP2YzgKcYlvK6J{@VAZ{1w|ZX&;Y;{zRhQmrDt3ly z7vw9WylR0HRDEEEQ8eJ~kb2Lm9Uf<61)QKd*l3yGyd6g5omW9MV%QTJcwaYo?rljR z$sDOsUTI1wZUqF1UHOZ>mc^dD`?9jE_D zQ;5Xr9|tG>oKjgNzArK2r+P>GpgeE$J$%SyyQWNWvb#+ok|%qeccwJ7bLzthk_`iQ zC@)PvWU?&YDjuedb%Dl>hPDNUT|8%-e+XL{DM z0VnI7Zi9;=H>cLDF6O&M+JBfB?Qe#C0$$nas#kWpAD&t5hN;`|KgkYx+>}l3kjG3R z5_ibhG8|^9B&d$9hduorVxqKKX%QjaBrW;`^Ln0pWM;E4X*1;ldm$lsm5eeM}+3^cyUx@>N;7d}jc` zt+>o|rl0MOxU{wRS`KsOp*J3J1#Yzz7G}lkbcJO`#fFKTsXn;G90C!!HXHkD;ml=~ ziZkfF=B>Vv>Y{k~Eo=cCfxbq>`L7G?IXur4f;W(JOd)tPrJl5Erf1k#0h=dIYi%>t z+EINU)G3CgXzXp#g7y?m_a0NKdDFd%Ktwj(__tMzUcLHVYlN=$ckz&0cpPv9#-dv5 zukC63r6~k&tv@3WvB$>IYgVs1N#OTQ=foo32!0hg;~S>ra9RGx6e4kc$HJyZ=y(K% z_fC}I1LU-DPbknbE8pD|BFwNsXTkd$8h#8QxD~gXN`<9`zi91dy~Xe@Z+dmUR6Eo= zZ~WA`SHUIG^=hr$564Jya61$^PgM(VsofZl!Wz5!TSxg#rrzcJu(`H2;tLd~nM#JY z>r)6s3%i@~Yqz+SEqQmV&|uGwht5I~aKtWWg8#~d+-lFV=WnYi1aB`j0ukBo81F)z zb2?t3crIoDeAm~=^oWx zj)Mh5*mK17O>UI09x8a^4~cnVmySMII|Ku`$jQC(igQiBHzkoP{Wqo%VLupj?mR!B z?acs!TQNesGgZT!Ri&B>XTZIdL7uWD_dE(xnEC#s0^ZyX=&zfllh^nQJs$|nzauf`r+7~s@CwRo`N2KIX#NlSC%)k4_#whuJzH+~ zzT634!iNYOO>gTRCM>*G2B5D45Ia`5FFjVczwXm)v~qzXg`fAZ>>g#K4z_Bd7ui?= zv*Oj3HPNLh|NJmJIDF+I80F3Y6?Bp_s2Ote&EkE8PT<#2KW}j79XT%iY!CQyqxYv{ z0jzKh{ORnW#f8^)C+Cn~ryp<7kDcHr;BfNJQFcGDJj=8;ytK6E{?xENm(b&sDzZ z+<21Gm!L)haq#dPp|j#$dm;DNZ`hOgpW#W2oYF8z@t1-em51nc+QQywikV(WYay!N z6Ch$xeL?op^o~$NmR+?wzVKPq&G~^$)g==J890O14buY`OU+;*8ks@xTxY&11kbpr zj;zA@zo-y2mktCaYpbN8Kx!%r3Bk8S{@j5QK>) zPc>zphryExgh3cIXu_nW&L`J;doM8-owEknO-*FXE)e_P#E4x$@A>wgVe~9uS2R%z zB!;)yGh8=?;4Q2|ofM^QQ&&u(n>Mm=t_GAQ(Eq8#=!ZK%y{#f}u7s88iRc4NS>i3h^&aQmny-q_ahF0$`oBHMq{Q>| z;|2Qh68-o)`A|~N8Bdk zpQWkchTLzCrK9d@+-K_B@Nf*k4n=t(PsK6QBSr_^M0W}NP9CJ*l#3SICwz-|*A z6t45D{&iAy$Dg_!SxUMRIKf&1fm%yqxD#);rWkHRBeUQ#p$J=ZGSI;KS@XJuAVtQG z*u~QkAs#P%&Sx`DE*F~1ehv(@)Xy_$wsiHg+Fn1r;?21~9!;Lc8?Gs!KcJDBx}Sny zq@j)~hi5D!w@RkLN!|5g(XGKY$7+qKkOntAR)L#yk!g+Qp5Lqy?O?5}aBZxBm8Cb0 z1!JN%v_-a3lOCST$W7T$&%!foDf(cQ5Vzk6wBXvEve7i05wfrzCkyiv`LiGsqgKeN znDir^HDWgVg@~=PycxX%suCQH=_<9rd*A&DM5Je;dtVdR4B!1uraq(hW(Y1j9qlsK zsCid=Dw-;#*9*r2j+kvNl|$tSe(e-0%1q^6JsEGRW^g=-AR9P4_TF+{kb=%kCSS_e zGMP{hc_EmKYpIgk&&PAATGv&${a8D<`*oH($M@rH*7X1T(8!EX-Wv@Ph{%8)yHMte zLQ!Vow}4HSI{7l18Qt)3oUKm$DocUlfAL0Z3gruEoUG98V6w8?7mo{m{s5 zm&$^$RO+Rkaxv$I=X-kW#gav{qbru2&MS1Hyp zg;!ga%iVahHRW;#8oBLq*-eZol(*(^AS9XR?IrUpnju}ublCm}JweyBuwn;ceFx&Qdh;jwu{}kQowA&0aWXqA6;zaQwQ3rH=I-f$5q$`~him+c=I zmC1{T^WOu`z(px#h-s`<3z3Q1M4=59c@XvIDm7bA8-=xSG-fgNPo-w?O zKtyH?t?Nq0(>jMj$@|f+k&=b?p-EDDx3C#-1c$)YW?r_(e8tM;>D(Z`T+QII1&u5P zkE$sI4<1xGR>5PvjTJE1II6W51x#B92jO8FcYoC}wQoRO;s_$yB#xJ2v_h5r+3<`(= z_QxBpDVHT^+NIfzH5JL-EG7S5P;aE?os}wC`*>qnVH+ zPzGNUO-a26jofxg?G}<$Po>t3GEpr zA=uwoE#|Xf1*Yi=HM${YRSZ27=tbEfb>Xenl*$Qc zE_i*ZvQ|H4!acdo5hD}zKd>q%7)We zuH3*{ami5^)k&8u`(7upj2b5FVNz^bebiLLd~eyq1Y$?nX*8KvJQNRKK>LI#oF8*} z4$YL(t%WB5NALyg@h5GX>gR7(noR)OyNRP_3%vLd;+mUWD30Ep*V6A+9y(`a3h*2rCSRh102CCEK}gN%hBToeA$}O z<9al*6g{pb5G~IXIA0-O{{rm6of46J{Zlk6y1ou(3cLog$A5&kK-1&jMbOAyrs`7OgVQG>%tIDg>^`P|Yg@zTF81`t}KZlOkhS zhHfQHMLc6zN+5QGjA2Tk=AnSni}sDwjpWc&DcxIG4>*Eb8q>*SYruFpjyU+jHRH$` zXk;mloK7HGmov;_S5R=BhrB%m23aNz|AVGQ*V}W6x1}n`KK}^b1WliR7>(R^pU(?i zKoRNpZ`%9)8)#~D{l0+sU0Ds;_g}}Gq3QcO(Z~_LH|X?v-atDI0|=fs9A;V(mN!gl z?F_>hGNB|S45J#@Fs0O5W2q`(Xs$GRh)R$ zRJ|-ttZMD}V!SuBsOEc1La68lDsdT&I#e913KfCDgDP4CzTN2?CumeLu*jJDp2v*$ z5QrThW=w3>Iutf8L_0+a8|R~GQu?)UCg2DzX-pwuqiMOEVZ0w-vS#FX9~xPT9D}A1 zJaSO=SVfL^+gJf>7!S90x5MNWPR&VWi%zxbiuZMW3n~&v^w^U`kKp|(BwhsnVZ>zO zo2I1l!0-(M5gizwD32Po&v`><4=pZiUo>je#-YOH@X>dB;YRpqjH{KiwTkNw6|RB5 zdOtMstMZM>`BJu6&$&JMB5=ELXmR5mG8aJ}Bw{+9O2ru*Y8-<7J@2kFa)01ZV;S~$ zr3+Ao8i!*sN^Z60=GY39+ZgATYLz@Cp{wvLxZ;CDU4{Q+pU<(+=gFtr7!Q+VId`De zH+1|P@LyweZ?W7x)YTZ5bp~qratZ!8vEppynDs(eYSgH%!dmk6YVc6u3BbaoRxFnT>qZw+wHiX709>AP>`K zqMRK2m1J`R4EXnQg%a>H!CFgqm+(}M&zEX$rQ{Tc0w=>{cOPZwZojf}&b}FMtft@l z(8yBG?h=UB&E)JB6bQKjrvewo7Tr>BtuK5k{!?I^rBJR$Go%|A6z?|(p+NY{aFvz? z^KrbBA`HvOgZH0|;&f%}Wg+xD}I3>GZ6C!N><&I~W;XF1e#JedU^vtj+xh zHYh7wNaHAyAM+9Vrm5`??1|ze;Qp>@}bONy>Bvunx ztwXugA!u)~7Rrxb9E7Gx>CnR7fFro1F`0zCrn^|dJRd#)U$AD}+7FE^#jP}fXkA`3 zjczSad$|XUu}p-rXi9XwJd=1?FkkMYHsOoc^z}wGa@&19i*F}T`+K{+zb`}6qU&$E z6Gp0n?DI?UCTRNn5;Ssz&keeBo)OT_!2p711XD~a!ZL!-k7?;H%JIc~sXE|f#bcR2 zf=b|`lTvDIo}Bmk`Wb<5meBtwQiAWB^3CTbze^x?gp^=nv)ZAY;1#q#SnJ?9!Qaq4 zDP3B45^w~cum#Sh<#Nz?0bjCa(0C4wECr2c2t@0Wg6XtZZL$^e^PV5YwmZqsy8{F+ zMb`E6tUy-Kv|sl2LVWp}-ky&}Zo9W<^FFo7SjgjR?LEF4&5N$b=Mj&~b&$Qj3U7m^ z*H@yEBfM_VtMkNwb`b^;JTZ9GG+433;47`2DwxnyuE2#2nQ(tdA{>fTc}C1=T77$@8X8;DO{>0bnc z0Ja3Du*2Qlb~%_#!I!NWOeUg{rC>776oLm6svxUi@@G>Wvy5by)*jrL$X-A#g_bW) z0y5)>B`3ueOX$Ozo}Gef6`^FUsStQ5Sxq2zfKW2YuXZSs)X@%-B1r|!lR7DJ07vji zV=5Wr_@>K&q>L|GGmsR~$WkE5n?mqFLiJ-6NLJZc0a?j$tqmk&;cnJauQ=m*D^wwl zAabNKi0E8I$BYuxsfZX~HRYN|jGGC>4iGWM(>jO3#m~{Mkix}J&?KqD#e;w&IE1~N z%zVYlAH|n$+=PZ@>{; z!Zu7a-6aK#1MmfF28{jC$Wp*a6NuJLYOxIyYA^SIF}My|@^ThUiLRG}8zv%sy$N5u zrmr`mk=yR;z=jF6zqi}_`!X~wy8aGtn27ZGrFauGeSQfVIl|`#y*W<^Xy;%6!PiBm zm{x?%Lab`-hKbSr`D&jqm-!>804_2qWv0HFGH~WwwSzM7?M`Bt(EBJ7g72HM%@cy} z5{MlkAsFjbIg|~&g7${gPy7wdk`lVc_F@RO)t+!Be&hl)A`l{g{Rlr zdwMmR6J1Z!%`l?<^4#GneEFK*UWrDI@U}tU&AWfv6&OJ9?*CEK;KaKBRBPu0CakQN zvfhDt@nVOMptY(LT7zEfAa0oK3%cIvtvIfY|uPdf%xl$wOxkJqs3_cZ;0sl7ToM#HJ z5{Sr5p@pjhlX=BMQv#{&Sf5Bk#zg>uYa`11t}q#J1h252Ox$*P5U~JXw&oyW9vWF1 zM9d}-t(zDKJX*jx3;BBu*o13?lE05fGo$P8@S_F17P9A$#ap52`4wp72+teDeBN!) z;9&s4hmS9thA=jKJhjEc#|@PfeI#4xH5zEeD&^MLNb;}X%|=Uvzev~6k)9;@Bc0NZ zbk-{DUGEV`o*yz*74J_zNFXBnlgL05|J_#OH=MM=EkW`rc&{NUg3Lrd7ySjiiJF1ua|Aikzb(ucW;Ltt-}4meMt%vVT6QBp!}F-T z)Jk^sk!G&;>ne9PKgQdt>GL0;k)_V&djuk~^~Zkc*-S1Dr#qX;_YV|>Ffew=S{pk9 zL>wultPRD5XTwBwKMZtc{HjU;VHDn2O>w;b|DQOf`{F2Nyr;$c1!){$FOB{1Y-@&% zrG{anSy4$CX}qbL!q^v$-1ew3+ZRTy%yOnspR&nb92?QR=%x>*al@~y+^L*~H&#;~ zr=XGBE|0lEdDKfib`y+AHOGovezqYa}62&7qESt1wV&DE611!&~9OJqh+ zB3s;SNF8_EtK$wdDZ1)7!dx9tQ&||d;w{w_##hnEZ5PHIE{sZs^~ND_{MlX{e?$|b zD~@HR;_z!L3*wVDF?EgHG)0+|;Sh~FcJBr^L7>tV|bfJkQ8vfNxEetl(;OvT%) zDUwNOziY7-lk{n|tlV*)&p&W*{SW_tPL?gFdD1ng-%>I@$ zaw<}?*T`lxFS;5r9?3K-E6bw~Z>**~Tr_gq<*}qN7 zm3$mckFH7-_jhZ}lZERni{%Qu&6;Al9F5#|u`E)Gg|32y0SMq1MIn}!JtShnO0cB%}&pEfWO?IO~Q0<#RR(9{ryrBsYPJZLNfR@-+m_vmTL9v zX4l_%5qKi(U=XplDfOM~^APrVDEmB&eI8Ce(VIc{gsDakw=Z=z5K z2H6`-j|NkU1&zDHPlykRb>I2@?XQ+cY&|V{N$CIwv!RW2A$r=gP zR~AVp-d;_SycLby_Bb-#7fEx|T(FCA?A37wniJg!qPIIxR!6gGA)t~^XTm_T*q*l{u5Tuq5wh(>O^L}vT3!{5;m>RrBW zFOWOYyyyzVG)46*E6d|Hys?_{xCM>ec6spp0~n(_8Q@@iNFjf*SID2x)aWY2H2(MKW&!}0cNisTS9a@$2RpGOZuT64c#sFNw%%cO`V zM^`3#I|LO`M5wVWlsw*IO`-Ilk=rhmK&nb;lY5$L>@{)~nipM-7^kYu%F6P%5^t=g zJhr2e+b)k?{W!w6KPgANkJ_u`VKhCuD$&~^C`XcTon^5+h__i&Ecc_4+b)(xO0g(+ z2>!!fE`LW8q$?M_9fHHlC2EJ@i+HOw1@k-_IYKZ7TR!-%5xRtI0Ku0Nx0$h8n~e<(>C9`au|V# z+}jYjdY!=DmF4RcdslL3Pq8ZUy(j1}K?~3ovPQQZ8M7}}#47`b&;qP>U z9O>Uy?p8g+dHOtsvf@L@cU%B4lw)mnR3WLNujm2;$v@wRIE{6aLc)a9K| zAR=3T{5R5YarhfLf(wgZ2YW2FaVMG;-7ugv+EQu5uc{OfZo?a^DUMsv$UBfYfW&Nh zU@#Oo{$ekVKcQLC6^GWUvqBuKs&d?T3U8{WG=7IhZo4$*`EdjI>M7<2GSz%0q@dj(kmg(YmKbt&qrFa9853)fC8fG;-So zGE)!;yi5^_ACKCr<6$%_y6Uhb_XyEKGU)#D59mN+ZCz4{;a z`uIDV8eM%@q^f>>Ws$syw^vgn&!drdERjU*V(GZrdOVW?h#hV`<{s#Y6|0VG;-U8 zF^vmD9^a0>#yU0K2_TY5O%F4iL{$%N|BH5ALsJy5p^@7z3Z7~BBfU^x@^*V=bS9<@ z(@ev!tlXKr6>qGjJQkyocOZHAW4w?&&ajuq>1bYbI}}rS_?4CAaVp+eO?jM*MsB-2 z_{vLQY!?#9hwTM&F`5}&ftaqm1ga}bIb8EqF^ch4E!Ha@&Q`;S0k*GVHC}W;XXZwMrgtAt;9e$)D_{@)VjT zU8$@!Oi`oiE{o@Pc-u9_^J_G6+r_i1FCPC)3$#PU%@s30X+5r)1`x@NYqZYsDB?@F z&azl0<89Uy%LFuX+r_d-DHi29o+It$ayXhG-58^Fj%Nh9M4jU~1aGybU=BhfM+nB? z_zOQlL$}i#K=5-sr<(4v8EVewN@e@3q%Hun-yAL;Tw_i~?FZvjP)K>Zy<|EQlZ;|Z{>YLES6B`$Z^av|8Cn*jk=rhq*7Kl1(|{f4_iBfHI+p2JG`x$ zBKb8Mx$Pp6@{Lk1-!G_R=C#(Nm}vl!%qYev-yl_#WHA|Uq^2w;ppn}yi`~MpBiQCb zW0oWB1#&o=A>Hty*vJyBiaLA*e?lIw9D+AiQz!?ak=rg5sgq&cc`J%S7%AGTB#)*? zS0zTBOt7X>H0iahcC$ayS;c`L^GxW8;^8VU3+Z{h@tQ(<7LD9? zA?+n~Pwqg`$-0^RmO;7<9-gL8U1vQeS_BZujEPnn$w#WPESd#)lQl&%4~^V*(MZ#7 z^1R9#dzBoICPp{N7)`s;Ix_D0lHaj-D>a3&0*%~uVeAr)CiPM`JhvB0bkDNa##S^p zy4od1%R-9*J1#FP} zd227a-q{@#S2-R6IpDVADBDBhaI!zHnK(K{Zx7s(Y{hlFJd$jPF1^=nfI9v`S?tm4BxHda7ph8Qi2A%#T`X6cwsK`EuW4jQXFF(DX4ACG(n__kg*q- ziyJC11@Vxv2Z4xWzlEDCrv|GY3LeL!{UQaAW6@lxgU3ODBlx8;g9MMD^>P$hfiGP% ziY!ATOHpJgfrxBqvG0#-$&*U-G^`gu2I^(DZr< zjofyx@3OpHsyTVsX)v7UKWp##Pouff_57~H^XhuY-v1Qd4o&Z0jYf{}zCpLoGY8sr z7(npx&2FX@@vMN%;V)xbnmLT`cdLE9m3&S}8vX#4zy&L%-Wtn{lLp@`p<_}c48J$! zn;Z@WkLsQ~9#Q;GEX3HH@#8 zdujv4dR0gaPDjgC8C@F3s%8uv*w(g%EJ;>XYm$L)clyQ&U6CR^IMq}>JUuv>K7G;-U$9Y_zFjD=D$UfyvxON1A~IWO zT~{)h*E` z$Wk!rG=<>7geu4?m`t^?0#+y2wRWsAv8P@vLM+K|7N;Qxp&Gb+N2#*L(aKn&v;EOC zjM^orR1rG1m{QI|N0mTChK?5QXqx2LI}|#uL3>0B9ao`=QaZJ8G2jSJX-p-d!#7=y z99QCt){Gq6(a2KdxQsxwu78+8mneO@LY{sU%)zxi$pYK9^uBe3U_ZRU-X!`wmG;)OB4Z3%pA<&M( z0D=!U223l$h8x>kyG%L3_q#CIc*hOcAf;4W;}DV{c$c<=bd4k?xph+*=AC(8a_6t?x8ZA8D(%hjK3z?W;_Pu>po|J#FXO@E$# zyg)x*q91>!AAfI$71#2813m(0FE*{sqMYrEA)wbrVa71Wb9Ok*(2HZ;C19gf+ zjT7R4>~&$=u7?(jKYA-pE)V8`Tvo+lUB2Jx1@dC?ZP6J7Ee|zLio>uX>~?l48K>Cm zc2}IZEG&DGH72d}JEiCfQZN7umjisdtDioCW(L zv8VDQ?{Go6>egavUe$7?M(m0u9#?DN&T1{6jjj3DYx!cnHW*WM-&%172E6LJg}>5H zva9fJ=$t<|)Kxf*eV)!f-@`sPvd=TvXNG-lVxJEC>}H=?_L*a!F8l0ZpS|p}kA3FZ zXMufgW}ij&+0Q;p?6XWh-NMUIf#ctR{|c|bpSlYFAYWf4)v6b|V0UX*VJ-PeCj3^z zuffDn)CO9UBW=U)ppD4*E(bd-hov7SRdEn0kuqs4tNL`Jzb_Cr*&{QAS?{7!c@lL-w&?*UUSeS8<5N9Fct*~bSX zecY_0JW9PCZ=@5gDgeyG@2IOhHoMYua2@P{(!ep zQxv~PBez`?GlP-BJyX)e+|OBSVirK)hUdDPI0zpoyei6)n2tA5Qxa3q$UBxKdR<8p z%k3p`6q=O;CE-<3mc$Ww6E!7qC>nVOlSECD#DKjd`q8W;DG8{eEQtc%L`_NbqLJG! ziNMCH3|yI*mqqbOdr^D>&5N!m6jy-z<9gLNVwgv+K880^Qx-#L}Mh#h9s;Z;$N61(9|)Re@oXymp_LYT4|fW4>TDXSChHPMBpMK??s z%ubLx%Az;{Z=35vMjdYjntGy9gW;} zS0IR@`K-j2qF^=qlqd{LGbKPgxu{;O*2D$MtCBwu@t~AP%)QeqpbT zpQ4%3)rR68<&lP_%_bmA<41TiHKp-=G;-UeA$BL#dbgBhjJeS|@q80NB$IfWbSI>e zvMk;}J5Tqy<^Q0O+b#J-iEhPGgj<_MsB+(gdC$*sk^!S z7Aah0?1k|jG&Q>Yh(V6w*Hexd@5bAyDUNrck=rf~A!2MRS0rIH?1k|mG%dQqFo+nW zjV?PLE&dxN!3e!TfrG)GE@7M=zi!5@tYWNb|w#Y*Ly|6azIsu{3e zLL*B7>#qc&bsNGa)8mN>|Gwo5*2AE^03wcIknCT2e4X1acT0QV%hvSrZfNATdwDva z4^en}gT1FuM029slIeXnqW!YByYS^}diw-4a)h@H`flF+)2_e(f_MLqn+7M={f`^p z+U~y+?*6xSfp zTDTr?1b?vZpE!z@%Dexs;7ipE6<E&Ock=yR&K=-fk^z<)UdwL2$#F6O9Ejir%tGzuDU%sZd$DxrUylv2T^X{K^ z1qKkj`@h6gwygVqptYm_an*cpe>wD!%38Eil>w!((sBZzX`9gLD3XBHrsCmAz$yZ< zBP0P6Sgk{OKn3j+)i#`<-tU!l0B!q{sorgL$~rm??$l0AmQmFgZXn z7ZcIT4uhH9r=#7`A zIP8`nD|Uq2fkwLcX;^l|TY=~rnPJWR+kmWi4%`AnUp_RnhTZ;S<*VkcKONQ`CPo+$BJcktB+Nknz#8_$tG}%&yhCKg52I?)eQVwd#qZxa9fX+J^n2{ zR#8-SJI@m6p}gC9_G6!KXP^7C&jZ-!f$Z}g?DHV@c`*BYC;L2veICj_4`ZK)v(F>g z=Ti20B>OyyeJ*34N3+l6>~jVAMBmD@C;VDVZ{<;>IXz&5^(w;^K z$;gB8xs#; ztCuW-JMeaCir`i>@(v^d#i6xl?M3isG$nD1Kz+H=AMti+ir`5!a@$2Pm39D`jN)RY zdH-u22xbEWZhApi1N-U)0`+A|Gw^04};v%IL_7YfzW+Y|_s4q`iiZ@GB z0*9fIcOVJKhg8qBmp}>4NZb-o-gmJXZ$zB6%(Uj*@Q$>{u4zO3jet5Dq7n3zp#Rw6k@pfs7 zU|%$H+hc*BBls8egmQ#U_CnZ*rbV}3(99A1y2&}hX?WW-#c&E5x$R=`BZBJUp-b(B za0!|cT_I>jgow+AF2dWTDS`{o$ZZ$F6q+b@JK4={DJSeOy4zj?cc2N0RRYagF_!tR zv0L$WX-eR$Xymp_U}94ORafx;pY8qsM>HF{{$H#!Mj-DGOU{21Z zyA+&1`^(njf*Amj%(y_y`J_sc^QYpC(sceLG;-UW&n|At(L*E`4xKl2_E3SmA-c@o z{Y%k&=(c^WRYX=PNdSl8&C(RWJJHB(7r-PM`g7zYQqcb;d;f1n)1mACeRN_!t&`;b zKDQ*|`_Ra3cRt%!l&`t{)%;oFXy6rl z0sIZkh^_#%CW`%PNg{XwZ+nvvbfz>`|K6~<{mkC`KSr~m>wT@jPpTw2{|9)ZG@buFG;-UW&lZ5HwMstc zR)yHV^H;5NzEJ>?OwOmZ2H32XB!Sn_j?#U%>fdPO2niTm$;EH=qL&vKK=50==!F#q z5ZnrS>68Hkx8hBvr*+xgVh4_E>D^)z`kYFxx;0wu8^lc1?E`ZmvJ?k6kSixCY}yeK=${?@djx6 z`wBF2+x_7;4>nqgxvG_n*n_8<_g zOApv)SGAW<17j?cgHzCy=z3YWnLNtZ8}P+z`uapPa@&0!yqR3tsxPwl_XTKLbp0*e zOdjR)^YA8U`urR;a)i$f`gEQa(9XdCf~N&LnO20Q1wU`??7`%oO1XbjCRZGQ?bt$Y z@Gw*a7on7LYtUO;LlX$iJFQi3mNviF>6zBFOz4IbnZbjmwDZj1egd&0WCl|LH4kM6 z&!D}++6m7No<>upbZp_LfFro2F`W!B0>;Y&i$CBC*Nh;)MmoAw%X3L#Jh+2_;oCTRM63L3fXKA*?O-vQD>eqV0y_oL9% z==yy@Xc{3<4cYfc;LXtV{h?^&2;UoY_dH{uorVDf&lv7C4O}c^cz$$C*Biz-h|-|dC%@Ud~Ib)CpKQuj~*xdH7FspGgFO_tKBh5rE@!7+`AB!Eztv10iY!nOEf zH3P;qXk;m1TxANu0|ph4Rlpduu>u|h*xuU5kH+VFMrGV$Rov(EN2o*`!;5vwm{Bg( zD&=CPr&!*aDGyYYu_N>|o%tSWr65*C6nWB=ejY`BOCTbL8m$W+6Ii7~;bYvbSm#LL zV>Cd-k$3(bs1iKF<{+Eik^;z1_<}V9$bU^8&-?n0RiOo)-GL) zE|)^vgjS;UsqC8?M<{~_Y~QTq%Oz#dVBhN`CJDM!M2h8TDKa(lNO2T_*a0HNSg*#R zFp)>QK?)N+Xo{4cESwBDf;-q_>cme{jL70k)r=9F(8$a<9wRoILhu+tRbv$+jSNZ86zG*BTF&jK2r!DBdBVuV#KvJRzQq+w6!r}=F0rG z)Ji804;uESHn`PV^-y8OW8!UM#5i^@GLm0KKTe<@Yv{*X@}bmOW3Mv2{JACXZe5ad z-GNLlzr|hBli!x_u9ah#)%D`7IEF>PH1s&r;OUvc~0QcWcNZSjy^m=8E&CxSzhk%FPBosR4V0) zc%CYddij5ac)tJF?S_K z{oIbNUg@6Xq4YGAp6>HXmt1hWDSzArUo(XWyMX6fBL`d7iBIZ=jM}Ybyv{=CzVTQE zZq81oHTpIA#lqFC&D+Ku=ah0qw<7dke*;ru=)W2VktrbWjbS=VO#al#?xi79K*GOt z_Ay(8T*DvN@o@WsDaTxR&r!B#9IswticZuP7ZyhRPGOIzZ!ArzODT{PZmPFx?QW~B zaY{~a$P;sJ$9jT^dt4FHp9-A*rhW2Ez`WpM3z!ALDpvQKVe(VfYObQ^=@Ky~w z4CL;eOpqh<@HjKU;hj5QE-Yu_3a8 zvNFDhH&9a<-$5g{T^YN;tlt(dJ~-K|Tdih_<*ZXI4u)hg>JIBJ<8?GQy0UotFtSkB zPS(V~@z!Z-;#D+q+ch!MV=Z5R7v*!2E0j{-aiqI+;;Ep5uhqlD`%<$ZZ_Wo zw-7_(P=yUYp)TSgdqrG;CP`NjhYr(4j8IKkCFkMI)KtkiXymr5WQIpy!PyoOCvLS@ z#aGd!=&EA4@kOXwvI=g-o299Oo6yK@SHUcguKsPM$o}F!HLXfJi2J97zd6#bhOn#~Y@pgfVF3wku(_ z7ZV1Y9IQn}NZ~MhDZCTSi*8UzkB~BmHIudQ4!mWWTG$_r+;%PO;%TAgma63nIb@=q znC`RJgNx=yR}aI@GN@}OYoZ%(ou(!-XymqQg5(UfawXdr5gx9vm&4^~T6E&Ys~St%ES5{FG|?Hqu5;aRwy1fUSfja zyKfc~i0IunPn7-rQ0zoMJKuk!x21htt(>j>KkB{&POhR_KS1_<4+&X1X_kQW46>;x zNJt0-vYCZNz@{^EXQn$n-Ayk^Mo|PsL0f&|fTAekf};3Pd?<>Fiu&M*qVnX)gFikH zMZ_oK0uM#`pQ^fj>(;HhJ$25#w`cJ8a{@{D>eTn0I_Ff~TB;6g(!UP=m7V?{c}rh& zBJ9M64^zX16QS+qB>2Z_9u78MFuZzmGi4;A8?p%FJ_|dk-!UBex9S6ILQ>23)cD^z z%#5|GkuUZ#F!tBkt~dD0%_-~Ph(c-|98nlowuhdTH?rxOweM4Qjd^g`4m)|qg z?IC(68oCDRgT;16l`BpuTZi45ZH;2PHsSnDw(8W%jVgSw1GCqu)CY#ocoF{B zoYa%6u+yHy&FPA_H^=uE%e#iJY)%}=_x3ua;VYUm+_v1`xUxAJX3x7|8*1t zYR6Co+{eFJ|2@zR+@2zHgj?pR<_(>0_D*b;J%AZ<3aB8rk-m${ri^s&nOdzU1?B(fRxg6++el zpW+aqyXYwUcRBO(B=cM0^1Lz+Y<{o)2{asoR~yKm?<2qBwXO00BPw~)pZ`OU7q%@r zepaV%t-^=Gn!~(V_2oY%M&}H6c#Sp6JlWBU?f;F=|g^gxeN&p$JD-oECgGr$N^CY4?~l?oxF#3T+8>d(~he9&e%vScI0F^NgBG+hE4 zS{^>497j>PlyYRK5J5QzwUI2Z#E>IENGqP84t!~a2%wRy7$JdCU32N0YJY>B5w4~3 zrBoRvD%I5bMyZG8F||A^CFYyU(z%uqnS3e3jmWgFudV5kcsJFvq;n2XA*5T3APBjl zICy)bQYpi}+TIlGz)$Tg)x3ZAY7JGH_a~;zA!)Di3>cGv^~jbn8L#p)DD++`y;7lf zbBNFyIy6R;dGEI2J+-DT)=UC(moFtI!BJKcWOC9jEw}z_bTvLtRD&9prf+9E#d5{e z+FVU70Dqbo(=*b1ds?oT>0ym(H2yd`jX$J9$gp!a6+&hsA!ej(^x5cEhyfnSiV;FE z)%g~l0ynce5PQ9Nn>wY@ug2WzcO+FbFG{-~v1EkJ>|)Jp4mkyEh*&dEq(VrCOh|-9 zl6;5({5}mf8B|s1PE3UZeUobl2mEpkHZL^Da3qyOnd}ayLL@H363B|MSJ$cg27{X@ zmBqVli79aqOMu)2-++MMVl|RJCbm$Slwxe8LIlMi#5NhE#Tp_3LR#_mC=(Z07yd+N zFCCb7Y97kV!BizzA4svU6d=0dWABQ`$C|5+7Z5nSb=YkNUy)m_E32J`uVU|{x{CC+ zw{wWlIycreq4tN;r}X4X@Rh0_*p&YTH0y4nl84Ygho;H6vR}9sa1=?J{$m;j0lVBT z>2cySc#|wYoqr0A?D8cC?hPCwbc#c$YuYQnkX>BXs5@Eqly-L45L}?v6Lf?B2Ago} z*qR&s7n&JcH#o+(g~I3thW_b3@t=76EPdjqXyj4%iMf6GQZGB>Td%^EcKTVJN#BU< z590v>SHIf&L-z>&5bT@o3;W@1v-E|3zVv)yI&8SDfG;#k!KiR-bT4>0o@wI^C3z3{T z=i$w=^ni2F$fNE7Gt01LXE0YZxxjm)yTH5AjM%z>|0uV~1^oTeec%ebU6wv@IU0G? zePBLprh|KdTo&^ss2Bsm;Ew2?a66h8TTk#GzA$-$-aFkNZo^w==?}M}kw@JhmI}ry z7B(vIjnK*R@40Nd zX`@&VzGt!En~`S`a{(fmS;R=QN>l%IpO}TW&(bHRqme^=g0RXc7b?X976C%8cU(%H z5-}@aq4JE*ZeX1ZyQ$djXZ3p29cWiJMyTd8tBW?$=6YxLM};e<`AJv zlA-HTluz&N7pBZi??p51`n_C{tfN^nidEe*Yc5q>NeyjUkm1-WY39Hp}@EU`Elk5#(YsAIHkKu_lE+goQ`VZ)7iYi^w)cpwF zC`)xeghtk4|J58KbTr4l$_$%&MGWiOlYgTk|Bu0vi1Pms&4=xPPPH4*yepdQcjJw* zl>Pf?o+o?AEysV4uKxd_X|YxRkhbc#dZbrmU3BZs&Ep=6U)pU5r* z2wC;*rglVHAu5$fR-75d3aCBb(%F|8r?Mk+xjYH1?OHipzPJN)axx* zTTNY4tHFKk+QFVlcg7M>n=6b9S2@|JlJpG4!+0Fcv~zdIxEr0+C*nL zhlsOCIjQZVO$$7tvgK+vR~pLp1@AaM8%)BLFPi*2(8Sov@82+FGV;qYP( zyaWu-Bo4ySJh(e2kOjUJ-4Fg1&5*4h_@DOD!hpGZx@&wMZ=R)Vd=`y7>aH=@b&Wh6 zwPqLJ2fu?q65SmhLbGD)4*pH{x;uDX(p}&ec#|w$;OA)MQFnp)!Ude7Gnmbn`1_)P zm@w_zkxPTg0D&u^ZJogX6-;vif2VXen1DCR(hc@UBagZp%y8Y{qDC$_Gk9fm{f|Qv zVypkkb~6KbY91aHb-9%vw~xkKV<~($8hO-(pXmy}4;~f{hJPoz^1INC*ebuOt@6A( zy7XDRIhN9&k47GK>D@8kmn+tsK+L}?y7KQs6Jo1;+cD33qYK}}TVpBwm1yKq7k-Ht z^Zjt9)Tu(&hb`0DJ-K4OH{b<#M)!hmpxLqYg06PsU+xWi$fNEUvs}lhIQ3P<8s%%PJt2Xrp%&d2Dri=0eWC55k?fN00)u#y zEM1_0Mjmw+aO1*mr&@B@;mclrojkjyA>a!ikM0W}Mbl&J3vJ_qp>MiVd>C(=rBi$m zjXdg3F+ma=~ujXdhIA0nawT+_}k zkk8hfes;INSV@BEV>LGzoH9HV-5-8|Cd$?y{C9I`Q--#^)E(vLcq=U(lpH|#C#4h7B;lcfyJk6u3CkuCnF#jM@~eO-s-Ejt^EWvT}IsshXalxP1Aph zSL)Xl=#d^XUV*pBGG-i$M%H4+%Q-~nHn-2}EBW*f%rOgKOvG*N{b)*T<@bM}^2x9C zM;E^rZ;z$;IW%&J_=IRL6NU&a1PGZh=1@E0o`Cw_4xfP90xzV(3ux?xRR8rOH$gXW z&TI6%uqS1G@3Jak$&fK_q!KDK#wR%hA!AUk?-6Hq*XQ@a4)@ghT)xPD-2vwaRf6w{ zhv35PfTK{@T#)YLjc58qT)tN_Sh<2>nfTLVrbtkOAm_s1Py?3RxqC!EbXbLLGoSux6~U zf&%O%8aR}#j;I5_7fZ-8jHsFEKDX5j9EUf2lvw~xN33e+atK0={a( zx(^;yVu$tW@T?-#6Uyj%FhM`a?-|NCzQ$Qup%1SIs0zs8bw7s)9bU2Cc*zsjf>Zag z>Ws~KV1s{(u^c4!`NW7_n08vNXQ1^AquI#pv(cITGZjLPus;fM;;tQ5YK5KqdZM|m zTl)Q^%H~yiUDtZYv6WtQr(X=_L@cEjQXzuU5F(cheq!hmAfy!|R2I}6cP9Y~e4!%EcfQ<#lzUeP&`lb449h@gA~50FkIR;~yT(u$8q zSr35Q9B=IG7p%Fb?(1>jWfkzq)8Tz>wtA+d<+sJ-dd)-1dz|W?ytB8v*KsQFyxSh9 z+i5kO9cVSJEUg(H5^zgQ|@%!=UtbUXVAxF-KIYjJJkd?4{*_ZEcRQa8D>;>Nx%nMT6>+r;KY6mTcf#1M?9sJXqhgTO)J9yl<3x*3D_%F@z?7te$70wjDyGi`AMf~C9Vy@KR$n`tJ zEG%sX`!*N0@Sh)Hu*`0V-rUN`sjbyUDHusb&oH^g_=(5hSc~~6XPwQs)MP5I0oqXi z4b>T>KmCddk*Gg~c+A|Bd2WG6qgp{wjlJm~h~dutW{K-J`hPRB_Z0pPw9tGf1va#N zXKHGl16McY>Sfix+25({O2T`VrUgSXP1G{Io(-Ay&ziQu$Kq)M~XHxaN8r7Xs6N+hM$r<%d@5a0zh65v^+yY@zZeCD=%X zNL+%sYg*TJdiT#NfxeL#|MSw`2ER7nL8?^dB>813M38(;IB>m4&UHi`On{J9ypfs- zm=$cUGXXN^oUku5VGA|nkC{`q!!1Fu`k05Cg8WO+Ux>%0nuqY~XQ7;{JAI8}H14$v)+%;Jeec$HvmV` zq$zf58MN#2d5{*C{{wH2Nint*Q1m*atFol5*<5W5<*+(is=w*tC%~4I67)O)J6Bkf2Thb0U5- zcrAwrjcD2(Ddfy)*~&o&6KG7ZlHyN1BGjo!>|VMs>$ zxhBlzR90o>br}^Rabc!!V3)sv4sd=#9R;6HOoSO}ezzEK&KuPT|16a)N%*I!5Xlo> z=5&jws!TY3oFL)QsORE(1@l8HTaxg*sSt@1zJy;rz@rXa5uS%fwB%U#2c2gUqyL~Z zH-X0+VS=ZHVH@ios7y*Ro}xk|F2=IWjlo^;MjTs4gF_E|Mblf+QRC12yOT-+%hM%c z1zS#oLlE2wZ*j*U$s8~xVresz3X!-Zb2h+M?tTZpeeuPJo2Q&=&vAV5efUPFzk z?yBa`J3D!ta#}Ulo7d)ySHRDoV|E zYdm}wZU7vGHJB>4DAt4GEz$YAnF=9C#7!I`bgD>RkYDLe%2PXQ@L@ew?&F(STmG!= zWc@jq5yxavmta+Ewho)!z>-Y4k8fyg`MG&l>(8jfO5eUu5F7RhB+g}!){cuEuuWKT z?7wnW!**OOWnVFzeNIoK4wt^chQMr#l;H9E7hHAtm-JO9uyv&qE)4&#NB*L|x;cJd z)#)2mJZ$Jj!eU5UYAgJ`z{Pb_#Hls z1OBHcog=tmk(})?Dnx?LCboDiUfZbE%Y!K|%e2f(1B!f&60Evx4?@4UH~vm ziY}n?D98QlsSrUaFu~D{KC&(snT`Md_t~JyaUYdS>FoDX zArhD4xYL{xtVtGOGkUer!)j6{$tkcM9M1G*_%rl<`JPmseYoVuCfRp2HBbFDF`MCf9-gkyKf+ z3N8|Ghq7l0yFR6smzHSKEC6#NE_ctRLIkBD)CRJ=5DAR{A*~SQg+0X8Q=ZoXKi_KFt1(^b3HT{$8=Gr ze_FZ%P4L#W{Z2uEys6(0IgZ z@I|U1(#u~Eg2X-bohoSG1FoeozB)0+r@4&tCN;7TiB9$^DnyWMLZK>aT`_Mie8*C+NS#_HtsUbj7MY}KQ)cM%mrdUZ(%5O*M(uqoHGWxEo?KAafI6Vrpa zp0eS?#0RPTNCzFJLL^S{#GShurFui*_?wAwJSp7}&1ru8bt*%WV$5YT({u2MzaYv>{vA=h~FpX0n5|wI!2~Z;nzpA**5H04NVVEQdO0X z@f#{c;*zZ1RECA{bxs}b({_4Orw>)iu!8~)#-}!x`}uxilRC5RO{#J}JUs{o!JP=g zpv-`0P^Jh5wH0bQSQW9Po0@nc z5wx31o*XDga){BcqqZf+>?^zN+{b$YL+awF-ziVBf9y>r}aBiF)>RkaG-9H!2??nsR6 zxoP)SNOo72+p-pQZ>RDmslSa15u~0_bjrF_#C`&Vv?8IpbvoO}drH2PtL6jR|1L4@ zXYie@yIPHEvOhu9Ov?T^6(UGDK{F}4_|8XwkXCG`E`%~GVAt~7CU*2{oH?yskg2oT z<$5sxP=fcWAH`B!HxF)|bm*41fO;1Y@Vo0+%gXmh!AyVflQ zr{M#iR8EP9-oncPMyV|IIZFDwYLxqszrGfRa?oc_5RN`3IuObL!+^SBaZ z|BA%ep9e=y-KN`+e>s&oN&aP2h{VaCzr}a|Kx%uVQh_IV73cqaV)QS74Y%?hf=tbA zTnj#*rLrdl_%szFaRFv;hL_;@t-~hrf1DWkbJ8WZ;c()ANM%hDe>W8(apIS6%~jbg zf2mFReXxS))ix#>o=HrG6=`_xnwgOqWM+8BJi!J%2QN`#6_9CeIQqH*js{b zQdC0G{2wQkhv%egtYNknw$-o}hUP%)5i81>REWfhpK%skyKlbT{}qX`J`?uxID0eR z#r_)Q$5Q!{zW#D5MB^s2(^6XSgzoMdj@_8(6E*;M8v`8%i(iIcx@Q@+;Y6yd&h zr`)KS3(q$vCcvWfpuhPx#pfHT3`!C9QXzsO5Y{^6a*3Es6Ck7&i>YbLT`pNXsiVs! zGfss^yc>flNbt45T>iFrJgd11_6*g!8})p##%~hl|J3F1cC&7~%3R;DP;x8PJ*0=- z!XY}dP}2VH*@Hv^uV?u#s-lzI~bfE^1U1)&Xt_@elfpAT&=OI)>F+_>cN{S zCftXuEj5SOA0TiAqOC)`Y($5U{n9<*MYLW`OHX(KjXdg}Fs~0b1ZH930b)Xy7yW_A zaCCG>=uXTLjtF%Gty{Vu9Emr}(hm+tBagZt%uxudR|8&hL=HQ951MUKWK=8Hb9`F@3AGRJK-k>lQin2et@?XZ=W2yWX(a58&{IY>u zExRXI%=c#9c@sO{SId@5#i4*J{3g09{0dEwtt%WGniJY|Q1^}h!5e7l8~+cDJnFu& zFmG^;fK$x-N#uFMY=B5+-jE4(3RBN?ZfUe=yc|)>?3U7=!DJ1hV6as(;vzzs9~x4CaOEgrRp0wL}!+&#cRZy;fAL@j(Ac<`I>!i zJcJhR033z6=8QC4UJH$iCsp(Tdrx#8e?WzhW8y9j5$75(Cw$5VcrKdzufq1z&{`aO z_;j|XvLY*t>fcj&k}mrs6(Vt}XL6d&y9Va|G%3DkrFpn$vu$7&w2dpM-LxS|pH78H zob)uir~s}9L**>pTCD|FugaXw$q<{5uh)$LXFsiHNUbx^BcA+c7_dW6OTDTZ+6y~5zfUo4T zQ8xx21ZPVM`~&y9qVxDpDuf&%Z|4xPmkIOO*{GH$!*!~)e2?nSUxaq!C>V6!=kp^{ zEq{i~QhD1N{a>JRC*AmSREWgsUvhR8-d%(Y=1I`nfUBx-e_|>el-?^$fK%Zjo_U*Z z4JR;uLS<5l@gpik;$ke{J^;J^r4$?5+$H>MVuGxIJ-A?olw-t8ga1rrREqLPDn#O< z%-+dAOoqIPy7*^FMW;Dw@kO-Vql62g^@s)bJSs%u#J5htz@dP3xq2?OW2ge9HG8IZ z9e*%V4N$L1Oo)|f_e2aF3+M$yGIeH%@7YL0n0ghJRXHM#r$Qty%+j^)G>2)ip#;Zf z*qO0SPJN&ps714hiLxx+n%}VJg5f&=HzG6W8lffe^Qmk~LC&Q@BreD*FL`?dCAGC$ z9xSsWHnpu0d`bJV#AHds#pZ4j_l8QQ(lRAe<)&!jTta15igPg)B5`q2@V4sKq15(@ z)5A_VwVu|7D_hs*YOM59W*MJOOqvz!c~y9qi@yZ`=bT#4?PhvhGc;K~LFH7+ay=Cy zaaoqM#!M}>u2F%vPI7ezo1~E$01^0LYTUWG+!idF%;fU=P))(# zk64v2qe57dO}rSsi`TE2tpA9eE@JB1)g&WbXmao=QNs~@~GKV0n zHFQgA^vK`kk`2#o{?X+=W$e+Jwf-|(JX zQ$&9}G0|tTd*XeqY9swos%ldBN2m~qQ$E>!3|uX0C;ewqLu^Xx&2Ph6+jwX-V!5>+ z6~dZma(yskU49R%4cJH6!0F{95~CZOo3{%0DDze|=RS-|m~`%gIYelw6?T8woaYkYcADZ3^=46C9nLIrF?65j4 zlY@ojj5J3tAWn z*Wkx>@K5Z|Pdk|Z`3CXJnc|mC;+HMrmu>9tvzbC+JN(lH!_D!hmj@mArREg-hTk!q zEA;Z;FZ97LXS@jiEA+!ZZ7$^D=aq#5{Jf&DoBwkWex5n5Fv$O<1V6#F-$1u>jl$*> z{L!Ss7Wk#Px_bax=&m+O@JewvdnB6OM8f~iFDK#agk9BI-CbL7hjOyrUcI?F-`i%+ zk3za@H}4qU+??I(43=x%7d7%dyZM?9@Zz|V zTjB4_R|ID>IcJ5ZSQ~tcRj1fkDEbT+qEt&+cqk+5ZaQLoOc#IF-+)JeYrw_k=7HjO zoP9aA5u}!dPn}u*TMAQ?eh$5u!hTGH9~xZ~)-jrgF-*+_9G9s@qs7!b&u`dg%snDz zF;W(Ie^7Ob@X@9>%bZ$}S(@kuHmjk^ z%sa6;!FZ~4fNd|xx_dx)7yQ5B>p*tQbzpUKj>yP+hPoi{)t$aZakx3t`#pY*z;JU# z>o>A>xFELH#eQZ%oUQ?<2rB_K$d#hDSiQM0$UC{YP;!4Q^I!er6QLSmO2%e&a1Z`Z z$3tY8bB0$)xfPUKPlde;LtYx03J-1%=J-b;W!C<7=zR<;z0GA_M3g(=;q{_clgcMS z!}j+}!HkIOQg7i9p_In|se0N**ovN7JK#V`rf~YHcsMP50B{uIn$yz|YwMXF(WW*@ zxFI@=AEQFZNy0}sMCh6n*@X{;N4elVF6qedY+4U|mQyFf{|>Fk;Lry07qgeS;2k^Z z*6>W4FhEn{dsG_bbnQEW#;_0(zd!RQ;NADw{a;p}NQ}|;PryGOox?||5Yn3;5i*1Y zWa{&blg`=>H%9lWugXn*ASvISoZeG|i=v@D%~dBsqY*>zcq&BlG@D*j%p^#2=*yNz zP&twj;V>#hkY-}lBFa?}mk1EjiV-pdbxbW|OQW!fcSEh#XdNuw3J+Ye-_ENKM4X?P z3oPf$rR7p4&#iEu!v-td$f}LMbE&FI$2f}$VJ!(cX)k2o2lAx`yRaIL3yMR)fzyJQ zBqqip{-r=P&mSr0XON+JO@)i86iO9_IK)^eK(9}XQ1+(g(K>tAMQ86?DundmYlHxC zr|Ma}&X;AUQtN*=F{)>aT3=S1I_-B-Ig?KN4Jt&Cc0xjs-#5k3AwWngL{1?($+IPbYpol{Fco*HR%8Cw}gxTq)Pj zwp^WCZdBRQ%x;DHVq(bYm<>jSV7GYIa~3n8TBoS=B{Es1eC zH@z2{=F>uUEEg7b4U023N2l~ADui_48-*%y7uGX4_or0Ld*Q7amG++{M*9pw`!3O{ z9y0Eu(j}evUMfV8aY897t64FW2oTbWgwpklt&L(4z64(ct2A}>)5(6nNGey)Ojn@Q zOtsajwgT`^s%ldBzf&O+r+nV_LHJU_<6OR8OKs_cyReivcW`3F&rjD_+wS^TEmP)g zYxJ)K10ojs%c&5F)6bW_syVnQ3vSii06VGIm3wwORrY3NJ;!!WC|aDBm=-Jf<#(4K@L?0(J+BMaD0Rg~a4om}XlLq4f;k zwh;a~v7bty)S#C`gjQCu&&j6oq+J#H&nf;y7NqjpMLOSxLR0x^b zg_KEVcJgpKsI~L~OFSvqN?A|At5vCTUuwg;Qxz}xT4G+X)LRJw8#2s>412P>+?Rp9 zqPkang{p@fT3_Z6of}%y*~B4b`m*_8VywDlbLi*I2cpw>KNUg_uAfjLOK&vd^r54Qi)%b}4$6xR;sj5#^~^i5ANqjAdHTTxHm$#xG{h<|=uy zcW}h(L6(3m5ewBt93nJegm3L3$K^S#GKa-wo!=AV;kR%k;Hc};b7hGG(U_MxdJH}x zI;F3mQc7KOo+(bw?{KPv`BJW^xa$Rp(K*XKK3{J&tCj1okIv=UR0tV-b_h9QUojG- zGbauf6mLz8^O-Hq!GVn>#G9#n$r9p?REQwugp?t(ju=D)2x-N!$q2t>n*;9yI_?ef zEP$of=kmoy6;A*7KV06Dm=_$BuKG;iku1~KGC>=KH&gYLE^!kTB5^ThaQ?UN&Q~hI zL%%;ujQ^QwmOL`GR;wE2_fh$hl;2B*2vSZMLUI&}>VNul|}KSNhC~ADjLHcg-Kvm z#ENh{hv;NQm^!_@m(vY>&G62{dSt$q+652A^`~H6N{OpS#KU}HG2ke4Hdm$x%6l_x zs_ruczNTlmA#e+-VYA+0(Fs4e1x#2?AdG_L5^VGPx6Dge)R~&wa{oBn|<^^1)F_DkYe9UM8lf=*HDR62x-O2_VSaLGM2N%1>evfd+W8e6id`BYt`yic!mb11L_rU+kQj_$8Ovvc<{96o$|^nMyMoY;90)rJuE|hu_z>^Z$(u3!b=gxc&FlAgjIt`&#Yq1TmbF{wq1D~9-~6Y zvGhw05oah35qMSw?u&)1*VzNHeO(pxXyt(qiP*|zo_FDefxjE0*bAT~Tt#gw_UyE4 zHT&eVwCz6G*z}zPfxcj zhO6UrnO}=;Sd;lRREVI=ghVTIwa5zu2x&!9xq8mpMy*~ROr5$9_8Zl-68%lChuJ3v zTkYqjdw9zkN4BgD^nFzMWNdG6hz`x$Lt^$^(ba6OQ7_jTu#pumsqts$kGU-Ku)XlY z3-!Mq<8b~6np0az=d~pD_fymKL+JLkQGIoLO*@cy#+tt*&lL{fD;WwxdGA0WjiWHNt;#PFP+vfDnZ>yJVuRZIf7CiorZeDZ0|D!@k z_v@JObNR;<7G$!mJFOJuyZp*S;?VzkjMBdh8cU|+pO^Lw_g>4?wO@^HU(@~&D#R#g zKN*%Tvg{f#Me+0eicg1$y!)48)cG7VNw!0L3V+j{_emSsJJGFb>TaV#1l1*E1({ex z!AXFSR)}Js03ody&(|Xe5YmeMsH-B(3fP`@%S6gaY3gpDIqWDe+&u@UR%&qEuqUwX z;6``cM4ZSp5A!}u!s>)~!*w@1(hH4eVYh?Zxbh9n@JaHMRA-e_n~zf=q{bhmLbw`# zqutwMp_LJNWqH~f*jB>0W;X`sPW%@0ymbp2izDj}R$9uw5RL3oD1-St4iOr4WA~3kb^pi@vd~;E!9B29_-6_Ky6>n$guy~W>C z-A`(GOD+ARf<_*7KRLL)pTKj+g8^T;F}kmO63vsXudIpWE3CJ=zkD2Tt);(w6pb9> zFNFE0oWhDihyWoo;*+A53OnRLnTND5nWk*mGqkas>kU-Hzl`pi52H1)_082I`KH$; zSLK7eTJ=G^QI;|nXKQFH<>aeQ=_I0j9P?SMbl+9iA))V<;;yn&Wp zkwGJecm*MO$owNh5CLKo^Un-$&aJunzFbu3hw^yC zEM2jWBZuap&P}!#E6R5Dfxy{X#pwwIo@=A4d<~w=$?)cdQ)P#2uV_xJ!V@sn{BS{E zi8&slvh1QBdOm{m4-QL=XYpyDH>hRjgQF9@k_wSH(cGVNz3Qo! zGZN!j_%mxyqxm!{N7A3yQ6Yjf6Ox9^J0d0#Afy!!Q3s}*cfLs4yFgh_;-huehEk=N zgA=DaE3i8zuyx_Gc$~?2wN75Nn{Bx5D#6pRYvB^AgGe8{m_u|h<4k84oaL(hjX|fR zzA^KOc$h7`A8-`r;IemiqnX#JHde2X&f|4d2suiwobm~0<(<9imYClrM)kz>9^RVf)xW0lBPo823K683 zkUnGv5;2MZA*~pqcErsaH?;h*eLfr2Z$C@!DK&+*h^7Yg37yhP<;3 z?1)&aFX0fOc_+>&c#=GuYuHvZxu*g%%;3g|wP>c@;l~f|@(oibqe(K(P7B?DqX^PG z$hUCgiPk0hp%_bMV{;Iy2vc{&^+vb zOu+-M@K#*Evia*W=t~Sa-B_QxJ1=3^oM=~ZOGBKvgvzVTKo@g}&^QtQipZjML#5nc zz9-d=3G`hm zyVCvdq(TG*BE&}-V#OdNKu9Zws2y<&u-iJj1TaUtVNLP1f5hW!VdodLyVXWqd;S}h zUg>JjaR@@BC9ktA*GNt^YHYP1*8PL0DwjPP&*+{GIBLXQk#5o5x>c=~;byRVYK+Go zmjFh@@^=x3AdpR6=s!^01naxd%yggHiHWhiI4wB!84!A-+6mG5eFYUlMyz9nM95D8 zSC1RF-#GTa3x*3T&+skT}sTk5bTK~zv&|& z?P}99Mcmevfz&2OKxP0;(X!hGRElNDc|8>(s!Ah@qu#J7q$!qr;9VYdM*g#xW#zY$LcLqZKZqMOoa#vL(o>bhbU4A5Ymdj@H!`lx?SzF%iuhiTZx|8 z;ibTJj#EjkgNLw`Z1B5y{Hr-v-}^9PvH1km6{I&k&LKkUpTa|BFLizZxQBS{W>Bug znO_4r?9UDtwz0qeJTzI@4*zt)@aoOYL-l@lmvVdZ{W+G5`K87^WqAMQ9mAWOD-D0Q zbpb@SK2(7(gzT@GwvoWx5N3%^J-f>p0CYHw%>SzCT@81R=`F4>$i;@1`THB9#bt&+ zW(T496KUapg&q0#*}cSo((CNWvqRg=2$QkFFO}@?9c;kyXxdxNiQCWF-!$3nd$*na zm4ggmu!(|QxKa;g+iR`$sjm$Ot^GaXub8xBku|UdD2$Han<(t>Ee+`byOv!vnhNkEQI#a`q#|eyn0Y4rV_NWj|K4A4jksN3tJX?8i~; z$IaIp ztlhe#UF?!hagupI2Dgit_XLE9+L5yFqtx8tX5VaQm)a+7Ecdhbx|Q6U1tw#di8YsU z(Sp|-6x|k;RSLu6`uS8nWfne{Lxg7GSQppZe}$XNa-`dHc7`K(g5xqY-i&0eX*gAGir`k);pZh(-?a0YbEw(=`!b2oTZ}&!Tq3O&E7} zIAOTot(1iE2j~ONca4r0k}%wf!-&(ir>IQIgz;Mr5t=Y!p0>HgTr<)&K*t-Ctjn3< z4k2D7!(pxFDaik@*4UM8&EZ-gjyK^f%>C84aZt+^=DEMl=fC=EMOGSa<`v`Sf~W%x z*Sb%D|14q^Cq#@iD1S|LC3jFd9UheH-07_UlB(l?$v6gOyXmu1Cm3qDqp51jA=%9# zLWg9mHJsQ_D#%Q2;wNpDIJYw%N(<`%N1?7cGc8sm;C*6tzE{tr+oChMg$f~))kY2x zXW7IlU%JNKFAZ;Zlu~7QSEZU--zf2`tJH0#`@n!0oZ6tkvb49TlF64c+z9V_(3&nt zgUY6K?J5-_aY1IeW58Qc@duWVB&Naa)+q4Wb&EE62gHY{oJrcRra}a1C!`ozI*PbP zfRI)kN$rT6rM}wPJts3;JI~-6tKjCQ`{VJcX4+WPxLeNLJHkdRB!5EXRr=VEI7DdH ziZg_G!dpwp(pvj*M>#o(|ARJt&%O^~& zf9WdmRu#826}eyuY04tQMK^~C4Hw}>E@f|8`+za+lw7@Mfbo6wI;HqM2TiyZEOw%q zG6#!wfTO6=T)~5dDqNSpCt4w~4R4EOkl4bJL&fY|>|f|3z`JiLug^YHB~Rc zGikiRLswPY6&9|l*C{;*T#Pr$Qr;mnvX%q(P$6Uv5Ka~;2W;e4gt}w=p=HX(+>ldc zp+yNScYqxcUGR1^p|*i#nJKWyerRFkHoPU4es`;oE9|+)P#p<7YTIXs`Cj+E@fQdx zzmBfxV|X4dgUX?874^ELhm>F9O|q2sVKlN9QXZs2$dDo&EQXLmfRI**QiuTIn-@pn z0*c!ol2&gCon$Fwa*p+fWmZVxAOZ;nS=R<#RInOL^93OF%O4=~LIhV@4 zoZpMO3S|E8{f|f?Bh%ZJnW>mMZ8*mhLnx@wUe0>pH z;GAlg-b+274dJb{%x8Ph$XY(Dafr?pHOu%Fhq*nlR7#fVzBr@f@U0cXdy>5pS-gr+gBPJnEiuSRXv6k{g6K^5CBItb0h7UyhmY z%lBm6KMe$x2c!GU18AyjeP*Mr&)9Ta_n!OlhFf~iPteGt?mfp?d5=Fo1w3iuZz4yZ z0{{Y7(%E{_IdOWDp9I~j#^F0*=~e%D>3P*0wz<$3<^w)+Omv?)3QxCjKCYKErfYhA zUGXwjpo_XkWbh_hdc+ZEG0f&p8{7JnEh^Pi*Y<4Z(n)yeGP!ybDc>t)INo(oeKb>R$0qypfh(@pd$Fh*uDn z$>d6#n3NMBP;eYvY5uDXA=*R)UrxrJO@`51CSSatK07p?o`O zzjQx-O>a)!Iq()V-C7QL6PhBUVub?WC~`CdI|rm}UA!NzC30u;KD;HCQKG?-2^z-! z^<@_8y7!4aP!W6<%#66M{%Jgi##IVk&A_gKfSO*H^x*#qyh)a_UXMoBg8y|KqH`6& zY_30_qq7Z{0SEXwSQF6!eun16b~uae$gPmv6?6cvPr3)(hquYn1MWp5kGcm;6&}FU zS2E}Rzm2T@i)c1%wHF8A!?owV(E|DlczY~$e;$n-qC25xlVzVsD+CBx_EmXDLgP>T zHN*twerGG5_v+}L_ey|>WA34+o#lM)5$1Vk>%rzYyeXDWcQi*1ts+82jJ=59N#txV zEL#-S*+_}q2%u9YJMNjp=BrupO7eB z(j&=t@g`ZydM6rLizMIR5FN}VoGh<+59E@+f;AC`^PkY1*be9LT%z_#_kgGIHd%VW z@6pJk?g3K;TiS$V)svC6UjY!wl!f6F5?^n$fW8!OkEQO5(a0gX6AA!XLx{9OfEdLI z3DgkVwktKndC?v39JCy^L8n~}0sYWiZYSOnOPAZmk;h04v2A-;4RLvNH7~<+7()%= z>yj?(C3ur8WxW`UtVNO`4$;vX0>}!hA#Me0BGwSMpgFM}&h2Ulf1h*@xEXJgr3c)E zMjmw!fEt3arPUC>jIRB|Xf|xMZ&yQjz0m^tgLr!^b$E_PQ(YI`4X#CVV(SLsHKy7p-2<+{+hpkhA3!6AcmSbL zkhO+LIs}MOtThhUewunM)X$^)-p|l#*!tem&=ADBq16}n;SI5LxO+MBSg0>%LeISn z9Ec+?M%VHMJcX8(g}8&>^eNomBVE+z@fKN%`Yak*iz0vK5S^a`cL6xX$uwSMpynUG#R!*JbbDsJEMj2?Rax6 zRo{w64pE(u_+{-N5()t#SUV6Pq!nU!H~~Uhv5mTyjadOV`#j&-o&O8hdT)rOHu&BU z^B*Yt6nZonhe8wagqgDS+;9@$2CCD_lK>y%5S=Mu_$5lK)|Lkc^Yzr~t&Q41_ttHP zr*>5H{ryhW=}ql`7tw;xR(&rX+6!L>9EH#3%5)DmB~t-QGL>ou?#>d1WY}wW%n&UA zeJ48O-=adu(RBxhh_k-n(oET~XNYT{9)EcPTEi_z7#-iBz*JVqbFvLr@jp)GNjmqV zREWf>p1EPLQgjC48A9<`p+C?}{e4n=&q~7`+x})X|DFVG<0?HDLXtk73XwSJv(}_` zlq;Ea<-MiUS$Su#vaX&+T&51~_CmXvJ*-`g_9LjAN!kyiLL^T6!Q1QQDn!%N zYB({PsyYy6;bEIn|KTZk5+t?BePPu<0=6cmMLJy*#$>>jjI<>Krep?PQ#5%tQMr}! zoI!<1T%JSL7Rx0j4^xLFW%keYG8bo?Qz_T-z?k}ed@V734o&w6Yq&lvF@rTQdbmDS zX^kdPh03p#XpjnFEfMA91JBGW)O3+6rZ(s6^`X>hRrn=%^T9QVsgnxik6bZRVs>Qu zTXtx=e1J--)a73|Lo`u6uJh4EJt6JmP0C!eXfP3wy( z|3>9Z(*7k5(ZMOlcsB7?==-n4=$nvc^J<;9|BTMtPpJ^nU4Ja7k9+zseQTpwOl@;6 zYQWOILiFDfBYFl9T`a;XlW0^cl%AuqB^~uIREQwqgepfCN@BPWAfy!u6-raqPJ@stIaI!NpfY0)({UBh+s*?ib<@b@mJK zT=s2jeHA_vJFra3K2)k@M=llOsRy z^9HJ)$k=iohv;AuoDQGftMF1fe<55Mub0NdZlMA=>PO%i>Ab&DZOFbQI*)InLde0g zk3)oh@Fmx93l)z}ow_f_z7MLN{V8ZWj?ce3_lwdkuNEt5POEuMg&U|8N^ky{pfK#U zs90~O5MR?_*ml)(rNDN)?}w%UhpDr2MJTS7xIOjh zq+&-p&GI1oIJj4sl4&qg#IjUok1$1xBa^_Mhy~bqDn#Pq%vw{-=W40GMu{g-Rf$Yu zO2DEZYd0g?)o4G0%9$J!hfyJdv=fR}U){?`CILcPF+wUQ+^fd3&2lf3Zz#cT`VxE@ z*yO+%HPx!;C*}()WJb@sW@HAr8DZ!det^eRXJCRm}C)C5fqXSbKFc z;q}+WREniaLmVP>HW6CeQU}BoRu$xWdjmzm^@*`7$}eb9uL-V;PT#du2qSQBv?lBPmPbyHLbSKX^R`^?kK z_3p$bwPUCfm}l;cN#2#7ymIxmHLuCmd9x#FyN$}Kj2~M#L};lL|5DYQt=0Tst_lm> z#<^o79(D`8fTPgYoSUwQmfOu9tI-)PQz7JNDRPL|%hW}19E$I;&X-HDt=BBThoJ2^ zmSA-O4rFJbWc%%8xSGnLbnL6B5Q)n$Yg2w7Y$-9*e@9~U&rT1rcH7Z@JC!p@`)yQ+ z#A#o&HCL_Y!SCDA|43r=ADFI)_A?{O@DP&{3)baS zh{VZX08`XGPATuOMN>2XrzOV!LP)?~>+K|1N99lY{~9VpPy)iFQqD_7bxVMdR&1mW zWOwFrcV}lVQ%~L3CM$0k9%c3;1g)--Gw6gPVMz*(#*%=-wQa3KuvMQo_MELs@N6M zEo}wsI=o?)m!w?FkwZm}b8^&P;+1AD!fwF27wpE(pER}a!INsd0ZUi=IDVU%rP^K( z^^Xicz*}f3`(0>cmp&P>zfFaZc|$l~q`Ywrw<6R{;}1o1HtZQ%Qy1%m4qu*BqR@mt zMfS`60RmT<*+wC8!=vt(T932<^deg9rllvoAOsBC#1*P6VM)1t09vXE>y6C72gmN{ z8XuXM#z%$3o}k8F=k&01INmr*u@6NfYhfo%g^*!KxZF!C?92o2JSEq&8@4K&%bx+@ zC1OH!(A3%np2I_(QtOizdUoNhvh>C*M;-&U&vJvf-uMgzpR1zl{60LRmW9vJ);fFL z)5A{_Z=R*#SE7-%@beBTgbY8z?Os~pXCd>@YB|^2ldILY59BI_(&vXjO~eRvH=14B z2oyE}Gj~f1Lf^+5X6cjP<;Y_o2(2_r>>)_Dj=J&RRIy#W~rIp;)IcPE}q%aD_?QP=C49%{DXEwhw)3mRDqH5;iAGSmoX zdufFlR`sl7dxW-D%Y$XM+OIG8ydS8ESoORY&2IFn$J8w?^t>Byn59o%!I8&6=wVfl zfeUY-213vs(bc{kPpV}I3a@(F^-vE*x8W_cl>JsTvKESNp+d+|B%JT16^bT@9Ghb}&C{R9PoehLU3@ba(oZ5yJ@ydwl zBbMxp7Fu41H^lg7PWm{#ve(53RO?bO3CEkZd z)i6!oLJaZM}}^VdfFMVU{94ghtlF%rB@AGRz29 zdufH4CEP3FhLC)(_C48uh4Qk$Mvgg403w;gq3LtcRsRg0 z*vO%2q+aTw=~H+sE#g%s(kr=9{ia6QlxG1ja_Giw`bLcVxtebQa=WV}t5 zu6QCES#w2kYKGuP(iO$&Kmvq3L9_>bsKo6EvjSd}UNebu7ZK%15WkOcd_7-ul$ z2VD1)hmIR}!EoWz;+M~eUv3h=e4hVe^ts|>h^mvF?;3>fR}Hti4bOk_j^0?g;oD!KigRLsM(aJiz}%g>;BGpbz} z1{_7ICck`GXy|(QHSl+YTA#wV+BS}S)I+`jjqLI=rI@ePv%t-u%go0(Qs<6pP3LcA zal!&xKM0oilZmZw7ryGz@&K9^TbbdlW*E29_Eyr6V&9K%+fwYGppjiqyw4-1(<;w~ zOC0Jsc#5cMQhMTZk(E9GApB+Q$j)M`^gOP#YQL`bIDGq-YX2iHwPk)EnH)DdOxp#Q zs5|v63ld6xz+)Ap^Ic5s(NUb_!i}A+6(-awkUW%PVLjSmjo#K=AGuf%wkav7RV@@` zELw~9PB&u640E#JKJ0972kU}Kyw8DTkw+`y_E08^J~T;2Q42c(M-iksm4^@^mD{Y; zrU&1wW#qUJjqDmHhw23!qI1>243SYy3SR@JL@WnBfF{IN;n}`&AVlYX!8dNH^Lx<9 zqptHDnNLkx-xXc!Z=*@E)p~xQAPCX>n|K38)cflF#_czb{ZGs%zK(7pM0i3vXSrBd zAu&0 zLk;jEm19{0yucws*9JP5CML2T2P%L=&=RG_n>S7E>W)d=Op}DLy<;^<6hUylNr@tFY2F)NSdji+#m>MVT=40*$!h z#T*}^uP$=a6z4R=iX2sS87tnvAwo&-;Cx{s>vAAiyc4a57A)S5=Ex{%p$0gL9&WJU zLTSO`QhckH!Qw4wWGz^{i9>{rr`W$oxod|8eg6$C!HqXf-!Gy0u+`VUc4$`lU-4~Q zs{DC0@~ErqTRSu;{b+QhA3<|st8{Sf(5&`D`1UQ;{skI2L~TO$mIZ)F1q28=K{$`v z5w`&NRc9v%lXKPny#w&2PALLX&trp<(a)M|O_PM0ldJX&u-8ru-xs|3N@b)o#Bdz60Zp(7s za3a2C%dl|*8d(b)uiy}!D+OkYg~JwG0i7#gO~i6w5Y36L<u_Uj**3i$Rd)$T_l zkGk6P;O;vbE!_=nNF*ebp#u!7j?gRc4q@ithhK8!{VQJs+2WoaN%1OY;p28*a2 zX{`-(_O|&+Y|RcHwO1;GhoKL+_+)go=4(uq!HCO;EsK=&V<-t8q%ti_f(JOnSSSgm zxV;W!iWkvJxWhuOBEEp8$tY&wDZo)AX-?;Hqa~Nyuq+6k$2V*lES^OpYr*2r9HMgt z!7Pzb%_<-HH|%)RR6ZOaaP_gR%5%BOiurnCI27N!rPgUQ@~CS)PnH8_z0ZxV_gQFK zZ1r9ks0KpE_jbGqmYQ!xBZp{C$mFsZ5Xpf6A&Y_gse#HZ24;13onU^hSR9vSPdquj z>x!V1`> z_^lzRJVzy829>{Xh%pdU=4ssz#FS-!#|opxlqCQWM`1bza1?EtqEOMgpof%2coQr` z%6v4k7E$+1Om$?XmPZ_axt1QbFs1;aMZwZAfEvlI-!S_A-oZmp=A#mSqm*S zDufIz!lxpImhDljfNJI8&W4t0ybKVbMJZCg1^tL4p1c|zPq;-qo{U(X+(9KLu zP^6%7TNEoGXiV#D(3m^eDAx1t)W#4yQZK|4JJz6M2RBSiZR{e*GB6caue&ZJBghgC zF$N-tkj2;gKpa_%mPLyrC!^^y$B}NpQRB!0UWI7-xfaOJEGObEu#6@rppms`@(L=1 zj3&aHB1Mx$QLKPya%E?iVVC7gHK)o~O6ukIlbp+-XK@rIXP^U%uo1>qy^NgdTtZbt zMwp8^#2AP$2ZhoQ2sNKZ3#EmcPoQ}-hnn{Tjv8vja|)qd(JPqi@upbDoa@lYTFkkY z3L#^T@UKWQXDEsl5OX$mc9C{kF*oE?A=s3wgUYn$ap*@J5#~f=gn`y-#!o)%54yNb z!X(9E4a>5RQt6gK1__i(M#y_e0%a65x7y2(eW8ApIFCBjK@an=zB_*D*JSXNAynORC=GL#D+rMi$T7e34(Ld%8DZ4Gf{ zk-ZP(k-N~cXnEw@Xu6Eb7H$C?MVh9_Bbt7$1#*?+n|KQ>qsiCN$XYb{DiuOT6X8vf zqR9uNSOL*wXJ=PACRLppd+l8bA^ZOmTk{wlt$Dg>w&B0l(lqJt|9Mx-I>lWLk>o`x z>oStOz#&2-Ne3q$aG@vHBoILkL93!gkW~N?$E;%x;3$%`cA>k@qy>%@_=YV5$5J%1 z7C07jh|Z;o)-H6T%G_QLIdLzDhORYDckw;x?|1NZ+-j_tz z`(iXLwt8#3(8Dwz!kb{J`5rWKh~|W>E(-&Z90(9{n(;g}MY+?AgE~9Sm{c2R^z{Yq z!~Pc9S&g1XJd)P3NXa~gV&D#{%gAEjb`CKniUGIRfnwlMv=Z*HkVn!ULDOUuv+yIp zQ6zDTftFlu!*Uk!5WZo{VDSqyvKB0U&LKKp4474(`C{Z^U>ZQgQS#|3`-_24ttaD~ zx72z98hO;U_7wwWyC>8%}0dn4L=jjm_D0K4r05^a|-w@pb(hB{#{)th9UQ0EY#bwcOT z$RZ;JfuiA~Xo1|}Ba4O)qd7BbT(}Z&6n&aY%=^8$lCBxDg!mxd49gHRj7HW%%=@Vj zGQoCJ5J#}PzMi{aA-H%{?ZLy_`oFc>#~bDc*< zl2>ww&`8q3FB_AEB7yjkLu;bNk2j!MGRKcifTJkVoW{!%*OT0KWgT)JzFo_paSj?; z3mQ8)MCWSIneO#8eAERrelOU98+V$5oYUEF z8WZ78#lc+Q)(hwYE-)GW%)DL7yJFY0(ZTyecAYCTOG!M2Qs6l%+p-k+3x^mJrGV&k zAWbaW537cjCYAsMu3$0>T9^VjiXv_);ELt8D@%bz_;xMB#e6if7B1#+h>n*6Mvcz^ zTW}*z)A%$rBeoj*OMx(@*Wp{YRC)~>dDNBml>$b!_eNK{j%LMH?O-Voruap83oI2c zp^-xrC**Ni3W&5ofRLrYGt}hdmI6<7c5PsCZEvoU+ZVW4?<;6$HF{ceL*&%~&pags z8H$20QyoYa1z+S4W1%RR+Uj_a zeu75Ug2#_IMCS?v_e%a2TLGOX?jN}{H~=8xDF1Yw{a5n0?AO&Ehi~6f?SH)V)b?G; z-(oDF_%YEHKMK#d@pzrCc<@U8Rv&cLGk6;;RX+la95TiU*O;!uh$`A;jhV!}3DRPlgRn@+L58}ZO!XUC7Zf=}XkE~`q%lKm zZr~jc#E+}dVrZ4YRcNM+dKNAP97UC;cmUdGydF5-hi}|6a5T}#THv^n3LyiB@S#Y7 zBOk>I`0Du2&IXPdup(a17vWw^xWHRIn)#p56Wq#&(bJm7TO0UjdFHOH(XF`K{N3$20iW zErZ7&(8yZwc!~-kgNN{g`isAaa0=77c!ZB z+&slq4OPe0RN`g$xQauBhK~+zbeh`gb|8G*f!0L}AGf1AwdipRhv?j#)LqDIu@%tyw_pu!{AoJ>8qJBV&i;kWmi@ZgkKx<5RQs1` z_?)nH5kW+|$|h2)^klUsB409cX7YdRpX7Phggkf(&KB>!@xc%Yw}uVl0#e>ZhA5){V{y&mP&sFjXdf~2R1!vBl@S&)&4P>6m0 zngt<-?pX7XQPovUFF%nBSgB=?}@JTyU?82DlJxkRQq+c--&PEQth{+ zkwerbWN%pjh*Us;kOjabYDe4xVBF+!<3e*$Xuw)cxCQ^3WpFZn!rlR=s^0Z_FZ2Kx zk&I5(JlRwMct@N}>EHXqE@73DYz)c&9xB%|`Tu}Jgc9Dt4+N8Vp99(dX|xvZu#nmR z_h^!gauyx}97T}kRG$5XRBp2}{XdCs)-qK5292zRieGVv(9uK~Oedv6UZ>!rY=%go zCWV(y#Ev#i;l%)ftATA57TeW)#_K6zA--`-o#&yEM_uPRGJ%@3-Vj~u^=MLTwVuyM zbD#sd-fQs&Sn7Q;8aYI7LjIN|fJg`g2w4K$MGa7H3Gl7XZWx%&cKbNJaLH1&Uj*~Z zhuJ$jg^xgiP`Co^vqpzAR|9SL840tbRZ8+PR0Ee&{YO>DJ@mVxmMqLXZ1RO<~rU)c~4(Ng8(|7|c1IZ`Q$XXz|o(drYiSVUJf#i}XR={_~ z-JSieIH^&p)pI?&mG#8mK_B9nO+d>xvx+HhuLA*O z#w4sNS^${}5OGwU&jVMAB<^L=ExFu=<;-FdzG2J2F&>Sq1&;kVMCTHP`*MU?<}I~;IU0G?wf0>WZPvR#y57BLT5Rx|-0y8Kot8OTr+e3I%qvMBgChZqY*!3IwVwrpA{GdLM$=-ewn!LS7j(`4 zh&RDf^Z!L7kGkfIi)rs9=VM1rWNKWr759S7ohQrdk&|Yf{HRfv;+8&k`CfS{p&QkqGRto2H zh|o%*a|vXIuj7H#aXDHHtx&iO&6H8k!bN~%DinOi>w)7EeB+jZ<6<&W&OPEI%IB*}aSl_4gvQ2Wh?sUBVSSMwe@@Gwp3?`!yr*-hkC}G~b~LAVbNw zIK&tTB?}A$1VYLaXmPZV@;I6?qrQdv0Y?of2lCIOhEC|A0X z&?0;)QfRp&iWLxAzSG%HqzACK>-}Fv51kTE961&pN0=pwXBrkO(qJ8~Hh0}b#*Gw* z7z1%*0(3YKCpMtT*W$!_G(+Y%aU9?%YBVSFIKfnM8rN1;=-~hRzO_n>1CcbjR)`^mOBit3xk2va#SEJ)Y>$^J`q&TJ_Ok7SSTZW0t zIK&tT6VqkC1JUC1XeqR4@mVxc=4kOjz)?hLiVgPCc0Fi(8sD~M(D(!zSqmE1Qz2x~ z5FQjMXj~G-3J4nC>uk`N8nV3cJLpCnF~fMHQ`_YYW{}dlzGTT;4_YxvB^|tpiXPLHVP9Jmo-!#8>ns| z!^nCL5gJB1xW#Iwzw3ceQby~eg_0tgD|0A04{#J++zTcB*6YzEk8j;Fn)IQOwP@1A zAv(7lK3{x{^fMOF`#P`)Hy$;;uSN4>tGBrGNAH8K`ZahPELHyi8hO-JKTv*(Y@_@= z(Ut!Jnj2f?4+@;^@b^Pk|1P{8mg;{SjU1vrA^pn=LZl7?g#4zumf8`wf+%)&$}vIT zmpyqJHc}a#t+_sOe@U`oX5U?-XoTZR2+ zJwtTfhHuO)`G@ER0tU~ga<_m8h1po z0@fe@y|e3&lWG?=9OsSdEis2q$JR1N7i&g8*V(d8aa6+$A`KQtoI#{GL}>Kr;G*Lc zx7UF=#0In~TI^VlrpYL5;W)riByrDmw&Zdfma~Yp_=YV5$H{19EpVL3Av%{H+;g2~ zmG^)#5$6##G$pnw`_FZTYF)uMZ>jYl8hO;U_MPiA>;1{-dVd^Ei>=a6>sS5xz2@90E(xnU2Oc3gvT{Fy2+&9h8NNQN5WmsA1d4C7%A5n3a3E`=;G5D+LACd|N!;|?4-)z}{( za8;F2-@-FMo1#ur?6@{`LjPj%B3iblWoUT;jjV;1=cy1fvz_rjV{+b#q{Z7#8czqFSP7ZT-Fd!)}V)n>pwD}oWvnQ14;)c z9kZ0a2VzM-S`{sp^rFc!3R~C?IEpY$QIsm?>ro_!Z{9MByaA1@MUnG3L4a}#IZxNOfrE?-jjP>!344P!<>Y#R4avaS85D`?p7cX?I{BZZAE6O{yJs4V_L zl|)t+f8!9Ll||>0&GL3k1hP&VEti&cQUDRhoMjf^C^9uy^2pP!H+uM4hPTEt{47Bu zYvE@R6+(s|;boD+&vR5?cf-$zI~#u7I(b~SQOfth{6*Qay$cw{RZZq_vo^}?rDd4n zy@nu@rOGdZ%=sK5G{|&t`ZC+C1KiFB;>zV{U9`Az8JaDlw1tZRM^UCJp65{Q*CWX# z`1UO$$;D`7Es_jzh|cAdg-Y#j*8Enm2{#rs&2K?7W2^aMo=Z%<(3QU#Z-u4uH=&V7 zUHK*26vnLnFQcpfFq$1(^_Q9FFs;Dtk}SWTK4`S$>ix#;H;(K#xaGv2&VFW@R4SL)`^-uiv3wRb zbQwL*ya?(&#ABMecz@W{vP;QThAQG9uoYKtyN)BPhyyvqSg0bVxV;XP4{OkRxP6qL zQcgnCWR$d!0USjVcjrY*E-iMv8sD&G_IM>4SqmA*afr^<4erhhv&tnfCSt*`8%>F= z%Kn`fp;`~%o43^3K_id4*1nw=X1zZWUGEQ}X|dHixbq@Z^Q-YDSZaP18aYIBLOz!z zfk+Mn2w4&=pmxM92`=dDmdq8fi0M@MmWz6Mq%9c#4SmA}Eu#lEH=0%)+AeSkD`8!; zUPf=l_%Es=vS|2E4iQ>3bS|eXYePh!j`#;!EO$i7I^u6==8Sq5o&+4Vj!5xINt@2- zGt=kr##qLlzo3z|*z*h(LdG89W07LdPor1?TQlyT*wH6L$5*Q5US%%wn%QcAd2uzL zYwmYA|K$Mj%LMVuB>s!h;hM%JO*orW&)4ekHK%BtjmSUl;)W?6+nS6tr&OIjc<8j$ zXi&E!F-vG;)aAGP~Q3q~^3;jbhQM zXIYR?@&g{LAf4|RYLA}a|6yUMvkR98JtuI0&hiFa6)hyA9 zDT_z~1PGb#|3XbgZn}S@v*~^kJRn{xSL@2!z}L`@YV@+^Nv6d|)>^*QZ%X;@A9b~C zQu2%;?SF;pG&1dfnL~_)1%N4TuLG(7VYC)na(EC;lTpsX-GHM=;(nuS$>laI)Bgkb zhAqRz{b*z@T>OMXbT0k7-zd#0PnjFJ1egdAaTIvE%KmSZp;{k+Z{AYtacJaG*V^}u z(yaIK(e*wCO^fZQ4t}Ey)%+;D36`2?(8wX06LPsM2SjopK*)07i_}2nmIJTo>^I8! zJK&5%imj5v3+e$kw6hS{M77g@5gG|496X zXHiyIq@*E3Wl*L1kE{&J9D-08tS&4KSwtwT4EuwVQs!lc!ZpjrjcZO@H&n_E=6lwI z8cLz|A+#9oFp=v5SEHFS>REU@;3%pzU&B5;VpQ$&chfag786(D4Ydq5@8ie>rDGR* zp^t&CEPR8{*R$C`LHJ#;HsWf*op>rI!+rp#T7pkXS2QQWcezG2KWxza)F_&JJ=Q0l z-@sdJDgM{c$XcfP3Ww-iB{|>kCAE4Lj?DF|PZ>Q87De=t-=lf4jSJCy#OtpXAfCiq zZ0RGvK_iFw2%(ga)rbgF1PED;G5rbr&Opbs@J?$^y9#f%rPHq9$YUX^9URJs7x4o*Zd-JJ*n%h4GRJL? z&mX-0>ltq&-hNBR*nmdXqS<;55gJEguZs=~_n=&*QXCSqf`AiU0!Btmf)}HyvQ2_# z#ppyn3Uogj!gs;akM^LEL;Q%4(qvW?VU7SXidk_%%bhnsfp5-;w?}v0+tB*hI`4Y2 z^Qs-zvf-_GlP#U~7LGg?vSG?7zLyCCLF}>Ue(*~?sg{{=OFVwy^<9r%594jObchGh z$XfJzfJ1aH3#QGU;|u=*=b1G>at53Z5XqF)+hTGaU-xzYnSwXp(tjqRkwg54kh)~{ z6Jd=2F^bu5QOk`tIrV{ZuQ~sn9^G|MMJr^R|4t{nZm`Q*20R6Cw57womLrda47e)9 z0lYjA2xHagzEH-~YMBFH7nd)1z1O2y5pTVvQ{>UeS`_Q!5S`0{hlF{LFA)SB=z1_Q z;!N;5G*Py}WJhccOgfEdM0IH&!p=r5wX?a$HL z*t+d0c(>J-fVJ%RGrYN$PI@0l9t+uTsV2G?`2%5V{{@l5){A&TE%V-)(e?NGtw*aD z@OE1|!t-ckEm}P*d}(3W$NacI|F6(J#uw@XPSYLTX^sSlWafOEV{jT@*LA-+9B;a% z-yDiY4)Gg8ijrAQgfRldC}z2NY|$?`@wt5X(&0C|hpYyoyR3s&$2QNcL%Xc0yIQ8( zg*VvJQL`L*EM&Un1}40i9|&7lMfZXC;VHGub(`Yw0k7wJ)N0}_w{(Up(a2iVdIyK- z-285($!mN;Kj1ibf_V|=cHcmgWE(uT#^N}>&g;JOHN5ebzVj6{a)|E`(v{43BAgK* zMls{fYM1T)FS^726|Ib|!=8+G*kD(+O!p_ev6c?{G)Eo_nQlpd1uxbIg4L>pk%QF= zfJmk|-w;)Muh)8%T8g*Y(g_x$k+mqbkVAAX!z~MXi!ZfeM$)paBD==|fJmkm$L}x+>9p=EbMZ!7`pPUc@~HdD z0*|&lJ8Q=emj=SfsnPx96f`lmVFbTAZRoJ>Bd^69Z0RGfK_id4k1X;i8{`|-j9yZW z?j>b3HMU-YuZN6X*8QZ2H`&rp@@V8y_mkOe)6MnK9ppMRC$(2rs{QeaWGBfaAwYnHYy<+xudyQfbI}Xu*-I(J+vaQk(Zk;OUO%?>ZW6~E zWAdB{lAt6TfT@d`TkUTrRS zj#@%b9GCT!Y*H`5Ln4y;b{N_6{*As6%KL@1g1rAE9!0DOTW=#{mL0pyFp{sc7y`xj zHMp2mBbgH~K9PxKC11s3A*$}nf~>d~ipR3p^8L`MJoWmSXPC(!!uk9iUPGdpEE<8& zdQ!HX{00w-NbIj*WXn!|;R~VcM96FNvXjxv%&}zNcEN74BZI&OH>#WL*i3z{xnu`C z6r$#4a^wz}OS&Tp>!+RJB`1Wlc^qCsqL=K_oXvVpwv`-<$3&#{7#P{Ik|TW~l$8i^ zZC+L~;kb0Eue?56?$?$%?_$*moK7x-3rh8q1@Q`0*;o_GJMegj>U$eU?f_GnQBS{q z78=g-`EXwU8?PhLS>87}>IyPx(S9dl53*%?4ZTnzer!a_3Gln*?7dtWA zUbe&oBN99wMz-u_j4y<;7a_CF%U&j~D6TmzyJn!6)j!I*oRuTcUzWiYrTWWG@olal z9m`;r-~kc!cQi-t0E5|Da&5vSl&-z7Wb{ zgwQraiz%+I45T+`E2KMEIRY)_Hn^fKvKX0;Wihwl0TK0gGe_RmukBmt14`F1>V!rPSp)5uSZS%62F|6%n^)JUw-67arCNqdlGe|eN zIwUf&jAbGo3sH6BIC2LV%T%6voTnTT&gX%64T+x8?4-vR zLfMIs*XCs>qfazlY_(6cL0OfH0zuulL=46GLwDrP>7n_iz9b{nRG{)$9YL_IGY#X zB_w)DlgUKO$+nX7@R*3So&zIWR&u5F4G(M_66CVEn~ojiyKMI`oq7}>Iudwn64 zod|htUUoA2H1igfH&`J8-Q?eJEvatOWHRB2SZ4B1JQSkl{?3s*z)ZTM%;UUd*V(~r z?#v)I&79d}GSPCftz-cn6Oq=rFtTMOvwb0yl?ZWdZdQ^t?si+n3K3`}DY%xcu#zYd z%Sz70Lm_JJY>wO!R>Crmvyy5!oA1F(NE}O=SxI9~Hmz6UF%fBfCyZ=a$)&y!%1VT| zHZLm~=eoD;TdWp=Zt@UZPO6*Ci@yV^mWyR558%-dm3JRU?f^rXE|ZV*l)r^@`e(d~ zL{HgmL{95z*|zcm9u|?@=V4^aR-W^PP_`l@wz=7g<9@b9I|kdzLI$yECgf(e5_dD( zd^{SW^5$^lj<6NuelO!rwo}77JqfR33v9(m%eIvjcvwVokB5;hTUqK0p=?D+Z1b{} z@uxA`2J=H@ZCCcatQdjg%2jYZspHE0CatZOj5V)ZfrmrX-sK#*1B_*>8kP0VZaB-A z!&$uxFC)=eb|0D5dS14*+=<6Ur1y3h*|L^feIb;!2$5}G)-w9^bU}YW`LC=HfwuA| zxRz8~X|g@b6R|Ai4|pg<&HauecYvjIN14}8JHt+9&Ix97YX-4thR-H@Dq2pql}yKD zBGTFoBU@H7$rnOdi4a!{ti%ICMIl}n=K-N!2DoR)dt}(l052Nb)rFs9KJS^jes)(^ zb=+x{(okde-U7RCO?=dmG@*XAxl*<edpDT~ zLVE|D>qG^?+zF8iCFpM}k(rx)cwQXlxgAgD3CaX*7fz0}1X>Cfp!MWHsl+S23@eGSHP%%%#wW8WY)9;ZrQH(on%RHXK z11HMo2^hKU@|oq34;M{=Nl25-#JRze8OI=6F(cb1)AW0nO(dgIwPZ3H50)sCQ804b zWisC-6V}V){N=!KvFry|iRv#+Kcmr1EJnhXWcJ2GCQ7CUMsB-gc63NazBS(RmcDSg zq~Qut<~c`GnuoKUBzGIF#v1rSo~MecuV6V$SoUdN5y}*FGDQ=5OlXvz)0!EA<}rfA>WH z$^P#i5f2YXTMRlD>bLtUS1r_UO|ap9|QVW^DHw8w=w-oK0oLFD}|7`g4d zZ)f#dC-;8{=l*waaj4wSat{r0{Qm|IgvkG|VB{G7J(|9n8$<)~fKYS8D&Iup-0-Jl z_Z7yjNN;4<UXxG%<;7vO-s2bwc4DDm89P#bSPM$Nbl)gStOAyj`5iVNxwNAM_OwYlj{XCK{k?qKl*D)KhCuq`zmmXKvSx8NZW zg?O{zul=75G)-rpzWRx2n9ft-6hDF2vz4aPkeki*<9KXDu73z4Tc-1UUkGJ7LUEgy z=}f3iI7_t2a_WL$vzg2wu!)drHpbocwe}}RwI#OjCgPzGg*T2Pcfe#bqt0WTxf~Ks z>4A71iRNP5VsBDf&&lR?KRhNPw|m3LmZ|jkLMT%a3fnwQWgp#C%B&iJ6U-o7(3Y4A zOT?O72Jldb!pm{w4l&HG~{G+`yo6gBDcdZvSlhC^o3BS zA{4fHn##VqsXWQ55ojtufeYFaQ(=i%rt%mb3Q>5Ea^wy&m3?DPrE8~PO8=!fj&g9g{0?9cn`Z5^gLCUoW?|XM zzIYr&$?e6FJHSq+iQMA`l-_VMFTjgP^b+GkkaE>yBxD=Od3ZoXR?mTvEh9P87eX0{ z(AMTd9Ya4pWL~T)g*96`3PKA>WtD%geo1&TCT?fB8u=@j@$v(vc17+ zoX0#8PVd8bHHjW$e3Df2m^!`n%xtrH5RZ(=^ZhWgWj6QvLMXElYTLZbhEFZV=E@ta z6oDS|Z@8LNkBOgJTstfO#N!}J?(ZDA1FVHlEe%@`#b6$7ChMTl(kauhzk?6aia5VVUy zt5{6}ttADQm1-@`)Tq+2#+P&PfQV{5nqAHd@vO71?6 z+yU0Y$Crl9PQy|D7Eb1$@gfo(CB9)aBxD=O3wS_8R-cEFEhBl(7eX0{(AMTuogbGG!!9jYB@EW-jncZ5qtrkRo5dnr*0mXS=ugCL4+3P6!Hu?^&7csN8x zZ-9|41NpEogfbAJtIf+m#vk98DO9qRjoJwE3@b*Ui98M0lWHQfoh#~k9+r_jg-1e^ z-4h(S1B_&=TJ~{fGH%ykLPs-*O*2!v-_m8JWE;vTJR~Bsufv+L4CP1%R$cP5V3DvYxzh1X7XaK$*?b57P6IWI-lZ`x^Y9}hgejB zv%xT28|rLeeC=A!rS80JHGB|{i>QXHVdNM!cr*jmPlU~QK&UsxCjKVCu`Af;4bmm8 zqdXQa!AD_2s1kJFAT6`7ddm0kIEa$_Hb;)_DaqN&G?9B;Q+X|%%vbRu5}S(qjt?Ut z+elu)10u5e5{zsa$zOdTl#vK+ZC*w);l%U?{{CY94Hx_F7TnJEVi22VW#qnirxLO3 zWDh(PqVRU($Q@uOGwSKbIm&tAl%9jvk?1Jyi+6TTwyB(n$3*1zbQsw(l~a5nl&J`X zZJwrL+{Ji3t483Ad@Wp1>VVSJR9w%Xe*h1KD7^P^qPF}p)Z`P3eM9+-tK_f1C6{NR`qkqyV$}EJeg3RJOAyF{1n40X@3AZR$`n1t%-#53$D2{P{ z%D9rQWXqLoZ#utccHPFF)kB5eXt+z~d!ql0uHedFv;W;UtVz~kBzv(~vE_smjWUuw zI7Fcam2yw? z?^M+DYm;ZX7E!7pBCX>%27o{NR$UDMFZe`a&Yd9kZ&*UN@49$u8YmMxgsdx5WEKl<;^eU2}mE5+VQ zDU%t_-N^nk`a^Fl;(utAc>nMg;)nJ&;_9Sqp*KI&msy?7XUfCp4KJ$hLl%CyoGC>^ zaCtcNY&nQ}%-Y<|PsT_J)jg?ybxppwDxGJs9zy*a{Tm01mHtdQTTaQ7eYkoc^)C-Z z+opr1VsEBg=7Ey`=3sU(lV>ei9u!EiTqzCpRuDS4n+>KTE3ITosnz-P8ur)8p+pWhcaEM-r`V!DeQ{j$cA#fpzB#Gt?Rh8 zGh8gR_bg{B&INa-(j!8uMKn^!t@svPb=(U%M65k0xa98EayQ2IkHUOd%d-!`#c~c& zxholtMod+V?OOQu*glLOo;bFD5JtAf_NzHWa?9|o#adP?nZfwCSxDF!XfggxxG+@4 z#k&j~N!Yx90}q18``2OQw)4K7TH7|`{*`dWg5NgR*@J&Q6*|th{$u@aOW#eFGZf$&S92@rSK~2l4y6QUWL~f7s&6f4{ zpYG|4a;eX{T3>T4@%Li+dCi$>;Mjvhbi%+fC0#0|H>P+6%0~Bj3rwWdeNKaG<1+qQawJ}4vyQp8HwYb#;k3-IvJ0eXjdn~$d+9#=Mc$_DU*BCY-5aVBd~R(A&_^n zPy)x3OW}f01#(=FKpK*^^>HyCG*KTH!N_gb$Bc$jNe?w-@`Z4j+yU2xDwC61C6n5& zjwIwnwu>&7(YN8T6V-AHjNE>;M9)V@iix)RMcXmd@=Ul|o`&m^j9Tp6ZEtxBkDaKN zCt&2Zt7TGDG3RVDanIn^Gmb%Ea~xGA%Yr;bXc*`QlkelY5i96<6&t#by;1^*H7lQtGc1dx&5ks-NOUZhHl4VXsNGk z)M98chv{@NgU-d-sXqM(^H6Qd9 zi)uAjbBIo8HDg%DMu+(d%z@Qmz66)ZNn`HQ3`e6wK3NmdBoC^VnP0>YO0lezr+tsa@#p>c(TUkdD`B=JWpW| z*i233*?h9b$@P}_;fY+2hmm8r_UP5B-HRsR0ioLcdwoSKmzcjAo9HdR6WOl9I(9?9 z`2haOuvVQyt1jgG%(btQ@IGJrkDgw2Xsx3-8vKdA@=y(aIfw9Q@IK4;BiNni@|g|! zu!ekegFnwSRXn#IQ~EModU-0S<>Vk-E+>1r6vNS|sqV_Rq8t>;XYm_yl2NH?U;vMb z=pH$a?7^+a6KTzP`<|^3>3<@;W|-m;ZRU0jd|Ki`6eDG zQ7PYmkvml>Ycr*E*{zgU!~<<= z_t|NmU{jgLAX>2`vAfSVuo$zZP{KZX~)kFD)6{xj* z=`pgjRk8t(lBkj)7&%5I9y=LoGej(^JRsC&$Qs^6lbfo$8EMgzAI@I)m2hEx2_}Xr zOyfI!YHK9Yp-RbC;TQ3ch${R%jBKe;@b4iZr9!c7;{l;mxXgEylUs79C42?0JT#y^ zYX5gwxK7nogWqw-;?j1592<2n`-(a8$T3`d^la7kMHBFV zP;LJ&zO6{M{a+?~v*(zBakiGCY+t+z`Co`u~j|oXGP(VdS>+JdIt1 zman&Uoy~iObNyxp(TWk?KAUH7u8jn2zIVj~Ao9I4j2y$aNAFhcUo->{2-W^?^%bsc z|92#NBhD7=C5Kw`FTgT&`bqGrKZ;B1IF1out*>a*2++?VI$;DD!!kD7!v|q59^oO+U08(JBrJ8K zI{!`_q7yp*R_W53a*ADWW0&8=0>YRBPK5c8*{V5UIb1L&rMZI{jy?w*5iK3!UV2yC z{HeV{oxSAFNY$Pmmf@ii-DU}lY`M+R93r{tVS24#wI?DCXi8Ip z+;(+LWOwQ2*;nGs_oqG)u8GItYEU(?Kc)$pp{;};;t>*+@O>D${Yr>#>S5pN$QbT0 z>VV+R@j6_MO{0WbhPD#^g-1wK!arc-wku&qZz+?mWKw*jSi3&@VQ8W!Tob!92y8N^ zY69yRcCNNM7U8iH)v*vpZo4`ru!qH>&&V5+cx$*M&Vq|UmBfBf!;lHuIyeIlkf?)G zVdS>!U@KXsRGPhZh%HJBgN7om3RlDxa9OB|z*eJHsuZKnIc;PuHQ2C->o(Zyjx;rZGsnSjSjRLNKv zx$P>M9=&tCerlC6=Dkygh3n&BxGGd5!Fr9EsjZ9y@JNZu*cV1_yE5iR^%&!ZEnK5bq?)FA+p75h9yd`n?}L%suA1&OwdzF|$_kfeS=c zNYk&8)qJsj<-SSMwqE{-2Tjz=?_uP&>t#E!*B&j0`PO?O<=lLqeNga%XL|;*X%;+7 zpg|=jVOuBL;sFzNG6P0#yG~|CEk-SQYG;|E zjNEpWY@=6gAXDit_8A&kAFh!KTp6lHj)ttnm94Fi3-M@)3Ms(IZC6OQsF}RO(~!o^ z;nMgdToS4@u$fg$)7Het@Gyy*xB*6PyCxQB#Y)w_xDhRchobMR70v6ukB95zhj5vw zI$7yqA@X!^rEY8I`*`R??R*DDZo76C>DpOSDh@@LhD$@0es;@poPb^r7tp`pT2Tdb zT7ZD!^0!s=4?KRNivABqZo7(v1JzfNBRkOU2M4c*7BPrTvmWwrpk}Gt+F6K)PSnnP z7`g4*5e`%@VB8sKj5=q93+N2ER-4d)M$F$<(W!X+L=~L`Bez{elX)L=E|{(em&)aE zL8ww``YpBEEQrM)Xl9ha@%#YbE9sEz35lr;`s$!DXMr*@fJ^9_O^n4hDT3S(33E7+Z8mU zQcCx-Yew1C>^_DIhq9%Nxq~<9kl^8W0)yBz!!LFxzMZSBj zgZ6a*e(}iYNe73^Wu{A;dBoO^+tku zz7HtLHxiVSeIr5l$=Sh7K3mAl?a$-~GbQbX1RG$PJ2guG==7irCMAQ>9(i}XiD<}I zHR^o?B@W^7K7!VNC~V3x;;Ylgu}47i1{F8JRLJu~y^G+(aIu_h=HAV4G-9evuOAqk z_83XZFx6X(uEWD5ddxK(IhN|=-YzgluR+hyU|;lrpxm1?dd;_3)Pb)WcnB}4^OIpV z^T#(EVVg5=WNkN_2k@wgLbwk`wwld7z7VR}2ss8doA>i5Vujm!i<+)0mwhZGqjike zSwMke{TEzWs!cV0NUgb8d7_q8{R0n`sL=lt#77^L@O3gEp@7h{KlLu9n8n0ChA}gjBGj8EDn*JV0Lr}=FDuR-=&x{SZslI zaVlIPs$DGi?`>Q$jY$t(cW~FJuIQiK=Vr5isd48dJbt2fR=~(H+VN;ns>=x{^MFuG zs^q&|19j2Mc{3aIH??0KF5CCQULiUWm7_mo6@FQKACN;J-^6a z#f{SzK5QKWx>ku8ymF6N;yB~r0hieF8H2G~$+Z|5C;~=`ja*pi5Vat2MG;zML;iWg7&s)RG#VpXkesB?9Md$Ehv$<0f zHtPx5w64bkBGOuckuB4|kV7Q5_*VQohu7O!ID!1%0vCmPHjlu+NXX{@W;`Gw|DS}B z+s^+KdH$~&TD>|`Dr?(wPlc2J1Y8j+`3stz{IzUkdDZ60<9Iwo?tcg)cM$j4ym?>C z=);3g{80=7n{}w%&uh*-%f>$IUx)dr5}E%OjNEqSYp%a)h}A0k9JW3%?;TEl&n6?^ z_!PD_!}T;IWS#rF;~^0hun0zOy8+)renjwa-_0O4&2Zn8_b3^g_epp#MBXRB$Zh9+y6o^`Fi!Pl zd-eJ5$Z+xxgR4S4>33;%(l=&gdH%t8OhgSF03)|u12d%tN|`n6+cKF_N^FQ2_MZ<| zLKdzKRSCN{Q-YC~?Fg&!xQJ@#g^}B?h8;{b45mwI_Ece}WC-FT;exmxE)P`@JtRTY zQ?oU3Egl+C6CZ$)+pdY)R9H^0Ge0==NVp0fh6_SfLDT6VO2+2>K|B~D@At#VZRdS! z=><`#QtLC>HT~A7$6gNS|3$bkRQ?w=bAiUBY#sas4~nRRKf=gu*TGgb9rPF1r`QWC z2K$X(F!#vdHNtELv1!%_P4|Gy^^|N4Y>$UT)WEhda@#dfy9&T>VzCzrCx$CvIb0N~ z4>VT*dsA9QBqWQht^h8>Ln10*35?u!1=QAx?2Wf#57jV%i^3(a9FXqyOw?U4Na;_aZzJ zBHs&P%6cOv&AII#H26K9?)qR(sCF}_iSBqN zmeZv1Scu9yA4ay6CphF{!;PGM$eeGTAda9_wZNffMzs9{wnU_*IVgz^av z(FqSQOleHrSiXK2W<{PS>RFUW;95C}&3&2SXuMRX2}5aAlw~0g<3}f2$b&GlWg+)- zh~(PFjH9Ek25M3_`2IVKDDY{8m*Kil`QDcEZRcQ*EHC0Q5Ly2VjNEqCXGYJ{vsG!P z)QtHBM+Y-MmqD~*WVO$9@zj|+51akjcpOCbw}+8q*!Sr9YHSd#!vjK%4LAA9SdI;| zl6@w1%F3aERhg1}VV?es%_>;9PQR(H=YxZI3tl;z6ym-p*uQbGSn1D{vt{|tJn&EV z6nHYVzdWopHOH`#@)eyLHqPY`oiJ>SU(Ienvo4rk0dpwND>Y_Z4p+%3gWQD-M`NVg z^n-A=7z}!QM8dX9U4jQpbg8$)$d*fO5kq7&wkF)U-lVvdHnkol=$Uh2e zj%bnxRo7(>#ScofiGyHd%O>{c5XlV`TZ(N0o81BnByg%&3zvh+?v#cd4kyR`_@Rj$ zXJF*EbKI>q1Zak5vgHsj`9dg%5UL4sh{r>sU@zahI$4JpyP{YwXY>uu!xp#3BbvQ@FE0+O zNzdT~2eVKDNB;vjM644e`SQJOj>#6%rHzYAEcs&#l~QqVV^n_avUCbAzU2+)!bNj? z!wC#WBdBUT;U`G!iOI@xkF)W(i0<(gjvUKza&AA*U5mIE4ZnxQjdf#->?`r2I^Wf2 zlf55r1ohWtHYK~BpgmQ-6AzHc`lT?k)iW;kg-|_1XfLQ|oW`SwRcY(r0y?#+1wF*V z2~_0+a9ybuWIRG3RcYm8na_QAL_`_hBiM`kjz=u5Eq^iS4rUeVXQeTJ{yCiB7w~ct zZO3?MIELVQYPR7#kB3HN`Z*ZcGMs09A(Y_=y=`8GGi60_&B?`Vxm+x)FejdcOM>lY zK7+u9RHXnaQrnr!9@%^|8KK zT06HlpSG6gA7#v9b7PLV38lu*o0nEf&^gO6(mh?9a__^5^6&UBlH~n*5>Y zRoB^cK6?>|Yr0jE-Z=7~k=rTFa0cY}4(2wAs!%Kqj8KK*U?n>s!){isGW+^=rV!;g zoXMRacvzYHI-~!};gz`ur!{{ryGu*RVlB8msanA>bfC`d~;D%#U^+$9D4J z^@h(f@_KfvRmUyM7gwe8`aad)SPrdlp*^`833oxRkwIuXQjRUdKl>I}dDIIWBDTWu zTZS!P(rvr=j8jiNcID}*rKg^>^7La@E=esuY30)6muXvu(~m`|kfK(X6S^4$c3wDp zO73-5IgOy|q0x*Lci)=iv?nf0Yp|Y#$4MNyCcwzn$TgNj#IE;!&c7p=b?q8my<1dk zgR&{|6SMnx_T9QtX=t#L={r4BHeMRYqQOp3OBIK~HKD3vUy3Ts>?}1LjK@b*!vTUy z*kfC60NWcyh+Ai6!`WVqSJS!9vOVB154P)x+Uu@fJWwL-7r@At37qE(p(YF=zMu&s zaVr`h`OlKH@p$m3STO=U=;LrbsUE~v|08v#dRmtG+=vH8RN+TBawm)*Th-F9pN+=$ z&JV%~{w`ieqV4QYu^lTz+ixDhBP25YFpO;Z&4U~wcIaq%Lz-GI*y=*6!1gJ$QS_fI zn!pqO?{H11Cp^EPNj>3vYUx=g{>ylPL^-?&BX^b@Dy57rhn<%O%V7b7*fc8>SPncr zOAd4K0Eu##4I{T*4%6%Iz#dj)?NYlryYI_+YrfbRNB0ONCT-L+L zZI_FhFDh(Bky>5Q{Ns*rdE5rqgeniLq14i|7OG8<_DZY_ZAl!0M@W>!fiQC0B{8#JFzrM#+Q&e+E^=^fsJb|WVixW+ zZE>u@!z7BM4@Qm=hsRi=CL3|x*aJdMHqZNBy^f+_w+8$>*;@m~oWUOX(^qh}!*X_N zu{wp{7!ci_6g@l0Zc3S$F7);nOMK7Kaozt`UkRw|{-5O#u^aEXO>=M39G)molHZub z|5s0R-xqs_B)=(Xmh(@nO82g1^T%*?w)@x7vqo9=XjgTC^Y?ulStYZ*sq8?sD6ieo zWQLK+7Ro~dDfW#f7S3>WkrS%^hbsN*B~$LSG8=j`>;@v9mitez0}f``Em_6FaMhi7 zzPM&h^rGmP#0N{o)!BR$?T*f9**#pVie>hkYU6!Lk1^__`;s1)KYuKL{zU$KLjL@z z{Q0E(`IP+mzw+nLU=O@p>_@?CU?Awpja0@V2E1GHYYf z*%{_Us$1Qtv;Z!Xlh)jHhNDqZofJ(vJvF-Ifz_kWbMXTcXP4P9vNgMG&moe#2-q!N zcH(CFG!{(YHNcbMl2BO|FT&8mx98Lo@xv3jUJfI-o$IaCTSMG@UmDK$#c)}ud~d_g zYAXes^Na8hh@7v7kz+Xb=;>-K5Y52@Laj|+3mgl+m+abPbo3H-?drh;uu`2ebHDtA z^2&EUXpgXtxzATFY7n@GLv+F*FgB`+F$MevWi&Ud%J4OXmEZq*HZSAg);lKr~wXagbcCPe#B_pA}wsC~5& z#)l2QvQy*35Qpf5@nOm_CHD5T-gLQgY^hY#-(dSOm`ZtmsWIXPxK>UzBTh_E_^RJba>J9)gkEu9)eoYQB;x_ooLlWn+o*k8rvCA6ylx zTuus59vHMV{R?OUO zt<1q=Cu(IDjNEpuEHI`uaffp%TUcFmi|5pE@tg#giE1<#1RBkV#jw@10#AmhrsHAc zwySC4noK2?-jFrB(&ZYhxoGGf^AsVC1%IV^XAzRmGt~pQ(=9 z!_{#sTo0-`j&FfFMAo)GK8r_9)W@e`wL@jcgfdgs*>$k#_6}!6WS!3}Vxaw8ynTAUtVX9bI_PM0NaU z^Haz4fpn#m-H>9>IkMZGR^>B>NcIgE$zFK9osa&ve%)i{Zfj)^Ja(d1c7u`I?j%!7 z8GcH+cT+A1SIT*CO{o1Qbf;F&+}6oCc;rN#oCzbhT_+RDL#x=+Q|8F}zHov37hDXg zK$Zsf8=11LjCbQ96P58U7`g4r*uJv9n5yqgM(xJ!CHIC)vru;r!Fu#RMLKV!4K*4B<+ba1r9yn1Yzl4!v zRN`@Gg1WguT&VVdP&YS}d@o4In;TwC_ECq){LUrktqnV`Ko@OJl~&g!c56erR7!6o z-`KE#<%g{(rR3C&4Rbj}C*0UDN8}#amZRwz7Ir+$tjt{9>97LsT{TYsar^7j* zg=wVsG%bT|Xp8YQh=z6)jBFX&;T$5l+a4y1;;kwc^Jddq$3h9b-JuK@gsK>H1IMKp zp0urxK|E-pJ_caqw(Db_R=5!_MSeP5GoOHqMAgi>EpQomx1L=HTSqtHi4b-4Q5d=H zI+`JLlr8jSdoyL%1^Q@ z*yY@Ok=;DwxRCvyaNWEHSBR>cvs+*}HQne{uod(wo&`}sufWJ{SI`uppmpi|kac6; zZYKs0HoGtgY#l*W40>_fkTCiQ76k1rMC4la(-X+jSx)mvU-#v6LEQ%OrLWr?IqtSGZIzgX=<-N(&|z zEq7Zj@4#axs^x7ka@*B1(oNxC4A;u%;i^!zf?medZKb{kB`>>gM5oxQ&dSIf`g%23sEO3-ZU%HCGY|KiaT74uUVx$TNs&|Au| zZ!D%*>3Z4E0>8j1rx@`TY@;!4xiWar9nT;(&7gaJn0!Vmg{`GAcq&9Ky$MEcyOy?= zS}L&jV`uu`Sez+`DsjLk0 z6)SaHD^)ynqE_AmBez{E+gb%nF?TWa@<6y=?t@E1)eHLAwZ3F>rf+NJ9z1-aX6}ZO z+pZbuFQN;%E(rWNTrV%cWufY&75>tYx~-Mx@z9A{c@9QyyH>j8ONGT%TfFrO6hc^t# zEDe{;Vz@$7YYDs7*sKb+f{wzoAS&o^7`g2VnrYU~shx7Tb_U_vP_=VfklncRw^cKM z$4^vE4n}UfYUV^$D`)sV=!nMiiE#1U1eb^^p0K+&o0h@W&`0q!h#LA3jNEn&ZD$qF zX+4jItLJ-gaj5D!J=l7*lSmZ6*3Gx^1c*3e2k4WfolfRWp- zp|R07c8pc^W#LkJ2V4oNRE`d^75+sbS#(?vs_rIDv8V0)<_>7D^Vk97`g2l*(t7W+*9~X9)?;z6t0$GxK32HG~Hw)s6}OM>*j-a z)I{A}4I{T*H`_UMH*;@0d zeMHzWl$XLa@>jS#RE-=()JSZywo3kl2TN4RA7JFRt7Hj zW{I;mQ5GsYTL&}o=!iPl8b*%MfyX|W+Da2UEFKVQEA1=3D|fk-_HwdYX_JmGWGmTp zo?V$Nm9;Ogo(GHBX;9T&_-0!4`Sr}|p?vfywVv94^kf?kuIF3l$W~MM7>7u17j%cZ z667O)>(Zrcblujxy8jdlEKm_oz~!Ny>HAR>VJ2uR<8eGdqB4F6BgZJiqt~l(K^Tw+ zgc=trJds#^w!ZIlFO6=#UXk9IDV>%rWeQr)pL$xbC?_+BRt&JVP3_i1lx9*^7n+EN zMU>(=jvU*CVySI;6WZP=Lfx{BUUWz}$p_-qB=(|x=_J?lvyEpzJU$}Zd&9_<@$~pY zDB}^D+q{ft^0IufRIHp)$g+3)3~07fW)%tSg@bTWsl9Mf6GiGNS*A092St=&jw5$~ z>CDthP(LLN%eg6>;E&?9Bw7yN7>QZdxU;hj=R^vC#16j?8SvE*_@NkYu0mc zxGE1|5SwO!)ojwyQ?krwUpy$H4EN&5vF5WVx%Jgdtp;(UPH#BF7vRMt`cAV^$DN(+ zIOpNf5ve{0Mz$R1Ob(HpCg$o@8=)tCfJGNLc)Sm;5q0o5xXIwrJWE?6|Aj|M)X2MG z3v=r5qgeiGIv~lBa^hxXmY+5t=ZnzvDf$5;iaZVFC@=UBA^e`R^QFIS--WNidiBQ+(WhRqOWiN6s z4mc*&e+}b21(rk?0d)WXo-qbBN^n%^Xb;BTTpNWWfbax0k{tqK*>>QI%mPX)EMn zJV>HKE`pI`6yniLR6i1iFL6zg&CUO+1SRLqYJQ$+v{)Z#S zcA(_!W-3p;ZqCMz?(^Yz+$;vMX=dB`O%zy5#xj-d@NkII+lC{@no5FW?R1%a{R}jG<@j(`m*Qn4 z`pWJjvs%x~c9z9>Tts@0f{`s}Ih;cz*Il-+>A)QE3_Yx4aRtt?Ww<)j!J*mxQE~a% zx){XcBkE!RMvl>iN4roRN0^TXL_0^=b26o(zCn9uxDs!N`JgJX*$69AvAWHzcrZlS zeU>A~cAMl(W-3p;ZpntV{4AW%C-E8*TTQbOR?o^dl%L>H5t)4qMz##)QC|pUC_-N? zFcc366@_?w$pb>!+UdSG&PP!Ut;($$%U*IaE$)%0ZDM}ma~nH0(dS ztYZ(TWwh&8JDrI(YNxkV59d#))gJXt^JmodEN3eGSvB>4_wc8mGL;??Q#~Z@At}dm zYx7u`*vKyxte#ujkwe7RJ;7mms-C>zZ_8jtWUA`%wIy)1oTTRVWjGo$)vfp_t;cUW z+0pp%iB5I|jBGjCp&TN)Znn+Q(RYOm!5f@cSWJQA@`Z3^sGM)dId^4YGhe`?ATqxe zMs7Rv+q37`D(P$?Q)V4F% z{KppJ#~ATrocM7h`}5}wFRHHdFG@6e@i%Ogd-!WgqR~t8*JGEkNBhp#aDoRGpA@Sp ztGXevjM+zwGo^H1iD-Rdhb{~atjd(?N6zF<5PYx9jXrBs*OkL7b7SPsvGV6Q{xg$1 zll{TvZ?J!IXR-gaGIuur_c{Ep59L;}_a&^%oy7mmU+4O&uke-Q3E>Ah-cun_uocrM z#wEI98rwTGP#)5suiKT?zZEWbEZ3M?5k+U|p3%!Z*xT!~y<*|iqkb(GOzPJ?GPIEl zZ)X;6;DTuZhln-21Q$%>MbgI5yaHy#S|}Y4SIODBatARSjgjh>d~A|r$>XZmuq?%o zOB|9G!^qZ`nJ=T{t}69$1XEMsE|7=Jd(h1DU( zFbHf`a?+W5h1E%;qdJ~@Mnsc5s2Ty@gddb>6L0u3u1?T@3&!IvMYR02D_e>Yz-D*< zaCY~>3+=qvXR|w{q5nHM-V;AGk>fYR$W|*zn&WQO{B53Bh4Y+(OF})1ryHH$$@RJT z;fY+I4I{^J?a{MU+ZRp1146mVFMN$jw*8+by9+S7oL;A2Ed3;`Qm4eKhr0UyP$iqs zRyMjWn95)E@PM=q<7oIF^OcKg_&0Ef*oL3n(r|2)vC;6q36o$o{BOV|a`Kq_0>jbh zs7~Nk!FjSe{@3xN5*^}eFtX(kU-gAh4k1(%QPdp&hp89KnJ7yOq`z+GfOqP9? zR=>0E6R?V%60C;aStmo&Hf0>!W;gjtM{S#ZltXmFw%K@*v@x4J3^O9n4)qAqgK(9c zq~`8qI2t4J&N@k!Jg&N|em{O(qGj9*BU_g76%LWyewVzn&dKqMESA81uD`$)p>o`K zXI&iAf5eYYWcv3oa@(11xUb#aVui$_3Ydx0USi*(FrYt6bgrS(x9-j#kvUKNNQob5@uQdja9T?B zAlDW4eDuMtvg-o7_)Sj~jn-^x?Y}yqlv$l&U;66J4CnZB6=xfY897j)nCi6N;=o|K zw~`u6m(puW>A`-9_!f>BI}{|>HO8m?2-JEmsZY^O;I20@Q@0 zY=kP!+-K{Fo#q)%?hgJJb7PWSRZJR4S4!CpU8#ckRjh|uJdIP%$hB|^u6nZ5PuQcq z=~614Uz1r?N;`c;`x8APOcA9f-AaXttMs7Rj+cwzo;tXQYqswcK&a;S%>^(V*J@OEDjsj*=rhlpK>Bsexqtfg&qkx#+gSY71f zaGjj==B{Qq8Yk7s+)Zkc+XiwYeq^G7d;~_e4CHzak=(#ARX+PG&p?CcAF*h#>D}V_ z2XIZOJd0Oh>G9iae-}SKk?ludh92I_A`F~8u7c}C)r0s3*T^~9s<;A=iKvRpVdS=}Vv(9h0A+kNTp3@6YeiLt z_|^d}FIydV;c*ewaVLx%qYjUuL(MIsHF-d&xn&>UMC9CZNwQa1w<)vhjAi!n=U(<= z{Bl={O)I71puW}dDoY8oI;R?|$2-RrcG!&jqAUMRj|fo2R}W8Xe~vNb6<-$AnDP>b z=!7vva-^5QXh++pP>!teWLpM-jdo6&b7L8f#!pqeA=pWzjAEd^zc>Srf@m?*U}Vc; zrf`Vl#*$gGh4XW?DgVn@WY{@s@xKJF50!uMo#FUg>_&4m9t%+gN5IH!SHawdc0IBZ zD&b1F5Uvqb2@8xZ5}GFz@OX%7SPLV^sKH}qP-BN^H69RZ?D(s1!;@pj=aU^f#+CEM zHGP?iwk`5MuyUQUtFCa)8QQHDgqtyH5o)c>F=~9lS3+vkxPwD+B-# zyDkROh3w!^p1o?lSa1ypjlb`y#mGa{8j@p1$oncu%?Mcz(Frrcl*ZJJ7IF>Dk3416 z-J0)*YvrUk_YQ`m@lq8}4K+q@yGa#4I?+wu10!2*awUgIZd#Zj+HGUS489*=5e05L z+y~c%%D1>4Z|7jMeh(f4k@dS_eG`!r#N)|M5MwH(Genfb!w*X|jbmYC%QTMR5XlV+lSPwtG5j_bO5lXB0WJuYVe$MqAq9J%d zs9|8fZz6IScp=$q4Wl#JHT~Kw@Ozd3=1ESG#oW+ZP_f%%z~1<=i7fZP$ZcnNsu}|vO!tK|orY^d zWm-IyqsMQveLjACBHM3;kz?5Q=-_Gy5Us!iLJa}G^leCT2-q^&Az)&um}QS+JiRufsr1?U_r^4w0`60|DW*Hjq3k5afsOdpWJG3%X-?z4Dbj{hCDgc z4Dc{qCnuk|yBLnfNmYE!s~);-8V}-!CYr|mFtTMD_xeI8(-8UzGL4UhM8RG^^}S>t z>Y7%2Zwy;27Rv0c-ujl}m|k>bb!x48hSNLHWrTbSi3(MduftN_#KOnMWvMD_he)oA z%oO9gSv7;1ak# zR0W7TUSdr|~WL$Y&-@0^Of6?VP zVAVP$*Q$G=WrSMWa*PyT_mz+uDZa)bI$@-kAbBx5%5Pz2td8<)xJ*uRbB{3`jgs2E z(2_2B;DP!@%U|LLCYs03VPwlZ{+B}}H$c?xg%-s!Sf17wJU2{X5ZHW8Wm&ryI*#it z@xv3j9uFh8o$JPXp`Cmm5zhCaa9OB)TlYf8aefdU0+I9mVdNOjJvzG@4n%YCfKbE1 zSAC5tih^xH9G&c|Yex@e3+uFtmlwlIb;_(o7cY5uS`TuJ1sC~>M~wyRIYcLn1!JR> zjc)M?m=k$+sEx~;;2Jq;%~ctW#)rIk$%&FjRRh6C@uLzA<3ljAWf;R8BDsM;Uc7Yh z`zVVfa2Mfwa6PE}HeS4Rv;1xR*hH4U2_v_i<%Wxw4yIoVXZlsRCRC=)i$0j=j%mQsZy9UOra4t-f z%vj9|XTwEvGMzh);b;U^#g23gmog4DJ-h{vgXlD;!N``=oa_ssoJJ@s$Z7TpiGnRR zMkV{;#1`f|8E#u{70`&L{z%5@wf)=?6?tT~2dZ1~65 zVMZ+f_!?XyC#kvH7>-7V{LD^7lVuiP#Scm}i!Z~-mRa1zA(CqqTZ)T*HoJdffnevG z#qJ;Aa!}b7x4_gxw>kbDerO`czk!k4&T+T8tY`B)b9FG!TQdl3bfWSs_LsHrZLX)| zhbMB~4I{^J?a{ea^A}CP141n`uJIMETxLv2w)s!Y4|Szhvv1E8OWKa(nXp!!LaVN9 z$qbMms>P_a9>*kby04DZByb9ch@AuyY#8;ljd9>2m>jENtcUC5*aS+Fh>83@~?D0ZdFYcuQFzc&sH zWY`Dzdb?8MULDO{?qT_16OU7U)xMUvi-?{D&tq4i*CN;S?eLttec4i;^FJIS)^ieE zeasu78ip190%p>(qMyO#bBZDN9fqS(Ro#g{;xj@*wn06K2ShZepTNkLK|RJHl50Y{ zh|zz9A{wfgum(N9Eme$V5UrSWZB^{n@Zi@7Y1!J?0uPI*jV>6u?b_H~Ef+>8q@j-k z!u7E)TrR3>^cW9~kC2+Jk-hNHh#J`gMvl>l$8@3w9MP;iAk-@93%*7uS4l4?d%I@+ zW5Vp2khR(*GXyKyDZ|!&OqfThwL-_#Qu5W3np%n+B7v#px&ymLbw&T2H=H|SZdcc? z(K~(?<*u3C)zyD@?ppSP{o;D|qgwl_a8v@rbUqAIWi_Si;F>wv&b^D_X#D7373TcO zgAdei+woOlH|G!FArLvg z4@Pb~=k`~H9lZa)aNhq0mxjuF%vXio-2WL5gUJ00Fmep{9y5R%BSiP`fKX#Z-Zv3B zMpTm>BgT}A`E~m9qi(XMD;?p{lV{+(WF=IfnN7{>9O zjZxurm=&veoB|igNo?*YhNBT8Ur{Hhl8048!b<$GMAJ9{Mz&1jI1Z8AkRV@C=VJIW z7E0iF@D8{jRE8U0Q5VDW+wg-EdENjcx1HyPSJb(<{(Lys{|y&~%C-55x){DchX+99 z`!g_d4BsA|Tnz)FA$UNjVPKJOB61iwDcKu5CuKGarVG*6gR=wrbD)1=iD2I36r1}w z(8d?qkNCoS5u%7tYeJ5x;E%rLS5v|7IYcK+1(O>xH)eyWS(F`lzNmXSCo>3afN~O? z`!}nXMvL4=Xb9fkot%gtoaiLuU}VclMstYdCIq>S&`>ag?Za6>*tux2eF$6@D%*|Q z2n{LNoF9mXK;(Qs7`g47H*6y`6wTm07tZ?{xHMGW&25B+G;Hqs@Gywnr(xt6?mgPR znjA#a@PJU0!*6|Cmz*5lm+Use_`Ym;>SYyU;lOMp`SY711aGjj==Dx~sG)}6M`Ss3PXH zmVrFTA(9&yrph~^rMwNE|H+~WoEH8L*M!Qmc#=?$-)8$|{P;w+Uxbm{&h`v-gG257 zFc{xC7tHtq2GNSufPH3*k0IGP*sRaRV<56V8%B;{-J`>+AwjeV4+u3Re8N}0a!9x* z*&$&}w!oeo)h2`ttW~GAwCGxch)-)pj`4s!4F{eaQa)-tNO6cx7!StroDB!L3T8!S zsP+@CfQ#fLHdkRd8X@vpgP=+tcA$Pk!sYm3iKcN0jBJ_4+c`vXgMqx(;9~g8ER?{h z;4ZizRE8U`HN^0ICw_1u&$q+KZRfe+T7!%0--L7hE4V0BuFY!=F?|054}i$`&tT*j zzCAj*8U{o|@PJUmz`4GO$YJ0&$zE&Ng1y#I8wKXAMJ>sxu@*hz9Yv@09mgQBBa0ZD zlBIOiAg}|6=!8LF49nOU1D3#y$o$k8a5P*ZC#ku;7>-7Ve8fAVNgh-U0Y~5mC7Q*d zFtTM92XTnxh5-49x6ST_ERetvpa7SH%5LK$-cF9!;)f=3+z%tSo#Tc_yltL87S8hx za7m~4Y(7}+w7S2#p+Lx9`~a520`IK#U!2y70fGTgWm5X18>_`!)h z?*t>ao#%#~02kNigmZl+TofwT=1xEi->2gN5cxg@Mvmdzqm!#)Kr{po2sI2m;cHNG z82D1M!@!i@Qn6g_N@WU_QgLvjwkhxtSg}sIRgZDLm4O{LQ+C~PnCHLg;eplT(wdKB z8o1t9KWZAdmP2&HG|;W(ZcGLD!K}zLMNI|wz{PSBoBJHY(TJ&vC50Bgy+v?0et4pb z{11$5xyTndL~_%?*5U%ZRx*R}7g$KxbZ#;JJX{zm<1-uHo}eXR^Zpzj1d;b=VdS>+ zzMZ-Zua(W|IU+L;8J(XTXYeT20I=sL}flWq?|ja*PkB`U*&m4<~VmP8c7? zi=+)F*#Prmb&(;sN=|BXeGErqq`D<{5=oXk?m+#qWXm}693r`aVTu?S zoE(3K#S%Cvd(S_(6$gu{(@xnZ+Uwk=!64Z!WOeO|w7(r-1X}a!}cAyt%;1@mujj6FEK$Ms7RD z4L29qJYOBo^LycvPtx$R6h>Nvh_%t(^QR71dL@naH=;?pp)WfY&_ z5XlVz6UAi#i`$>EII!W{;`T|n8dPq@t0roZ+YJ8%KQfWw$6(~PGdx9YrduqJ9Sml9 z3kK1OG0#4O#hBL^z0GtNesm(!|7jJ|9vxdXePRC|5US~4>YIpc`u8P!8DK2?PDWp` zqFo6%7M7{gNm{iNAOh6djidP=14~m{g=+psa)?f7{^JEJ#sJU{^I|oL3|u8AwYk$7 zj>brBCqR%TkE@1&Rrqm<#*u=Ntrl@Ehe&P+sO<#sS{WQ)$6^T_1g?QALgiT735a3( z{rJ&|Ojlv#wlm$h6X0U|p>VbzfU81f+u8|;Vf;Qk0wUx0z{oL-dvtU)6o|Iq0ilM1 z!+aBwL&3$#K5no@wy;i{2u59qx{_05ExI=#icV`jj&b01--@eo;9ne~6UG7dR;YDG zpV$dzM4lSzs=z!3(Tb(SREDF`A@2={Xp#q2gTRjXL5XIu1B`5$#Y_&7+#n$D4Y1ig zg#{8g1+0Y2;XGw?HoJ}Y1~@rB0Y5a68(b19&*r@WPOdlL zhbMA91S7|A?a{ea^A}CP141?bfB3c{+59g{w)syIU(W1G6^f++Z3?&_R;yELE&6Jr z{Ja5P%vR}LD2 zx2J=r@q-iH%E;&8ilGM}LFiMp(K|-Bpiu-cyj?m?^nmR=|JL zQ;)3{n%1BkbHh4c6{)$Q%pp2qZkTSSZ`jI>FgMol@DaFPPI_}!F&vGXs@RM)Gq4@y zdOQN6qg)FkTaNMp4w2jhF;iT#H>+mw{#_PT;AX=kaBZl(@6hl#qM3)y{=;}2MD`zq zk=xGxEOjm4tel~MzlST}Ww<_612r6MvhT|$4H>23ei$LAke)+r{V`Dn#D;lvSk)4 zI7D&-L$@3lgtiTquVBFh&Iy;pC84q`HmkMp?Z$8ket06+Z-T=4Cfx5Tnz)FIe0**Vc^ZaiO6A~C)q8AvEs9a+AQ!A zO9AsHr_id0dd&hdAg%8>MuETj)>(}Lf8r3GFba$pNgF+4Mg`?To)c;kn8qNmfyqf_ zu8ZMljL2IQC0X*gY7m%$AD3tpTf)eeQHWb}4vBtG1H*0xU*RGchUp%}hcg^gsuKv4o*Rmhy4d>>?{o;D| z`|6gJOrcyXm5cdx8Eq1{1J)GS^eWtxKvJ(bN4YEjTU*6LPPNOisF0t!HH(_Z5Y`ylW%f}$!^6$KB9_C$kCNR%*oM6gxsvTl z^=Hz3U8!`1(O=0H3)&o!h4t$+o$B#kI|@8N9$!OvTBmXh5UYLVqy~sy4$%n%gy6_1 zf#ES#m?LYFcn@4NC(XGH3`gUqx*fmn;3QH;F;KqpO!IXM3)i78 z<`iCarE}6i-?OA*)Y_S2+?dbe#>R6gBQvm$cD}b(BSakMp9<&v<8Wc9oQsckIg+q>zY!0D$oofNrqDJIihBSQ49hbrkteaUS##sXpvVm z8iKdo<8_#)D$zau1tVMT@eiSZZQ?Em;ujE`U%8T3G#UzKu)TLU+dZ3%?Zzt_4Jp{1 z?~aE+z{MF30A99YBAR@&|L){p4OKfb?ggX!%z1T(!Y zgJ{LXZ=cCq8P^-Q`C8}n4E*>+wx_|!F>HHua5V&oR^S1lhJayT*~%f{56RvWxy`C< zAzj+YUc68$mdjl!c2@&?uxF!oTf^C~aGm}VGZwJJX524e;J@h+0gCwQ;c0EiF&4bV zS59gyIE_Pe!dM_V(o0~B32%ovvf9W-xMoh8bNviQ<44}s;3U$rn00s*M2jiI$d<(n za){){26*NCbF^R@<8KDHVj!{Z^U;ZYblMhzY_gBm+TtMPzPW5>z9iO8|z(PTd%F@}#D z+LW>NM%2NaqN^@2f#Bel1suTI5MNlOVJ5b+$*atr>(KPmikuB4BGlxiSkeDpi@GgckER?{> zVHI2uD#KG7HXvenPT>b9@_a6g+;*O)sT~Lx*Vlw|{eHM8RIbJCDn3=AYY42)-A5MP(hm;1GO;Bl4&=1WeYRZncmJWvl& z>p+f?;D^4oS0lmqIYcLn1QTm%8&kn6FgNl{QB%Q7aGjj==ALCZ8Yflp>A_m$wt@T= zKQhrk{sbdi2J#0Ek=$S~RSX8TY8gDwy9hl8EuME|5ZH)J+#!c?|>hl$o5Pa zx$SJvP~A0#@s;6>p8(f|%J{a%MT%MuHtWaXF%Vfl7DkR?-J`>+AwjeV4+u3Re8<V@b2l;^jhCu;0Z?P~wxisJAD!qZx4_7jquk6PlA9W4 zh_2gMF@x`CSVY+LZt?vzTo)?eqL0`)*sMQ=$3SHL2^hKUtj|=_LlfpFzAc#faSWmr zGoyW`i&ulY^RU?;jmJS`e-w-y!@kD|pr#1XIy@lM6!9)!8Otf+wPd#%M)&5kgW5L3 z@vvN-F5~{X#6Y@`9URK1qc=tDnO(QBXZ28_H~Nosz9;(6#^3kw(6q+n7#NoN3P%kL zi#bFm3=CtVl#RxbhxxD?M;5M;lhWK-3`gTb-tWkXl1Ck=UvF5AAC+hpy)d$678h`c z4)K(P?HHuZ#4jjR^S1l27se{6OjYJzR7MQjO{HJdeizxA;!ENwIrv? zs>@va2aPR$BgPo82kgkfoKaJ z5NaU!ci=#9eX;|=_-rLJP|jYYzc1k%hFHI{2YtjL#E<*Mj|cbQ99%mm*SW_Sjz*Wf6QLG< zZGZ8{?9U0-p2d&c)J=X?M}7uImbICX&z38xC}dfkr#Vt`1B1LFp;k15^Q|w|M+U0S zb1&CRGo3*+4$mV)Q0Z>GA)yw(O?o$ed?M+SU}V`swq$=%C^Bib8*WIbRm@=g7#3UO zkT^13GAYIQk#Jq8jGH$k)N-&{KMaq7$oj!Bat!OL>r-o7-E!4XKA)+iBGb_N29A|e zBK)eSdFArF6uCE&y{0g|oT;$e5=xm~{srrSVxK-sT+X7x6zr6rdwYQ}OR(^2(WQ8B zT9c~H6gkzFF7Z{A>OXH6OiYV=0Z(FY=84GBvN!DIGcY-py?hETmy_Sz2N{k=jr@SM znSpICAIBpgn#+wavSltG@r8)aX3>>|nu0uKV@MQ3t8&jI`?mS$Zl~VC&3A zcER$uER$B)$zso?36HE6n5I{UmHgVb?8-`h$suAFBFRmr(d|vW{W5dIM#jAZCB?Fl z(F~#$bLq>hUK%ax_NIFDwuOwsk506Z*L@|R27-V2LMRInDhjfYpNB-jEaXkeT1Yp4 zW%yvJ*qbSrvjzQ4PfKCFI(t@isjrDdAJb@vO%trcM;62Kl;@Z7k)t?72l&V|gBZg~ zvM@E4m8^!VBR#ey2%AFvNe#L=L@0SL})3Kq4a(fn7JcYgAYCkEUCPqkP7<{>o84#UWxH zCBZM}O=+xw;V0jR>9PFeJ8-Sse)1KDqwyj~lg8+6Gx-*NbfTF&1S4B!@&JcOZU~ik zUN=_E;QJpeBJ6au`2Ih*E>yl7@4Rlz!Djvc;V}?d{~L_lcGes2yl$+T!TiEYf|;Ms zAX>2qvCnk#&g;fJZ1(5iaS+*`1tZ6>@6r9$03lk32ZUM_ecV^ZQ50-|xG~uQV%wnt z-zOc&7P?Y>nL?5Mk94J|KgrbxE7)l~)fJx05*}lUMW#ilwJgUdk@l688YRx>5V4~~ za{WcnWR}1%ns>uASuN&WaLt@d=gJI6G zM(8TYXWkkT1@oEl$zF|_A$=zPddwp%A#6Z$O3(c|OTzUSAx#+{?TXC9z8olrd5}YN zfWruanq8B50Vc?@m*?SvIXTY#l;P<1A|_Y|hnBZIhsQwlmS1jNQtFu-gUSgoDVCEQ2baq2BnL7ajh5QpM?>`XI_OyZ=tK`W21d3#r+zcaIUh+v_2<0V0NkLw6Sx6Mj zOO8!?9;u{PDF>LMw0H!P+lw}nZzKl>CJ5<|6&!>h^bEJFWAz;w`Y|ZgH_tNwc?#mwK9U zpAF}JHC!Aj_p^-G>1m1B{P*I45c$6VMvmd%qxq}(K{OB#2z5>7Io~!GMZxBWjmfS> zYI~*G!eBn#%jO8{-u2JH`gMvgaIaLxN82m?jIWr~DDf!{5j#pG*IndZX=DCIbNN0@ zkkwqi0~gH6aqcS&M;|8|_evXcu)XD5cnm~uc?d?fyyXF32<0t8Q9<7F@sKE(w|p$w z>%9{y#jaFgXu$ZE*u=}xVaO>q?+0ruMH!T)RL6>B919d1vZZd6jg00Hu{M(6iezFf zZNokGfZ4FzV>h@?PC|3rF&vE(`Sffpa@#X@!H-PzjGbU)%QNP2h~zqjd~CK>EraKC zSTuo4kTc<$PW!!vhww8m< z`ek?wMAqK{Bge4r(bUykAX_O76wS zBP=t_wVVQUzt@|5qeeYY5hraC@~|%{YI=B(L&Q!G$+ebQ;=+Qf4uhDZ|mn3Gori_*`uBc@B?-Xg<%v$d>s$;|rn8M<^`FeC`j4f-Op3OZIEWY!2>9 zu{)3RY5l&_Mel5l(;Ve_v4k~18I`74$FgK0i!^XqGM_`l8cTx9k}d0b8%A;h%!g$p z$H9ei8_9tTMReIL$`h7Sp3jL-#7+FwtVAA4v}2;^>~Zv zA-E`1rp42aMglh9B|HEk-$fX??R;;oE{w!+{+V#jKLrQxHXfRYOp~r-b+Q;1r_{G{m!mjD2e?Z_i%Q+Flq^h(WhtxSS~;1` zoxyN4UgTX|TKM+x(u*IS=pz@v$g(!dN6zzwP(C7b6yzg^heW}AWOA~@%TzwRq)VkV zvlIJH4wg(SCKlg2%cEY+W20@Le#W=<%1J)OAv(ZGB4QeHH>~9QFfo>udrJOm?KUh;r1gz^%hq#!T(ct{k?OHNMKOSTmE0`jk|YA^el zctvY$tSa8OK7!W_GC^Wg(+EM687*xK%ny-kix2H~eD{m=ViA zc7rSB_K)otj>bw=d{9fpZhOZr__2xJu@j7JdB;2sk=%-Qy4Y(}^)k3VhsA?6af|CS z;i^!%7T?e?Gq4#y9gl#>_$e@Q+Zo?R?KH-+{_b$r-vw8O%KCQho5&-Bmc>!4@_5*n0W~%}$RT3KhUEH5M30`n(NJE1>9HEh^KiYK4Cj8zaP;9}oBGzM z&Yp|tW@$1ZPmP`1ti7XdkZTpk? za-uRY7`@U$zeV%6EECL`oMNjUuWV+{DUZ`IWj;+GsEb___aS45Q5 z5;ul{aqmVcv6{tb27wJsPF8a-vvO&yRHxP#4>i{0!PR!eDE#0=|9IV30P4*BmoJ3! z522wT|M+=G6l~eBJlTg!re(|Q9*T4&yN=yU!LK%IYlx+=V4Z67{_07#EQ6D=X^M6D z$YNNaQsc@;j^YrpK9b;af^nl|Z3lnZ|H5daB|gsw)fIWai*e5KU$l zjBJ_AcD@kGWQ3}MOy-}y+Lk8sxnx%@3;C``xxcuceO+y+(A$+-UrG-SMju;?do;d} z)ft}dBoK}ONYhDA=rw-0&)qcC?2SIfFQgeh#-i9h$6_L2!bLgiWe&Xr>knFx{l7)uWGk@ z|9n2L4e#zg_0;oy`l(-4S69o$ly$gAj%Dc-*s@WUPWCk+%M#DFptAJt5HDykWwU&> z&m3`52U|z6ZSA1$j7AMQ#IpwRqa2ubjypSi<1cH@EzHC?s5u-?_O9}0U^qsNc?u4f zy~aF1cGMcfcM2N(jGFQU?tx=Xc^tNE)RaejO~{(Uvni;i+!W#k)s$Ag4|ooaHg#$8sFQ<;fzP*Dhq z?73D-u7;r)rR2+SsO+WWLb9V^5ua#EdvDf|FXF8`){xJ`mW>*6g|7)&LwFVi)sS@| zUQi7=DPNJYX>(|Bu-<5~6<={O`p{rssa0+&>%PxYw??C$cpm~H+@w`s=4DUYNhOIb zwdEOK9iecWCKh&IEIQq=Wuxe9#7yM3{J#}{MBBb=N63S{$UE$=HS%B&I7Y5{unk*%TYrDdA?UTZ zKaSb38*I7oY}i&ldv?r-N_a-BgyZCz5!-1Gp|kpAW<@XVlVesK4_nU23J+Bwg$W;m zJWR-^(NFjegozgT$=_)z*PIH|1}>3w)Ib2af4e>8oiZ+c02 z@>ymgQ=a5EHZ9JMgQidJhJhL5(w%VNtjwe9$d0N{_~FUfeKD)g?YJ+F)#p~&vQd3* z_BA1^56`fm>T_9$7gT*t&bRu^>8#!Mw!eL*Ooyg^3>8+^?2CP$2Z70_nmTAx= zau}2IB9UaBnZQhB)|niqK}3hGv2?nxm6si1I!1Zf0gjgyaI}c*C~RW>KuGU_SyZ;e zJ#Z{4+rpNOqOydU$Zu#_$fpT<)HLqzBCi6cJIBDWapk^QYPzHM!=!&S?uR4&qhQM! z^gYG{Ii&Dn;$cDx+6{a=A_VP*le@Yyt664hFO3!--qp4Jy5SEDFOAOGysNAK+UQ)m z95);-$@;(E~M^Y$!pC#?;$1G*wbEIV<+k<8obMZdIi#G+ zOyCea80@oE2DJ_xrT1E8xe3E!eVA zQ@-JALe>RI;P6iRFS9m@J)s+`~vs!4CoAaIi&SoDp74Mdsn+uMkn2ttOIoNa8 z5@26TEzF8UxtY2$8pXtSr;?b9 zbH|i?wWyODed8`G$@R=cW+lmS8I7p0Wi-}xt&aQ_ref5Q$KY7m>&Q>Yj>1K3RZ4qr z7Li}$tveQxU%{4*BJvAnB6E#l)Tg)el;txU?^z#5??Qw3bTTm-O4Q`dzoBdP!K6L~ z_rZ~RH*C3Z>I>!Wfb_kh-RXOUlivf5jq9Dx7ftQ`FzLS*_rsC?Zm{JH`W~ac6b^jo z@Gv14O|SJWUScA0S-uM#6V1uT$#A|}lP%uMbMoP~rFo5S!bqVo#7v9_p)iT{S*shL zfjJl>#>H@utSF5&Ch{8_Hs^p#R{56{ETqor^0b@CC(QK%s!aZ*Wo@m zQa=T@oI%}VP?x%Z4-pXkM1ypJwR zHfS&xxma*K$HNzdR1CK;6Pb!3zu{zoEdpAJc?O1Lh=-@(kXboL50D*IJn*B-Y`rjx z%oDg5jz#8i*s@V%9`Q9Hiww`Ipdxcqh!^w_Yg)cVX1+KhsQrN+ONm)}_UM!t-{U;^ zF*9uk-73s0$mhU0$=1xoIH)ij(R#lEbp(vaC@_b@5wjPV*O48y!0_WdY!rnPauMqw z+zH3}asX`Es4x5anvnH{=TuOA*)qfnsxSY}chk)xQC~)oF=tV)MnlFN>ABd!vlA9F zXZXU9LgrLvVjPs2h4vU|Qs!zHlu>EE31*6jT-#mpCRKOBqA=V8l6 zvAM$6ge*2Zvx17vx)3j@*u0c)v6<9tH7b4jAs^I-(I_qZc$Sv7PfDsCSicr;-jVfgu;s#8&y~xM zcHWh6-Yem-xbo&3{*5k}a-bJ?!IAm#u;mQq9%H$b1AK7sFd-LEpYR=`5-&&&yguIt ztCK6uW^bulQoloY6`ZZsR10{nDx6YAAB!Nk(l>3SAowgZktqoB8!zawD(|%>2=0bq z7(>OKaG0z-qwC0yf~50URq!%KiQDm(9V^DIuw|oS-0W*YRt%m!K^5b&5HF}=+?MYI zqP-fro|g}&ehL*g)^v-*Rzua7*OauiRFX;LGp3nEI>|~hfteTwl|-zDDgn@n%8oE1 zqp0ivN6bn&T10jfI&pe6ROy7NNVdbBaI7!e!j_Htvc%VftS>yLg6hi#Azn~@c|*R6 zWIlVOJCJ;as;^wD)4!Bjbyc2JsYlr4$(niI^(A=_NPa2)DH&|3FBM-3vc9ZjCdNa3 zu>?S?FK5GujQSG85wlW`P9{4F9Z_E_oiOXmnYa^<_2qQfvQb|?;%h?I7oJl=^`$q& z3#u>md=F2boV?;(tu)p15`IFR7>$zRy8=q@#xkFjM75NWyM2Q#%gCL~L}nSua|KlN zTB{v@fms-}<2g7?_S*3X*-?;)70@;=(Xd49J6JKvbX<{On(c|du!YAGAf_=a4Tji;E2%(9W=L}I!CLLJvC$EMP;MxKigYj@Wu(lJCX6a3p^`Y&nCx#~?3t z0v|3sOvtIl6TX9%m|EO4A=i_iH|njgR`kJDTCUFBnVla!pIx#@$BCEz+kDj)iYRXlvXuLgZ;wdXPL$E zASfnM9JJBp9+;iz?xZTs;~J%^=;U2+*sM7aT}O5lQt@OaClZ3<_Pw5dg|oT?Z*;x2 z<(7`+AHbGHSf(WF-F%A6ef&PNl%JfK#s_1Q^nb{aw2p91?C7CRRQ?4=#TD|*)ZR=h z>c8VnJEHz8Y+2;t3!S*+&3Kj^dQHyT4+nF8C7DRi4Mt8CSI&F|T5;dJt+&COcVxX4 zY&nCq9PdYtji?OMRt#0EwEV>$i1FIMM+V$hBvbD)-|T%G3q|ySe3vD+Z;#krJ>qM4 z$%o|o%Bw5A<>V}!TJm45wS(H592IgFt6kQFv@48NGNHnn#!x+WwCx@Uj;TT#o zAzDLr6khQTYzT7dmRYh+$K7%)Ss#Hd8zt*Qz9y0y!7CNdyP!&Se25pc8hU8Hm1;^q z3AsAyc=Z9w-PDWGs6;EqY_22yR`T0YkM8s(BJ0uZ%*1$@+f3{9TPr%x!NiQB^G7&P z_M-C;*-@axT=#ZdHw(+tc+-xBb0@d#$9erJ_9LOG8$aCzy%Mijw0ljVYqnT1AY z?@ZRa;mtd;-Wj%BIP27QZ#(am;kOnp(IM=3|T_x5ELmB96XIb`&_`%eh7u%!$aYxC@ST9U@PWm{gwz+8_$IW_7t`~7 z8ak)9S{dx>SzYd>Q!D5Nk$OXYELwsy*jj?(Lu_jk4jVKQ_k?%cIb{U1$cy*-CX$pF z?`9^(gS=pL(%skU%c(FOLtU(c<7EXL4U!#&P0U{*FaQb<A2 z6ZwgYg<_Ydmi8L=YsjlWZSgfYHm=}t8teCsmI053 zXTZa7d|WeNOHEnmeKE7(LEIO|EO-F6oRI|{sz3@0KBRbEN&uL2e1Jlu^i{41VDoaH$OLXC^Y0L4L!=v`)9R`tctahoKDq1;@!sGyGPY+4wu&v}4)$D{R>)8-MmSA*KGXtu9rEIqJnHUFksf{Qd0Il}i0wXeN&rNW|?6v2sWJjSR4j{Kt6iIXB==IM$czV9Q2* z`L?eKSzmZg1=W|~5HF~{d^q3wB6pzmm2ErFUZ(DhMsW$pBW!aKUU>eb0S!R+Q1&+1@tH!0V4pmoBgk$*F}h25D3`8UDAaV2ltf!67W$^S6i5l8+9!xeSdi~} z@9c7=Rv)A@f*R#y$)>hSePaAQIDxI%=e+@qdzW%f8Ne*+;=8_iB-O=tn2GVAF6QXn z*UHPIFdbuvc^HnD6>xMH*-_Yt4QP4~%$o8b?tx=Xc>uO-)Rdnw6ZvTiu>nnwn#O(F z#lg~IGMN|+QE75dZ$Q)gVbY(7`{77`L)dcR^ivzq^vG!$@cQr!*d30K>z%J}K-2qT zX2GtwFOFHT6Kpvn3p_-D)D?V4@h~BE#W#J6na~yU^VJpIy+Z@^)k9?=^dvZGtr-{h zjQoJd_dsLrv@(!cL`KUusiep_k(n3|B4aWqr4^WqU{;2-xB!ll6?b$x*-?nZ)7aA( zkzt};xd=Lpx9eC;J_TDgipeLKiTnh`OtBN3CAP-+4)P^%h2jTrL|hrqW{lI`o5RNU z@zxzl{~v6*aME*9yVq^B{}xXBFK|>`Y4f*L^d6YRpTj+HB>qR(at3jaQCeUIP6Gk`<-^%=lJ5CsUO%( zOeCHZ6FV{!nPMWp(WY|_^$0=H2BLSsC`Ab5KKHl5QM6`5bO6~=#m1}IK;%kWI40G| zTX4r5E7p;)Wusyp?rTC;ES`Ho6>EnOFKEg1EBRKe?#imtz(7fv+MGvSz@(Hl{l;)= zBb-)p+cLE|$CrhyMrSh;jbiduW+K1AMoew2jGrW5u=~+q{98C8u8h-Dn=I0g;jKH8{xxj5aMG!% zjg|JCOM_|8A`_SjbEU0MZL)|@$31W)J_WX%LEK}MmqLLL3mzuq)F$>#T`{$JA>TF7 z$t&nwuKJL6X4p}1vRX533}3?SxUCFL7O}A0H?gExID(lN4`N|zyW5&vXu-UUq2xq3 zPFCd6@nlC~B3{C6dv30m)bN%ai^>VGWuvI{GZXm<2JsSZJ6am&E6AHb$?zFCCa#>* zFX6WRH)&stx9>>%)3D{jX{TPoZAVNa{*!Rxcf)aUC9c1O+wOx&{Z8BmN9wo3mNTe( zjQUbI@FBv(gcJ^k`gTMJhtu-i^u1_RnO-PipHOX-8*FnHZU1l53wFw)!;H_M70a4@ z@p8`R#G-hVkRxcqY_<~E1WyR zQM1yH7Ly%?P|P<2XLQ7@H#^{tIM$o(V9Q3m+1A&DtT#Njg6hqL5HDy&^Q-yRo9^-& z`YKyfDK2&D0w#y7=@#$pSzLrmN~T(BN!2&fvX)esiOgD(=XxdYv{pOLfk_y(<7_xe zR+!N#WJe())++@p(XM>>5##MTmWnfB%SNdn7zFWB8?FuoCvh%4jt zdSw>r>+#kdNnZKv=z)^9ft*=*R5q}Ezz>)Y9u;mQm9%Hza0eo2S zFd?TMD}6g6rX92LeXzNhO*=}}syM!bCLWbqSI(b}ay)SA@d{=lQ!eB;o@|;G1x-IJhhZ6G%Mozcth}Q)kR1h4 zygA!lk<}A(@^L8ciDT6{2)1lgodbML$g0D$E2!#h9pVK|KE9D})#+YUYW0`ZBQriu zUBKj!HQ&4^AHpRiRV~%zEZ<1W$;TPYL}oR~bMnDEtrd@Nz$A>~aWxzzE6nH;vZD|Y zlMew)v@0hcU&h;YEEQjbEgPlc^UOqkgN2xUSQ$S;zF>Eo!T2FKBCd?nlaDOYzri*Pa^a*?lMgHHsh0=SopL}EypMZPdNPGj>at3jaFc_X#Jfy_jv7RYa~ znA+~OCI+f73}c|Ez+tlTjNVCh6eMCRMB8(7=CBfP*|B8w!j_GaalEeySu%L`1eJ{a zLcE}v!|C}xw%A;J0E|AMRBBX8E2_!iqMcVrlm&~gP|q-lV@{v6lgDo31V_Rk-KUFHWZ?>bQaXyZ`!A5w4^Sj`fxN=T!-)#GD(mn=n-;wsw zu;s#Or?zjlBc>5QE1dWla9mu8>)SWmeK4t?iu>S5eI0B$gSy9{E_DGPB0NmUrHl!_ z9T7_zZ_RgJGP$?jX!O?0E0rn8kEjz^fwJb>7{2$>aa$RrEW+W3zC5IGxQ&?@7s8?4 zZLPdK3-dAtlxN^LS&>H%k{yMK5Dsn6&7$%Y-m+s+c>=a<6qU!BiQI)lJ6am&MW03Q zOM~+QGJy$cSI%kS(DvV?Jr{4^k@m*0<-%#FghM-G8u5d}i602Z#g(`&9NK*_sqcsT z;7EOM*m4GSk5OL=2R=l2n2^HZ7T;negu}P;6%Ld7$}3Al)s~_gPJ^@6nriVrp34bs zpOgW}A__k2n>11se2|$K529d-=(Scku7X(@W5tzln5;OXVX~tjiKnxzRBc?MVY&YJ zS-fG#a&Z}K*(ev6FcbMnf?51vIXmSC$Qewj8tHHI6?qLDD=XM&8?vKtiTSRo zwD+dI+y!slv4|{#EgMDTRm?7-k^V5u8|G}Nk8 zE3LI7esov--myD|5l$z?_Y!e=41ks z<*xks*FduSVh%!^;=VX$!6vZf!n0s2IdnT@!ja*ba5x+z*G$-kRf6^R$IOO9aDN=L z;f=86jBN1G6H=1!p~l06lq7ff7B?YDUXkycXTn?QHY3l0tGD5t`rzw!rOH$CSQOp z8^z>v%tU?yL%b7cW&CUM1)CBWjDH13#FcUSoxm*8zrb5}Bz-?@xp2~{cLJ@nr(79K zyPHgmhJZBhX#JhQEaDsC9yk*3f-Pqd_Za1+P~gLYhY2YZKH{6YLMUvL@AL5PfpTA^ zq<%#1P&iesRb>o?f^b?HmMlWyAm5~tLg4^rVq6FX-f2xJoB*>j29bU^N><#_F=R&} zB7}l~CEArjp^UfdSWH&HmW^W4!%XBZ6s(LtO}+#Qh4bKuxH3))g)GwN;H^87J{z`N zIO&v7u+qLgoc677R9tE6LLrOz&A11S#BYQxXAt)o<)u*I!-9tiDHQhg?T8Qxzn;+5 zl{qeD7Othy;={YTwqG~=f#IdmIh%KN^8MSZR!p zCSL-D!clNUTp6c@LKf-ec?``iYskhC}a^o8TY`E_!`)9 z262y3UJ3<1EO?lZLgA%Ap|DxLyCG(lE4BI{`=UbMP_OzqgzDPd!SHh;T-#eWB8{pu$vgcn)$>@m5|8=+{j{IK(Th8F`G5AaUzy}Zy z6H-51=Uc$ULcW57`M~;;mjndl8^Tyr}XR$Q}y$?ulpG?KQlxJ*>xY)4PH?gFw zSj|ji%8L9(nl`NVG4Y+F;k1%-84Sx17?;3dv+|BUMs`$z!4F8!k${?o;cQ= z^I^+I%{kZCgseF{yMk&?GsFuzX6(3ppMp-J2i}8?dY`ho`6%@PTTQVhTztH3vZ8F+ zZnjD-`Z`plw^SW*+ji=Am$kiC(%CYRdDxeRtT+!c6PXn!$K}l_qSso5+2AUamQi8; z2ZzZDJo*#aQILrDhTFJ|g7OmHuwy~_Cv4d$C@(S-`3))JyucapNG)NGa;^sbi>yfjM@`caV(7s2Uk%{}kW$8s+_PIi1$ zMkkA4xWG59q+l3kCdPwc5Uh+SXaeFUn3cGd_ zX3-sQ^UWTqJKn-fj0fE@Bh_=Qs;q^X7^BQ;I8;`wQJL&0SmKRYRY^H-){iFMxMTeo zge@EOV}O~+PhZU4KY32EEEO<~_7}*ZKuz&EI4rKT`6Slpg30`H+yzJGm%^3{XTC{F zM#2s+tJs-AQIPdwX zHHHl4M}#v!6b_6lbFL39oiMo{ggfEL{Q%f<26vCaUFriqP7Ugs8K05NF&sG>wW5LU}wQ;Yt6a%AWxAXd~3U=3`&+2hBJI~NGgR>nTheB6gE~n zuMHws!(@y>%A6lZ zGb5`fW(I74d*YY@|HCujyp6gx=t};HuA&1}A~}@vBH*D0q@dvAiH8a4#X7u4ydy$T zJd^MFGgC^9RmmpHm33uz!@+R+S}RZN`z3htiaVtYRTdF(Ae@?_gh&ywA2X3DBJvwm zrnY;njU*KqhB1JBD+thp8+;yDdT+!Nk$=ahuC z)Q~HE<1cH-XPJr28j|CCT#Qb-`&u!%8>V9vlRM#fSpi4aksXCi%#XJ*016M}1JB!W z4;+iit*~XIsNBp<%c*WJh8L%~(7>y~3dFS(Qtz`Gb%z`a(UmUYwF>E;_3p`YT6c&6)@h~Ch zBA5B5vzUtYg=HPyv}0j81-5JymXn!@ z{KSQLI@$@BM*7?2PN1r|1`diV>GadlP6tfhU&9@6c$km^;@!R-5dvb)l*2BERuM%uzbw(n$Y|+`;ZVgY-|~ptzDw&rv!ZFnRwNcfgVN zk6_D%^G?lCIw8}TzZ}l|KX71Nnd@_uPA5$6|H7SccMC1CHh7ov>x2 zoV?xFge)gKmx9X4?jc^#bYs_?H-vYN^&T4RE49=O;g?fiFy&*-H}4JM?X#bSYf8#m zipizEp_dbni=GAzby}tR*+$?K{?z z8(_;uExC@F$ZzZr8^YC?Y0UpjK4EvG!Te8fWL%l2H-xLbFv!Xud^Z=q&DbdU4L$nvXs;*tWN6X#%uI$UEC-O^^UxxVQBzCbTUR<%wN|YTK z1EpGJaHvWTKY;W^s~V-jeqr$)%;LCEAZkdodbAE^DtbPtT4|LVbQ&VxopTBtL2GVACy*Tl znvfxCC)%ZGfPR~|e=^?wdP`BOV|fj1Swv_`mA*RBLs1$KF&bi)a#tg2=rsP{AfM7| z#5MDyPjmuwH5?#U^l3Gs_QFhnFXLV~CcqbA%VI40LMKFdlTWD;HEtUHN65oK`VYa; zaiy=T5w#~~2K*BD#4!VY4qML104XJ0@3VN?ilJ(?-0De+i88j}wj!C3Z}aWZq-zrK z8C{X@^2WqfCHm61vP8N$IfA9GHSgl1M-(HC67BLB7*U4sUt7jKRfe#(?ug`YwJ8f@ zDY}GqwkF?-cTI;#j!T0dLl^j=T=GY}Aq0FcbM{h#CBC3>)DAas|5s4Z;x|5Ld$dnB|o7=6JCR zZ`_e{A8fgB&a)3}Kab)SOuL&e3TJ%*928g9{Hcf50h9MI?tmljPr;TmczcZL$$-qK zKzu;(Fd=2ZJl~E8S+F`^SaSUBIf6HO=DEh`J!X?l7V{NdNLO;kGg+ zSwzAwd}&CLa6dCK9+n{{^G<7Z1BV3?Scu zV`POLeV*(nJmM*A0AZj+t5PC-6K~bAjC>uoY?P6&G86epgy~!&Sol6ko?w#Q;QL!R z96cVA8Y5#ArxC^G@amV5gfKM5y&HyjgJ(z+b5 z)4mgL-;wt1u;mQe9%H$b1AHj(Fd^l@p}rjva^RMHkHYO<-E5V5Pf#8z%=k81lB`)a zrVkZ_+sbfckq1+$E0}&3X(i>sBxYhf$b-qe)0#lo8Kxz=D7PN$2uH~ZJX%b46e8lG zf`BF3l@ehGyj{m~vK?&MC@0%86ZuI5@le6a_&D+@T6iYskhDr6Dg5BI>4_};MP4B{T+yp#%jSnx0* zrNS+~MM_A8dHKFr*}alJM^SAks|u&VscOx$F_j9!ZDnAxNQDpkrj?WmA7m!Rg;e03 z)}+E!FfC&kxe|_&6?imEb`&B)DhODjT`3hli?{1oPA-Ej8|CB@W+Hc~U}gLO`GSde zgYnPch`2INONA`bKgC;jB>iL9a^a*?Qo%}l!)t?SzYIskm9{PwvWWi&_rQ_(zhKK5 z#68A&DHZsz;9){ah4=e*L`a3n`EFI5TdA!sH(FgigXPA+P>UUcpy-DE;k>mbUEDk3 z_Jn4gPJ^he8u9H0@q5d-=ZfRXIAu`|`%q`Fsg=kwsT}rXCdPwum}dq+QxSbIJ7a_? z!4b3KkKRId6gu%HY_FTy2XhzHdvPBetIoS&%SP3CCo_?sqS!+288c(2@&6S07N{^j z0Y}J{{}RT3eZ4U=;bXWrj+yXL*m6cDcnltL{NcsL!-O1vUhmrxG5$Q9@A$J&9JJ8Y zv%1_%r<2y{|H?Hg@yZ}{FLeq_WNQ}2gChEbIpLQQd{t?oiX!ZQ`{NHJlF)b zTzDQVkt4b_d|ECX8J-J=!$ES*g>5y7V(pNb4~O6mIp)I~Vapl$;2|-jO5p>JhY6`t z?(i*eLZuv(uS%K1K0Mu9d7paLaSSJ~HS^-WF_b0Jb7iEnNRcyrlS@jG)0v6!AVsEi z`mGh5ufxoY!RM=Rpsd)Vi^+}xMSO#$0iM?aV4Gp21};{ChuS14mk3@AGTaL@6z^KLRR8q(6d zyY+9dbUI;j-w1cYk$V?xIfJ{$_%9^{A1FLbND1)~-vkyC;@*6B`cGO(Ck)flhO(}4 zD4ed=`r`1J>GVyuu3V9@-_^H=^S%`hi!1L1+8RVA^P6!O9GTw;Th3taG2Tnb zzy}8p6H+ql>)R0_83yxRb(qtvucRmQt^P*2*-t0c(8F;>JxsVBty9*di>qU}{E&1( z?SV3AS#-n()GJJXi)@oR;(v_uc+e4Zjs9z6&2}(D(OdaWz_xI}tZ5LbU>XJsU_$c&qO6H3aA8<>glATuUXkG0bB z1kA}07LUUrvZ9WDN_G?+@nklMkO@p@yV9MR5)W3!Q}L!98Bc;O7tVN=9AVA7c<*q|Z-7JM%9$@kDejy1^Xu^D z9a+Byww%G*V?39VfDZy5CZr^|&bKg$Wr;)bl?2`N^+ftgk+Kx=emGC9Nj9c$7YetP zk;ozp*7~NE6b7rAiSZx|Ci6~f+Tb#nmbi1|qQfO{l&rv`kC7dPh(3^ z_P@eu{~eBsD{cMl!Ytx{#XWE&{%6>7262yZUP=W%EO?lZQlaVF5g`?3<|`E@4c05o zW?kL%@cQqemC2fD@jFIbLBI|?Zu_bXM;3vwJNb`IoJ2B7fv_txF&+fM6wzxE^7!aLzGSusb4kR1hy*yzy4B^s6z;q7?Cj%DPnuw|o+yqTHEPa=qo4tB~PC1(OP z!f9|wTq&nFI%Kl`Fy6c)>kq<~3um3$=wRplop9dYgu~*>Ti@uA$^7fM3y#dc3R})# z?lHzonZO4J4---*?Bv@KArp?t_q?JhE6R;pojyHXQ5F^cM!mqwlQq}kcaE}9klrfe zl0_=~#g~JW3ePbU<3TD+>-1X_3!B`CauTj* z^G>}|(FvKx{KRnPH8?P?%=K3)I-M}NpMX2z$h{x7oWb2=%$Kr(4-_6Iq-^-3?{Fn# z!`AuAhPgwv%85heuAbg{ty%6JYE@RN?`M7kPF-u>#RDS>2>;hBcpsE5CKrRGc3Kwf z7@h??kcrWlV3-v^KgY`KjhPAC;odlA!nUyGj7;zl5>kus;l;y*)FNN>O=+P;w#iqE zOk35c4-Izp)as1^Wf7wa=dQK<#K(-NL6WAMBfi_oerp-?mOHDAXBM?l@y#fyHdZnd z<3VjqmmSw?%-Jv}LuJHpq^zi;lgW-kCFUOjl)jr4wg1TJG-4@bq7HGf*J_rN56E$)FM@o&MF3n#un?n2C@{!BRar{KuAQeVWh zq^%bw`6qBM9LYZpTh1WwG4xCIz=sPD6H-0&`gTO9hX?XK9AZXw7cL!2RsD>qrT>T4 zDr?Hc$BwFgsP4kV19w*$t1JrQ71RYxdyA}+3Sw(!Vmv5_ndz=;&TA6CFXnX(%zeu#*g*sV|gc@OsE!8BYGQaBN)3Z>DL9bU#e`m*IXm(!T_@oI&41 z3P?4+YzBAw#fNQk;&&fhSV1{en(xvN|iO+#`FaZ;kGhtS>(iTd}&BI z@hCGf9^}Mi-f3-MnRGKs%McP1$OI<3tiYqcQm7Onsn0)Aj)`{V?#m7Eb{)&f|9rX2 z8~G*9eZk>fUE8l4{=o3k=$y^Fy85q;&ZWz7!_nfbA1ulG!9H7Mm^z;<#^MDHE92LM zGu{P{_2f#eMVqZk)!~oE-Hr0fp+;rc!Z`hchPW*a(#!DH9ZA0mwrmU>d6Q1Ppkbw5 z3a9;EI4Z7pwElud7V&rE9yk(zCu})`xW_mzr2-!oJWR+6^RRD`5>jE?d>>nM57k!E z$x_M_i_76uwdUEFN(JGzGB8=B!lk}xC8fee%*42m3cS;rRJaYMCGH%#=5PxfB`fgg z>tshEBBX+VWegxU;q5w>lN(^mMmf2TnaFRoK}ZEF<3E!xn0PlB{|SzWE910O$Rhm* zymd#?zlSXsPC6wOth6`3C7AZ6WMVYLzj;UNQXz}@Cb$QV#OJ}5Gl+YP^HM7CVZpT&|#E=$$m@AUWfObiHHxv;EVz0{cyyr?4uLNjw&Mf9&eU?YA4Lahqbs9j#Xzh zY}u$fOhPQjsyc5A@nUF2)R*rBWkywOsxqI9{vY)OQ$^N{8|^2fgTRx~@A<-z zW#+rgL}r;;nqQrnSxt3aD=@!-Ss4Z9Q8-ps+|fN`M=dbo$!N-Zv$8ylx9(V39)v9$ zmE{3uB0tjYC!?u|X}o8CAH6pX-qXm$XlPiIxAJ5()d!RMWZVZw>Jwqhg;P&I8BIk^ zBfn=j`Paj-alO-xC!?u;nDlqY{cxneD{MJ~zK0Z$YJv|P9wy`*<~zQ{OUz+5&G$T- z*{#wEG;t|a>$O#MSyO2$E1&O!bJv=9aWvxm#s7V=qzAkM+<#>#vn+w0&ZGk;edR8dI9c$W6>FgEgMDWQ_Mtu zLSqxYeMt+NM*S{w3Y!NQ)bD^p<4T=>P}tv9Berw2Rsym6dimp@h~Ap$BDij5u#&pzM^ABb=R!T z-LJhBEnU{U8|@{GU4bQx-KY!LG)-ic)E7H56XQW&%&exmt_?HC!mNy8<{faXthl3t z$c`#5#1clzd$Y2<4R77Cvb+VhY*dybnThEuzMtoR5V7gyfO5=N>I zCiM^DJ~&eU0BpH%>ggqnRMa%`-wG%H4LCNgyRq?*_f?8tc=c5Tp={BvA8+(K5|kni)@DgEWr>PoZHr=EH90(A!~Th`2r`^In$ zLwc@^VwTm5=Rr6fCQ@BI%S?<1buq2eZ>`|WzYS$(NQ*gS0+V4@?9m2fM}Z;^(CfI~ zPI|dwF$-_nvBpe?EgLmv3Nw+Pt`G<4b;6~QK7ic8?oNaBzHm@nNv99c>vX{6y%+9) zBkw(6%Z2k!9iZ0x&b$f-#+A8#fL^B)Cie>Ngd_Kru;mQy9zsBB2|iGGn2=iH z8Q zFM*ojB{(9kjMKZnvq=9FZ{3mfi?HRwNvC#yTWP=Q2f?(Ll8Mon3z&DbzWY0i_$zP^ z9EooYTh1WvG0sb=z=s776H+Q%>6^MjDr_*ht1EL{$}C(b=T0qohjcVQdZQ_TC$@m z1%AGr^xd3%oPoFPSW!-eEgKbO9W#-6(|O!;>wm3WoNp)NrLn$&{0USH*TGS7Wt~3X zPWHeg{%za?N8;DOmJ27II^RylOr!q$aO%H#{77$=Val?^unqM9 zliDJoq(3`ToiMpyiaX)R{UX?M26vA!U&;nPP{E47UXuW-F*H+gAy{0_^#o^ zcN#O|d{nV?!sPyH+zChS+ryR%=e|h3ld(SbJ>l%%0|&?TZeOguk)d?NUm$eQCDC8{0yA7)|`vWBT9;Z z*FVX3;kq)2S=J^l_RTM;E-{Z!ilFIY{-~t)Hk~$nEFC8F&dKx^A6V^Y{*`iT)0Yt4FtuJx{-)#YC0Imf%;1h&?kcyJ7bh3JUr z2X%w>LK)308siw>yptN^Xl7zOXpBv)G0=+92Vj=Q5cEDcXx4OyDr83i6!X&ttlcoH z(Mh-)j@76ITQ;iEiOfWP%42iB7+?*ZmH}TT*8)Yz7vTW8X24c#cDtU=n0fGd+!@C_ zxB|9ZcpfZ~D;zGl@XPRA_&FRT*Id|ETj{WN$jpcPaEBc8;U}==jC}Br7*eJ10ms9H zR4GUKc0{O@O1>)|lLzXn%f@L}3+_bgm^Ja@-Z4}q9mkb%<wSQfDxMFH%bik&T&& z@gPK|w!5v3JbS>zL?`7wjMu_(vOK^01ln#7|@Gv2z!wlb!2U<53mNfyQOUaHxCgxLF z)qk_#dk!-NzYr}?I`5F0z>D>fEYnskaqsa07`ZFDy!EnTRBwgZB>%hmSxF*me&lHY42mX)}sGM`j?kgnxZ43AEFz|7-vx* zhxlfmR3C3-CNkAWe#6m1dknOaGyuai2BZiMnl&GyW66#JDCP(H+WTP^q*b^djs>X? zwrmunlCKF_ka%VV6{P(`yr3@}?wD^unjs#`cl8)wV*e`j1QSx$q>ERLScLpHq_;N} zFz1!bwv?VP`J$1f=L^h4X6ecCteu(Zu4@(Nr!YCA;`|tnl@)&UJ+h;4iTRmrY46QC z^CP@<$2#*v*s@V)Zeu3$8)d}D0@4xFc>jky!tPXq_rKt{xbjYaEFj$nlltFr9~`Ow z6}DVB_0-1#(oxgMZ+~|%`B##O(U|U-ce?(ufOJ1h`rF`sIMUw=wwyuVLl{VH!G{hH z6LPZiIo~uElby5jeSv;bwY-LQrK_jz^urlzEi?|N?j%iDYO6+`)$re2*7jBzt}HU5 z?3+$fMyy~a#)FKQB6_XWm5;%cj1lFdaG0#1qm#&vf+U{KmQmWcM8ooE-_!7h9Sg~a zVarA#`5-fqpLm$X*Bb4Vze~;p>W1&YA#tV5AHyr|n}fzT@#Y;_e;u}5IP1A`jnvNj z$#CAkg~Q^?dx5q%nt6XehP&X%{MWGM4CWrAyc7z2aPTl8g+h;SM}$x~HeaF8y}CJA zt*AO-+aIH~$(m?m`XvD2wlX?d1j7>Q3Z}3{T1mmM1v4=o1jA(BX-zL20@D&*lzYS9 z2uH~ZJlc)yC`81U00b=2u9OS= z=`R6fk*?vbJCZ&Dwp=*r)RzFPw66%K{TVnauC(QTR3b^x5M z)>Mm+AF=58KP@G<$!jH%Ez^~K;hRQel`J!RF%y|(CdbF5lUSd%%2I||8I@%P93(65 z=qR$I0Ewrvbr6n9G%F`7J$SQ@g62K2WuulH%S_}qhRooLgEqqFkSmx3FbJOw2gH@| z#*A>vd2`H&@x~oFp9xzoobznCu4!X^b2#f8;h?y(=BLJM9WZ%ck2~PV`&!s?25*l6 zUTOqBAb6ON6O}!DJ0d13|H)S)Ol;I!d+e<2>ii$|04qw?EE`jaz`a&RB#T6N$(Mzc z2>)az#)U*+ebywxlAoZgi~(c|GBFyHj~Qe~0U{&W|S?dxZ zgZB{bfFth)Y&nCs$M`NK0v`}OOh}3FqVKRIB*K65UCW%%DxFYP6v7Q~o?4SE?itHP zgv4oOJhBLc>wHs63WRSn6XQW3bSIoNeeeiO${0N!f@5Tb9sP*xC_LgRd(>Q95!!6Y&<8v4)V%Rg8veK#pjz}t4Dya8;v zaLOB}rr##%*M*aQ4IC5KJDI;DuKI7%-UV;pk@hm!at3XWaa~FSJ`{MEkka59-{K^s z!OQtdgPB9MMrn1K&c3SD`pRn*k+2$0SZlV$D@GIv&2p*H+wZi8y8WBWgyX_*Wn8l8 zgr;wPNu4mrOpFJeFiYvXCKxV+sfjyDKFvHI4we;sbQ;-Fz=$KS6!*<4b1vSzW0m`=Qx4+DD4eGs7TgI(?l-}f3+J9X@=6Jt z#{RG2?Eef0$CbT)Mm+8&OgC?_D65l`+dACU&B3U=uEpPEt&~nwc06Vq!vNXRW5Z9i}9@ zCl$n7;RsnlNBffRv z6+Q?@!<8*RTfObMN%;ME%Z`NC!j=msJX22A4a#2+r~FkoBCeGA4*InBCh0HXtvizb z0&F>hw8uCur2sGg9wwv|*xt7zLJC}%uN0VYWVuyRmKUC*4x~%b-LL8DI&L_+hhKim zFZc1w{p@1Ru=rIrF|FwE7MW4<>v5l!%O46Y_UoLW7|}o{QsA&tPhk1sy)qCd2l#> z1N`TyKi(Vu<3@R~MXvM4%kd;S9IR2{Jy{+txNn25(}$Nwn~3W|b}h$~2TE)D=nwmc z4}Y2di6^Y8)>jNKk0)aX|@pn^~ ze27PTbfWT3I4aiCYJokI$?uNqChE82O*^7~D{NVe+(&idk~ia-=?bP{{wR4Bi1{=) zBCeRZMoW8dlKwE>x+Cci!j>~gOMx}=XesK#v=u|uYPr>ulm}(##%)D1@t*Y56VW$W zD578FyQj4KP4#Az2HNyzQ0^p8uza;9TfC!923X`;mAjyfHEqEb$)V+T-&~Pn$gMoa zvk&hGFrmD-4qF-{EJ$$hRXC>DA+rhbC(wjZEbHBqPOrll8WE^Ny^Sz?KVV zy}(wzG~~yGBR?9Bj4N_}m)m+_l0ORf!jb%P*m4GW50RB9Bt949SvCKHjclp_l_( zHVVZoW+HR!9`#{DoQ!5=d?@*X-D?KpgW!l*Z`a6VoIV*Xi}V3_>yD)Ng)J9OI(0Id zmG)3L?FJkbSK9i?Xj#PTxCf5JtFYw^;vOTo6ajo#@Gv1K9nbp?PGZvW_@rDX9n%h~ zmXq%^om6S6FBN_p&R1))#k<;+fMtcaobp2%ZY%=e8sB7*0^n=R#Cin4*enxUmv&QK zw~3?FkC&BJG>78@Z6Qtl)`&)W>tyAPqhO^!W3d`>rmt@le5tLf((9$cfoWE1qu>l# zp}+(?(<+UIGh}7gQRowyp*|fRm@_LXtkCq7Y6ShrQ8HGktuE8&BJ3*~Kqj`GtCm-` zdYb)}m1NWU6ve}4y)hiWb(H$ssI2PmI5=8F)+8Q=rfhGyQVp*NtU3j|Qg2ee9vm3* zzVfPFX%%ibJ}A^sWp$;GDpY9EEuT0Gt<*2kcUQSsSa4N+yFv}!m$B+#i!b7iGQJJG_ku|hh6Zqv|`QEAo^ArV@^Dow&R3Z3M?o^SJxfNS(Q=HbyU@B#Td^wxLv;5B8=?Zq429O(fuU-v zGFYW8Q=zFvC9`-T?sMtvxmD2EE0W@Qx#fY1?+t&N1c zG8#)G%@dRPeyE~p(p;)RH$>>I)f`&UYS3Fk;UQ)#KA|DzD>b31M?D&RUw8($8bh_- z@EH{|)1FbKwxd2stGLN_)L)6~L*n|dxc*vP9}(9_#q}|9eOz3BBd)&{*C)jFcjEe_ zxIQJWzZci1#q}9+{e!svQCy!D*FTBtbK?5Exc*sO|01q0i0fa)^>5<(qPYHDT>l}i z{}k7MiR-_`^(ArrkGTFmGoFN#iR)x>og%JN z#dVsvP8Zi1;yP1YXNl{^;yPPg=ZNcEah)fw^Tl<6xNah@3&nMjxNa)0n~CdUaot>8 zw-DDY#dRxjT_Ubqvn#xv`ECklp4*ux(qjN^!@yedJn&)iYBDhz8wPHpXedu`;>qki zqvY9zcxWfL6*cij9iJ!;!j_FEig|PGF45Yj2KEc#U_S>(!ulvLGQsjABNMMpvX|qn zI+DEZ1svf^B2Jic^a7*QyoQYEfsk( z-mD|riLm9u+0JNhnxh?k+TFWnIN{gB0dc*1`7uW+=goU~cf4^&&bz{v3+KFXJ5+qL zrG~mc9CaCvi7RUUF$C3rllBU{eMj0ou;s#O&ud3ZZiUr|pBGO295^nn#5ZBf&1N4= z>SyCVI8u*c%Y{>)-i}zkq0zoIoc7IdJX~q>&)P`eP0BaoZ97uF9=2RK<@xPMrM8i4 zxStQl{VW_9SKRy)1eQ*i+@HanaOD0JY`Jjm9i>Kl!8G2Be;KUB7mgahFUmOp2*J{umy8+GJ509!7cE1kn(JR1I7IM~bKNVtL(cWm;8m2t;jinr=W z_9EDF;bfGRx_^T$7fyE)d#_A`yTgOQT6sG%F*aJ6Ka=3E!x?P1<;|YA zLDvRd$v?m;x3MGSC2-FQhdhy9h1C!r6OQ<3I1sM)FBetG`@06(#ankIy%TJ? zaMIn$Q6w7Saya1?a3ov_^Rbs5pkmy^J$S2*WZwf@9uH*e`u?4B!pWWuM*<~FhuRoq zW4u*IvS-4U3nx2~j_lEH*_*?`-UtW66)d0MCg%(pT(8F)b>w<2Y`Ji*Q^es%8rx^X z***gY!<8*xT5cczWbl0oZ`hIV6R_pN`OZ=fx6&vtdMH>qFCY_Rqn!D7YZUj*dwDM2 zyd&$4VatWH?oLh~(-0pVj`%=060SEg*H!GiG~+Jb4{z0x?B1~D!pTl;p9ZJVZHChw zgrng~mw&ju?YVjH4&W_25{_WYg%h5{PU+L|ULKD3QaBW@c=@UoKU~nbdoRM9b!2-1 zYlkJ zkcDP$=cnaPJ`-=-k@D%V<-#e?Aj<7eRcQC}jp3NDhXdk@nZLN3a^Ad~uf-d8x?soLy*Hr~Tu@JO(zo=YaiMpSpI zw(#AgyfNOkBjp*e<-#d!GeV9SMbo+7@Aq*d&} zaK;00FkBh)eOT?!If)R;<1`|?VMo5JV9VoxFaKDT#`n^2z8As40QriqY#Dqnz#Det zI}BScobS~3H^el+cZCDK1CE9(V7^1A?YTJ;{{U~4v(N$ynU^v?c;9$72<@4b7r)UknKf@b#^#r{m2!vi%5bxp21K$w%BZwAY8Dy%vsyD_TDOvQN(&WWR;C>PYq*u;s$ZPBgzn z_*6L9C*VN1g5@(J>xT#*#~XFz`Uq^faISR68s8zD`*^To-k3~`rDC>!hHwVnsw3H{ zu;p<;_QZz1MQ6WovU|gkaJ^+kEheu`1@#8JRY$U~gDn?Mc5?H?p;ANt=I=l_+X#+@ zD_j0nDEHf>y9#gDk!~Msxp2Bun?oyFjZ&|E?_Lzn_X0Q?u6+6Ga@%v0@G#!8BjHcM zmJ265kv`d|iR3%N;r;*)gezRGrO0WM>-X_S9l8D=Y`Ji*-N~moHL!mR2m2Q|60TtR zh-?3V=yQ0hj%5D`TP~dJBr3>*@6*sO`Ax7)-hxbwjZEfi7R+t)uH6i8){*T(*z$N_ zJ5=k{*e(xedjuQ`*W0$umfSYk9*Q^X$o3%Ea^Y-ewi*}{$gLE1Ae1|ac&HFa!iZ0%qzWnjE`;+46VdAKciLWpdB|k5QRzz1% zB0pvy-qp4Jy5SEDFOAM2zxuC@&ZWz7!_k6_A1sX)XZ$2ulJ$f0$z;5sw_aP_)w8Nx zD>q8jF3Q_#sa5V9K5aN@o=4>dIBl&t7a!JF?``h1l5USyrA}|O?o?U5cBg7-ZMo4* z{&kuB$+F}>`A?Q54z~U4xED_?)q4Bu^j_>hdAR>t0a9*3xXw47x;r4h%}n4ZJV@-b zRR(T}NRNOvcsv3l5+U28)8B{SkXb25KO#E{o_G;^dDY6%0QXDW3&#rcbJ((QPTt%1 z`I?XwhG$h!g}Elg3#u^v6LYOFQx2hxB$aZl)l`bg;@_fD)|zhd&bFdrsV1vBUMR_F zsU3^RGfW|iM3J>)0W*Hz$bUJRUv7H|-EA^EIdYY~B;Bb6!sF|U`J{m-ZbA^YHm6GDUtS^WO zYmJXyMRt^`9rOJ!9oNm7%DeHV9d*PzVatY&$eZyD7ARh-G|Hc#-UL$q7#t8+%KW5+ zl=CL%kK&Cxay|{VTsY^2_CZra{=IPI--To2ihMIRSFrcPr2ie<4@dgnge@0NzdIQM zHP%muvwjkegezL^bi}-~XW@=G@}CY{E}Z{FnjvVc4+v+yFB}M0*8J&hGOaQ0>%H(s9l7oSTP~dI zjMT(U<695sTZIGS%2%9Vm6~-LoGW;T|{=zXi5jIPqD^(v*h#@8P)r z3WvlMH~$)$;=alH&v^5Wtp5aCE}Zqo>e`_Odz;?{i|?(-#Mp@Mx$NFn{WocEj<@ef zdsEnQ25pZAXY$z_e=6f)LOubU>pOW&yr5;>J-c&#_BN9t@9L>EyLysOAElq_uYeQQ zT3X@*tqc2nKY?{Ep8seW&&EoVIi{@cTAs=E_$H8iCifm@Vm;5~a$9oeR0vAab*+q? z22&Atid=R7FdQo@*yu#Eqi~7&79jfiI4-WdH(|qu*#~pz_$uy$BlR!AmJ6r8@W6VlRjSaAs`Zh7ES&tW z;n=v6=gaW+ewg%sh5O-1{}-_34Ei3Uz7!68=dEfDCS*O~nG{q{=7)Ge6OsG#-2^x_d5GV| z_m`zB$%m*LnEbJ3+Gy>38(~-R2YiDri^%(!iOeFhG`}j6x$)<7FcYJITn-1yiZwc$ z?5G7~#En0f;!Qi&j*DQ+M(wzOnaGdvY_8oq`=qqV$GzkZcJ~>i?}3BjN_t*u^3myl zsXgz)9dP7*2W+`;-t(nm?}SWa{@-xs|AqtO%6uVXZs~-{{U5j!j@w{~1gcbjulm`Y|L2fVuJ=Mwy6wtlA<56Bqe{Oy8!zmUk8})&n zzUpA9_k@s;CT3O)tz21d499zW_hsc!wK^Oh5cKyVp!<6psa9%D3I|0sz(##lu#JIo zvwu~iLNBZw7!3=OFsrP7(r$H@wkESH9E5x-| zT>HeeEUqiXb(OgGi)%$(BXK=JT&vQq)2gZ00e*it;I(i( zTmkbtSo&_>!K?AM9Vs_q%Y{>(NJ}Of-Ygc)kP-8QfEou zP0Ig;S-5_E>EE#B!YOwri@_S-ox}O=IA(nL+w5!!+o;n!;H^5|zuUo<3nx1*i4j{i z)bJh`j`v+~I9#hV-+0n--Mo8`!JBqud^BviaK=;HPf;|)XN4m^1CE9(Vt%50+jEof zsd&qdgxA5A#{psSj7uYYT{z)y!_fc;w?K8ei*h~IN_P;=ffK1+0O)P>6v6=Y_v3g5iRY#NqQRIx+Ceyu;s!@ zPZ3Y>HOTvfL*5e(hU=}&pFOm<9vHRy^?1XMe0PT}7tXgk*&d<6Js})!KO6~HxO}#h zcx~RfWxQ2KvMXTAg_E6@#K<;V`gAzn^Wbo};^niYj_W4lbMU4e8J`VXE}n5`Uy^nU z-yY8RRyZ6Ox7yoGg9IM{c#$2)`+u@L_O7 zT<_iXw|u1cCh3Fm)*VS72wN_k^dz>IRYSZs9Pw&66t0N*t`5G3*Qn1;yje%KgRteo z*-n@Hlr_L#2nYN*I3BKm`K}J>yLks+j<@Yd`BK<&;gn}CFVojc`rcMPaj0CQw>Q#n zncpAI`Cd38uAKRi2%7iC9eoepz9Z|qV9Ob-J>FH6uRHQr;XF*p*By8B-7+d(cYHbD zBUU}*^JTGB7GqIjmBy&5p zt;4I0OVHBBl-*%oqR;a9m0jVmS&>Ie$d39Z26zbjPPikEMd#J9Wuxe9&rIZZmco|% zv$NbXPO#UqUz_~`v0`V<%=lQ_d(Ps^ zw6;S9#E+ISpP9?d=xU+%6l3|bCzxZ4+#R4R8e6PZdSzkzDok>jCNr@z1e4bAc# z96)OhM30ai1y;Nrt4<^L$t+KQ#C>usPfx>^jq>!QuL)V6c*X^lr`tokpx2()`QhO95H{|!8nOl<#Vhf@m3ux#Nn`Iqe2|wYeH5Co;5)gV!IG8s6uRcpVJ|2rzcCyi3IB25&|tOFOW&mCN8u!Xl-Kn1_R}HVbOMUC_OI6& z{`cIQ!(nfz(Q>0jPSDrDzOl9Ay2*GZ-n1j*X|UzO8E>&Z z;iX~UKOFl$aD-g3FJX&N>+6k~347w+IA+4@VatVQ!gMK_HSV==?kB+UaOKW7;Yi<2 z%KdoTj+D!=<-#d%mN~W2pkEvg{nK!GT%m8lZuZQsm^pAB?uug$oC8}fJO?(<2wWnT zwJf+ZJPU4z1LT?oTdgk(nDQ5)mdlB^;?6kc!OgJc!t-Dv%{w*TFNX7e0S<&KZ+^^D zGFdjbK94u*$n{y+a^YO(Qi#-m&aAdv+wp=*# z`C7m%wfxQD)ZYXL#`WIj-xaZR!sLD!?t~-vgJH{sbDuMyt)*(W`uoG7uZ5%H3Y~w@ zUhjcPd^PTYBk?9|xp3mslSNd%@~yG{QaI}`!0~Wp&F5*-ca!qx+}l2{t80U<h>+zZZAF@%Fw4wp=*x z_U%nWp@w>+=Yv&S7nv9v)u!CusEBQ^? z!i%*VCi`n}Hyqi24Ypi3`?=b#lkytvj{jXa_us%_aplez+>9=m%pb*FaAf{4Y`Jje z^R<9k?)KS#4i@Y)$;8+Qc3$T#oiMpi!<}&CJ{h*0!QEp6wcLZv_vw0=kS~#)>ASlp z@q%`8J)7@`d}sI8YpZwbV=s)+w>0Zb^>wkgz=>6b<4E5ul3TS8XC~IORXewr*yrfo*M^cN%tqWY^6m9OI9^t~Q4iTs*u;Eh zsQ19ECEgKbO6*H0F+kgxCYwLQ{H13y^SAiQWFNI^{%6&5?9qs)v>0gBV z;Yj}i*mB|Y7av%!wdgH}a>FQmS_a$`o&k5k@o~+7Em;O+_r=VDJ8)kdv)~7?<%}%w zkOWdy@FB&+gj5xW_;y67itiMlDt5_K71RHMRxoSw1*nQ$`T$iih1|uYx5y%?D!Q48 zaic2I-PdZ%PB0tMS*a>s4aduhH`HMR_G`*{CSnFcXESigeU8 z?(ZS50#(JaaBN(;>#8E%50m~oa6cUBzYVrrIDJi3q$8(gz?tD0a5@|x*9@?!igaJh zEcgiSi(?ji2)3M&1s;+>stP`&c$ko?Vk6&<2vu=NzVC~7^NEr2#`vAo1*~jYGtU0j zr{e;}h;NYJ?i*(*AZ}$Q#)E*E%qeKa0LpD4ON6CsZ`X$*>Wy3T!B@x*p+Lb%O zpTygBEEK1Mfw$OWE)|D%84;<^tXJE@lUAdT< z$WJqf#}<0jH10nquP~)&B3lbhwF3T+#T4-Ixq91=Ym0qdyo z(Fhn{2ON&y9Na_tV12pN=qXiKl~*)MqvBh=*`yD%+7DWUU=EaOmBFE^$k~H}`#Ml= zQ4hoIBpc|5W9xBrQ2%Q6#sCE>{QjZsXnpm8(a6#!B|~q2rM7C=erg}oKia`L8aH9H z-e@t8tVefZ9u1ZnO>vIrXp|eO&8pxQjn^UD}^9c__`1;Xp8Ja`KrS1xAOZv{iUa?sSDU-)~*M4v{hM)9&DGK5soVU zvTtOi68s`Fk*Ng7>Zs!VY=Pjtwy8G$lV$9s$y$A&k`x5%v8f}PNPdA%_suv+*Xhse z13k&ulK5afaoN?#P_43(>q5%3lYD? z8+TlYcnr2|EJWnZd5XB9HOBM*7R-1KnZO25Yt4^L#?#sJ>2@U&A(RiOXWC)hHhjPI+HAB(9X_bSTRK!(hD^-n=90Jz&d)v))*+76YROyB-d^3dh71 zHvdwr>c3gJD|q{kv{%BG3#Z+k2pEm=CE<)Ogd^d~n18K?$u8qQJ|Az@k?gs!<-*BM z5%N-l`=fBUKZJwf3YU+`ZCz~ey$x^Jk?$?A3RO-7g5=0&98WwZANFA=eL)nlsSOqk^{XlD$+UV$aa|^^JFzP~ zjoy;}EYE55MB<>8@qNjK!0Gc|tQX}?CkDLW@na}*$v?jD##@aaxM2E z2m+#_APC|Cq6mT@2q=o8CZ+Ql?yBnS`&I3BuY5jQ=0;_L|~NsF1@n+J`WMJgd6{VYg6ei-YKlA(+hf!%ZMEUkWRy&U}t~A1a>v zN&ehF3%iEOT^u}V9fryNc-#yk`<1YA410$OU)2m^(r}PaHN)Gk#gD8RW{hXMduJ?Z z?fsRTe&rV6xJheKabDb?tRMG-3)$}B#_9*LEo|ZCw;#d5YK^qUro`npzJ+d>JvKjd z4Gy*R_B}2U>)6rSV`JS`!iH=smDvBim_2qoW`J$q3s&B&n`?&u+gxRU@21|#24MI< zFO&z_34v^Hv19jx+0p>p92?r;_Z)M5u>AHH**-7Z7kCRVzdgzREXn1!DT;|UpTEv5 z@tn{9!w2KP3ik-piB@mon*hpoGnv1F_f1UZFT=`4GEbWFH0ddE^=P0sdd(a32229G zqp_ydq6u2;afq02vR;69Ph>q0R!*Jubm=Ua>NMB~`orE2_6ZfX*y9kj-=w`1@1IC} zZ&*2X+RZClOiUW=&-%kY9(D;8cI3*I^Qv^G+Nrh@@1Dqd5LS+1?NCpvl3WyS4ic&) zzr%Gpk|p`M$u8rq5v-X-YVse#QECmb#xAy!u(d*Gt4UiwT+EG%lo*z0Eam}guEowdfn5oi>xe*4>6qxj)r)Q!#NpQ;wijWVwQLkRyMN4 z6Rr{}ONglP$`ZHvSix>c<|lkI+fsg%dn8XRd>yS*t+Cahz9Q3nNpqOn_xa2$toD^5 zqO!s|Tp~6rBzpT!I-)LS_X_E6w`O}^tnY9V|2llmu5}L$NoN}`E4GQ8_UmrNwq90j z8?nOremTh(8Tp!YrmMhS)(zhIu^v{0Y1P?QW%2n3N7`Na{(5ilB6x1?_;@P5-(T}HLUNG4cmFCR_|*)7IY&dzT?-M&vvnoe%0B_@$77Zp~m*M zVrN)$%E9}}J3IYpwNhXUcZD9-_W@1N(!BsyPMt3Q2v7K+Y3&+*(4X`Duve&@)kk>3 zBQS~Ii(5b>eh;jiI&pqIZ=+w&ulsZU59|vnXLUWZy34qpU%~q&(tR0LPMt2lp2PP8 z+V#BA8{T<)115ppVNyA(>p46EllTJM0wVEwuyX3e?dO#r=+AjS*cVjJ>Uw5(oW}LM z6z`WvcW+oZb-KfSB=58SoR5dSLglQk=g8WCL3|}{0g?D1teiUW*}*-Dz6PRY@vr++ z|0?VmD)qUouMy~@Ft7FNa4U%9uYr|QC%<-td~3x@WB(g}_P>ICLuD_{8McqZr2iOh z2a*0GuyX43XX-1A8u#`$y(_oXnZ#&TZu$sJ;%&GEMB?xK?-8FU*Mc?B+xmmv3U_k{ zJ0vV$Ewe+uPH(hV^W6j0!jNTYMI0N@T*NkJ@-6U=iF`MOl~cc>JH%qWhWBWHyhp*l zpyqE;nahU^2Hhj@eu;DsgOyXKJ2mt$MMHd+KjJfBhfopAH;qD1f(*{5;hhsXpA0Lf z&Uv=&iI)caPJiIH!=9l67xlPp6z2SVD{cjm{LQd(>g30>=aU-f=lwxH3p;`eTAT$D zJXAHV=x6XwiCmwCl~d=CNiE3E2qwQ zy;VKm*Rb#Ak9}v@L)43UeU5!qqcN}c9dT=jk+40i91{r+y9d<NdmHA>hP-Uv6$9>o(}qe$&hJdR7OVvl0n%bO1G zZtlD=<^@syQs;0_+^&Jy$V*0TW4;RZmlbdEY^D?41*2BzSN+883fux>M!6JLHZsaZ zTq3#6>hgPVdf02T$|KAw&mA%k!M>q#4}T9%ABQ=gJb>Flq<JHefAr zWMB+(c&cPL684alWbqSBCqhG>I2llqovPO(KZ$or%n*md%0`Ab$W=mR2oW=08Dd)> zE7*qa3zL04a>7CKYgyq_ORi*Nz$zPSY>^KQZhf(9nA?iWTz#vu!o^%7HY<$Qt54Q< zAmp%Z*;4*!akknM{Al-Z;m0$>=S1#^h5Q0}O zek|Lc$o5{|!mmQy#{MkHS0N@!Dq2#1f|-F`HAYhZB_E0Z+YsMiI?<#q9_u#4$w=(K zz&j=;_MgMbMq*Ez?*x9)XmnS5$D8hZuq&)-wP@0v#McnTwQjI|8}F9L_6=A$b+(=1 zjHV&p(jW2WOaiN0sfcHYWn%ulO_`4k(wpGD6G^`xR!*ICd*CIF@R9z6KM8w+N?3l4 zC73G>vWMcm63HF}E60#^sG3#bEy^+n33Y3Jfon37x8}cHBhjM*+3~{Fn)P_$%itij zMwsXE!qr;qJ>p@i@{3&~NLA$*aEVn^<%uo!v*U$ZBiEA04`D9yN>MlM--BIcMO(a) z=|tUfvL zq;L$ZY$Sy;mq@M%SgpShL3%yw-*e8t7WM)a=>(3HSuEYAp2}Q}_eo@WC9Iq})78t_ zas=w*{!kx<-9UvZcl0uo4XO|0of4@&2rH*gwNUPkP#yQ4_oezS>;{Z#V6s8=Exc1A z)z@L=)TvG==T~HpEkvuC#r|YBV-h1#fSdEGc#P6C+n~D$@0dt;BUm|xu0y@7N^Vh% zIY_9IdtcWul_hs~!X@_}*?M+iePw^N`0Im%)S5fUC3hFIBEzkS)OnVYyXYDys^sqB z600b=pQ^O>%gQgQ$nUD$z&?Ufocidvw&LaN-%c1>RDAFQZEZ&l6(17KFGTaGXdV;I zEcW|H4J~TyWxM@o4czvWy!FGy*;;C$K9|Xa z_VsXeu2iYznUmPb?ge)0qwxFw9)ex@?(9IR&Q1gE>o4VxZAyN81SF+(KErKV$354y zZRrTu#@-Td%Iz}(aswef>yf6!IFT;19^{KiWR?}!>WTeyRiaKeE9}^{bFhbZx(CX+ z;9S*AZJ@uOZ>|wOXOs5~t6_#J)EYzSO;>YMEt~ zN~sz5KH0iZ(-VgE6kcMeF|`r9z?oKWw$__nR%%UcJ`)L(3tieiGcHq#&bXc^!zsr{ zik%wVSE=WD*~Ko*13fOxh*YN1&0N<%5agjfJw&VdS};F}na(F0vCo*bE=+B<^O;e? zvhsTO@nKjla#8q9@?p_XI9pGgCSJ2)$#5w8B+r0xaEdjL$7UJmGgGh$A|ASrrBPvt z-6uGsf)VgO(G-;pp+Csuij0be;rm?Y;b|_kiS}G}mlkZIJx{jh%XUb%7s&QP*Y%i7VWwO0owpYmZO4)u%wpYpaYT15Sw%5q^TG@U@w%5t_dfDC}+po&@M%jK% zwqKX+H)MO0Y`-bnZ^`y%+1?`CZ_D;p+1@7G@5uIc+1?@B@5=U0*?y0=@aE%_*`Fo3 z`M5KDtE)Y`eudfM`TXK#J{#8>F^kj0gxx0HJ@I~tba#i9Q>Qyqt-Of>PUF1NpYtH>6)IlXwlcfJnR_ zR!*IGr}9_5qS3z2pY}DdN2s*LOdYn~Bz+a$JCXDiuyX38CpFi?HOi0qQ+@>Y29@$u zK1DYzHwiz4_e>=G0IZxk;i)i$SJ6H2A-6u1N(JAHT@KVkkgGs#uw}D7~ zJgl5L^$E6Fd`ExK+rzG)UftsG4)Lf|x=&T<+u_|3*=_?Xr_Oc?cM{*irCrIr{($qa zKd6AGi7S~u#OK@349d&!zKN7GuyX2@C-4n+8sH230iOrEf(lq%!D3&a!S-ytTO!*A zteiUAbz^rvYP|39=Y1FK9xCtk_yrw16my3DK5hyz2EGd`ryc|ITaIJ!oO&Eg;Jb=7;`3JbF3IOIiP0&^MV=R%p^ZF0 z8}F9Lc1>70b+&6+wtH)&_x2~fC+ryNwJp|JEQ2tw>D_T7h}?IDl~dZE5dU#;Sm zf|LDWp9njJ3R}EVpbfy}{TbWF3S#!vgRehPL8#yVoY$@)pWdm`&6VCB?V&y6@sy-=>zYLmx% z*J>S1VsvV?dAvA}8HmY$JZ=b)|7x&u>inmM-u>5@Z|~21JJ=!AD_v|y4;gQA-UjcS z$azaxId#tK#=fPmQP2BRUk1B}N?klIjU9>^0~y>DVhkJ!E2kag?AJJ1zF+eQvvVX+N7uj817U zK0a};+zulB>9BI@^w+W+^`zB$d-|i_9d-=$x)&QKEQ2t)?}{5i}ovq%#%Afxguw$tF#r1C) zgvtF<+z2A~i(uu{xvv{_S$xg^kU#wgVE0hzi#z?;p_nmnA8raU27Ur7ryc`yqmGNK z```4BfY)H>P$NLx^~DUt4!Z0*1C1n=5^Lnbjgwf}s+tRFWL zGXmDfEg?q0da!cp5im7$)~8nWAM6kP0N5eat6r?@hm1El?~8X%PYyKLdz(cxXLjb{?0Q?7|!b-MWm?bUDth_v7P-=jTUy6X^jhh|>h+xg?( z2KROcvn5|GXG=q;H`=TD?tyAy$Z}w>coo91-{8F^ZUK?^=CE?i)$Q;VI`ttt@rg4B z3H2enF4q&q<%jHEY-g`}%vjR;lA8R4n*5;J?3f=cD$a}fNpbzSA6&@3#nza7P@R3& ztX41NSd4_f9$kmy)jF3nwy}LU!SeNJ_UY)B9g!2_Eg!Qx#x+>f$Lz{nBG%E1ilg%} zJL?A@LPNKG^DXq_#kqk#wl%J6sA2u$Rp>VfLbZWDf1P}Ry{yl4K5D}Z*wdFiHs-r? zh)AA&G1uRe0u!-*0uL}nQ1bOkt_W#kgsUMkzmWP7=6 zuaNDPvi*{5uafQ6yoJB6aVGn-B)_gPQC@f2;>+#K49^d1+{#Dd|6z^KGo4702t zHWP+1mEVkaOq|MZf|ZS_JZZii%uOtfX?UMy1M$TB4D1W*ELt@2if=3kyUk^_r}2J? zbf1Ei)2AyYDUI%oiQaTOnZ!ukf5p+2ldEyQzgl@1!(o&C}72s?s$ z;dbyRAwj)kaNQp7l*n~ESUGjB?R~78)4(qG2ipsKf(mw`02|bx2H8B`E0OFnSUGjF zk?Yy8a_U^$gPR`hioMq#>^-n2s9?nv%Wu^T zvUlOV63KoaR!*Jlcy=SIfqlgv?8~qts9?nv8{9n`T>pl5O62+?tULy|8aF))CV7{| z^O(fwl*N)OThK7L&c!<=a-9t;r_Yrw*J#)4Qh%;{!;ZkN*Ic92ky9G1J@lFLU93&$t=$YG6Kr92pU)^H{qo7TW;>|k4jE@fBdt2Ntt zxcJFpZcb$F%<{9*kH^4>!RG*?N#n1sj#o+Jc`gx~G!`Y7HKv9}t|gD@lTj{4@|embMxthXoB1n(r6D$YkG^gpv-NjeoxU~jd6&A}NOz!{2jUaOWC#;-0_ql4~ zT^0NHPw{5|J|-~|_X+0JE?!ZM8HmY$A#Mnf|9n_EhQC7rplS#)fjCI08saL~K$bPc z*2%6rOx`V5FATC>$dz&}Qb6S4u(jqJ@>b|<$d1U2WGNMvxdw|W6*6366{W)HY=yS& zuni5}wqhIl@#3C*X<*1+l!bn6IF;UPwX3$GQ0pCP>}{*>0I5ivo4(hw$uteeU$>+)$A?Q^v+(Mt`6MXUmBi;45xhHNJoL=le(486aPIzisgS zJ>D^q?{8t{)cHSEO9$XsD~Lxy58u?hZ#Rgc9Zoq ze$-}LrryW4MRXOakp~*b!?9`&w8kE`rPrQ3+eVZv*%sdAj~0t#K$&UWvdDs*?4lk9*_$x0hM6rS_=6Rj7456Y7h41u&=CSi)S*O2p72-B1+E4BbVUa z6Z6Q0u(FXy&Uckic|^pKS01VPSizR^dz0N*#ora!rYn*@o@PV9R(!2N*4WXOK1i=? zFoPn|X~`N-x%ydUjVHN8Y}QC{?{!Cxy|J;4{tD)}X($IHU%U%@$%?Z0ccv2|(vatq zaJ$Wt@-4hyVxo8*RyGpFf4D?)lR~H1aAak?*q`xcOkyN%98AXI2-vXoCh0|Z??loY z!OE$Vo~gDMS!sXDpZ4LfSEyICI3!XZfl2%j+yWx;17YPD;tn&oDgwl`;2@!HCZ2Fj zQu1cvwPcHc344i}K2il-3dgE7&>D+vReO1DROrw2W$V?#v6*tE%1+Dl zQX0(X>XoWgvTmcI*wlRCC&RxBKh&`9SfdCHRIBW*$;`5BZh5}km8sRMLyess;dP1c zAGkY+otReXudz*dSr$v>9){g@jiRO0H4sFPw@iONTOVrd_GW8rPGP&Tot-VSf798m zpo-ZzOmJ0Gu`8de=KEOY^Oq`=TT-sqchf5Q(tP7U$KY)0u%lQC*<~emS%+NaT3i%Z zatMOmJwBNNs|cGauCu39VRv5QU03%>Pb!u3wK_{sa&WFwF%v7Zw+;sLO(E;L7$r1o z!O7L`lxpk@cy2{L3Od4qh(E%U|Ms{K*497xvw&P zyuxsu9s`~HvAKLdFEi>@R=Z0@*ULUoZ00p#o9iXQmAod}K!Kfp$*ScVyG&eb?xspt zzFc8yS#~?%J_`k6K_Uy%{RnuvpUwM)T2smX&h+q42m_;z8ORUhGxb7WzB0gq+w~$2 zq-wp{ewkk75D#;`RJdAYMJA|(Gb^gu{(g4(g~QbK?l-Wr^+@z1uI2>;b-!DYQP5Qw zEChE6&iOi0mk7PD@lz#dOfIPH^DY_=xdWBaZJeb@E##Bn|X3l+jV*;{X zke0Znvp|S_PlVNFuD3%>p;BOchEeGL5*-NkUGWNc{X2ol5)+(#@(bvT2y#q_DdS*L#z}zHEQ^y~rQ3CHCOG$h%~Fw`_kT+k0gDW7+;h zw)e{Rr?S0Iw)e~SXR>`jwhzko=dyiBwhznp7qWdswvWp8m$H3KwvWs93EBQiw!fC` zld}DdY=0};r)2v(+5TR(Ps{cXvi+lMpONjKWcz2?J}cYjWcwG{J}=uBWc#9Q|0>&; zWcxSS{#~~JknPK|{ikgICEHhI`)}F4D%=0a_P?@yO}4Mg_6^y-DciSX`?hS~k?p&( zeNVP+(?vXtlkIA@0*)rXHG@Qe`CO#TI8df$Q4JXZb5?kfq z58X7x7y2VUANGdz*=*57EOrt%EjJ0DgZE4%d={*nI^oHIpZG&j4e^it5#J5FgNj&Q z#ZA*q#y`NjCNjPgR!*JqRB_M2pTBFA|LITp@32Ftl;yFgp-1l0mFk_#zv7(}IX@38 zr_On9*1oYoV?KX|_x!vLlNg=(SsZZ{GZ6DSpMx7h#$d-q{Ze;eFP@)V{i+I#LKYq7$F|o zPo)vR)}Q#*uvZ+2helu$zY@2ANc=KbId$SQS`YulzBdi{qyE4jhMhtMK8wGms|~>9 z{UB}tk@x+ua_YR-VtbJE?TH%mcm0{a1v`eyTpUPi8HCCGb=(Ld_y54ksdJwwcamzX zH=F5QoiAb%qf?!Wb2OS;V5JMy-PlHW$3(sxz{;ufo!Q!+8{B@gjlLS_!~H=Y0(*se zQHxqlAAxyAABbB(B)%W4oI3GoEq?_YvNhbN_~Skab_o@?I7U8VzRCKtc=trs$HU5F zh;^`QUSoZWKkIM8E^%bdH~kx#{Ofr4MAl!0l~ZTkAzp3JApgN1^6y|@P$7#~o8>DR z2HoG_{SxW^3RX^??)2!3CmQ7`YkHSs6Pd*5lw)i1+pVbmX5Mbc`zO*~9ac`A_Qs^w zgR~&n!9NH-2)l}Usc$NRfb`arkqNfN%_7FeRA4kE;smDi$c(qQ$f4)Edb6{Uk@ryb@zEWsh{b%9*66u}+ zE2mC(a_hxO4e;ImfPVnHg9=#eglL&=UcqzWa_SMVX47x2!%Q^vZ~3Et z9d-*9{cK*U8$&Re{|7gL$ov&pdF(K6ojRj2U$mBYvAz+L7@cB0%DgoMllca?2}I@# zVCB@APj6l%;&>np_#ytl4}^U}y~xE=n5g|G?fvlniL{r(%BjX}L-Gt9Z{u z!q>sdsT1yGerlbIrcwT#Kjq)R9-&eet1)5gP13)@dnb~93|3B^^i1ii*6weO_QcuV zMO!Lo6Au3H9Sa^DI! zg2;UfSUGj>GnmW5$3be$bN8g-c1EQJ`5b@9 zXThGJLKa`?4XifFo`LsDBzqdHoH|)ne~ZJ>G`c_Vr+X*t4JzGc{Vk7mlTK7`q1=x5 zOeB0OtULw?%M))k!hiKA{5Ow}ME%7gkQ4{Ji*s*fsuF`t!dG_79c+0?t2v zEM^p3jN3wtf(u~f)T5xYdFXv`biT&@L4WS|!ych>7c+ag)cT{{#Dj%6S^UzLo7Jyed!4{rwlmr_?g#pF-w*Z<^$Hhz*WyNEM!-_s5@H1G z4J)S}0W$-?HFr8#uK3UTlRqBz3YENgBBqbPB)$^2fJl50R!*JxBf1i zoI2^XnxsSD9?^ie&-E_ZR%a5UQ?iMt+m=C?+}m&?tlTe{*fy>$_~&#L0g?D&uyX3e`BfhI^pb}BEPv!@ zz;2-;S66vt2qyE>a1)5kPllCKXFfYfi~1L`H0*c!W4|5t3>CY0uwom9N&Z&c3L^QN zVdd1xZyo$a*9M}alQWq-!YVV6)Di-UI~=9|}XFWxU?J~H_6ulZ5Q+L{+w6BPN8xZ+tRfGn7jvZ z1Bkq9uyX3WCk5^r=<8pp&DCG^2Ynsv4Jv4{$)RbvN%$JPXCmRNVCB>aPiB5%yE;qR zs)qPi{)iug-9bexjzVskZZduZ@0!T?Ay_$e#?$K6m6?30md}(cWqmK|>hrt{ur?+! zIt7?mGl`gQvVI39(jc;a6IM>0^-Ol`KU?LF-Fm#0Kkh9?4Yzozt&hMYzA0`2k@&{2 za_YqA34al`A0Oq<{s`DV)RZn>Ac`N083l*owh*J>U|2czD3~QY*IbyeY(YN5pZ;mE zU#Rrw@CP8~7)~(3j2ggT)buywcn(DGu}Uu_D!&I z>a^!5Z^ds^ebyiPGq7u@(ANoF=0VVghGDXQ8aIQ;{wY{Fb@pos_N&^XI%B?fCEv*; zMyHY&Ta+z>Fu700jUaOGfR$6{F6Z^|E>G=7eP@5{JHmdUUhv_0Jv;`J`u4aDMC#kY z%BfSAS9@fmr-psGKlWbOF;wi~t35IZlY1UFg2;UtteiUcwMBv)X20si{^&1&eM3dR zZfJ_v$6?Yx54VFz|7=(}b^04N>BsNz)RMrx{*iDG>?dj@Y#fP%_%WGLaTjhAF)F?f zE2kb6(?nF*_pQF-9{?}IE};g1SiOyyZ?gUy-aV1^i?DL)tUCv@rGb2gpINFO!?|ER z@A7^glNg=yUhI?zTW^w{i}y|>JsVa|opk$PU$$S%=1ctv?+tr`dNGTGRs*X|vU}pa z63OlkE2mC&;%?PycI7_o)R&=ChE5zhVW@c7{I<5@N`JV6ursJ|#q(5UxOAf0gI>eC zCKB$4l~X4?dH-rYSE%I;#@G2Xz6N#&m9cn>By74t`6|3~BIPS!y0 z@xc$YwH-B7d`L9E5Y3~ad5kww;+99pwTWwRXj(A;IY=DPk~o)3WZkS7SXP|T!E(Wj zC2eh+1gT+B@jNz~-tQF8XAK+7?3f=cD$a}fNpbzSA6&>J8=XrF<$SifFk9-$FRNxF z8RqCvbM@FiU?HL*&pLH>!ugIMmp8L_(u9km=6m>J?_&Cq_h&oj}db zB_3+*KT>Md!m(^qRkd%ZallAQvNxUrAR}sKHCtXj)Hq}$&8#!cT7RXMAE`jB46yS~ zM(T>|=aIPAhz$4`X4TRWQL2?HJv@7k%%xkalm?mmM<%P+2D?UVn1fwGiW;d*P|ufZ zm1QO*KPLb_Y*>=iynrx@b zc7|+c%63iJ&XVm~vYjp4IkH__wsU2>j%?SJ?L67em+gA8T_D?qvRz-c8_4#3vfWU& z8_D+lyv-NaV*_9E9{Z=bfc@LP#fAL8*XQmSDDJzkjs1W7@&D%Q3~!5?H||ct;YMO- zCT_i3;ddC5nsutSn6*DMzqZWbMrj8&GI6`M50e;)<;qu?OCon04e^RV({gh`YYE;n z@kV$rSlPG{PMYw9TyW>0;XT10?{TmztoNTq6R$W%4?BWNwu3)Y4C*Iiz2I8BQzF-^Vdd1hwg-2@8rWa^gMA$K1Qo1!ybxGzl6@5K zl}PqsSUGjFlbUNB8r?M(de67xn8aw#w@u4U!tcTysITz61uLgccsyI)(co_F4|nmX z!4)|+JstK2m9Dr4YFcg*J_YZYNcbdJId#Gl_!7B>_YQx&x52KU;uZHmVrAdR z%eUa&64`zeR!*Jmc(zWgk$uje?4MvqP|1q@0< z?_DZSV-llNDvPZ+Ez?cLQ}C{dj3>g%sWa{nPxLgvyZ8hC2HM*` z2Ko|z&=JR$IutTVzBUd!vNnvE} zyYbG6oPPi-r_On%ye3*ZL^Rm{_J{pX*eg`n;usoz1m>0fciaLZ@xQ{#sS}^T_wHzz z7jEEPY0qa8qf=>%J7lrt$hex* zd*Qtj$?gFwr%rZ_WAt!y>jZx9#5Us@RO@)3M5@QY%BfSGC^s2um+bZa zXs?BxK}9Q%RF}IW4Zc_79TWLp2`i`0cLLwHsL_4gpYEfuE2wnk2Tu5ARfFxrc(+8h z55mf+vmMVi;c8^Zz0bRfdKY#Cm8@8e4t5S3T;IYwC31ZoR!*JkMCPL48KK5@u|M0* zn8fH*$TBC(t=tCRMR>xO+M=!z{**uA!(n$&uU>hOa%*?J!T1ooYa-(V zVdc~rPYt~_piw^EpYkcNL#UL+>Q%^iGgqI4cTVK|Sy(xB&J*~n92()<{0ZLzyMjts z)K}sS6yqBHCf+TP?bl)D)Y*23H)}MwfAWX>2iO->xZ;VSd?U!9`#Zc}BHiD>%42{o zf73~$J8eVn0(uIQ7@Z-cOhfz;f5bb$4xwJaV*U*o zZ_d9T#5*T)-WFC)o%8y`ybh?bFZi?XhMh!Zzad|;9A-dfJmheLi1BbVtQ->$4(F(- zqgcez91ao(v|bPVo$CQ1ffej1mb1qvdKAmVgV;eVx!yv#CvpnQ4RG*UBd@WQ?LAz} zDJ->?6_HmWEeEiC#WhgW0W4qU5{VzcvYX8pt%2LlUTOVsakkpimpyi<;j2+74>fl8 zvtvbXzRF%G|EPxw`{2)U`D$gTv8#uOup{&e_RksC;1%qLWc#pee<9mPcniO}d>8vO zc3md+>T-u*t<5ISFe^M?Tz;Al1bO$_dQBH^XF8Fqv>}Q`8KXwA_!QnRang7aRyHP$ zROlA;Q#3m_@}@hPNsPp;z^dr7>|xOD!22cA9SdX4|WBWu2^Ih)sVsVY`j|{+Xk#0!`9($OWm-EQr=m>*SAPO9UfeQ$3qw$3t4rI)(gQTaoS09-AML=&Tn?ac3JsHnC4ojMVUg z)f9d$hn7QLXX!Fn4tYbiZ_4&9*}g5?cVzpnY~Pb@+xx}ekCW|cvRz%aYshxIY};i! zfw%B7%S)`=B$rv*gRHDo@$X}%doHppWD+BB8~$hJj>w$a5WC0uTw;`Y^YLDZW!^fl zvQg$GO|~P)=Shw2{{C$Dfqh{uu!<&Iv4AG*HgCX};QbQm?gcBSPPdbJsa3mZj8E`q zd>rf%Dr50hX4ra@^a{LpBI!D;oI2^Lp{h~?eWO3<>tTmbL5t_=A>&QX*W#TMIbRJc zr_Q-ODEBqMzxD_GIP3{3U@;T(n-u9h^+}pX@m`5!ABL4vC)*jm0n-Stv9WipHI7M) zPOT+!b=Z3I8h#h%K|UQ2R!*IChqyJ?7;o**c=4z)7B!c=r8lnQ&G3GS*YP4)Id!@d z<#L6F_tXA(KLtC3nxw@;kLEgy!S`^yVfWX2HRWkZi#Ha2`i`0cA{Kp)#yIw zPxnu-GpKasyL)nl*x>sIykjEY-@(eM^PRw#hc&u07kQV>)0o8Ql+E(m<*V8T+bMXr zM79%Q<k?aKivZC z2`XJtQ}Kse#5BEaY8C1Ap-fcc{H29v6cTD7a4y>Fy z-$~7=t-ocd4>sVWqzo*$g&*6SPjWMq1-TwtXd*&0y@gR$xpf zFeVci6M1-T*$}oGGZ3pnrMK0Fu=jZ6CB7kSKbuSR@!K|Y>A$l$*VmsZFjpNo!iweK zieX2Cfm(ryM=5Q^A_F=GmrgQlAB>VL?mhx-mc6F&+RZf@qr*Y z)tZKivzSgKqsVuT*BgCj}_vYd!i?g*1b5@4^ub6{4C<SRW)#ExyrkzsA>%6Df6O7%b@h`Yx2PDb(Z?Bx2VnF00$WT;_X;~91U-2>%Z z@LFc3HqhT+sn(fS#NV(r9_w-pU6C!_o0|JNjj|_S&tyv_9zoe^HM_Fb;%0qyZ&)LH z`UluDRwg@`EtIm$f|sML>qNuq^s;vd*;-4j(%p=K%wV=!5R%sOW`>n45APOca+cWngp+fGmKi;6#Pq8zv=n?YD;$EQ z;8SFKs%%e_?dh`pf^5%_?U}M|$o4GReo?k(%k~`Eo-5n)WP84Bhh%$!Y%i4UMY6qE zwwK8EQrTW6+skEpg>0|nExcsCg8f;NOV(3V4W!*j-ODWTT-CgX55|Aly25lKwQED% zE-Ty38>zeSzKJ(d--nfr8>yrzPh*}^b*cvX6*eAE&@aO-vEI)VP0%y>x=6%)ll9;5 z?uo2lgq2fgJvZidLZiN5GjHnin8Zk|lbF=!aq2MxG5OEM4I%QM4J)V4e|ofN)UYr0 z$G$i06Y9mjCdVGN-=w`K-anD{?yz#|w8yhbTSL6kAMqgU2r6RnMImOi$+d=eO61xP zE2qwN5_1t>MA6`0=MVQ9*c(*1;z4B7a+B~?c+W(_SHQ}t6P_2p%%w4Z%%Axquz#q` z7x0`NKNd3z9>Q%QM!^HHa_UjAUdwZqrAaLg+BWwt+1`OYM2&;>qj6vvjTs4V;?@u& z;Wbz}^+;GZc0pMSgDw2SU{fYBI+go+JPcxoV#dJ6xGBUK*br7uJqBj#&j2*^NBE;Z z4E72&1BfrH>mx9UABiX|sPGr^>wXo3G2`Gw+!$gU zdn=mx|7x?2p5B3Wc{~SI6m}4-hpN-oQ+g zZ;%RYy$d#5Y25Ge=YALL87lX=E$+sqAL(56df@kQD~RO33oEBiekLa$+SaB~f7ze< z-(as$sf)E6eFWyU{vvJxk@#O=<rK+L@!pA~ z*MyZ*Cp|;kYO2BB+aLCxuv4g)_AHUmMPh30l{Iqt?zjO&-n+uesq>!P+7qmi9`q+& zgWW+TEnf9*nQmUw{dm_z#(l7I>WpXV+qN~-*Z8Bp3ib*WwV1E<5tziUz%8&6zo4^i zTwCzZ>5`jzu5ae-&0vo&4IuXZp>o#(vW+z038DnZ)Rn>+A9g&OQ#4 z{)V_6MEdK)%BjHmY3QzzZAf3?!h&XlW04pz9?AM#DGFQ|~k zBlMQt2H&sYJrnuf04vAvbvU>~o&6!shH#KjXMY^#`aYIC`{PUPiGF2z{Jxbc`4jFd|y}DZk93Y z;(Zg7-`cRUk^BT@hs>ptpSV06BvkTy-t{7t$?u?Lh&n*=k+ zqT+dM3hDh$@qE@W$IXlT!TNDO*qLQ6tJH-|vC$qlLQ5;Bz|7=$C$IxP^3`lfj`Aef zZ&voj3e$<8l3#S@4CRG;4Er5H>$7;TtIR6Lwv>;Dm8D-MmI}3chWVyXdS)e8DkesG z%5K4FMLg&=*0(ZC!czz}wu|Sr+;TJQ7Aj_OU?WQSQ5o}pv zR}4FhFI(!#FRNyUFCZenzBsTuGC4Kth@#3;>v5N=BAXf-MK$-VE2zwfndKKHHQR%(Zm^52xQkmcod}MGJbr*-lAS6pJL8=a^U02|vXM`==Mu?roh;^A zlkPFh5bR1c=$2u3Q0a;d5G~V9#>?@piHv(;<c9Ru*@o!8gf}|ln zw$Q{SJ62`Fn|Q~>wDKCPY^0S}xkPeh!Zb10+9_}0PkB=&5#CcVe638SET)i%`Q{X| zG2T6q^@gx=>a5pP^R1ot5&pangWW>qJ)7^LF@|6=KNvTG$ov3UIfl8zoUh6TF*!I$ zsIuX4*F+`Dh9{CO8>ZDtg|0%mr!BLhQ0}U%h^#DJ0tc-%;u=Q{Up@p+9qErGgw0Kp zBU6;6YPirfwp7({K9?8^Rl{@%Ob%Wv9=;C~lb4ZNU-&NUEi3fm4NNCOrXiLtqxPFQ z<~w-*#2oW&SlP%i-{KO<)ey7ABpmgb#{5NQ6ISFK%>M#=hRR%Q&9#lfB>!jJ3L^PG z!pf_rpRDAIT}&s!q#+i#Tc(@YrHXe=%q|sJ*~l&> zR|%C}MErPVm!&>du&sVOC7WF)XY1_qV6}Q%X4|gFoy+ZP99T_cjj~35*!+gQa7k4#pU5~ANVtW*in$0f!>3DF)5St}kcglQQQ%K5O5tiX#WF`Wnx zxec3xlD(?3;T*hIVk$WcRyI<}8C)W{vO(^@w($Kivji*Y4Ze57{-E*=@4vQF{sG=M zk@B6ea_W>r`>!pe|LITq@32p(r1kyRcG`c%`zO+V9#)Q_?J&2i@<2=l4ic(7D7p?r zmIoh7_Ce|7Y^^O*t5*wM`RG!^mfN9u$r@^-yVOu?nI4&!EOo->Y&h6Wm5eV{Cv3tc z#zLJCe85#Q)2f97VQR)~vLEazEBNBhOeaF6xzy0I-Msx+iuX;-FMGqvMt<3oOC(n_ zG?yA${?b@~mf7Q3IUEmrg~~dz)X*A%Nqi-40g?D1teiUW@KQs|XBzdd`&0ia>=`O` zW2vDv3X}YGxD`b5*TBj#yz}EtX~nRtuve)0U-}c)^v6Dkh%e5@Vs5 zXi{qpUrRWhA4I7cCB0nojsao>?ygJBakRft6FIKTkag7$yRG{Uaa` z`-d6<;v2N_V=<#(8Ey+P3No;AOcXd&3##A{Q;LIxDmeb+IRD&_FYVX>_L zg?CS6{SR0A^_j#-+&P$6wf=HgEc5kn6Nt>$g_UENJIwj2Y!H)! zgM=y@u5=AvSvLG6*>#Eu%h~EgS79(xHss)7wPu#aAtSsvvAo1hjZ8_FD&c6?SW;EO zQCwmyR0$no&{~mjDojXTF6t$)&%<7_LM~RBPJ~EfGJhpR!jk=}8sT$zzr-AJ0<3K0 zkmI;Say3GyxNWyG{x-A4vqbn7>=7zs@d>T4_2y0HH}Kwxq;G_kQzt!B-JV-%|IwfJ z?_sY{X^W*reFP@)-{KY!iT@f_jv?+axvTm>ObZSYsy;Zvbs(}ncrMx3FFNa0_RX|x zJ>SK)Mhr%`MJ(7JO;FZ&Ym|mB6TIH=Y7K#pATn23s)u=OR9KlUBTZEgbGgJ=s2-+8 z#;z3+ABFkJk*XqM7uZ?W5GXEYIuS4paSs|X-^@23!Mi8sn;l?fBj0?GOC(oItR-gS zh|4tM6=srWNl}6wLnXd8FB>g`Fu50SBZ%C)Vdd1h&sFpCs@Pxd&;AnFIaK!Zw71A3 z12Oquh#NxWe?F`n!{4DuP<4iwKpZ4goiW>WAhOQ*XtH}Rr`P%_m3lARDY3O>x5QIy zFj(HQ1|H><8fdqKFq+v++bi*;D-%^(Ji#T#LTMq1H3zTFH1ER1jN0NY*jrZU#lJG0 zXl)@+so@dVwBJlJujBm_lgxi$Wh2SF!X=U`E}Ey*M0}<(-)sl;Dm9odViH*KO=TWA zr6w{8ll(@w6-4qIz{;tU51&#K@ta2faDV!Tz}}(KH%_UEjKqw9193};5wIVu91{T! z)qyH7#5Cd{p$d#&x+XDMU_6=Z{)nmde7RPswq@#7_Em+*Q8 zeMF6f_i5WQY~wMb;Z)onVl;dnR*s1Vhsr_~Ct|8`kWj@*yX!z?adL37yFe%QRl4%* zJrV7*#1FDjU|Gx>c#WQ6>k+@xGXv|n@sWAXQit5{ibd5S_i~A`P=`!v4qKah{sB{y z7m=zxUV{B(1z-Fv(}^%?OywD;X}OtOUch@M=9cGRWh1xziAy9`Z%h|+bkkcJ=XF1V zUY!Q#wV4D~ms2^5EjUs8P1IiH7|l^cW-m)cak6W~sfyx6E-@A=iZzY#Yg5jRFh^s`xgK_yH57^$GMxyV zhIq@}7=oF9uEk9t=AWx!Wh4Jw$t9AjG3JUn+Hjjj{@2Vb>{h@a|2XU%DtYmCLCio* z{*U5@5cxk0E2qwXzM8Rzi-9$E@{WOVOkyMoPV?$ts4Zm}gE8aaU6@vb7zb~`$}w@^ zP(-LYL`*CW5~>dQjO##T9Wp)HI%Ia8Jz(j}vLn8aWpzk}{fF;1itGm69gbpa8fsKW zxfZF{RV3?*iQM8ijsE$}FwdIg9N0Zn`s;;vidrsZ z>1Oq$?JV3BVho%CE2ka<3shAyd>q{E9|u2xT||w84Yaz%G8{7>+=-h*jD_1_<(OD- zC@WNDA|@FJ300YV*mWSXGMSldWzwGOtyF6HNG0+f8v>TUtU=ev4qJ(MZ1)gmM`kul z;qkUB4OMu&!6jk~kL2c`4uMLWY&O^#g(WW>^;Bg6lNgDcpH8L|0U}T2k|AcyEc5Vw ziP>Z>tZZbH*{%{Qn~2Eq$|nDHjbE8f&Pn!p?aWf8r!6Cow6^R?&oZZuL}nT3uMaS@ zn^x0yrhnQsI#gcy6qkt2D+zuzIiMC9zLsK6hN&4T=0wAIe zcO8fB# zeEXOso+U&P_6L=3_{++6$~}1BM9N*Ta_W>rUskq|zSN)eMX*n(r1dW=+i4Hs{S#@Q z3oFOac9`2$c_5|&2MJXk%yJ!wEDsJz_T{$8%X@=|u5FoWwh~$5{0$oimY1xd)+h|S z#Ob$#T-eXekIYS$TH#l&XjHB67?+5x6%w3K)VQ^R;cXb4ypq&%=Nqu2tn7;~Fr5e# z`Eg}syLkulU%YQ(iupIJY^0cfx=N@NBO=Hv#XRC;#lW)Sf`n5{b6ZFL*#1b0*>TtZ zjT9s7&jjX2qS=ySwr4}~ydBw&OT?y_1Xn$$sDW!a=F>1aBgcFS_LM!xEMYnkDl*3? z+szzvINmog#~cDH8#(4cE|J_!BG2Pc{?b^V$?U-j0fY7Fuve(8!{>3R5tzhJ!7U&X zKM7V&op|Ux4&^hA`W^n%Z-YHUrLLdHp+;enzXi8~NdB9!atwKgVnEdsV!CjUP`51G zxDG_#vgDFo(VW(wtp=~GSl?H9jg1A%R@R_v^o{auiyQ;>WtCT55vg03e{qSiP*+Tk z4qnSV>+FUSH0GN*OaiOItU*w0XFAc^LM)R+?KgAIEWCeW&Y1x#8#$+wOC(oc$n(jg zKGT@*#caZ^T7&r>uxF^u!{?JnM`4oR4Yz_werH%Yb@HL}$)kSL=-2(}9|L=bN?$*p zJUS9H0?N20#0XdpE5}5DL$RRh4Ka;4NT_<_AFh*`tT(=s?E1xwY^_$w6|(ihAbUr) zmdi%ZDE~Gbz1GkpoKfz+7c?{iF@VUdW?9GhmTRo3dgB{hVl31fGxgzX`R7+KL1XrL z4EC2b2#WVGod}zTxWm;)VCJ1ia0`fe=OI|x$U6^kiR5YyxqD0Zn#O(gk9t=fZA@Y$ zDovAnc=wh*4wL>nFeB;R^v(v*n(FQnng-f>MFw*E;PG zjve)TNXthN9zroDI9n8VAMCFr5e* zS$^mvFjG$hw}6;>z5pv5spnKz36*+8GkH*HX@_Fh3*Z{0nxL zH3W)(WI7Qr^83;e^UZwo54?L~zIh2&HuB92Tq3y{Mt)y9;xdi+`n#i7tU-J|CNUEC zIwtY(_oX9)FuAXb8$sm0HmsaF_t5vHBW}~!@9WS06R>lrSG)dw>BvA#{vXE;A@cti ztQ^DNp-515hL}JcB-Aa={jLd2-r{^e;ai+#)k?N2m#wh_fNH(j{(LQRi*ptnyw=DY z)#cUJ2$}|%3I_Y%!v3MM*B99Iv6xZtYupxM z6g&p!m!uRoy0fsKS$M99VX;1{euZ$tA`@%`inm zV*}Ubl(%4N@-kBIO1=(z$_l>tJkyC#k?%1n+s*v)AG~j3et88}HuB5MTq3#JLB7YN z{H3v8^fB}bHCS)NB(O@F$~ycWlNy0Zd;{D9BJl;Va_YoG?=dN#N$MAjYa7=V{By!k z@v`}CZN)?U@gE4gh>Bl-p-BzL41xV{D~KVm6jqK20f&k}6%}IMaF9?%#V=g5mni*zu6nO4mTH9$5z;g5%d3e2w}jFG|Rs4%LDxIK-6VAfXD5y<7((3y#;4T^X6)H&Cjx!zqKW zYPYefAi5+nWiK>=Sz~Y1&wAm5;A7xJh)i&nwUCKySXd!1gH075?Ob9k6d!_MYw%hE z+7c!xhpL{xYz}+N8U)34nNEaEL!9-Z!IS-~!ebM>e`3;kKdfvdo%eBx>Vn7{j8Vh zNX!WMJZ=dw0zL;T$3%cbwV(D=G{4sydAB9~)CqetM_{co;W^7zYo+ z%BjaeXp4r`eOfGx+uJ)9-i4h+jRk#+hIK$@JiLV)M2v^mVda>3a40iWr6MLA2MJZF z{GaPUWTo=KWZ!31FQ{xCeL-bcIDD_JRt7Ci_+^8%N=N6Z6Xvu(FX~4&xHZ)g9Uk zDhBIwm_44w##yjesH|--sMv^~fm=W%ej2QtI&sSjDhBl*_*1_V_6(JJ++_rOYtw zN;c^44ZDX*f4$J-70Xb}!gEjD6k-hQ4lAb~0}IsS7K`(=I9TZ)2ZOMSsBy4?_V~pz z95WVbxH-gF=!cbKV!@%RP=$$@WE><^Ve)U+sZJIqogIl5CLLXcY)^M78?8m|fFsu$ zc8#7kLM`k!n0dkvbc&P&97A`Rs3Xn<7VQcy3DVUlu?>q_n$qK%BAJd62X-wt$ zrfIpETAsjrCZ?8O!pcT!`309quGE+=N{yzsG|nBL@UAb$Gl`L?E=|s2t8dhPllE$O z|3upF{qND9rHYCe;@kNX-v;-1N1@EVR#48ChE8v^SM%Ki)xwbF%ATWD63sD~)VIWK zAX48PR*t#G9p-*jK8Pv8K|+-e-*gRMSw2*geMT~g@9Q<+C#k~$Yn?|Ly`x+}h;7Ni z+c1&Y%2Gib;~HVAf+%x|u~0!wZjD=;S}uaQ870IJ>?kYx;^&!81WH5f3~ZTh=9hEv zu8H~Oi?FhhU(Vzb$<+`u#2nmmmqz+0%pA`}iXXvFp^}~zTBK+Vz~ucy+yEl)@4?Ec z^Il6;5iOT#%>U)j{2#DmsLaK(q-78$_m^-Zh}>U*m1DR&6alJ^5EF%igsLN!yADLw z5vM2ncIrgFAGEtv=#Ojz-D)YCq^!|4>gy1}4p44IlKwTWyM^4i}@;AEKK3|p-o(}W3@eEBHl4EkF>+e zMjlz6OC(n-OcU!3cFG@N#$Z>XL3sz*B~;4dO~i=#=A7|Cyn7<+ZDHlqS+A*X)9t(q z{=BmU}Ynn+{Go5D;MPV$*hcDXSR4&3;%&VLS-EO zK3N>;SMc76q+f=WQzsqzKADyFM*Dix-hfGr#2tWnMeE-uizB`Ow}41|9;_Tg++m(q zrGl6i93)h!@FmyKm8HTp$!=|!nyZus`q%*#wR$$UJn~qg3yxT8av?mHaIYAI_0ssr zEM=)1vaT_v>V{8qiLp>ObcTnnRS&1Z#zs+zk7L%3Ca0n`1Dk--O#hr2aKnId$r5 ztHp;^kblOX{L`>+sN}_w?Dlb(^q<1*Aku#lR*s?XP#CD%LQEYF5~{ZNlu)b-0WDc{`7W3JFu-aV4n5r$-;S#a6 zMRF5PC+8+du1z(&!{FpNRcWy+>?$k!;+9M&f~8qngt^Jy)$+tnc<;nC^I=%oNHZUD zl~8F$M3GmTnd4){z_Q}C$=<@uU}q}!wq@$oLa--4cqAD~H7BvrV8xL&+!~c(7d}gc zaz0zlWJ^8yW!3EPk4YoHzBm{~WDt?qwxpcTx?)l(=Xfp=n{pC--F&7#d@b*M1*T}^ zoiD@wvIau&T&5FY(-6xi`UuPt=S#Q+#N2Z^tZd|-OSnXGvyA-aknS~&`!AVQ*wt%r z{{`$DD);a=hxBon^nZ@qL8SjPSUGk2p>Gc9p3@@WJ^u)J8}<)10`zYV>0>dY;0@ds zVif!rR*s1RhvGriA7V;zkWjZdD_sX7Z*v|m~xq7BQTg~=Vv;DnNaeJ;f7D|o|;R-F?} zPukyyy+Wm}KZT7W{$1PxBJuCQ$}z;%{7=1}8k3g|luG$}CP)^MxdPWJssP;1bwn@n zKP(O;yK`#|_Tj?rNG0(evjdA*Yq&Lz8n%+im-4{|?iGbve%NXv^t+3>$&o3lSx*$z zwDh(s2Q~k^A&A5sXPDq(MSC!0t!~)h0F;xwbksbufJtD*mKAlelj%fwG$!)Bpd6I! zRgsy8_e#trb75s8o6P1C$yEwd#B)ju-~E^+*mY>|T?+ey%6D4$P4Xav7?k(M`zBJ} z6IM>0@^tk~(n9)pf6^;qpHNAQ7yhF5o3sb<{)x0}uyPD-hgm(ClEqDqm{_xD~_%^aQMIB%oh%iR6lkd7`MWc~0X$`9SX?qk~C|L=kE77i-<|V=+N))@@tD!D4Q>xH8n%R$W1_*KqEJPN zm}(p(R8ew^YjTrC$q$n~@4q#rg^H5CLOD{DtbhaA8imOeC4upgNzYQ0)Lny36(z@T ziLqIfFc)Z((xos#d3C9kjf-HPS%aW>D$|MZi7QG1kkSgZ(lLZvK}1D3>>n!sRTd@IDEJX>3o#0Q2rH)^1*1~Ef|X;U!J(p1MTwYd93)gxQg$7PEK0td>?4$g%L-+-N|GC>)hm5%8MgPJ ztH75_nn%_|%9CvmLX(>{9tqzgY8o>9`8loMTpSEVj-)k^OlusGnb1$ts6qmM;6_<`C1= zKCrTprk1!$s5B+w%qvZ8>SG1lwf=Cj3%ZkcW9MfL@>SGYBqLqG#(|Yv*2rrt9rl6m zaOZfj?OQDiBQb2rHRri{U*(#!xkPNPSyX(g()w_f{DPhQp4|<>$LA*0E4g|#&vvd| z&i-fcwY%ZB9yF#D%DK`&SH8PY%GZXD8d^knP9Ad0u;Q=1vKzf&1p3WkEE~0$s`pm&wcbjJU3!Jl?}SA!zY6n>3G5!DS`d@SzQymcx$M-T zeT(0h?GI%8L)qRX+q-4^BiY^~+aJsJC$ha)wm+5aeX_k@wm*~Y1H8>QI{LE5cIEr) zy+cdhWB)YP=qXi}4ei^QkjwT54{q7NPO4^CD4Pe0`?AkM?pxfC|Mz8V1}%P_X|cL! zcHAdl@sGr=`pc8;!33#Q@-HzPuwuxl*w4TI}Uyi+3AX|QtYT&Jj- zP`hqF=8yNIus^7H#cnxeyGeN$yl*1qkHE^QQ=ZhU$u-7Rf5sKq8&t;PLyS$!O~NI- zXCmPOteiUG3H**o!}}$FyqCkSpyHjxGqkvoGjjALc(+8h7sAS^vz?-DMm4}c_Xqql z*dJ8DB1bFR%`5n)c;7_IKZcc4r#yi#255la@CW=~*cDX3;tCdP7{(R+Z@gO~+ke8! z>9ghQFdEzUAL3m#{isd7N?Lxd;BHQ_}a_VfShL*rI!Uy>i-XC@d_3E9@ z=iiX=W`5oW@0`ea39Ott=k{O?QUm-sf50ceo}dC2Z;bJkQ{xIg4)2vnb_J|F2FSA2 zUybZH{K?)3djcdItXUgmug7~OlD!sIPMz!&weGI*{jERWU&H>O@)eb{vfZToINmpr z@}sbF>Xaw&=N=m135R-DS8Fhd(X6h-;~L`%9*1{JWc%*_9@{DEk&_1a1O9-w#yw4Z zt{|>pWxII=FUI>OQr-+!PW=j=+3; zZ1+oU<3TWFEus7q<|MBewT1Zau#c>$i@#$!5gu~m0S6^}RT~ffiuX!PBG1FhMiP0J zOC-0YL>}j2;XD5@?+Sk%CNUBfzR6b)hmLcxkY3_XdN0@~ z)GJv(&c#l954?XO?cHGI7}^fAx+)CBRNx??3WJ}xCMQ`K+>`8^)9mX_1Hln48omyb zlUI`}8omlU%L>1EG1G~FX^8JXN6a^GL9WBQCuW*!U}YoIT*W1ls~*-8GjPOZ8u8yS zlRWpQ{t9*smH68HA)RFqCilm1BZ%A|ft6F|K3AR8vMToNhkLVMok@&D329#K^EmsM zftdW;a6^dv-x(?X4&{NWFvJAnAfYOZ&$$jnRu~hL{VGm-sVCdlmyJ{wAA=*-nra%E zQL8MZ(UFr4p*5}R7tT5mlz8rMTZ!)Hna4?tc+SB4|~aqyLd3ui4c)T&`Vgd zU$q3W4DXkiOfs;tF_|36C6X&5ff>%q7Oc)G?_!Y;E#*4d!J`9c_8G5NOKrIG$4GY6~c z4bs1dokAr&E3|ms8i2|Bx3~dB-oJ*GQ|G;wntEF<)0j^^!khUdCNUBfqj`0U2Nsq= znA|7eMi9BL0V~IFcbNTE0U;&|2MJX`oaP$9vVb@t*>gK56l%Frr562;>QXpdt@)*K z^r)>^H?5A$Q12k@ux`%Fi=nJg1XqVV6)Thwn>cSwDk!Ph|ZxteiUQ(0!?$ z_pBqmdCy=HSb0t5t>2f%GVjDqATpl}E5|T*nD$lWASMR~2~|0K(KUGGed&jjy)T{9 z{2XfdtC;z0^s|@;!NF^dyhiV^3){^bPx>8d)Be_ns`~=#BeRyJkl5cf+*Bd450@AV zg+z;C#0OegF$go17nr(dt-(&ShCy)|(}@6Tti$hL>?oxfs>tZa%^)VBK3LgELPai- zT#+$ftR7okr$xXu%rwuE<0{xe)CgF}BVZMSF>hn9z>Ois!KJWr>T$5XTEw8l!Xy5% z@DS`IYAkH1t!7vUWX8h-xIx5txDQs2i3f+uLKP=s!f}vL#mN%afym-y=VYIln%r{1)q&|GE>KEmgsTzBem)1~E+$<9)ZOktzJDtj4Usv4QdCB{NEGBq@E zZ3fx~rY6U!YLG2qS6RUq*JC;nEDdo=aL9Nw!)%UsPRuZyz{*C3c|Vs(uJTw@Ox7WX zX|yxUAkTW^NZ2h@+Txbi7=p?Cleh^)=7++{sWYFWs*HH<4S()mfL%l7F77m}!!X&O zikm@X|9MzBhP^{MpehP6X*fuzilW_hAhM$PMN$t+#PgAkY^h{!+0?Sm^a2v%p z23uxF<}6Doalb1MRZ85;CB{N2F{wFhZD#og%*&`FUV{B(MPB?Z(}^&VZwxjqH zc+bS7@*J#eB$YpLiR6k1`Nm+=TN>weKaF0O2IsYz1Xfy8IfvgEY}#+qUJLJ^NP8x% zoI35$8-q=cX~aM7PyA!BU#P_OHwK$yFsXkOw}D7~7g#xly2Grm3I{PoI7q0%;U3py zB@2hS$u32V?_JqnsYmwhod(CMHP8qj-F97r5H?4qCrin2vTI1GlHo)yF&0XO34F|2 zR=E)-Wy~Yj!%nioE?&rVB0w7A`%?my>{dPNxEAl0m`JXMm5oGlC6`F9SePnq*KLG< z%}l{6c!TicutTVX#mZ91cyq#d6z`nK`C(W&b00Ob8AVszCUR>p*0IFd^BE6yv+A`D6Pd1;XxdpjtD^ zC>999=E!_xDG+vruNE0nszBI@ON@yEfsa`$5V~Pf#`KYcon(bwJdo)`fXD(tppxCH z0^w-9TVf(P3RX4}$q`&4@dCj{_<}v9aDfoR`7FG1BIh$;<qg!>$971;XCRt{|*&T)rMX z;r2Z?04yh2gKQK(uft7_%tn^-;B8k9syujuON@o`pgkC}Rvm0`G|EX{F>2ew0wysM zHyoWzC&EL1UWbE{y{h719^NZ4iOhwSjU+OgOC(nu$j|Fo`0mFn!LCDt?^4(w)=Rl) z@(q7p$4+@~yl*1qJz?e4DTh9f!@TC&EJ(1{{>^RTTzL;=K}+$P=)#kwkvUB@!!O~<4gVl?J(FY1E;3&0*SmW?v-@|Mk=v^E3Mac#KPoh1|ggtmTfkVL(Ricmwv3m2vR}rW2tdb4NhQ$Q}R1 zJ0<3hf5XZ~?)ayxgvuQvX1sF8BR*EJ-0@DbUq|T3Rr*)f3O&(7Aa-0fG6^I*Z1Lf` z-LYkMBz7&CWP3Ig?50cxmdYgCaf#SWvM9MSWKwh3T0Z$S%*)6ppMw2l&nHWmPK1ek zNup`FnN$wPdnP88LtteisT{~9k|Qi%l4yEM<9sHw2AkLo&ZomZp>httB+<0rqs$}>Vmlz8r z!vsENEvu}PLrEF)$Q&kt)m2v5#df9>0V4N63RJRNwR$lN@0OTIX28luBI)E3$rTIo zB?%khy_hN3wP+CD19k|NaCi@74CmeO&WW6NhLuz29NGhEV_o-WeGKdrDrb% zsN(@FXSgpxP(%>~6$C+$Lr@gO3lR`S1?3VIJqzTzP_162T ze&4sMtE-p8$|<}(vb!n}L_+Y8PzA#CzG+Do2#Yg*qOq*BQY#O>2@g}}7^@%Fwnc^5 zVl5Xrii5BF4kuL{e3eT~gyLWd>#Fn9!S zlo&uBf|acRazB^It}y75haFjTC-nxG1szOcJPJRXuK0##({!8he_;~TH|hQjE9cI5 z&igCnTA@@fRu|cK@%G`Iw{06|apbsWzRh}Tym{jN{8m^wg|$aER|SDc0v-~oAoz;! zpp^x|53_yLFn4&UP#rEUTh-BBE0%{V`uCVC@Q8IL4Z^w8zKk#bM1R4Eq*7R7&L=SCE(rNJUA-3J!+H0{$8mZO$f$ZWoEz?(22Mem^cTMjiRHG;#TixO`4rZe>5eWVC)zOBYEOwBC3uT(ziL z>>cSTjuxT^cngc8V_3&dWq186JTX4R|>iwiB9E8al?2>s9?F+w<9uGZsV0J7y2g4$-|{`j}|HKWgWnV zr*mwz@y$eTvNmiTsq=1M4k~=!$tA`JpP2=c&bZ4)7s z$Tt%?C@Y9Ojkih+B2U7~RuK6em&k6yEsrd4@LhKqdLLSR7cdE|e5CSCzM1HzJP&W1 zNO?A_oIB;jn~4t6dxn$V1NI4(wE1SDoAz#a`$XEiz{)AKJ+itg3`8pMkWhue?Y_ZD z76#j9TNreGV4xV!SC1+U7q$A}WO%eXhgyA~meYh*^XSBie#__gC;AQ}RSq1-CB`TR z+A*72n8_C>mb7G%@O8^+TjFOI6$T4zb45G#OYBpiOWS7u(o(rlEgj9iP1eRvumz!L zw2h#f8?@`o+UBU9%1F7^U9OawuPW_yR&Qz9ve7I)RNuZqTdXeY8EyB5rrx%pPJ9=t zouHTT&~bSCy1`HLZR2g%cyE5Rja%Erq4I6K9ZJLEV@hr8!$5C*ta2OU>p-!}^t;3_F%Bm%Yt6}dQdKuhern6nMljUm9@gMTAWCaXd8(5jn<{5T02Sb`A?SH zP1+X##h&ao-go?XyP{mRU${8>GOM6Z9bFtsRFUI(fZbUcV}@Uz67xGzJLL8I@_MJd-o>v) z^l`)m?4Pk$zcX7!O#9Z_bIcBG#n)PCdX{%3{DH)oOh;cyoW&nVq<@F$X}o3P%EObe zvbFM%HQ~;9x@D{ruiF<)cL9?ak995>oJK;In%BFD>zZQ=971$+I%;JR`&3rpfzlb+aWc>oHoIC5zcyZZ4 zyk&oI{k#Q}XlMP*m&C2RcvHMpBH4{#<=n|m?=A5~Is@+h;c)kbok6{SXY$FBG~B*( z_rV(`^8GNZoIBsn_?e0U_k?h`$HJbV!W9)3e-dQfxvTJ2iDXy6%DIzuysUnGIM{1p zM^M3vGkBdZt6z;bO5}P4teiX7S&7Gp#*O=UIN!%$hfw*7Q*08(+mZQEym2DuM_}dL zId{g-aSgzorQn)s5|e0WO~s!+Tamc~Z)zyJS{o$C5B<4)mdx5u44tyE@@7TMcY zqo>z9tHos_)zYYAQBr(}J>`3h+v3d<*=`Lh=YH4DXl!0E?%X57@h*YAK@H7fU87;S z9hVQmTP6}d2v*LW@Ko1_*FPVQ_p`7osCdQQD|WnCk@+;dSt8p{!^*j{oi2Cn7&q^2 z;dF0-ok685X1k5;Mi$?j@P>(eZ-kX|=R1{enKI};8&3CW*cDW|;@%ZIy)3p*;>{A- z{ti~ooo#2lTg^bbAPTOR=P`+P*2{d4okeyw-YSu77p$B+*=b^*puu*JaJIX_zM$T= z;&ouTztN(*3*Ih~?z>>+-0614do&HU<#4vkVNX!miWNw{v(zHnkGD!BTZEN!Cp%5- zjy2e>4rhBF>QFC6eausf)L#r~V7>GoXr zF1%?X<2zvG+!;@o8^aC4uY?nR5q1WZu$T`ucC=gf@C$guM81E8m2>CoIv-(+<-s-c zrc9!pHM9F&>W%PLiDcJ@m2)TC;sDBh!y)ejJB4}&6Az&LFm3>m_XlC++<7~{TXJkT z-{B-Du)NBh1&BTu}zBim0~O?!W}ScuPT)Q-FO6FfkjqpSYm zmM=ZFI_{#UVV?Gal;h~DXM6{cI_u&OTq5(cE?S@C&~QS_Lnsp=bGEq1=5` zsoYyRYP5c6OA?KLOK+sOs@OeHT3)1_;()97v)7AD<-TSQTE7zN(?(gj=#VzJh1-h+Yp`N7Dh%1hX&xrkHlZpsIgc#T*^jX7TAGEeQoH4-Bf(^QYJ0& zvnkp!yjE1IOH0FzM3FeEVCH~0s$iD9&X(6X@;X;u=gI4Qd0k6h7s%_{^16<^t}CzW z$?N*^x`DiID6bpI>&EiBiM(zqubav1=KKmDJ@AI8?=m}jV4hKh8MDCmvt9(AK=58B zF&=Am|74!g3T*iu5u*e4g8Qzx0mKR6yJ2N(LYOu08I6M206i2AdJy)8b3zu`pvCsV zhUGTl2ydB4xDQs&o$y?JQetqvD4g>JuurI*#gV4E{Wk4$@%D+dM`7jMY0v5}G^d9K z>ife{-wQj0idwv^kucuod^g@Wk@KCfa_*d`%R1O#{LgU4FT>8DGL{=h}(Vn7gbN+7ZSiQ0D^i6PUh$CS`SULBRFh^U! zGSKfAj(#!h66*afjy2HCw^@G#Z=T5dL$Gr0tk<$u5)IzRhx0xLb_jvXrhBN*- z>hwv*TYGF26hLPw02Lk$Hi9MJ{518$oOPfdEzjx z8H{fYXM8j44nM{csoIC5;$!#D8>a{At#r9k#(Vk*^9$y|wT5pq{g||*5Jp)$Go%B?`9mhcY-f+ab z!mgm+&EgdUv5QE$PtBI!jWxw=g*`(>zkUjO*C!N4aVv=A&w!ODAbGZ7(75UE4JUs$ z?3qCF@wP`R-rtE^K_q`WteiXfIobwJ1NqD0$o~Pmgo<2L=$iR9>*w+2iLCzuE2psb zctcFRWF}rS@{mw3nLXkAvXgwt?E6zXI#Sp}Sg&ndwSR8eXhr@hHsPS+xmq@)E7mnxcxZ7qa068b;0ehc< zNy!mE^szNN1nd)FCpmBQsLXV<8?-*=0ei>d%@Xs-Dp=XdBP+N>c5G+uQLPqMiBWA- z3^y=S0^dWp9(D+ou-F-qFy5{guEiTCa=sc?&YknT_gBibLaAJ=I$8fFob}_dQ>d)P zQ#YdnHt)x91BkpIg_ToydlYx7J`@STLqZh@pYZL7ED%n~wm|5VXSO9Pgbj~Gqmpx& z5ni55WPPYYXna1pMTxK;>qub9xHgxV2ql91RKVR}R#uI$OS+fNUbAD3j`$ZVG*8=^ zUp^x)pW_!N_h@S-s22-k9}oDhbOX}bB}SG1gO#nQvLlzsu3DHa60Y+I$mPtIz;dA< z_6U`+crKK*-p(IIymcb!rLc1Dr01)2>!f{NIPJ4xuTW{P&DW029@xas#4R8a|01lM zLfj+WtBOJ72M-BVG0gYvh^!d?m2Jf^xxmhb(T*(o1?vD7mYk!kzNF=9l5f4hP1aJ9 zV?p6(z8uto!cVxwM5q?nm)Wg{QU8WHS+&AHVIMhBM}K5G8jrd-`;3E)`v=DtaGUeBaC@u!@<=cMeY&%62u~0q`V2NoIB;Y zDz!RDe>|M@ey~rdq{Zv*y8Slo#d!Nf+8=?HQ)qi+byXOMRNx_@3WFc}1}9k6zez5_}X2A}5=6QVG1eD39Dn3I(_z6txti8{KR z>1aG;Vc`DU%h&N%i9zJ6u(B0IzQQFkFAN-fpJJ9^1-ixe_pm>xe3ONNoAPh*wuzK~ z1uN%HIZ+rmNY5P(COwNuj7JG*-^pfS;HEtTZ=XneDy*DB+as&1!a$?~4+&KmeAai^ z%EDlHYLU*_ZGHAI0MHr{$97heXkMGz~HNb~`B^3A% z`btRf^^7Y*{<-;NMR?3Oac|#J5jVNjXjtjXL5+qHE-@i0!nn)E#)OMuPFBUR8upR% z7LPv5bTl5aBIKZCt7@s}JiJw6_Bb0>wz9{WTq5&|(82csW=UX0cpvN!D&J&9=%#!R z-Zqi)U9fWQloJ)9gY;|Rq+fx3LM3fhgl^g|;_VY@zW^(z(Do?jR7EIKfro@D4642z zk%hs7*?#(B`d-ySZ;2frJ*-uQ@2sIw$vM!*VOw(Jo9^uM0WJ2Jyq(#MO_$^lQl-ES zTw;t;;MbMr-ch;hSMCA6Cf?BdjRV+j&kNaq#hZgq7TYsU5f|5MIU$G-7@yO)iWd-#`5>aCAEZ~UWSpwVarJ2AgK(kr5& z(Zo63hcZ^DjxLT4lh-Bu3ZI9)SRl{rJnT)!#9|bG1I)O<;-JL)R{(~k^G=RF$aJ(j zu)YO?1v4@aC3+mqz6{EGDy~AVG6rj4C3drUIY?92X+LN_%u#DzQv{MRJDH= z-YAjlmtf`mxw24YaQ$I8*B`)+z_`Zo)#Cbnyip?8@4?C`Ts_J)Rq=_8?;)WozD2$r zkrm&fY%9Jg;xvKeTF{gcH0U@-79sEBpE(iMYMIBeD7Yr;L169o2FEx??Uz}J;5?>c zAl0w7P+6O=Af@m=7B_&%dljsl z!rLRStI|Lu1P=*S8oVA@8ay}I=kcKTJIYfV-<(et2Y13l)j7@x--z?wQ{1px%SnzR z;db9)r51?3!zCs{kuY8M+DIZ#!?dh2;Yrv{PT1g(W)?~?W96Vf|V~z0TUEh*H*{x+LN6~P!@6b|3!%&3+qY!=*4W zc>}4{g^OTEIiW{&rlUcri{q)ArrUw#0=#KrU^y37wgSs2m&mSgm?tuC(_IGXhnP8m zs|@$UPN9+(Gf$%fHt&0J1BkruhLv;Yy|&7{Y0Uo}&itRSW2ns6Gu~frcEaZVGHwKs z`#)gi6z(3`UlkA{QFutG0;1;I5m`X&;gYpEN8{0ag_(^l z*{WJ)_ypc6F^C)hD_cS2V_YJ;Vxjp8v&Hu_%#y%5;Z)ckRKCf5sr+`dD4&eCO{9Dx zteiXL#J*I=oqTgR>2Jb5p^`TDrMhW<9dDmV`>U{W3T=<9t_lN@3OpoKVX(b#M`U4e zf3~|6Cij+>Ez=5vS6BzIfaDxwZ7dA9$yy?E6b3K)a!`fA3tVDC6b5mZjly8Pl_)29 z$Edkc9yUWu=Vyc&o%9G6z<+g2+rRk$GX@;QIk)33eY^eBTHA zgUUBq7`Q3#j<-#u{2o|2cgl&vz(KkiPPzj7gi6{h4BWH_@b-zcOR#bZZI7(33ImY} zJS0?M@K@i2BnyKVvfZOFTYNa7qx&fKdPC(XtwgvH97ZN0sn3 z-_fP2gzLD(M5q$R{8Y!!U}jc2`3dYSC-&(3Oh*G#Cw;2p$9VI^81n$EY{i)SxI}h! z!}@A9S{w03k+{aH;3DFGuyd%?H!@bFwT{>eO8>zPA@Y9>R!-sXkswr#5rM=*Lgkoi zd^;j@%%p55pYsaUVxgnERIU}P>|5rAnto))dyT>S#4h|i<|oDFDRFs5T%P3@=g1?R z$~{n6Rjjst{Z9PYqS$K9Xf2pEvP^w?wYaQUEtc6qAmY;$yR!Zyr(3Q2BZgUhUQcCk zsL)gE9x7A|>}|oJeyR9wu9%v8vI|G^O`jNXs0gE!U7tEoVuPbFAUnJicA;}fMEf!w zjapqC?`w9W5ry_+KQBKfgIh3W6#8US`7l^n`e^z~TVf0|On{6ibE~{zf?w6Sv$(eX-7dQu9egBrPA7gPS zwo@C#jnEUR;d-U7@71`xOi-AY^4X;fzZo=z_1Fk3_rq*t>aMbXDDLQcVHY{^MmIAZ z4M$zP#~EXijVdm8Hw{wZ?vPYNLiDJ|JCo=@Q^DMeA!|tHc72Bnn zrrV7Ffj3QL{5-6jJL5TO!eVoN^U=YaH)j%9aYf}UCa0SDHtS9B=83E~gq2fRd*tvq z0gE6hl7NSViYgcT4%*m?k)_c?*_HvFVp^hA0zL3Jbq=!nf#X~WNK>`!<0uA>@EuC3 z7+At3Ccunin&`7p4x9=DvJ%G0u#=pOqbk$UfYik|fg~&0uBr%5#M>oCkmF!wD}o&D zE1@EY7&$=^J>I0XQlPBg96hOHxx z+~vzb#gRL>L~0z#a8l9Lq-4aBKf#==Sn>?)C@1RZXG}+fBKPVyO}7h@Kj2Lh!^sn{ zvK3B#!zHqtV934tO?Mfj*FFZlBQ4VNnZ$UMpEl{_Uj1eVY~FKl1Bkq5!pgbxPVCih zy3AnyzHsKd!;Yce-R55XW+!a!@4<~Aa^D$NPT}s6^Htd(5`~9^ns|KIH(<$$M={%p z$E0dm|Jv9|@KAM*vvFU4jP2C2lA}~O-ggkGQsEdbkyA;&NhLivL(pTyK--3Q-$I9uG4U6Ge*wF=3=y z8jWnyj>(3L_qMnJMBZD&%2xWwnzudKu$Uha&U^{%7n8OW+~v9B=i5$N5nQv$tWc zmZTh&!-c+MN>vW$bBT#iIm}cYH%f=QU{Y4;a0l!uC+z5JOh=PnD+2LCHF789&!Rw4SghR@($DPvf)*HDKyD2~EJIYi=aUhpStthff zHETN@U}T%)VRTluIR^HalYSI29lf#;(-uc3?69*EH-Z>;Mqp(t>{NXvRM-(?Dk$vi zA7TYt?R+HLu+zCuWq7!#e@p9otP5Ce$t_$WHJU7p z#{7_0eQK@JQ>zx)3o4DTX%Y6e&n%UD21a^|%Sr=`K>S@T!W@r#q~-UmgyRBMQnt!L+RF#JdrK=u>z`;nFNJgmc8~^lkGF6op7552hb!eawa`#64-Ci_T7PU- zkfH(|9;{Sq{oQTz(Qsv1t$VOg?JG$i73)*kxAv+fF+dkbPqF(X{)pMr^7@Rt{!w0^ zmDfMX>!10xSf9oYQ&z7`*445L|oDWD@PE%tS;tdteiv zj$1$^-U%zG5cgOGQwwQgImJUlt>53|JC%^@_m^h7kT$(IxU|^YTPpWy?i)$a^5@Rf`Wj3YnYWCZRDo4VcCRKG-o-=H|A+W+!a!_uxhlx!(mVr*QYk`KoLXiNZrd zl?@;8?T9QJPRw@O;FQIc>Y)DkZN`acfO3ws`UhJ+KPjzPwP@K$xhGzLFAOY-|5#i( zRIHW;**ZM?A7yTvmWvz(!c=B2R!z&HqY8w{Tw;s@Va%s*(XUvk2t0U;o@75CKW;my zrH8l&T0WfNKecFSq1Myi9sl>}I4k#6D}cr!dgXHscIc%EN7Pjld~fQ;ePy19EY+h}{VB(~(EByCYxvb+!+UD$^W%?vd-5W+`-iuih zSdHz;I}`pSZGEPr#X9*UP1$ZIjz)?v&?fIl};bSvcs6VV6)ri}S}c^KI6v@#cxF&x4h7XFWTa!VT0v z4oCd}>=7#Jd3-N*(t4ZpeR%6c()Ym16M%H0pfX7RC!F+autz}B3F~drui&i{Nxujy z=T3TUM|o=iUwBe*y55pWV3R^BaIswC=!DIE3)~1I_f28t+_}#lNX$75;0J~S-yik} z6}XJ$3F~dr`{Jz=N$&$Ir;zqo)lv&%Vu8d%LM@D~;Tx*t!r1QF9>byDr)BR?pE7#V z=yCEK^-*}NItLnIJpy|Trt!KKGgq5MI#$fi@EucX#q0}QVvH5D%pR#V->0=+*1rWN zC2t+|OzkGvQ%=~?6--B?V!Ti5dPo08ylrAk`5LTj#gyx~M0O9=jQ43R)=x8g0%!P7 z!d{`WcD+yQBK|wv0wVEW!^*i6cf3z)QJ?pzVCu7(#CQ~n_8p$~KCO#<7j6ZS{4`iO zg}g`dSM`HP7akI-e)yd45SI1BuG#L#nZ;f>>F6FQJ5J>I7(8m7fu??F%cl-l1;H#< z25Z^MQA2#xcU-9&Vs9=n5o(Cp$*vo7lVO;aRYeTJzH$POx|xo~r7q?sN$c&o$spc3 zF}6govK3qUxI}h!!~$`uMbcvi?@O6QftAEXuwSUW*X8Sqb{}l&7vMG!shap;u<756+d-s%H>{jO-=i2%^@KJxa5~cE# zmh9JjA9O3+5@IZR3#@F#qBr?Us8}RMS5PdP6k-M2Nb^v(-$R-C(L%X2G{U~~$~Nw4 zi=$=M5v+J}j=K6sTSlK&dj|)TCTauN5o4D7`d`JEelC$3V_F>G;k|{h*wRr+N3`5Y znEc^Ih2idDcJxATk*z2%Z)-clm7WqCOe>1r!#xFd7JXZLRU0T4*k@MRF`1dP6R*c- z(Vv~#OlfJgQt0i8JvZE67-Hvf5K4sPaKgr3Pk*szc{~~h3f0kip^c-jr@vAeX8S{1 z7d!#IsSJz^mf77@=vh8mue7r_m2yv^*1fD+8SEZr1tR}ybzA+{J3Pcb?c82Qz0z~- z90zRYd7;eiq5d|~VJ9ucrxq3Z;{EQUgp=_6hukujoohuFOWWzQWdo(5fi~ZtaT_Cy zOY7s90-RMDU@i2vk$iu#u%a}~a%p>k^k;B0_RE{G_1RMXKuX)U7sp_M6*fKmy?~xJ zQXj0WC>BnwR4mDjW7^&ELUS6}pxMB?*c<=lzSEHoD~4c2>wv)&W-2bHz_ zj!e^boAMrb+eFH{!O9bdvbFcI7Ebv{*dKnBT{|Ajc-utE%VFh-LwP6jbCQ>ZQ@$AX zhaYA3075!aJ^Njaw@svc9;}=@<@x3#6eDi`IGptZuve(8MUFOmU=zO&w}43e9#}bd z;=7z$v9B~~y-oTRymcb!7h&bxNlz1x5e>!*PYJHNw`3CSsk+4} z?(*@c6}h*-+a=Q76jsii?(Ck#16+ggf#Hnzhdlz`#|i80`*>fxbt36~VCCFNufrDm ztOw`@@lS;lKLPd(mAH88$khv*{IR$dMDnX(<=n|n6B`)});EN+z8>}km9>cAas!4H z!LP;JCDOebR-OoS zJzefwGbs0jQ$7NA29>h-UQ%PjopmoS!5b#>Jp@+Ho$oZUWzfL;rEt8TPxr;y9UW_Q z#J`q|Mo;a+FVBd}v;0EkEXpmp=h4Fa*>nTa+9hH>4OX5Qm`BXT?C*tRz76&TPM7UA zwdmf0w@ajZ6Rey&-OhNYoN)_37tZ!s*b`K?)A=iFe1D%s_G!FTBH1Tl<=n}3HTNkS zc-K8GxRzePB-&F;&*pfWrrUS#JiKWl!@6hB!`mcMJsVceooZL}brb{c1L1J*gWW-eE3$6Wber)#c+*72cfrcJGoI0S z7sx>TS~%iYU~f}~O8iEOuqm2rL zK)x*;@-47asE`-%d)erKeJ9_98$jfJBdnY|@2UJW5`*%y;gp|-T|uQRGP5{D#k!ZD z#G56u{T-~FJKLG+7#IWag3kum*YlV}d+KZPa=NnJzJq7uZ4)VX!OFQ)p5|OD*(03r zZm=(?x3JhrAP*0+?%`eVc8PS~1uN%HcY%HUk#R4V!$~iP{X!)zK9ynj!M>;aaT|!# zi?DL;)TfC=8*i6L_e@xMBG7g04!SR#?me(CP`d8j zL3iQp66xLnE2q%)_%eX{xPUlT-a|rt=%na-npJECJE`oW*?xF+?Lu#1C_Zbiqnmxw zw4>Yc0kx^0Lu*LqU?ZHrjD0|@VR>wL!*1eB;jaEUQKJ&@VA zSext;9xyV=)-XHSU-fB|x56%S;*Zv0IvSq3__ntTqclRDZ1ZN^2x8#b99Fgh&n8?V zyYJd;D85MMaGXK^AZA$Lk%J$H-9x3n317rX?TTGE?uVN~90QAC<=n@>rs^AOt;fNq z!^go%u#2eUU<*DD#_Wzg7LLcwA&!M(VC9st;88`WLPR7P4+&L>{LiFR%tqcM zs;qblc99cr^i!sz;i!w9mN6#Ts463Vk2gvT8^48>t+4ScE|Fas(Is-PO?Rz&aM>`I zNnmw0m9E$a-!$E3JPU7{$an^xW;1}0estds4BSJ}%s>_hJHDg-;=H2I~~6X3z>9BK7~$GIGc zzYHwR)zXloDmd16OsT416_=O@Rl!Wvaici693~}i9aS7$0(;5{JNg3C(WuCS?v?F! zOt}zmn;28hhn20Eat@csu11(I60P!=!TMolPv8o}gRobqti>U^W)E!QKf)~_68|Br zoICM#RLV`I{(3m|f5D!iQWr-ux_V)ge-*caNd6^QIfcAO@>lhPNEaRws(x7E+Ywnm zd_3Fd8Pg9a7OFk{@u#Yi)x$2IN8^-pxYhS=Sv|D+Qu1)qJ}ogh%7u3^o3S~R973vG z_&+W&M!E3oN=L_5CygFAx-dFxV}4fCne5Vkb94>6cz!0C@SvyZgqEMFZT{q)B{rM&K=e^%xzoM7fe=Uw);lIDie`+LJyjchP zfBW*^SI2$ZU$`c-hc$CF`;9a@z>En@qb1&-@NWa{&2+SpSr;=g&3rqOF2kEAM$#Tw z*@~oswMQ6KkyPAC9ug{&?&#YQ8A;Ec%7*Q{y_+|zyi?_Un>LUaMjNI5lg-oq;v9B^ z)YVLkeNZGBORr=7zy_;3mbPmq7JmYKMxo4(T4!&63>HTnq4gSH6e_e{#U)aCEX=M( zZ_dQ5kJkJcCM9njH4}RP_LLKLbQ{yrs2DRb*GFsa!`mjtlzU)hE2iAVC9I=UROnplxft8t5>S;4E7x^u4 zD~RMbg_TptdnA8VKZtbUA))Gr%YBEitRD`}b|yA^pHi94bv7#u^c9y@3t9=$2M=54 zn5*v_JRKY0MzT)=3nR4@X-tNi>d%btG-ui>`Va@ea%B1hThqcmMD)hxiT8|PY&w(vf zGH9e&VqXfcw0Xp_M*6$i+e5MMD)D>XZ6D*T#TA7C_Nnb!o4eLmEElVVc&&q7yN9Zk z-jR6MNwv+*_A`&N_A1q0_WNLEuo&OZLv3!fR4&y@g@Mx1#qQcj&+_=5F15MI<^2UV zZn~?5O8eu-@@l0#TJLXnk60^3;kVxbT{5GaSh{6SlL>`$eQmQZJuUO{wM2CAmx`~mpGRYBAc>!-ldsuKkxbn z-aL`@^RRO6tUKdLvVr)`UkpaPIg=QVl}Q`1I3;2s|i_ZZj_RJii(4mLTn?%b7l zqeQMFuyX!f*^Tm1=gBOqCEwcm?=raZN6{76zW92ufxi@ z^Ig}u+HcU_F`V{xZKEwt$98tZX1@(?29f<%uyXF~*LFN|G01m^lRpf03^kyOBRm|P zu(=-7 zt3g8e}SF7mUo-KN}! zw@swn3oGYNnSB{lZ0<1_Ul7jtT-X~_#*Ht7%56!~i7HQz;w=*ip8+f9PPnVNsmefn zZ#d$+VRujw%kTR(_k&rC@5GxXGQJ&F&YkgG!8qk!emNZUKVY9wL5r`7>Gs<(`+2;5 zBJIDx%K6jQ_YxYn_2y>=m*1N(iT0G=`qv`mUP$ZS-Vkq}NP9h4Id|Ig&7GVE@5SM~ zKLUG&dUuN_TxJjK`};$<1w`T>fR%G6KBKXd)*yXMIO&zJH>jjVP1dm7COm?-Oe9=| zm2)RNJGq0|pnOd@<*Q(iP$`SAdMB;7Nneh)P9%K^teiXPIkn{OaRc?w!%_bfb_o@= z*!QWKZ?k?FZ=T5dL0CC=)@wVq?i<9{JS(_3djob1mAH6%>F9*b{dL?3BKLp6%DHo& zChAxN^>*Q?w_y_Psl&xri_+@vt?+hP^S+Z?z=5L zwt~G_vVOMb$gbB{taY&WXW2XALlyR7HT%8|d$qJ&9MH}oD8ob68CocBD-~81tHZ6| zb>}~}h#8->yFLlDv7htD3 z$3S!()6oFcH{@ToaQDN`FrUNiAjY86VPz`@o#HE@VvrbFK{2QpVg-vq&w8DJ;_>Pm zf5UCk0Y&|b7LPFVvA3R_Bdxw?%XcGNA419AZEkT!+C#q1R>9aJ)fo7fulLm$c$G_}CX|Iydycy)wDi-k z@o!ZAl3(Kbhw3+2IL+(i3W@Fqk*+Baz9M&cpWR!_yp`Lr{5963@b*GdD$(Zt~f zn~jRY4K|n8E#&o0^7>|Z-BMoPBCl_i*M;)BmAq~(uWysrZTJ;FbYLy^&$2vpU`8W& z8`FpnFgviy%$i2Lk9Q^f)PXLhqow7#c+k+W+@3h>j<-ylIJ^f|wk8gl6KSPj0V~V!_oc-_5~HKSX7pku0{8Uc)LWpKY*1d2HleRV#L3~>Anj4 z0;kJLLW}N8c)LWpe}|QGr`y$>DH*r#Th0znyKiC=2ob_dG|wsi-86mOSEcW+oZf4X9kz@U3#INjr5Uto0Q;)X@{ zXuMq_-J@XT-04o23p57auZH9O3hWFjUU7s(V`a(W`(?agBHt@v<=pvpHCM+B!oLb9 z{0rC}RKg#Q z|NZ|*H;&Np!mx4wzC9f84!E1A@qIJ#k@~0CJFCTIBh}KVW7(=1q4|oo6`>d54HNmk z4OY(m?w!$Cl{Wwv!T}!+dxILF#maNTa{CTG6mOYG_>-`53Sp1^CTh!ycy{d}q4qDl zxfC9s&cRjRzvZ*X0ceL@Y^U~^#IYUjBHuxzb}wAO zCC1pjklA_JQ&^9U*zp6Hjl4<%hjQMxxxw;4Z&H%(;xEUcV6<2mYUcQ9v;C%~lSt)q&AV_{D@ zVMoiEjz-1!_Ai4b+upDFXnYmkHZi8GfR(M7GR!5is}YQE|5~iCXZ8e^3fID3p|W;; z``1PMYTN=M@hf2E+=)BB{cBNwJe>MtuxF^$)4u)dBL66E1(EzCuyP7{kL0iF2azs3 zBvk!yfNw`+{c!ixj*irPl^V#rmk~PmFO+*LgW4Mq>z#)NDd$+L@6~c8q1D?jRbiZ# zk{pG?+RR|As+NOC6$%#F~ z1G|HYSKPf#({09A;Y|}6Uk)qh&Uh-%X$Ie4hV%V7>EayUj>zfa;n^-XPcFsJ36rnO?+K4j=inktSFp#<+)%AjbW9xgfbR@BjMT(&H!d;8 z#4)qy&Yf|Wjp)$_(~%uiYsESta>i%4#6-v$bF{u2$>SR^FDrT606WWxJi3_aXkhAM z`=e&QU4UMXH&2W&*TTwHe7TxSWS2$O785hgWd`vlm`Q=@JZC)DYCUy%G zwQS`mBR=FikW?A*0WL8{8PT5eTUlM#>R{4@BU)}`N_uTkX}FttxjXs)M(anmx4|+y z7I;O`XtSN2bT;_eHg?j{V0W#;j&ScS^%RG@R}=mKee3~8rRR@fMecRCHp z>yh$W0gW6L8N~*teiXjwOgbA zO*s0;VaHI>i@V;@37h+4xDiC|kHX5ibKk+?vau4K5e}wb7#t2dnZ$U^fb4Mac0L0F zJ7|xWNw|T;@zMb+=RRKME#{@4m|F0K1#M>Wj_~oY6YLafj97<{2fG8(srxmbq-^gn z;p~o%H9F#7OGcw7cj1?(#N`=rd6r+Oo3plcG%>bv?&!PHp!bABKLU0K75ZEbJ!!gy zdkNk+@diHxR!*Vpv2LN3KE$NgLqaWmyw5kY$)%6&vwdT0N|il4D{GPIa(IwBM;PG^ z9PmjBw^W#x@f}EN>El8!F~-tIW}EP)aymvOaSzN#-YV*``(3b;oQR_vnT`ge zE_P^(L1l%HJMdh#@lt^ zU-8C?oc|0f=gxUv;=zK0^`;jEv)+hFjK{pdzMB`APeynMw(jfoaRZ3F*MXH&czfh@ zRThYZ;31*Pg7bX`t}F|R+3vKMJXERZAF?|f9;eQLGVWXPxS?7OaufxJ`VJ#i6nv6P zq!tC)<&Dm`$40_935FwY6IBu%54*_8HyUI*8V`?R@C==eXiogZCoNX zUbO27h}IwC!zNvY-og-nf>~J6*B#%(@kv{4Z)C@IHo`tn$$Jtv()yEvpu4KYLh|d? zqvL+!S(3wepQhH(jy=;Z?VXtRcpnPe+rtk07Mvh}G!n4kFDo#Vc+7^^Z@A2`mg=7;GI zjn)roi*99rjhFEc(~aa9N2u{m0S)bTq?d+v9HR~$XNSkyBjt7#KjmVfS{&By%JIJ) z`RuFR?>3D0-5#$ZQx5XNVu)Cq9`|ygT4o_+$vBU^;ek?|8=G&BjJJn}Ys|xmqsN|R zla_cx-ZS$0M|pi#UjHPof0ozhFD#*@41gw6dl z+z2A~Ps7T&bDz&DL~U8g2=cduL%#*~3KhCI2i)v|P5dU@0wVDnVddP3&ulEkS*L$L z8_xP^*dJ8Z;-!3LyG{8?ylo=o-@(cghq4vM7hDotw#{P_?J3)I%C4+E8*iIPxeHdF zIFxrXi?lt$DengR!|z^Z>nhTb`!zTJ?t-^Xr2H;eId{ra*n+2#mdoLIm&1;r;uYU% zi&tqauKjqUM6N|xc>-{?jzL@<&hBZKma7pWl9kU<7Eg_D8hhXL0N5Fc0 zMQz`T+)ZZipLAJpA=bep+Ea*$gHYW4u<8F7W<-6<{ok;1?({q3J$?r3?Za7b+cwtn z3lYvWudVS`iTCweVdV)xmZd*~?2>S@hrphoM)9$}{c#Z9Dv|8RVddP(PUU-D4YZ#P zM|&FV3MyLhLb=$YE8VB+u}|a864{;vE9cI3n%Hn`z`Z3L?oF^SsBpV@^(8k-TXb*4 z+a=Qd8myc<-C4p*eA~By_~~%OPr?qNA{NI5B#gJKs^8&_6FL7HR?eOC%*L)LYv;$j z%Y*Ca*-WB6b+p(Mplr7(cj0XlDNloyCk|!n(Zp`yly`ysLA{xE%C2V<@50+AQvN?! zdE!vE9!@L|r`!+w!;iA-=|mB4n@D*nteiXL*>TisydPww=JUcipACD2%6T5IzLM74 zQTt51bt366!pgamUfc1mmI3^paNu{rj-djVN548=IFqhbGpjprBZ%C;3oGZ&-F4*3 zi{YSOfIUG4E!IQaN3Q%8Z)&#-dtWXJqO(WX}f7u*{$iS`uSq)!yBk2g}i?yO_TPYsKde;;j=P6@!_ruD$)9#E<8Za1lTp3(m{TKEGm9eOx`S}Reef)2{RU+Ac z!pbRRJx&}vqxoKsIJ(Y5LLGN{3qJ_~`Dl^sNNfc=LSZYf55Pqm?cLF_)k&krjV_GN z+_ftCk?wEFJbU~HOpY=Yx_ z)AulQv1x{Mw>qzIXI}{g{T;p%68h7VJ33MiOdQVxRt5CM?9?3%`tk__y&Rj?3VOe< zyA|}JuY`iW)K@}6KReswN!MHTnfnn5_jv6CpaEa9Wa^ZO1n7eJ362JK!+hiA`ljMw=;x?F_420?+9F8;SKg$dYJnZOc z*gaJGoA9SCsa>(hz>~Ns#4+$YSULAGu&MfrLhEs`;HuzpFpo)K6%}EIBfH_%(#xU$CC+cV^)6t;RTfSX7gf~qL zCxfuE6;2{9kzIK)Pvqq02ses~E0{TfMa8ACQ>diH2YQSS*y-aU+yEl)3t;8kd9ST< zZyNJQ!kIq=JBG?!?BZ~A!sdQIZUmA0y|8i$caNN}$_9}rJS0@vu(xkVWZCe;Y|Dlz z;!TKT$uQ??G(b5=TDy)_Z?Qr#lUa`y+HxSNa$!1`m<}v9jboD<(`bg{07v;GY16e?@;dyOf)PsI%&@;(_>PT}p5(^Xj@5`u?>DhoP& zJ0i=1A7xt>bTuDl80!fSuzp~n$vM`>{aYZ76?|r{mXI6^3itVK}kTL#4jH z`Bu5a-yK#?A@7m=RsA5+g@=TyAMWxETC#rFCfoX<`DnePo4pU_+!k>f zJbIl&uYDg6ZM=NUUQ5-Im!qWkwC^xeCB;cxVj`3jO?ELl_qK?y!0fDi^JUm&PW;h1 zOh?0GZi`TzumjJPxDmv_a~Z5`1)ht!M0Q1nxh+CD&d58zV1{9H0E_<5VE0hzJGVus zuGnMXC%7rZG4NwpIrlN(+7_XlXN-f%*94D)HJHSBRGoGdNZl5px?_)p|G~tl=dt|< zR!$iU9#w=YL`0JDkWhul@xC3Ag~;n(JFyq~ZpEH@V68Mzs;$yCMZ6y#xX$QP|4{I5 z>=9|5mcbka#(UxWL=GQSVC>2z#waj;U1@HXl)K#Jp7(3wU97)4Zq1J9LiS(rX80#| z;k)3U6ql#OtcTA>V+Lv%eWQ96uTT&w!*3) z?-3JKSQWRHhlC2N@AmD8466@hJHMOEzsH??YWz*s0c@~3M_PTnKS?V-9Nyxg@z;I5 zufpqBxx^UZHM7v-I!E;}n2x+p)HCBpVIMgGM|UwDJ(P@fj_Mav9#E;)*oWn{ zSylxesm_Ek4zsLbX`PmK9J8ze-{GUmfD)G&qYP-rENfxCr{zpk`k>`BOa9!VQh7zO zTI(JvRtHCFg?P#}N_YtXZDpXiGX5u{MLB<4xHvkCdGOTH#nC9g7SV~^sRBS|)z$*r zQN}dxa%K@$8C$ve65grsY25KlN4p8?>+;8Rb|37heIafGF>0R=D_c=JYwFYGz%@`m z%z6@t`a#$k&ZrsLsAqE2jXO@daKGj$4L`ygCi49utenEvBc-aWEF!aqgv!dxd^;ku z@^;y-eNN^_eI+O9v%i9lPv_to_enZ8R0~Xw?A*nS$0jIp7^&<$jZ2J?oij@tuEXPY zfa%B%s!94H*hfyl(Z)vK2bE;Ibcu1&nV2W=?WI6EDY$xem$&Y3vtAhJkKd`vu9BTDLT24X-3ag6M;g)ky@ndWX zS}RtE_!mlA?!da&mxU@0?&cB`p*R@h+bn;BSy?s0bFizNxTD9Jj$R`WzRmJ1-Z(L= zJPj*bVdY6KkzJ{LR!(8>Q3I$lLL?0j2~|ei z=^MCY8Sy~2s|s_gg>r9YknQO%R13=rJv(ZP{-+uvcbDDxPN7}JWp{DeLtNg^FV0~{ z*wx)rE%IgQmeoY#2Nwy$mEBtMYAiU^r&o*1iq&Gdrzp?wJJ}d$t-B-!T76zmWpJp_ z!xqt*r~0aep?;}&B3DeUG_p%T^9+|5>E}8artJAtw&ku^Eey#1UITm3IVhsDnT`gn zE?!VIdeO*0=dvFcM=)N68!%=Ry11!)Ijk&QG<~2n%szHpD-KF0UE-_MwRB`)fbE5g z1+@XDq7rq;MvpW*cATd<(J%Nvj9&ISeARoO=ZspR+&|o3EtQvR@#t^Nn&jN3wI`fI zkMMwv-RPwiJR-H8;3R%_QNnO-Y&QZ@q=xZxzD(43eOAz!m$J_>!_zlss*W3BXYTbV zGnv`H%{nJ;_*qOMS@n8ik6ver8Ws8Gs}g%GlO~*PQ4HI43)b1 z=Bnz2O}-bmf=IpqE2oh6r~={?F5;+27akHS;yleWj@rA>Iuy%}$U_Z^t*Wx_hj^>RAo2rP*$N`x=Mvc!404aNgYUnXC4r^F ztFS+)e3Oq)-IQO#+a^-}JFJ{L<;3Gt2kEzbHJJ39n8bKY0PH*2e0=Jry&2vF&zy^T^zP6P|0T1tm0|BSz@?&5>~dt#qYR8b}2y~w(BCi?$^*e z&LX^kNsLFaX%kK!wwuCv9^N>S^K4i-cg~5!c3rIZ3}?Lu>=f$VY#z3o!h1K|03z>Q zVC59v9ywf<0U{xINT`{`?Y;p@&MdCVc4jfPRPHVH6o<7!;AD8HI>#AdQ)Xkf;4BGN zvKIhL@ewP9fkllUWE(Suy;?SMlm{pJ4k%R~9LFV6%Y*DP$aL9hqdvGA#$;uWD_}1< zNk?Zg9gRp`yz$kbB^y>1!lih_#7J@xtZYS+3w$M1BoSjLD3TlJ&o_pWrwAWo?h={ z`x-~8rP0Xdn|yfTro0{AHj(l+u(FjZvZkDPc;O(uG@Nud>=SoIV3Rfv-p6BCH-8WRZmOhcI6uv*JXjw<0|-_fP2gwjuC;xLqg@4^L#rZbIh*U=9tODrEHV8ocTok^&)PV7NZ==V_Rk{Hhq%AMkSA}xx_?B9-VQQjp%UzOv8#E zAA^151RCwmbTl4~DP}x^WUJ>kH=%wMZ=P7RAkNdI$gL}|$TLT!GV$t186$q6+24|9~pqmlk&P_k8({-@)u5<^8NtZapfNn9fP z^l$Th53>Zj+bq62!~UT1)zZI{@;mUhiIjJOm2;<@O#e3NQaI^luurI@t@Q7t-GjGJ zq0u9>l10EZ@L+Y0wEBkw z*8mdcX{pCi3S8wogj6YTIhU9SrNB(paibu3048H4jQe0uIpIdPFddDGe9d0jZkGl3 z;B6B_$X&3q6+-Ud64{jn@-=(qFN5`K%$~sF;1$>_RMyGY>{SnJ;xFPB5Q)D4E9Xu; z@tVEznL&NaZv<1{f=P@=$#37`=4cL@9MI6p0CPEd# zo+nsa)=p~)%;aR%51)p8Oh@C?y*6eZ?}s_bKB|We?}gpuL>+C%bTlOLwU`Dj z*{~`PcEuYehLU%~%2p_OCzr^sJXlNZOmmYSVg?0P34^d(sHDXaOUaxH^73X6W_M>8D_ zPF*A%s|$9}IUP5F7<5j7m93!jDK3#+k+HrgGAy?l&X0886mZow3KkA8=!ceh^bO5bp)Z?ID8)oPBnehZCW&SBTa@7p8{*RqxZ@07m`)<-dW0;`J}>=i2OvAb zvR*?x#d?6nDCbZMK66@FrlliCk??z8f2$(lw_IW(6bVy#pN;6zc{9qxst+bH39OQG zB8^^Tp3;EGGp7YA+3dN^opl{}v&3-mUtj9#M*X*-p4nk=^2})$;hn+>Z;!j$c^aHe zICO{#)+J_hLx?fkTvJTnbR)TM})Ip0y~9zH=Acpr|>=mH-O0dAXqttw?__F zWq?Qs9ug|L{K_{#$ui(q*{&x{VO3vAe_j6)c%V8*S^e;~?TZjLYx&4gAYAA>q*Q@$ zK9`sf1p@E0Q6Ss}ld=kgJ76a{VMkwMIvNmJAP7`ef$&|tSz;i$6;`$a$<16MyR`#Z zAh-y>z)ZnPa*Oa^VTVu&CkuoW&VR-mCvyHHteiXNM1kO9z0obftk-7}<5BM0ce7a_ zr0`w`H-N}{Em%2)w?}qY1%gNj9ulfRILCM3$^zjl*>1m|#P&^UPZ|z|hp983)ZgbU z57cRW&YhC#uNTF3X&J{+0({bU(5MpNKrS&6N`NV>$3_8gJj}vM568eRa^j34rlaAg zPvg%kV@$HqbDQe}EAd8&VPXVUw!%b}OJtY+yToICo9=bYkig`B4eSmo-PxRO({!8h zRd~}x#+Sp&xig-l_8{1te;LmC=deqtoW&u|n)x>CpW@9ESw9Rbr?B?O*(&XeB;X;T z(*FLw9g%7O`fS$)X7(4#W#=*R>wX)JO3tB1SRTN4H^xR&4~bvE`hnHTa%8F6U>=v4 z2(`hiM9+;H;oUGV*-y30;GM9moXDfMFde-{5L3v6@pf!^JKi`kw(I~aTd`#km&mSG zNNk=@IL#p5$BYWB8+u{aP>GwH=M&wq*%xp#i0luCl~dSzBn6dML;&%SPuVy{KhO2X|5fVz`-8$#&GVMLQDz{mST#m`+6}}`?Lb;SnOoW6o zmG{{QEI)!tS*hfQu#=pyqi-=C4M^jGG)EW zI(C&o_*G^Kb}w3lUxFP%C7fJu7Pq9u`R{n+M9zPMm2>BuSZ{XS&2PFjnDu5%0;{2^ ztj+c26y6)-1`v5~04t~P_Q>w4KoAMRLqZh@7x@lcSs?sA+ll9_T6Lt{)6v~qT2bmP zYK6j5c)&VGTm2)UE6=fo4Fk0#!1bT)^Tb+o5}cJgPQY6y#*$-UWh<7f;u6`_2n*!OZo*>*?{6@R0!xJ(V82j# zubW(*PV~W^VqTBiK%{;xteiXb^%Cp639lLCp9m-a8`w8g@*8sU?ta+xAII$=(tiwA zPNDCS{8jxRQiq3xsvi#a?TD-&F3k3M_0)1N`?P6MefK;3IY~#`G98VGJT0z4OE!FN zbA@3SykTM_c^9l~MUwyXl~9pHjGdrJvUZ3SBTJ*Tvz>`_4j(yEsOnRY6ImCqqQ^PB z>K_Q4f=JV}5$cE;$N73(#f+o5L~6`fm|f7ACOU1zj4NOwR?N5*_L387^hKtl5vh0a zVno8SLdHdSyTp)j0jz9=jB~j}c64Wp35S#MBg_`;uCo|F1bc+aSWGRG*4t&~{dns{ z()Ys3xs#r+igPFJ|Ay24H|!NEZSktK*#n#SKXD6)#9xM$Q;2)ya#aq9wBRA3CKgBe zc0^7rmSp?naz?dK?yU@VboUHttCH{e4jP=CW37Ievm{77lH3m84P>1a&qVnb!qbUUORj5kdTDW8Cq zt&nnnuY?LIV*CV!l$}DXU^9%TvYlZ}Vqa(1V#&qKeyq@Oj;`Rn^|4*r=yXJk)xN$~ zbBpu1L~6vyaBeY$_1Fj&cfu^JU~xO_A}7x1t4v43A@|nDm}H~pHWwnkgEvYH6W@lF ztuXN|E|Fm>kaf95_jzUrcBff%{{p*%N;kQ;-pTk+c+*72&%nyLGfwQSx9{Q&zZ=YX zJtl#bMpVw`-g+nNwejYOtmnhZDXcwmwo3aV33y1TnZ((?gI3NYMzftsOfRk~c61Mv zmg{SahrmPCInL^bwqYW{EEWc9X~PWz`N8v3K<4Fxxw&KZ=Tq3*rV6LbS8s0KEe}!2SSR{NI_6e1< z_#T>WzfJo}ynQ0=%V6c)X)jRgb}7Vv5l;MPuwSUe#ika!4>t9m;5HDc{}@(Iq3)6J zRm~t$golKx8TRw-h^!e7&$ecm-B^9Bjr1%pR<%`wb-ss&Dd&i*AJK-wL9S;>tF=t! zs2wmN{D2jm)w$j7)Y^?R0nt>?&o3%gq_?)Sjnp>p5Y*rBWU#2x{6;g%3b zz#Xu1$_VgC6Dre)VB#U6irI>9M`SVk*KD7AZMwWr8ZK5lx|bG*hvScF^%kq874b(p zk79dwD@SS7?bO@RvFsd(^-3EukLZW&Mxz&vPH552QS44;9SbaW*WeNpArEabmMe_t zv^7lBicW8Zedin$(K<{=<5b_AN2jrRV@Ier)G~4_& ziM=_m<*0Mu(d!&~ggs!sM_9xbYk|&@kk0ZQPHJNGB`z@$64DgbVttn2v@+?&ydy$wtp@?&$a?-Y7AEd>vM{0?1dnM0V*#o|b6S{Ub9ZFoQe=yMszM zxue6$`1g3zM8>~`m2+pD*wJBgUh9rv&U2XrR(Vr7n>#w3tY_iP6IsuIl~Y)IWOG#z zh$P@4p$dY}`wm(;q1`;&f?zWHB%{8QbANc0I)_;O{mxmdItJN!j+OfBMcgng(>N0U zzP`goCH{T5#6(E^opG0q%s&FtkoSdp+){;o6@!KZKQ2XnW*tmHtI4@Q_gH|HHl=k?H^UlRG+6b5Ux* zS{QA#cSpxoCygFAx-dF(r`!~VWLnVsp~uPq47{yrLzoMS9F z{d2>#bmK_>UCdal9G1gIrT=MMBGu&?J`nAUyKJQY9bg)=gDU+mf_>x!8g0yUG#)bj zb5OEXmHyv`w@M5Z3t?p|RBXv5Qtu{@n`yVrQf@zfm&x?+;Cnc;BryFS3j2e~H<|w3 zls}2LO{9DvteiXLMEZA-{#-ce(_x=bNt@~4P5TtQeIo5o!OAJLJ#x27{~{H5NT~Eb z#kV6e{l7KajZ;&G;?qgB{C_{|0Tz**gRG5bS__-CROBcP?)4?1N`t$(#6&0!rt&@; zwZY$DQu3xzwZU_+lbo=l$C-`>M4o9aP|0RhaqukOEHRKg4J%uLd)XGp$p2?|~aY ziLoWk29yQ>00Bm@r$RUq8y8=z!?@MN~@1Ji~_me#85(Y;n9oC=Rs=Rm9P75a#v zVVstG9L2!NzQacq11EBciBJs8XfQGAfoowZR<^hr_LCEAbT-q`n8tAx!ffh9>i>q7Q>c67c2ypT6yYJE%7f#4 zJ0i=2e`LFRV8(D|S#7w#S}HHs3WWE;1J)T|>OIZ^A$hW#@2#8R3VX_lJ=%}yXjJNADO%ZX2bXTVZDMda3|6*+%fVbC zy8>dqd}iOgI}O%nGJ66`h%drkp|TbSm6|=UiPv!ph{QhwE9Xvpoy4>IH0pPRQ~xgP z87lSljW-p>y4P>Ttss)W8CFgq?@*Au*tsAU#wxyn&N{KprDsvutD5~&qLcB!RtL~X5Vp#z zB*vo(wK*prjx_AIY0t#lC(@n{E9Xu-@o=Q!F@yN-;l$qq`-OUEn-51CeXyzTjN3q@ z{tj3aPv3>yd3YB&8;fU&iP5eIG0wVEyVCCG2CmxO{pBdEu z6Hfg#*fUh>=ED)y3!D5axD`b5FT%~**%ZKbT%dAAljjXc%4^doJ{jd&`zzQuV@n{Ou(WunL z`+y1K?Z~ng-Z(L`%!QS$$TG`ULPZuahJqr?-+V{1j4aP*`+nHmr2~bY<%5N?^8oZu zGMA1=cxgRD!NW_#aO#=o2l@^V6=L@15~(33!>6S4jNTh@<`|fp6=zn$?sCVOKBl9` z8Bx6&9k64~2yOr|)>L6-E7nxFM0Po4T~X{CPBW-q!;Hf2R*U*ouxqH)H%J^sXLQ46 ze>rXjk^LpGa_;OmR5KUDaR&dNhx7j_>>eurO^o@A(G`0PJdB${90L!+$|+;Oqfk(_ zhDatJ5^5H+uWv_Wt+9Q!vzU3!IcxmA73<)d1^1%i%Q^PyrS>m}7JG&HT4HldYv!>o zVa2)}X{zR!%_Sy6%`rcLk9Xe)KktP3S?TBPu)mx`AbJzi(b&|*V>h!0cGTGcw}2RR z7QxC^)Oj11$gb*G&sbuV!`|TD%d844I|{IGsN6S9lpU?Q(fpG!=HLSicK zvk^mHf_Yfg!{1>iIgv(BFdYqud}BnQlFgpmeDmyYc(cTC@f@sdg^OpoM0O>EJPgl8 zc(eP^JI*4!F_XaRX)595VR$K=H^3Vwa$Xl!&Yg4OFgzFQkA}0}8+HnnwRsp`3h%ve z1Bkr$gq2fxd*pCc28e{dhqyRDiXuxE{r;RX6E2nVx$nmO75Q)M=LX`<8 z`wn1PChU}LnJ{bFK&8Sy5#L){QR>zATYV@oXwRP0u|`MyEBp5RsR*TC; z;&KVUIKxf-BY`yoH??7@mZ2JDL!DJU%Zk-vxu+;k(fEKdu3FnJ##Mb@Pi1h3z0Te} zRHzpEs)eC`srWvwI1!48*-3{O5oa&~kH$>)d+I=`#`fL~$lgY<|D5cjgP4wntUiyg zRVKU8h&KnbpA~1I^x>_K8E=kgD)++5(m&G&O2f5o=A%LBp#oRRuDnz+agR-W+o_atr2KgT``vS@T z5cUm~ym&n2?uSkP2e=(X`rn6@Q|PNYfqIA4yOxd&3>0hKaS+k+39c2X!MM9`k6z;c zFgh>Wy%E!fD#N8(X@y>HOuru;yUu|Zd`^GUI4xZ@DvU@ar%q;YvLdGrf=FedNnBzg z)Dklq-8OQ`HZT==v#4CM73?P`*l0bbqcM?3(KIZ#W5`?ZmWeUsO|Y^RLpI|Q+0_m5 zD4K@149*8LYXURJCt#mYIVX>zY1nVmJ^*i@Nc&^3a_+PfN6|DqW)MF$ocPJGU#P^* zqi7m^u&JMj+d!m#9ITu|-6OZhiCIj6M2hf`P~|~~Z%1T#aCEju(M%}~mkVWW1H(P6 z2Uv7+4z%D648k%k2{{UbyL|nv3WGbi#6&0zrt&@;vExrL534G826mDYY4kIuqXCf{ z7z8TWtSZ|6fHzAF7f-;-R=D^Lm&mRpkQ*3Wgx7umz2hvx^O*!zA5#e@H!!4do`W|| zp2AUK9gOoW19 zrs}v+6KV*knl#8&x8_lS@p55}`BhvJpCtfN59>V+rgdC(vjgrlawwPZxU; z;t?cURVxOE;H?rv#X+#L6)HZ?C9*3EX37WmHs8-PO9Bgm&%*wo@)ciXRJPlcPs7_L zQvNiooIB;YiHGzy>D$6d-vaxDN?JTB((Sit--NeMqk@AbTlAxuYf=$n^o!mr+Bl( zaPcs#Y=w&lxkPs9U+xuf5uWnn-~wPxCNUo6olQ8oS0IJ+8!(MJk@M@Ya_*cHdj(vq zcMNB}UE5fjdj(Q>Z-W~^QFoWk29hpRF`Bm@r$RR&z|J8)$g@Ski?cJ3?ETeuve(G&2k`(_?5T? zMBa=9u8L|X8WQ02gzeLEt{fj?zi4ovMW_U%|L=pUs0GwTBunVbWy{=vZI zfrf2b`f(HlfAsaaDhQt95)+{ym@a#5R0K00L7B)KL{$XSnFLlhIk85sF<)s&>NEKQ zK?9d;Sd|2wc*Df7F$q?-!bS&|$gU)qBj(s{$~!Y-ushG9{0`V9RLbHxvSz+LW84XE zp2&K8SUGprYpEHwoA%!$%bcmvD)RP#DZ; zbla#5?t`gVIpZGKPfoDWO-x5)B99?zSZ=3_yYQBYq2mr%*$N%sp?3#*kxRWh;iP{deKie+_$vO5HkupxFzX{4a4Uh~$3`E2oh6NcO5;5b450 zLe&eO^zDeO7hcbHIbnM9ya{bRVdI~oamqQ|f!En{}2eGC_*5LqWBtS9t80iNt*rEewkT&uV?K!&v&nxy@#KFTyBxy z{k(kUd7i!Y+G`hsUuOJ`@B=GTTHef;6gq#;1i(0h2dEtq8KbAB`d<&s1RVlWm3Vl6+ zm4$0yXtl%{4-CRUVV`4Opfza*hO47OBnO6nb0k_~V33Y0<>W3nGo*=Zfg`0&ZtiBG z6Ud4;Fi6{J5!sAin^{EefR#xRx!sY7ePEFBQgZ#Wum>C4Nv>alqr%O#e_)Uv(2T!; zTfoftbFgya8TSngGG?F#&s(iztfM1naDptbEq*Qb}67h`%-a*Kk z{N5xiF&qePfaAf7rVA#BEmWRD^_4UBRmT45U4%jdZ=6dViZ#`9C|MmPozl{US(1BFf? zEd%ZmdOqXnZN&TWi!%Knd3z(Aa^Myf%Bf_WPuyC{Oz7a=U zpgBJeH-VY+kHgA|=X{cU3o<#$1jI z_d61;FfNStyjGgW|G+sRqr!i~VbZ2G_iLdONQrkyLN#69h2;{$f8iHqmW|)T%A{<( z=t#sjCU}P==(D{4)95dcWO-j9fz8g`Ec*{h2+j3-@yj!Fy$`IMc&>eiB$APcnmt~fV8)0QqE;cz5@r?uC2NrZ0{*^EV8^cM4pMV3x&9MIi3n6)a z6u&q#&kw`OiRan(fdyTz-}8)duKx}Pg_~>j0}CPfeg`*zneUyja!9@-^l&)_xD6qK zgd77dj_Qav28@jNslo`c8ZzslYZY&~r3H!0EzR>{iIbMh*cVbR=3~ z2pDPSLYVhVEME>QC!S^hrUIJjADUG#B2FLhc=yA|$Z+NSn^w7@-qLhxc`5J5An2 zW$T}eUzAxUCc(<2OiXYj;%oih*Oh5@7YakLUmD5o0yrGp?E1g1tj+O!{L;)E&xMr} z&#~|8$~4axndf;m91?Dx)vqgSb6vqN&&>5ISUDuu5qh?4`)(76AR*iSn^9Yl*Y>x? z+xEw-$W~To%bB*+8s)Hp@58ieQ8V64=o#qP7ic`1IpEHy6v;W@JB~yv%mI7(JXhv{ z=iuCsj`15fRND0B9uzu(w0L_7ea6$d;A#Bg%sTQUtW4_2V~#|8bAh*)&=)Wz+oOMD zJRgh{5{;PtXtw=(34JcmoDauMVCK9HR!%(UzP*ILpecDj!94HB!J*;)%GJGuJ~wFY zkHyVk=KdI1IVATHn!cPH+@=vhLe34}idwk5x#4^9&JDx!>EKZXeK4$A(u|i2Y`X&e zNHZpsqCz9bgrXzS3S+`hv->k)h~aX!Xe@2SzRvB=K6o|%QJKR->`B>t|Rnp+4kKg5J5t={d`nMyte0g#Gj98~U4cHMY5VQMR_rFogGRRfqaBHsX#2urrR{$l&V}cnd`fT*93pKx za~~2qfpmCn-%gWvQQ7uChF_FfCeDJDNtrm)k%+zR)9ijm7-HD={|OEUH@p6}ug&p4 z;+JOTcnz$ac#eH-pXT}hn&m?Md1kJ^4l9S`IzrEuZQpGI5hP^W zpBB{-ukF7WZ`&W$Bfg@jzB#y6_<$88EoJ6!4tll)`i-XjzZNy-vi-l}NVG!xAMIsC z83FeBEt(VW2O>v+y@UidC27-|dq>17kdo?~gI>D43(GNJ5B$Q+vM~x)CS_xUBN5*i zPo@@V`gW7!O%=6s^hlQJO z^5$Sz&O2}um^rs#<&d05=;?ASaGOH}2{{)0A!>{A#)7-!eF(5yW=(I;jKHqJTVYhS zoEg74=vo%&Kbn!?8&ScLBf-}kiB=d1Mmat!t>R%gAEZ@01P4i*(%fA_Cy)^D%|SO+ z-eu)D@Bn^UX1TZ@Rwm`*K1U+Halm_XP?zDI!W6?{U%)XZBgT9BYgXSJ49WLY+yG|2r@+b~`Hs-TDkqBEFHpTP4tCc$F~4a2_bY0pVuYze*62 z=au-ynR)Jpl@rgiZl@5-eLWl$Zm!i;f{=WF5jTLD?`vS?kbFnz;c^Uc8$tvL zIR@+()e&zDxH^F`;Ml+z@VxKBr*o589v55!|xXo*fh+| zusQ~4^87yh;>L7@*1b$8iIg`923$4#{_f9xlfK zw;@E3kYm78Q45qe2HX|zF@y5sMe2bA*TKAMVKY8(Kuo0Bw3TNaIIuA)MRF$C;7GK> zOi=rHk;sfP8Tj9yo<|af;;hxGwaBAU}aKAzU4^7 zHyM&7aSIDw*3bV)Xn+taTAz1e-TzrJm=*CcFsiGR zu_~ETU;$w%46L@w7{7v0wJp$>G*1%FjS7z(7Zy1ZtuQW(_Pkb#$Qn2&q|rAZf;}CH zRu~9I+Ab^8z$`c$o`dp{!VEY@+Jxq&3Y|bcyss8GiSn*0M}c`)YwN)7R|THmuG5=aRwP z^;6o~a#xtAd_5c-Zpziq7wFS|IevX++SkF#A!(1$#N`~|_Jjx$at_!%sw3VUaCp2Y z6v)R4Rv~yo(IdhUtU_s7YuIB2+rB^>(u@WF5jFU7Ecm%2(F$Wh?XiOJT$v8G!MX8% zEpj^83WrLY-rRFSCy*BJ9OLRTqn$SI;&MoM4Zk?Ej=TaZlREMTMmDm;b3O?-ftm9OuyW!#*F09Bd0$|j_xW&WxOoqItf0;PT-*$1 z?q|cwA-Rvx^yS>(HjM}pa&Gu()WYS>4fn?TSYfx!sy-_pc&PBNFs@qGjCUovmIZo} zW>olGRB+^|@L5Nq6-I?oj?c=Fa66n2(l%~|gQQJq?u$YvkdW#T1`b5tW#xGA4g9jq za`81-nUssKI1=%V2h}4C>`*Bg{*5pN8_`LIpN0d%&9Hx0qWhC1d43YVI5W?W!ODr} z*|#fE_iG;cl5wtw3yDSyf%Mm`?n(^FcN=a1Gv9w}RK6qha5)CJ4IzSr90NWb)e&zD zxH#T1V1(FQ5S#+$!JKLfit%Fv$FM-p(F_4|U?9CRA%}o79EnyK0!G>{D;=U6&Iaia z88}ATgyudjbOQPC9wRu3BCTNsepP0vNWsdaHT;7k5#I>lJx0*v_Zne|;RJ9s91m`O z{f`m!S^hWt+RQ8uz{-hd+4mShlj)zBXZlBQOt_g=pC0J5{R8~^%xr%jRu0K_gx)RN zzuO8TNXYhoYE(zO_J3i#PY-r4WV)_7OUPoOmY~RV}9v3=YDt%q$%Tz{;d_ z?B__tHx76w7*(UCVQ7mv+(OPvpoY=4#{?e-Ywg| z+X^B`$oBu;sKv=^|BuA{jzPLu?hdRBtc5YvGG^TV9m4|cM$`WLqhcf5f7y{}iS}>1 zthE14a5lW(g#ja7?(FR@=Wm+uQK#Gqb%F zRu0K_gx)RNzuO8TNXYiz8`Tl7{a+pP-G4fh4ekv%{$;cvX&Ezb|F&U)cB5(kGlj9( zosWl&Z2!|8iPmWU!eyoXFN3q;IVjuzQaDE1gy!Z7oj^XS?cYw6cU9T`&&99GEES7j zWl}26b|m6&|1`hrge8XU|1vlp-24XGzc$O4;@4(o`C?c(@htn>Kh5-J^Gx3X$Ap_{ z(*CvCz8$|lGuyYq$|2c~(7R>(cUwUO3EBQX5Y-W{{T~tU*1+N74Y0t?{~v|@SUu7r zHZaHV!$!7Ufo7v={%=H$wQT;cI})wX{Ou1(D7}Bef1$bXeiX9zj}sEue56fhu1)9! z(lM~R^U)JKP2NRi>)#u{D6>rL2`iH_vAZJ?U+dq~{Spw(?rdQQ_Ddt#Jsl1QH@kZ~ z*{zvQbNoU4(##y61S=<=#fAMPA!KJl?iHs$_M{?8pRL|2JV!wUim3H(0eT&~G&D|F)>`$o7AW zBhd=&f3)YdG6FmX=Y%wgN8m7N)0+E%&F7Lu}4EPWH!pySqb6A;_jh{La z@r?oAd4u{a|4kTUI12m~4hc8Q{__SybNv_m^2}Vn2`eX_Yu|Z;`h36t72|xrPe?Rk zu&2Lj^}NB*oF9&xz|8p}uyRPwBlL7R7P!qJf`l9kZjK7CHx?Wp?_Pl6nNnw9H6ROv zs;w%&*2wkmWj{8%A`zu+L4HF4DeP1Xm-CZ3^5!5?u5g^&8~knK%3+5;Fo6R z_*<}Y;yL!M2GBhJmwBFl4~K-CXLU6|o9h?x%QJKRJggj&>j*ttwtcq=M39he|H7z_ zcy0e*<6RBdqfo50rQG8n)(w7UuzD8e5wD^(NekM*nTF2-gn6EIfu^IG0S*-wV^gt5 zkemSyb|hM12H3Oaw=xNw3FpQ0QceQ%;6Q0po0}zc0!bNgdqvH3IuFdjFU_nUXTZv& zew^w^#5WI&bC=j_;Zic)C(JRN3QBNLxS4j(lTjR?`7YuHF!P;Kgki17|@^Vga8$|>OIVT(#)e&z_c<=7w#OiSi z+S-n?oA$Ka)#3!}?mKfE#2@Dmh8D4DxdX%gl|#b*Vxy28*xUQ`gl<;&PvHtyskF!q zoNYKOcqTIEh2KR@fSeb8>qvxVVOnS!B4pw8sUfL$(la*TyV6NU{5P5(GBXSl64-F1 zO>u6Uh*)rDaPK<;=F@ueE}W|YW<7ZuRwni2Eti6Q!+t;bFRp&BC%SDn5Hcm>Gt4vI z-n5LneMI8~&HK@~5zM?#gOwA{`~I@^*310`=DA-E2Z#G>KTw$=0*=u9FT)LC=6@-y z9FqSCLx7wk+y)XsLe3Gtj#|LHIpVQ+-#HjAzFQG^%*1-~>i$A5s86VI{#F$2l-{V)B?lm+J}m<(au22P=oPr+hYZH z9DWj}R9i}nUo~_L3v?Py-P>C(&YD6VToby{{|cnZhrl*8tSwBHT>Gl zEPn-7PCU!LR}D3pe%d_KPr@?@=z*>1|R6=*!wL118XDbtxLWeVwx_odMB z!esw^JhaI!M+4*1#hzX(T}ky?C9A7s^>%xTV;#lN@gTk)B2wiGh%zRe0;kIJdsIGK z$&|#GDBLfto(RWJoATV@LMM>20r&nQ;6ru2;7IX5b}v5*zkJ;Sb4*Qn2CVD_XmmbX zuB1eedb|*|M^)N$MPELjsibVd09>-*aB=Boj_^^COXeAR1au{xem90Sz$K9 z%3gTnZ+Syh3H!I~M%bmvsG^ijtms>jE5-ZZVp2IHHcFO@o#OwxKk&AcIIuTZR(>aZ zYD8K2Xr!_tEOZR?>~qZv@T(~;zm1v(Sz3PWNVLH0vac=zN_iRfKWK_bd3hHOnZCSi z6*__R4D9ce7o8Wh#Jr7L!7MRv!OEn>{5h(GEHN%sMkVG~CRT_Nb8Wms%h*C+Pg^Q& zPcG?VDN_#IC4C6yRtsIkyCh+mZJ1|Q09s8=IZfCa<@P8iYsx8(L<`guJ1Nq2rI@7Q zq>y5AAsj1hUUQ3tP9QJdtx&*xT1C#sFVCzZpMsT16*(`egsdViM@CiTL=!7S6}d3p zDzaC(SKMs3r8>njL$MU7Azu}qG-5oN9c?_Z?W&p;Kvh#hZj2gqSwc2B5-m_d_I5Jj zd9GBDpTQ|1733#ysPq-&+d?OhmVt5ZIO5NncXfGd`Xl`6%mVTQSeX=%??;u81;nMu zsDNB&VudIm&&B&D_=FYN%Ia)6)0WC-?7N+Eceb++ zmM~A~ocb}`5+(s>!ODpfaFE;yJ|qR7F{j|4;0SRkIK-i#o;Q?)f5fd}lCTC=4k01J zv>*o#x4lG=kPEzT8x9&@8N8aM)D#YBW*%+j|!bYKD^CgPNKZ4%6pUN@vAaR#j~(7DHYE+67h`< z-sUh(e)oC9cu?3&NMK_%H^2VPVfrlZfnS@M4%1}%H1kZK0>^}#X?1g$ zKHDea*JoyX7OWhS?FhYFwtu%3M39i}|9er3lWm1qZ+JJ}1IY+w~oMFW)S8DdXHunSR0igISceV60I-`jH%vS6idoPa3h=<@2BG1qX9=so7~)b zp%ci;fZH*o?erGnI{ezq8nO{qCN*S(BN5+RFg|z_PICRQu*Yy2;UPFG++4f+aa0dz z#vi~fU}pS&SUK^G?@MpEN!E9oXMG188E)3yZ4x>!Xy&)$RxmTa4OR}xe1v8%=LNT2 zM39j4LOH4<-n`He@4PU!HZNog{h3nm(Zosri&iTwbOQ?;^k~8}G0>qjbHnk%Z0!EY zV@b{pGaZRmm>c$~_FmU{Wp-E&XUKC^&JN4qXlaw2n=f<%nHg~JL4x+vnz9tXKC`Br z3oDbFvdEE$Z+_S}*nPD*zg*a4I76(1Bg4(P+f8&{(9BPbdL*;Fd56xE)pwAt1sqAm<6UjYN=;^ThP1j(GFLOYuH_IH>w! zSX-*EQ10vPEtV>oj_NM&;4aKJg=<(L({ebV-T5%&dm~jt{dRhry~{%`P5d!xR^*8B zh9eO=V#L>TYAMr2LYX%vZ9`K==8XwL0-MgXSC9veE?cFubwqWinTfS-HUO! zHOvaMH>^x5(4J8xWCe05GpazZM`hisK(EAGfex$!AU0douRos<;cZ0yS){wY;n$y< zmF()XBq|rO`Yd)NTA=#W(j~K1je}Bq*23u`wWl8roWAyCgif&b9PDhqsG>)Gp|ejJ zw}n}GdSPW!d3vHs$jajqW>k3=nph#8y?i#_%CnpOkZopQ@5NohgGQ8?xw;YqJaus` z3m~gmIN1_4-m#$#HRQK&K1dDuH5?>;4f(my2_$4-52uE>sq!u> z2bEvpmt~fVCtzh#E*^Cx;u~4_au*nM8Q%Sm=r4|BcsC)@hzXTucpu+J&5%652fsKo z&wtZ&G%(d^FLj)u<>xBg7-spo0#+vFXMI!&S$ zBpQ@Bt0$iqhxYWZ75`tUWUUpa_Y@2Cys)Q*bB(w`iB^CdQ*BFaLp?i%nf3y}kV~*n zMoo(>K#w^Rtx$mK1VSl5JK=uO|+v49qVl4xHHYQ zQNu6G%b+9C0_A1A>b+7}?uAoB3d`Maxb%hPR-qFtEbdll)dN~mzK2`DEGgfGl}SnY zc2o&jQe2vhO3GCxR)~`F`FKl;^AM*y@DS%6;XxycNFyHNbPsu7v@>eFWewTkNQBmq zxF6zlE0yEm?Pxwo7 zUB(Sy=DQbG4#{_f9xlfKw;@E3kPmUTM{P^C6=Do{BHoWI?C%^OI^^={T`;^_@&*<} zTEwuAqr?|Zw?sus4hWkaiO>Ndz8*438v7<_TDt)R{-4O2|6na%EI!?l7@J)R_hGKCRi!Ds(BIQ<(fFI{au^8!*1z za4ZYZs#y`8B&@|IX%8G(O(r-Jq17bT+YQ@irF@(Q=Yy1wQ{W(JQ<^(U=mZi{-81H- z%De25wax7(;+JKXi&?NTDHk&wiTGMY^>#y(;hZqV@OGmM4hT2Hf!hszo;&c1GxKc0 z%8BRMf4iZ{^|j`?9)yF!%{95*(C7Oq+yG|2uYi?9@*Sav%Q3)h2oWUY?Z&vMj(E2l z-;Q?-7+FjSH^># zaB94tjC=)u2OKVKc5^Qao#1%jJ;zWypf?uVaSNCgWgDzaD$3TV60)MWG#OQtM@*~` zHx_@0x1tQUIywSRF;4n(V@k*z-BJbeDvGcx0IBAt;&@@J;Z4O%MzEYNE-t^bcv<1KF;-f$#Zq4ke)vY|BpNjuPdkoGV^NMQ4kHl?}YLMM=r>UyG+ zD(|wg{g1;h%Pbdr!^)&w?CD6v*Z!;PiFT-z49^v&V81w$;n{FNxET(tC+hQjI(~6x zo<9gHC!S~jdZH%RtITs_-0gskgo9<94u{Sb3YO~!MVUa%QI*{y`Ojlzdo~&{0FQ|3dzr-O2|Uu zl4Mj!ZZWY!EF&Hg@BPGq-pgFIdeWIMT6S5ftnCecu6_Jp(4j}m-oVFo>x&)Y_=l8z zN!{lKYJb`8z6n&N)G^hwG(fZFwqvZY9-F8=zGRsh<4CkXnK>Xd3`)g09!?plI5Xk6 zX|tX?MCb%^G;omb-7Z~5JyYb}$#mQlX7Tv|tW1i}QBfsi@p1VwDn6r4tPsWLukpT% zv9DTu+~FcH%v6L+*u9n(K>c@3h8$*szckOh0LPkIvnpy9WUVPU5-m_`+!Tpn&KWno zq0TEa*Sx1~SeyONC4=r^o7cj*BK2kvj-58$xz7rnK%NHNldH7}C8g#n+zMu?xdK)u zrDlCp30Z1fyo^fCN)szYsrg;J`@P3l;(!ciySMle2MWy7!jVQ4m@~9}w-fB$2I4M%W;8cp^ zg@uMUJ2M@L&`J^K_6p&#QX`hb86Y)c85|;gjhHWVf;Gb3USX%nyQsW_S&CnjSsc!V zl}T|}WFQHX!bvgcSYiW-b^W- zv5(j5E8Cwn2|ak`P2m?-q_pG>oE>Qh@T_!kRt%7Lsgiyes; zs4;eW6#td-vKCGcDKGtS!1U!MBXol0Ws*}~s1LNVlyMuFm8BO}CY7Zps)Vd8E>T96 zWub``Vv;#D-pVq<-kKPwBzFl18c|6;tg9r*3nI2*0Z=uIom-+tTUL?Hjznk`iE#;I zq@4?;aQqg|1}PlBhGV2J96uL2fqV>%b_$0>kayK1YcHMu3co6|R6GGIlTz`hBN5*a zI>vj^g64PkzoNf3lHc8gL?h--n%}Wbex>cSA-o5_HZ#kA-}SP*kMA`Ln(5=sGd&ZJ zw*D(6BDTR_vb(PG+$>#(29#0Ez8gcKTJ@d+4HPP-IbvIc!wmGJ`mIc_=+-?YIHVYO)PhCe>tX zR0&y4T$YTg$s;CKh-&guyt}my>assD!u!I}NpCl%w0umrtTAM15r#(mzR~f*ZtU*P zV@np9nT|vY6qy4;!=RL#<#4h{xmgCsOZy3q)`mQ9;htR*)z!;|fEWui`F`3Wh8z%N&UoC@b!_ zFl$>xYC%w{%xB8<1H)7-Ht?P zMTv2<$S5ZpN&)#joDWh!UW9|BFCdQ!oj^jWXNozg@-BO1ZM(?x_+^>p;#pXkl#6E^ ziTED%RnHW&L#1SRpTD8MIFjMLghV3-QJUevnPU1p?}1;Ondecka^iXRpDCuv^=an0 zJ_Qa6_t#9$6w~MXMBD&ozGuP8A^DEb!{r#@HiQTga?8l~q82Fc-s6dQ$AF0|vX#}@ za;7a+%64^&=P%{%Y-c6#824frTrG72+S?9bEbuIK4fX5{^d!xYur?}Ia!BZRBwAre zsOHKa0i~hb2R7dnCT4D9EuZ0OSH86gLV>u@8Og=QnHObX2gM6fw1v7t?>Qg9O<^){KdhWM0|(39oI`W4)0~4H zaEQ1Z9O_hoy6#XGw&Uh7S=a_Ehp-S~YLJ76+hih0$ibr=)e&#-cq`sT&oLgxV#h~8 z`KHOcXcg0=KNAvIq{rNqK%j4eT#YCH^ZUf=H30avepgyd%puWgPHr=VdaqA zM`-$TZg87M1PM7eOpoe_H#aPcceB=*ek-39hjh@#qi+gFuxh16Zr~#Zk4GKjn2$vN z7&Y*6W_ZJq2%Q;6iGfT+c zuretjdq$OzCB$XOsD!*8m1M7kTp4c(agWj#C8YW}g}#st7oQN(ZA3*`Vo*_nkLYbn zndN0kR5WCHS?ox(KzVU@$W#-Sl2K4<&008Nq}KGqVbj-|jL-?znkmk}8k$efk|S#m zQOmd`%)-+PE0e<06IDVM9+xho!n4rC3bE&+FW!eOqYHgKZKal@?@!BR1~ZFoaUh4J^Egis50|#yqo)!*Z)kuq&{_BpwGf~H|K&R0({wJeGTQ>g39EnzF{3C6bmCnBt z&IaiXJKz{;6PkNj=mhdnJ;u)_h_r?6_*I#uVjHYXO2t-3BEHsNJ;smb_sC)BuZ`sQ zFd=~rzuf!=j`7oGc`ANwW|pVG%86&$e~cf^^b+$-FNR~n%``d2Pn+$9`1P6DUH~hH zWIICdmhInd1ra1<`+p>Aaq`;#e!I7|h4!M*f;BC7;DWZcqdqfu$>6ly)l=Hqy6?#58Q^Bu>Vbzj0aJu$!gmb+*=V?`nRht6+M$`ZQEh;y% z{|`74p)rr~#(&S6-^viM1TxZk)RjsunIK(=Q2gu;H6z`UN;B+)TS~?kEn>d_RX9z|8k= zVCBT~JyGr+3d{M}_Za7VjF4!=2uOe3?u!%}CurVB<3=#^J`z?A$$Ny>E~f*xQACiC z)4{(+1=yPoX2rWWFy8rkNcH4RD_tp;0!sxSgUQvFnt^$drUd)D6W-a4u4#e3q!|{@ zii(jO7S41eLWhO;`iPyHfcHuxSp}ztG?D@wE^T&m=L?-cY6d1c+Y?j|Xhm6xTfnR+ z-LNvLD4D1dvZA;&8C8^dCRT{$#w*`xqUgu z{bPyy$5Qu?^PE4lv<;l;)RGSSh?#WWDwi|m>4E=Xl}grH=ibBrU$;B|b$gHBx&X7) zaxyTwlMB{i-JarYjv`)UqTB`6 zpH}xxIn&;G*-Ce4;(i4u&hvkiIM6v$vhtqSPrz~10+9QW&hXS3Z#qix4JA`Tuu12$y~=#j zZqCfnLc)L3Gj!qQ7K{&>Fk?Gg9c5(In1&n6#N`NB*<<-|@h`e1EpAQ@4&$U)NLv+! zl;y%qY%n0zWf>eIE-7=2NO9bytSrUNWwLTEteiM2M})Idu2^D=datFvIeNJ{G3($! zafvz8keHg&l$*fRz&`<&dxrwA$*m z)@0OWxdrC1%!h--Ei7}5nvmx({3E zvzgV(xbnC;D!+sS#6`uZs@Tp_PJV$K%jD!iSUGV{!lsprGNq#C+4H;Rth@~eiOY)7 zv{H4L^70mLFq4-*!^$DN$UU}0?-Ft)2KHRhm(Pn$*7l|Mn#TgTlVYGlPNCRT`D!`tIMn`q3uHR2glwkK1li0z{52JQD8-JMGdL{zZNLE7Jn z*{)&ncwJf-*m_#sHJpYtz>~tmD@9gU?ho-9s zPM7Dr+$oxaH5SUhcLqSBdspE9@qR9I<<(~sd;ajVUFO~A>H0UghNi2J}K=^j`)agyFQG)WYs zKbnK|1{^9bNS|l|NLr3w$6a7@^eU{JI7dVG{`PLG)KTs(Wee)#kAp@T*QEo51U5x- zaXP;VILS!R>a-v336rXcuyW#5ePHP7WXDqMdsjd2dzLvwO~A|`V;Ro}!tVN!J)th_5wWsgo;s$Mjw>UlU~Nm3;vL8*Ec z_k>B+Gq7^vR2?()Twdw6-x)3D)kUbiMjKD%dkBftMbH+-7qs8h_*IuVW=w_c^2aKl$a%ZmpkY!>bhldu`EatL7&Hc`rbnC^zF2oiE1 zjpaP}4&6u7)ctzmOz-|osVvT64d1UB=ypAb4qq4uC)eVRFgY27l}WL?DyoDm zb}p^ERoz3dsY0pQ0nbWyV*nJE)oXPGZ zj&f*?i}6Hb->R#Q1>aBGU*X#JFs9;fcyO5&j<@lTNrf)}gpa@CE-?A{3#?3P+nX+8 z`-Xky3jZ)x{UgzjmA497kXGcy2>{|8`PAxcp`)n2N_dPpQ12HKN#22Sfl>lN?+@OG zJHo{3a9BBUtbDs5v{+@XNE*W3z4LP62`4DJdOt$%`* z6G!XFA82I&5`;Y962shD;nDKwBewL{T6qJiP*1U<-`#?9!4yy61MlA z#<7kMD7zZ>35b6yHj+e<}SJ=3G382bZ~&&U;^n&4n)ngpi-%PB01i z39L*?%a5W;$WG^S+RRSZ_+1eP%3FrHnf`1#yt<7TV|-^YOh`26&LH$7E`bA#IvfxE zrH#5wsC^d(V}MER+m3Pz)HUDg7KOm~i}n|_c5@t#ZW<1})hz}NKIaJ-({S^dU>pG} zlX7-wR0&zmTs(KJa^^dfZC*ZOFQc88Er-{%E)gZetq&b=pt%zp58{mL=4#=ludszV zPaw8%^O+D|;3$Vyw-`4-_zqJ#hN&1rfSjun?C-m9@7O(F)Aq?d6Ym?XUfD>s~^YeuvUYqS5k zWN=#U>M3n)-FN0Th(FFB%+=qn#X^ca0NQUa;{r8NNHpg*uQ^ER9{Y^PePALr7FKRJ zQYcBj_s+tK(~4}tDrLn%>B{4tdFD9Hfdj^^P|X;jYJs3->I~cwCR3-v%84_@s7~Sy zg`9#@$sDI594jtP&8SXx3@Ax?+y^E}Sy(x7k{H8yy4br`9L}b0cDT`;rcH3XxHL6m z7_Y{G5_KK!2a~9cuyW!=&5(=YVf`*$>=RqG3dMr`Z4jkMJ#3EELvYZzSY60^4v0ASpvUNYKoH$#IzSoiM>{O82X^zwmI96Pwn$h>{7*LY7<32D++6F5pP7-5T zvm@JO_4HT@Oh@i*e2aIOkZ8^=-lv*SpS&K5D;CRaDZ%87Hu z=yaX*Vav1TKs^J;iVIXTW^g+Ol%%I{ADARP4lC~(Bo)=e*hY;t9>7NkiRKL8%^|7S zK}i~h`@kgW-Cd6)-`?WTURM&k8I|#SmN`l@@H8;DsPOg{gI&%J0%fTkcY?{%(Xevj zRf(}8-c_ zKQ~@T>^k>zb_^&HT>mJU{F=y!vI9lAY^vNbXoO7c>=;mzvbYaSk~(4K#7Sb*rGizU=eBGz zXX!dPT3nWzQJ35(P?|R4UNC9e04pa>6Juw1A+x4pbymppxrfYwdH@a>7pP|J46g-( zGIc-h2$QM%VCBS_Vyq9?dwExoFL&=SCu%z!E-q2cSRe4hKzZ7RyTRmXE3BM2PmI~A zoGqyPnhqOhd`~x3NbEZIbao6VNmFnim?TYxl@llFxS{Xq%DtBOuuSLLR3&4d=czni zS!@o~LO5*P3dK9W6MI^xgoE<60C$JU*L+wxalRNUnQQXJuC)qPmzYy^5gaToRn1t* zbb>%xT8%rwWT^rxC(aV1>s^$os9VEtGe_wbI96Pgnz3SF$AFS_GwuVEq?=&n5RxLC z%Oj8WanELnAi+M9v+*aDO_9xaex{HqS^0TudNZZ0eaMfMAM~Hw@_TcNUxf3-rFa2r z4YkX4(RZYe&S{Sgc?je4xYeIMUY6aFZzxsp6_kytMgS;bAo%}OmPY39Z_7}u~+u@ zMy=zd0QTUfGx5zi%AwsczOv@Kh1AmE>kt0+_+@i0zJv$2q1%YrT=+sj2)Pz_f=S3A ztV{~rRZ%5mfpa~NY zZZZ?uM;zrAC~8O4A;9-*_7}9a_ZqYCH$1S+g0{FZEcjd}RQwe;o=L@DU}aLs-i#_C z3z^I2u2sl@znloT8Vcj0GI$+IziqSaSekMkH!^*n| zMx-pwHOFW+94u~GYCJ}|Hg`I1KNF)5!pge{M#rgR(<*a}3UIKJ!{|88w6qeppNUa7 zteiMThsyO%O;hVgtH&(dV9w9=aFn?GoZYZ)CLE`2?2EYJOmMD&m0KO0P8FPAn1k~m z9Hj)n>C}MpGu&_{I6r}v69>n)TU1kVGCeCY9Ua+1m$LErEpvSS49AL#Pve#)YwpwP z^C#SVCPe=WD<=+7{kGLfs?QMvZ6%x(432R*25{^@F4#o{SUxaCZAz6L8Nj?UqA8t!zOYmC;+wTNU-~gOU3hkITb_M03Vv z-YYCDgk%6HNNuw#4N*;n-uBH8_MoH<9w;%Q)RCTiS63+X?_=os97CPwdv zl@qT=JdDV*uM5pFIv)-ex1%*4Bi*yFPvQ16F**-c-bFAX&%VB3j?w4gU?qoYif12&{15itS`P|&e9*?cyU?ceT$4UY6n6ePKV>ftv`)h zEpl9^@O%(Aoe9rLuyW$?_)b{WG_i6%Yd@FQcd>#wMJwTeaVg>*=EUh@!5C1Sx^W+v zIAvhv#Br+M#>y4)kp6meh`tDii3?HV+L-M*Mdupaawa-g!^$D(M0f>OzD4W46&XPy z!Shc11ZN8wt28^`m03};LSLqR%ADZG;cRgUW|l$6(Uj$S>VK&=Gy)zj@@TMM;yy50 z{)MC53h&nXn`KyJd~cchU$K4HoRYWk2s2m3E#C40Oo=ZRgqOE)Z?@x|I zd~e*cz_L1WMe+DfSxY#2KjZtrX+oko_kpQqf#t=5w$vkVUzk`O3M(g$mG405vqS6E z3agUt&UB=Tee@#=%go_g3Wtr`+cM39D-aQi*txhzOvDz!%84W9-)#_zSh`qH-$`0$ zPS#~`w76t3&j`T#p&bYc)TOv1OrS1?l@kYwGkvyqWUa1Fv4=(Jg`3Txx&w|F7pe=J zRj#VRpkUpOJHrI)R#-W4u>AWFLMv4V`Nr@I=1e^Y2aC%T?~~PeyikcaP@H~)`@zKN zX;^vJz$uee-)S1Nzwx*}T1Yf!TyGjqA`TR%k+>gBoQA{7iQ{yFZ_96JbrNChPE|@` zP2TD%7OcF|{!TV$>jXG*+)~xutoEk{g@Se*?i3TWV`1gQL1Qg7h?w?U`Le=Sr#W9~ zIAC19nzq#7#e!mWA?^zktMg&y#IgDyr+#@~ok(R1;sYD0-cnHPcha$mqbV6t}x^znHjv4^~bbw-Y(IWeeF#*2-ru%A_iN>6PTGv|G(#dkqd97q)D(U?WkX zsJ()F#YF87uyW$4u@+TVmWt}WuE~>)Z!RYZiRRo~Hf>SW4g>{i0`3SCsBy4z;y|&c zvmR?@CROh5NEM2OR3X!4*{A#}&2qjuVRPZ|aqCyprZa71C~~uL&zQ)a4l5^)+_9W? z*<*>-j5VpunqGyoiaBSi;Fxha<9*3C!m6tb2ZgJEyTgQQC9Iq{T&#ygJ;jbpiZ1Bi zWRBJiaKyN1HSHl$H5e4E>v3n8V0{r*P8_W1tg6+QuVgi3{nDJQU%(;blGU_5UOm-l zP_!Pzy|j_qamZNHmwhAIna`?&{Zezh z&V?h!tzk`@zN*2XU@gL(VS;rwteiMl{tpj@J_N613gu!+JO;P2>iXAZ=5SpKM~w?t zN3$BFKOhvai*bjTfUSj<691TQ^`st<*oHpiYfQ^tAO^LIcUFugU1D}X-_3JaiO?9jr+yK?MYZU zaoqfekc78P-J{6S2O1ChBZWkB2K@_~)-0V+P^gCEt}vl$gOx*|itrw-d==Myi86vj zg0JHGKWJMlmowoXw4Gzl@)>ZNxYd&RL0iW||E(2u*#kqqbbBgpG?Uts9pzSd>DK>2 zTM`oA8>arZZS&?lWbx24-?n9bIbvuYe9jXxI&t%vWTatbQqL}QB;tF$*8l1UMX0-P zh1eUG7k{D5VAlyV4ZmZ%5e^o&sxXhBWKbmir)_ZqZa)*FD`DltF*?Gxf=@A8nNM|O z`xS&9Fh}TqI8a=K7V(BG212gy6rcNW+nM;>3o9p%PyI%gpP?&3+s*me21km^&*Fyh z<2g?O+KL;`1n4zbIdOpe52tDU$rtUVN&oC^884ylFaNG*Uv#w|{bLrRSTMQT3o1rw>cuyW!^`Cl-jRjS-m zELOTx`fhiTIZ&(NfN_Ch9;L;YmVz;$I8|^Tm^iJ1l@rIQe$y)#JME?PQdd^n^lmW+ z>Sj1(T%a0Pq0}f)q;A5!U?Oz`tQ>+=gtbYzyy-4iMUY5vdDHhj%Y{}U+uJ7&G|3hV zp$84VXb$u9aI&~C^FGkilwzlp& za~s4T=MUx%4Eu{i!v5m)sUcDuh2ns(jfO&Hl~ZN=bcu|*>)}Lmu4cg@<5nKti~lHB zG8VL%&cJ%32vDyJ=V+g67;UKSiUE?&G%H8@_uh)~Eb zz&&C@wj5SY95Pn*s^l|PxsoCuq`S%-uPfk?aq((W^{T~!g0&v^g$dT>u<|Yi7WqWo z56!{42M$?lfTjCf-CejZOt7}V%DWU;ARbI9hv!Q<91-YGXYWHc%iwli?An6RA+D<=+{ z?^B$iuyvGs^I7%8u97)kML1ksym)7*qIkJ+pg`quKbSyeVdY%}C{0tm(Hy8vaJZ5N z%8mmC>N?yHCQut;X?dhE)p%#p)^C6(&}X!^(+c#Tlo%b!(oZ4ly3kM+k}L4Cu`nr`$MD zpoZaoFoAma|5urftrCQg87Pkvw+gCdA8$zFo8N6R!+P^y^ryHIeViv1aDO;$b6;~sOW?t%lxrRsdvE6`|_sz!oBwFUQt z3Dss;IdQ0_F`8blrLG*jYR=QkaICmIEo%x-A_x?vmvASTD7^qHCyo+le_r*p=}x*D zHStj6`@Hc&qB-|@&Do#lj|PQnEba{xt}(E3;&7e9s#D(S?%p}c#Z-SLt;|<*%qcqq zjvlvi<(gEvG-08*or=4~#O-8QIdR;4$0di(TGd}~UqMsNisqc<;jnQzOE;A>Hy#wQ zEbb2zuufPxalnvzCaPE}?6l-f=A2yzM~}-{bL&|kEEKnmxLZuzHo(e>exQR9Ip1J!PV82wFVj!TDgwKePV((4OUJZ zG*0E}*KJe2z#OjSaJabbusM~>jROU08SV!YsHL#-E&`NhoAP>dpe~2Ql{8TLZOZF# zKbSyW1}ldE72yDGd4{)p0&@h31kdn3Kz8Jh6-zzgUnu;kImbVSv&7~2Bdo4lupRX6 z>ZJ~QRLJAHe~6pRMD`v>xfPD<_I(wMM8tPIwf~&%H_Typ9gi&Y-3#7VorZ+L=Q_dS zRor+c7B9ofq>{blNW}MXLf_s~%Fha`lI~8~!B!UE4>-d37I8lz(VSbva~e}m+NJk& zyqbtx&tzyktlZiRb(M;Jy*h@@G-qfY94l^5Y7|4#d&+p1$?< zRdbMTgrmg;iTAzTp+WNdPdVCz+t1|aI#{{IIhq;D(WB-ZJq$-Hc8+}hQ;r_O?PqfI z0Ib~N9J!;Bt{%N(&e2XdTCsEF^Ph6G1Gk^a(RNrlgrf)xMsm%`T}Fr?k>HxsfpX31 zTygYhu_yG4amOENe3Lj+NHpgr@l4iDV#)E)x9X&E*#ko^J59%pW>WhBN4XW2oqS&t zry=nzzWCRjQszAT10GuDy3@Ih;=$)UA>)&{`AjlC0V|Vww#1Q0WaUYN(27i{Q0&X+ zv&zcTfUvT>!pdzDpOv$}TeoPQ^TE1v+&`AMe=K$XIM4aRbM&S63~$R_FaE9EzrwNN zcE!d)RCAv;#n0j9Ga>pcteiMRht=yw?JF`BOX27H=KS0Vhl$J2!iE(g+jEM}cW}#@ z=zI%SP8=QI%D1NebYx4}bay_Ze*NLU%=!5}94jtAjjKO3_bEg#;^s3UdLC9z9HPVP z)}Jn`r$;S7?|q+f1KUSPG-oRQSi=gC<2r?BFWht{JbS>(iNjNWi0&WoTmVtf*a2S=tNjK1fU4_^KwbRy~T?lk>HZR!LkT0$ylXy zw|EaQbX8!jIl%pJrnms}>R-9)q;FwB@3=>ZTpK9krZe&Fb(C9SZNT?JpEfGKJ7oXz zz}L*d_zE6f=JEjVJS#RBz7P;ZzKlD;MC41bGO2LaIuh|M68PSZ(X-T7C|UiPd@5V$ z$gENB^&S((8m<*Q0*8!SYIvU&;S&`I1nryufjh#a>gTX>2vrf9p6r`$`HLWtVBg%| z-#06v9dqKg8D=D^?|2u4L0zK6Jc)#~k9F zaIP8*v2@elA?1G?aGn&x9k}^Sh_^e+tLT0^ zCQ++l<;02d-y6zbtbZD4PZ#?Yn7(Na(`|65xG;T!w_G5dWt1lo0?N@XxC=~Jy-6%~5&=jusas-XWn_r*oq~X?hCxf=Scku=1`#Q&!!3GwS`u zbJGYR(VS7dSu|w}l%`?07fhPo-SueleG)FLHg$_NfMQq4QjbxXWe(H~JQd7U&}Q7* z)dE48YR4U6GIcbpyem|wtZs9uWe(H@aI})_cWx9YP0MjFm^3Yem3IZ2dNLhZOYL`8 znA5Z#j#iR1xly1rU5Q!^1UWNn4C8`)heFQJ^%9#l2wCGzL~qoF-n!>n#=4Pc+Xl$LS0>T-^H9q>g8Yf%0@J z?go>mlVRn=d15@dTh(V3D%rexdV0|us5~4mE>O*Qa#xK5B`S;i!6d2^Rt_O5!nPH; z^Tpk|5J4iroiDyUp-Tn5*~(h~qn<(kwuXNt>{~k+c83% zb2M&2Tia2e8MIGHx>}rj)O}}egZSh8!O$P@wA_JV|H>g@f3ZU-RblxhLGs=GuUmL1e*+Ql?J=?#w-T%K6yGy*kY8Q{+ zJQD}@5N8Q@7fS`JCo|Z6C#k{nh1u90yeIKs?TD$ljzl~eIDKkJnw`{4N`1H*g7dPK zZhfM9;6!;I%R{wtaL}~5&V5qo1QIlG8r^ZD$!dF;pCr9qxTVY@*x@LLWut2(8r-N_G80 zF+CI+=b=YBCAKj1rm9s`*|PUjVXPrQKZZlbEg+h+vw;HAE*uwojTQgtZ1qFjekM%! zz{-ikbXXWnR)^Ii0-EVn0Q#djKyScd;sRt?foeWeXkN!{WU!uw#~9b01B3)N?QyaBs9EE3uyMVn;OvK6%>-v6teiMFGs3{BcB@oJrkobHCn+sN zXPHBECLA;_L`%&e3W)#(Y98(Z6R0_`a^gURR-(MsvqBHi8gq#H;6QO9GOR>CuPHbs z+-fE`MOe9&!6}vX;C$U2oUg)xiVd8a*A$!^ajTi&Y=V^&2j~4^EzDln?GYa$npMc*K zo}IYeOn7#{$|3MXc!nS!L%6Gv5hUaqlojZ*GzB5cQQls&3_k3}4b&;|0) z#m*=Xrs}VD9uO>+ZpvnBGS&lU%=6m!Xao+NHtD%f3Y|cb1~gyJmJK$TUgh~n&|%MH zxksf7HgQ7e@-HFf-qz7vTJK1N){urjFsb*8sy#Fi&zbX?^2)W!a`#V#t%e}|7>*dXs+?DE z?BZ7y5(7Gd{Sfzo$Q>t&4^r%G^Z&VaU|TQ6zzwb&!lJ~teiMS z%94~aA9+7V@lsxwQjX3t$LLHrT3n3k?gfa@+id?SNAqy|nHQW}#)vd7fb#s=!3P+2}QlsmV?LXz{ zM%;cTN1I^f#5rQsB@xGdD_>SwdcvHgN8yNZS!#4$s>Xow^f2xNlc$GZ<-~bn-M?iE zVw<{BnEq}K(>rjuxG**P{>=#hC21$_0F$I0uyW!gvF_ip1@+v_4;*WJ|8|s+*fs9o zg!`1DBXRSY6deXDCr;4^II93XR;8y;ow`414$>#!cyS9--3@UO?%>=AP?nb99xz#2 z3@azjlCr~6zZM`OS<0?S6^bSGoWswV1NB)rXk4H)=U^DEEcwDfsroeT29v5wVCBTA zn#rtCHdVdF)nst`jyYD}f}_U8N^=@UBd~JfK)L!R?gx{r+hFCyxk9Ry_!#v{WgdUg z9INNypmDKkQnj+fK&g5bcY{gQGq7^vRGk1+tBQzcxwlwW-&fgdhVh8LhmdH_h^{%0 zpb-_T77NPPDBKq&Un5}U#Q9>a9~Ap4qz#^84%LZpxVZJI(d!3J04Pbba0i$q&485? zCyBK}-b)t{y39f9fTP6)snILsw*QnP3%8%i(FL$_;v7xmbi7sSa^|2pMOVSG;!<=@ zgZDPADp7{6z^!L8v>sMYoS|bl43+c6F1jD($L1jY5Dpj@B+Yk#jD{sI1eB(Ga2J>~ z-32QrP7`ZJDi`zp>frr`IZLm@;o`E?=o!fg043>F+yN#@FT=`-lf-()Qtnqz^gUpv z@eSO5LZUf0aE;z0C)}qLO~lP-QZyb`PMjiMckA!4_Yf$nOlO*tG!G6Kw<0yXySX8t zG|jb?dagtbjRQjz#2U+xf#~h`daJ;xEHF}SV8v)AF4%`DK zOWR@PU4*4fnvPCK9cO$~cchSL&P`pzS#lykSvm~&fXUKSSUGW)SaVZJK8<+VLM8L_V}opSe; zDXR#dH7D)Ua3Hy)6&ifkH$-SCeV5>_G3mPqR!*G0BkR!@a!$dw%<=jr94RhdiyDMi z)pyFzZMf}Ber|!46X!=c(>b_0<-C@!)TZan;dvGg6BnMd8wHR4Jc4I%!PNV8h)puHV?!s+n^0Nh2PMn|P>J2_! z8F7Gs_~xba9(~IG*mhr9-3su!IZUs@VdKK|4-LBU(guQ(^)l`VldP9u<;2OVdke2S znqt4>jc>&!3W?_2iZ$vMKIBM>@wnkka>l~SiIY?J7M{LIGS8fwIdG7;6{u0S@Y)wh z&cMxPQgbS-oH#Xy*Xv~N!3)Y9R5Ayr2*-&F&cX(@F4uF~tMa(zOm?!ca^mdN-JtC| zV?hDvMst8R!NKAJ)Tj;GKKCg_*WuW-Fp*c_vW;An9%YSgQc ze*Y;)58(DQIl3QKPMjl7HPRd5q`uj+@Vgzkm^@8^l@sTw?)|*(sE8%z5G{to#H~k- zx}Og@B4QzKIFpT(kA%1gx0}h$YFIgOZl>0| zqbEl}eAAqo+u#^+sj2%>T;P$s?g)rmaI2Zj+zcxx&P?48ZRwAGc-9=8XW&3_!KwRM zQvjUMBOji^O=r^cIINsFJ#}Xs-Ajw3PBb2rM+k}L49bm~aYBxG7=|0pB3Z>?cVX?gKTOV!hLsbqP<5Y;(IZ4GbDS=K zgT(D^je0hwJvwALZZ?yeWw3JM)YPAfv`2zm!C#`zP9E(?OI!Kh2BF9{DlH9Gx@ZIB`o)qxJ@c9rbZ4ZaI^klVRl+XGeF$N70;}JRGOk*$Fw? zBa2(kWTz8WPMn>(bC2&V3uW%vWDd}EaIm-lHEQnhxliYwjkx(tiZ;N?iBoi1y|u+5 z&Z$tyddQrt2jBp5$?9y-^5PI7p|stPyTqjJK3F+~woGo*l(x1@2B+l~&2!#UJ;(iH ziTlS=_mA_OKRk(PBZs%;t{4ASuA|)^Vk1Z#KD;VnITDtM6?4t4m~CQ3--_IqcN5VV zx1g=NV0K3_U7p@yRjgDxZ zq*SnaGK1ZBder>*J=K(t6Q*LfKAyybHHp0)iFhJj|NZQ-so8c!&dXN1X;Myvlj3>$ zQq9v@aImy_%^fCm0*M(ohE_#i7TZ<7NE&D0mNAQ4yQ7R}H^R@UescF$g3z9_R-{we zp5A=mw`U1^%PS((Fq!5H@L+16ty6{4H{ctot-Y~1}*g?qqJ4o&d1&>6AeJ#Dg@U|-4i50pEF#n>;9qb2puc31*^0+<(!R|$`mT4V((hz=Ksi3j8QpENMQE_+^R4a zMMdW@y|tf;8_c9;3ap$sHB$*S^>A5Yj>}>=MqFG@LvaasN;z4GTgv2Q0j!)jC$zeh zd#zGAQ@6T&+8mcl;81aKfvbzoVM@(KxWPR66)I_*Lk+)jzI21ubcE1Yl>lg43O#AB?IBSS|t=bWzbosFMSMApMCeQ&I&?MurfXvGL5wa*Z@@|Nez$Us>2)|{+C1l;6*__R3~0u2 zl2PTg;i`|Gm2!3XRoqHu>3i8x4$XIr_h1KW^Xa z_c?H|xCNu`%dTDv&=(BqH=Ul&!0l$@b1JNyI6lgE&ImsC(%M}eYs9qt7at&Om9;%FUPAFXsg+v|NZNcV}Vhs~LK2#y(-sk-~wcqK}8pThJ2 zZax#H`(fo>0w&+?KxJUsX%5p4IA(Ffi8}3DY)Mxz%CHWDCXKa;lWE_skT! z)Q`j-d8+aBeVCAF&P`hbDwFCyg=s2oJ`<)XuyW!s9aF!})uJiRL03syVouUxIAGke zRQFJQUXKg-PBB`D+s?#j0j#{sVAPwj)Z_F&ZI00;aKMtl$o8FLbP;Yl6Qk9za^e^% z-}X?K1Tt%~wz=G!w@%ysX~Xs&Mb3wX5eYiZf2y<&>HYCq~dEOIc_== zqGhmh;t)-%4^g*OP8FaVHpd*HGvHWp%TWVnq^jE#o>OtNnedzpD<=-m5O--J zisJkUEkH$cfbwv>xBxZaF3s;cg(!=g&V;BFR!$tE=|c?K_DxzP+n>>Lw8@;K>)?=a zIXcJuX@}s*?>$9nBW^ttr46uh;wTMKkIHGQQW1|mI`ibI>qF)oJpjjx%TWXBk>7O+ z(fzpTOo;A-l@o_Z`H1Iy_eHGQcJ^u{$bA-0T(c&Uh_e&tWJAUan1!x;?I1`|) zuyW!64Y7wvY(rj=&xob#{w#U+de|Apw`Nm?M00M<8nA~b;5)@=3T`_Sqsg#x;usB8 zhg^)r=Y*Aev&H5NErg>LXC10JP61kg8_oo1KCGNLKqu87tku^*Qto1r`Z(kgbDS=M zW5>nmQ|1$PSQsc=t8q7&a8+RC#Nkpt38GF(m0~I{Hm512={9qgZh=F^WvT8L8hIm< z=QTy=X54BfIyb?}iK8>blA{Qsc(hN>E_%kCou}YfaoK6Wl4I3v3eV%X*-UtT2`eWK z&k*~HL=?q+O5RfUq>cEH@nAhnNHk}#Zos~xn%@+kci|)tF!6aCR!$tBAy$a`t$bf5 zl+fq*~P)g9t z<_x_A$BN64!QGbXHihQ}+-xR1&%w$q4Ug}H0tKG&vyE@I#tMn%+-#Y`<8zzBGX^)C z3D0O)xmDq*y+^J;kl_q-cus|56+`7w-KOxIjGN7b=LA?ead?yumRE=7S`;-0Fyzh2 z$-;r+k~2U0*c|YgV$+G+%)}-QE4Ms0ngbWEGsk8l9H=<4(I2$10k@fn&6Tin;@BLd ze^jbHVBrCCUhan@#O38f24%)MO@h{!`*35Kpxg^9Ck{%;`|!at1(b1kyE!o1;7DD=;F0{#W*uxn_$wH=E&5ak(*g1xE3jqH_ms zH4~lNVdccpIZ%HCo-Jq9ZRanU^YQ{5A1*JaN5A>DU8RsbhnvcTbzbSB|eGtrpxH&t&ghRw-$DrmdE#Z6{Hvj|oWfhLpNG^MTW zlEG=YMf2L)&L7O3bZ6ITDtM z6+bh#;wL6n^sUH!d8CNOxCL!(M}20{j^))NI^B2XHi$n&NcRo-i)pz7L;farNZ4O& z6p{mbF0t1`%VJ5?$`7s^w6EzVS7Rs_FkqRE{64NqpInh$s4| zPYp@2la`68+4j+H=VdG1VF`KwPLLO}mumjr4~I;fl(j-Us_5wr{xr7m9iyO-XWj3tb zs-TE-qbMk=%|WTa5sCp6*I5e6D%@BmCSCk%WjZ#i-HmBq!I6PcRPK!LB zwhK=wA~)ccG7-5RR!$s|149tWSn8VzkDD{{OE^AUMl^3Ga9d7~aFs&x3*1yDBoD&M zi9-@rN65CUcg-1j8x9Yb5tBNidwJz8+)^eYe}s-#R3;>c!pez55>iLX74=4VnK>g%;qb&zM}(&ok#liNnTRZcm0K1OatFN5 z9Ffc5@Wg?L?)LXm+)^eY7sJY}iby~C2-s!@BGsMu;5fy=ig1~h zliP7inXKFjD~GTW;nAUd`sh9gh#(;sf$xsGjx4QkA3qsc@g);0#M8$Q?iTCQ#}RX^ zawhQD@o$XZSMX=0{Y?xk8{)BJrKlg5hVGaw6CzO4Ls=5Jcs;i zRHEf`$iFxeq0gm4pEN{y3S9rW)IJ}n#p&Ztm;%X~`cdPtdy0@~#MnJX=mavOdjzS^ zXgl%ID>3rf@?_jfX8oJwD2Jvx#z&9`s9|VNrLu)=C6!VZ_7(_}4Ie+w$K$De{7AE| z+2F^_dd*$h{^sK5GSfdBRwnK5bVnkzCN%s}^<>J4_9^vhVV5B$6*xNDW{{(pXr5BD zF{yb=%ET(%UM436SUGV{Xg%pEc4Sf=MfHo`H=BcU6C55cCMpG(H{j+nIk_HI zPMniTq@EOtCH2|#$9VvZ<&SJhJqpk)Yy})=nnIeC`;ksaEpp&R}=t>aF#N1E^aK7 zkwvg_2qO_z$mAlMd&3<;LN4`9h*}z@748a;kri)7U1zeb5KDcx#QdVchl_>&OsSkL z7RrG|q_4q0Fzv5nV9^jOezk+V=t^JhuiC}`S2HrOoTORk`$|-vVB8Q_xlc~z~?pL;WgZDCJ(Q` z%A`I1!I2298Vz3xe1GTmLbb8-8bD9whI6GuroBhuf< zv~_5;IX@LRN?d;G9>B%xW3JN_npL>bOlS(Qa^lb^=g}(AXzR|+=G@!_2a3y01LhyW zO<29T0k@lp&h@Zz2s#n&s^yKjJC#R}kjn#iM;+v(74ChZkriJuu|g~lj2{*2PM|&K z2qOb840a{wFHOa#`TN9f{Ce!_Wc0@yi0f za|pr`H2!SkVScQTXv8r8u83P8J-SUm?mIlbjQY+Y@cZah7r7KL2Dg$~`bIm-q4|z+ zDZqCQfiD)m8)E-Y^HlT9pNz*;y9_`xuX*0a%)HNA!oUf*y-WsYq zC1=nTAB2)_ipjmWtxQbrhLsb?B&^+ZsCzrMnM1M_4i6U+lXlagdDHJT+)^eYufWQQ zBNA3g3SD{iTX$0y8qXw?g+z01TTCj6?JKP$lW<#^m`s3`6UQWMDxu$mSzu1dd^kSb zQerZdXg{4f7dMp&$!u6TaY+6jcjp}^S5^N1g-8e>2-17#31vePX#$~y(0hOYg2U|0 z-QByHotaEYq4(w@7#2i&m!cF!kS2m42vQVLl%gO-ilTf`6hVGx?##};bDneWKA-#C z*|Yia$2Tv@*N@NhocBEEJm)<3oUmM?BB!rP=E*6kzyab?BFQB+UuiCxgWJl)Bo8ZF z$0RJ5RLEsF*UKrn296Jx5=kymu2M*@#7$*Fav7{_9g?tIq9Qj%t8jiLr{ozpKwL^B zxuoVR#pEg6RwgD-z{;Z;6Mf40pB$6_!T}l~Obk=bzj0fcnEVq~wvNdL=KYc`*E>B+ zrOBJSo9!>IbtWi@_S8Ctj~%$XCIOFWX4we0n2F5#u(EYzHjYNdt#v)?-(?;yr{+*N zQrr|{=#D|DsXI-E}kb`qO93?I|hIgCMtWz*uuY?=S1m7&@c<+`6TIl@c{7xc_}3^ zY8S}LV~WgJ++rp&V_;?L$b@X;WgIuBO;Fp(S=kzn4>!#Sw()ANQb?xarZOSf5>~bj zNyrH_ZD#3~Gm?SB!(~Kp0&VPNIR>|siOA8gvUNnl@<^eq@8Df1XXFAnK3qm5c|^HN z^T>I)sZ2=Dg_W&C64GUxb$X_h(t0<`Pvx9E2#1KviQ$uLZb8)WmZEYWZY>j)dthbj zs01Ex3iifj-MMa7Z)y3foRoLr2ysa3b3+uOhT5hPN`cfbM}x!vKt&8ZZZ)pVU?#8 zkzH_0nTSk-l}9Zi^NSiH6*(ev;P8wDBJ+zBkvwiG6Oq}lvUNm4svKv2QEz9tM$X8U zaD2Fo2&$Z#s}z#Ua8sF(Tmmawha_x8GQZeAS<58P$SHXW4iJ|T$%>@rE5+mq+*T$g zkHN~L6_f5oA^T70J1 z{1&&FiOut{vUO}iRw{0Px<{*(mpWLytR1T)+Ow<`tW;{QQb@+&rZOSvfR(L7GTxk9 z+;VsAp*HI?Epc<1uxtSQ@|9w8E^aFmle1uD>zIV} zp}1vL0_pt)56U^Y4~`I*6G0zJ-B}9CJ-D$o07}uPx`$pr{rxoJX}fy zyD7?3ipU$drA$O#gO#l#5>o5roU(o?;Hoplwa!XPV${_-HCHJlE8wOwAz2Pqwhl?i zcZ0Ra88=aOlcTZ=93^f#5qvl3J4}I@h8xTTW_wuKIxt}qPeI>6nIk794~K_Kie%y` z81_$Q4lZ8BN9>)=L$WOx72pou9QP^85|%kB!ZII^Oa_jOK@A6m|O%ak7i8t z7RaaMm^=XoXoN5^G(kRw+see`5m?zeCSl9iLXX}A`ENNT|Agbir9`l0uab$O3GzeS zR3;=Jz{=JkSuOgSuW>piZHtlS5h`8WcUrDs5;1N8j(Dav1J?rB3GI3c8R<@2y zSk*Ixi=J5ymh*A|93^gMkyJfRhbb`o;s!H;*$Y;-4ot{Z7wY%sX3{ysU2rGKi8&q) z6PFmlU2p-9DKZOiiYKOHnxzx0Z>@ELhn(Dj_YC{ncE>E#?+z+b`$ISvePu z5tkJ~%jA%|6qd7abD6N54l7%SC1jbay2DbnC$Y&abe|lTd*CQ>aS<$YeTOM9ci{#z zfw>b_whl~4cF8+E>54m7Z^(XIj>{WxjJUW6vdfUW6qeU;bD6Nb3M*TOCFCeT?LHVA zT2?wtToJ9HB-&FE3627q{!(0)!|i3_vJ9+j9hZ>YQY@5RLvGncPRlenMkA10hTNsF zY>%7Egk@V;**YvC%}>R`JZ*)Wmvb^34iA?TLGzRHlp@lLTgpVlft9Tz5>hm)3rDA@ zt2i}GE|X(&2^=CWCW4~5;VnhwBHUUgDhpv{>!^fuwirJ3ctXy}V{m-9oCrEwYOYd9 z9>GmzLh=x-Y#ox2V!7mG++wMq4xhD@@=rM`AHq@Mq9Q1keTOM9AK(Tvfq5TRwhl~4 z{Zn%K({4UXuF+V3mbm^|S4oVz`lsnH#bqtrUM4Q9!^+li32D|Y6{_TY!vo}~>yU($$LcBsjggz>jNAx^hs%hdJXW4kM6SavWg>DltZW^T&^(gYA8z@roRR0@_;48! z<&nJM;g;ucQ<;!F4J(gYNam2obH^MmUcGiGiT12sC6FjrX(ss$9?AhGB%i>_)*%VG zDx<7k;wb4yf?LWl*`jTj2(HSgJ4->?6gQR$$|kU~bx=Z1c*@nTN-3SuyReUzqjDr1 zBkr^#I6WS6m%=g&H>|{xpGdD|k$1PAt>*bkF?kiYm5Iqqu=41|q?*rYn5=MwxYSurNwlZb5n-ZyrI;*(+sedb9IR{| zlaN5Z}j2+X_cbWQc^)0n;?FSq~V#6^*5@S7yw8V;c_7Pk0 zmM0O@ifUKi%41bDR@l3vW8x`;wOB4x(doUr??Uy53h62#e=(tNt&qRzTQBS{E>@BQ zWA{xja7yLDGX`t_bM>(}2mXZ_e;xySXA7C~q-?s9PGxfGa@o=TL#B|gsFPc#G|8R2 zpfmXY*V+85&RpHTfu+;=OmCr-Pxm{6y>~bGd3f=m!9O!D#ZNRPPV*#2Cic_DhYYYc zC@ZC=4~1ryTj@0n(f8mXYDDbyrn@)85i^c*-z7??WpoC%p*Q~PBv7S3we{pEckz!yvltdCs zYYL2EvBU(X#bvr!`V1ah_GtpFY@M1(3~ExUqRp38t2{Ygkn^)e+xR&!<~-AxYT?Is zo|3dFZag#pYyvA=Cu#WnGeyroN6Yy+5)Kr1osvlYnPPbQY!+@ZlbS^sP zbIXobiIJ7i3SSdfV#_Is_EchGl62=ONz35IGf5f;D_bXNQa~tdwu~Ou5+>x0%V!RlZYFTJA)7$6<>d6jvEq`mm$Zm)kTcn^4svj- zne24I%8Ld&WZJq!&dx<}tVWt0Qw_fmx0=b$`LOb$!44_D9+R{42pp@CX2(>2J%n4$ zWaj}`**ZJXReMgI|E5dYuFr>Za6W(o#RW%PwbxyyE1maolbO`K11npnX4A-(POe<( zPgRSmWk5f$SobJ#nYEUZXiu57k94gQ@SF0pI&L?UpH*OG>-u9#>OMzx0gmFS5}KWElp}Q= z96l~mM@f;23IrwWYTOYfVOPM))(KnNNSLuV=y^Fq&%puWGGzFMhqs|vca>7|G;S)B zk|$wh>y&H~K}qOYe8EMdUrhUjo8YE0DcKNKwoXZSehId_XuCc~%6XXuhiXLfOVDYWUk(X3`l7`; z7VD_}qdxsGeMZA=TRkZJev+_baY*Tpr{GD@O7Yhc5t?YtU0v{`2yZYz_MC17RioQyXX z+0AwpEwyYfCuLhWM%>gA`_sOrw=}10g+HWb+4Qi2aeH5v0^H&yKrln ztfXM&(aj1ejxLh3vJj5ZNU>t7kIu)fWwJ5=D_dv9Ttyq3ZXS_?@(>&#E-109=&)v+ z2XIrFl-vs|Tc>1w<4PsaY@)4IK9HmGJ{%=3Du$Qkc&plgzjU?o4sI`#m$zVL>%44c zm)^b9LN1UVJO+SBZ(NI9Xzax<_uz5+iz#+%mgl)T6TMBBDaR z^)k7K;UAsx7c;QOFqg@tOQrMzdXb#>uRGOc=uP8V?kY3fB=?iJ9Q!xP-S0_+UM?1T zV^o}5{Gu-xTRF8$EiScNDO*;zUFZ)3^vX$b;2?2H5#*GnzZ91)++HRwDOlM$ zE`djVgSh0J^y~$x63r|Z$$41_M~TZz=%c=Ae?4hleRTQ`Q((@=4Q2u}04rMuW&`8u ztut5XNtFxTmHza6Z7zC5PRv7an7G6kHiEcwQNUx0%mcW^Ol0nbm8~NavTo_8v(X1~ zR^Er>!(~OVZmGFSA$bQkl?lmPu<~ey#4rV|l@>2I? zD{ym}uv`i&hrkl!=*B<&sc#3zknqo-UWE6m8;IZ_HZzaKlwfi!)9Sek}WXQ{i4IaEp8Wc__u)tZW^E6||J8<$_D(BwPdsg-gOz zHVOX3M{!t)+sDM=d|25!4$G!XJ!SK>@R%HhN8o^PQJBO*A>bRu;33>LCI%0{%GNPh zekfG+9I7RS59K6$0LO$&!W4vruqonw+&m@>@4(8|VOY5dgP%qw~|Hijr||SRfz&xo|kRRw0e%AM8BeF{#9qSVPMM!sbL5E^|%E2JJ^5pBtmzvLw70L z@fF4Nq1e>Eq%aNAxU6{nxrCBPV*UA%id)O@nD(#9h<3JqkvZgJ<9F?UMX@+;B{S)K z9zEV8`W1y~yaV4A1izw~A|LrlcudE+`HEA@r*ng64~#82-PMvi*hfd+(DBS1`GB{C zfz5GynG8&XmC3}ju_qCl9TNYFVgut3r}@TsI+xQ*)s!+&c)D>E946zGU;xI@z{&=u z@v6G=n66chz%6DXa~P~V>XFIo2Vw(qWX^%ZG?K{V7f@u*#4Tnba~iB{9ho)FS%zkp zd*!Iy4Tpz|%8s=Bo)-tPbr9eG?GO@z-z+8eB5p(4^>#XVVplPl{|@&E9JG<1X{ouDsH>< z{{35(kwSQGfD&%(;q0h-7INWXJqiEeQQT3ktBYd56sBCK03Csw&IIT%SlK#2oGDC2QJ=yF=S*_PAuKLzd z678w_+OSwx5uiA&iF?4rX*F2cI!=r&%#7peABOBN=V%`|R^0TI;1*`hbqdg)xamxQ zX28nU0b(5E(oT}&4qvrp-MMa7zy5J?SG=PB9F7*3q5~78$a9`T^eJvU6QcjX%GM!b9OpW7 zs%d>SJxR{c=1QVHRat_^xt{M7p^3QdOoTRum8~PhSWY{oZfy_pC^H0-Im#pR56N zw;Z4!!olJKl;i|f^PM7e2W~qPq3^@WivmL3xdPdl{<9pRKf%GWfRN`qMd%gWb|yl9 zfR(KywB_)%m>0&Bu_9Z(Ph62Lt0da9nm#PKiYyoc3e?iL3rwJvgq5uW#n>b2DLH9% zO_?^a?I>sIt8louSt-FiqK5Yrqit~OnHYTqR<@4OdsS$R>O^FLbNih zY#k!T5lAl6uT^UM$O+mL4iz^GC3pm)Jg4}~z%6Iuvn#A@9Un$VQO+srcN@)@^HYUm z#pNf#j-s0D6rd7rIuoD*tZW@1#@8UVC>m@08{`;W3rCELQG#EC_yM3WU4=Wqgz0iv z**Z*|$*j<$O=iEAQ}iqxDlSDyPG*H3iq9``%bEE60#>$;52LKl6?!IbsR8u49H39( zU~vITu&nodrwIKAx1EX5zhLD>1tGmDWb>T3B%7!t+EbDxjF6!%WMkZRCPEv)%GMF$ zEU61U`Ykm_$O$?OjukfvCAp+luG1Ve6E~d+(1EbBb%3@Q{+L6h@^m)qkmj^A+c7;Ps$q>{G$_aDTX48+ zU{v>>V)RYidL~BSfR(Ld#OQqNujVRlF{eK<`>>p&pTP0ra+F}_SpaFseG1ZFaPyfUy$LH@2Z^yssS04@vHzNRap|_2 zl4wuqmf$93(|?N6%DDYZl)elrTStj8xfKg#*N~I;l#?_Aj+cd;G~_-7X;<8QCP+KM z%GN<*w2u@E^R(0ds+^$`94anD3AT?Y&nZ3y+;S#9Iat{`K8%uIU5qtFT@j@rbgdkr ztKe{P5lXP+Z+K5Jx*WHjiP3jpW$PF*cC|}R#x0f#>ex*q=~+2Rzl0;kB`LvOZ9f1M zreEL=Fk$*RtZW@7#xlF)^rzi?mVA!=shp+%zyag3l;ASE=|4s3U%35Dl>QG^wvG~` zJF--$k|%2>7R1%s#!8|+)mnnBZJzHGp$%}`nFx)Cm8~PhXl*OIJ^B-Vhsg<=3CD_? zh!SjVtGP}AIuJLV3DAD9vUPwM6`K0)T3ZyICgEoBgu7w78_7o-JJzucDV!675+(i*?lg>Akz}!nHd(jvnlrHol`{;wghC3{L1&D z7jUe&Rm z|A*VmMCR|XvUOylmNT?DW8;#zeA+-sw5NPZVmV{%${3HE%mij_SlK!-Q8`9MPhZZ= zloN9x9Hf!VF*ToQj@b{lnTgEau(EYzqH+v9u{v2!%n5LexWpupV~j^t$Kob4ftd#@ zTL&g8$EfJ(w<&&KPRuQEkhsJov5u+vOmob4ahsXQTn{Ucc4YKv=?`*beg_9>gpn~! zOTWQwW+L+|SlK!<5&aZhZe^ZZb_~}fE?E|@fWM$5+Oq;qpr0b(In6kW;g&P;`QM_4 zPegOzP!QexT!-|Renn2uWPBXPxq0=5XFi=9JbPel$?2|^+`+z`oiQB)OQ-Xh-h%q8 zerIqXf#$$g=P5*;xbaMgHiMO|=b(tsM~C8=bGj?3aAblN<760+&Y{B0zEa5$*vKrysz|)^TDiuIa_Bf01MKCLAg* zMhPyijTf@Mj$6*e=Z~79SxK~~C`(|=u;wz&H($a{W&-m? zSlK!-5hvxeD`!_ZFFU~@;^vtIPRflWZ)_>ar}YXZ>Mc3HkW=$>I7(b<_Dp~p&uI$H&v2ue(EJouwhm3i@u#CcH`iCc z|B^HFe{hhv%p`F9>G@2N`8#ei6Pdrl%GQyISpGVtZf$DXpeinx#w&^TluHRLf0f4+ zm$h+=nYgS0E01bi$TNcn%5m8b4iPuMB!SC(!y~7A;}$b<*#lO#j!Q(fq+X@e+i^~i z^KvX4BQ7rqR7*9NX?~f9o6H2J0xMewCTayUzt}%nn~-ji6Z2g-NL*r)Si#hMrpR26 z+ss7f8d!NWBh#HLkaNr5$&vXD9HbFM#`BpX^DEqDCNj^!%GQyIxY5K5pZOE;FU%FM zeiu^`?OFXMaHC1kbqdh`;9(wM0`y;4**ZWG>zeL{27LxYCb6q_?}tC`rG3M*U3CgP&4MgWa3t^HUI&yV0>ap6heqOBI+ zDMCNMZD%5MJFILSp@@}@+n?5-G6W|Iv%MAlsPfD6#C6n{ltg>#sJ-P!l|yb*aK4C}%>-vDSlK!_5nFw(`ZiiWd)i4( z%?@yoxTz+Atv=6Zip+Mn%}ivrhLuM*GI?@^aZZkm3kPXLkx@QVWV&&inaE^dW$Va9 z^wGFwRZ8hS5#NzBb1@txE;9-A(bS!$&|HWc&4lIxSlK!>5xX_HOutro|6ESY&)^Vo ziAi9$MtMwe`6+HO6PE{JW$U;^)J!?2tltFse{x>_4#$YgO9C}h&1DMAUvZO}z`P49 zTL&iMd&^q%jGHv$=ZmYRwUtDBs-^_KxAYyS@T`Fw&V*-GSlK!}QIk_a-=Nt~PR-tM zh`7lniOH#8*q_-0x0s2`Zm_a-Tq4TsT%l+3mfC9OSUE8B;2?2z16Vv<+_ zE0<}Gc?LI`3CvTlvUOlK3O_bbDLS3as%BX&&n&h;yaN6o94Ia|`^e7?ntoGs{)^kq zMCaeIvUPN#s;41z^o-LfXJ<1dF?y?~rsEWz3Ao`*cs7ESt-}*>y@>k#xtVm%aChI= zZf&fJ0>gALTj4=TzKsCO#*@ z%GU9Tp1Qp3Lq1sek({0%z>(t8lf=efBkdMS6rS60!@8XMK!N3q#Kj?H#(n7A1y32f?KQ*5@zt!82~6;`&6O+;I0e>GQei@62b z_Kqv(rW=kEmzxCILWkU@;AC*Kncy4)D_aLAVu`G}-BOi8Do`4J%tmCnDz*3uV`kbJjjiTv)B4 zB-&G0C6IH5+@|2Hikr;@XC+wKIye!HT*bmXZFRi2oS8k~5OK3j0*zeCV~WdexW!Cd zc7c_x;}Wrdqb`x1qOMidkeMe(rUHkFi%bHAc*ARo%^cinCN_Ck**Z26ojHcjU#^!k za}69LE;9*q=G0uKz+8!&%mn5#SlK!-5e0b3$+*Q*K^>B7speO5Y@UH5#lHU}fv@MAT6wr$6oHv*hZM|H;|;FB~W?I|+>%+>{k%?H_l--`ZHc1^WC+1K% zM%+Y`z}lwfG6m*f++-#&2f)hKfr%)&)s+((FK5VkITa2OmzM-eZsjq>VwDL_+k)0qHm2`gI%D58_N5k6Pd|mDBSe94Rh62^=u^j?>(8A8t4ko_k+lRebs4TH{;Qmxci~WR z=}B(tGT&DGHf}i+pEqD->-cODe(gZxC)oT7U;l)BjT6PC*Q!dQJ*C%7`Sky9?>|Lp7unIIBsTo>zDsqVC zz@g$ol-#6d?%2uWmNW604J%v6C!zznTz}!$ZhJ+$eDQx4iT4`1dcylf)I)MoOYR6;=W*U7pVr zne}m-naHdQE01nus`-qD%%O5*4u*roO)`lfqkN{w9Dv)*L}p)D**Y>2$Dx&y3ZMBk z-&5t}oCL>;OHKmEp+VOvK*!^zGXYuvD~AB&^j*GoN5=_+6Z#IA(a~}AVBbOYKW5hd zIJEx9Eboto#DuY9I{GeC|E<1#oZ37PLt?`*LlS#>5^0GQo5`)1AhDv_)pyvEDjF;7 z-O(}el)+jo7pmy=-raYh`a^|um5{%f(6?5|-}J2)_7@i`$$_!EIdk2NGkC^e?SHO5 z7Ei;!G~>@?VDD@pQ=XJfSJJ6WE?q7=+JDFt@)h-kfm52~&Rx(M{Qv80{#9qTZr{Mt z>3pWQP|BzKox$F_8~i-H_|V`#8JFTGni7wD5+f7)Y2!l%*c+6US~tB7L-coeh#C=l zz3J{>;fNVWx$kAA(=s{(+eGbc*T=Kd=ph-^cX1n;S?_I6Idrfmg#OZE{LrEYdmU3K zI#cPcOv>#q=30K4Yn&`zaIdN)l2~xlVc#X@um^l40IY;t%LHHrSh-=GKjAFrNsJsR zTJK>!Ep(g4@gFWg4t(ofmDL zt?{BRW~%36jhc#_nmKT+xYR^`gJ9*q{COflXW$Wy$VVsp{j=4ro z%aw3+xU_5^H^(SHDIb^Nb~5?61Xi}rhqkr6o3~2uZ2r2mobrsElBeJpaVd$tZfSZ; zS$P7tmdVOvuyP11F=}nUT(2*mV@UX`r#IlWeZvvoih9K+vf@#R6{=jneTfk**T>CL z+wes<-_ueStbPi*&@=uv26h{!U{9Ay=>@b{_x^R~ydle4ia|rEzKXIIt3Vn9@0aQ; zdJ?0ddRsnK^E=h8wk<1eLH{Ck2Y6r_uKFwR?cit`$F^^R(rFo)fk||BY#qtYR^Mor z+ZwlxndPR!$|TEe=}C-Sbv9nTfs|4kSt&1wDL1d`lzhfX^*fc`LRNoN)>YOCYqM@R zMqDy>8kUS`UnwaW+*T$j$H2-Vq{Ns;{F$hpkYY&q^WpMw9jRHNW}@51j_6FZ#Qud+ zf4OBEx=DF}F>M5LV6S1Oq2}f=or;=&)tUFqYsq+qx#)(tLHFmPYdwk3xhOON#o4lt z-bq}swPvFO^b|ZmWIB2R4w!L_`|eRXErT<#6-_$YXlj*x-M@x~{z<@NxP{DA^N6P$ zI?^M!XS}vyqyyWi!NZ(?Dxu)YDZA2_M*p;xg}BQJ)?~R$L{qLamJM zAK4@IrFK&%-s39^imj*W{qWDr_}duRFNxKWci8Tk*fI$lR!DtuS@u^*J)T79ycwDg zlV2gN+B$F62I>$sPOZz>3*dnwGv;}4(2Qfy-$G2N#O7p|D@!J}$iG12jlY*8F``~w~n67IrnW|D9x ztW2iE+dPTTOp*A?Nk2LrN)*j=#B{lqJ+&3o+saBIId8zR;%1J>kKP&NG>+Ztj?>lD zYq;S|d|ri>t>ZH#WS(i_(^V>@vl$i3`fj1VJGjzmVvtr)5=kt@X$m?_GzEo*fFiXV z?gA63Wng9NNQF)5hIm#AT3*^kj?*+aV%)rRaMCzc3KXU7ar2odZ3`<~M`_dHvQtLA z+g3|X8b*0JMzi5)aWRVQz~@hIL#|VVdU4a42syB_b%eGV4xy~momS6ArZNT9!|KdW zWev-v%j7&=0*8*v)7O$oOU5`*xGuu|V8XQ!R<;h;R$REcbA@!ph}IKwv>t;4$3^Ri zWYG#lfr9l2?gbO9hhSyvU}@KO1U3SOdWsEM>Ys9yK7>QXMJe*R3;wLZoXSzd9Q!ExR6^{NwlYsO9&p%Zwk*^xZO;6R)>|X!?XQxQ`%4iS*lzu z77L|{ldaEd`p&=sa-jBw!^h1=sbnU$&{$B&_QHK(Lbf}sY#p*4*^pK9!(ev29J2** z0J)f@6UK~2gMu~}_l5~t8CJFq+OX>=*Dw{{EJx}_I8%?6c@ZOjG2Y@oh3PrmekM#$!^+lS8up+?1v6?3 zYRnnp^?8SqXwUjQp@SAZ1Qe;y;DH}tBJ~NZY#pgB8Tl!&<)ZD8Zz%_Ai?#uENHPm2 z1ympa6sJvb2bef*0xMg`Y1nf+6;0JFYn<(lmcw);95L=}m(aOg(0z*1EZlr1N{7J8 z)=}cDoT_0gohxVQEI4FbmXcdJ`TkRwPRH$M!gLC(Y#k=;Vtu+7UUJH{13bfy_&suz z?t%lxMd_eq=D2|O6r?+G>zN?k1}j?!N&Cpa2g%qX_lBIE*Weg&+1X9TPFQQ)tGK~T zTwa2et>Y5fd@@W++zMxkE4Ag6M0+YVVe^UZ`e5~7o=P|^!GP0rEwaHO~iDDo!#;dhXNZqr$7Tik3WI$OcY*3r@LQfoGN z4>f>kb^UBPHob6^xY$Hqjy^m#LoQQf9Nc6kGF`B;b!4>17yN8v>TSD3&dWt`h`78& z-@T`P3f`(ebmtai>XWGF*z)cz#$qTSVFo(9>VQq!twyDJbGa< zouhszhvfq}L?Z-C$oc8}xV=nR-hq{^!xDP-dE3*{CRnon751hvzytQe1e1dp1G0 zDLPl$;PSncBKljrT&+~G2o`XZhWkaB#YHFjCj4RdZ~|Uaa6ZAUW`grEtQ-PPj0>gwJE`hd)5MVQZ^k-3 z?xhsI74>V8L{?-aR;Zh?elW6khAuf%ec7U4UcC?eD>ME?2KGtfUaWG%z?Msw47XzK zsf@;o;ReV4tynWWiO~CzLhrgs{#LA&TT`QHkn->#HT?B2vYrix%s9?{M=G6`;ThO2 z>e#+9qS|KmkdF;3{qxmc+)8HZb3EnH@gBkZu(X4WMl1q%Lj`Zcx zaJ;zuL~b|o_zAjBA$lJ-oe9x9u(EZCHXH^bntawhN1S}tQWDtmjtfs@s|FJusf(vJqk^Oa&!#%*O{QiPSQV-hkA1t)TimK)`?TnERA zON(F{3c5_8xf(Z_3C$I-vUOspWY&EYHF5;leU4_Wnv|%~cA?)3~WjNS=h1 ztwR!)St{v@n@O4Gp^kIK3*67(IB{W-WR`%-6q-+PlbO(b3@e8~6JsymKMttx55|!2 z_lCOSmUq4t^<8O^6}w8TP=^w4j_jet7xzo&-C{MTer|<)%X?<~z`rx&k7VG$Bu*y! zgI2cef18dcl;v3c+8{b`JmE=%ZdZqHKqh}Yp*=+%I$U{pxEf9e&M4rx8ArVDNTt&< zMgx&M)xojV4k}u_ZP*()t-$SN=0wL+4jujxJgv~?$6!DLoA@n97Rq+v?(;=>V9iGs zN~aZs{h}6AOb`No6C@VmmNSt!A69M{=TA@ro@1hJkgv~@Se{0 zfnw)T|_t3dDdCwL9(u zlc?#ivUQ?3E2eI`VppiEtjJHce?3Ru}XQ=CracN3)6<&9ra`ZHA zK9i#-VP)$aX+3Gi6_fflqBl(*_v{!DFTg*8%w5gJ4PaT)&N~z{NWoQ%JcqT&|!phbe(muyGW}|X3=jvNaN6I0Z z1xJgUiz08}M01hnJ*DUn+1&sNp{)X)D}*CP`CZ zW$PqyX0~IUQo(S3+bc)Ofdj@xDbbm2C;*hDF5CeoODR~{I!o(C^aB`rk}i_-vk(pv zm!Cb8IIOKXO_@0#H=4=J0IY1CnGK?tG4&ulBB$mdI80n>B5zLPuBS60y+;q=W;40D z7gn~;P1Gt{1u(4V=mR-D@5903(v!$ub z^-Xahwz`sNPa$?d64O?|cS_JIxa~}WR)m$U6BM=LG4vGeB}Zp>I7r;=lgNt4+)Fea zH=4=J&akp|W};@UVEc@gcIL|2DZ|0yvXjWn6?C5Fog!{Llc9cC**Zf}t7c=*&~<`6he++>r;92MH@a}aJflbrow zW$WZb<{QIV=;?B9PJyGu1c0b1QB*lbxGjW$Wxjt%?mjJg>^Rc?k{@mzzXZ#pd3f7jdJR%)9_ATW2O} zePiy~S>^)qx_F$DXwSMhk@Zbzug(&<-Ar;8hn2096E#x}wWw&j#@ou#*$NI6H{&ES zQw=#zcZ{dthBMij1S^NI6XRAo|6;rPg;p^n{M(DV;$Ax9TQS3v5LvOS#0qu2-cOh8 z=m@>nEA(onIM=#eymm*&z_{rp^-->Vwccs)FU|Nf8Q5)@tM$^QQhLE8ckY7DZ0$*` zOfFq6JLOLAUw3APENi);%W$3E$#DtxuhTohlNgz}PaEISG4Yha69y;rEmT9$dw1W3 z>W`xb`@8}9a%z`aP-eN6UgOZ*2oFu;=jvahcO4urlr@_01 zeg3t1SL60EbKMo5a_BIR;I(;c(Le;QjSF6v_nfj>c-z_2ctDNU<7m^*~EMbQnrHs6Y8_Hzl1z34> zGE(RC&D3g&%u(EYV)-%jCd9}4Y*D+SZj+~P&I7nPhc8)XO1f8XEFa`j6^-jSP?gp$;R@qvUN60=Qg$8ALI10yPS~e zaEQ3sBi4Sr?<(bFXWUdKCp*H*A)LhM5As`#>MaN{B>YCFOXD6?`c~BYT|`zKE3rZ~ zI=%RX5p8r@YB$wkG`_N+=(Ic{`Yrg!W&C9f%#d_CdCgCrX)WzEhE}I<#%0)Vb^3-U z5!wS2+TIYS#VoqjX+?kaR2!T_)Yz0;2Inq#a2mf@zt`zbIAF%{?Ymm(v<%L`R$=R= z=4b|*oqYcq7W&;zx8W8t6W**ngJMd?DTyRj&6JYR zlYnSS>W?#$~*^G)`eWzEywR&4QEL*{m;!Y#G$C^fn z%M_a_xXDaxCc(Y5d{q-lJ zOgf*cB^eEsg>qERha<#ACA2(`o{ENCrI-xhrZO=(2UfO@$(p9Dk~J(>9+ETi0304J zBcZ2A(TsS0Qb6v-?PLOSH>^B50qJ)0-THjIB|*DEjBR$hbc1sxWPAi{qfX6qieJbD6k&8&X+lR9nqeQifvr6FDv)!$IQWvP-=ADBvxH z!d<%<`?MpL>g}I9pzUVbs%~g`*j1T~m8}hi{g#KF zJc-bQ@X!O!cC1vy!Bfi95`UcG44A=>9h=vspUZ%&Cb>ruD_aL6(D17==1|-+g=)T{cjuih zXX6w&KwLJqf!V10Nbxukw~>j*aj>#=JOcey0X*FNT&GmlTYc}8^Kly-Aub=GAIQ-; zrI9-tPEtT_#f@YFaucj<9T0Q=n48X39X)@%D(B-RI6z!J@cdEtk>c?pZX*+q7hvTO zJYrOve%V}K>Bf-oi}#P!2C9>i-5-U{M{L09d%}dR6(xptVo9}5Uo+n;{ zuGow}iGlrwDW02~Nwk1&{#9qWX<|#wW+LjwW7l-|IT7!9TLs;zs7=7HK5 z9;k-L{)X{haL|ln-M6jMX&Ima!{rl(QPnn$eLowP`Wwf)1X;sFfYTP}hsWj(~eQv#YL$LA0@R9t)_pCaThfI_m*LAc#ac=m^tt-~`u3?AdM`E)ro zr@%4dQe*gB0x7ua4%1w7B5p7fm*ZgN(TxjPCf_N?d3-BwFcX)XU}fvL zXb-vj`#I{zW}1~=l>_q<93?I=hTBTO{1P%Dy@;F4MCJup**Y?zTY%@o$nmkG-x zSUCii7-x?Dv1R@AB8G&&XT5XWT?5~W`pKEdit!RF)ZyvGk$pXRnO!pKfeG*ZaA%pY_M*G2dnWL z_K#4ngTrPV@4kgfr)7u+3?Cf&2{ACT+EGZ**M_zJG3wR0waj#Qg{K@k_9J+Vx!|(H=i~4+9$@2%D#amkTZn~2zGQw=6PjgyU<>vW^&W88Em zKp(-%)&bfgA_X;~*qbh8%k$iFuYR&|nV6zYltdCG9nC>Aqe?oAqNe{8r44cWnJBFX zD_ch?e0FceU4C-u`A?oK&Jx52UEa+KgY zspdKb=vLfxCO|jA%8LR(hH33pIY2MLv9bVA&2UM#eSKwsMTNg2Tm4MM+{*_nu-j z1-G7w(Ii;eI!2o_vXKg8F;~?;Wpv~mb;0rCa&&Nl>8Rm81u2D_&jjfxSlK#AT3=dl z1JbbZxKIwy`EZQ5@I>~F@V1Q18;%3G$xL9*ft9TTvr%~FX>PP>8;uXisd)en6qlL= z4m+BD(_C{eZZ{L1yJ2PP=xiL0j=!&_vGcy1op<0!aoLIdfQ*-Me8(v~Z{dbB;rTPH zY#ko0`#v~Pg>NLTeucR9T182;r}m2cc!Nn#)CS^;xaCZImWP$C;}fyYF>D;}F6U-C z93yVlNno90-Z0!5H<<~{jaSe64*gkv;y zW3yp+Emb>HH*EZUBIo8~I8Iz{_D&$(gl_nKgqzI-=O3_g2skks+WnsRdP8gs3BNP{ z(zu;(z7_SBY>^emN~}GBACZuKdUw!Fw8p zwX}H~I`MZ^#$v^7gI~WBeQ9Ll{WcK{1yC*f=vU{3lB`gSHI=jfx~4S+rC4T zPRq~?Os4s-ez$vLBm=jD5Bb)x&hNPI!mVSbxs<0II>sZ|aUXaMxesbuCzdlkiO?*Nctd^QQr96s)K%dr zXHGS(Ul{(7GEIoc18{)22_Xg|O+V>Q^1Zm7OhoR6m8~PPE}17fyTX;x0Q*?KVaoijY`o;>l4r>SBop64V6TDDk2FgHD4(z z>*2OCQCSC8wvI~R`MzdWneUd#6K#jc894}!4mX{IKEV}U{WzYJ6psCIBbjjQ11npH zV|}{E(p{*QT&I+B@|i+bU!j~LhvY;!N?b^G##gef&Qe&8!;NLaG9Om94vQg^^rS25 z(toYoxlInqt#EX>ki^I&btfqtH{nJy;kW@-who8k+@~J5R6eWm@sga67vTVL`G|4u z)AW-f@&axr6OmuT%GMDXPbZrmr;^H7`%_uBU;j>W+%@7g>k>+$J!{r!_*4^gm4dQ3 zZYmR$&lf#V)}o;Frpu{(I%iOWlj;<(jW3d`NNu}oNg z2rFBM#js{^%j!+eQhI?_{=6f{? zBP6R_E3ST4R1%}6`U$#9L0KL*l?lqSu(EYf4Cls;=r!+z*D}gw7Wvi$fa;>xQuL#@2t3G(<64@#!X~`F$gPL2g9&JDQD7^iaHGJ&XJyi zC*^=V4#$WKNR0j2psO^4Jc^sj1m$5^**Yle& zQI5=UaJ;z47%tuzuH4Z-e;aa}0yG~tn+Z@AR<;h1;d6~jA=T~X^nLtW<-FVkhlk5c zjL$V1UQ#@6z^!EBaV@MoO7Y04PFZaRdQpzY3vhVai$~2%ipQ^UE17sa3oBd4!*IT% zepjk@si>dtEOEVfCA+wiXwOPE#`(^Wn-q}G;b9zL0`e)WY#k6o1Eh+aDi?EUy+L-0 zoRCRvBP2!xWYbTI$mY16OhhKa%GMDvY_QEu=c-Oh9eAkbHf^3s$tgJsjuCgBiLt>J zbd`c~1a2x5l*3@<5Kv-Vt>)j(R=>h2hJ=5W&rxyj@bImuUlt~^Vh4#8>W;Xh#;RA8 zSJ=CwW8x`;Ck#<ex;dNAKNz7pgyw9t^#wD9&wV7c0quvHPYMIHlHy+i!t?S;n8m zz^;-j;&OGnTCO28+z|KOxb*rr#9i-6j7-d@jSm@EZ!nhkYk0%3JPi*^^B5ceb; zE#t`c-K%t3MrL4A*j90U90T{mH9TwB=3fu@IBpv=!#(OLhYs)vUJn=eM5rEyz`bd~ z+u=S|77MTb`UnrFv2U9Wb!dqlGSmSd$)NuOw~{&Ne}k3DwDz7S5t?%ozZ-6K{pa7Q zI$GvV*1r$h@CGp)>nVvO3MdLk=+Sc+9Ca7zf@dAvL?#()!phdk2(+*?@mtZbbY zx<`^N6^ezbe$JedLvj=x9qzQV4Y(cF+3=CFaRhE7la0e*W$SDNPMI5Za3gMHlVm_n z$2o9(xOBifXiYCEA7|oLGWj?SRvx{4kSXR~IUje!@o6_7ruz4XxRp#k?tqm?FCV0+ zc}vd6pW*nln-5c6^C#R&CLgcB%GUXy6>rYXtJ{dRU6B>PE3RgiR}$^1X5fmq?joI8 zmc>nElCdau$`)$63QsoIBv`HEZ6+nD<0u=K&9;=-~UTE>_hrquM{1~aM2!phdE znMA0mHAOnvRJKq_6-xzmwRt6!o=fHQd>alKm!5r5dZHYs6b<5rGb#EOtQ1tBl~RXxasNvidv>_c{lY<_?KqZedFkmZ3fF^|&Pa?Qwtf zBtpBVLfd2Fv?NBi$F0)(rnGUG#@!@dnlGUwl31F5qypD6J_Cle7ah~i5HA}k#&4Kg z9JiC1|2~f%@)2y98*dIqprtI>HaA5+_>=IU8r$aR;Lo75A$#xx{t^r}$1P@JFcDTJ z)8NLQL}-pkyoGL)FkaO6<`p-iuKO{(E0j`33cD?jf>A)94;c4Zhq&oXhVFostuwUoFbp~U#fttp?OSqu{tQQoi;v+o zUwrcNyr$&*3AdU_&MUC8b#jKwK3)t{Id`_+D8Ay&;kMr;T=rR@!?Uv-o*m&hadXceNlabN0*6xbRorGKHQT_-)~VTi7;3sp1@(SS zu9(iu){e>g<@EHy@#4~RKoax>e5Vxk;I=a<%EHRlDcWc_imJJshR>yPe7+3_ii^*l ziQuE0rrZqTMl-qj7OZTYn@t(qn3g?{%i(zxjusc5{gQ&m^PCd&Fm5@Mpr63X)(M(8 z3_+?prmQ9}ed+U&9H4)|!QujBIC#a&t|7-MKYzmwXY%tNtUUVpDfF25S??Bc-L;OA zXiwdh3_lIWDL-rChBNtD4OSlY{Pa8J-ky@He{{FMoS%K*V2x=08FHNRvnOsilb;!| zvUPs87-s&8c<16cIYaZ|fN>c*Fo{J_(0R&H6*r#AQ3+PI&e3qEUxmDr>MiIWVcjH0 z=mt1eT!a!i{c8A4>A4oSn@P`Au(EY}hO6II6!mMTUy!5oYdBC`bP}oGYfe*cp2dx3 za`Q`A**Z7F)$g?sn(Ft(Zxt_}KZm2mg(s2vz3Dk6=u_NsCPDv!m8}yrT;{2iTz%(o zk{q7Rl|*}LuS7CW&1uTbMBHd5Hygvsivl-QZO8d2IX6eZf#N2eq`0Y4ZVtnZW^ywV zR<_Q~a6KBwI;DcX)Hz2E&Y5texZotxqv3f?$vF+Tnn}*du(EY>hU?MrVrW|I+%3oF zhj6&K_$1P!;k!;5x&t?z$<#)2nc50x`R|F#s%4c#dsfD~OMvlRrpzpjo6KZpNmzN*GUK<=Y0T^> zXXdMLn7Bzs#EkDUWo8@PWF|9Tft9T@6V^Ex=zr3n>61g#1ILLAji_@l;4`Hri`&ek zCJifFrzUK6sztD?+THEw*RFh94$UAOCN4ChOyj#unfVrOGLxBa!phc}SwCb&)2&+N zOr_JKa%3Kcqr^o<^hIdXV@k|VaEqD5+z%^TCuY46VusqAw2A2-a$x=j2Z;-e;W`$6 zU)PYsl$ZB#gPFYi1y&xtyqNpA*7?4;Vp>y4w5MW{@ew@4%7TH12>q-%dW7pbzZ{GD}${{8Z-0d%v9k(ahVaFI|ZGl+>~&m zncNg$W$WC8?fj}f0YhKb4RU0zg=54;Mzr(W@R!nZ6>cw+mdjyf>$HT`NzJYjEyes= z&dalKl(@Wz>ZGQ}l$c-Q7Bh+Y1*~kHn6OT)#w8&B4uwX}=W=pBg`>qKN7RW$Jf{Tx z2e+I_(7#}1>jZ^;3EYUI>Pf1m+Szy{wbMH}O`Gb!2t zR<=&j+9CTjhCaR{$$*Fk-4ilFe(dne`GG*ouxXDareg`XuFcahMYXAD{`c=3wB>YRbKaG0_vu{QH z4rY-RFH5XYmvG-dwxeTYE`h#y?T(ItvHKQkcV4$#!M)k-XqjOAc?|5G#1-7Rx_vDd zJR2_Ho}g^T>XHV<{sr6{c@iTN`{)a}S883G8-{3qc!(PAzP|XFj=sy($oK67N6a|N zeP2~NEu%AFc$CjylGn#myL`LhVZ%oM>g_#o8<|;ehNm1l*duuL_By7)4qQYXym))Q zvU=zS<%`C2EY?x`=Y+uteFx0w=s0??@1Xi0GwXjGTK{8~_XipODjr+o4cv76cZq5s zjTrxc(}aW)ZY`690<7FH&YyX5p2W!AzCG29Ok)$I%gv`t3sM>NeM~u}-ojC@dg_;% z-k=N~;wUCQ*TP}rrjJ8n;}a18x}v%YcYsOM<*>4KqO?85dOq$W}MpbcPU>jY_E zOf(3JN}q303F z(0l|BP2;EP?@Imyj+JqA`~IYKTE=CdGiqC*HjbUGjx|j4HzWUso5oCW?|I5GMmO`=XdX~-)P1C6%)o7AlCdkSY@G~}Im#iK zW4;`YDjXgz9C+qvx=Hyc;bt=VD8S0r`B+uU9O0IS^L1PRrURTGZZ5D(lSECb2W+pqvH=hzrUNvGPsBQOd~4 zxS>o&PJorIGqP?dBb5b3{av*m$|<=64iT4H%&PC zlbn-R;1IQ+6VFx3$scf2nVkF%R<_Q`_^^E91y5h*F8f3AGIwbu(Vk`QPO%e8-B(J= zlDMr*QoaByTPH=|+fxg>O3IzPpk;6Gt8zfLfkVU1B=Fu|)5S*c{bRzf;6^gZm<%gh zC&QRS`ki#%SmX4_5y`?a;vy0+hxoqI9FoRuWs>rBSlK!$Uop)##ZpyWyTsfG9+cDb zEjVsmdS=F&fujAVM12#tpGnj=U}ft>O~r_!+rbaZf%*v?HZD*HCk&KvNBDl+d?rsn zhLx@JWSq;&Id#uYEko(+;lIh@c@K^e7oK=?neQvjJb%G$Ws>qHtZbbW<4#Pu+HYL+ zta+EXa9T}Cw5M>2w-eKJm2$E&ZYqW z3d~8XtCW*naZ{O`>;x-Y=VYDMm5f(=)=nb3)48&~v0Ig6Qi3DI#bift(bDQErKEsc z%A_O*D_f^zgAhvm@=41m*UC}33Jwz&m0jba;=4rW#kvQp-e`84l9pNM#`zKLLsLYJfF%L`41eR_A=6Nlrr)! z+)ySX{|75uXJm?L-cgrIl`5&)Pt9xKELXdR{sVb#YT}Q?1<=MyqCExBL9wQxDDNpv z8{pP6X&MhJFETWh)ijl=pbkua1GIIiMFq4^MVP)&gOkyyjnt;ve z=MFhN--koSr6=+YaV|Z+>y)EgaMPI_eHT`?&e3`%jsl;xXnE%qIXQoTgTy5#@|N{b zastj$R(^*Y%Vgy@u(EYlv~KWv+75(IFSeGxTfAmoQc1LD&5U+~Q*S9PU%;(p(y|z= zY@L?1LNklb$u@FMz5>UGn^d-sRa<$#iZUf+GHxf6kWN^6R1%U=&po?&yKTWqOKVQbpX7ckTSlK#1=Glqdem_G_%dT*6xY-8%5~VRa6&Fx8cEXKhvatiK zY@H3$NkFFLq${e~t~-_PDy!1~ZMj>Lb5ei<#pNW{Nr3J!WhRFk%w)!em8~#tG|?(@8I?_iMbe7woZ&O%QPd{>$p9= zdY1X69GPFhf#M<)FUx2SQ)YgS8_ZnUwq;R<=&bDu%g8UH;Ot?XvNY#bwY2N}@ew5PI*bx3H~w*a*G9=Q19* zk;%o{u(EY7)-ZEXJEd=7W2T&q1L5d!Ge@kGAjO8~CE;T~+)gGRd&A1s`7qVQS+~1e zTezMq$KwPzI9xnp)xRNMPs`- zo3mN-Em7aatz@!sJ*;ex?I_qpyi|TXd+LlSWR7x+X9Te6t=+%ZtHnCCRZ{06t2Nzt!hW$P4eVpyGYyZLM?>VtqK?-eg&zn~=Avy6>=;XMo= z>N4eKG2CP(H~;(pjGN|hh?aJ~BIjl@J_yD~k?ETxGH#kKQ*JtOlbPIX1}j_7H>R$Z z?p(T3aRO~E8a8P;HeZJ$#htBUb+r(WDK%fiEoM@4IIL`)8sjXbQ=_+5ep8OkH{eil zv5A*$h|83lvvHG|+?)X`Tj$1@Z3?CSmd7i!Y;(UHn;*lG;$jmo+vpxsYJP-U%%tWA zu=41nrc~%xkDHWd*B&|P&3134QS%o$HE+U^YA-dq$CR4aaf_MM{1H|j{nYf83we#2 zmG2W5QeRdQ?J1<<<(eQhHIFGZU&1YBQu9Sv**Y~7P4#y$hDA3sJLhCIaCVi0vlARF zZo1hs&X!-d!D-6Q4!F@wcD93+t+QjgPsj^nt-MI(+_K)uP>@rTgTut7Cf0pIt?p7@ zT-;nHFWs>6sN|(LozJRgk<|NbxpYSV^yqRqFW-T~)K*?v-KD%-jGN2ko@k_OaKE@R8m}bUQyInTqicFfDOnr0 zlu5}Nu(EYZOy8(AW7jy>Ha>83pd6X~;Bax1ORR5<%x+VD_QuU-^0No5Y@Hv|p06KB z)h3}n6V;CjPLQK>EF38=Iu(EY7HZ`nM{0sHf7ir$D7H+;r zODA8Kv+^}KTHKjuuQ)3eqt}$4!*Q#b^c)H+Tc^jgR;is6rTPl4em4CLIWcF$5#kaP zYpv4slu~jAZYh(JQ(HpO>XGIu<>Uvr zsZ368hn1~!V)}9|S4iu<3UA5@c^wW8mylRruGO5RZ2S>7lF7!)u(EYFOkb|`r;A$h z`0|6|BIip=qCG`UtQD;Ck&^L6+(srDOTo(4$uON6s;D(TIMVk_c9Ju)0~{r8`iOOA z*y1gvWjowjCM{dT%GPNy^&s@8=hyG{Y59IWC+Eb4QP27!J%48%1 zD_dv8RMqrXa}_s5XPocIDY+PqPPcrmIY4{E@!}?(ed6r!hxkni+5@+nNziVvvUP&S z8we_vs(B~n^cO37=k~F3YUaT);!?9y9BKl-Qc^0otxQtpz{=K1G2Nb9k6zd$^<6nF z*TZq*(h}?TT+Lrf%r&^ZOk%Etm8}zFx;RZghASdq}(}{vRAMETWU9ZL zvDC5Ylw-4*l4wsY6|4UCU8S5%z)fXxvJtFoofFgBz<%&j(dp)Ea&8WXL&i-vvEBv_ zcb#%{C~i8Fqk~~(>m03VsG>?vwo1N{K3mSr8E|;G%*1+0t?nk}<5b*CCLbrk%GUWX z?bDQ;ezj%c?eOKCd{3oUbxrlV`XvlMk^}PtI9^;}V(rs}_)Q7A9k-iF(Dz_v>jatZ zv};7NSaQ9VI||S1a(Mm-hl&eNtUK+f%aog!ag&+c{2o@e&W-8S`jX>)5v%geZ2dcu zFa1(%<8vy_#kaATRQjD?l0vtrr{R^h9Zs+mf)q@%Kf9F^_h7;%$J zti9lXuauOnaa)PU;nEVT7rf>qW#aUEE?OHE+Yp z)~PYAcl{XZysZ7OxHMWrNwlXlinZPi_)1Ax6}Od1%1W@Zby7^FHL!QsLYYv;dyts2c7 zb8s`6bmU>>QA$T)p4QKMy_}9~;NWoSh*#NqGhi6_=D)d-~L6%FR=_$xLpZfR(LtW4e8=>>lf+3Z<;0&STA=nfy-< z&VS)palwgo`<%gNO3uG=o0;VN6IQlPj;SxItlj|ij-mB}XR}Ad1%+>{IWc{8Uk~0~H*L7l{ct%dhr&_f=9XAr-M4s4X*n3TmPyM2u(EYp zjQc2sQYF>py(z3MV9t=Uaw;4nE-Uf&QG8!1DJS8!GD$feR<=%x=^K)v^W}6-y_iNG zvj2gcmfPVtacPP54Tx7tciWj-i*B8I|Gx5T9DJ9XKg>9^yqWMdS8H?M?BxVe(Jlcsd zyu7%boS3cQIB|1}lo<27i&JrXnZ#@fD_bYVv{M)O&6!_a?3P25fkVZGCe}_Jb(v*pdSPLRF2AnaE!R9#HykLzEV=|!);}fau2L*ofK1tTp)V2{W*Ov_pfqX-h~6j z#U)mUobE7X=55?yCNpoq$`~^jE!MGEN9~`Z2m99AyQ5>`DT5~rPUu^>c1K6=-F+9T zKh$5W7xov^#)tejE>{1=fsm!lP?|~2P3NkPj?Ws8iYum7l|*|grnpNP&1DMEO1Q~P zfL4H&F@V~@O~~|AD<0BaIlXgx4>>Tq!7<|Io4C`{kgt@KU2t2Oq)daAt&?JUyhvs1 zy!w(zolP4a8n4J>IaiO!3l4wt%6RU;a^ODlBK5iwGj&)&W>vWjfovL~7{VMN`JiQz~R8GmkaFn=7 zBv!jqi?@`P18{4ZwCoEjk4{>=M_FsIsQ1FPDd$u&AG;;7zE zPIamGIi0-z0OL|W7cYUwDv9^PlaD@d4U|7^WZ>np@~0F1stZ#oQoUGWacbb**Y_(OLYUkyPW!X zI#n*FGj3k5$RCuWa~~WpE;_L;)eZ5R5_Au4HJRf5FQexT#D^UW1jbQ=)x>)Vo!x+s&!eqQ1D-)-kI-E-sx` zQWEVcozPE^f_~CGvI1@=laS?LW$T1!pVgOptKHp-kVXVGNOqG$vI`udc4ZRHRm#aU z+*Bqf+r!G%Inhq3%f*~qF&;3@ku#Eq!^33+J*5t~N%@$Ko5|#(7gi48!|A(RHO|%= za1WT_b>1FS|6^wTk3;K!%<}$dNK6)HWf;*AL!D4r69Im6q~tl_$`ZxskeoJ+g&Nc~UlANvATobh+$k|3NhXRJ>c; zCaD9K&fx!FXY;Q*)xE2O152m#nchN4Rh-UX@7;}I_bad!mBCmY(2#gy@u7KRc~4?w zq8|Ot$qK1v`_(LU^sNuhcJSade0{y?>(+3%jN{w4kuvfT$L`irR2fJ&JRx zPAZ+tY0J$El#N1G&VwVx%?y!y{2{Cmhv{nMT-;zLG-tue)}fg=EHs%yHDA%2Umlcm za~~WmE;o^PU9z~T`%KZf2e+At&Rwvwb#yiz79BS~*D00tP26|o?7R&}i_6ZQ@M@$p z)tYk}PE&Z^z>Q|Y^BSyd9iHLyj`2I`RevF#uU1kL*utO7jy&(weWvKFfZNPOXE|8e zIy&pnyc4><*-g&NE^vgnyhMJlW}c^fM=2!Ja6_4pY!542hh)7_NQ~>5IdV?&aFDp1 zM1D>m$w}BcW;Sjs6O~?A**YrghoWL$zg#J2-hXrsTr8yG{v-xb;-?pobHZm91& zi>z2yVudZ8%0;LJS`U3`a=N zRSL=*xT#D~UW1jbgR+_d6gt1G`jmKnSxHG?t8*?OTjMFD_A8)Ztbm)y1YpnUB>WZ77I6vptytcZ5LvOT#0phf|84AumeykrPUo|Q{+7zR3;snJe+~n? zN-FD8-L97PyrHm8#iiFTtdH^}LW{1@C3W(J_40ngGYrca@US#~sD532DjY52$o9=q zIxQnJFexn2)yFYVRyRCr*ydN&C*ig+Gu-i>a_9h$U{$?_KEQ!;GgwsLt}GVTOy9%9 zX)LPgP>0q`AwwPTkqr9HxRuO7zY$g@)7o{OMCk87@sfHSLPx*4z{<@R`rWkNx%aZN zO-RV^;Rtb)LFl$i7$E^a>C)%7xSdQ!o`;pKGeR>+EvBmZR@-%1>X%|Z#wv*d@f zgcjCed^CKdY>dHeWU|o#D_dtHP*@-At)4pT@l53lrGAn@ww4nz6^;=%gX{<{Ct5wF zoNS3(%H(7VSlK!!>yde;!Ab2dTZM|2N-}a#j)8;31toL`rtT71cMgHlaFvpBG;S)B zlp|qf>!i@xrtv|#hR6kSM9zbw!$kz1Z5lpOHqOOuWU_Gv544M@Xztn=n@{Iii~|%k8V~Qc9P`r*l0{S1H}H8S@hS(=z@p2KJV0 z#?3{GjHGaST z-pqgDpcx0c?_H(SGC%{Nb7bqV2Ik6EM;oU4TQ&d2O=af6e|pNH!#;vrHGxG^OEdzz z8NnT!2~Ugbt&NmK67?1Z!0=T|{g{deK)_{!!uq(;Ocd6ImC2O2mM0OKD-z$pSwAFI zbgD1Wb541-{u;)i%0A&H&cSe$xLL#SIST~Mkk51(bpUQNlbL;CW$VnW8_G&tRfeh){8i^}w{tw84DrRFbX<+r%KOje$U zm94W9x^Ah(PQ5>?A3iPhjCkELR!OvHu`6A-4Eao%8H3x*WTpdFw$4oGOyrOUnzokX zG8GOGH@!$_BIPb6WlP*#CMjFM%GOB?Rq=2Y}b?tHHcOM_-NIW)V#f#PNu!yBY1G(&Dva;D*CGs)Th|50}?aB>vY{@)Nt z2n3Sw3I+lL%OekF^MXJC!9YSxAP*8EK?sxHncm%=%wsb%yLkwI6h#3SMY3>JxOh<% zLA<%f3nGf5ToFZ46j2mKBZ#6A1W^=)|LMm}bys!ooKw{`z02og7EE%w&ab|8>eQQT zIdO81YeG(Md9#qnY*I(3L{@Z3yaT6#nl3@ zuWtA*GW0Ea*^vx=lWaM0h9bw_St2Yrs$*}*VUd=X=>%C z;qhURP2v7g}kS89=)_kPL`4_C(cRaKFw;O+%4{kxk4S5%g7>OVL3+;7SCldvTUUn z8A(h(*>d8d8fME6AfIeYDz8x4(lTsgrV4JPy?xXL|| z>#|5p8@hm@$6=9{56}yYq~(2N%Zbwxx&NUbE*B9dckfrnl(3Uf>Smj=u?nco9H>QMK zX>*M%!|Y0%_d6yc?>33NrXv0;Z4PAdGrV$kkSoUnon2>hH(9XI`pw@Ab^?_%a8guc zY}BUjCL89TS3-7+&7JfTA_LxM9Lte4-NIXJe5)4?C4ASp_;0Xz3JR@w8Of7$MMLKn z#X1jptIpj}I%J*uJQZsH$MmuyYyXF2%Un1~|@j}4TDuVP-*MlUN8lz)#rP<(4#94LLgIitqUAd8r_)guiT&CPxvx?R>vl33s^XkMrOI8X? zOys7WdY@Yj8yI)+E{oXwhF)YOHoqcUP8=KGrX7Y&wN~!U)Me(zO9wrnJYJdvCiIM# zB2O~Zoe5_q;I9bG{`B%9f!UXAIRY4oDOfg(>rU`Um|#QvPstAcSSj2IMWs@_SEUp% zm;Bp3TRN9Ke({!Gvtkut++Y*})5#ffBMXhH1FM=$Cuhs>X}Ar&BEAUU_^l4pU&_Gb zWys9(C9*`bndOTd6B6@{@lP!ulR3Mtko`XV!fegzH)>Y76j^gul55Uu(QK~y3bKTu zm7gzxoj`RBTqF+l!mGK%Xm|<{6QhCW1)Gn)jP3<8Xl`{ZOYjl%8-HpHWBCTkY@ zxJ2zKD6k@6Pm*QBMxri_fcYd5bGaYWT|zSUL$c+>8JkODOhjzVPm~cG4JP6k3y3ky z)Q=b_A`;d{_XtVYzegTn3rK|Z7?oVLr(y|ryv$PvZ8p7Hkey{gKWI!Ck+(G6F(hv@ z$d(h2XeX0-s~IK!8rBW!w5=yghwVA@t)b19MP%)rbhnVKT}ZZ^IBTbpSgU4@f|<*N z;C7ulZr764!{S!dkDE^!k+=`gJwp=rKCa#t-hV|!kmv}eiUVM%L2#>RvZdHW6BF(hxlB3m9|yxHAn zC~pTnsXP>&1Sa$hMO(ld6Gr51f4XBx-u5M1PMo(>NLgF0r(#y&xkLVPl!fZJok7+P z8{RhR&)FKfh_szX_X|neDP+ru(>4=DTgdEfNgc3_WVx__g`DP!X&tGr4=hIuk*dS#z96Z33)ynwRN;C=P_k-u z7t0nuJY1=c)_G*nurW(xkH`cO`C3YM2+7wuWXp;3g^OCf6)}syOdYMQWWBIxX^dKq z79v&sbYGBERmqk|2vs&z^SKoMPIan2L)L2;P~~VLQuQgiFG#BXi)=Y@s&Ko+e5<$| zTTiO9^<%PXShh6o67wk{681y7M@YiHPqv&mVYpe+s@NHh{+V(L-v%c1r0^PNNo^@a zrv6Q?`2i$T|0G);DNKobBxb8Kl^&5yh3<`*L3aho)bV7?i8F;86|$v&t|MHpPS!ig zqG3BijiW*)h#0djq&tM<>jJXn#QDPQ@AA$!giLAOxM$m_Hv6Cawd$ySfUF-DHH{m+ z{Mv}Hy^rn^61Mk{Ehi2eZX*N}G<>G(OX{HgFIhV*Xc{*{2)c;0eSz*5lD7XQTTYxd zQfLdC_j*&0pm?C0Nc?#VlBw;6!EhkRc8K?zq zFaK!l!-S(ncJt*%oEz0?>me(MrEQbGCGH4yMDk3!cS!O&$(9o*4>!HRcA9greN-K` z8_A+!VbeIh!2}Wcx`FNxlCKYwEho;`Y*b`xgftGXZ>i(;O|oWKyfj{z($GVs>+5uX zkaT^OY&mhda7VuzYKC{1FRMfLB3U{tWEzit^RkGn{fX`tlC?jOEl02>ad#ZMe$KsB zO2P!Y1h3z@pCj^$Ann(a!9895W~DmR^<*=Dt~|n>1}5~3aPilZ!D$oEQ~r9g2n{@9 z*!5(`(!D_9e6(XZ@_MpJJapeq7Osr%J}&?5WNXzqSxr|MdEpAav!!z4Q$rwTCEXt+ zG3Svj3juJctO*tXU2aEK06aRFQJ!5fhrXThLm-plooF8`K!{HWft8(fSCFji zAX^q<-rbIg*7c{{)NeRc^_i!NxUuLtD6eAh*+o_j8+`BwnMi2)pKLjCsJNXSq1|GS zQ7l@e?(ncxP)Exm%Z5dZFxJE;&7A)-UvXjoNvK&jKL!gdaL=dWV*!`eY;0`{;v zYY&k{#IlB8Zl`pTL#ZRe_aNOnBzzB$Ehi2iW<2T18%oa@K?Rt-y=p7CTr4iT^2 zba#+=y+F2{I9~G+v8@OZZL?{0_tY{)qgJuDa3jjp)5;^tsbE6Sh!Vdck`mAaNkq)1 z&|N}eHkoWWam+ANt-a;K)_$YF!L?i+u4QDsu<`2>Et#1ogoxAmmYIqx*#fZWGyZ;=p01UOi#!lR_M6cc_zg zJ6Sg@X?mt!IYC6kZlgPdMC?|w<-`%=9*YQ_#PAdiP7ZOPJ)sWT<7D-)py4;DNrbeZ zEFx}?(cMDg_9)qM;<#~}A&17TF9DMIYe~==O|YSf2-@p(pOB!v zMz)+dXm7{oYC}yGapZNVlQ$Dg=oxoz(MjG=B8ezYqdSR2@mR9u#8Kp4E*UE31?G`B z_AXXuZyi}YY}B(_z@9tVD8jau?iCWY)nvM>bXU?nLqc~2*>d90VV2sx3?_Wa?H+a1c9LboqNZo5J*bBW*bcfsNWktUTTUD> z?oODYx=>gxC}dz4nw2%HTtM5UPT4bL?XZ;f=iC zdlTWac=k?LXKw*nLu|b3)fw-?#1YY(Pj?Q9-aNA95shB8ugHZxOC7x~vWCMGJrGAk zFH3h0iQWdX<;2k=Opx@KE1gy~e3#oz>db8?i-%=S>jX(a6%n@U>0TjWyN+x*aoD)a zWI~4${&blOY!9hJ_8?g_EM$h3KGm;=2-gF2Z;)`^Pqv&mT-+0gk#O<%VZEeI)o!v{ zSgPKsjjE8l;$NV zY@s8}O?0o2u$9P`6Ne3Rq$Mzj;@kb7s0goy;NU26}{9xpO#My9s4*Ic}%7fuJ-D-=dy(0{4SFV(UBIk~p5Sib{3 z?8wy}*1UAgvCx(i5@pKvTkUOd#gD`L0{7D9#b-M8asWbCh%#}0df2|Z&6 z{5fS3BR(kvT1L^GLDKRDnL{D)y)J8l1wNPAkrnt-T;MbNVf8;U>b*^!=(o}#KwhP_ z3Lo_xFZqxsx-JlWD!uSXf=_lV4}*Be&BHAcRPnWNf3VA|qtQ)Q7l{Ub9xjJN!zY3O zNsjIY5)y-KSqO8N%9>zd&P8=(g}GycVQz83v~#)(;Tnj@SobMVO7U*D|00Wx&G7I* zo35*y!BsBcMTsB){hxFliShXM~zT=kpR|ffgcFN6~#j zQgsB`^2nh|SjDN=C)nW>&b> zg!ibU_5aACVbRi=X*C29`Fa=KAtYa0$d(i53)vUKD-wAQt^Za>>vLqiuxROwTDBG< zRiCB%f~4xxWXp+Dh0Ncx<=(CErZ#_=;1}v-{fw*`mMoq5dtDEauAk8TLDKajvgO3- zIte%TkS+JYL8(%?1l?kp3toHgQcmRe0uy=?dHnf2dLkbXMdWM`x>HEb-W++HA^XOh z)z!t}b&@(>bLlmKoZ!;gH`-c=RL!FMf~4vMvgO317jot_XLZAk@dgK0r#e^}vSiq< z5x+Z#9=AL>M7A!WyMtuwBC_Sg*+NDvv(lC2!1}N{SOa9euwdzoShf}-RoBpcK~nX8 zvgO37nu*J|x`exvzp4(^m&tNrp~Al;Mvqn?g~-&sbXSl}eUWTAai+L?T%zW+x(a2Z zmgy~T7G}2opw8Cs$g*MC!r#j+!4{K5WbC(emynG8nru07#*n>Xm$=Sz$ZwU0hX;ZQ zJ;Otty`imzNYzBTFG#BPBU>IhRF!jFj&-&=Rc|Bfg$-GHsVe70s@_WX1xeMZWXp+D z#ci98><=sEmR=64UUjUBWWlgl;kQjo^n|t;B3F63Gf1ww$(9r63ON(sT`_VN?C|5z z`cHMVK2FvQid7^A){8$*4{FY)_2v>`ZifGELu9FmLrD9 z)&J3*L2~sCvgO3NLe7y|)v)bIk|sNUjbeTTYxSFv7F=Ap#PsbRqrC}H5{n2wGgS=LiYtpRUg@M;#A>IHg%MY zl6Vcu=hV6SELkxuSNLn`=+h0Z8X{Srrh9`V>yu>5iIauguUs;>)Qqm0u&VPjb+~>) z77YuR&i%>_K}5cOM0W_u*AK{+6Xy##GPHM=Lqc*nSazttLI`;$#t7yNK=4(hn=h+#b}v~rEN41*aQP$= z8T%sLB_w12L$*BP7!!_G|4yB;-;!k;R*Z$6u>LjOB_w0NBwJ3LG48>)$o$Oh92)0} zxlZ%I-zg6*CxQt*L(7dCZ-(%KSwj~wqU}fb3rX8PWXp-uM(Z_0j$OY^9kjQSWgA8j zE&TNLsdSf+jGaujoH%3H5vLo`>W7ZGfL2uJEKimW%bC^@XHXU~o^{jRLb8@4TTYy{ z({X2myj~)3`j`Xmd8f(V|(%;q9ZIR~~#G0VebeK3fpY!q0FYMt2Fx*r8<0i8IDMOVebQLp;j8 zLLISl$*N%^nW;ZJ3q8^OcDhGM!WNS)Cr%jmf?zYk*ePai9Plo6(zcM*!;)5P0clJb zaTL%;_Y6r~g={%-;%NP5$T9EFs-yO4vTRt?TF`HXpZ5MF-6bSrpCDTvaf}IvzJH?5 z*pJAv4J*dN&VK)Z?h=x*?~yGh&e(~hk!DxO5%4{JuRH*FldKySvhEi2nc*kF|3&u+ zN!dThmJ_Fpwkl9R0L>+5v(!O50Zix_X|`Zhpe~D;nN6p=g=FnGvgO2CqeZl^d8P(dIKk4wC;?9kO4OWy3<& zg87W_^W?vzyM$!y=VZ$xjIoeo@9NjM@Z3fwL;<&yj68?_5xQ4M(mq7CoH%K; zaX`p%^#4=G>>Fg+u$Z+VM+-ld{x!NwNXEWGwwyR)XOPyMxKr3%5Be8%-2O~f5R2O; z{i{!$I$}TiN4j@N@_tXYoH%*3xwI{Xa`#q_wPTw zePqF~bm_cFHX?Ra=*}RyDw8cI&K2?=s*s@dX?3hVN!AOCmCk#p!lTtE=)NGSx`k{x zf+{nA%ha~E%Lk|BS1xXATR)gT-~F-1{jt{laiR0WGcj$<=(haL@VD|G|FxaPNSHWg zblpV%6Sj%`AYP0_#Kg#dTBtO*w2Tuw(;fJ+6DKF`={R-)5714L4caF>#G z#zweRXp#$#mt2Soaa|zzVtV0`1g~=}N5;4o&b)CWSy2{W6Zc2C52~|qHCjnr-TUleCsjG{Bo##F%t75phhpZSj+~DVOk>SQK zgg8I4lkNx-svTs@i9@xZS+CX5vRbfmR;fF)*(&AAo4G07=hXSyMHUas7k=9im9L;C zB5KdjeL|x4G}&_EsBxRTL%KsFXY|&reluhAcV~Lb<-(jC$Jqh9mE+h1FrjAvfPcdd z%UOsZB4p#~4j~~MN47i?A)CuXcBVRHr<0Y#2D27GHa90iwt(&s60-SZ%OeRgc$&wF zWCCObb;vBTa>D>JCWr`G7u_KwWLdK1#3AF>1H!t?s9y48>TKOa77WYQ#jy_{S+*b| zwVmz<5~=ISmPZg$Lb!TZ9jS-Nf+desSXcNU-47&E50EX7Af)E;Y1S+1NWDZBEP15n zg=AN|>3$%QdVy>?aiorGIwg_I^7C7%KP!(5r-BJR}gSMo@$#qN}I`g zVNr^I38x{07?o;tH;_PWB3n)zsODXpxO8)eI!d>bmBOMFe^deiM2K#qJAj1fR8}gN)V&a zX!JVW10+VTku4{V(X{5#2t+J#`B8^DM>D~Mp79!fS37nc&$1;D|M+sXE zu2yI2Dzac$rs7{jVLFINT}k%?iPRNj%OeOWVG-pXb)EGl@L3>adc0RSdAfDP8_S|b59j<(%^J;oEDI!!p5lh=bmf@M2zOsJwReKk8C+{ zjG9jx*dp?i29`QUU1Y7W9K}Cr;7A~Xl%>0X1Ze}=a^fJ(Y1+*Nx9D@zP&cU)wVf;) zmMHw4ZrEw4pcW!p*VBDLqIDhFa^h&cwK-Zfqh@6@A)E9$%pOw5>_M`CSj_OxAfPde z)I~(@0lHsEK^7Qw=YvBe$C@;P68(Z0g|!x?f1-o+n!#fymV-3I*h*{zZAz zI0a1T88zyUa!eO7%1x&Gg+%TkvgO2)<1VQW*;VCTm&f+?bN%Tub<&oQb;Aa?&e-QC z1UW>&7SY{70=AHBdE@~mgtE=*fYr#l4I9A1I?YXVcaVUU$d*SQV8XQh?dpKtM%HcE z02VfTe=FS`Bw#m_Ehi3G^JQzVPY^fyJ+4mHV`RawWW~R1&2$hu#YgFWAdz~6Y-toSzs`h*anT1|HZ3Drun z05I#gGZ6-yqf(BQwC@ONON?{>?Ui zCB#^DH{BB?R(FyuCyv!g*cC|MesC_sdPW_tr^&)$;mYcoDfQ_gBK8#BA0%Q=k}W5W z7&ePt5sUvu(GWqzZt^<1LrBQ3C0kA$GW1+m$oBdN)!}-8tQZz9ZF61WyX^0$ zJA#DjOJvK5LxrA}2-|GGTb-&G$dX~H(l#v-vFHAIx+h4io+VpO94qwVbfv_f;F$7P z<-y`)FrjC#sBLi?bP&70gXn%Bk(xxdoH$bG?yp)CR;QP!Gqs4U7&cI8>;7yZM5q?h z9YI2M2HA4rP&GfR7(!D`ou*A>sjxJ~e^xOZqY~W%Bt{#_mLo8dcpHvAFXuiHCSfAM zhl6>Vt&(X}78bhA&WaKFj^^jpX}*hGV_2FA=i3}-GluIe-&sT|;i2=5#+#sb(0xI2 zeY<0MI6OMXpNNc7$M@`-|LwV-suS}BU1j9ka~6KVNQxMrCIUN;)4f8n^BCE(5ECDD zOtkJPIy7WPE?3Bk_%%WR0r&8vT9hs zdUS`ex+o%KSJ9n9LUtwDa^jHj)3T8rX0FWhb)Pz4_mBm{@S*mE3pQ-f0zE{uo}v4LMC)m?<;2lC727p}ls%bR1>T@Gy2~Y_ zz;%%a{7rdCIRQ-Q8B+G@?jm_{MCiuTokK!5j%+z`=+M&_pliQTsB)~Gsm|KzWYMrO zP5bnPr-_Kz0=iE~#O9MNCyp3@dst*P)&p_PtYpfS9Q;}=7foTdte}pYMHUc?TUB>x z3(-eJuZ!*<61^N<;3yhkI6-5 zb43G&s9Q4TmR@emkovpw_;f0m&@(>G>u0VmiwN2jx?4!lCX+2E4jOu;pjghC8F40e zxjJUc$f{vOoA#B0x+o%KOXyA^AzMVYoH%6sy*<&p^3dQ7vUbA; zxS%v5aIe!{Ljw02*>d8*oq_FAJyioc0J)B}Lmj)BU_#G`w5Gdb4HHO&ZyMb}Bz(t` zEhi2ie;rliu))(dWT)iC>ddVp3x^GLgeM{#*Qw`GI()i_sI8^@g+y&N*>d8jEg;6Z z`W8Vh#9gh9+f`)ou(*|56yoaIh{#<@_YH~M6=chaBZr>i^;)qw_jZpuZ9B=jVQJGo z#mi(7LEAxh3kllYWXmHCG}v#$g|%Jkpglv@ZMcC3vWTEPO?L|k+EZl9iG#L~*olIo zL+!Af@DJr->Uc1rXS}evMV%?Hk%-_px{pW%$B->2jv#sp*y}w&-jMy4r>m2^9^uyh$Cy?PL|P7;b41hJr{UgxAxZL_&BS*>d6#QfKT!c4j`L&fSA# z;jrAbYQ`>ngXRNtzmTZiPqv&mYUdE+UFa@EF6OyzissB_S^G*R1dd9rkPe2Ijh}cc0dxymCAhPAev7@e9MC^E4 zrViZ_vUu3A*Q!;Ex;7$mi|D=~ky}W%oH%mmL$bYgLw4 z*G5F{HM(y|P(WfER@QZq}{as_V7F)aS1^~~3mN3_$xgq{(t_RAzf^byfJ zmhK-Cy`#yN6GxA_e!YHqET@uu=><%}ByIRvj#NAOCrj#va+wVE3ulL+D!bT^S8UPiW@IEd)WsOud} z*mXKP)!ExYmJZ9F_RFXP%80n#P4^6m+nr>~iQ|U81)!ckb5ZUYb<&`Aia#3AF~HH|#ZGsI|O{J)e(6XU>yp3y`>_X@3F7!kHHbjOgejV4=8 z95!?Z8c2`1u(m**w)te~uwhMm2O3aD#BCnkGbC=a$(9qx4LxBJk_vOsb*V#_B@2j! zPWyyOh(02E8|eNa(OXZpoH%;3u^XX6uiV_OPTTcl&9Jm}Y41>-VUq~hb##}IfL%+r z908cbV}k5GLihDJ2@?svN0{O`FITH(HS!_C@2PYB9dcD+xn70m+VPUV=~Q&xgM__2 z_%OZjNP-`7EDwj52WK=R!uPzM|H;9>sk8A4U0&pqgYS%+4W9@CB`?w4KvJ@sY*~nN zFE}Pz_r@TIWgJpDds}{@UT2Cgt2i@}x<>Y@9n9!5_6JF^e#e;;7*}(rUTO-dt4awn977IqI-=XoF2(N6M=r;x?1+6%w~;WXp-;#y`<3 zMz+YQj7!x4yO=B(vg^EYkG4^5_CEs`$38G%f{1LbqdSCTYc1Jw;%rTCI{O+rhw(vm zuC6AFh2(1B!q{<&n!C7)?gJ8~E6J7^AB}Uftk0=awTmnpmMSBDs+!JCJVW;eiPzI)%Oe0Ue)P@Zb-=SfH zkWAm=SRM`=$G9!CQR4V^PWiWw{Xm_T@6km@ZXd&MnU$c$Cy2n!cjzu5xp|muS%`%X zIVM`Sm5e*Y9u1hc3!%$`^-KHRlyb=^aJ}xopzPI7BY(@(wzkU$r{z~JZfjdVm_OhB zvBv$e*8Opz^TTt0*B+zW@;AfZ%Kw9`AT~HvbOxu!{<45PVmJIZx_e0UULjjf96j!? ztfuJo_SN8BsdA}1V{Ebb{fyJw_Ecr>I544StcpL2A{FYqrWw>ngs+|M9}>P4*>d9W zaa(Ac!dEjknq0VhhdOd=$iiX69e!a`1vy(45wulwuaKZECtFS&G;STeIcOEDnAv7l z%6x=-uR3n;Cd-G#4Sy?^5^fD`MCdN3`-X&W8`*N=(4CDNS~k*_zLK@6&&vBNjgV3r8yOi5iIz-bMEj3E>@N%ZWqC&EiEyKBEe!RVr4_o+sitij*?x6df$ z;lo%kp=bDjzdu0^wV*O0aC_1{LjpI7Y&mh@&{3^cFpX+0Gl!3AC#$1&B3ZU!64e@- zh>*>p`-Ft7gKT-kK{l6%ET;~cL6&WJK{huhLUt+LCnRJSlP!-p$ma2oeMB9y50PaX zUXaZTf$W2HpOBDUO}3mkWZ3+yvr;y4S-Zom_87e;Kl$-Bb=1B>77vS>-u#SLMvQ9r z(LF-~cMsWe;=o}icC+O|U$JE0laSrWP3-R-R!8kDvSirUhQIek1~pd?5w0`o{vhExoosmo!4=YR zR@C7tlO-E2aM^l@a24qOAmOsemPZU+=9XTg#E&*Vp$^wAWXXmHT&^A>Tpy$RgM{lQ zvgO3#;x6ru%*O&-w7A~!d+LmRhpZfyvAotDYynwB)E=h0g+%QkvgO24!|uxMg5BJ3 z6FLXkKhz=n8(A|fWI4T%xq^szy+U^giPuYH%ZcNKP4Mlf^9mJ?uH!~4k0sl|gr2da z-UQ#(Lxd|u_Xi2rRI=p}1y>)RgRN1AYZX~CZ0OPtS6|3%|8lxNNVt}fEhi2acZ*AO z4puJkXuVqdt zB4QWQT|y$Zj%+z`#JC%TB9r=Jx!(*q^7|om!ahhA4NI7*bsn{@hzQu#bdQjLT}8H> zIAA9rJH}pvpN;s6I$QUV^}@1+e`7+XX9O`stnQ&ZgT!hl*>d7oVYe9e8kL%56f*Yw z4wrfTUY)P!$iiXy(!0gbuZjrTF1lAp(4HY%P8>As#r`CGyP_kBkth6ln0Rq zfC)W=NWGV{gvukLH-YXR620+c%Za1My-FRKo7J`LD}_Y4v(%Y8lPn!J%5Bt|p#^mj zVLP4f7ZSDwWXp-eMvZe2-7>Xu#tnB|oGYs{S0F2hWv(@GE+CJHo<(;LiC!1ka^mQr z1_QD^L7vSL`q zI<@wtjvOLd57FI0qV*uza^h&6ik#|jt_rU8RLp7*j7qIiH`jgsO&zmW$m(G+D`~|{ zkVZuACAw=!+X9kZT{KJTgsz2|XiI&B*c6h{#Q)yM{z=3fc0A zL#}b(2#4G%b>xVToMW#VniY zt|5`Dku8r@RUS-?0uy=$6TPiK&o7RM z-5X>$&~IFmEhmoMA}V%GZ*rNVj$em1{I;|PKT#wR!d6-Vo$Dn?>vOw z>vE|&co&nE!*;oPPp$`K5m8%5cMFNyTC(Mlhg!&Sgb%8tb~RbKVTM}xWiMCJ-9n;v zCE4;wLoM{qm;2OFyN9gYutF{B>X)5#w~(mqAX`oxHS8k3*HeUF%ki8#YrDwOVOi6= zh#%BN>_VTR`-OzZthq>cMFNye6r=lQ9F?~6%w-9x1bK1Mb-@qT2CvcKEm(u z=%PD?#4Jm;oH%CK>)^eNq;YozH_Q7mb=Gboi-%=R?{)CJGGey2o$eVDxa-N569d8*okAOd)~~?ec-yAV+h($MSl$Y)7=_k_ z5pk>09Yf-_iEKG>+_3L>di{lXMaUiMq}@)I4NIEd*NK@XB4oGGeL_NZE7@}5kP-K_ z)ent_%&tA5PTS*T{jjvPWM7+K91*+6=*}Urdz5TBaqJe;y3)F`LtP&-Y9Hkh!y9BF zvHWdqMZX%Vk_h7KbT5%0zDBm3IEdJb9U2{qdtp-OWg;Ew1kMB#dd94JFLnr(M?`NL z-903F$C524j-F%;4BVZ;jV&%#CvY8E$YB`+11gCiuBCg41aURla^fIjZ;SI9dDz_# zSF3|}6m{Mgzss(e@OVA zB3n)zK4LdpEB9vjci$)Mt31XX4<_`CFj~^hI;x1EjiY;o1Z@o2a^j#7ca(&VWlvWp zZ2?(1Y;bGIjuKZE5w-brw~(mKBU>J6sP%`vOk}B})EMa;diL})a zW7q?9Z;)W!Pqv&mSlAsT+`x)s>?L)^c9XTkGNyM22`7w*+Y5BZkhnchwwyR_*xP)= zhMH5yD-SiNfC)WAO})4IMvO5h)7?R$br9Kd;%H$vC)FxeF|*CAl&f42Tc*y}60&UA zAf|V764OMCUyJBIAt75xwwyR**avSzXD~La16CtTh6POTgSSyr7n|t*AmJ*JEhi4w zX~?yJzLK@6&&*`YrK*|jt6BYg%742$Xt$B&!-7`Ux(*;}BSy4a>AoSMyP0e`apabtnjw3X?hg{KN63~(5L_WsV{fR#^*ULy;R09qoY-r0e~@s! zO12yUmzlq1YFpdogVXXW7q_*oAIzWc{#fJwSnK|{(D~t+m^Nl~TmEMFTlrhw91Y_$ z2@}VRuAAt8!ZwjVWLaC=^!E(f<+uSX_uQM`4nLqche!R!QBl8fMk>P8O<-~05a@=p zMlI7-DHk(U6FTNnmhX>G-cNbtdLo$6Gjd%f*B^(uEq1kY=*30?+d;N00NVtWX|c0% zWH7;7QLYrLi?{TeFd{WeHKQv%5qPb6NUFewJ1c#1{(V5Ly#oizoA5sV7gLHNGwn{a#QUXY?9vD+G zyZS2DV7>&wc3>Z)lV$103zsxuJ~>3fHq+ff5>_Ky9yx^hhD{t{ zcc~M02U)nJ3G>Mz5_UV?9VB75ku66MCb0vCZK81(xFt-WH_^nuGa?mS3SVuMa^+&= z)`;J#GyQ9FRbiQ4g&w(9951;!>=4&INZ96xU(ySYB>3l!<>9b7Vn#C}d|Lzj+h+Eg zs5~s#2TbT07Q8cVHhdxol#Hdjfuv+lvSlI8jdDyRwm(8_WgVTcyQSP$C|FzvdMcDu zaeu_gWWBJ#CVrqAGKd}LiF7xRK+PdrP8_J?o5rV3vu1ECb*rIJm$yPwb z$e??G#OPA8<-{@K_HBj4rJPlda2kiJ590SVH5WXp+z)I0(2EnC%Uxx~e# zKdYnkN3vR2lk|9a$*PcL!;+;fcs0}zgIAgE4HB;c z*>d7|aa-e~`^K=u{gdiweS$0*7OnNMC+=Rq7?Ho3}iSnBc%EMvxkh?E6R2kpenSTLs zt~w;M=n5l`SL3%ulOXX)A>eWX-5De<)5(^F$akD$qIJuNry@d5eTdmtsu=xdA!C(t z<`!;5kb!b5E-GF^Ru9{|ZbbL4G|0SsBcO{oHn@oH7m~MkkS!<98#nX}k7EHrInV~w zLA!=58y2*jCeQ+ch=jeL?hul&_mV9~5GIj`v0TpWh9yiSn9EJ&18XfZi~E*3(%&T4 z6BcRwZAw+MCgg8Hr-iQg>-1tH!TqXZIWlu=T?fl;t5{)Sbt3*mmlm0_ zT|fwOO^EQhFR<|kx&ufyen++}1hwDFnqWcAC3Iv3wWGM8R)(i~hZvqtJ5V_(JQhso z8J@1jW9+)g2e%OC1&EKP7as}nk&fla0N27>zh*Xt!q?3GQEs(59xLhkBBLCBeX5GZ z!zY6P%6W80kf1CjTNa|-IgW|e^_kph$~9t3>#$1wW~G*as|JgGHKS$;yEd+XGAj;9 zFC#05O{&cJV^4@8;y__5-6JGr{bb9DQ-+9J1#^qty160f-RfxFNtO$X7Jj25K5lt3 zh&+9U?go;lPmwJr&eL0)_k-SqQPbe{lsaKgk_E&PhJSttPgtZdB6B~cJBDQLhh)o% zGdCB_TzDuObC7Z`IT}pp$omy+V?99oh0oB+cSat30Gm z+Jj`}h8t;CNhIw7x>rcj?k8IwX{42mQc)o7C3Vtvla(7zq`9hyq`g4*3Q5}YWXp+@ zHXD_^cXV2%Y`L$*Pqj@wSh?Sv0w(l~Pw{u+(fiH19wJ?n>HZ+;I*4p}q|lWuS1Q@E z*~LxdE>ov#30X621k*`ZT@R72MRb3VbS)%XPMj`&g&-pH&zAc+ur{lMRU^xV1?y7$ z;uCWineKxWB2$~_t{|Bzku4|A6jsQvQRMCFSlvce42ub8X{S%>E0m8T1mE?I9bRwM|+OY6wta# z9jzK*}8)64w9|Q$d(gl3z=^@Vul2+o$7S$Ad7~jOJ}~-5Jcqb zZn{HAzV0MjPMj}fzGcfPj1-?yhwEvwVpzCz_KL0=B3Vz-y+M-oB-wJ}WZ`?o-by*g z&6=qQL0%5{&n01>Tt~`Yle+m zI@fyYdWdw*qx*xTYc|<(;&h#iTc`H6Gu4-8xd_&!4q28g9Tu{@#&sV~7Lm0LbhnVK zttVR^VXV~`YdO}otFv}JS-N4wT3r^Awd?3^Az8bYY&mh(_!A-#bN5~Y7MHRgRLATA zvT9h&2ng|!pcB^yt0$DpOXM_u+WI1c- zBGUFe-7h3<&yp=CP8;_M>KdkZU@g*Xy`f7+Qw~)gXHEtadd8VO`m?mCm7{~`P9Zs) zM7BJ_I161sTB6R`BC>GUkk$guqSlcX(w#zbb_UsU;+*k!T?`%1oEdImIjN=&+9tAc zSkQEyF7l$hr;6Bfmgrs~N!v)aoH%K;Jk8NGWO3;>b=GbrYlmg61$kOS7m>D`>3$(; z`zYCR;&cbT5IB3_`1L&bgz)4eT!^4anfirxAp08Zut4SI%=D;a+1PVIsjBF}Qme*TQ<2Rom(x01x`F zI5_bw$^+gxU_#G;7k>|9pX(+!e;4Mw#|gUyqk~?2B*Zfv%fsOo4DPg2h%UY>AN+V+ zs*cCSbbXOGVBqgzMC0L;K>%eP-4P@xYsr>{Xt&xi(Yl*2xDi7bQRQCy?nR@J={9Q_ zvtSlY;SBEwq11|ZUtCSr4%@YMqo>>Oc!g;q_N!OXeL|9UCE0S~q@5XDLkJ_y8|#OO z%jI(SsRMTpSwbvuB@Mt0A&to0PP%JI?skwZM{p;RjIn&q?T{r*@cEpC308`Wo)``J zl7tCXig!3BjQlNA+uAN4oR(j?xUFsdVE%mf#~Sy?TKC6=&JRycyA*w$`J2YHwMFJ7 zk)6o2{Nc;m+NQr}(Ej8N@M-p_MYI6T!R4T^SSyunn4*#F&aQ^R(oLjDeeT-7Jr(7u+MRTy{UQa8QBDO(U zX&J6(;*mW@x8-jJ3G)AT8bE6_ANtwYiJ67ABo|t>o{(xej$AFCtGgPmwv*Kgt=aqm zU?)&B1GB^c>95BQ!84&IQ}nVSBivNSa%2U!@Y3}uybQji)}Pz2f)XnxU(4xohUWHS zRWBe`wa-VP(wEUoiLCS`WXoRRSSVlQn23zI5+Qf!=6{Gl2LwSbOS&A&q)5g#vNG5p zFpo+G_$Q`1o9X34GEpO2PMnFu1tx0cjN3PIWZb1r#vNpRuw;;9M#D>ykK5^`MDlSP z*>VIQ5*Z{*Lf!64!UT(4Q)C@srEs$%rBeJ;c4XnD!rd)Sh21Bw1F7(i3`2b-s|zsVy05>fL-Yz+Ff2qX zVuHwXU8LwGdeM;-?Iv4JoT8z7uxd|VSC?>_zWs3J>?Z{#^bD1hdoa&uk(;UXG9$T} zLbjYZH%Es?pXiKvl{z!a$tqz(&e^gd$LFue%QAX-k-RJ+TTYyp@G*IKhJ3j?E8EBl zVOcp-mX*lNcr(4MNKR^G%ZYPxOlVxOwQJ;sTrzW)IxTmQb;8oJScR5`$6{=`onB%j zGq;f~C(aD_MBr)%7H^t66P^M8R2`Zp$UVIY5-W;qQPN$ikTAh!s>jO?^;jv~)iI?~ z{7H6=&RZItu~$oX36Ax)_6F8QSCZRSXdE3lyUE(HDI~07D&&gsd}S-5WwKnMb(_Bw>;zXt=ZJlzyHU`qN#9Pvx^G_T z*ji|TUOHr$vmDEjb=<EuQ ziLCeSWXoRRSjTd`Vu=@avu5fkG+5@i18$Y$!O14hMKBj;S7^mk^1? zgJjFY5{uGSZs`3tbu3;XOQREu(pC|Rm*^!#VzHZSIRXob9FnD>ZeJx~g2k*ZSw~nY z+^k5c6z8av0*=i5ZqJq`!+T#?F?xHgQgF<^IYK@HB~(n7K19|DOURJRqYXlu`z%uPL3){y)Lc!r96^ml_riK8H$X|4 zVEyDNvW|GuHJ7w@x@O-s>^{0cC-p<{gGP8Lo&zi6=%k!Yi`ANyH406qZ@w>E0j!_; zu45vypNb4j@lW5pCAd@;Ravi)D@*9GULwmDTHpC+z)rBk8ghrTuV%U3?S5aq(z0ot z-SpBT1JMhP<;c2k;j~VBWZnBFKK#==Q;(!JS%HEnV1kz9VJR4L$1;inpVtBplj-F~ z@^BE@vR63PB}{TmL`IF+r+c`2f_x3BBjYHY&1CzEA=mLOgM!jxz5vh?vRqhz&KIYE z8tGaG5}=^>Vt%uTUV0=(3(1xf$A~*P5rI*)kKcK^S)HO9SuHF@t74@HoEIV5L@zuN zq7vD1;t(A_L?`C8M)3){+tmrWjVu+GpdmNF)8Y_#F5+`5z2r!IZYEn!9G_{;@d@e2 z9#`k*F|t-zeumupPU9#1?$}4^MMnbk2-$Mt03qU!*n_>H&d=*)sj&RS7=J>$uh-}$ zN8lY=u;%4zg8FrjB079&33x!8RjOD{PRpQFi^6US$WA$<4Uc1WXp-;k{SXRQ+Ty%{87qz@HjA`Cl4O-01lED za9IRq486!mU`CTICl1U|@x|h|-7HY&WjqgG>ArdN5+iY$O}3mkEd8*3=vbN{WmZ+7uge_j)PcJbNmoJem4`*D&S>N62xV%7?sD-$M&h|b} zFEJ9AXUUc$aFN)}$u@+#yTK$(u-!k;leemQj<8a=`w^8&@okk-z`=@Gh z;@^sTAUi}DUO5+&E64Meotjuj7A&-W^Gm=^pmGKx4-htL(|4Mf`RA38Z9H8|FCjAE zt#&L&)^rOuo=y#^Y2W5c|CZCMpwNmt2Ct+m8hWBwtn-jdGu-pzL)N*^Q=#^+pqCX{ z`w`-#(@c1N`{5x4Cy%HxGF}HG4!G$F&Ry^oH!<-IZ3Hp+GbYD93>0XDVa|e2usOZ zec z0f@xJ2AdmkhfNYDSmL}=w%25(aEIwirI@8s3Yej}wY5)R?X?2#oUaCs41a;#szRH@ zz(SST8T&*{P-dTT_e7VmXlY^m9$?b4%LV)(_@C@BY}~{`i9X zxgWo>QK-!o`e@(obgJ@@9f!w+cBhe!R!QBl9))WU>CM$JgAsa5*2 zwZ4iO956kttp+Bx+uu$5zALEzl%#Y%rk|8G@e}xqZp+dnyAx2(@ox7s3aN#wmIl~= zQ=9T`Kw+Ow+n*N1|Cg+CETH^D)`WKPC)$z6KD1_b^@-9SeXOpqGsy`%^$&*&e1cNbny;r8ToTX|NT4?Ar)a-b-kM>&1IlSe^yl&ZZJ-{<#fVu9mbRwqSH%XpksG7sys@oqRGa+|UoGo{;oHGjnv45dW?0p=u-7gAK|4ddVCiPEbP4H4nMEf52wwvR+0ZYOJD}~!( zNSI)ya7XnLCRizovMHxs3YfGRJyvEDvFy-m+-kF0GHa$7$zAC({5J2iv;7|SKCKzoWmo?!9$vp%|m2nqA`tF~THhJ!k8 z)|jf5Q%>|ul}qsN!HDvMn5uue8>_qftegqKc}}M04R!61ZDeY8aa=5#_Qv0nm7W3c z9mhn{(fY-Bw9Wqt>;ziPkkR^2>hk?T)&y%mzmqk=qP1IzO40gZl~O>o9^2ZKYU0|e z-G1$fTF8=Dn6*HpKK}T4BK0wDQ#H33#omHh&A=j5#{Iv%jM@H=rmgfCD2-yye3WA% zvX#cVo5xx98NbwiKc-MH?AL_?+AfJl+x&d66KtycwFf>bBv*^nbzCTGf;HDO922o; zv16AOd&`wtaD6Qg--;pQ2+?})_WJh(nY(2*Vx3A()&yE+>F$4`v!1!CV%nPq1h}u$ zCioJz%kLnK=BsWBQsU&F;i8TttfY;3Pz_{2$KAHZNg4z_ezk4 z5~QI7>2g=vD}kW!UFr(oA!~xMeY;ypaZffMabDTTIrU%_jczmLbz7;IK5^4mU%c0@!hohT|xGjWHn>5@0K;e%Px_+vh3H5c@idADVlWZ(!I^0%k9O8)Y6i-<;_c0 z=bae9;OJ?(y7{-XI|WEL3XpcQWhj8a!;w%5#WeMB$3zQzpQD$SteOSQYnwe9SOFb+ zznO9e^bJS-o6OJBrgS?budFC(wiQdz3lwXnXI%Y$+88bTD7{irnZ**DsIPCg*@Zq?+(PZtF=|# z%yuY}lVdnVO4rKidXdt0k=#D73ONT9NvN!=WR+%>b)~EczOp2`E!Ok7@m9hFD@BWY zzLRDL2>FsWLZW&;D1gAj|H@V-;yy`veiDRF5i!3O|Vw`Ls=87)w-3a)N21nr4-O=H@CLc9=6Cd zd*PMbTxykB$(k@bSy{T$-dwa~)!INeJ84EdZTASb?b@4qbKa*jz4cF9&G#zo59LtI zBlmSoL^jpvy$aH~3v5=XRmwRyp~`Pom=lkz`4rd*HduSJg72fkoI;1XkTYe4l-)^t zoVWi1HpSI?%B6W7r$AqmvsZQddY$>djb^39ovk=uo5IJ}w}Ye`#YsbP>?Pj5UT5yl zD~_Q33U%$zl{LWv=G)!si+gV2sIv>@k~GY?u#!M=vz?G80<^>cK) zQxbQj*S>=Q>V}mh?UY2QnoY90vQ(fXYeIX~Os}^eU&VMEd{bSOa?xo+wl2ZF5&xmB zie@yLkXrVByt9pcDQj=!UQYDG{=$1v7vO& zHDPrhY&3?I6}#Ks_3qCEa)O7oaWSzSzU$Pz{oRg^4sk;1A=#>9wf~?i+N6m4C884n z+5YQbP|#UfboNlEI^DZN0-F9#o2G}fgO1L!q4V{0{p&)z`mMUMzm_$@i2kKpIdS(+ zhd~uMDx_*=samdd70R1KD`MQtSQ6fl%0Oj&&x zoYQ1YXqR|gqjwL;e7-iB_i1Ne6r^4us}qy@Tv-#^r4H}sYuc0^s-NE^s}d8sBx`~f zTB4I?{k$9YB}}kV?2_$#ynOsosl7b1+2X!)J7%AnI=5UYSw^7A-W?A}1I}z^b(X!z zIM>?*V8K-eb2GCu8{Mx4x~7oc{7zXi7+jx`HNmR&Q?e$!YQ3Vhi^+$~>6mwFYSGq` zQM9tD{;G3Dsg(^>@y}wa;uF|9GF(u>wrkDF%**855@h;yy`*t@;{J)z5cRb9Q8WlgZg@}grR_5^MWT)AT-X_usIA{V`4c?nSMi(Xh@CDDq|gB9Gm$0e)XoSx0pQKJ0Qt z$vDFwCJ^J-H`<+s3}@<{hMb0mTt8o5O+!OYdkxvy4wAO2&V2}QIL>a!=}!1u4OQ0cq-D`pPXGcOC!oZ)DldyKkwEyUg$Uj;v_Ik&( z{eONzJm<Bi!Eu;fsU=QrsT_|@BUNbPJ$I9i*(%{tt`*~mV{*P-0_J-Km39lRF2G523zGl^+ zB;`_JEBvi}D#m73k*Ol~r_Jgq7tL9fzEa7o%(CATngt3v z|8pOgwA|a9Xzfzw#PjR}O3s!n_kdC$ zo*mW^%fMvd5V!g8CoGyqvqRzgQdP>L*};wp$!L~;8fude$nw9n|NIR2Wd2$BHz$5Y zF67S1Y_33-??eh`A=eH}k;lg7LNtNJ75CWKkbg38z|8)WktGn8lI=h3-PX$2)vVbk zWeUc&t@bR43AZg(oWK@&bS7%q%l<;-Uy3?!WB(;cdboW^$JrPRg){Rn zyH$`s)2@$&_Ah7Kzbv+YSz`aP)c)mM`Tao`e{CZ9PHTd=F z{6Cz3|0n!mO zvDK}OVjcAb6#G^jBXvPz8yvgABl4QtBDfmI3h;3*p!I8RomS`^V1qK**W7j?@3_s& zO3z|mw__qY=Ec1UGJF~5x_E@mUj}x9bB9AM<6NsQ-v?w(uyM`%WKFPE>{g;uE6%Bu z0$TA;Tf1H3kPG@CQHR^Ds;PxA$yOh01u~LvflG0;)_vX93MbXfEltyqZ_4V(n&j6V z6Om0a{=FDOCw9-pBV+yvuoG;XliHom&Dm`4Wt76)^DcEgpOH1e+UV1ciTEe@mpB)l z2dLe9RxH$p$UU~*?Qp~c4ST^ir4k7S?H;lw&>~A8Bnca^`j=E@YE%5c_WCH)nd5Wf zh^YQFS?QSi$2uk=L&nhaFmfXoyE(Iw%S1OuZtAn(Rh61iapy9k#&UL&KHi@LIRk{~ znJj;Xz7kx`pKt%N#{Ok3{NiTg=Z=y{#oOIfyaSbrJ3W9e|2_-8E!AvT&+S&6QqS$i zCJ7U)6mE|rVS+W@ugV5lyA+T=>?M^y$Zi8UW??pK!uyFZ2?wKqz&jVP=x1NRxNPCN zKv;ec)O8%m1ajgr&{2kL68V3!=&_jbE?E<-(znQ(@GAZ4)(-vlIiH0me+TgSnCeyx zg3YS&E?EItHQwQvhz$MF*`joRdhims%Df9U+7v9K;xBQf6I_7eJ<^~Bk+#QYG7_jC5z*dGlSd_VZIRA#~A!alMlc)=yo0+w00O-RB7 zE5-k5s&<$M%-X%ba4hRgjn(dbH0^v;h*_u0))}kz1+pg4f=l-sO&_rC)FwRg0qcyc zcufCG91{}Vv233)-hS7&@r1NLt+`U0oXy^?zCvBc%VbS3j<>p15qEzP`EK>6wdvjD z-Re)uYQ?bqgschea!0&d{fIWPhkUpCTe3PaslO>}f|pvNS7jZu8>b{puu^F1n8R0y z{;sXQhgu=}t887d>i&zY30`Q4x?Vx^hcpO|T|%j$)3 zP9I;Z-#}i;SoZgucJ;eum1fkv;Fyr;>ZSEQ1L`!MkAR zKN$}Aq~U55XTOO5^FlYZACy5ckJ`sE5h-r$ef&W|g3U@7Jp2$4cD6QQ4`!E2RNy&8 zI8Eq$T#z-bF6#_g6D&p@FKdEDO1E;ABIQ`86tQD4?gChrF2dV?!S%EZd@YV-Pi$0> zgEYPurs@2@W%*$U{!`Wj ztNgz^CSp%Y4qRI7Emxeaa_+N6_JLdf$f`Y_O36FsvV69z_N?{1P1c0=>O0{=GX+Q1;bu`gwk=<=bj<~+oKZ92t(H_* zxdQbGm&(+Svjm!zrLEf1?H8J9C=?8*p-^e3P-(AFX($xbBwUcuD3s9Nx@6U66_%AX zp}oS6xxlnzj#1f~TIAIeT=>zrT&z$wa&V;8-@XR4Rn)OCJo5^Z_6p-1CGal9N_&M7 zD(D(nby)?yU)F^73OaNV++*Nm3id=4WC*DhX3f3_AW$hgv{lMm+Uo^yA|4bVT`z!8 z5qHa~$SUGaSrghT;+RItc3!#M>vl$cHP{ziV_TAfnZl2>RSL8eFL_Jbg>kzduQ2KQ z{-~-rc=&;=x~zh}Cu>4`1x;O5DA%0C&6~1yn~goe1P{yxn#-%&YUYUcdMWBNw@xY2 z^->6J=4DwuS(UsfYeIXK9J0pfcb_P$*}R&$lry#s)WxAE#xlqW$)_i`+n;CkVCK^9 z=Y>i*7|NiSQXe2|g0BRL5wSO%Jzr|miR@^0@`d&-9k3i#wC78_jE^6|E{dme2j;lT zQ2hN6vt}>wE(N_#FFFC_BIWcA5#AUyB+gT}Zu5#lEx8Rhh7kW2b{tEbF za6aXXc1OxINSW?5;f}<*l-d6uOD)9H%61(qcGWD{F#< zj1S0~U~{i7)D+D9Ydu;pgB_46BayxmK~K3crsj zKy1j_*PqJD%#eG+G0}<$<~Db4zf)gtK;M7Hqi_BXU?(72aRpwMFft}fqSWlgZQ z@)ubXti`&OsMKN~S1ARw*n5UbHKJEbq;rkb(jwfamRjSxLb7oHH?~{ zt8k-b0LzfJJPV4bILbJ|F%j98qiaDn%OC45Nd$+_tK-o+zYy#MM1$M!>)#Wa@=A5} z&XYC4n(|V|MEr^MM0>(BwF;hKHtdTU%B29@eel&7I;Rl9C$-xjPWwMBC|{A4jrBog zSGLwY0esNeebpMgv~4?9DQC^9JuVDrdZRW?4{moq?x@N>F6erLx~?CVHNl7;aH}Tn zlY>W`2TKRe`kiwVaQ&G9*j91VS6{sE!-1-}Pg_+S*=`rZnF4Z(QNJV|HdnaC5Gv&! zSw$J_J7rC1uapVzaK}JZ*lu8Vu7O(kg|=Fl*xvYV+WoE|`_E)GW3vB5)&wuRM3%)8 zH8;{pm|&&Q)yGV5Wt$$aj{juddO@I$0BZRY_z9EV*zyISCW26mD`MVS<&y zorI7u!AddR$<-o<(Xz7@2e?a8=M><5>#)6nk7?ucK-jxfs+KGEr=$1&Jt|8P1Mv}A z6WYZe&0iz=7j0_q*=~PJXy<>H)rQIYM_Civ<(;*#w->f;TU$&otDw>Qe=gl9XgamxiU*MV6HNjV#L{zf_ zBTSFqJJj@e?2&HL1uIjl7q2>R;n|B%OJz(V3m5ZtO>7DzbsX$(n}t1Im@WRlfEl^o!ffLCGUP-epgK) zrrPx#?sl%E&y*V;@gRMG)ZCdKS|f~*Pcl{6=!k{UF_ zj>s-=S;3xiOSxguI%ly zCK&yf&8Qy!GgAo@tQ79(LBa$pg}W9YVS<$+D?8`pE&6m0bu=yhBNh|wq0z#E zxy9b8W*>JAko{mhWDi8Y#c05%OJ)sD)WW9&OBNw#SRRl?mC=5`tO-`bUvf-nSfg+k zXv6~;zm2CB@;?AO0f`4-jl%y?p%eYJtXfR)U&@-$F8I)=UdEgnPueJojyd%*8osWW zHnz!{&@TKD{+MIcH)h*+5IS3j0}*JtwrYUQ%djrwg}!v781QfI4rZ~lJx*3p)*9Mn zO=z!_gV+`_sEPV!dH>y8=V_}7xE7o3Ut=E^!qHM$^;iX*BWpr?1?&gA$|966Yg2xI zdoLSBsr_2_ChwYbW;HgorR`$5 zOQiNyfsI%d*xEK-th5iyD$XixK-L6bX%fk_mkEDGYWtJy?%m@950x)p4rd~qv6s6E zJ>sqMuf+qwzzp}I8FPzaS1mkc1sCPI|5vft>zy32Z_dpdTbd@xUy-djR{8hInqZZG zkE{u=@@Eb;42sOXrB{d!ozpSrRJK3?=l%<3RyYa$LQK`&;nr=)LuPX_ja8sbwNZvZ z(jGD{dR|s+R^`t+CR(^M6!MzcKBvW#a{mK-2}m{&`I^~S_@rWuY4CL*bp z4QZjTnWeRfJj82eGh{VlfF3VvLc7cnubHjVCiIZ6nJt&qiAlXo)`WJc!(TJ2YEycs z*UWllRboOHWliuxOD0+F#tk?0OPFA#_>F7_uAM)>MBrwHU4;2(A`> zE*_Q!j(59w@g}a5G6nc}roWmoosS1Ps*t|@v$BjZ%s%ayNVac(G#*{^_k*2)WYK;5 zBkIb1OV$Ky8sBtG#NM~>1%ngr5`{m*m*UvU9wxE-HDN;LkFxqOIDao|Lc7Ef{raTS zb;&$rzrH_wRxwlESJs4fsl)sA6SXNlRKGq)Rwc%ChpY)+Xo*hQ?or)--3|K^CRiyx zDcd-`e*L(iE`^SNF>^w@bL+-gW~By~0&{Dbg?MNhINI&mL*{Ba;k&qnOiLCJ##ooE z30AvV$3*O1(`0W=(K#ucGwpN3W|n`*=)=U?xUr*cRGam@MRIRcsuwBE6-j{qW%Vj}QPu>5|4*_eShnGUppW}RD@vahT)RGHM%~^Hsf?HDp0r8l(#*^WTUD7cQEAAyijk37J_{t(caugIuG50@0 z)&zq@Q}rAkSv|{OwadQ&VTrbSnHpU$b|HicStP3_3!DpOO=zzWXM2u&^;UyXuf5n8 z3=FTXI&p zT=lLjVl(KL?oRvjxG~gr*}7uYeZ8y+R^8V*CSp%>LT^6*ay%7~|1{VM z4wZ(u`TSm4jhM_|lr^DU=DjX3tF_>0=xJ>tkAYoo_Sb~K^^~kWOyVbHO=y>RqJ0Op zcM#ioW3 z5dG*g?EE(BwWcW$g<%&;xda($t^<06`VfX&DVy$CG4jqEPDgCm5dGI;eA&q^di`am zy_|z*1kWZx5r=T-G`~X!I}Qc^bnJdmvV`ziFENy#*50V~baa(CN9RO2gwS-Pqqowd zQ-`}%*1Fdh_O&k@#}4<$7u+9Tbbeq(AMb3V zt$$NcF{7^HC9)=1oVm!Yh`7&}d)J=Yqv%l8uhOP^{n}Ie)6v(SUMZ^_3-VXUn$Rx( zgjHMJTi@&K`Nzwj)u#N!cJI5*hHuH5;H!bs-FY#T%`dv$h=d7N3Qc3R`HTCF zLLW>yL!MPXt_!!K7UBKOYDa2CUlG;??R#;Zp|$;oR+sxqx!|bdpW0YCxt$d+T`ykR zE?ydnmv)P1-^5lgUfL_3(2M;Uu8{buf)ci=B(zC=08mMp^8d3Lnf&fdVN`5>J*jp}l$z_LABvyyFVBu{`8i^|xuOkVEPz zHGJLHzy5Whg}hZ(Kh{D{l{LXvfkdSAW+4CC(sMV{AtpI*quPlC3&c`(3goSnX$J zO?b6`oK)>gOj5Y-weB;!WA>>j=eE2+^7PS|>est@z&>g-JLAv{lT|s8{91`9BYFw zI3}Xo;4jK;ZPVW~XipAphe;xs9I|IOd+yDD7JlTPPQ%tp{Nz#oxAvcZ6F!-L7XEGh z;ItKdcLPrv1iG7=y|U?bH}4-@F>st;pjor$@qfIl@n_Ba%kDSw2fYnGcnJJr=Kl)+ z*RnU^pZu%vZv*wJ%>Nz!>ze#)@axt2e>ngCPx$r!Gxr^Eaumn<=yXabA%YSLCkcTB zXeA_a7Ro3fBoQ2!)!m$KTX(nT-8%{Kp2M@>v!CrVK7(vyOc^i=nxot@p|{q_5)`o0d;)zv*c-PN@{TaQrx(BPj$spw`1NP@SVEeJK*(J26$=IS?NDe=^etBq|{5dM-S?o)Q9kGS-8DA zPv}{s?N&UYE9~A}x$1N}nl%#9>If3y@}7g`!JZ-wg1V3J>3Ii%Ji@2tWg#Ue)$jCE6|R9~!gQ@8WyI)abm zIm>{UUoc&hSKZR-PtzztQoW<~8}uye#DLxlXf4 zTxsN;?2^CH@iwZk1(R8f#_N5f4u?E z>xSd>2?f1GwX<7Ld87lXd9^1UP|3?;)H`76x*o4{e@E4;4fTecI&T^^%}=9GTv4qn zOsx@>zdWzLMCCW+Wf4|+4%3NPU-<2vgM~;@XXlW6C3ONndN734^qqZV9T}=xMv~vY z{_XCf>b_AM5KH|>k%U>n!qAtsAPfcCVngdI5+*WE?#|oEGEVN$ES|viRr04r9v(IQ z*88-`&zjfckMpvSk^TejidOsDP4T~Up??UTw)taZ+9uqptAjW)!cirti}GC#&wa>2Gb#Xf_AANq!~bM^yh~ z^&iPQSY^C_P_sx}`L*2A6YpE{&DQ8v-AjDjlaVyvk_Vbs-`Dc8kVoXpd0EJV%AMHM zgZjQ^q#)mtd!E<_^+@garSDyL-t*JfwPZ0nd;*_dM=xPq&2C?GfZbL9`J6)1G`YZ? zq*?r5Kc6dGqgJ(m_+)=RPiON{o3(jPR^*5(#EAbv(!_G`K`eRjbAgI+DX)*2vU3qmXug_9m z7Baq`o|lEcL|U2ero7y1q?6av{dlrSg6V9%=M8Kx_jmo|Ij^couWz}`nVN5GQNJ(b zsTuv=MfLVkz0&8!a{X_CjpS9hbo)y*i^N&E^{r+;1@vQmGzHM&)A zB0kPjGko+CT{C{X5Y!ym;C`TajlMT83we;OW{=Ax#;r!LSEJk1X+wtvbTIbQn=Bh(cr?tP0qVjdsbR=n2 z9U1w5&Z{|5{vYzP7*7TnFW$LaCYu9hz zQ1@qTm*rKxJgnO^i^LarqVn?EcIRnNBJ2c89Xl$69$mb;zXRXCg-)H8yJ6n**|plvecnLae}-ZebjZ&WV-g)!dtxg*+tXyewo+Vb|8}=Uby&^>O0kKD?92V+vP<#$9N8U-SCAJ6(URx6M!UzgmMS zk$#otOo5M%nii*Qdnl^Uo<7f8=H}WwvZ3zaz@L&!8!Ugc%vnMx%-Gs zEm<&{Z6rLC=z6XmkFUF_5m?pWr@Q}^cf87w|GQ?9xQ%T6HfUV*D#ni1C{|4;KJFfJ z{1UD$@;aPPS({ve&&|t19@ANxMaxZZ6a1ezISY_=R96d(ATdgwXnxuhU3FZXS4T2H zFUZSc)YY8u`R?vfQ*`R*yF2shNmPAJUKXRS>iBiW3r9`UY3q#V=hc!Z`gwU-gcY6R z^(=3Ap89jJ5GnqW_XPwghV~8(Pamvw7W;?#ie%@j;uFre8FLK1_qVpI68%hZ4|8M(2e0JFe=xd<(H&fTDVLkiHT)XESk=R6_i@f;oHoFb ze`2(n(K9&9IgDNfW@FWHWM?N8you9Z&IJwvjZ?p;PyJDrHzVf+wUM*@48a(+9+BhK zu?QxqbqLzkF&y-QOS}3$2kQ|`QyUSCQ}5-->%nD)`Y{TOQ3nt?M*WRzxCX&Q^#~%z zs$X!qI}tfey#~P;^&5^{$vG<=*$rmn)jbF%t0`#M76eHW4KstxEE^#%m(Y7jx2x)^CQ)bF5>c6BDdoet@%lh=bW&ZZii9IOi75*#R_0-On9xHPAHm6Qqq%|BC`gsRxlZTa}P@wE8Ac zo4SsRKY}dn>QN4!#gPg*+tf}*HzMsA)x}vRKw0hTPDWQE%VKpp3bd>J9QjQ~zv7B+ zM3y%7FQm1pGZ=ji!FY8uf}_K6C#gPmjaDb&qBFz>bXF()c1hKs$T(3 zQEvm9px%Z8V^tr5N$ML2CaVg9W7PAIWwM%s0+ZD{nb}-M^AJo`UxS=Ss;MY2O>IUn zULAvAx_Unfj8UKB0#8BEu0DXsb~OuG+SFeVIaYlXk>k}?M2=BKj=UYg80B%fTakrE z7J_l=3!L^`6qu-XAsDL^(q^f@Avi|egkXxA$>Z||&iPpcbJber`8E#z13{ZQ2L;;I zPdV}&pVRs{7>BerbrRQi2WRQz;BF3H%v^eb+SO59 z;69FgBiFu))4sw5Ud`wL*YGrEeLqJY;>aIxa2C=QstG_#)pf`+K|RE2Q@Ow|fmW-x zGMA$`?R=myY6s95^+gORn&g1StIIjdI%FBEe#hvCU^YqZX7mH3wX64X4OO58s)k^a z+KI?H>cgC69%uOo2R}v7rmjaYL0yGlj5-lKr>lP=p!tQ%eV!|N3|XeD-y(9ZTEaE_ z0l^%#7isP43ZOCS4P4+(pmy~Qpf>dw8a7EigLAfXPWu`M zzu?HpT>SG~U>irSWo8=?w5c&%U=o5hbtI!daL!>4F5?0(Vf1khe!`JMT;L-d{FT!l z;A3WPs8wX$EwAUbLQxiGMJ2~xaMjKd&LyTU>1JT<)`+wx4-U z;k0QST*d|djVx{IIozV>GS8Wu^GW&Z*aKpF_+&kIv>Fp z^&JEg)O-Zv)E_x*25K0mUIx^r=A+!v>Pjwt2x)EV6Gnl#;a}wr>S2c=VaBv zIlqX=cJ(_hej3nZbqA;QaO7VQ>{c_-D+|?2kv3ipBIgYCbf5|9tw0OZ>yfif{g$h} zmRUc*T)x4WW$f!fp;Im?$2(CVJcd5n(a0`KAC`#AEe2qvmGAZS<5LE1!h5$C*s zBOl%|ccZ{~^>jwR zL_qr^Mwg@b1htBJdWdXOhY>7M%aJxl{R}+EsF!nrKXPy{2cP5MR1W^hvV4J2KZ3Dp zB_i9^*E#YFoaK+)uy&4|gn-sBEW}$GeVfzHM=(}hz-Sr=|IInS%V-8?nZc1?X4V&S zwIAWg?=X577kCfQSoKm)`w^$T25D{TI7UxHTATVQqr;r@=^XhpuJ1ACvXHYZ;^0SI z`$=5Uj~V@r)5i1Dcq9i?`GLKkS$~-etU%5-^=mG-ip!nGY5(S64F@-I+I3v~Opg2} z2S;+`TNwR=nZ2JQAK~D0966n{{FBkYIQTlVK7xaHaPR^yH;W65=g3(c`CATdX`h9DLQ6g@eB`&#O7-2nR#V?3duuu2ypmvsrbgbCx5JfR?DSNSmVC5lmL^LNG!7 zH_~3Iu0+lW>iviutKNsmcJ)a_E>a%?nyh}#Tt0)y8R}c8eY!f#1-=V3L46;=RJ9yg zj#DQiI6*xX<&IW211(pd1e&Bijo`o4b6A$KX!`{9YeY^|uS3obwHs+is-F_i?f*MQ zy#k5j)IJ1L)yYU4ryfFuW7SiEj!|>LhRP#LyBdRFvKk9+W7HWyZE78(|3uKHCLnUU zx*c4|=FC|RA~;gLi?h6*EBXSmj8V@M|GF?Sy4w(uEDBD4$=Lcy+icfLv7aoF>$1CRHIS6%=(g$T=YAf}96(J`qpd=r{FAZ>6XwgFFS~sUS}Sc{)fD_Qn=?AG0@zj;$xcgSVo1#{MoCdNQWDUsaAZLJ_333+5*&yeD zoC|Uu$oU`_fLsW25y-_LYe6mnSqHM7h^MXA(99Jdr>Ltyo&@rAkZVBp67keLzw`e5 z07d;3WWqOyOahqp?bvYy{Z^vKeFx$fZO)ZO}x~+tyRm?I524 zxdY@*kh?(c2Du01UXc5Uc-s1jqF>!aQC|c3I>`MX4}g3Fcf_w|)+aTW|;%O@= z%C}!lQR6_ygG?aesaN?UZsyl0Y8J?BBA$BCe+nK$)UQB(t>b^>tL9txQ`EOXz60`I zkne$fALIuhKLq&^$d5sO0`gOkpMm@wQVg0~rg_4l)j8Jjeu) zi6E0ejs%$uG6iHR$TX1YAV-1B067}u7?5K@jsuwqG7Drj$Q+QlAjgBu1DOx90AwLZ z2go9j#Y8-9c0p%e{1b{=3vvm_I*|1s8$dRKYy#N~vIXQ)BA$Y22Ia4Lh@wg$dqFxu zx?v3*>H)dx&`2hK9tKJx)29P&`yb0vZAa4PAE6CeG-VX8( zkavQ-3*_A(?*Vx)$ooLv5Ap$!4}yFM0w8RRt}uLXG>$m>Dg0P;p6o`UTVMPE3DqFw~@Vvu2wmw;Rk@=}lyke7kn zK*Upj@jLXk=@fN4$Y((A0J#(7E|9xH?g68uAU^~7ImkmG z4}&}c@(YkhL4FDH7|5?cehu;)kl%v*4&?VBe*pO-$e%#|4DuI{zk>V?Dfy@M%1u`3C4#-@P<3Z+u%m-NjvJj*LWD&?>kR>1| zfGh<$k%*^l(Gc&8Cs5RvK)wv}6_BqI@wAy5IsUqoqW%W*caVR8{1fC~ApZt=9OQ@- ziHreh0~rg_4l)j8Jjetho;G}g@$%&qbu!2)Ag6+?04Wghv|$|C{`+K#`X7+zgS-Ib ze?eXd@*0w8RRt}uLXG> z5l>s_=@Yugu4+4?q)o^W?vuMI{Zk;H2DuI7c9742+yQbY$Xy_JgWLmhFUWl$p9T3G z$mfZ8+Vo4c{D+5HVEIKYZ||n`cYwST<*h&COzEYlsUXuprh^;>G6Upj zkYhlO1vw66Cde$1*&uU3=7Jm#G7n@v$O4dsARQo!hSrK72YCqOVUR~aenG_3HfiK7JcpuIf~*2L4P-UQ8j#b8cnUUZol^8FTu!yT^+4^ z@%5BG4Du3?>p@-$G6M24kQ+d51UU@ya*$Vmyb|OlkXM1c8suh>*MPhh_Ai$RuvoB*;EO*C4+E`7OxrKzw3*_G*kAocXIwE60 z+CavFw1bQzLYq6?9<}cs=+l0`Pj7rDr5`5ZX(Jh$^bo%L{RqgTAdi9k8sxV`JZ(fn zwu=fBwH9O@$Oe#2AX`ATf@~+^DcIRi;IfqzbvejxkSmCI+VF)$`D*#l@KN3LC9_&_ zuu`mgdxy%sUD`ecd(cZM=j$mP(S{*Gun-A?r3&aI3P-fbN)T*Uf?(?c`U-_3+UO++ z)-OS@QUP5<;fOX@34+~95bR+=LB?!hSL9j{*f_X|1>{Nnangd!-;fS`;34*as5Uh5BV7?Os zJDwmI^aR1OCkQ4!L9q1+g3(V9tbc-F1{4H)pdc6q1;Iin2&O_ouo()1@lX(~h=O2F z6a>4XAQ%`0!3GMnn8Fcl3>5^cs34d}1;I`#2nJI@F!KT}p>Raodj-Kh40Jz*^h`Sl z7Gp_+=~xi##6Yj5a6}u71;KJG2qt7fuq6wEQCSeI%YtBL76f~+8c_3?Kcz!OK>O(c3~4Wq7B4?U?~;^ld&M!js?MpEC|+Q zK`<)|f_+&K49$XIaTWyAvmn@@1;H8)bOD7U+AJ;z_HjWllna8zTo6p>f~HX~0R8R9 z;0Xh_AXvHu9qS<2z9nt8gXTJDo`YZ?mvS(a3tH@;6C4B^y5wBuAXwEU4d!)01qZ?4 zE@`m53p(9Fu*FN-*$z6_LFYRN_IfD?3pdbjt{Owyg{fN*Y~F%k{1ybGJkUES9MRT! zK`_$`g1uf44EKUy!50Kmz98821;My42v&YUu<`?alEM*f?iU2RzaSg{2*OE#ARGw@ z!r6cz91;k^X@MXd8wkSrfgqfE0G&+Xh(7)hgmVxjc4YCkR#$pkpZ<(dH0A zu!{(SfkY52C4yiw5d`x*&{hgZw4GiM4EBOxxfcWzz98801;MB<2-bZ;F!Kw7yzM=7L~3 z7X%Z!AlT9c!Kf|>)^$NJvkQW~T@VcKf?$Cc1XH{q*yIJlI4=lRdO_65PnF9_CtK`{FZg8g3*4gv(>L_iRZ1_a@ZKoAZK1i`ooRH1N0TR8>6 z+$jilPeCw%3W6n65KN+iU>g+#BdH)*O9jDfDhT#dK`^8Wf<;vjOsj%mV-*Brs~}ii z1;P9(2zFROFvtpmWmXVOw1Qx(6$GQLAXsk&!Hg>iN6u-l z5YDRw;ow>jPOt^xC|eNDv<2aCTM$mU1>v|`5YD{?;Q(9^PQnG@NL&!k#s%S!To6vn z1>x9S5YEp9;UHZQPSgeAXk8G_*ahLRT@X&)1>yKz5YFKR;XqyxPUZ#Sh+YuR>ILD@ zUJy?21>qQ95YF=j;b317PWT1ks9zAy`~~6gUl69Z5c~oJ!9hR}JOu>7Wk3*o z2L!>1KoGnM1i`I95c~@S!O=hvJPriG^*|7O5Cp*)K@hwW1i?K)5d0Jb!C^rVJQoDP zg+UN}83e(pK@hwf1i{Tg5d0kk!SO*5JRk(Y6+#evA_T!XLJ-dUfi9zPL?8YOf){`w zxC01+Uw|Mu2nd3wfFQUG2!ii`AUF{Sf;WL6xD^P3e}N!48VG{NfgrdZ2!aoSAUGok zf>(kdxF-mLpMoGbEC|B!GtfIJq&<*>a3C#dIGGlNBWgi7s}_VqYe6`@7KCGLK{(GA zgoABCIN=tAqi#Vs^A?1|Z$UT(7lh+*K{yu|gadLxI4Ku|BXdDGI~RmQbU`>x7ldPV zK{#I*goAcLIB^$*qjy0#gBOIuctJRo7lh+^K{%%ugadm)IJp;uBYZ(P%NK-0eL*V|9DIC!*Rf6DKB?wMdg5Yf>2yRz` z;D03uj#z@=ktGPOS%ToBB?!)1g5b3!2<}^g;KwBh4qbxa*(C_xEI@x;fO#HnErQ_R zA_$Hyg5dEY2(B-J-~%HF&M<=D6(b1lF@oSHBM1&Ng5WtL2re{&;7cP2PBntyT_Xr? zHiF=9BM6Q+g5ZH82(CDS;FBW=&N+hMr6UOLI)dQ0BM1&Wg5b#`2rfN>;B*W0O$tY} z_pKnf;R=Fl571939ML{Lg5c~U2wp#e;Qk{Ben5iY5F`kmL4x2SBnZAjg5WeH2;M`2 z;6@|}{zQV{SR@D@MuOm$4D_$BLKE;$76eCSLGUL9dLxA++Obp+JWK__)l?9CP6fgF zR1myS1;HIv5d2aF!9i6JJXHn3WmOP-R|Ua|RS>*c1;MRV5d2#O!O>L^JYEICzX|B^ zl^7FnLz zeU-uy?dK{84zGgX`6>v$sX*_ga6~()3WB$)Ah@jxf?Frh^C%qA{+)v0=qU&upMv1} zDF{BGg5V4)2wtIr;2tUnexicl_X{+O!V&ENEC`;!g5VM?2;OQyZ=rBRyR8X=|C%5; zvI&Amn;^Kh34)KCAUL}Tg4dfMxW5U4ADkdK#0i3DoFKT!34*VjAUMqlf=e3EU-qMY z@J$m0CpAIvRucrbH9_!S69h*#LGWl31lKk}@Np9aXE#CcdJ_cqH$m`&69k7iLGX+d z1Q$6$@Rbt;r#V6Jo)ZK&IzjNK69nHvpc^P0(N2bf;B6=fZij;4e<%o!h=SmeCrD{c-vq%AP7oa81i>>-5M1O0!B76h+jLGUC7dM1S<+ND?!e2WFa$ygA)jRnE&SP=Y= z1;G(n5Im9v!8KVBe3S*jSy>RgmIc9mSrGh~1;L?N5Ima&!Npk+e4Pcs=~)oGp9R4U zS`hr91;H^|5Im#>!Btuie5M7#d0G&>s0G2DS`hrI1;N2u5In5~!R1;Ie6Iz;30n}n zu?4{`TM+!S1;J5U5WLiZ=1@4I-PHxbZ(R@^*ag9pT@YN_1;Mvn5FDj}PNHx`drS+0 z>$D*FPz!=HwIFzu16@iXjq7(ZdKQHv+6@_LjNo<+^kfQ0wEwjrIARNeN46lih67Ee za76ov3xcz_Ab5=ng8R52_>l{OL%AS$mJ5Q5xghwO3xdQq&H0Iq2{t-T2F@mkm&hrww|21HJT-mYt-9z8b|$F)?ea`v|Muy67HF zwNlg-^!E$Zl|<>sB3J8xT0IVmv)im*No}{9G9i4OH2nf#+3@%p^;55Rcz8a27ip+> zusC>Vz+1MwV_CVsqp#96)a!MW4;)&4n7ZP?p@Nm?aL+9}21!u|NPyuED?t~gylbn~ z(xHw%Z?LD*Mdgn}c^#L?<%Ae6_}(3jMXxHH=73WWALZuhTe7KjEZdSUue*enmHP*a zT}jQ;;ze?DBTM?e?SSEmp?(@iMU%O+LOtkRo6LG41^-` z;v@2S>fKJ8W|wM79eE@;ak3-F@m3Kdv($f-v?HeMLbq%nr4tO`aZfZ z9Ox(Vc5@dFR4aY-m03Nn)Z&EKSELDbXaHZ7q{WLK6S0F! z&%G&Sj8ZOUrSKbLp5|BFTON$%soN=842xTwVYaYbE7Iqkdy`)adfYp?98E8Fl5`J6 zRXz)9W0gDE9Zn}YNrqEQCmio~f>Vq+dg{gYuw3fC)e;{~EoMw!qq@2FjBz~u1hK1k zfIgNPH!P>>VQF$01|PD!Z@Dv>6f52I<{ub}?@Qg}g#3p22c21X!QN`6)YVCE1X?r4 zNvP)`I}`KqpSMMJis=j8gEG0!lwP%SJA9VfDTYr>pU!pr)Go#RJoN%w`=qHJO$@KD%N4B3t&QoxPQsM;&vZ)LZsvg}5Hl!!ahWVY=Jt z@Z&4}^t;%k<&z$dK@R5NclClG+VoGTpY={vQBlH zI9CdoSEIDcTJuIrE^tc5XeG4fwK#a{4tt7QM61w#G9?`FlHdNCSty@T!BS`b!3u3i zcUEXeZdPbRjsmbkrBCx6|7orffut`7|(EmJUzB)h{2I}b@RoMHx1 zbmt+(n4_o8u~oN-IA@w-L-~x#Ugb=&XmQ;R)+U~CMyI*U!>K7PUJ!X~905$D@g=)p z^NR<(r&Q}H?d?r@v*>k6B&TWko1C$-SoQclLOl`+2_AtV8c6y-u+5808(*%F~|^B-8tw^%&Bh5G3?7PFv3d zYq))&RIVN#UVy7~23L?V-RzRigFT(h!R78l%g8LQmoXZdN{(d?>ebuGu)a8<{9v`z zUmKtsd%%PD#3sh@S;yiX!$GfZzy5q73A>)rMh@P~!S&n%zLMI%fm(mQkP2MGX^(Ku zUvO|INAjK2`tya9b0tSsbYLGa%w0P)Nasp}<<5?El`fA+{{gx#n+{xRhldvqdey!a zL5>y3LBz_@jw7kV`pDs<(9EoLWOuLB$~dtp^>%FZ?Lx$Bp62BwuaIQ*F)A%=j?6eg2#Ov>pg2(EDesof?X`8C0fgVzJA4UsRcZ@EjV@bh&Y^bhDTMiuR(9fx95k;)v zh)~uk$m+{Lx}TxBBXdy>V$%)2Zj8YQ08fVW`2Hy9--J3RKUcB z3QgZ$zSips1f(``@9XH~p*dxT-iDaIERO1)&}utl7s>yxx(26J~0?ez~f zH+#JUbg*dpmW1GGD9EvbbHp&C%W`>My@vyQn3X2Kvv~4*3D1vD=HOc#$ye;Fnl7-6 zr}q<*r}s{;xDSsmCV2fmqAB0RnJNCeW|H;aHm7mJ_!WcW`y!pL*T^JRAQKi0<@)Vh z@Or&IIt)Hou2D~|;xa4B^j6ANgb#k@%z21U8crEf{R|%BoYQVAt*R>*YnVUX%xm z#n@hLgst@D#-_w87>OJ?cL&2V=7DKQO#5ls)TE^5A$CN)oJI@ngDPyw4nN!t$r^a6 zG^tV}kt65M{^9_q=s2=BcCJu(|zInN3iv>Z)=I{aWljfx0aXv6eoLnlT#X z6~B$VsX^8ZR zX~-x&)UE83K-A=>@IV=zPHAydSX8GeJ$9!xXws3QY)angzP`gF?8?@TFe9wfoKBIc z5u1;c%G8p}TicSbE$B)bb*&s#!5g9lFYZ7zN9|WrwCRu5JPCo!Sqwqx-B+-LbEMu) z3E6kS>6OTOZgca4gXMB$?F}}LAvs#3?(nnvRI{RnsPP@<2& z-i}EYM>Pv2-Y6q^J0^J@9!n(N@Tk8XlQO1Fr@LEB*iHGsS2MLY!?ZuqZIUdGJPRe> z$dlYA$?Nb~BJqYt{WeJ%)23&ceWKoD&hM@4E7mIAgMFoI;~J&U$*nw&L>*Rw5h>Ix z>o>|)W{1lOR)XOY)3DHQl&wOhWs~jA^DNz)aZS?xVLFuymedwj37>Dzg*IyCef@D| z_0Ks>22=cAJ@VCdqgZ`ryE<_L?l=zE;P9~TZ4ljf+u0n?14olgQ&W7XrR z%oK^a?E`X0j!RRw)|vRp{CiP8f#NsOSL+>7wQ{i7>-Fy&?1^8pW|J_qU5lExGO;Oy zC2}-*RghX6=ruo{3|mMu)zc9YH+n3aiH(TM0Gz5~{xNcBnw*UO z^wXWT&a(?qp3qF9U95FnZ0U|r>6jTr&qYDJ%f(Y~*RDn6a-mx=mz=I@^ovQ}orRj9 zX91JJX~TRIYbLT#Bdi~FnVe4fMJCpi55$!RLVNKC@dZ=D^u!08$*j9lE%sI_1BsKF z$-u=+>O*$%d4ttMMeo{9Zy@%^ZTgKTSqzKW_B?z%TPgeF2g6hhh9HMwu-RrXn|2{| z&q!PY_+kQ`Y>F;$$6={f!fycL3hQy`r*mnubg>Jij>EXp9ih@eM@a{U#-YQ-Q(K&I zIJ2)@BZoCQKn{&T{Zl0*IS{9(^xOFK#J6$OI6ElbQ){vt!ljgL z0>60Au046Yri=*mLOvt%{!03OLX2d=PCTc+0uh`cwvD12v>2qx zmgTG`T0YS-u!(ozWS zG(Y0PLSB+nhn6som{+ox%@4n@pqbplqED_Xjw9;joR-~6h5T&8G&6fgSjxQ5u~ui; zR(W+`=AoJ!@yVz!XLQGrX>5iCa`gFRJGI%FF|61umcMBK6rv)r$e#KM|9atnja8}f zr3u}TqDRBw;YOAwK`D1>vS&}8rHNsdb!lSq7xwt|IUU&W(j>x8=H^UGlSuj2EKMS8 z8(*44SR^b>b{7W+8+~&`ct>WDOmEx>n}Q{a)31BrGjwfnXn@|eSx-2rS!S*?Lo@tH zW_oo**c5DG95EYP=0zCWN8g#2c@Yk=%e>tKCHg(bU_lSCQqNQytYoaEo=IboJ@ue5hc&#$>l`q1S|e*b zDP_-u7aIq)w9}yIDm-A8ag7(`FPQqAo@;cC7iA}Nah5e+w0uj}cu}?uukoTR64rQ| zDJPC@Gmh{mU(r~WbxE{*!56^k$UPL<-CG_g2FIghoULO_iL#E&YFXZ|Q8th;5XKSn z3QFm%4c4B4pL=KhJzKPbh@9&(*e#-LAg4&<2)dh+$im#nFD|3}BVuM*$w%2hOe2dU zLrK zp$UYEh}q}@a8$(%gmJ{Y5_Ov8edZslW)L*X0x-%3BhnJb5%qFT%f0}NvXAt7mIYvx zjW1<*0l39H@A;pbU;~%)y=)|K6xYzEJlfhuH|0?dv77P@&CM`@rq0dx7KzL&mj=&q z3%W1oxC%sY`mbTjK(q&B`I1wz_}L@JDOH+mIp4HN6Gmfpfi%Ig*af2HdpyE-z|BDo5oDxCh=nCeJTmzT_H=QS=!{2q35nhQmJf$SS)qLW75 z@(H`wE9A;Zx>|FzS=8kodE}xSu(~`7VNsm^yab!qn9DipvbEP3XXWTi)ayvH zzRNp6zXfYnmUHsRqHA`fS*P!qZdRDH^9X}Wc^z4{l>6yhRYg6Jnw2QJO0C<|baoU} z@5prt-JBhF0a0C!&5j+^>qxTGt}^z0VP_~{Rt?W`VejDRs;e%GWViG!ep$SK|1Wyb zs@~Dt=4xr*KDs%ruf*=LjZaX)qCRRbsIM=n-I3}F6HgylD>orq`1PM>@(hdO2ugmr ztUeM}GsIU9WLsISsg~>d}V+=>|xer}$?*8Ga5B`}Bmxj$S5~ zLF|YyjCr)HnH*gb8m&5$n_5yOa@1u`6kxL5^9t6Lk5%6DZj|Xn({Gi3H^}4 zlrZgh)NKd-;H%CLGW-mV9Qb{k6r+KV+zyk|DZj|XW^acnVcPL5XT0g3mksm|@l+Gn zANYA0GB|R~H?c;J{5l*Ci-TyxAx0nigA74@n3Jb& zGy_zh@t&Hv|Lrs%TrC8D9UeXJJG#b~%KC01?;*wPBOh!4PyZO|D@m3ic8#Fn_Ure0Jt{HuxMn@lz z;tB5+)EJh6ehm5q>jE`8Qqb%*K)?EJN{q&5FI}Z02aQqkNoaEVYJ7}xosJ|MNRn!; zr`+A-5Q&~=rH*iVV1jBLdDc@x3&e?TD(Z^k*Xl@veyR=aZEnEi=qFvLBMFV%rUhwy z&((pUL2vH>PmS}P2f*o`M-0XnRHjCmKTYxyg~L@5L*cqVN-V3nk8z~aa@z)I&GvZKV6dt%JCks`KT z`-J*66!tiEoRPM@h}IPtkxtG~Q`|NJ^(DTCo3AgjT{t~uyO2`d@=VQ(YzwHi#BD*- zwMCZys4Zy~(R^*h*%>KkrY`eS>N_QqF8P}xPL0&Q#N~WSecAdhvTR3fqo&Qs@|GQZCha>TVAlkek*J3{_ zZ+q)JF39R|SR6zf4l!Hp(0N=?#I$CA$Xt+otLbDsKRDl{TTdN1=J}CEicmXjb3sh$ zj!@~CHiXRuHW%_|aQb6DZZ#`*_0lzj{ArxfX|cYW)ym_vq{B)`XpNRdw~%jjeTD|h zy){~+=nqd9ddwHAJ1mn=d=|F%$R}dgpc}kv2e+5{OZ(`PyY8o9V|kF}N6&q+iTc!6 z_;H(-sTn)z`=jTFcidSx$kTrs^qZwf1TBgRjc%6-^Q!etGf7Bhj=;_t_>}N=x4zAWIKI~IeUxOB)2$`yCcMf167Z{ z(mq%$b#{8S8o7CNmU?@m*Jvi{d{wdp@vNQd&qkhdWvJG;*7Zv;Uh83|PL*qFUXDK2 z>#+FREPhT!o2&%U1Z~HxYkpXAE78) zr`ijV&Og=Z?xjQThO16_dgEC;)$9JHuTppRG+uKZRXbdrO3xVThiDBqRj<(F2b9Cn zsqFNF<-r_{J2AOOZH8Qxr^e~Upn5w8Z}L|aYAW8yOQUNFk1nhp>Z9RCqV;&a^j+iH z;bH&8Nn7~1m2uhpvn2htUDH|W5553xFR}c&KBhdqW37oWCPTsJ=_v8y&Pv|^efga( zlemr^k3+?-a%c3G>C{@aRUxrisROkD9X)Zbv6trc91R0Uz{RCm_Cs^@j#Q*49L&0VUFtw}zvK8vqY;n|geL9(s% z=BUwng~!!sGj^)HkiMis%S69Sxt|7C(#tf4FZHK2?ZsrkhrL4Vo$5Do`aq>tEAOQV zKliZGKKjYSD!Cd*oQwJDy<%mshkiX(^=kBUi0JMowd?CVUU3z$2%fssY-IIpH8(n2 zk*T$t9Ehujhv!7LK0%s2FP*s4FA=-bF-52skC$22#1>3hM?-4{s%2W@;

Vt%a2y zDdk-AW4$mU84DIir>av9l&@oRPL?VbrnI0yoE+9GVZg)TB&xQp4!>tb?z_H)*|Uam4ei>3q&sxUkG?OYB@8A zE|QZ_ssB*1J8@|(%%~D;ewBEsM7TNCnU?e??vaF9y_WO`-)7e@Snd;!XRbX{!l?aq3YS}THRr2#9aqBFQ6 zuh;9tPsw`AwZsWrSduoaM^fVb_Swvw%1rt*hDzB+Uq{O5^T5SnztV5ZwbY2jX;-AB zRxC>6uh}>i`0{s`;>=rIitmpIDO zsrW*tVp^UxTDSEUPpaGH>QukVub$2tQcNzwm^w~-Q}KK%@usoN$Eo6cu7cX7e|(7L zZ><5{TC2`Tbum1hs{Kc~T%*0hV5vXm>o##CC+$%dR!&8J8~1zFeh+KFt}dFa^h!U| z_(^MH3{R)(6|CM~vRh@U%X-^J^a&;obANP_vAB4!M5cslrPS3~B3;soFH>!4qcfJP zQ@!7RwNfA58HZoWXR0%;|AduOkw1L(F<7QL(qO198PZyDN_-*2$x-8~?tZJ5 zq;3*s?ldg%1&5DO&9B&`@-|-EzRj_$EVS3Q*c*6s#8arz8=ktcOmF$&1=jL5E`zPE z6}y9ip?ynCNz;g!q=N8q^c3-hOfM^&0BvYX&m7qc^zr%DH#n$p@H|%H9A|^zD3M={ z!H$|X(X{Kcl^B=7R^mne5eO{>=$+i_l@8E@rI!Us1H-9|)M~AOoh1Ck5{D~M&W@JP zHrdEMtkzjA4rrKBkgOOyPiAdvoWVxd7~$wtc!rZa zn0VS0ZlJaJc9IGqeokd)@ALZUiuR!zX2?T*dn>((6N$q#O`%biPL-?nk$ITw%Bo3g zVdqFu5LQkVYkNxmLe3bWI>|?&R;=_VADuajsd?7Xos&dI#fiKfA&(He zJ&vhcZLhblL_4;?{^ngfka-LxRvX9EsrDk@+;#}&HvJ^ik(xe`$=c+^sUeXw3*f1D z^2|4vUncW7_?q@}P*Ztw+|0o-9K4?ke9DcdG40J0a}FY zp>y*ZECzL)1gzR<99k=^n0g8k)=saii?>N-VkEC9YXy|4Waxe6`z~xR_u(j{LN{g5 zMK4+-dT2yk60G(|n{f@3S9iT1LV38Htlw|t;wnikgYj$MXYNu=@ zC#0t2(sw=Ql?$~yvaQ~7;LtYObu~1at(R16rx}(`P3JW*iVXu9C)P$UwaWNWd!cu& z*NOYM=|;s2%8yoWy+_ikw<>a4eOj?Tay>28BqC`l26hN)S!=IOE8|$om(T_oFQDR({D8 zowtjBxMGV<*VF7HW6a^<+15UWD>6y8$g6Oy?kDIA;**5;^N{G)y2+2E{gcbY>G;)r z(%x7l)}GQ-5@lmFbvrACyD~;6{v#5n6O*KMQc@o4{8p`VGdO(jJzLAh&x+qThll+g zku^d>Ic%Mu&ZX?1leW8>BMGYyb6j2ptGGKr!ZUGlIhla4Hw-nz)%uVM#+GX2EAMHKG=x)j8_EOut4-2TJ8$SY=xvm%iq^t_t~m z5?`+);FHKEML(wTirP(@CU+dFi65Y!nl#O(t8gnuWd>2RNZ<(VWfIy}cD@E&)xrkY z(m0J-hu4ucwDO4>v)HhB2E#Q}mm|nkp~N_6&3wXb$)?8)^*aJ@;CHOm&V1tOn^EeI z(@1SBjHh-vbDi_<^0}7#OVu*D^gHjaP?|l9`9~|XQ7+Qmmbz?W)BJRrvaF*OQ_397 zT8tbOo`?CXe`tW561s}r9=$LdsnDLEeKGWe7|+nCOF6H4e=WkxmEbL-{i^6J5^jUG zbv7=8t+j<-Rf{sQ?a+j*?%Qp;Ae&%uu$_E7La(oTf)VO#Hg1?e}@8 zyi}vtSTQQmZP3eHo#?b?g^ptXpQNJpZ{hU%IVmHrIUN4Wpuek<7A(>f>Vo;sszs8t z_*XexPfJ|3go|a=&Qe)HZx2un*?ItVM0()V%it}G$v0CsXjh@Q2_j(Q^aWidz?Yh&O>;p}=@5N( zm0C@FubdeuvB3)6LrLoy41`PQpVMlCUT}wds>IT|#BpF%MqC|Dp16Bc;>K3QrAJUZ zp~eY93>=OT_sxVtBDXetB;<O{@PbQm%wPI91n>{FVcM>k&yD!@34} zLOk_1wr}0U!AyOJnYw|kU7vNCU$<2JFqpCBz@fE+^xN{i^s9>v)oO)~;q^lhl_iqV zZp*p#+Y&A>&9Kgu>}G@u#JAuWYQZJ^)7cHuDVE2s%QBMHZbiaxTGKg5JM3daBT5a% z?Qo^>Et!d&#_ef0zLDd1h-Ezwi4v3BZcm007F(q>DPe@gmWprHG-}m){WTfCHA~8Y zIl^s?oy%^;Sy{%GRam6A&ybxCv2w>tjlNh9XS$tq)>Oe`haZIXyXoG6vrJYLBZlPnaYkh@U2OO@rRwi5Ch?iEJyi!&KPMi%SbG*cJwZz(C zJ3JvdXZvCC<4f3WNjTfj#7G)unR+voOm5|l${?Mc(@zG-Jl}RNUZe;?a z46RHk8Q)5bzAH<;L*^BcIQpzic3U!yJ}E2WCyqYJ953>z{PWoftFea*e1@FL9n&ruPsM&D#5zUGyW`IYD+x)%T!C+oz#~j*FI? zZ%#B$5&5^c$DMb6!IE~Q~hK#!%uglm}eJ?cEAjj<3_}l?g*8RX+r28B!`Qq zrrQJV1p0j--BC(ge0crRuf*eT@zF|&X60s;)Wtj)c?>V1PrhlE#S(mf>CGOe9W7%d zr(yUYYnd4?9jFe`Z$cntD$7|=TuffW^m{hbd0H~fG)_GI6i61sVzSL*ai9JQn&gUO zbS#7lXEf|yXm`aanAeK~_#(Un;zZSLmMqL;8TY|L ziPuHV5S3?NH_(=*QgHF~;eKA81Z@8aB@^6xEFVK*yBs2$c@nF1igr&^8xO9q)AVoLbLN zcX#}&TDQPYcUxc=N^L=0>5fq8`Ymv{c}U^=b) zU};@PavFxWvZVe~F`GVeNWW!_8!Sg+7<00t>Eo>;QAHnxQvTepSvzGHx@BY3tVenf z@6_+9tDSK&o8D}6Ltmooob1$pyj8@=DTCCKJ*MnJw`?Gzln=>n^YGNej^5|i4weQ= z*T%oA^zy-EaO9tFV$JlUH7ycY%LkLwDZj|Xn({HN2rVB>3FhOe$L#?*pU1A(H!v9e zX*3*>@88#oYC(`3PD|CGmo{qQ?F%{!7 z$YB^1odGqMPFO1VIcgjO-60_d7D^2g5H?_rVC2)enZ0jgda)!7w~L^=#+Cm|3mF-1lJi4@h+6 zo)ct`N^R`}BIV}Ws4ViA5;PEmXXv5R%tHCNAtkln8E$jP4`(pp5>oxX_R}3T%(Dwc6=AJ7 z;!1afO2;T8wBm5Mc&g87!F;{=>aX}znEDfzCk`^<1_Y#xW zFulVbg2yGSbSGe*rZiKi(=Ig6jK`RZRA`FO54>bCEbg{h9G|KW{gw!F7zQtPW~c?^ zNYRIz$>>AtQCC(HL%*)R60flp?S>V;;A><3#p~lG<$oH`k=<- z<%X5iDrY<_g!P4P*2ShfetOi6baFW=TI?j5p&A96!-p&Hjny)N+6oz~5>3#C3!aiu##r2~PbA))8V;o_;M*)P5o3D&8k=Sp7%l2XPD ziTnK_VI577>r3peLmy2b(J1N4-8h;EvPU&!t$HKnXuIZDL*-(06I%63c~2cOU8@B+ zF78q`diCkIH>Ek!&Ni8&!s_=ekJ50dc~+?yQT3b?#213np8A0!=^R?);>MWwbT^|;a~zm%Avch` zOr<~8Hz8W&kW*`ICw)tU-X{AFX_vR$64E_>?2$$KYf4BXj-$vu^!sT#7w_-dIMlCi zxZOj;3jItsUUv4<#X=qBe!S=!5uXIz(qNH7q8N^}Piv;z6RVIxu&ZTa#}A2XN&^GE zbkijC>%X-dQEal7qzPBFt_hZ~PA}{w?=eJNJs0t%-GoO4fa&JS~EH}<&`-kgd^!wS}{IC703wL*&>nS z$H>zy^*1v{62;%$D)B8r9qn&x?fVA5z-??M4ZrRj>8@yMY=l|MsJOIgG2_R>)s~ub zjfZ5Bw>K}cC7h$>9hjoRL$H}u$GS#kjS;|+@Tz9UK@4*l3ENsAYW!GuvZd}kVE^1WLQ00zfyPFvYA;vNWHa96^eE(l*sW(smCyKkZS#d4F9PO@e z%_;$(J8I}15LD|(v(pkYkNyI#($NjCZUY_#OBhGW&3lK+z4Y^N+DT|3ZQEocN}#>k zxsB>gs&+)WqTAm}7Q6k|iM7#bLcWGqe+hCp!d@O^D$`4-HG($$`iYUj5ps8sp--=- zTO($}qcK(rN6>Ap?ePm69g%MJj%b(Z{%xiH8eVHgBya@0w3V`*->By7%2_N=O)%!u zAy}H7yQ}E|Ak}R$?F}XkIx6%s4!qH*! zkI6%&WKMQ}&L7Ga|7KmjX~U+hvb(oe+3YnFNBY&F)kUm63S2q&7b)i?>gkk>@hw=k zDYNq3iy+(vgtQ;|O<3F*Ao)pmf%xu^tHbQ$rC+hxe116F_;If}uQxf|k$ehrkZC+{rp$X5I=c7L%w+F zm+#E}EX&@2Wc`DOBY!si>#76sll6~$@zO6x(wW(Y zPqO|s6G#4R`sd1n1|;iWXN+&bvfY_q9m)C!4@drN`qxzl;wS4L`I4kBXMORdNKZWS zNRO(sNKg6Vr9Y*i*PM11ihWc0Y@9Zno@qsB1PGe3Jn;qRXH9BJBd@lUmc+c*GPWfA zQcGz`+8gcE-IO}eI}|#+j$J3y8rr>L#$F&AK2EPhZWV~{Pa{ImE&5i0)V%TivTRSO zzv;IdcsQ-d_H^s2gBBz|-N+Y`-c#2Zhc~@}JUN5!3i&1sbqTt)D`~X@~Uq7 zs+4!IQr*w@e6fyG-BNtL#I)G?*lC(gIGIHuRvt%{TeZ;yx8Sxy%(TOR6fpxC9MSX% zI@@&g_4}<5FwG{HCLj%2OA<%S?fmrWn}k~-Vw%}2MMO&q7SB@;8T*pn`Owcm%H(w& z`;k|AEVVPEWO16fP~v?{efX9J{j($XE|k0uk0lasc*JiI*M*edey< zjS~GX53W4aPfzj+C0tBe;jU1^`O>9N{uV(d=~w5Io@x#HAWiz!>(ixQ)12_1fiKCND&x2JsLqAx#0}VNKE?(c6Xb}(I2K+Nua}?@7ZdB0WbV|Jy2WkrDP}iy= zEaRmttf%`DdJfXp6fr4fczk1fH^jt|zOL>=g{392b5SUFe5+1ePgj)F7ftKVta_;$ zp5Xn$PAifxPc|C%YYh6qy*$~?6)*L&4Sjn({rU2`a>uTLg5r+kb=N>aG0}YNDk8`i zFa6?;8~45Jy6_q3LHf~8o#lb+-C!8|r5%Zry&FQMM7^;)BqLh9lj($B|QV5*M-@G?rNZW4ag%U=_Th@$$AbTT8l^&p2Yt5%|aVriLd*zY~&{ zcc*Q~#ekc=QWsqbk14IvU-tosS676OGpHh$#Yg0fl$X)9GR`s+6+AS|JoQ#{>w~sq zIbQ_`s`r0ZOP^|xBMI5%nN-`7wPL%r2XFRz>57fSBPhQlZ4g~=9zVX|Fkw~EO&7-S zrVS*=)dpjKDn5bL(d8(3w#gj*6|?o*Ys%!5nrD@wHRd2)f7S#PwQaiN1)ED)~w&^RJj#aj^GSoj<*DA}o9Hkhm zti>Rz)TmW9hLf?%x|{-qilXDKvNlIg9b*QE*7-UfuKMF$Ne56phXyKxJzkBz+HQtj z7cRIr=;_h-U z{gPh4rL*|2*Q<`C-IQ{wSFd=%lF1SFsaAsDgRPV~?Z>W-$n1;eijI{R#MfWq)E)8v zjp$L)9MSh6z4haHV>2T}L}F1rb-9@v^b9z&kG?DzQ80~5eaQ$CohHr+vPY*meJ;l* zYmsvE?Q$`bTIiAyDetLu&YO94hPg~%fJXO}(5=rk{n_f%>Q7zaGWJZhVK09`rU;%9 zT_w#_A&#Wdvr;-Tl)GS8>GZ(H;I|h|N^^Dt(l~XRf%H3PARSkVzkf}yKq$>=#B7r} zI*P0nNVwEIt5nPw3avnb(w_REIf~Vm?q^;}=g_ z6H9p-3d>0OvUHRrf2}9n9JOtwe(1wbey+8@^PQ1X2iCFWPFYCc*KwI-Amxi{(uu`;@*^sh=%?akZY+4Fc=g6{#5{Z$m9(xfO zR{=fhuHnsk)E#bIk*9XMlWJ`!_BuG;)(r(;z}2tv*(Ni!HRKm!O{$d1Y1BNc6iqwz zwsod7U8!Z>%ewMeeMuK;=?fxts#EV=DG-&{x*#%Ia)DDaM&{53kroF}z1O@7wA6Ir zXzW$tTECR$NIctQj>>E4H(Y9-RVqf-&`T>Q?WwBKuYPH*;b$^+4;TFAagc6o(hDDd zwX_1G7LhS`ghdM3FSo6@gbZI8r(w$@BlGen%$J^o3mOmuUrKRncKYH{lT6d8zO1Sl zxzc_j8E!@(m#NqhYn$FaYPn5%GlHdge8vbyJ6ES_N3=`mJ=j~OA<&FKr#IAteub_W zG?EUGYj5;I)vN=Q22w*}mU!NnyRzFgIah{(4{^)0z8tAWv9{fnnj$oIXceFL=r+e_OH!}5s}IaLft z-U;m zzA7CAb`@!TI@m*do|Z_Tc7v=L`@uYvO&q5QtovY=ifM5(1Eg`?r%B=n&bkk>|No); zy5cxZ*r5BX`RO6;WFUTwaGj1YPqKt*^&^<}tG+Y=rUD$N zx-++K0Zk~`^i!_|?r*S8?eY%Lr<$@dcYo{QO3$1e{hXrhLRp!oNv;_=yifM%R)DPC zx-eOH1@Lh=pVnLPKX02nAj8fhX%&E-TLCMMK8}c=(j|-5VGVoNbKKRu#m=ecjHu0dduzj;snE2&$)zydkFLU)z7Sj4nTo9c@QaU20J=YG-y&vu4O+I!WlqG>I% zKxQm{#EeDu_c~CD{&<6G)c#(S<}_`#$xIJI=z*Gw2VKV%!lmX}rGm#qrp%DPS5Vqh zKV?bzheMl5`?!mIYQxU2htgvTf_F)M{Sh1x%c1KN@FTQtmHR53Q?G(uV#) z+KU|8Mt{17F`56EJqhQoqd2+{&&$#Dg`tgmm~{dV(JK61G8T&8lCNyIt?oPAZ)=!~ z)5^2!wK7~<+UKqo6Do^u*$TQWd1s|ut5y29W$8nAyXjZu@^D&}d_{U}S!t7dMS5)J zP>Vcul^*QsMB^l@$9$ICB=_}J_Lh3H-6m=B+E2vBbyw`#wPDAe;>KN-j9{5rJQHom_>4x*WAn-$GWmYISIU77csoJpJ(S>I|I2g`6h- zKkD8*%(5l93wsiS7)fYX?R)j|y5Ddnpg?ACn#I%Hy(~=XK2h>L5RBT^j{9#tGKE-vKe`h)^X4hBbpHKC$SCxZS>l!3e@YMP8$-ql);tXBl8YkOe{9tc;Pv^ zF9g|FB6(eKb#=Ce+t9cuT2eZ@I-BsW{Bc+ty!B!W@gqlh9w@C&l@@@W91ncvT#4sw z^wi@E-#np^vA^{F*2!c%dHUp?Ee+9FL1w)7GIsh?)GGaZ+tcFEozb(~l;M3`UlBHq zHnTrXUD-EXPIf~+aHEgyi>-RoP$23D{RZ~FKcsoZ!v4C;wb~>Wh|6~dd@=({N>(4~F4a)m?hJIat_TJqf55B4 zJ2ZK5d zZ>`KR?E)iG9n3jP1b9^k#?vkzVLI{{>WqpZ7N8_~M3MOA*F*5j^Q!jw;<${6OpXiUtLFjHk(WCX<6)Zd9 z+a!A1RT*P00PsCaI1vASmG^)M`*bR6#8WcnF%2E-l@41Uzf4CnQ&Ldu;}!Xcmh1j1 z(1?1bt85DIxdK(RY#{tc`JgFxJy+jdUaBqRf`QoIQkC)~k=_cMJibbczw0su~ApbPvb*U)daU9y?k zZ-P`H@F8E;7)~nNQBfA&;x{m`hE{+JppkKABTqy&`Q_t!Gw*Egq0#fV&p6+CWJ_O|Ta@@Q5ar#Kps|#v#q;fjfKY9Ik_g2<#%DpiclM86 z|9%fr0P&fmi&?Dg+Nct)>7yXp2b-waf;_3bn2>D&mkvUv&x5${FvPvM>$TlkZT#;<~KU(YjZ?lvzb&1fv}rA29cDoC>? z)81{?IAaK3`?~DlZiCS>7D-)yc)A^9;U2I9 zO~1CArobTS>6>7Ko`A5me9bq8C)Ru;>!>5%rvx1pGtlr&xnFT_(MvDIn}ReR)1>1IHu-CRm4R21L8X z@4koPlpPI?cP-(Io(tIbrEYD8zaBGxwA7?0w5|E#`)Ctqd@`5I;5}W?L~{d;n%_uk z#HY%_H_{pbwuWz>&tJ3#Ndlkmtf6^oK)bg*H_y0&_uxTiW&_rJZ8v`j-;WM+r&%ec zwC(xAd}9VCqyRlCMxe>-yJ;daL|yPEpY<7Ao3ESCJ8Iu;8HX#{89wn*N0$~mb|Ec3 z!EC^i9epBvKiaXyCzvv`qAU01$TlA_-##A=Xp?~Ul<098W0g)5CO-a+WFYqqER(VH zO@8MjHOOV}yZqZ8(gUw&u}pZ;oHxHE&iCu%?9-5(C@M)$$ z2aIR`Mfv;TK>sq`50KX|^sPR!^5=Q`gkrGBnu3T0lU2VsS=GR9AvRho;lJGD6)FmqgyqW@@%QviSN`2#63-gNqy&u zWar_H%7WlU`71@~U-98rJ@aIvI)Oi;6}+W6KQpChM12Nts{#hsZNRq$!>maW1DBhs zK)4vzSn-2j{C!V>0ykIoWw>YIR{O_eit633AA2FA{A$lk2tb+*`Bg;8rhz<}3Mf)G7^PDXXsV{c0N9Q}I=<1_!d=D~TNPM*r^;{1_pmJm`-wSYk0 z7iY4sS1K>ZgALly@SWGUQMTBMms!z-BxAmL9$I;d8ZE zcH;@YMGSh}wJ1dX%vU%7Q`yN70{Gr*;~Vu)KEwg``1_uP7JK|pV2_pQaC~%NJQ+jH zf^QX9!kdQXE|Qqu^JIJ}0788@y`qg&^}vB(ID7h5n;KiWW7xsxJiDS0Z^`aOJ8s+=j*(B4@6e@UDDokT>bU!`LP&=bhwfjYqZmN)9f zgQo%6W$_Tfb*HK?9%@`<@u0aF+S-eU#LbmYK(i%2yK3pgLokt=> z4cW6HSaERWd!S$2aF0&?4XJ~Hy%c0Q6b)#wtqR0%GA~v2p@@OYO;sRV44tz2P@urg zmH#=^$LhhLIP!rYt4eq=Cj=nPhWsj`WD2RpoKOOOM}8H&p-Q%x6NKpTr$CRT!H9Zs zO9}QXE(Hlz6QI?v>c~w%8iHqjr8v0qhrzEFX!x~c=0SqWK;mT~uFI_T^HLb~OR&@~U=QM{WXgwtW=`SN<`OdTZv|l=TNH&|(*g z#EzM>FQr*EkOQaNP$ZlT?bdMo09fGY%AW(@r^mt1PR`91%<;8Q4AQJANWFSge9gda zA=XeKi?3-OuKefN0%#p!c@?(+Dg&u0kQj*TBC8gVqt+G55H@Q85$(!n(aH~K1hAU` zTR9YiylV3?xKLehyOfw}4#aYe}?90WOeG{ZEueNU;yQMxy*eG9`I_CCOJY4x3 zpr2W2SoW|N=c}G&A+C$8yf{a#E0iH@=EV{1%HIT%ZdCKp*08jq0ef$&0_nlBzEI6% z6ftnQsS1RPp;0!IQJ}!hmH##P`0jx_Jv)9l@DWK`*1cp7tX!u#AxL*CFBK6pMOD-w zM*zROd8zO-RL-IXIa2igb5Nrz2NZXuF_8IY5o?YbROKMmx(3z#ki981bql?np$%2C zr~zxlL1wvjJ^?7L*yHZCixH z`xY@sdDo&4aWkb=c;7++-+LB?@HNbkh4(GA*yGi&e&(5vKfQCOijxG3H4IVQb4Lo0 za5MfaVrA;`dLgv7ND3Twg4x@%Oz55p7<8USnf8Jv-@zhZUKr<+q9k@j=TyClY;S%Lf!*J%e3M88SCD3fqFBC16I9%=vL5h_~UhhX#46=sf6>y8# zSqw7aUHLDe2f4k^4<2;fMze@PpSu=?$eC4=YG)P-_};T9gs)L;Sv#}PQh(nM^S~uu z@mLkeD@`s1$yO7fUWIC$tw=7JOQa!Y2Dys_vS_o&zyw-WcQmc304-=2#3s6ss{o&x$axU&2d?CoO63Odzqk4xLZbRb?xwGCO;a&M!sE_47 zr>wCg=DATQ2AS6sq%O6Z8yVOw#J*hLbj{{QnujZYXC-?&JhM7Db0_BIc-jQub|D0! z!=Lt_}mFP?dTFQdvnv*)WGMKE)hOP^<_<8qXIuy{@$Qp zkdF?K`?{fn#Pnj`XiWbtto++#e4cTb)MB_-Yu~sTNN0HmyIY-9SpH#MvGgumkaWMW zcfUhbC?a9=Ra!DS!as`ZHv;uR{Lla z_kcnGN^Z!nqF-hy)dLD8;CJL#!5j9;dO$&lX}(6A=7r!S?opq@EOd039%*Sa5l=0f zA!4dukf|{H*cwSd?RaR%0>TnYC_vdw1lC7Ay~Hv(?AACK_R5!7$caL2x(z?)n_gFQ zg*PD^0Aj4~(%sqC+2nE04QV(UjYsBi#O)ENgwYphIk&x>1t&9W8ray^kW5&;7dnac zs)^CGjomI=RPu}|kw6tn|02+O9rDbBTYeSU zm+-E9vv#x%uh!YgDfRs3CIYXp6pbkT_RxFC?10jw(||jmRATIFmj2vGGdeKE&8$!= zIqMpE{0@$i0f5_`tWdZ`nL%d~Qu^u^YN@)}wJaPrAoO$%~y(SLfJFfiGx(;7B zozP3HoW7}xd-Ft~86s8j>!B)ktGe&Y`qOd}cDtMqOe5}wZ0aUgdpR~gSAKSg1*_Gd zI7!oxz~cGVstHBifo^0x#L!h+x@>zkIB^YoIdO;qN@4itbrtd4FLbtzje%z(=jjfdzBbo>*VMmvUPqKff{*@=9!RIwK@R7<)Vo*g!A5Ofobzz;K zD}P_Ge$_yi8f_Ggr1_VQK$6u2sQZ!%I4YaEas=O8C9#qs*)%DHMJfXLGL7j9R{ywK z6bL2YeO;u_+V;y91%e2C=<=0H)O_Zo^R8cpbV5tj|GMzuJ0*X4 z?U)>Yd^9Oc-(kfg1(<6y{w#IIb)5WH#aALJaM+DM3x{Z^#D!aO{CzJ%0w-6NRiDGk zto92^rPw<(m(tu0gg}h(*Cg1)_?1yH@~@DwJlP1$9YIwNYOHHe-FH-yU{#ZpOGHFH2UH18S&I6hY^7LJC_ zoC_!ZzE^_=&aV8`;LN*z)2yeCg;~mTf0Pq~q_^@?5j0a>tr2nr@VlFr3csjes%%~x z#ozaGr0D&Hp!e#h&M8~uU}(nt*zbh^=z21WTFLIVz+*_&kL5-tE29Koc4Q{L#|RGy(nP4o4voxj$1 zsB`iWVSZy3gW#rktA9SBM3eMBWYNFxs1v8j78@%2Aop+vtuXz~GE`#&KX6?ec%%#* ztByZ5@K`Lhn0bNGz#{}W#s(gXg`?pY4Gla(17}w*f}`(JUWW1Mv^Sx%fpnqh$aHva z;5i{kdMhs#K{M4=1J4n_?`~cy{0zmj2A(5D?*-7?r-G7nN16MCEq^WsnS3fJfz(GO zUZ1nJK8+L60oJF2QdmO^wsHI&c+lKbkI7#hCnvOe3c<0?lbh#Za?_3v3KZr40OR5E z;HWq`DY!l?!-Zl{eoaAI4QF7t5E~7Y`oqj{nujZY5-NR_4oLOsZCP^&=U!b1K>iK+ zRh%$$YSpU?CE$1DSHT-vWWBl|0v}g?tL_Ky`bQHc?$A+hIPp!F`no9v{jECTzNUdb zFfYnK0{!8#qc?et_djWs%`GDogMw=c(ptd=b_=nFX|f8|JY4xjx@A1)74<3aeP8x? z#+CpFmzw}$n*RlT|EM@Swoh!aX+klYMnPIlV_>%sJKHpxhbup-X9BBUQ-Au#auRlZ zArRGnn|8T-GGC1OrqjC0;>d$h3r0TjXR&=A7k&e4WX@JtNFe|lZ^*CGzM9*oPy&8O zeigi7>8yPUBJgqL`=AM}_Q#V+f9wt|)36>w0CH@|uOdgY9zqFtN)4huOWrnH4?&0? ze-!jsIdF#s9Zt!;XL^gDJ<*MWJ!)kGl0jxK4i zC)X+4nBO9oj{%=s79Yc|SwLK)#J2w&^t(Og6CRWt&eOVKYr zL2nBMeD7Hl!q>1vb|TqAi#={Z+h6vpaC^(1`_@nlvaKmd-O<#9%)o9T*3cvyb~F!q z*9F?i@`$DyMnaJZeX_%J6m?m!~5_E-YRsub4Ug;ob(QK$Eoki45wM!OO|eT$(xE zh9WVIQ8n3dIe-P(T)7#v3`_912rR;+CQkXSD&t9wjJr7?urJDwgY)_jo%w!}Y^zk| zU^pM5i=ev6R3~qteTYt@4Kvk4bRHlEdJnk4-SEj!V3B!)o%d4}4amB!3Pe8E zG_Aq7w)nT|5oG=naJgx4iP|Ji*+nD;63u=N>OOS=r_Mf5ja`7J0=ZHb5E<0{+3Esn zoKhE{IT<=ObpeT^D}Nhkx#kx&jkOozctQc%Z6dI)nc7o`q`+Y}{w#HGXq4?KM2OVc z^Wcr!hvW0ffDTkST8-PsoOwx&WFXZIEECZ(x8$i)a7&~IUe98g@G{io-ZlQdhd9yo zM|J#k)rVIHqr)+C&Eh4z5)gs_FUr3H6(8d7)s35`>*PFQa$H*xf{G#ju1ZD8%wQ@! z*UB%%-wl4zIH^Tv;W?YHD?bE!^VF_!QpFBWV~C#DR6*Fy_;Z7b%Hbm^*lIWaEF27_ zGKY^4ae^$(f1EX-Ljxdjp1iLNXDfg&1wSFD^MLIt0SqQNTi#PhWPA} z@%KH&!Icj{>gD6<>2P2MQh1dWib3u*1*r?JR#^si3$ane)GKGJEX~7}zehS6w)kR` zPw`QDUkGxqMDn`S>L`5;x1n){#O%TGcN%=>HsNWL{H{y41=y4D1$S4aqa#&^%oE>%rE` z2ko+lVw7D$T4gt|TZo-4yXN7_FPDf@u=^pMZ5Wz6$ZYpejIt|8tLz4L3$e3h*F0SL zYG{);DfbXP6WpU~3G_@dokAX)(I<{@)=5F9=j-JyJvOIjkFwJ-l3a|y+m-(SYKs;7p|SytokHe9Uo zR5} zf>yU{#o|AiXL2YYcxDX(9G|Nd3r9oe>?lYL8aUHgFVKFWAs;=T?W8i0XIY5rb;f=x ztqoD@3T4R6wH<$_mJ|biZv#nbi`r+3wH%Fm?obT!(iU}u)J0Y!rh%m`YK@HoriPM@ zn3{(xzYt_!IUUn6aJ#$aR#KIN^y?Z_7hkm!3%#A84F$4R0$gZq4&&z9zMG83=fmN^ zssOJ2NC8@G#-GJ^v(}(`tw;(ScH_^&!O$h^wIU>Na^)^)L$}fS1-?E#lt2e5&Kk~9 z@JL!G1?lAVyqs0N!g$>in#c^E&)3UaRL@4|I#z6O18lHo&GM2Mw`PISs{8P;T3ahh}*m-0-1Jn ziAa@cruL6DHSoEmON39}=UJ56a~o>|XMs;nr|WxfAHj6}_23 z9Y$lD;ZDe)4N4W|0T^U+7+T*9XH`UCoShoHZX)fhO?+-yd<=8t&RXN=%2gQjcFv0X zbbD<$rneglI$p*NA)EMf=bzDmmN&CPX-!$HR2S1T0C2mL6$&>)-Rxp|1`J$Xxegj{ z4qxih{U{=kZl?xsuhAwxw=6z}ig}IJ_|g4j=zi8HW#t1(XJBvN@FXBofM%QVXR&xz ze`*pCNrA&|{8=~{3T2ak2$9UHLw(((^y0NtTWX- zT=`jYbC`Ri^?gor)jD`563}5Q{Vt}=Dnkw4i57U=NWTjYL!WH$P8g|=JLp}M24m1a z9@_7Gv3ErZkY+RfEW%_8DesD;z+pH3EF27VGVh8I(dM^8U$8Y8QGJgn*HKd?@dO^I zP$no6xiZaICjO10GU|K4iS8(iG*Nn|1c zsVL13KaoncLIP#FMiNJ(Axl#$|2o;yI(Ayc>P$P>=0T)+(1T>(1 zwAMY=Pz>_ZK3as-#aEL!155j88fyrjP2w~USN@J5d$p=0Pvq=MR8O?1Ec{7N%WJtW zF=&HQMfo?uWtYyzr#*9Dk+;gZ6wEPjPVNFQU|w z@!40u#?qdp=2Db80a~T5BR2sVrAxhSCbi<=%3lKKTlA|!OK9G7_JttxN+hp~tTxGO zxDAan1kN^{6P{A-g1i(HnG_G)(BI^B=IL*4yg&sSP|~uTL0uI!_5nF?x(!7weOfm5 z0W5HI1lG2HWaHR+AV;^~vkKygps-qZxgfBfBNPw%7yL3Eblq&OMU z1!-sI;pVoiXv7k~^l>^0M7xqLP+ojR3IJ|SeAZG*8QJt%wumN@TKjv_1N^)ffF^p4 z_88JL*lzmt$#%0vDw1H6l2y98^#9E6GB2J5d8`Mot=@y@R2H#V?%!3XO_}W-_sDNy zxZcCT*>R6jkQ@x?y1cm@I2cIKdAoXUYMppyt zbEGTm%W^z0_08Gns(HBbhh!PY4t2Z5p{ko#{z;>!Pi{4Pm8R3KwNUJv2IgH;Dg%ow z7JYkl%%g-a1o9>Si}~0A4~1L`fQ90~tf3&xLEMbx8eO96{&s?kz}=Su_r;ZXm z@+JREi}bz}0E-1hNvu{7tV4xBzU0YYvgm{SzO)W#5r_aN5MBH}*uaZ}2Mj?N`aj|Ye5^qkiXby8rpF6CqMz!T3o5(z+W$?p?-1-(TK z9_$TTU=~gK$QA@lN;Cjo?7M+^e}x^y7XmpYt7>kVd0Sg-YHEQuwL{=dS7VP}q7K%o z*6M03mjh_IIj=kKdxc_vEH&QxU?+!rHr%Qg+{C(e{GFfk%x690|2*NofQaBT3v^_` zQY8>SitlysCl-m=Y0=HuR z9;kr9;^3s^H78#P!Y*`2Zw&b&4TfX^(tCdT009~xGK2iaw6adSE zDOtkoA-H{oVt_0R`({c6t{o}^;>9670b+A;pPNVkx-cA@4~+z| z##kRqMEs(;&|y1qDR5_i+1?`{Yw^URxyAcJ;J-${&`hMEPvI3rqyXT0{Mr0ku$b`1 zZ*CBD;J4=6#%e_a-;Lmr{WdC(N&+St0DGbN%XXh7LRTaJjo)n>4TXI^8m`d2?7_*o z>Au`oRORr+73$5}L7^N#tKn&zp&6430e}CD;py-(!2Bg)zhy#+6|6?XhDjsM@rc##5ttEc1Xp!It~0I&slNFj>_b2C*BC-AVjLeqtpXxd=e zg6pd)hc7HPb!gn>_(C9G_pc|>O=)Tf)@Rt{i3Ff)l-;oK(I9hz$hM0V09>NOWASV5V$W-=?3-0 z9QSyD3B>?eou2ReS6s}QJA1Ma0BnI4BaKQ^84y$Ou|?_HvSx|oIeo?A&K1U`z@Gs0 z4nhlnN&&FRfLRkVO%&j+{2#-@y$aj-MLp$58Mz5{><0rnU+&Dg6o*MH;=r~jk0mU~ z@qn8x@qidLdHUo=b2K1P=~%#8aZsEzM!&cTMGCOj2LG(C8fN_ok3WhAz*iadsphPU zUO%h8xmox^kl?PEgHr5H`#wWsvnm|KZJ-CH3uR%t95;I^1LBQgakAg?)i8i3njB1N z)S5-Ez>x;PyFSIu37s*Wv~b{9RZa+OwkT)tX$;v}rsp|4PyvH&PQ}T&jhiZu!wpCl zSh(_QB>>AK)n*{#?NPHA;`Nj!0#SB!39C|%{;9oAO$~f*=@Q{%L;|zDPK^@%{<02} zUdB{K`M0GjVN+eW$#2G25&HusB>NOz0NMPp`B9yLQT=(g0j1_|0$`ngqOAD#HX(m2kpOhTJvOHt+!In65N{k##*{Q|c-nBK zlshv;1K@REuz!9?sU_K`vSEmYOe6qZJfs^T7Kn!oUkK!D{+C8;@K6~k0JusI#nXm} zo$iU}Q$moz#z!+?6#>Fd=qlI|J?UU+7FIqL0l+8=g)q z2P3}$Ocy_SoJN{}r%im=le?CA*9#4kGq!1cAXka68i1htYZ{1zdmO6LMqifrs)2!6 z=u5*)CM+OcC-2LQANKslddH{S_~owI(D2Ek{7w3kiw{l;GqlET>k9?;#WLsOHA&kc z0BWgct%m@ZKo7Y$eF`T3D`keRag^RhT_dyfS(e6CW17MML-BWUuFa73Qv zR-g9Nz%afA+bUbQgzr-XYb}5gKW(Loo8)3O{c}zkZD8igAD1N(FZg!*6q9=Gfqx8? z=AmQz<#4XRoDhY}OWBd?!z-_Cd1XjX9pQ(8-`%`a_`O^|Ig@8(Gx@smf2-^LVpqL2 zA;@{l%c)C6PS!CE`kCGu0sL5RT`K&#>8+80uPfgs<1*JbpL=?(IsfOyYp^@W#OIzW zNWDgR9;#~;uzc<*VGS+Vx8m=WSBUKY2J0*jIk9oFMIH0Y2|=b?d8ydAxz2I~@Z((7 zwU8NEDr%MdAoEq5uPc8|(7WWR)Uz$&UD}g$blHevl(cj5q&gUO&p1~Jggmt>${!T# z@@LwPDN^TfFg|HLrdW~aS=$DW3ZwA}<#MyCihFfM16HN&r4gkpF=uJj_7ax^Xe&rj zT~)Qd$zeyJ0tVYv5v3Y9Y)Bu#%NZmC7K>A7NA-Ee>WqM2j3j5$1>sgftkSjN! z(yG{%8R4Sj50sZT$8=@Yt?=Fb{iRqe}lHLq9cG#YA~XMKqTpmf^4N-{!^&zLKL>a@M0 z0tVX^13pV=&pEi6AsMg`88|#XQ-(kl7|>;vs(WQ`>AE>olp8XV&g?IT#bbKPrnSGU zNOXlCK>?W4hv4ogK$9WD!Sy`lroUF(k)_O zw=g;}yAU45s0@hLCgTC!Ky5hm!4afL0l+=~8nS=ej866V^#A95zhG?MFOX8!yw(|%(CChQg|eWxUOuhL!8}VRO%M**b148er_|#5#~x)* zIC*KNi2%OX^tmv*BCcZPAA~49&936n0n4#MyG=CkQJP&Lc*g815(5{SUBv=%O2dh2 zv#SUa&3-qyLfbhS@@$`J;*19MmUA?TO1s0C(4GkGhJ>kEwJGu|{TdCoI=}REP^aU& zeWwFZ|I6r#Rb-069JqayB_tt5Z2duvsVZJwm~ms_wV=UdV&1_ z3Ab-W17LcYfntcHH%+())wAT*=Q&7e&;qk(s~6RJ{qe~u-IZ^yL~iLOH89)~l16Xf zbqi1dgIiL>)@hc9)iY>;*$p9}C`U6ZUToGVfzeGVK5ym3yJK}yV71g}86JeV6aee| zQ;+URnG+~pMJ5t}F43(E`y~NsS8WWeGEmC;L=$HhKf>TXnr8(fVN7;REEN&!AhKF%wf+ z;Oxq69d7HoTTztXC$WOCJI9CiXIxKFG@#bDDqx9Q<41}ZxZG3)!ew^+NP)y4|5n-) zYj){NFS~FbMkLF^t=!jz-A5n?4R1q{a58k{u_6Ax2Qbm{MXA4;y$0P296aD_6%;3H z$v&g$bg!{^hC!B z{1YS%y+{auCK>=Qo;1iBdJ`%{@+JY9+!q4*3f(n58QX{Z!%>1zo`ITm37}98pjB^x z)8V-}*AKTqD}p+#>9%Zyr5m%Z{NHttLtDOnGIe%xN|z_i4vSYTKo!1EHzuK_^46)n zK^9LzWgD1$3aWzCI~|@qghoj*VA^{Fz4;VW!p7#7&IR$P9e?LjP{PBNKP$4&+_0$b zmbPwK2#s!c7kQAEyS#ZHgspZz*ZecFqk?XuaMzT@#<}4}3b5owUw&p`ulix_V1a%? z!O-5Jd9kpHvIYWBi9wGv*-Ne^YF=bJbZLHJl$(K7TY!y z17t0}_G_WIyNVP5eC~+GD}N!yyV+wOH0+(Ylkvnn=g$l3CIGNq^;DFw$jn2+eU1xl@0X3bd>_KG!oc1Xjl~? z0N8W#mT+a*=si{iv0gwi_B~B4)Kagy#nXrZ=9E0E`C2H~pAZ0yBj~iT%hhKI z5hLhA1aQBn;P-{&uw}8}jy@*@Hn*x$e^Y|`x<+Am#4>1snTqN+GRmU*Ob1LBecCWf z8J_X`LLevW`{P0O>bZf#E&_$$-UkzRW%9`wYlq%6df^e_SIo z?q8b#z;@SDNq5vF8@Jn>5ZJ78Y1{ZG1OTH0Q)fL2!qEiPK64yuL=gd;FJO82f%A77 zXa~>EkjA}*d`i&*vv@6xHzS)&5qFe)4;3ka5u5bXC&8jj`%QeJNi`v`VR`5R_c`qc z(tVPK^Pf>3pae#@z2>yXO1nMnE*Nq_8^plwrNC~!3(q(G+;A2UKC|JeTLKFl)loD6 zUSf5v4v`Nsa47&NP#E^02M-!v9OLx?PyvJWs;D7fTj(6ZH)?6yXjMiZHT&-n?+NAb zz2~a=mG5))bj0Kmx`QyCuK|E9J+r{Wc%%KeL24p^uTaU5)=8G-S(U0BKs)qfwfWxo zSssNlI$%OCOZbWOsX3450aOS8wno2FpWQHC^Ex6@0FYjkdfanEexPw=cIfOdKm`ow zc?0jg?JbgfiJTDFybwye4h%e8Hba0lJzVQ06#r`K$@macofKHn?Gn$bt*5VUmuNCz zL2utmnd-qUN8>GZlNuOSyUNgyTkLr72<(6sm{qpYow>zJ*-DcFt4c2D&n;d`E}#Ww zcY@&Du4ecepBu2rf#okp%8M%Ka`EtT#o&^8#=553kQmXMd`#h8G{LKFhjUL7i@~0& z?+sH06UU>RA_z!Veu=!$$N}iP)Ha*m_XzhqXg+=9_9yhx$DKfXPX}wNmp(F59gbe@ z(|h%9dcV1Q6#~$0sZWpfnL`qf!(0l0g#-IVM&9?NG9X^`FRNKigO_H$5Xe{C9%ADm zLI?o1;0ESLSR^U~;zjzw-1=gXd?App(l2z(!rm=ok%RzXOM?+*th6*|vvMf_7U(pg zMb0`<84#}x&wGcoA85~|*^?s$0GDZ@Nh?L`LmbBo#Q@o$-zI}cje&CZe?!v!7Ec?hk{!$! z0{NGJ%5)RH!|b8{HsaFe?2u1~l!#TUO??)oGuJ#U-6{?Se-sBPK!r&424^t z5CCk^KPG3Hi!!Qhrz1QAbD#}vk&8jGwE&^#4lE1uI2$PdxJr3kdh`H~*;TMb zgaBYGgF_CuSYKo7SLFbrH^V7R!%=e!$6>idg3yP@{;9zxK^dAz0@Rg%5c=D;3_f8W zzcnL8MWQQeU9MI-b3)HjB@$3*OWmoo(Hyb@DqwK8Pbcsubb*mh&m8z|^B!$Pkc^gP zdAqrR9++-d$407i4HhpB4Ivq@phcr8L$zqc8SyF+_k5Ba>r3o?LIB@*As&o~8{3t{ zW~1RaTQdY$??pQ5Kk_pdmXw@?pbZ4nwq)fcP)-PJ?j6&R?BDdH^NE#7>8@(n7q>X_W_Sw*m~Z+0#y-i}AJgb( zv16YHDqyhci%5PG%kCls0DIQ|+R5M?tu(2D;a!?3goh8N-P&FQJutnOHcmUq%BF9@ z0P~wZT#K#NvOkAJ>!iRc>|iPXpi$2BwzPwl5d%BkpyP>5OPnKa&}l+ov#Cog)xzeb zpAuEy0r*Y@_gRB!2g2-+c-teR115g|g8C~u5M~Jw7P~?Lz}>SkC8(RxiL(uI!i-JV zKHw}P1U9!r+99Zt0&u({ITNxcNS$|77LirZ1v09Lr zyCNU~^wN7L<3pN~Olm;xhom%MT>1OpjB=Ih!pu`PqP%)EcdQab-!me^fdb|soGq&{ zZpZVGL?SZ%M3uKBJtVz2J+t2&9jXbG2-tE@5)CqqhkRU8Uiq3u8|^2OuQ__bz!+_24Phkic#wd6-7#-vX{i)_afSr ze@ALOn5qgLTVBue<*FR)yRJcXsrlPMY74!cp`(;ZdOoiZf8PTxuKc^8!S<9gR#4D~ zUYn+5mk%vP!l@Y`1AT57Eb3};uTptVGp}cDUQwB(B=5J!-}ewFZQ<*KUzJ>0YxgJg z7y=#AHp8{-ERiBGD9Wz`$6PPYXm(C{KI~j23 z9?<~FFl^}f`(DC`QNBvnzHF66ud`L{+&TC{kYOc~*ELX`Lk+i~aZ$P?b=El~yeq#F z9M&(+!eI_G#vSS)l7Q@fai*bl4RjquTHtY`&co0quY-)2E5BQkOK~0So{s5ABQ5ks z{yCL~-8_~pCj{AU<)z{!>{ZFuJRS#6%MrluZeA+<42`oCzd17Sb>#qjZ>2aW$8-|W zazE}qt8$QPU4!aXsJc%JO;;(?C+!B5b)Ue+m469pZu!1{(#~8Nb4(``gZyg>QWu}+ zv!QMb>=t5;dSEY!zwc=tuKW?`&FFXy&5QkOe7%MZBeo?_fhN09B+ijJ8y}$v3IREA zx(!9bDXNiNH@mnAu)xukZ-)M2dwMb+pB?vxFE+NUFu(yBNO!|vQLi~Yz%}!F*5+lX znh$UWPgnk5(4IEK&Y3^BYVWMDcWENfb4Qm*C1lmfOUbG_d51524EWr#_!t^;KNNr8 z(W-=AoK$Bp#6@QBhU7tQ+qgb|(I0siST ztWqQF@oQew>NO!|p9TM!uSEo-&1j%mKipA_%)8xJ}s91vlN4iF2iKZ(oDb4Yyq;w4` z+J7-$o+p16=9SmBK_l`l(U;_@V1{)Y4;QE3=AY7xq$qxKPR{VX> z0E;EQG*}`mI+p3oR>S)uVbh0;1GFf=1De9FzjQA%sisbkyRDoM6up&~ik6xGsA*x2 z0DgD#QsEb^ldP6a3v;BH>}No4pJT(E-1Cye7lJ%1k-XmQ)sm!!+t9d|rK?J^XG@ZV zcjX5{7app3{r<7{^xmW}j~K8Bi6n?#lv^+gtXGYNHpbbSS>Mk*5(%ikm426s$SPKi zY>5_l&_h#v%1b_PcLmwVmN0>rEBjE5+ouI35~cuXbN9z4MlzHO%Nq1kGcTkEUe98g z@G>esn|UElbp7K{f4lVd-?%>r4@S~qcXLI}^^g;SjJNVqkus}M)l_o?@bh>7>tflp zn>E!ODSH1a-Mj7bK`xpC4(Q%Foog{8E39@-7}yo%?*KDy?fbiSv><6bvd2pjpaO+= zp{T)nYDog*!09#=2`9r_vLy+?#Ats821k`Bmk*Pe`(A9dl;t)Mf`oVT(iS1J%FU4? z=MgmE<>rRVV^=5!nbs7f-W#jMt%2P_tYK=lN&J0J^KfMWo)klMcD@ttP$e`bIY;h< z{yc{2Qtpzh`LP`QTMVydJZ>c3Ewz$$s0kzW@sr>;&sIrH=(-3UO_pT(%s(41c*E1A zhT5Ww`oxHO=sLrC72!b1KPHuc&?)i84bxIxQ&|BAlGvyiAb91r`o6q1I~LUiExg( zCO6I6s0kOVya7g%*c-oS&g-E!ei3K)u{W-u^^VEtjWZsxH%>eZ^%{C(;pNJI0ioYp z$8^(#x?wuxPJf?_oAPGxY{Q_1y0~KyNKIsQtd_V22)Mpr5C~Vp0NE1P088zDpM zBFES*yYQT^6%`Crlz&|s{;N)l!Q|$rl=^!^QHHNtlV(Ic@SW<;F7aMR5a9B;Yud&~I`;m*&iS={(sI z0)Q>ihRDF&>EugTTnd17`l%(~F^iZ;0J=okFzm$7{4Fj;fTw?hprG3ZLiuy0#JWZ&aPLvC^w1;2Z9@U`WfF! zB=D`ZvtxgOa6B}Z$-DxI6ad_fKa>5N>Y2yIoG`F))ESyPa@LTaX^v95d@e0Nob66?#{y9oh& zdqaL@SpDm2DJhhI-;rMhZx}IKN(w^k_fJ8OwUK*tRvb2DgW%>BDL|6V__K(TO~};( zKav86-T1R`FqFv__z@!7{05l2t_-I9mLN0C)|KJ1W+(?a)-|YJC2C<@5dxZ?BTJto zw4p<`Fa|EPxP)G2lNL;V^WnfJTej3-|I|bv%`IKhV%BU?s8M3szY4v{%E6$qp|NGF za*$?SgIX;iY|8={SAGpx)@Sm<33$_sE|STsP7T`mN0RC!V)U#vs4%n%1I~LU ziEuXTkcFX5xYX;{LyOr6FHtq-vf&Aeq5(O#Re?yC>CL_$mPm>ixZG3)!o|>$YbE}^ zr$D0F-vEzYrOR!pWoDfL_s~KB(rn1DB1)!^>Y;@a@H_IW;G@WCZI|`Xf)G7cpoW%? zAD`Ms|9G;+r69p-0@T|a*Jr4YI&u?`hTz<%$KUr92Uq?oXl+Y}6FE7PnVzNQQj|IY zTBWWdHvt)?OXkj`RvcXUjbQ7=SKOI7m*6>`F9exaB6(e8HOH&rHZ;x3o}BHYpP&%E2-9R;wiX`c*9y*>lZ|j! zkxP$g?P{jK<95WQpuuVa)Wuh=zmD7lq#=0LjuZ!1z8m~<;c(FWvKp0v#LGflmzU?C z)##C-))mT-HQSty-*n|)0Y9PZ(Da1-;P7$FiCoq@qXP|YW`)xAXF~^%U_qM<0Nn0m zg~H9yk~co%?|T_AaHX47LF4jI_&D>6U1L=J^w9llI!34xgyU01`D5Z0{OPag`swPZ z%hM-5>`MW)nV~TO=&;y4F?d(L0A8_3Y3cio{i-j78l(5ND)PDut8t))+t9dJjcMS@ z#({))T%K80QOte2pTv zl*WT%9#;KvhY~3OIOkY;!2#ydQ5niUdf2=@;|oEn3$5E0-Q=*@{e2;PW3Jx*QVWhb zV{r3NLM2#Y`A&0GXYMKbh2j)T!-KXdHJ3uYEK<@2bLzw`#}@+m1wv_a?iDWk_kHZm zIS$r^Vi4-W@hSfX;%MLAN#KA*RSsX9v){jx$-~?;ysnEBSN?gKO7b94jpAl54%ld- zhl;9njMa!ebNr16Jv{8})4NFbDQ#m*A_bmWWpq#@tL`x+LmS*T6U}go6as*4A5&Dg zLkWU%#SC{Km`nLoRCxx{V52!$!2wv9Pz190;3H|K})%(=$!SLS+8tbMFZd! zvK*C}>kBq*RgR$3@$fO_^tA+LP*o0~HA=sHK)c3$vlHd1M5F-VPW3Y_Eec9${gU-n z_WXYerGqT2zzzabAo3-H*Obh-VF#1f zx?Bq1yYi53{VYkt+_T%+i8{N6(a&Z_#GvlhgYjgaGT+T;z(5rkxbiPlahUnmfCt4{ z(esZzK7G=44VWO+8t`Xi4ahz=_atUD&3fvKD;3YEPk%N6X)Ld@c!uKO%5Md!FEnvU zbDg^2YM0TN^lYhl5@8L|v-4bC@);s4ktnM%t+V%@|n{OJ)&Zwql3?M^YH#cjM2(!O$f;6A>XY)_<+U2HA_|47XALUxc}J zy&9nZ&%$)n|0kRwbglmvyeq#4yng-wR}~LymA4icqpLOvH(TC>cjdnUf4}&wtm+(Y z!-TD+-m}wD0F%1^6~UJ2DEe+et9d$5LMMD^jnlB;;^{m>_ZJYy#or%0D8VAPco#Jn(sA z#zVVCxnoNtP$66Ccd3!APPz32S5CCR<3{>jco-`2Dlq=OmoQSTN4i>XjVLQVy#_n0 zZL_Z!v{LOqP&Mx-)gkuI6Iy?<+|fj>>x8zVuV!hXT2d-7woBGdxmpqlm~_50gZ#C5 zugx*&@)?H$8%bJp;e3|N=5nd~f+YD}ddu?c(mA2H;qR|JCiJsw?quH`_=LF@Bkm|7 z1=QeX{8`#W)~-}X5lMl=Zv0s|#MYBGQM0}>LPVS2C>_P}F%55(GtXYmRoSaw=(w7L zRMuP%>zo#)J(YDL0ln9cCgbzdc4#62=+=N=GNMPky+l@x@$d>%z+jW^b$TeLakKCo z+R#K9{G~2%MFen4+(j2E=s5rMl#VAfE5Vg+&;ql~VX)y0RTNQxyYh`NRK~%@9xGvR zkpb#XXgqOnNn>5s2#moc;}Hj!#KUL?4TFpDa^=@StENW|AN9^h%|j+vvnB%5?&uO} zoSA0olB=c$KDTs<@G-Q@&NFM2)Y;$BgJ+fIh2F_>@}qQ@(IM(XBE=se;96);%w2{|ZVr}a_Z zJFLn9wCvMN49zo0ENCdML(ZFZ^N{nH35G4Wc-U|+j!$^_Liobku`3=7rUUyG8=k5~ z3IHx2x2J0e#W|$4a*ykk`{jezST^QYV+XGR?rWTBu}{amECg#3DF8^hbRW3lk^SZz zpC=FkfGspU{K#u)Dg)w8Nsri6J3Mx3B7mo?j8!)2agSa$we;izrNT#YMKd)pj9Dko zM@1#nIpazE9r|158urWQe(Nr5jCLjYAOOx^0SDPNg+r?Z8 zfE&D^iMKr)RxBJTu2BM`#WTuiWmO0_J6{OoJN}m$%JNz#qXQ;OXXDeJc?mmgj{8yo z&>Mt$j$T7fS%l>2hV6)-lvD|?B|(z&Q~YJuRmz- zY(jAkY3*ztsLsZf?}FL;t>U0K_43k-a&0jpUQ!seAjlnqfE}eC098q=3=nXA!5|Q> z#$-54T4jI(cY3-V$Fw`}fz!!yj$vJ&G7H3X+Rz$kxl5ulXqK1HIK|&wA-;4}&>S^+zF(EYx34l0ElY7#xfGe% zRlK~wj4qPcy;`nze^raWH2>3N)pxEk-DuD`Wp%e)ktb4#1iWJYmpg*)F(ab&!LYhH zAD#{Tn;`JL%O$|&Z^y+#^C?hREa;5WRSjG=1$xD1{%nn`z{OwuVfYq2pk&#f2SuQQ zI=HHLK3JN0@{Lm-KON${$6Z?huHV%A|&0UW8YglCR>i_ zc%8XT6rx2!f!}IQ6~f;N#RxfZ6rnRiYzzs-09m0!uT2>|!aaac4xlv#HGPV8iWC6! zCx9Eyg0q037$9E2)5+Kj=!t;796+nI4>6)=;?3{^yN?hAm@EI3%v!n977kmE=TI4Z zY*~owiy*az%TenJWlXcPHC#l~DLarft{GZ33S`ZYZ4|^cLj|piZ>$+I9&yc(co@nw ztl@+gy?rR_AnvI;pPdMID7v4WsOWY7v_|i~jmGE0;lS#kxc(vq)cWFnTapW32;^%A zgUO(OJalGkfWH$d0JzkcFo+{oTnd1d>WqY?4>y>qJb+yJ3Gk;yI?rc{$U!+@h#!mO zb?@ORT?k;*a2pzDcuaQAG2vbLV<<04WZn!4v3n{+c_VqNyq-$z^RMB1Rg&0Qw?{&1 z*oq1y*o7jlq`D{^B@3nla^Q3uiiDG4%SmJz%Ud1!v3v$CFng0h;CBV8 zOOHKTJ)gU2k2dOh{78>wh}U{k&&dab*nT%#=>4>7F?Atibf-V0H=4EwBY!dS?$ak6 z%CC_Dm(?~rADLGK0qM%uNT<(3?$U%BojG+0`w+eqznK8_2BePZGZ`Q^0ckWC-bRSO z?A*k_ZOVvTTOxOg%-6&G zcC6B7CPBh#X_}bH45bURL<^OA*%R88Oz{*_%X}*BaDW66YHQJUfGI*-BJuLo*Wy%n zuI+}oj-6ll__hFTJA}DTI2oQfgaB553BW zM8$G(AR9`SV!jX@ea<=JlApab_v~B>{Fmprb5Lopp+YoP=f>lKqJi&SVht6cwy#%F z&9KdtIeUcK-VV^r-7k5p@M_Myi|=$C0xR-M&z~3lXlzw6H$qN}KKJ zkRIls(-+N`$$2G%WFX+;^sGf6Ul_<;dAEv7@(iLnF+KZ)^@(4JKB;1jGiT;Z&9jH1 z{AVG27=o3Zzc-@G6y3ka)YbRCQ>I8fA54=28Tjlb)@i0uKTuFHtIr(U4isc9xPG7@ zagDRbbcBA^fdb*~%AW>HTzFKJJ496nQ`c2p4XExAWgU&&Axaz!y|@PA?|T_1N)-s& z%sm>crs1Qmftu&n$B|7yMhR1mWb=H*!Il39NPUS3T0ESdj2PBg)Ygv22eiOaVK(vg ztRCXw^u)tZCkwOXyeK^%=#*Mmno?UGE4Hvi3*A_1VTpj5)$7b^VF?6WQwvK3!qqT9 zQwvLA=}UhR!X2GcD$rj^X9gzzxm7sEs^^7xAtfiQqhzbvD0G6i%aUck>HC zoB!ru^uSHddi0RY$+_R^8k=)dK4VuW1^1+^8ISxYtjgn1YgI1w^%dfEJi^U6lUa!q zpIUwCYO2kEHZ*Q_H6^?&|CUq}%X_IgHieV$?sQ!Vjx&Xzry>S}Q{C0L7%F8+&J{>% z;(J3)qzm4cOEy)MKP`K$f3KwbZ|mt97RxudRV5Npk)d1Zcj@Vxhl@lDJZ_}lg@<9K zY`91mG19A~`dP5W&JQFp`AQ_O*R<+YJQc{kp>c-PS+A1tuKe5}Z^_@EKYv$IzFH!Z z%z+YV6{oLQ^%u?x`%(~{5{C$&uCtn{Fc}~zafm`1T4ysA#le+-P^&#($~-zFfOXvY zt)x)Lk-V<2s$>1e65}>B&d@fin* zzRG8^zLI>VdaJCifo^~5(Xy)jDO`s-h~58Fb~t zTm7^y=FTq6#A--T{JC1OFgDcZ$9v-Mdo`#S;p=6V%(7qXVM2y(r3VW|tgLQTGf%Xj z;f?gW@Q5lTgJsP;VMM1t1};l?uFmc2mtn8dmx2_l2~cn8YG%P?fZPP6A$m5mP#j$O zgHRLmyeY}{UnM(KsiRw^W-^o-kh7&$99;R|Ll?C`^IERCY-@v$1X3A%cUg$*^78Ie zXcIZg&-PoKBRk3!(Ue^W?0eBv$!zPJDu;55ELj(%K*0{K{PxUKyFb+#>O8&eS+}9~ zRL>V|zX{0Mb*`QXb>$C%C22Z+KI+qLp4`~1x*cn=oz_8 z3^IwKSeAA{qoh`TZ}91`w3#n=b5SmUah9ia_HkmKjN~(zp%@fdQ;>SCvN1!;FtA&Q zHPq)$IR3t;dARc9!5wi;*FBYVQU2ec`~uCE8+!vP1GSfhxURG64RRDEVVt8kh-gtfcd$5c%wkNK=CR1`J&TQ-13v@3T&Qd)5znXS88Jsn~5<`k<9!oun)!_kVn z`i!=05;u=t5VctLhhTnB7vNhW1imof?o{1=B(L{JO5Pf7L*oqdX7VPyE1!iHIL|}h z> z3HTlPRq%!qSw|`e@s@uJ-hHu`#@U)%J`sa@IJ{mNY9W+pK_5>0fIJM1vV~C2%axz= z>Svz$_|wXxV~p0!@WLI2Jd;p8&QO$}rx|pALcJ)zAONdRuO1hZgV->#wE=sD5P%hE zj;>&JJ1VabO2F^Puid>u5aJbo8>R{CzF1XDrU~~8i3DWXO23OVS(mN6BGCem8|io9 zG21H=Ms)h?(9c}tvHH+!#H=JDOr{X`8e#SmNkO0V+`Vux)X5G!WSr<#xzKJyuYIvs zT8i@jfllnQuK=-mZe~veiHez#c#Rm0lmWn0cd|m^W*97cU@-%V6TAkxyHpeOc#mJ} zG5^fH*+HZID?*U+R$eM%W=iuKEb|PD-`ysDhT5Ar^~#Z=_lw~CwChBRMoZah*NI9& zL)vu`K)pXwgDjH)GAxtDAcg|jAgegI@;`voYZG@;_yia&J-JYz3<#`ipqgwX1rBtf zMt_<(7@A~FHbMd?SH8B=CT$3B($m=E$*dTHCK9PWF{B;f9bF7L zUXcNi^;jBA>4qqC%Q^>cFI)-|tR_I++f;k0BR2tQ2%fbU#le+tkoLk-`>1wt;9nv% zFR$^iok&1_AJx{-x)N&GPPD+oN3}B^hC10~E@7l5{!h?}o|UwNE4=*jg&@O9B(H0r zmNPZnhQ=9EXUmy{cjf1S=g?(wGdoFjS$qo8E(>v8ShcVvB0#Mxlp$)iu#IR}eivAF ziJNnyk8>$}cQpa(@+u#%BSW{>(l|38R~%gV?`6)yKE6Dd(xVCH<}3#qLovv`rXY2} zRiM$pZXwn%H@A!U`<~|E%KsUBW4SqY%(91KlwCnuWjC-}h>bF)ph70Q=HbeJ39_#o zxTBXQMe~jMsvM+W*Py!i?5SaTWTCe+w4p$@r3+l>v@LiJbzmHjf*1 z9)?DFFQ4&pW{cDj1-{JX8c*qn^ljR=|xiD;2#kPqn2b-M@(;n zT2;h4B@&RwKbfbYtvV%I;Bh1U-cn7OP6;DAJp($?Bg|8Cu;#giF9aFrU~WZT*FeoJ zYB+k%F5!%t$mSLa@5(;}@@`1Qj>hKcU><`N4M@MO3dDq2TTzEn6ftnQsS1RPp;ERZ ztUyu|{|SyRbeMi{V!IZfd9KPq7Jt_*g6dVGMi&dcouLgave5;&xN-@4Wm+)|MrLB6 zYQ;dMAUzF70;tQbW>ZWCNLn!{q#<`Un^GJoR0KB+H&^}%&}?DYH-`YO11bX< zmW8;r4sz7GLKzZgbr8|6d^fbog`>VXUu8+D3?&ufR!MWzx)6

sKN;JOlqFXddK zFDWjDN)5ggxw-Psf-f!kSDVZLMHml!DQL5r0Chc7+h#IAZUWMfJ?oJa2Uq?_AoXHX zY?0@~z7W2=63Oc#EB~qCHZ;xF8c?;U%0`+;8ONTYaIOdiQTLMB{7gnwFhzNA_LAn^L*oo_ zvoR>)UHNCiE<-v_vPJJjR(U!PoSCDXl?SSzL{aua(<+}I(ZQ14qto*qr7A5R6oX;0 zZ>PBCy`h{?*iAyM2X?n9xqOe`=_0WP^q?&byXM^x4%l17!uEG*DYt0zq1Pu#DNVaG z1NW>hPzj??YDSy9IvvpC-u6b^{i3DWdO23O8vtCMVpC(%1aU=aMJPd8J zjjV)`IyeBGV!Sw{ma%Gs?IU~wnJt%MQLiDE3w_Vv6@3|b8G2?nVl4Sw`NP5ALOar9?S&qB3+dW|zQj-3AI~pl3AnXI_YiP9NbznavRS#BYI?v*exB zj8^axnM!dPIK_q)hM0WF(iUXx~ z3KNuSMDyctr|RR_l1VM*csq1=OU3BOo}vVE_|kx^2G`XDXm2<*Z^%$j#^hJL-lN89nr4*&twU}&bU<2 zeszoY`cjZ~H391KYVWNfHvwtLocD8ygDZbTR~H>VJ1poSuWD$qEX_kIl1WwV=q~g5 z&~peS9d0a$?b+i~b4twD8X6JufnU(w&21zPgP|oc58oECu>Hrn0k6}#!MERrPM2p& zi9}d@2h{yS1DL&($^xotrprQHuXW|6If@P$hNTaoj2h3pG@@Pkm$eP=Qs%zCqe16< zO7n^Ko|{*}4fJA$f32PArXOge{z(E_5?R&5>x4R~u-t|Azvx}v;u7ZFR0y_RiR5+T zs^zMu0^Eki8RpIB-4XA~A=tM+^e=Jti~eyp`!>*vF@8d~u$^kDMpHxj!qAL#a?8)? zgxL>kw}0Lz(Cj?*;O5$hkPrM8?F~B}T#Tj7=!Dr%YSmZCoq9eYsO1X010Vzf|0xZ> zi@kxLbv5=(?Dh@x!u$uac}omnXW^ePP^W-(9H=9p?xwouuOT-JjWirJ@A(r4nzw+| zw`3VI85|wAEbBS6X3z#(R2tne2)L^1`l%GQ1_-#mU=RpbL-#C&tpN_)UHNm+d&fge zvNxF3BG-s;i(7$}=5bLf;JU_Yd$Ng346!IKhKAYpWR06EKdhVJ20eo_pk-szAk2y> z8gcLM&`h4gws79sczC7T1Q7P;y2o7gGhzz2nXB5cw^tDe{KrB!R@r}{*f*hJg18^g zw(=ZpS%~YEq=sH13g4WXjb;_cbmMh|5< zZbRb?ar2=p;^~}(M2gv1Yjh5}c@$@RMGBC7GydElK6g?fz7k1+1FbCer>V9KMY4T} z2nn2A`8w^zySxZKr3}<9@lal?=7fP=Q9e`ko=;wNS_~#JO@DYr;DAC2J%0PiP4{>q zzjsoM2B+skPLhmIkj^3w8JAQ1`>j2;)rSUW$L~^1x8bp=y%}67SNhlZ(B}-YJ^Ncy zJMSJ-82!DyV!z)ToSY7~?_8Yac5!w#8SI~*ITGzH7w5AVr2!$|-X9L)F3ZJ~PB)0& zcnR^m93a^{`{Pl+2uIs5Tp>xeH(f?HmIS1GA4x|!4QYmST3v&>0vX?SIT@ooAn7;J zh8PW(bj|oA_LG;b=x?}$ph_H&^X-S9CZ6c!0Lk7L^0>PzHQ{CITFV2HzH{PE>HM9H zCzq|}%e0vw2}t)Y+NV1%szApTG?zDD!V4==K)$z6#?@-^3WU2%U+Cok$=<5PahVi#iMHb`U;Hq z@@1;Fk_9Audwk;h3Z%PCoA7dgWbdN&(^b~&W&ExZ1>}4CgMkazlm36UoRHYUxhLsyLx4k?9gbO|D9HkacljWyzHabqmh>! z^x3E5(e4k;&ozvk>Gh|oc4(VBC7J#V(j&g2 zBV%XEj(g2cb`8B*k{x{P$d5iM9qngS51nKOoepE-&TFowYnVev(Ltk=_;Z!w^qLjh zzxqxt*Ff}}f5}LD1@s>1l+G#7xn$J9h9%?6iT7JCzGPG%>bhi95VeqN5Jzms>ymkw zjB|Zy{w3pF?CVQLc8Ax^6G7aEJ2I|UIQ#HnmSMVU_tx>NY2UI_kKK{$UM4hDOivzJ zxi(e4`3ik1dlIIa?~H3NzFoC46mmWrsCVo-O|H9EPfdELppVfxfbO%>j^9j<)+tWd zk?S6d3epcLMjo!`Ox=+W*wV4u^rqRYId;eICT)tV^fgm-(C&VnBt6k|<;s2XdX-Cu zez~iw>o%=&^L3bd&s}lXs~brU_4a1{P^do7XdM887^5ggW994Sst$N*^iIjshu6CP zM5lmbXV&$J1Xuk_b5%Xx7I^yP#d+#IV05LwPgOdXUZ%#G0abU?ffi^r;h?0h>)Q9B zqCY-wMKilr{!qo82E7hKH&pIi8;fq}{J7}zM9#OdsDZkg)yCpm1Md$J?@QFR`Vduk zC)+8As+9(Dpz7ycCC>FFaDq-#?77(2-GN6^${025569ECvog?J=K5%w{B+v(nTz+H zNDft06qE(G>kNCY?!v;j}Tf10*@ksS0X`}BbLS#LBR`SUy1TtWWc z>CE}~T+MP1#0SlagTZ0QfOXX$z1F_KOAUG)91M<%lau0_>*ga@UpJNDpiMz(z`~1V zpHa2qr3O7dc{sT40kc!^bH3I>LW35^;nq5(JHPgkrc-=vPHp(gJqr(76^EaZvl%aS zu1Csic}?TYHH?`lzh)K8-9Mbrka*4gSEn`poc`s-h8l54lyh-FYrAV!<{IYxB01=@ zfBg8gdUWLay5no885SEfIT%cTITmEsFiKW}gEsp^|J>g-JJ~hV3yTe!6hk+;Zbh!4 z5A#xk9{u4j$0Y2-S3e00a)T}f1sy*FXU1M?(4$W;LCvv)F<0lG=J?l8CqZt|<#6O4 zofU_YrvLhS<7-&)N6|r}1HVe9j1AY^i(NyHTnP@^_F{yy z%=vxXYp$J6ySH;S%)Lwj&~E<`otzG@zFc1mx`uI+#Rg4^SKQfkFZr)w-1Jh59=t17 z9gOOBBkRbG+{EAis`k>l-2d7Wklrx)=Cm*Nw!rhP7e7*0eSkJfzOl>jT#>6y5<>*B z5$`7S=G+_W^aa=$dH%4pRoxcJu+o_lB%)0KjT=muV zd$-=n=WM49-Pg>qWgj5A%HNxMrf>B8w3X+)9m>q9s^8kBbuh82=Gw=hioa#f9%&|b zsM_~jiNFn2I@d9bVey!bbI*4Sqr&J)RmU*i$s8|HtARaLYo}uvfm+pT{rga{^B%+K zz#po%(@}yBOzV})UC&{0P@K}OZAVWU9Q97e&Y_x$hYqibANb-Fm%r3q+B zL5EL<0AKInV018U%i88tKzOgiCsRA_bS|p{$2|}gwD{2E)4tdD5`xSh_P>0Z_xda% zNL@@RV?50ouhU^V?Xz@o7?c(C_|Ww1nx>FfHc#*pip(5+{hAO-?G}9<4o3c^kz#n{ z_9w;DCtp2B7&gP|&|Q(@vG3$ByeWL(G7&tGlp=ZE>K{-#qSqvr*pj0z!#N|iXp%0U zgE(KO%boLoqao}!C=SXo&3d|SR?q+8)VqJ8)AD2P%A!CZs{oZY-Y?Gh;hZsLh3~u- ze;Mr#u1Pyk1av&4D-_+sHgnrGRb01_?c5)r8wMi`=adJ7;^>f;3BMff*y+l|{2s9< zIzU~ygYJhx=l^D^s!qpS=l{SSiI4iYLHBUb+@5j$`jGgb&xC$B?omnxUwh+G5nhMt zvc|rIa!1$HW#qbmrUNRahkDxHIlu}0B^11_9=}on^m;-yI;yQQdujK!Cwu3>atG zCLBS70zpE6IGs+H@AmRZI%(89)4SWVlWuxu?^a}k?UQ}ZixbYDbHF)boO2EsV`Jk8 z&e&j_1K;acUDfrfs=KSYtNZqJfAsd%R9F3euU=KXO0W9KnaJ)qTm?5l8}<`|H7GV! zLyd$8=iw-TPUT`3n$$LI8mmpA6}tb71z|UUks@6A(vE4Xfbfezuj)}C2vb?n<+h8@O$v%=|Qx1FDpI1XKRezI@m>0^24C;nPz-WU_G z-ua2K<%wG@e=Z%IAa>sQS)M+b5w_bQQ=Vwf6!3j(i)9!+g3l%UIf3%bvUb&OZM!_h zPKJ|+|L*l6+&U<3v@hM9RGw3Y{fJecP@ZCkVI;Wk8Q$2O(5*ItCq)jI%u4Gt7$8@) zP70DBhvVSM7U3w4VI0?(-dLRuwW6S)rCd0V@o;z*a8c0`EX9$yZuI`FcFQ+D%XQrG zaEzQ4bg5Q*ujFr}_9hPzmmqepk>mQSV_u}IwX&%kGsx+7qag0a$$~>@ZTdTAoONSX z^YD(TcQX8>xF!K~3%v;E_PTHhj`bX-WBwUCt5J<(>cEb&ARK|+Fbv{(*M2*oWBwVt zX39?BH}kUJCb&I$Dcc7{dD(9t+@8FY;}7e-$#5|mLpxG@eJ_~-s?5x4meMhG*aMI; zAi5aC?f{q^>8{Ksqi!6+10pT|1zwlM`Np~Z(_7>7jrmOHGv~=t+buZlqTUo z`1NO#`K`@&+g5H!9d)CF&*B z*ivuZ$ZUq8mp;E3M=;&qg=y@8e2={qWa))cNZVQ}d@Xt`}%#d87-yUOS4ofFs~ za{}%zM8}ia2sRzMxDaKZ$eSf37ota!^!7-eEF5=9VB)Yn!pemxMwa$PXql68c6A|I znmXA6VYPFtG|8Mz5BK6}W;p*d8`<`1rCDW-h?O(r()2nRMk@Bz*<>-@=GZfg1UqTMPNXgD$1%kk{RvCnb_+X;E%hjR{#-hhwy;~IPdXK=E$kMF z=5#CPU<3PjvKS5{+m^v1udHA3hF-uV!auX@a3O^ga4QEx7AbZTgaq@sel&}EYs1jm zRfk134M<$TBT6VTiJg$1X7S( z@Yo8!*kw0#3|^^vYcLV#b|FOencNmj7ebui>DFkDMJCW9TNSzZKx&kYK)AfHU3R?? z!a5hyI$Nz$Stp&-Mz1W!vtT0}f`1OUfzMWTt#i%V4y#=`*6DT#Y+g91%rA6P=K0oT zSc&W}hN0Dt{y3x_cMfG6`A>xNTBax=DOT6}ldN(e z#cMTiv`SVlX4K4c!|-DAy>*MjL{coIthKSS4eju!KzRY6lBQ>X?2Zq?5Pu%U^Qf0x z^z{;#wnq9;R@QS;o0CPUqp(>jptN?f%RZ6IBny?{aM@wW!?NpguN#e~!|QfhwRTyW zTX0_Ddly-+BCq)$YCbL;@5?bGx>Xc_z zOB>+BkrO@-^d{B^ktGxGFBT8oCMWLffF_>7}!GLG*E8@biydPpL=vQwrUJF;gaZD;;pmc?xq=C zOMnwLa8NNA&!eIBCMzfP&U%~%EEplDTYvz-5F34cAe!RSsl;VKqv&N;YR;5l!Io$Heb(cQu@M(`&PF&fg-PHKYm3`f_c|YKYg#$&Tpf@uGpSL!v|_@2UeYM+?CbUNV;G z!5`T8$cw|MhAyyKqL~8fYyA$Xb&ME^ypO@vq;O_^9-4i=I%Jk%t|x8*h~PYd!HX%l z%rbXZm5}bMr5F+mfkw;#qm@N?buja$D#$$`FTI}~_?!--)qTK0~+p1dVUD%M%N z?XU_+1nb$P8yLZvyP0>u`r4k0QmD8H>QjCjIWc#4pjQ1Opcvk8aObshSDJsddnOy| zcd}q#X6`3)r@BOYxkKm*JiSiHu4AQmpm){xW#%DKx>%AqDbT`wnN?CJ{jI((UnR+$ zj(3fBYQ43|FpSqXOZr?Y&LRn2r*^*jDcov2QcHmYCM5x0=9wMQgR=(a!v<9{)wt+p zd6i^^MS*Auk;D>0gQ%ag(WXj%8V!9Nrb@Dc24E#5gjJU~9BEFmimW<&ea%<^SVBY8 zkwU*IRV1esi03-O0TVi+RFd0bu9{Lwz!DmwRMIX6R5)NlN3>jci%oOI;<@EQ zw1kLgxuUUoMa)Y@@!WC&RzhNhH^1N(0j?Tot~iRu9u?Xy2A5D-m#8Eck|bN%o8zNT zwpJ-_(H5gu3Wk}G8Y-lwlM6Xl0#(UgYnJsn*DA@XtPnJzrIr=!wlp6Ct&+XQs+qD% zFcVT!rL5pyhjBce#AP!N_Uf-O(4RkUm zP7t5;YFrAu`k9nUc-86TQ+}tB1>B-_GY3^q&=Kk0&8J_tuO4%R1otVw6T`mctjz@9 z%_mg1ubeqTBIgz3J>LzG(08X+s*gsvgwbiwlh;CZJhg!OZ1qX6a~%S&rxsA1+c@KU zI$8kM9R^fV5ySlRIcW~J0p0dAUY0--jlM7a!Se*Okh`bZFc~Gm&!z8oCRxDuD}8P1 zI7oSknb!ss$kXDUijD{y5r*#G3qFrkafKBtbr#;U`3Cx~!Sf8++r(0-@c8kB3gyoWL*wwu;SL#ZOz>~)1 zq}TaqQ7oQJ7rZb4ZciKh1Vo}8=cH-b2C#cF03?tE z{b|p0#zN+v8XbL-_>Aw#VFB5biEfw;J_ECJUT1;5W7emA&q-6K+gGn8kVLPiCG(*T zFw%X_SL&8ZfHRii;AEocwCQc>cj*KmCQFL$j-oSF1&NS7-7j&;UfsGK4t|E5aC=sXblFwuTbI*P zxIQQEG@2~mTQm6{!kfLz1 z!ECdOv-@2*fHa#-&D-Qz>E|I6jpA-cSf>1mxb}L3rXM{l+*B++9*A)T$6UwgDiVPICdI=(88QNWAfU%_IGcCl#dHep&|>h}I31Sn z+9=FilfUkj#Zu`q`I}J^N@BZK53W#6m&J z>?b)l>sA$b(Y#Ti2!y^+aD;%6_-Zg;E8Xl?m|X)BXP^jRVKlJcx;eMDR~2@Bqe0*z zu)ADQ689_P#Rx8EANkeqqG{2>auaGILnGkt<>1$XxC`E#`~okUfwlwAVG+>coI`5c zfa8YVEF8hW&TFSyw6bf5Uc*;R0~~~IYZ?L{p&=Sd&eqPm2OB?G8vOMeN(zn;5OpAm zyEs_(szvqd0Eb0Di&h7Ih3>Bb;PqP_85#jEPWV8KF&vWLfV&`*agA5O7oG62tiBW- zp&;ZR_k#Hx%!8GoXKSp!{AFka{C&LD=P^8YwMA<)cB0RK5#Yjx2fJ-~7(!RO5qY-B z>KnlX8-bt6oxz7aNnTangWLr$0$gm-SEm(HuRVUvhN5FFmg=L-esGwC)IGcwz~1~J z3`)EfMbX9+I}Rx-0$Frb@FSR-IkVVRE#&%L6^BJY3%eeEg?c><%8qpw%10ZE)VJ#e zE&^M$@UYndu2jXY%IqSzs=VvB@G>+4{;-(ftfkdr#iRNJu>eBw9mW3M!wjoHcxUBF z00|1gcrQ%sd!I@bc&nQyIj{)!lj@|TA2q1nLa2BQXrku$GIBU;q`oyVCWFBC1g?=>j_R5WxVaD<}oecDY zu=?C8MMKK^fQKnbQOMP0XqbaMEav$9h_8CTDS!~kEy*)^ejpaPQ!KQ^Ix-f5@(`c4 z^Mg>o@XXTU>Tnzc-6=j7g!KD35?bCl;a@imLSy6)Sf_Cy{^kx2+9-ii?=yE0krz?S%E{a?u+7_n>Q>Q zl|-gVTyyGTjEo3wI?`5;a1l|84E#qg#S`=CR1S4 zxA4CaI3eG3MvBm?)1kPoRomS{#uHvBCg(vQ&0r(K_5tkw!W%zyPm=z*v>UF zUoOB_-}aS0elK zMf`JV%Q5cUvY{vcKChm7M+E2jQC0l8fJ@GBGpG`dz(cutk@` zAi_HUf$_rZA=xtB44OWcyzZX@SDUzmHcY9&aVHNvb#zst^kcb0<~j(~RZj#uS; zK>FajM4~6daXgt7b-(8HjD4^~68{NRPOrpba5OjqW zf@R7j7J_9eITpepPy^VXH8Jn1u}s^C_&5$CzJ0kqMxBxAEv97>odg3xm5dr#UGk%I z`l!JcngBxZ9fjb@3MH z14$$<4o<*tY|W+-4n+qioH;O@gvN1?@)z?LMRSvOpbY{)*D{rywr6j!Y@Um^Og3v_@zr zy)&#Dnx!t(?@v%&dCf{dDAJk-=AG$nN((R$RQm%6xyfi?IK!%;TL}mq*Of0tz(q^( z=yEhqI>0X6P2xvt`sm71@Er*Xk==3r1NgOut?_Xw%)OooOaJoiu3m+z`^9mEDnTMr z6}9T3FR|9IRRD!x+}8^uvx6i{DP(0{y|+s+5LA1;8F$s~71g%e=g+jOAt^8~iKGtp z!_}K+fu~kmpJcJrf=&v9U^~#yKO$?HZl+!Oe3)et9fpD++n?_j%reysSatgVK@ePf z!`X_Tj;*@h0|W)r#pxBtba6^B?F%nXJ(+ja>tcd|pxO^1qZ|Fms)kl2ASkYt;lx)D zR2>(BAh?z=sOTWQb7j ztE?m|(w?Sk^aW{K!Eqb}-Tq`Zwx@oxdi#bTR9xWJ%1>d|!37`)t^-jF71fi~U)?Ta zC!(P$mIftgUdaDKy2&R3*Fuvk5%?SpA>PQmevoWhaV$YBegnQxoaX-3Wqbw)1 z9or9>ZoI({s_HcoK@eFXE>Bi=JzR>N4N$MRotxUc>0-hPzc7Pq*0E(hF7&p zIz>Vd3Mp=bIY=%nbq?|%Y`>01h1=#Gdj9I;h7<;o-$597Z3}D+2Ele{v>48#>Cn6z z$hmq{x5_yVg6;^IoykTZI4R|)nXXYVFF2Dn%AAHs2$8ivJhoQ0YY2a1w zZRDglV>Oc(l z{meY|=hbJn7z%>yP`p@9?tApK6QsJW!Eq3Ddtpb=mDYQJKrrn~b}9J*Rb9ihol^Uu z5T_6NfmOXdMG!<e>G8{aOoR3MjlNX+k83vnh zJZ9_i&hn!%X;gXV`7U}Y<`5=UwDCMU)xlDOedqcGkZL65d2eulfpPEJ4EXkO^FN?-HXtS=B-r6X=LVStDv#nBx0TNf(lIEF!qxf`;| zPJ>-^G^e156xbOwLV!s7rtK!}o9H4lk@ih+0C<~9TZWb|?VGoov~Mnu_RZT@+A=gE zZJ{pxa5`VZJzGX|C@>X5_Np76AS;caDrK+Dh$qNOOCma%VKjy-9E}#VmHKIYW8E&D0U|0P zu8kPR^HF+%heyOkM<{LdSVBc$hrF%83Hk0?81%cz4MF2M9Om|j|Acll&8p-?!(oC) zh=|K@XJO(wzIy>?*h=rKDUh6|Gy0}~HwFY3fj;78koaH&2PNQ!qMP`qS@h#x`PJ&^1im`*Q@S;jpKN_zY5B=mi2RPLX6BVds$wBX_t!UdMN#W> zS$0*~WZNDT_M;EcRh=;rAc)L3Ha`taO>9aV!?F3Pyfv{Y^><%wb5y8W)mFt|e;$@B zJRiEIuPWNr0tp7uw$mmH&IeHagsUA;6CQ&2D6!alK-G7X*+C^h2*&%1Y%w2@tJ>{F zxEOk>koU>5>nZU0HHPQ|W9aL`tu~hl>) z7W&EsCz{~uQWHQ3KG-CqqIICi^?P@nmIQ>_xXU{j7NPcFneU zB`5^rzLB>AuC99t28zmGsa8joU?8Xt!k(1TBr-1xSQbQ9mb$HEnM5arpz3>Fmbn_d1HMWTLn!HcFq&@`G_87ExoO=^H}9Nc$rTMbwDgSasuoMx zaFb?43cPU0VVPjbki#;SoFT_)z7hi0aHCFcYN%B6ZE_E+)J5-6Z4!*6dCX*=cNU^9 zdXKVK&q`#nhhNN22kN5tDEkB>kv)OG?OPmxPgQ4yH<;W1gTL-kb0;iJ z!ltZoerQxp+F!>H%)^468t5B{~X^1if%5isGw-7ukkm3zlG(xa(Gsi1(UGVFN#cjS&ECsHZ>oO?1&DU*YEN~JP5)*XrbD=-vx=lOiDTMGV6aMdNWXp@RuL)V4xuUR#DjuyRj<{`Ne zCGyu>XF!P>i7G8TDL2ByUzHX(2@NqU%J=+SSE2lk>U77@Vpx>xAi6Gkf5Rfpf3#?c zn%ckTuO(8q?@4mcal5;nVQukU$sOpX^L*1iQZ`Q`>LFuO{5ipCq&Dz7H{r*vyd-kHO0;Pu%R}OU?3&yL%GGE|U0?7P2c#vfRiqxK^ zz?ab~gy}&uRWtQif^z$5W&%o)rY}3fr!-Z|;TRmp^>kiD!1SP-2`C~>#JT-S9dOc8 zKf^cU`#J$4q*~v4l%NsW-ot#PKe!KEmhawmb{(25Mb-~&e}nX zqu!0%`u3P=+b;PxZ9Pa*Jvwp1=aC6fpvZ@`B~<+|#4&$| zAcRco+dKNHhoinuI|!8Z>ydiA;b`9d>#p-1J~1li7?uE|pX1O1Wc|9HU?Tm|F$fvm z=(qZK&`RxC#W8=!DTFxd_7*F^-Y9chXe&1<2TXHu!r{TBw>(6@=a74yS(I_xqWL>%Wudl5MCW7)LKRe=A zu={JDZQ-~G+GGCCvIwoM-@fXHR{*E4Ln~f!CZ|;7!zsr-9!e2F>)WM)U(kag!x)$4mss`ZZoVS8_T#rs22F*Pl_zkP$6SJb3$s>Y?nFlOo3eqo)%hqVVgt zObCj|5^?%D3gQ_jJ^Qf)(6`;VB*8?ac?v>29_|nlt?w{U03&!$i(t>P^-%Y@B&meY z0AjD_PK1o>&qPYlh?E6p*ir1a-SUSSpb^Z8W}uw6-#mMUj35?L-iCA39I`q`eZuG2 z5TVKS$6cnwASYm88;uqtzZ&cTtKrngNq&sNFWCB{7>P|h7r0o37^r~TR%*!$C8ysa9m*z1pQC4{7X z<YH+QAJ+A56%D@W$tY$OhxWZU9^RAVPD^iB2WCO9r4=%cV>+b_`i zb`wA%7?+Y=<$gidx0|$`?#KKc*AsvonhFeXPX&nmj(i{Un=k#l9% zNp60_rzJ{MkhpfKg?_EJmE6Qt7LXT_;XNEC-0R42cm!KCk5xcgfEAbs8K(+C}8?PRaFZG2;M4u54n=_Ijp7|S_O8Y>V;V_okru;t;^5OYZH`+a*Oct zZt{J11)9=%G-3UE*>$r#M`#Q>T1n8nIy8Br4Tr#J?!x!!?Z?p=46bo6?6P8JcThV( zd1V=t;_SHa-$w2|Oq*GQ@UzN0p3Fw^*5$OEidtkAQx^a2v_U?SBxTngV_HxGFVbi$ z$dslJvmoVgz^*aI3{8oVrdTfp3phCq@quBm8P2*%#wGPLADd`1Zm%MzPKJQ%$J6l%^&qs4xi`;ov5VHJ^Adiy{X%Rfxm(k z6X5U&_#v+c{ct5%4Cme61T66IVz=K&wYaCC#kFT*#7bxlR9bL4B$ziu>a15%5>i6x zoS@W5$rPS!;VG=UJ6D!1$nrH9*e34rWr$UiH5+cIh0wU44ss7N9y(L2=B;*>hXpV)q8j@io zG%^pxVVoFVjr8h89*XTXYL+1+6pnZrJc$AM?pi&BVYGBM8(82ZRQ+CCV6A7AtGI|< zPiDV*7!C=IkQS}0l_TYN2+G5L1~dX<;nY1$#bABTn=|Pk z7>du2ee4OJZV(^#V@7$xr`t`Zpug~FFA1FW1{eesDetrJlV8I~K(5y^skjL0)9|Zg zT==W;_2$bcDuNhJs(UnbgpBL8r7|XhHqqkDUhpU0+FG1}B6v?orhz}Sg)5DvZL0){ zVGRf0PZn^VXE8w^!%!a=(9#9?q9q(2SDu{TO(*A1u;lEPankf)V*Zu_dnk>ibTMg0 zq>zr-P0AN0NG9Zq`o6+cawg-&vUM<9O};PDq{1w;Y3w3pDojaCVW+5wOvR*c90s%A zT9Qy$=D(#dHw|}DD_)qAz%4@~;Lq^cpClcx!Y(r0EI|V#0`{N}r4a3Q(Sm$2K$8~i zAJvwiKvuL$T8s=q5ScB>MPI9c1-$AdD`O!j_xTgvE2=h>odg3xbtc^zTfb=4&7w6# z$gVAy3OXFTkMwCTwCK}D!8n>OhHwM=WDMIh%GaIA2XgOrnD%amrG)LeI5}nL=ZZQM zIjYjx$@!8pJZsnEStd>TzM>t!mg(j6g5tW8-Y_b2wPBf))~OV^4Yo{EbT0`^B6Tsl z2s;;gL0QLQnVm+VXm-&u&5Qy9B_tx=Hv)-d^U=IJ4az!p%WO3&X9`*^%QR&w0xlu6 z#tFgU8}Odp?MI`sSuo4IH9n_3@{!OII--`WTphI}fk_Am1)GMm(PADpSs*?YOomGc ziE2L!r{Psm?HN!)LM$r4=y5G5-4Il@h7>I-Sf(jze2SFN5Vd1A8J3+6x6Dtg3JFlwp`DOwe=l!_#7Dn1q0+ z6R>HcL3Q$3CsL$@hES*n!`Y-k!_cQfaj1mIagSpRF-1^x?%h%=JKCV)q}RcOz*;na zZ;e$SJ>1j4s6k-%QA1^XL?iB&3~o=2y#QY1FWFYu5D96qQua{?4W>MJ@bPKF3%EsVXtr8xve}P&wABSz9~!I~=O=s`h$yd-yrR2n zHVZb-MDw-XX+lM7BkYVUPYKpUZqg=GX_SthKIydg6|I4kCPmgf^z(tG-{-7x>h_1zyy+kZSo&gj>Bk)@dxC54%3?V5BCINUE;1*W?i#|;br4kT^1IEw z73lE16-1NOD~Bk}n<5&4oxVDY%&Tjq`jF{(6&dlo38DjIXzw>dcA&Oyd!QdKFQwFx z^C!smOvYh%Eypi>X}X!Hsdz?ECu z#W6r2bzv=>ncIvyGA}#^$ZJQQ#)(~p93GMS{rqIWcrs3AYP{=9(OH?&LKN6jbOgF^ z?$nIXixx}mfg?5o`v}wh+JY8SFZ!^>LDxElnurKJ)Ig62l`6Nyb=jX3^+_T}De5JC z)K{Gnf-Jfap=~2Z(kIMo0s@}lmdhok^eV)0W z0g~g(2FO8rv~gFKtepuWr3*%gKJqjoP}*-PQ__5#E*dI0CQOWxqV`TAln*nn+_N=c3vwnObipwq!vC2=gO^WucTcs#EN`aHm z5PQ~#VX(g0oi$YwMSIrWcw|5ckri&Pz}-sSc(O7tH*u}<)k@@~HlB6VQc)rjQbI-4 zi&0Zr<*!~O5Y6BlQzd`k6Nm(ScB&~_9Zhof9yk`ara(ofnyge(C=gswnV`&}&|n?# zNP(dw6vUCyq#93$3-g>$-C`&@DehPdDNI6Q$y=u;ET|$w)DE%Mi=7g^LW#X>m44Ro z);AdhFe25{S?li?aM9$2757etj37QEweo%;7mc4SA!l7B!Mxv&`F&1+BpcYMW>D|1xtE^aPT}bSWWke z8wRUv#(p(~bwRi${qnQ&2B|cjJUG2ATbJ6)k|`RLl5}7&dV^-yk{HtRPMSDrGVUrG ze3m3c2Ag?%I8wprFmeW$dtkw;8=hYTMVtO|6U}-ucRV6vBA~q}1Rsd>rHc~z!b~0< zHDFm2Oecak4rg2Cndjijb)sV}vKqLO%n7bL z!i!N{xG0~?HWO6dnt1M~9hNIWa$se$m_=~;TR84b`ZcvGZ+Ct^BAPovcE@TkhsD2o zmCs#9ELVbL4-4y#iw;%fa?A?My-ySw6FmD?!+CeSfMY{>UdODJI&U{>E}M>=H$iph zS`c^P%5d|vgEgXCUG1q3&zGP%oc76ZV=Em08--)D+aqgO`Z7$(ryUJ|8DBKM!uSLL zg6{x_znH={;MUs(nma*uC+xCB+1G0s-1Us-OVI2~c7yV(RqG*guZwct1QqU+1yo|P zuO2dYt1m?+@+asH!msk7ta{+|)xgr4NwX)|UKPbT3-u+bX3hMIom;RZPl94!46Z)s z&?~QiW7&G*an~w2Z-VMB{!87CFz;+jey@||Oc3pdWya-U;_Y!Gs%yNs+jk^$g6ppI zr|INEz0#{7DJBufnIJluUPLDbt6kQx*X*tJd7qMM(#gX?(C&t-x>xeNvX$hJRYdoZ zSDLMcWeC=Ky@ITSCCQdxxf1|_;Wyo^2gbec zZ>wf9V5z|TW!}Z|EP^y|$WkT(zq5SyGA9`_cbQi=a=y)(xqKBE8yhzk4bgJa%NmTl zo;&Bm4$F~<10vVLzk*j-bt674?Ag=1jp_)uwEnN+8T;XjacdxQ$;LFo#%3?SGg);QR>&Lz>f<| zq1S13Tzd(YBPpFd!+1VQE$})}@+_x3t(CGRc#e$VTxir?3xj?)8F-Ep4_$SD>09V! zvqQ5gI;Q*y!qbVNnOqY-fx9DS6If=L`$4MjU@1mggo7at2X7^7*Xgk>gWU)1XnLZR zyC~bboZh2$y*7zph%DQHd*~MH-4@=_^c2A!)KyB4rfgZ}d65EJDzXi&lO%Rx(Pn)v zz#M2fHsif~_iK>9re=?o?Rn136Mb-OotD_E$bb>aieoxOZr`kP()L*v?LjM*G7~}9 z7$SVuqXMwFhenY5HAsM$}eI02P7z0Ea8N)AKCsB6r`muqAW^{@nsTIQ{dCyU3rb zHEw`K0ES#&$xYw@u5k~LaOW6>orcedM zq7zmnbpX~ZxUX;`#ieXuupLllXb8$gtgPhhr?l3nY;vPc znP+GS%A>xld7+qfW{dAK}*S zc90>*LQ46#Y|{EdS*LfG@erhk!K}*lVP2uI>-07$6oT)lF#CLou}+;9U$FWW9#XnXnT1@lLJ6F8td0x~Lm3Xnum(U{Q1}1of$Z1n4l{7{LqRWipqS@+#1Ue=>1o2T)Dn6hV8B9e` z2@rzuv`OwhpjMTt2@gXYzU8?)9*(1 z(r8`_N>Oj8QvfI|M}h;S0&b$)mx{=gpxJHL_v++Gm#d#^EiR&9xz~+GQ@V8i~ z)3V(yI_0dG^+PJQn39b1P}yAb-3Thon4sF9$qIk0Qz!J}eU`#vITKuWFkDc}uG{HU z)vklBt8gLwd=vV4*CsrHn;bPJNR}9qQ5cMURlrJu$^Z~}_c3_W*#c%M8|Y+;+`Q^K zn%2r-`WH}S59%WLE!GndTPNPywDDo%Z z_9Z5C7p`uB%Ucqgu|}Waii&1TQ0>LqpO_6R!7%4gSy6kIbsD-GtfKFdBV}L>@_Y%V zL*lorX4jCG?qt9YSe7|Kcb7mnpDpV2vW`7J$<~C3-2qppE>=R6W=jy=%fK=>VyU!a zaBH@V6%_B>@gI0Z@wtKHblpe)e>LW1r~z+l*|sl)4I({U!WjBSwo$=yAx4h=u%n2D&(S#IJS^8JOq4l)HFFHlo=lG5*7;& zMT<+hIHjx!vV$73I?aLOh)K_zVA~`8UI$gtIig~L(Y=kVm+8Uw6*#!(UVy5;Re_ae zPQ-K?#RR{MCgV)ODhNykSTtLkCpQfSfqG{Ob-WV6jbD|=D~_{*Qltwn_vaZi@Tq?38NRF`JDqAXp_DyAc$gtv%qJ@VFPR>K)9vok?gU>d zK@npuj8@m`OvqM}pprd7$i^i7Fr0#!P)p^ij7dbk1k)}oRha6l(a<@rIq)0_4%UkT zj>I;pfu%}!mF7zD>}M#Wl@)gtS9_=`4MZPuCV+M`K*>a84e{tc0g`0%S`$|3^n1(C zFf5BHOq3+;6&?UjI(4=r;w~}KC={*G=QRrbJRC%Ru!|dvTe$NaE>!X~UMt#LlLuA@ zP=r$SS~Wyk3#9-+P%>LCakU4Y4>DuU9i&=Qs@QTG3<5PRb`@#`yHn_BC4p)H2+E^O zIVUslJD$n24#-N9RP!eo(?W-R@vzbvuO};>YyFiMU!g)*VU$4~#5w*sirPPIt*w$& zWvB@Z0`+cI@^YMM)LRG79rXoUv_~#;kfVlje>~?P98!&LVpPjZFrN-%=~6>bk3nv&x9qjD>(^t#}p@>I=+rROo3` zyj7Y;4F-XF7VB~rN7y3um7wUzSYFF$07Brh(H#uk3$7}#YZEJ}D9@K*VvRNR4el;I z(cn~R2WjR69UFVr+Z0e`?5XYvV4X&`EXEgeqVZ}CVHKV9&C@X>1|l=o9wwb`cQDCu zyj`eeYQ3$ZY$AICjTy1{8)VX3cbA=t&2c>#+lwrJ0*;O6hm*jAT~%c~pX5vcG36fx zQ+F|m`dCHzAxDCPb^Z`4hQ$>+1A(YY=TGt`*jSSa7wodh#v1b;RkU2>OE9qt$lUK$ zDm_)nD?vl=gKAOUgB3tP1N*nTvKYhF;XZ~wRhly+6e7)i2syc$1?Q0Js9u%EBFmVd zVoNTQjc|5h23uNuEs0h!>C7MqTDCZDj#x*aMc!iaIJ)I51r9ZPf{@J%XHjsVp4l`tWLafiI2Q-O z%vvB3w~jokv_M(L1Qi?mWIuNOiL%NDl6)WpHM1pVVeXxFN&U-PY|tj#s;r;0ya_1Q zJi?V$&^F=R>M$Iy!r6ggG>Ymh4_0X&b5IbxY{oi`Ih{qYYEc(zl^JUt071$23e7^C z?y&KorS}-w3VM~jLUPsw8S7r)=jwZ|ggINKdy#S`xR_BP{px3;zlu>|20_rWoe^=c zQDF;_5MPynQj#S>!n!>;8|KRltJ3YM*%O3p;HyTd)00%0Ow;lw7+I~z;?zM`rB+Be z6I^Ur8(WbY!@DZW+L$N7!uEZ!3EUcBs`OhdQ-UU~fonN8Vik6!^=cqwNszD}DTZJ% zM}VDp4STLikE8=2D376WA4d;{-N~#Uf+bLYOj%`~*noiGWCmw;(xZkHs~DVF#sn2J z-Pn&CQBZSbs>(DF$(vwH+pY=RAilg=6IrFUE6bVSVm&&yGlC(ki~HCvRAt<#fFLm0 zawFUTR`Y;zmF31XSAvI)v+9DEE-ko@6|4@Q2)yXScDAHNt5e!l))TZ8%xs61f$!-C7*WWya}pT z)fZ0Q{q{-9P@8n!?Igc26ye|l#LISS{u%5<#t^RE?oUQrm!HY3WZg_8(d7DhYj+o~ zpT{wg^6JSlgWB2AY(zO5i6Bdv2>8w-3$ZX6QZw`F0>h|5$f=ima7+4lGKzBChZO@7 zt+Q^e7Jk@~vL(XVmB5EBeg*AB4#BK4LsB3o z%G(#aR7rEA4@peY%mbLy`W)-6O@?8-Za(zwl0jDA^s$IbIvtLPi1Y~FWKp2umI4*c zr9OCe1DV`tLl7S7hed6sD?WWK)d?SfA?ObGqrkkf0~mttaN=OhBfOfWoS-52jzI_v24kNXYnC!cL~tI7 z#^ao8R$bIQt1dNL8-zm;9)iKX$AYe@hX974I|@#Nz`pbdP+yUADTofkLol9%uvv5w z%{-4l_0?@xpd1uIdn!dcom}v$nEL8m6}X6s;N{WpS-^%tkJ?+aokBPS;o+&@hN@_B#-BM-GKQ(uboUyTaMvTFor$9s#zB!;vpDMZiGG9*}u)~ zO$ii1yO#a{8=>R%5Kh@`j$rC!2HUNeLE^Esx-VxY-)^|yDFMn@g@Y4h?@N03bMBhP z>MZC-u!j(?iB2yW&0E&UV#@Q9w`cQ`FptfWDxZ@SX~A^li*lqQ;z$#HA`4Q42g+w5 z3lk%gkNVm#Yn}>I$eDB8AM}F}?1>4@j;1UU&Wwd>xC8(qu!9)9!2Qq#`dvslLzZU? z7JlB5AP{V4_-EjED(-=1c75U0{g_x3Kqm(d!F+HSjF!FOtR_zhf{JYxUvX>#0>QR4 zna;rz2;6n=4Pc%{$cr&HwI&@E2SIr_o=>J-o%)t1rDHULdKC;|Z8>i}D(8c=<;Pu>w>jq43BViLMv!gZ(n*+2p3$vq9taTJR#Y*BUoR#AY0Q z3doZ%I|&EEYPD&*Ly$VxSh=a3##ukysQD5CK2(K{&#nI|$5;famigIgCFEb{DVKkk!)}Az1a!7*m zN@%^LoyMd&UPyxQnn)&WJM5Ypc1lzT$F;aMm29rxPBR-~7#itH@Jr78x)Fo%~2q){_Lr9ExTI?rK8>M^W- zwKB8QLT{8YAq+>NbQ>*JL9n@{BteAmn~UH!v{%qY8D-wN}?$^tD!0nOj_!=Xi~G6hc<@fkX$ z4{3^^I=;7_p>vR8Cmq@=lnCub8i)5UZSifS|5vyWqOVSWq}@$hbgjq16^fTKBBU=0 z(vA0{ET^pEt~60`bvlIZL+S5DT~S*lexX7BMf`|B9;5r%>E z|J7E(Tkp24P}Mb3g!(+C-f-WnmUAPc0!oF@+)RH3lMNw2>PS!#^GvmBBeVDgK=AG-N=|BElDFWB7!&O#*A8%z@)*l*Ch~*?F0}n z%-#kYQ2tg00KA9*cvrSDnJt4K{)bOjMhFqg>vD_GR6Q3m6!M)pi6vr^7L!2@rle} zk?)jkdnZ0pR{4yexEygkY`wxVpHpsRq0f3&-YE-xsSj1;CC(}mZouec>+*{oSAhHM zJ6SpIQIrE?)YS}31k~cFwOZg8s!nKFh(f@RA7U2Fp9d^2v= z2S1$i=p-yuUT(&#bDk~nQYH+>%h5QPCB9->DzpY`oS;HW4l324C2|dFWWs{*8ucdA zO*kdsG_h4fD;sP{I1|EehWBKFySp(c=cJ_qw4S(i7G#IeAxxuww6f9?!3H%nVL^Be z`_U@wJPKN(W<5}JFT0coVHbt7m9qQNi81S(Z7V%O!h-NxTZ!80z^%7uI*YCYBnYeN z%5W0QyZP?V{hMCa`)w+)%g7Lx(aOWZ`bt=+ye3XZz@0_fN?lul@ju};SeZc+(Ng

08XB!L zU(9+dC0Hq^Jv9Z``bC3l3UDK(2q()`V@SGc_^BA9l#(rzGbi6;PHtxY`vESWl}JwdQ2xo=WDGStL9ejnffC)MMHw)f+mh&ZJ*s)8uc;6|@(9 zQHB#|X>b#Y(s4yR$e|`<2)N7?(29|rCd(JGkzgaq#$ww@O_nbu3r&{aDwj+-o%c=0 z0AT--tDzoEv9zBk_e+1cTs-->g(zaq(k@rh?kdw3HpH4k0h*>Zvio8s@!N8_=eY;; z*DG0XlarfYPh}i5Kcc!vNqe!J*n&uCiR&n?CzZVK$-MbZFOxoK-Vo{o@bG4?wl>+RMMUK<1ZrU4ydydSO zTr^6jxxSORb8BM}^QEJQl5~Nb<9YE|)3(D6r8P*&x|f{Pb;Bm*a3$r{azcyf(5q(J z_UD-K+(F5Fvdmn7Emzbj8<{*+$-AMP$z^RL0$0VFuVmjyW-p?n?V_<{Boa2#U87_U z%FNU^xvq9uq@+D9i(+n!(f*y7SHPz$VE*dg8Z@KtMDZ&m}=$sn&@W0a*x)IXja?10QG)3+hBb6y>UzStb1w&yP zk4C(QrG1nV>?li+{?t2jo!?j~#v)n&!?`q%VL%k~Bl}O)YI0o{!D`hxGmZ4~leRZ3&JAcGvUSo60m&g+3;#@$Z z3A}C!V?9H5nm>MyjThK>iH%omBQ<~g8d+%m_#V0VOCy1X>eg>C4DydDj`p+1e#v*0 z$?5wr%=FRrw3@JUm-qKd`lDp}(g{nb0@7I)^l7_!5aB;c^3CPa&L3|ta~fG*yrnM7 zkCoHh1C^}Z;gdCVd7ty{!k$VoK9W=4E3^b}RHXA3hnwgdl-4R>P6KYB6y#gEFDe=z zXbMzejoB!P5lZH$oCT%R1JQ6}lCs~a{dQE6e=S#ooH>q}gk6-J`Er5_=Fo>6Gxy{b2rY~2Lo+1}6&M$5rWxlN3qNLqePV2_0 zFZX<%^YEZju4*|ua%a%T?uHhBPDxrSSGkNAp1rN)E|a-)r#mMIK2wtZE$4Fnt~C7} zGe0NzSxH+XSGvyBwCRF}2;FiVTUY;V;~ZNtL=%@AO)Qh>9vsA?Wpa&4)k9VOG!D-pgJ@c8y^ ztd?A^X630&=b3kNd26PU{(iZ-*|pqp693*x+Gph~@7+57rXH9pr6jB5 zN}po|%spJqO3ntk%;|z-`$z!KqfHN2@*gP|dKYXXIZ%+gw$#ut z=PP-~$@Q*e0`I`bEffa#)k^N9oM!vAWK_o2k~@?VRLSLDGN*}NKI!6inuat||EQAt zS(&?hntcyLRUlFqs*an>94{&9cgiyJM`XGIY%i$y(~fJL_;iwxqU3My6WB)N&$A4>mHpW6vj6i zG_a+NNYa@y=64FWDn)3J^PmLZe)HMYW>4^tlKT^xyL0OLSseUm-#cZr{pXbe9G^uC zu=mrW{=2VaeMd?ElU)2=s^hUhP0()s_IJjn^7~vV!6R}8xUOUUMalV;Jm@G`Xz!je z*OAxVM%TxlAg8qpeN!9@hG|4=AFmj699vbPl;BZWf+FvVzMhi#F`2nCwHKK-aA5C} zOViapCM@+)lBpXMwaV#6h+eT`3`UJAj>~uh8@593#>_(--cM`a+ z0H;E^_GO++F}9zo_AAPba&^p$*VZfTf@ndSHE$NP;{z56m=W^xt z+B){DlJ;JiHeI_N1DKrAy7nBFOS_!UR`y&0>a3*yUQT*ZO+3~}v#*Y_?x$ofloRf? z%Djn^cA%e@?I`Q5mD~@=+&S^6skz51IbW0;c80H*W-FNo%c<=arSGR`!z~WxqHB2@ zWB8857%lIs6k9=Bq_@kYp1a$ZD0w%}zA-y$_K`~FJLD9X&Y`b@6QL^m z$V?-H^P0WB_uWs|*pGx|OOka|z z$0*oNHz0dKZpU8Q#4$SRrj+7$xzKabx{OjEs3iSUCe8f8;V>n6g`Dq2p@!;EjqCK3 z?Uc;d%FMZx)gz6(o~$HYELZW?fwx0(&r>oVCzo1?o&IZUcn3UZ^I z1tpo@G-FEcALU_j7aE!dGLK9TP)e}ATnxFG$T4c&u}acua#eSI)q94LvyaS~8+K0M zT&g7fSuWpvk1vC6RMPGv7pmtM%=amIXUKW%@fGjWO4j}4)MEd#WmMreOwu(rLp(SO zVQQ$$G=%xm6vq01>@+d_5gQ+~v5Jk)Y$G)>`~_KPV)!OG-!pu-{ToHlejeB_^Y3y6 zFR1ajIwW^{9q;Y3(#8#FGy!g8bQdkHoY8r;apyLN{z}%P<;3PjXx_p|>ZVH4ujHf_ zgcCv9A!bgMY@_5oR_4uHLfZ+4$_nlD_t)N^;nX-WY` z%N4A!^^;X2@TGp-^lf@kgkq%ch-eF=!RiWXOZgx=bee&m81vAsjZ@GcWKXK zFiEGf(H4kS{YLxGQuj0&)nI+4K;O#(c{KrNzHF`(qgJksIn9=-@wQiT*2xth!%0R{ zl*|XpneKHi-EKrEx;l`?65#C;{yDkbf8 za^dDhYMe7BKPp+f$%)OW4V!Oz|0y|lkW-o)ir1PW(9#`s1F+NON?c0EjA842V{Eab z9`{y~m&+;6t6$m}GhaA1QnGF=Cz;e^pmCYeW=ENV6vQ&JC(tAY0_-U#nqKc6L!yh7r1#0BUD_^FK{Jbo91>iw zl%Pe9<*tIuy#2O45Dgyv|S1mke=pwc#}-?Uu40D@-J-sXuXS?O&-R zUL_OLMT(A0{!U5ysZ3fxyI+^m!HtIc_*=;vlnb}0tsxoAMLX&Gsr}@-+@`0S%u#+1 zCH3cWX44&tNyoWbgOseV$kX1rL8qD;t|a|RPHJvqQQRB{?w};SOC~Ld(k?A}xiG5K zR3+~^@{ZHe`asls+%aEC{!bS5nHEQ>PiTmR&2xHcl+@?Q)FqVJ(PTp??%Y4WNXeZi zE0AJbZkDKzhok0gy9X($AC{|GMSY-wCUd}50|Fg`WMi!SgLE{Fp;aDGGLMyOIL&p^>IE(oYj$2n z`>c{ZE~mS=J`k_*XkTwBso#~U2ej6->QEvP!l6)f)lD-7+#Xf$Q>8o;5DP8JKg=WlGX!IlVNcLzUmiqvZTS9*-76v$)=MW+;gd$ReNP zpXt-!WTN(L#n3A=t%t{-% z98+K?nWSrM0{Adlm|_~A1!}O!VNQx&Vv1y)Np_k6KAVkm**Kq#3vDAc1AH-AXa@M^ zEUI`kMqLz+fH1504HQHB`Cq@(@5|JAwC)fy2TAuTS%=D%ynrtE7+DjlGb-FuO5XeA zGR_Yt=sOKFlV4ZT=E%vVjqM3@X8&U)>DO|}=1_e$^7nfs=WscprFh37MQz{VVvzr% zB%d!QI8DC9QKO5;=-Sa9GI>daM!jBbxTli)8@X2JI2UF&P;&k#r?;>%mY~Cq9T(J( zP!c~RCzj^L!e#^BQAs*TCe5KGVWT?lqU790ZcBMostqFy*4>q?zsf1i3)8BUnbwe! z^%1!?m9*&%N6U>Xx%ZV*TtNH4!VQj%t_Lf5_sNErjth74wkUar$$4GWHqJ5X*4awt z&Eyp4d(4SkuB2TmH>6zGknR>G=~Hqp=Ta`4Kxvfjb4v34(5H!u5xM%!--m4F<>sPt}|9QxalNU=2H3` z0XJ54THqX6l`F{?%9Xm%K5V-&Vtz{2S4n(?oZa-bp5y+K!AjEJGHFg-&|DDOQpx#- zoWnVhp!osjSS4q<+=%krZ@V*-e5gk$@+qvWUQ}^FgJ0XtYqC^R*hx${E6ps&-qIB z4`lZ8I^5}o`y9p-fNncQI32-Jv8MC)ch5nl~Ehyd3sXCGYqwcvE?8)a#d& zyc1Z{pcplwc5HZXA3MFfQ zxo7Shq$?(A#1{00Ax1aiQ$~`uDUMbAeauvvh z(lc7%J4(`koC6hYJxw^;9CB>f{and^vRvv#RO)njLX%@1<`*UN0-3p6TgoFL=w5dh zyY6`1aO*Q!0p$jqGo2Mm(kJAUSJ+xF*qEe-AERTijXJlUlK&UEqURye<{I`8CF^Z+ zR+pl$u~ofO(QKt8?;?{|HX*n1wSJ&E5RL?@9lCy;QiP#$srPLR#e?=qEW!|fmQt1x zvMl!a&a46ZC|M`Vh0wJr)`a~88DDNJr3~B3`WDB6gzS-C>Rp&Bqx1Dd5YNW4NNGlL^s*hUT>&OR6f#%6Y z)89UbIXiK_R*JKZTtc~MAI31{4<%`iOuAm{(NQ?Ntg$h5rWfmLbIg=KK{rtBBG-^& ztiO2l6}M%FkJ@Jajw1;hAPF`Ko+NxCc{=Yj2o>KVX|B+ zOD8O$fm|48>Nz%_PBO{Y*!1}ua=zq_4J6FTi#<(YteIq|!N+Vi=CCo3jrq2bnkV0b zEHqDEohOcAG8}MRM-jB&= zy`0OQ$0PPr@@|zUc8aUhSeq#6U&s~dGah!lwUWC;PI|^FHeSgc$QRR{VJtFR$-J3d zxeMph$!Cpp7J>14w6BtQiJaY@Hwi9O@}4dy*z0o6B}&>i@?IiCq%$q_x z{>-8EsY=$r^2O?$u^C^;+^4VGX`N2^v(BU0M9eYz9cBM53z6YcfNPb>-$Jfp-sAhb zl*BK}N%k6vJg%gDPp;b@mFyKI>;7_LGmLIOR5Gt4m#?Sl`bNq7p`6d2gMvSmy!mo^ zGhd!pFiAK1S}7;mHTvqN#oj}%Y9;ZzGI53;F{WhhAv1g3S$BYvwwFBm$#^Hxu}ba( zp?KR*6Z;kDY+0c0ZE{ov zqD!kH;p%uGZhm_9qEd=O3&gSfrma$Nfz4VvHx>`pXHjJDDP`*>SEh}}1nFo>oE`|_ zrca+050SLtC`*^9S{!bwubMh$ccbLKRLWH)=UMm3vBjv)v{R<4CPbU00<;O-oN@n6 zDaC9#cY2H%HfnU$_@z<0P$vjQFsF$!$~+P)ce1V;e<)Yu-n6(w{4;6UiRfwNfs2J& zn^7!Xl#+ZUXGpIR!$yp*nivl>gcir*3#;Z(-Ep_<{z^f1VDYj8cF;cD)#neiJp{k&BoB9ML_3?7n7tf2* z#d&V(U6s@=GIiO^@pH!6z0CMfgL!w|0ww#;GJEG~v{jor*7{IYH5#O;jv`6{evt(z zAB925EbJnrvs%mn$xCp%$uAj+=o zG&IsF3N)0ivD?2X!naBh?vr!9^E}#wR%a_A>i((b8Cu{kr2sjF;z)k8@uB8WB!KeO7s>PkxHZ@V z)T&r5*(4}$)6%R-EWe=W= zsj^vn#k@VaUE{&zH&lZzz3(qx5D5#X>Z@IRX z4<9y?iY7I)V|FQxO8PhCp;bR)jIsNqv9Va9$@}I1K&3PZS(+Ymlk~P94nz`FW2nBg zc05Lz9H$hcUlwIDKTgLp+1-unJ?l&*{nc{y9M)PJxVLFnLFLK56-x02$hnh0DM?4- zn`3~Rl(ZA&y3w^YS3>rbo}Cp&#kgN7Lswaubsd4mItCM+<6GyZ3>ltL%5bcl{e8!W zLXC9ba!vYuaLP=~`%aoQ&yeL!r7U@JP3_4IC6JoZ^d14NQp$0HoF|)LV4T*XXgA2E z>6A+=4>>#0KBtT<`cWrZvV~5Yj@C7yUrpHGdz}ecPo|9-)*-0TR|6f4e7pl_2GFBG zcLBWw^f%rE-v{~+=qsT25zFsDmjmVXr=L2YN}z-A>;Rx#xNQdXFrM8O=mGFf1S){< z9H0mB#C|}F;MM?iBHWe%{f;M&2Kp0dx$Oqui-D?vt_Ruy&)x&n4D=+>EkLgUy#@(Z z0^JF>?|{Aq`Wq;On2QF`&%JQ#0aOVz2&fjm!-0l_Z3m!p;5HTLL4=zRQ~&%yUzpi_aK z0(u4Lb)erM!N))k0R0Ly3(w}PPe1P1klz%8$hb@K#wAp*+35? zmVJSqf!ji$lMrqR&~NZP66hMZoeFd++%5#_jF_(lS{J@|0X+lsIM6}xeFbQ1xP1up z37-81=rH*H3G^6H!65p15#hQ49S*mFK#g!426QRVc0gr7lY#a`xOqTF162dP4UQPl zF>pHoXfmES7N|Q){|ulT5bjc-=MnBkpe1m-4`?aS(?C=3>>EIZaQg(PC)|DjIuXzQ z3)BNKmux^kUn3`b0eysU8v?zKa3g^}f!j_%cOt%BfsTON0-!J876JM?6*LVk zbq6{FPpoevxNQ#fbsqg}4|FcvrT~qH+ipPT!7T_B#hLTD4-AFwlmOfaGMS^2~Vv4d*s~7u?F+CW1Xqyl*J^OlW7L}~&m1v(VyV2E@gPL_7)fP%izv26R7s zR|4&YSiS?=9d3UERRI-kOg}#Y^#FPp;RXQ}A->^2FCo4ifNp@>RG_~K=x07q6WnTm z9*5f^pbEGh1oRKwjt3eFbQaJ~@VyM^b;Nu#(AkjS0ibgW=;v9WSK#&*(5pb70u{mc zC!onb4>Irl%p4b2=2s8rdFL3M#bR@#<0(2>ScL%x?F^7QW0L6ih0Xi6HZ=e>SYw*O` zK#w54%YmK%x&`P-pa+4rMY!jHt_OM>XcO>$2J|P;&p`hn=5;oqpR?dr4)h#QU!Y+? zgMr>g%v%Dz3p5tU!m~4hwgK83=y{+p(1k$FK$jtw!+~NzCj%sWx)o>?&_h7aL(=Dg9>cTm z04)dl9Ox;?@(a)yJhAR(^ivPt3ZQrJ?0P^y!gmPJe|Tampl)y*2Q&$27SKm{VjrN3 z5zYcS6uygrE`i$-K)b;06rio(b^%Z^c&`D90^JGp8RB~k=r=s^vK_9F&<8*w( zFMR(1dL3^0L+NJ)P*>zxVwP12YMW6N1#`LoUUp8)-YCw>6xgZTahnhM{N;q-Goc>4q0hj5z$eGIp4fNlVq z0CXhKu0Xx<>;j;5z!m|z3}`9PG4MSK=nA-<26PqBMLOWwbq6{Hv8)gD2hip~i{ZOH(36N|3eW_&?FRG$ z!UchH;M)jPfE+py=w7NC91n4cGk5O|z1?mO2pMZ8i%$>HNpU2@=2J|xA`T*?+ zv@y^k#JmO2dI&cL=uP;}0BQo-3#bcfPCd}}cp?e(4tx&-+5^v?1k@AZ&I2k#xT}CR zgzxP@=KwtdbP3SwK=&Zr$3VLReGhaL&_6(%BV6&8^m8oSdIEg}w+(>4g#;sjqHx<0 z=xc=A1t=eGy94cqa3P?5f#N_X038gpKAva+YQz&~1N{QG%YjZoxLbfWhTDTc)o^Q{hSU|4zx4E^#ythHo_A#f$ql> zdjmZS-!RZBJlhP^fN+Nc9f@!!16>KX^MS_UiK~HI-xN(3J>x4p2SN6+pY=iCcjh;Pw#ECqT~w9gk<<0s0ByJ_mXPZodFM1xeT4 zhJH?fTLsXgK4x)D!Y33Mpf zZUg!QPdp6t8Qfj~x&TkS3-k|szX19i&;AN@FHp{C`UxXkXQ1!l)(@xtw9cT&A=7{e|pgZ7pD$w0P7Xpoh@3laAsM&V`e^702ORUKQAD@Za}{y+(4i|frbH9z;`>KYk?*MEylC+ zfR01BYM>k876bYbsXPE^efS;=G!4(50n`WRQlOs^?na<}5bi#p8Ss4?Xg|2U0W=us zOQ4(J`y0^jcs6%?`nesvU2Fv3{y;~=ZBwAH;I<9Wu|N}m1_A8~^f6*y0Q4Z-B0xXj z*`+`~0UZUj34Bij8jU9|0{Q~zI-r*!%iTb?!tDv5)9~!8KqK(%M?n7qeGBvqeE$Oa z22T|3KtE5zw>!`Qa9bbfd!WsMYVpMOKy?T=1?WKd?gq3a+=4*Q0W|_G1UeAt0-)o7 zUIIE3D2n)205t;L1e5@}ALuE>{0z_%Jn<&bl|ZY2u0yyVfx5x%KcF4pR=OkooQ`LE z1C_&VBcP4pHVUW<+$I7|1DXT034HehIt=kO0DTIy3}_(G(Li(Y#B!iL;dU|5eL&X( zwZQitpl^Ym1lk9_uK{fdj+H>GfW8Cz6zFfDAi@>xL_hoC*&aZj!*>wSD=6RLKwrUa z2cWxvrUI>lmNy^hA3R$FbPmuWpghEU5YWST0@u}BKLg7|$Tc@4r=Ox5k2Gk6L#CI4_SD=%C4g{71JL_G_W}*Yvrhrt zhj6b0<-qM@psx|`d!XTP`v+(~+;HWiwFeL`V6?u$v$z(~`Vnrpr_g!`Zn!+q8U%zZ z{j6;e3$EF-euW#ZzOx>|6S#=Z+81uP8qV4W2$!{4!{Cd{)2z+lhWpH{rHBQWj9E{? z7dL-dPs112a9R7q7nfsM_WD$Blh3Rg&3UEzj1ovcoH78fj83-K&&JhF~}?_i+b zK)4*pdIP?=vd6OT-N7|FmVFlvF1NAfBOGp=v0etk^)J?rcmh|lSTDd0*Q8kcgAG@f zSRVl4_7LksAYAETjl&bTWWyQ{gljLXi9ooD!nzFzH$hl4@dWN$;7b#5`GK_xZn%TM z8UTcg0IXYqa45fZ5hTFD_*QSY;h=i!GawuuZ>@kYj&!$%0pUn>s}m3oI=9wGI2<`{ zt%Mtn{I(uPE5k9|R)0u^L$Iv@KscJ(`V~*$TxjcQgu`LYRse1|HrYBE;c$$xwE$?{ z@$~ZaUb)*pxkhbvl5c;aQC@$kjzg4R6v;$S~( z9r)t3Ju3$&e**nDKeKp~)Wfog%S1nP+=ZUedtyblBQf!hl}U%>5MpfBO}1<-ClzXBZx-<*l`b3agL zpzq<^4`{1A`q>1?KICL;pc1%^2MXlV&upO0@a(=oOW?Z@=ybR(0kV&gI1EK)XV!VL(?QmhFJb;X4`V8^kgXs1k0~K<@&@fO-HO0Azoec`VQYh~*5R_27Fc z&=k1c4m1R8j{uzw^diuq1@!YCP&b785~vDpzX8pL8@^exKExCFX2|*qZun@&`VQgn z5shVk34;$=tdR(Z?@FxW;fv2atQH`Aa$)@pgl`|LUx4r#f^`z&!v_J@qj1Cad}~v< zVYj?xZ+XWSb?autjJ@L4a`?Jqv{W#nyfB#YSH%r;vWItJbpM ziw&;UML_EVO+`5D>9j6|8@5uNlK?N!zQxM9bWH4)*k@5r(@4`KI@bu4_b_r}V@6WIM?od7p%Hc7VR zHpS@s5uDp`CLB-bM@IseR3{^mP}71)IMKBHwB?>>2ipOQ5MlxCO>4*yY;a3OqOm?4 zT{4WWl!($dLW$)qU4pb*o$gXu&=`mZ>gdRt`V0@VFh%iDZ73d!(#0E9e z>$**7{i)^x;sumQT0p#rjZ4^A!N%pb(NaimM?3!aL}Bab=8o_35@7cxAHwMQn8^)h)3%;XWO%D`clSA~%wgNGRV zpe9kA?Z3#)I^6{ks*G_eHBRk#ipO96c^14ig5oiXtfg|0UA%maRjN=^tIne+Fw>9m zPv14MFx@8V|FQ%b?qqDURie^6ORX$4l}aMQR3T? zNd8)*tHihQoiW~>h`YqO6Y)rdyWF?*FGQB*KGJv0|L^7An@(D9q7MZ_@zs`ny}s;2 zzB4D=vR}_0Kx9aWyZo#D3zB8|FYq06hVt*g2p~O(;0~k%QKW}5D?8earCwBKtldFG zm+E*dP!kN`RfR8D>_=2(j$qB?I`{i zMiQ0IYZ?Y}-zIM5Lr^8+PKlqm;%hLbWcg+9qrN3UfGZt#V z2Gi6vU?4@YCSD`lEq{PxVBt)QyB75KFH4rSps(+kGt`0(3=Gm^3+_@n5Jh@yaY09` zb82jH*V-LhbZuLDv2U((-`p7VU4uOpP|GyM=%RJGfke!5qGG>}R;TpvVjnw-jKhny z*VnWb(So+*JGz;pd>4^xcyYMz{PHYiD^Bs4!;2oal5v+{N`z4~6z9poL;Q=7rEWRU zcg!x`vaF*~q;(6|CzWp5QzHdUe%j{)ti8$4a!h_^P%Dp7Qv3~#JS$wwB!ya`*`T&2 zwcMz+9xp5pcQo(Q8sz~yii{d%Elzz>$)uC+&?cYzE*Y0LS>-#gJPX%)mEtkVrKO9l zP1;NE9;B@F&z_|s`M`I~E=BUL9mU$~Ji4{b8Mak*M|pRj?zbhn%Da-HSQA53cX{`0 z_mZ;uQm^nYLzbmp>O1ED_fqebenDxUYmSm1t1tPTeCJKJEuCLaz0=`t^V|EEBg@j? z)_2SqO1}d=e|qr1T}KC^NWYle+fn6}dNHw&6k2MS+K0^c#a1|NIdQLMeeXBVF3Xv;1~NuN&Q`0Kn~ zC4H*zOv$#SyS1C*XiI>*yif8kK$hj*;ydR5_ww$Zo)>7#GDn#|tS|Eid}mCyWzO6A zJQCq9_j~;dk!88xy7kfK-Ug-L zS)NuM57<%s52%ikwq!dr$LGEa#HBe_`OYVA&G9P5W0Xm1&Z13px8hjopE^s$@qzD{ zU5ew~jz*DI99(}?isN356r?!p%Ujmof{FcoYjrFZ@p_Zlc-ETH9?I`qAzqg6F&mJ? z{zm4hYLwO?1MMg>>X5ZK@kwQ~Af0xHBAM#DY+QJqr?}JNdEeASBW?I&X{aV-0^*DIuY)2U*uni zEXzIWJLdoQayP$kO=p{<>{sZ^{$k&mlWp01eBYW*h`anR@GnS~<$td4m@|}r2Sxzt zK?HXo9f%@5A=xL>+KSC1BOLlCf41LZ zbM-wr6otQ`nP$`rYs(4z>>|{srKcHqR zjHEjhOTF)+aVeIN@4WIXU287IV=9)^YYbPcRLQwiNwt6aELF(@-!Z3zORJK-I~qk= zm2f>$sgmtAQjjWnaP6+ebP23>efJ7V&6*g(Xx4WFKG%0wbhHH0`s89eivIz9Ld9b& zZaXx})4q$xrBR;nom<`-<#vk4)F`~Z>qvn673op`0%WOE9`YTtOQ+o5(J0b7h3k?^ zr(B?sf^^EFwL3hi#GVnHy&MTG@tSHa+I7t+70nqyG~JkzFw0R&J_+q_NS~@qX|0lD zN0Cvhti{<@Dj_rZ4!yFO?-Fw9l_9?K%UiGXqIgWb!e;47H#G zeM7o?VWrZ6DAEJxP904Mq@eEQ#I-wQ?Tqfl{^-f8b2*C=3G%c*u0{|j9Ul}`J_JCw^kzDviYT<-LpTb>1MT|x1f9ZOexZq1b6tx#_B z&!442x!HHjE`@S~9mU$~R(iCZ*wC)RJIefXlF46-bd~uk-#L?QnfGq@L4#ECEB#B6 zWyycwJLdoQlJArLAi&HwN9lK;qb~hQio)N}JKNIlXP17al(^e|g?~x1tO2FIW6n?m zIxrGQ4<@)9=|B|e!Nf@&t;(sv#P4f&IWM0Ms-+_vjE#hIeOFn}`qnZ=F@#8oWpq#; z`v_-uwA!SH4m0d1{uhQ0g`8-I0$J?4G+fI#93ouoJ4doDV?M^Kz4Y#m;R65cS(fy< zzGMD>FX_s3hw53{FX>DBdEdE`ZE5rDk~0PF5`V_O1X-5&lfGllP~siv$J0Xr?iM-_ zMS3W(OGguu8VdZmc83DpF%amqpzSE90B+$hcl30g>sL>CRy)-dTadC<$ZQX=FC)4A zji6IiDm_dnwxh^6OjvvUh+RyM3~&q?M)@wLRC3c-Yz_CFW1b~#4WM|;Ap`Fo^(w`b z5b5#5Q2#yo{150C6p@*HhjuyLcM-X?%c;Ke%d?cN zLn$6pyYLCtt|Yj}FDLmIAxquT;yY%SZaKE2QKWSX*C&;332USv-BP`FbxUqjJRC8U z$*YurHK9y)@S4bIJ*vs;aE4aDVYWy{4fUABc&VfLoYo%C+fiiH9&2%FJs(MSXpG-{ zmxD`V{OmiAyfwzh6pv9JEk*VehFwr8*7N}62mh>DDv57>$LvxPU)fQty@6*bPXTz8 z?*{Yywli1x4x}jjjnK0#U;acsExWrb=6;X6;V zEoolAH05`f_AdVUvn=h&zGKc%+8yY%(;Yu|1s#YYJ#q0&N0k$#ppJiswY%RguQnX5 zjTt@v$-e8UXC-Ud*{kPoJ9^2h>u>WM#!?xbjYsEyLPsl2y7NEIj^clz^DnT|?CAY( z@m&_K-r+{yndDiV)`b+0Q6MeFcJI$cm7+~||JV7a%~Dld?K@_ds<^_AV(oSRW!!~& zmGFloiobETtAyY4ogvwlFdyvOPIz~h@V0;QEX(-~-!cEcmvfhN2kKSUWxJ`%x|pI^ z6JtGhYvwKYjs&>NyTHEyS(bOM@0c@`cL)0K^bmkMgbqZJ9s(TQ(TbZI0yMAPApqX} zlg0>On(un*sZd%}@BT^g8{;V*tuX2Cf1(}5|3deVcmJfL_mBB52Up(^@tsGWMQQCt z@tD1T+q-|#tt7(!S+i6UwZ3C^DT$yR#oFuq)9?Py@;#3vQTF|3`_7MS%h&Pl?@`KU z_~*{Dluz>=^Z$D(oA3V4l732G(vSPjlWa@c)-$pJi!3=sV^NrQLyEJKgbf zSI~hd(jEV}jwU44@!zs`JO1*v?Fv{?Hg_u&&iAXDJZqckC;;PrB5^d3M-uxR8K-Jd zdNi=E9Yw~`z}o9FDvYE%Mg^PtE}B$A(>oLf`_3!R(zSY0Jm#o?j{-2ncMlIX^iQ9q zDp}um%q~?jprcWwRSDN4l`8p9sY+hUU8^S>b*J-;gxv`i<*UEJj%S@y?SHbRG#BVa zy;9fF`jFNuHFgyL1A2vv$;<$Ub~(X!F}bwMalUiRv!t!16pyK0c>j}EDW-%N)wX~7 zX#YZFsbh}t9kWZv9NN(+(mICgluE}0G*Zw~#hq(+xYDz2>(gq^2Y8m!v?jF7EXCqQ z>mBg^4heXwqotA7GmqO*{151v)}mVNK>^?SE-II%`Pz4$d25~SO^s(1Ayi3xh zYrgO=MwYtfQ{OSWbj`;djUugUxL&Dr%_ABqNY{M3c6CkP)>HC2Em-|Ijl*_dGx}z( zLf^E?niiF}UdpF5Zc5TC-4`50BC=(LkYp0F z03y7mr~A%K-}H31y-YG7L0s6pqQC%(pt$qk$&)9dD2fZp6WIkpaN)^&{2q$WjVB5M z|8uKu-@0|H?o6Gkd%N@JquqhbeCyQreCyPyeJO$117eQvGJ%FrhI2aFWkTHPLGvb$ zJ0}1RA9oI*YpRV>u3jjYgsO;Rsr7hM6l2e+Xk;PwtkH#Fv4`r*DE1s;VgoI zX1RA%3}kBq+1{e`;jE8Aed5S*HWhMy!`poP%T_fDwUzLMK%NGpKO$+wfe#Ep{l{k8A@4=gCw0AjJK*pUh(7rkQ6n+>+=DknG5Xw%Mi!#a zUAhn~`cRP>MW5?TtbpiqLu*r@IsT@l$iTDLyWfhRq|L;1su*T4n6cAFkZ}4-iI$-F@{`- zMiyeo`2?bMqvct2VJtvc$lG59gK(`-@b*{Gw5WQUZUzymAo~2vcoP(Tek&Te?LME! zCN-n|{+zkre~G3>)$eqJv$Ptb@1Mb&q3HXk(8v+K*XZzB&Okd24G1=ny?5g#pThSXjq!CfI#dCX~INO=TMii67372 z%Qy*5lGL4cH{fs%@$P-1uJVdK${$`Fk1tj+RJ;R?EQE?<2t?~r1Ml7^nTN|@ieXYv zL=&Rw;o!Yb5q>V<3s>}W9~!yseh%FGB=hx+=Dz*}niN%Ehwpug@b`6i0~Gyz4H`MZ z-x~clO95zypaH>BfVsLA@lt@}Tblw*>#dfv`5Zj60y78v6_C$DO>n_Usy62ogLwnr zI@dU^1CnF}PwP_8GJ+=w#Ga55>>I3lC^2{g?HRAJu+@&&&|FEKYyTE-IKOy%e1g`C zLy5oPOIM5||A$5v;>e!~MCv0;WGv+Gx15V@iGshE0t7BwR`vHhvcE^HgXr}` z@HQxV{U9`Q+r1vx*)@vi&ocM?b~HDto)7Qr3f4pP{uaC)ir(LZMvm~lM#s-`2ikRL zK(O55aoynMRbDZfFsKtg4T<1{5w=Cj^T*Or7poeJYc3`X!)zIJ6LG>3xU`J zLd!fU1)&(T=%2B!5@O5(fQTbs?F1Y?#?UnnX*I-PGZ$}$Vz8NoMizq2bX^D*Y^bh` zg3TXw)$JuM6Iz?JEaHRBD4WsW4fMtla7=D>3Ca|=75yw-aj>AXoj~jXL1$qk4WYoZ z8|^Y7@LYiAO`hD?fWrqKdaFxhRm9-43vY^I@M)lth2T@wgdPqjY%#F{GM!ni z&2;9#daG3(_5IFoLyh8yIwl)IiIw~Xkz-E2epA;IEZ%&bKgn~!5g6%W1d1I3o+&iT?iIqsHTi!%$+7yK#ZB# z+5~5|zuCMIF_Jnk6HkcQXt1!;+@Cpt>R=VSt8!8%QcH37Z8ZZ7}CPMS3!&oU1fq3Q_}->5nTH<(Q*f9Lppo0|=fI{hnXlh4_w{RNQdE5%-ZU2B@4w*@*xiyq!QqCIGGLBPNn6hx-5X(2fv#hjY;!NquQ=036OAUjI)$7OOPItPuI0Pm;qvj(%4Yk50G*Z1er^{l8f3Jr6 zr5kKaKIW|Fjk*qD>jxXbYVoG0TT6kooNc9sxd?nRR(^|yUH;PCNQE9B?X!5UoGF8H|z&55d?>65p- z{i3(mkWNg;)pC>$~taD0;ntMvm~hM#s)_ z1KLGsK(I-Rzv*^Vt`(3QEN<;!Wcs?H;ndc8wr=$`im4Tw*KsMrw?ndh?ZA$Xb4Tpg z>DQa|Yp)dfkNc1>spg!c%0pIls9^0}mbYq!{*pWD$iRl?Y^JZ89kh0qt2@Yls(FTF zvXz2-l;KROTCiEfD&?#Z`;&{|uDWlAlry%CR5{KJck5U-SI<_mQn660X9{&|(DTF32vVG#Heq|}x>BKD$QBDQN)D!NW0&kfFy3F+{hhk+)Iup&Y`}(^ zg4;QQ5%y(ZmVJf$;lPLGbPi^B<*iD6VC1wn;U8yWE(;AGOmQZ!%;t9VSIdo3e#9Bq zUo7{IT<%O5DCF~2Y2-3zng{Luhs&MLQe&_e5{vxEdgw0eg*p^jE)|F2wK2%c_l1$*L}ErZ#SRvy9BdN-E!7^;`0gi`T2s z0lUqR_Tf}QM#10=6DuHz-Q3zFcFx8P>Fut(3Z?$kDmSYuxvKrph}(iFDPM;g1&7>Y zM_Xyv?!3i!U)3r?)|}4}4?{B``UV5Y!_L%zvEs#@x-_$RaR-5DVXivq^hUM>Is5=W znfO#Z{MtVP9F8_;Tvs9gPtBnyi?vUfbN84o1na~fCJ?cwsB}P(t#T5670QZ1!VwfN z7b$*4mmen2mvtc$r+C7qT)n(;1IO^5*A;Ju6bQrA9p=rIPvGqI2mn^M@G(D{k~@OS(9A3RL>S5+mKJ0*eqyn(G?5R z+a?0h!VYIDkX)-*8|2k*j^{=^JllD|;rpCvUBD?TR2V^4&3P>ALa-K7BoMK8KKpL5 zDsXcvWW3_=>f=yk9DR^T`F>qhzF2|uYjqi8;=NiIB5~4ZY_W2UYOOG2r8ZjifpVTt zU%!`t!xyE^>m@cQ~s;OD4*Qb>z61{{j4re zjOwR#Arhy0!ipTcn91|JS3aqbGO;U5ixWtGLzf{&@@u*fiIY5YYj(&T2*Z3zY6Dzj z2!H0f&4Uvod{$SD6rF~m(?zdnf&3*$%$>ScFrA)n&Y7M^`OG4>aB<$M#;d4G( zd@;%&(uGKz@~Nw{^=zt{Rs<*a|C$)%)4JS^tkJp5Uv$}Gg#S?&B5}g^>#^$Y>PBj( z<<9r>J?a80skD81SBaLJZk8+Pd@dAjm_p9dg$UEGG3m+XP3df!1_ZNWgYH1Yn>XFm z+J*bnMtF~{kUqmI<;zvFSO<%{)zsSNJ}_Qor^ll*=NNw~m0z}VZOIG~TgbYdYYW?x zRvU9dwMSP)to^Si5G|ZgoxB2ey$x8YZD(xc#)a>Rhim&hz~QG;r*vgWk?H!-pqQwY z%sJel3&EPv0D*{oGIgJ`Hmu-S9)WV=m_Zd;9@n+2m=)>0N|zfZ(JOT!lBf5SRjW99 zzn&ny{kfb-@145bFnaIMg$UED(T}jMh{hoe2xi5px)t%dqHnc!+sGt$32&QK3uQKc zh(|)sBEQecTUI5Lhq-;S$+=ES`f`ycEDwJ-RGEUNkU@c?1_DEd_WtNxPi=wtyE{XaJvU7YtG6Frtf~9tG*uOndt|i-Zw&)VY zxZXq{S{NY~oLPmv_Yfh5%Z+NPyt9;oRd(1$*FVgKibi5w?%%bOT99@vNP`7w-vS|K zRLvPK>q0O!7parxMoCjs%=4SBV6j8e8Gbx5Pb}~~G2jQUH0>J&M_jARB9r>nx)6yw zVpcN^Nv*bWWoQlM(6N+nCFTQiR}mpSoo8hW^nXK_J4XN4bRiO_e@3$%G~K{=p}$Iu z{F#0OC=3lpDgRkr-Wc^y>p~<>{nB+M2>rA#O_lrL93trpVDEMcER|6mRbj_Vg)Ac z`Whv&E3bAE*LxqFn1fPXaFQgQFT>1m+BGCi4N3ckh~x7mV2okje}FDT;(j^&)bh?0 zG!!?du~OlVJZ1IuS>T`{3y!e_*Go=G%t1$V4U~7Lp`{Ru(&3&x9kfX3W>)L+%$m>& zU5Lb8b)Y{shGkngeVW=>*aaKzesU7J-*N)LzP`@sx%q@9ch{WA; z=*n`bQ9CZsc7F4|Po&oDs>7Oq>mDmxZ@^|)&O0AT%sX9Oy{xkWE3-;iv`#vm&7hmV>ui#lEz=6CDoS!k!DVxo!;{d@SS&buw%U z@3OlmF_9e7RdbDTcc@ci$aXvT6sBtoNhDok1ex5e>tiO9yL2HEchD?%@k3c^r9)zV|>9Xox)6y|zi^9{ZnD2N3k%ly2qzqpm=hMknSpfE4}HXj(cEzm7-E=$AE*lvc85mi z!ult=prQf6taw3pS;t!mp;OfZKN^1c2cEg-07gf)V zM`O+*lC`p$S9GS=FPdBSkt~{>tt%7O@XsU=krc;zOCVWPm`jsQH<-c-j(Zmqxd(xx z`NDW;wu^wnap=tJq6sDxpN8UL#=|RKNFUBO=XR$q1ZzKa0ulQH+MF{7vh`GH)8GF{8Limp-QM8+0KO_rUxWsh)Bvy}IG1v9KbP zYDONeA^adQCoJg7rb}QzzG*u6=7?|WLL}~p1-K-Zj`8~sx|3-y82n!Y|5@WD-Z{N&!GLQ-++ z@UGsbLFs<72;MX(?Hc4x?llb(dXEWUm0=FJk1j;wj+(ZyT(w}*C_7jQ-{N;qkAXD+3NtH|JF0U`(BF z8=DgI#^GIX6P0IBy5Sn+t{;_%LH^__HAryO23?k!qt@v{gdL?ZxMAZXnmcPiFe|p{ zMq_V$WRGv@_-M*0Ff@Xcy$Ux$af!;M@hHui?GKFl;mSYA&PhpJ4lfx8eNa~pOi>pT zh!&26X0L-AH?l?8HrStP)Z9r z8&G*)wLF-r!ITQzWgH~^_lc1XH+?gmyTzxy;sq!CR+mBMg#V`tq3i_hX|2UDZ4K*u zFx;7*aS1CGYVI7aUO2Wsf}W` zWeo^s#ctiM(i`=h*|Jq33$8fk@0=!!7*n7t>n1nghMv0lwx@RYW@>v7e%W>}r?yM( zpD>RMxHl~KkPDW3yk{TK3Y1^yyTBh{l}i@fsSam5YRl+d)!Z0CGRpco+61pDvUYSQ zfzarYwNsx-z0JgwELuo5Q?5Nr|_4fQyAwkDIk9S zR`$``z=R#x6w>2~v=Z{j$vyyqOa9c|<2PN=JstRBM}6;y3IBCn$FrdMsxAZz-Bde9 zq5ByszqpgR@nlky8;Kl`mXWFkCcr&PFk>nD{~c)m3lZ)ZT?pprgeac8bs$@ejuD8yNS7r>^m}z7 z!bEGt9u~f6_Mid5thmD@h{8(`FSji7q$hA;uAO@(Bsg#O&3M%0D7{a@B{{O>P*)*L zWOot>jpR^w24V8n9q^V4tl`!Mxt`~lc!;%s3^*Kb4n#y&q|i{GGUxCKT?p1h9wQKO z=8;6oi`*;xiUo3mUv)S&R3n!mS@7}DM!AjEz z!6C2evdKjKiY`Rr4w<>S?C-v-rOt$l&-e{ssbW%YmZBFyd0IL)6YGE-2Ez1pY+c`;*R$lEuo< zLw}5yW&Q#t`4K4som;(R#ImoXCD}i5i+#xbcmzHy`(yCm$#Z`8Rq&@C`x^MX+#Z3? z%j|2(pRa?@^&R&0TsQuGrh}l3#<&My>BrmnhJ$$wH8L>BwYyBYfT^!v5(Rw ztcSb4YCPM^6JvX77wm}2)?nQnK1HUN>C(iQK2jGVd8W4wz?-Z*)7ukdy6zSSI~Cwl zWO|D(O^oSHx)6yoJ!zX&s+Fr7LP2C#Vr0*RODEhCi|#c?^baEC4PCw%+k-9&tV6$8`x}9AB#o5$0GUH)81(?RPaGm=!PR_Ws^5r=c}`)gI=| zB*(JyW!PKfZmL_6&-1fWKaEFA&S4Sh6`WAaxTR-cxj2)}!=u`h;cU`CxmwB&S|gId z?4!CuVOo2LK(sKsniiaV;^6!R1}Ld@;(;(1l2x^66`K z<9-RBi71eW*evc`xX)`du%_<8Q)CVALpT?raI zeM%WFQsZVVKARZ-^U1oVTRz;|$(1j-;nTVtGB@0)3z4`RaF6Z$Ffo5D=^7-j{?M0p z$QmBvvd{emFSt7|+*ToRMJJeHn1qhkg-F~Lb2e^B zlTGRFnP1lp*%Dm1%=HxAiMe5J*I+SCmZaQ6zpe{t=|Vs87G3^WYgnoa5q5#bya$^) zp@V7-2xi3tx}!;N>g27hT_K+7PME+XewHmwaq8-eM_tZA{?thxUSjDlk=K5*wM>>R zN{u;dlGD`)li7I$B68NmPGI4<0Y$QfD3RQyGJqONMZH1y%tZjhR=nq-BXk~YSpBxgUr!=b6?n0e-D zx*}jYI)y+)_AE){ndd-}EYCbJROw~CjY2UGvF1$bs`sS{tzs|wRdfEnq6@+LuP+mb_%p-Pvb!q$C00L&l420A zgyjicHYrV*FZ-D;KTM)O)rCl$;z{sEV{V|^F4Q?O|06M)CwGw&({70Z)qmIJiBbJm zU5Lb~?xa-r?c$g|@I6Th8p4L_+cXp?5WNUW)#_6j(F=4T!bEFy%Pje(!CwP{S@98F z#dyj0+SbndjJ@D?W;~K|j_|Wmu7js*Zkgtqn>%|sc0a#OS1n9%rxS=4_VeEE;w{_w zG4sxN=(YO*hwtc{yNj#t+gI-H;;JM@*3FrGk1hmjG$jHNe~-Uv`|1@u-8Vol~U`KQz!Zd4yHx?mjv(bQHR`lpr#EX#QTDwZ7xFY^|Ji>C= zTF0nik}ZmJjb1V)dPJ9QCcOsMk;_{k5$HT7upMb*==0uzb_=A+SYme*L ztHb@re*HlAaHahw{n{%<{%s%f<)ufAzL%s}3J|Q#yhtEo50Jp~Ssc%Es_}$JDbG1c z>Npb$G)x`$(}hT!-f=x=gmiptV*HNpDh=f%C$^5(Wryi^xh_PQV2y5r^*l5PX+SV5 zeyrONy`JaOt(_QO3i~tC8{mQUSWII?t+^x3cjotEwG zKqqAjGa6sfC6DR%%apvRN&5IFk{2}J_t{j1d*y*$pIlDRKTV9={kxhk43|9%=zb2M zSXB6<<_tfi3&9lr0CiH-dZg2yp!BD@4JB9n^ilG^Tb~h^ThnFf$~mr+q~}q za(k9!3+-QYNn}d@qb@|)4;r02%MWOK(|}-Bj1lj2)i7sWscylFi+krixd30h!}gF` zQUPx+JZ<8aPHw=DxYPC^Fu^brKTsDUaTiR5C+h3fLT|(M0oMpmO^o?zuxBMusL;o( z(PfLZyp_5Ti4)$rrQCq09=7u@RqaTO>`7f!w?KGgL+ok>bXj6VTe=WoqBY_Z3vo0h z)_`DE^y|iIZwPcuYbW1k`CHWCc&O|dqR+*nsKEAvQMSWy`MYGQ?Pgt-FrnQh4*D)JB+YDb_?sOsXg4i2dE%!80RWqGqHAi5a3l zCV&}+ncF_P5Mh64bWW^)qrp!Df?08cuCToR?N{Sky0I?mqKOspC@XOHDz};xIA6>K zVo9HNqOLMnV}B=sXkni=apQ_@8&<63SAMhcP-<@m9F8=&s0OZ3C}w-p^h<1@|7_0T zyLBO0(>RMj#NK61*qSSZ?_K;L6ctAgC2~ErtClOkt&8MSWcp%VnwVO5>p~>Y^fq?~ z7O(0rCCD`0@I^jFra!Ms6Jz=_x)8}T-P0HhYx;o%nJzU3LDS?@Wcq$xni$jf=|UvV z^fZVb>kIYN1}j@F@zVZ%VubJS29X_wdb;SA>c$fPUqt$UtIHju|NrSiBu@WCcwZn} zD)YooZzL7H_jMl>fb!g_Y4{S!o(4r5rm~ZDA(AJ1v-?I*=+fMy5+ob$Y=H98^h+fB zt-4GxWv6u^5+{4YX^mnb%M1IA#JHZ?WxK_t$*0KlR$ZDH)0=f65@&kWib^&I(-m7Q zS$C|wp;+kUX&+9E_Cw){NVn{C%`H1UScI}++9>>=M28INvdJ7$(}hUfArn?*`}!>2 z2RA0>gQ;CPx41O<6q){nE=`Q->vSO!XS#FM0J*4x=lb5nxSrkxx97PxgQUH0k?(tS z$zpuptqYMj-_y2{jqGcSu)O|HJn6qljP(7zTe|z8)bu}jd+F)Fi1hzjmpexPFLWUi zr+>o6vtUY;=Y9N8Qpw`fuEAX}^_eE0BGY?A!G@{gn|mzN<5%@;Th9}{G%=##(^(boTjcvxU9wmJS)&V)IN#&f78|>G zS(g$cdvaGFl$LfsM4ET#a>QsJ(1l2x=5eR32;DSvRbni6x(A)p@PCoxD|HEC9Di6B zB5{s`smO9((sw3CHkXPl52hl^Mf&g1<&M#RyDmiX^sioXR%!!WVcmddn0Wf1N|64% zwJTlpN=*mDO3NWvjAu`A!3ZS#hlH1gN(vdsEAH9a(UMi+??k zzON0}5q86V2)YGn>EYbIn3+3i3hcf!XrHhIK5lXUR01f}C4>$5g&uOhO^^La7hyjD z#-+GUr@Pw|-X1BAT;@!u!hMj{!icljKgz+L^$R>n$gO5dmVl?C%@B^jO(GB)OTgM^ z4EALk#@y{poWqXw9Cjm+eBsDa`!#xsZWEil0DUsc0=@k7Md$nKkeJaHE7XI+wn!us_iILGBqpb?lI25 zVqPztd$>$!3R}>~9s~=gn{**qP^TI)3hK*<6_IMwZn?9!*W9B)utbz%jfrc&S3${f zY%dVo@0_lNTR1s75h&dAz{6Px%0!u0>Uw~6?jNS~weEb-oMuFH*=?TG;m;14WoC`J-daK!L_)7ODTI2#)De+1dT=1AKe@xsD z>p~>%f?2^<02@0S#n7GluO#Mx*<2fd-JGOsf&Q0uxnuPINf#nazeWea`WPDFG$5E2 zWArh)+pH&V9mrNIsop~9<)cG)CDpM^>8iO!rb&^4%e$alT%zwmFqfxvArdFMbIq>o zU?tql)+I*uBsk*h6(|tBR+lA4^eSD5Fwq(fgS9O>pwfU~R!qi={DKU zQ;OwUEn6MtGQo@EQIRvlA0hWQi{S=#l2P$)T^%qfU7!oWoVZID!gJy~TQ;*oM~o}I ztB6x8=~cwRn=8H?lQYM>|9C9d-l|I~bM2Q1gvNx2Zu?lcGMn2WJI3{!8$ZM~nTO(G z*}eyGI3k_-UA@!>KfliwBMxyrV9xOUx)7}K+(#fHN3goCnCl)|7mq8JeqRSe)h+ml55_vmC=6;TVg$a`D6Fv|XkP!P?1(2t@2T!MKeZ)@|YVy#or0BLk50E7=cl zyDm9Qmbd9bB+l=IO(iS5%=bj13?C)-H;?Jk!x(;87b48CMrXnL8ybEzAea@FZbiKQ z=CiFGnC`Q7#pzu0oO*sN&C{9c_bq+d_l$XO;v^{5FgKh)AX?aUEZPWL(%lCu-F2mA z=6wcSO9{)M{PNO~@o;J{1RTCgSqw+8eIwG%VJKXnK#dUQ0S`Cl`A}U5)<(JrMC^Ud zwAI6<>|i06+FCe2w79VeN{pk^5k0VPSDu!du8~p&$~Wlp#e(BHU5LafpSNweVv)Pu zU}XXRv}(Z0?SS^cg_LSyJXQDXrpG}PXIew@o7aW$0u*V(> z7aZ`kE_=)YPwGM>?|>DJdO5wi07oCIp!)*3-IH^`8wolf>lU656)rg7HC^_Y1OBE9 zk+=g6+X8LBkjvJNB>nE{Y(1MAs?oc;Qk%2YY_Vt+3$;PcCrd6!D*rjGtLoW9y5T&S zlOC$kJGhspZ7x)xUnp5zzwqV6SfA!zd6TX*3l#{zRhKPB_?L7c5+{88)_S(iGyP~{ zOi$>lkVgWbhC|UO#4^|l_a(feq7Ea#o=Y~W=aB5XC zTjTqprSZ^g&jTEeJZCzIiiFm5j+863+C$9QJV+OUwU+}4MC?S}mJdwGCcv_Sr;y3DbVxkeWvaq?%uLLrP3OFOJ#7%0|r1L4WS zQey1Sh6}3-Fer4(hEbtcwm|<5UG5nD1G*52(?5M(2|DUh&Pr{x>I3CGA9JosjQbhz z5(+IiJ?IrI5PzjEYmE30>q3Ny*XZY2sz5su4G3n%o4PrVmnv*+ZK|-JH=u%;>P|}Y zs`_y}s&WnrBn-_*@x0+wsXyb+Nss+_^^bG~!Zh{+0uh-eM0Qu&dDueOecuZYL%8#5 z(0E{j-{z`Y?|S(7+KcfJZ9fe-e9Ew>3%2Hi4P-Kn*pRL;8-$kpf;r32kIr(OFSsqW z$@cipQ>;3WdmMkE#iR?}WWWxb#l8j(uEXoIbolbr+Yr99c zof+qy$Nl7a=Z(a5Pl0P-qnDa9IhC!`mzMZ(AFTu?Aj!{ii^5pk)lXPUyZfF!9@5MR zK^YT>wOQ2F4CF!w*8cXpHHYRlOs-C(+VZgEZ*J) zJU}pMHVf7?;F&D9sgR2M|8OzDY42CJM<+G%S26PPwX2o;5-3qgU zcHTx-eAmPZXkJgZY%_O6r$r(T*|wj7hY>3Sp&NDnCD2ao&&GJ8&KJ=-l=ec-0zVJr zZ`8?IV{Y;L9NGj=$E^FgnLtFQf6^&gkvX)+sjxsJkldm(MqBtZnqp5c>>iyzpxKhD-WI(yy?KvL&Y}%joJx8L zU%28;IxnJ;J!V)qe?b?5g>$MSqj3HsVnw9lv|H_T?j{}gh*WTQ*3#Ya%rT0pn8Dwo zBR!jS2$XI(S$+_K&?kHMg&hScI2-d<*qE3o$oa2pp>6%3juKEwp-tI_@{(ZZ=6$`Ia zf${-ezF6OG=|Ut<`Q%e9xOqMc_ZRbXYgZ=5_Y@e}`$Y<5e^{3(M)qa85Q&rBNmkDL z8bvN--;o&Alj!2PTcAMn?Yb;6qHoiM2otT*&$6zXb{HBE%!)C(YTceC>O!LD5_99cgCZoz^mlk!E{(d&bTX?v|w)BEZLTFthvOFCJ>RC zcI3!KHyqBS*_-Shbh|viH+-A9 zH~&P|vv$MZB38ld54k`8St!!J1pajH$kHCQ0CmYokF!+D(XyQ|`3uX)8GpN7ZN&ZQ zl>DbdKh-7wDKep)p?AVixI^VXXzhYmv`YO}22KaS)6Mi}k#~W()*d5=A8Zush0GA# z$yKgq{JTU#bvQ!)yWVfrDps!0SIA``;#2dMsr`JjIQmO(k^j&d)<%kxgS4pKYr+b z-0yz;*!}nkd|39!;P+2^6aKNUflSu zCHw~XvL6PxhV9;>zkVgTM&CJh*+6;FT2^h8U>LbLc`; z=UZLGUX7J67I0}3H43;_m{WnR=VKcrRpBFB^9rUH*HOQ zUo1S^uR$&OvF@Ma49gWn4bd8i>gz`m49I4A9bHw4g5Mf7X z1VR=|X}i;aU{*Y@+xlHAAeR2LwXt+oPj;x#4=o*bHM$QXtb!eeTu|+gM_dj|k@8k^ zV`IrLI|F4yiU4JE0YNg@%;ZK8)=g{RN05RA;=iQJ8YBMmx)6yIKXILVq$>0x(nE>y-AS&ah4G8nFFl~k5u^Ej zU5LbKp3=MtD@^qt6Qg>nfA_4E?%(Tj#pwR6E=1yV@6W=?sa6rD6e2Dgn00Ydfn{MJ zus|{fCX9CDz;v*~Fgc#43z4`pW_Y*1!6>j&D7p8-al!qV#C$Nb%e(RoHn%oQ7NYx6 zy1cP=@K#-jF!dU_EK7%JqND-AtoUc$2JNN8uZ)9vm#8PKB69}q4Nd!4!+iQ%3Q6gA zOUQK4@9Ebc=+~d<*I&q&bZ47$Jedw^?t#u0$rMqpYSGCBm^12Tf7k8)YxD2AU5mKH zu9*}&li>M9_iiBA6G~^3c3jN2`LT_q+I42Q(|OrkJ>%XZL#8)9!~ueccYww`#OQk% z#{&(aJ-pX|ZNU^yxwaFFFs6q4a=bcz49%L<#rB1O!#T}UpLW!!g>~HuLvoy`I?2zykgv_(jEK{^2lK`9X_s0Dihoz zl-|f7J?a{fGqGOI)vFeSu;v!;v8CZmEtGP_M&9ZxxUW9JLXmT{$VHF`ftYTx(Qd?f z2ln^e8|mOCSlH_7tib+mAB0$U7Qo79>Q<>%1`OISaHewq5_V{J$*RFxV}_bvw2%2AjR;%S=#=Si;Q?ArVD_}oE^Ni5Xz$4VdO+&ffteJKMg2zE% zyp|ML@Hmh_>;VbJR95d$o^dMLMV{bq_65HNO_Vg^+iwFL&M7d-=SB!-dvg+mMfjEY zvK2FplhDW>F|1ENUKfG|6RIGiV6w=>3J508wsy{biZxiNLpUiGcJPChOQ9ZdBo?cr z!9;1W;#x)x<8&$s9v{>todu7J2}ES@h;^BC^x?@=;u2EvQ1rMJ?Gqt-d*GFP?Df3>0+&dsdVK-$x~vwW z=ifm4$5HhBYiQ&M&uet^EK{J}g$4x6S9a@G#I*u4gt%vc0VxXP96-9Z_6GJTBqA4C%~V2?1|*F6F$#{ z*x~Mi!}iV4yn#?<5xLnM|nv zy&0@EboWhoDm&pdD63k6RfNl&39t~;s1`;f?mk)5-F{`oZu$niv5J1b9*rz?(<20; zbt(A)L4ovD%Y&IJ%ykv5Qh$A*781%sV4I;(9zZjs8W&F06-v0$qG0aF8?7jq`_Ra3 z7tCU*U~2HvM?I{USIzbE3Ys8Qy_{mK7g}dgE-&M4R+P)1(8v*T(a7Q1Fo5=M8W3z4 zKyw`p2xbM%OEn;v702n)=~@AUksYlajO^#$?Fma@%TwOsS8zPC=7ZSSENv)GZj3Zp zSb`IiZ{bI}-CYr`;r^=KWVl^;pbWkLpfw^HwycE8;D+;_&e^c#Bmxncf<<<)@u%7Q zHr=+3E?EY>Hh}h;S5dY!VxhT`I^Ny}IDDqPQjCyey0$x1SdH5hD|PJI;5rZn#soxk4P`F_2{F4Do0;r^ZQIJZn^D5)_)F#rdJ#>Rs)EjqK|#?>h!N-od`%Q3^*kE6?UFhmBq=f^ zUbUGfETLX&!H10F&|HAPrFW_-+8l$5xXO#dnT0oAQ8?4l$ZZ$S+>mfeBo6T}dagAW z%qlc9s)9K!2EjBdEp%HaY?XF!zD{rDOvO6Wc`@*XWAIxQQ@mtQrP z&?{(~+9e@xV%qZ(oArAcUjs!6{RxfSb_pFaN;lRh^_7cxD<2ZkVV4*Wx()`2WCmSl z#@v%NIS?b!5_}yLWpn@qoaZxZA;0;$4%q}!?+Xb^o z6ihQtha%1G=90M$&5x>NdSZw)Aem;>MbX@XH(gOQUqB!B#8H{+6%#%?XP;fwC?(12hYzRuBInqyYbeMLrA9B*O;Y&-j>@vwP4^0tVm zt>ro!o5(8)6KmzZI^27}?MB#&Zg#UWXl!aR!yjz2%C+-7(-QBc}+qop!QMMV~ zIJ}6+c9d--5Rt^UaDUMxuhyZ&YY6QVua0apSq)8-)U9?e;BYQ+rjl6LbeC5!n;@#- z3swwXgJ@)-FSH3n>ox@KM-Q3Gz5F>a#&93d&1gzgy*!h6nKNJPsBXd+ujuO=(8z7~ z^(=O@RPOIb&Heolnif@m&n5mAsv!FO0lW!{KEEH09N}|~KAoinv~$paV9Cj8x)pJ) zfVAM?i7ibFrj_98y&7v2U%ub+WN zZoAj#v(7fiTFCQ`x#urObEE3{g`uP&SP#+rm*DMC^!^9X$PwPx==NFWK)VhN2$nfa z(5;A%MgAA<79n5w9hxJlXYFSIhx3Osi9`|NF|X8%{F@#A z2VbgU%=m9KvJf+VLm*n0CrqVzg2cZIFUK}J!N2nX0+&0h`j=kJ$ZQvThB^4M6}>zY zjofxGPiJ|7#M7smdwLC;6ID;o3grXxHoX#GzM{8JLL*0bTcZwJSG$2?W@O|Cj z1=l1ZF?a6_fKZY+~(c2HBk=yR=*(@z+wvUj<$6aCU z@x1^djwDcQ*>sXftb^$FH_*OOzIzjm9N~41zMZ89w2RPyVClhb-HLeW!B1K{O+eBE z;oZSiXt_$GODyRDF^=nsBkweoY z^{c%Fa5$F)vV-7Tk{9`t1?S;QR_rg%MI#H5<7{0B7CESTj3UQzCRV`Gb%|!d;?o2oGFU9Nlew>V(-`-L<(l_^i}!{3f7Klr zo{c!C#(_xh{*A>rFw=Xxur}gsh{L$%Quc_mF%CF#CvJVX0+$`177Ly=1ZS#8oLJZk z-kI!dj>9}_7rfwE7=*W$;0{@5eH@Ve7Q9R4qQ&A5cn2_F0P{dD>*BDkFqrL+%eTes zuvG=aw!~pr5uWqPRx{aRztvmK#-zStxmJU>$>PzY`~@OZr8URwd?#nRHM z*;2kd7?bR3;EUXV`=qOv!wSRzWT4(_bg3%S^u zf1_T2TWp78itanBa37Uh-M|&`KZefPy(0br@B1g-_k-T|L*Dnp-uENk_oLqTW8U}U z-uF+v?Nc-a4 zif+Mm`G;RTa^c8Q`)atnec&$p8u&VQ#3p;xBQn0dKa9=zgmKB6q$=hY+208`{J3Np znY9eI$8Ntp2L80FnK+4a9{<4GrZ{r>J9S{xA%hm~br0;1&1AB@HR1O9Bh7t$I6%ZP zes#BK87nZNgYLBABwk8(brvQWMPz=A`p@7J@y+jc~Ru^f+*ev2H}Q!Lc>1; zO^bB2XvZT8w~nGHw&HD66vbvVa@$2Q(~p$Uimdktnz+PV6CXgcqN<5wkez{7MNty( z!<(omi3`!ldzK{nEkP1rHJ8L!(5xgV3Ac)(B)*I{QBe}NqLKG7Nr;c(JZCP6U!qw_ zQW8)_Q4-JKO;nV`Q)uM2OCqpF8u3EXG{-odm<$lfL`jSiBj%F03e8G_l5ndiMu{u&CMrte!)WBTOM;u7sK9G_;RhGLXRe9w zplMOngvOK=siP>0Z{clJ6va2t$ZZz|mt?}ipg3pszvim=9hw(aRcIucw34DM{s(WQ zqAdO!jofxw%nMFhRjajuLZ6scEc}S^@MAteBs2VYCw}Zo4?< za^jF{<5Y8PtU)uQ8a0m7(1uq{Q5q}pW-3bKBs6l{rNMV6wMMUyWHii$QAP8jDh!?O zgj7bDRTUbkXM`wj#M`JSicg@C+b#+&$Ea5u zR=zMKgo{Vah4CPo8dYIv}bLY0x`wzR`K?j&=m=?TFTosuXw64dP;MO?QO&p4LgOCt(p(&Dj(w+%8oIAWb(1@SBQZMq4 zHK*{UD#nP#Xk;Nq?5_*KVgyxrby~ZyAC*Y{{3OJP_v1@dj1d>1 zk%buXUR?+lBdBVOV#GNnR={+_^wvJs(pfC`*D6^!wjGQU_d_M(h!ZQca|z!pPMnfh zai1>VELMDvKt#rh79L)k+^lveVEh*C44JHaq*TO+r_s;0ab+Jo7_2hf_83eL%nahC|ZRb4Mv3+G#T@2z3+)(PQ9 zy6ePj?-xe6o=TEEyiZqMEPJ?+KxkwSIuGoPeyhP$>NEPjH^ zi_7B$w?BmEva?XCTh$U=vvQdO&jj=}s)Z4W+fOlbyI*IqH+leXv!eg+M zbs6VeUMSh#T&6Hs;pdKD2b&Ca@+z7c)$nktsZRVV3xVPlywQq6c^Qq|cA@YQWw4yL zGWl{n6j6@2%2+9f0Yn@l6tN>QjVR4JixK5uyv>S2S%OAxyHI9x5v4?4+#cl8jWf+v zvJK6PYCKtM7*CoN7NW`Nc#{=H(t}2ByGZ79BB__Xj64)hK4>nKi_zSu3dOYJ@hdIH zlihfu6{T_k8oBLK**`3mMyan{%v<@8Sne#*uMe;P>VnvZWiAHX_NJ24%P73A9mEn+5 zrd(~D&vpVtGWo1=Okvd)`wxV42MkBXfE(h>2h4R)M4um9gthr>4Ml+-uTzX7{ z3tx3nHp}s*E6QdW8oBMVSuB%{H$Did#xhq;FPb1#)ohGMHIXBu4Bm1@(VT-uZo6m> zl!^v!2hSE^ts^9xtIcKeQ8Y!Wve^`qY?^f!qm6^NT~RofqmlPa;rN5hkZ|rb7tTFs zidrljzwV-N?#A1$D4e^{$ZZ$S5?RCv3^+s5dC6QlFQQ3OmCot$#GF9wMe)3Vw_Z^^ z&!dssE}lgZ;t@yP3$8I9OU(s{WX4h(V$+Ru@I4D}xT0jHqmkP#nJ!K;Ly*_N;=Yxs z)3F6SUa}(;an_nEXBCzMa<`Sx) ziBgr&_LwE)ZOZce#5TSR;%lHNA{&hyAtH@EbZi?Q-F~A1!M5SuKo;g(xBX&%rngYD z$Z7jbwOp=e`U<7IRSl{4U(MC~FK7>`s#jwjOkQa*>U|M!w4z`?hej3zOQoWrHYQlQ zIZy+F3HE&5og}Umuy6Dyt=%^|Ze_N{A13)7TH8`#Iz3}-7lm_Hb=WGJtyZ(c;!e@v z-*(ei9>;iF^M7;|#P){%H-U)UE*Kew;@=v&Uk_o2+z=pmXx|az#C-}t#F4na3XJi) zLyr>sPQjPm;o1p3V<+A|#XvKjAV>PRg{O!153%6ykPLM;$C|tQXgr-x?X*-*16ghPy#~(d0;DzAftG1TB5| z^%Md_25+gNK+ZuUw_P9yg$2@EEobw&Y^|QD4P-0ALFTK?mGV(EOR7p)t)rB1g~f>C z;0;z3%;jk0whLx4sI*xz2*|R2hEGBL?qYBmI7HM$rHo5MK`IU5J&FD8>uLZ zyU@sOm&IH`7W8TGU@!BMxiDTtGovaD$wkx(!l0EDr11jYOhsutk4A30H0B7>ATQ7d zm9gMjD3t5b$ZZ#j(8+k*xogr~ zC-acGN*+MdqpA|EP9|7WA)4Hew^dOj_o0#7E|Nt({9Ji=HQV10D+`0!N+_1RYOa!3 z(EO;XL~^Y{FjB||x2&pSBzYNcs-j5#ghp<=NQ9}fCUcEqy&#dwVb>WCY7Pd7WCk@_ zQ)S@_i-K8#H&{_H2cVJLE*N1RDa;>S;gM-xyBmr#+swstI+`)nII~$NXBn;XqL6y< z#w!YGJsP>~LONLJo~%j{Zg9-NQx0_XJAB{h#pd$ajpj*JK9b}33f+`YWl=O2;7wK( z%`P-@+eITxyOH%AF6F)5TqU=miBVOF*0dX~qsKklC3g$nN=0FO0gc>tVayLllSZi* zcBq9qpl8js@idwnRc&ZZ*3)W=QR7LxnTq0g9E}_y4vp<(Y)2a1uA%|KcBJjCyXwHK zpc|u%toV)Y_AGB--0l`%v^;3l2KuXoJQs5hy&gL%kTwcO|Dt8zEN<78_BweNEjQT;`FRMeG2G%*Lvy0)=io)lP5VV}SMcR4dV3I!+;(pVE?RCf z7V`M#%sqZHnio}%hc8-g)tv5GAf9|A_EGb={z#G|{92cKmLvRvKm`;qB5X1f?e-b8!JQH&w~KqCt=CVe!K@fGs*a&uoVOU&1Eh_Ayn5Iue*-U3CBAC5+DyT|9UCle#Ro-z0OIcR27 zTlfOvby+P$&%Xd?i)!J9xI^k)qj?6&0 z&Ls<l|N>sf(GmsiY`uczH#Vh*yztPBT_w_8+qsslg@Ds-Vo(~Xlr2S&6o*POE zB7HswZ-S!FXQGiKe6G=*vy6at4jK?FBe+&qyk17|{?;xnjL*79-nn$(Y_wFRam6`N zI~|}laXpVD88}l{GAtR`Mj#@Sf!6gE6G@drnZSi;M+kky`Dl)$zO)N~!}-IROkxK0 zlvgav19swzRg4pLG_nvU-lGe_;sn)=QJgs4#0t2Yypnx$6W+s4+tHdw9cW} z@oThegxK*5G)YqL+CKpt&LPee5<5I!3Blv%_;MA4$IsBnLh$&hE(8l6R5?b$G&32{gaZD(Vg)xJ_#PM-T`*w`g}nG19(!U7XXP8SZ^$W zK&=HaSa`b?#n6jJ_KaiW&J2NQ-H4?tLN&E|wqD3(via~f(2s+GhQhfPO_OTuklgT# zj2+#q;^Iom)p)}dmGex`O|Z{Y_t67mjq%@=td`bwGIu$CVUd>4WYl>2Ow~1 zrqrSKpMfjRCEjvQ(_KP`*MTosF>JlA>viS+r|coP(TekK|@!si;j zIZFs==b!<>qRcb8fy%W45`s!=XIdupm8%_@V!2%5=2c&_uxxb z3?g@=`7h+}Xu z9dJ0OIQx>xINx+JavXp!S}}4gL?a84V?KdsUEeTcg}V`hDLmxq)4?3vpkDBF51JHd z^R-1!&nBJ@RY3Ijdb|OO{yr6r+;)G@VLQhBCKB@bZgZbsfF?%O=ktlrC6y5Uz6)=J zqTd^6-)#S^*^ELKqE7{!V^O{{>?#M!M~qv$LaO0^2yF~!YD9C#BppONaz z;PMLJEKZ)1c(Djf#bwBza9F%pKp-OHMGJ=#lbh8Jg^ZPGe+VJtBs5P_m)hNc!}-LU zf@oSUCK$)#OI8dT??599LE{(#(Yh|dyS$>wR>;p~u*Ps4QABg1>gV9)6;1m^Zx`_8 zD|)*Rjofx`2QIH@G8XdqjpiQz1ezCBkB2X>Xx2gW`gM346uo{88acx28ofG83}_dj z0l@|lb9F1?4I(aWZDKHPuuvP|l7eTU0=VEL)tR$OHiSUjT0sosx*$nf@U$-5EG>AF zKR);j3A0`75DvkYt?1>0(8z7~@^m&4C-L-I z=APb;=0w%gH0k5*7rng&U%sNZH=&Uuysgo9v+kdE1=h81>Da5o{l~s>aYx66BTMby zE$Qeucf|fZ{rUs_`V;;73;7bvd0aP2d3nGyt-X|DJZa@zB5*xguu`=-N0US#cqD*7 z7Xr6llPCEyxnj0fvufR0avGNFY9w9%h^}N<*MAj(7^Uk!zqg~~@QX)W30wnG00~?T zUjuj9x4@VE=ZjGivHuP~f9}Xq=aexBA@vte$dLcs9mt?Y%#d>B(vVfH!E!I0)mv?1 zQ}cR}5oe7F43P+VXw6%lj@Hbm6y@nNerD_h4yueerGhrA8tX8&~$rk&q-fGs= zqOu!=41GSBEfp$_BH2t~$a1M%9Rzdeehp1e!9r2KJZLDJ8gQH&D3tm~yyYQHV`^62 zuo=|K)jF}mD3X%1A~iTCW85qo^+K^wA2y7lJFD4B#jTcQze#(F9{XF+LtQe`W8dR_ zf7|>1j`w}9_x)Y(`+MH^_r32Qc;EMV-#_%ef8>4N?|uJ=_x)q<`vLF!C*Jpi-uFY^ z_ru=zBi{F;c|fEA2(6`KgqbLwOn1lBmD1Kqp@E#s9{2ART8SseAV}E@fTxX=7h5 z0Ejq7)1ogAQSc?yNATucyhV!MoP|afhB?y-L}Uw&-R<51kPMuQtz|Ny$+C4|jA2t= zi>5@iDZfR<{a(F95v;=7r6_`v(a3v{2=aMB1ViQ`sG%u|TLf;sL=jZ*b}5Qr5RKe+ z5$sDlfK0}EkD!6inQP!?G$X1SI6^HDxYZIRa1-7vMG4%1M&5HI&~FJ6c+^}151|=} zSpsggLbAPLk33A}DDfmhLt#4Q1+mMDQ&@MbAW;AJ#&+a=)bwaLKq zn*~t>N8D_j6CMT-$qWgOROaA#>)1HUrYz_VydR5hSDMMUZ)ir{IyU5X-j z5{=w;5%@_VtaXZWL{mOvoD_BfL|cDd_4pkMG;I#Bez`y z)99$7H=EmGmGayUqqXJ|ScN7;H5MpIpjj)AWwvYVWV~I95;y^k+;#~}Zc3oWUzt!d z_kRV=hN}OUs*DkOvrr|$`Ga_)6rFFQk@pnmyW1|g#(%T9^KU}45v%h_l?3PCfHz9f z`PZY7+wOettfqH}B>3vaL+0*(0L_Q0`;~STd6g0ba6jHGMFHH0MsB+RrqIxzCnu4D z{(sfn|F59wQ1$=eDzTr|NpSzmc&ilM|0gtZ+uc9MbN_HDI|y&6G}EP^5DxpC@i^dM zfJkN>aFmh|LbVelu>^0Qq9hJLBez`=UNY#OcjNMbZRR>S9nFSnKu}5sNtFcW_u!3E zbpCoYa@(En?JFwOt-)I1e10@=vAF z{Ws30#6k zj*x)S^v}e$5N!k#ct>p5czD6nMK3h!s}=kc~ZOC7yPSeqNHB7Uj!Wfb`*L)C9_=| z%f5myTQQ`)j7Anh+MjeGSTLaqG72V-nOFhA&RHe8lRIN{{`%bOsX+w zb8L~M&_}K06f3#L@Eu?|ZXoFCh=q}32*e%`MkaZc4#kiR+BrfDIS0*>)W7z6z~MaN zy}sP^mRB&_6!R{8!HNOo3^cM3K(^{aumD1}V-!G+GO+>z$ed0{jb=pM0u^bOOVjPm3`#e%D1ck3YPS^A^s)^_ky?DCl0F`2+9!KJWX7-uI8Z@B6*)|M0$l?0rAregDM!e$e}V z$oqcS`+mgxe$@MZ%=>=a`~Io-{e<`Zr1$+Z@B1n5`)TrxzDDzF@M~H*B+CP6e_@md zTx((lx~XgRxqk zXPLr80uh-hwD4K9sjT9m5yV^3J`qL`X*5&P{LWqkIGk4;It#&U7iS@kz?ZE!h&T+5 zEDRzJCJ?QgYnsbmnP8lS{CzIigiFQ+f1izJM%CX7$i@m;Ekw_siMK-0^V`tK5uVqG z`K;TZ!9xRrO=geNt%z#{bQ=$kZ|(4LTQya;N|4fUy~d4D3!Gx5a&yil`B(75Xa2E_ zJ{UTctFR9(pP^Qeo+SA5-NKJ_*Q?$Sk2&)EgswAKe{vmxi0n@y1C7pr-b#&jMRe!3 zE!#v--HY~=5L@m+vm|x4eH-BLeaSK6rma!j+3i=*Gw~vS(*16{iHd>eE`l8C-xlTz zvzpcKj=1~pMKBfDCne6O&*N=X^!amWWTCV9C4q=+{jpyZ zK9h+f+ndW21}pp?uDM?_*2XM=z$M?RVc=w4ZTM9c0>X5>v5MlDhDL6?IHvpJC}k?} z3Oc{HbCtO?PDXR0Dvc90rO~XYAdD06rYZ{KI5cwGg)!R~M!oFiOrfDk#atYNXkJvs zp&K{+%8H$ejWg zyt#@J89^hrT_Q7r5*e~`A$2@pu8#ZBq^PRn1buZtO+{hchqqKw7~ex9w_O->m@ujt zuQv{f;}vspyo@GBRU9jH#o^ah6v&_O)+!3*f6>To7s$MzK>Qv#B$0z}F&?%o0f=OV zEvxh;;@4Lc$pLtK6-BZTjofyTEC`9D*(--+a=N)pdeG#kMv^r~GHKRW6v}$M#fm~X z6^-0>p#(-UF#B81h^feKbB$bp=0#N_+9R1}Wkq@H!W*k7j|LjK?ebXY$C06Iu>k7_ zRt8oHVB^S+P$ap{TqU=l=}}e5DVmWaTxU@%U%=a}D3;Hnk=rho#Zs}*^{0?ro;H`u zlW2le<+3gYxp-@To=@0<%j0;f6$SGM8aYBR8q2h7rI#-IXh5))-mmJeA}}lH;-Zli z*O*uV>&?3+w0OO_E?aNz`WNgtK-x$WT5qnat~aNk8o05Dr){?0yqG{lu17|$I3=;( zyiKy+ycX>#uZrvh)haYgQfJ%C0Y_)Ox#`aCZOsY_;qPR;iHhOx1cDst-X zU_+f>1xz(uZyv<+C|z$BU9Gm>EV$aQtC%C%cv}^H-j7BWy1YDrh;01{tT+4O@E2i& z=f-aWdknR41DX}pFrYTtl4!%Pst^#a#~Z6CjuA9++r=@r892K$^?JnQ?*rxnxgX7p zszB7%jU)nL)fMB%eRy*fCGtHqa@!>`&zDG{l(%+e8Wnd?9_nCTG1th;Xlhh7qBi?0 zY9v@+Q6zuD+p8#&|3xFWT_n?ekumH-4UA6Hd}+P)Q09nFdg9n1lE zQx%1=5RKe+VXzLSl7*eYb=geb>E`n2K{KN&58VzXP+c*0tjC+HD3Mdq$ZeO%Y(IAR zYi*(4Ww*INEgd% z9zi3wT^NDr0SrcLogIIhaelftKqQl&YDbSieZ}bUCfb#bqDcOMMsB-E7O?0+NNeuo z2z4^c&1JGIF`20CU6Di)uEwHJj>KE6D3rs|$ZZ!&AXO!_i9JomTqEb8c~R|Yv{Th) zWkq?s3vaBVJkCHPw_P3!{W!w*aY#qJj=4%MN7JLK61BZ6Vk8OISrp49c$*c)@&Pn* z+r_e2Di-P9mAlR5au=E)Rk^6`T^U_2QF~Xuinm%(Fke9<~cOJ{;-gI)Pi|WcTX?{<@nO z#%+a=T*J2)7>gThc;aQ7Q{Eu@-xD@3OmM3l%Crwdd&8?B+nRDPnj@)0?OA}s`NNq+ zHtP{bd8Jcm>1f3RHOA5i};TB%Z*IcsGXRR+5Fu`+>?)Pi&ymZL^N{S zeLahHsB(XwVD9hZ(6p%fdu}Kvh-}|)$D5$&^S7aqBYdvWr?a$xb`Ba4EG_uDZlLng zg3i{?3QR4Q`#UnVa$kKgyNjD0crRM9Qn@*&8RiCHpl=`78A6Il`yWzVTWM%MorwQzdn;{b9i2+~Q0p(IjBJ*mryaU$|l%xekpi#F1+VMCeC0U(wX4 z`hEXU&Jd`E==;Cm%~16HAJNDWzSrpVS>8Z94GjpEH`H`1;^htVT05OEIX778$P{X& za-GW>j=dcltE7T+w#c%ETB*|b9VXS%^q&rYtJl4K7@gYCEhm8T_^JuD{>k=aA* zI+ZDYwL_iByU`BvD#=oZv(P+AeQcisIGj(MeMwO9O&0^nc6`x_fn*CBSqLPXbRk$E zq53fjB+E>!fO*L)TYH83cx$jyALe4n4NwDIz9ZF_bD}hccyCEbV~6*5-P9&do052O zy)M%%UW^ckJs@68BvlT@if^MGA;gMrqB)ZK(*75~;r!uDCb5Eg$}9FFe@*i1_+k~~ z#GPnlAx_+(3&G+9)s0b{xXQ!|h!b-=Te^Nh-lOTrfhmdrX(7K4oBMqTO^vGG!&4N2YKXqC;muI=eFcpi;d_nlo@ETQ)6jrm zQxt#E?YdkmAY*uGTuU>C8EgILnPiuCeFH6BsqUN=By9*j`oupHh8_ftdV5yO3PLJyV7z=nC?Dr0(D;Q zmy+}gW69t*H@1&B*(6x1H*z~H|CO}B3$nie5xXzQ{?hyYmG}K?@B2CL`#;Gy`sLO~ z;MZ{ZrWdGLl%>tgD9Zkui4_oK|Fg9d!BcYO%5X;}TdijKS)B1-!KQ@r_$u99-h7^Q z)L9(YGS4tB{g;f&_6B3MT+brxo5XLC5w?Y+vZ<`%p>%C2+9yJqeh8W=sax&YfWvvk zd%Bg`F6L+l;mcOc(GEl-3pv^%0@1oL*-X0T%J>TTdOO%-I3(MGW<}N4bI9afxCWxf zH{mT%^!Nrea@#!~c&s+d)B`bB7FRJ|U4te4e7^!$7ARw#OY7>yj^d5vzKWeT*r z(12j$v40q53O{S@O3$QK71=oKduYW<<(Bw>U~;yU8z@&x*+FYWl0ke&S5+*7_!fbP z%pfAWmIN+OUbR_rdGdduJtbrh|A}Tv>TLT_z~Qq8rN?^x@m;rHLC?gC{H3E`;Z0Nw zJkJv3NdLAlL!8yDzJH-`D0$fT4&&ru3P9jeYE@S&U7jqu+OMnF*>vJ`fpdTYvnQCo^&QHwp)DwtOepW0+VTi)KYt8%o!G$h6^CRR{=2%*_FD3Xuj?Nt!DEc2Xm3Ugl0xnBuZB( z%SFUl%DXFDtkt_&yGC*3yHOh~g%j6+6IjS;Ix<*-^i3Dma3grR3#fn0?AC260q09~mMZ8A& zb#slpisnUCBf9gdu52Ri?0*GstfD+#MkBXf9&AOXIs6M{t4Dm*cr0@mKqNDk(Or>g z)>Vuh2jgv36vq-Ya@)l*-H#p3kza5<=1g;CY(sOR8aH&uG0lp4+_UA`)A6P%3Zn;& z+;(B?$Alq{Z$D_Ri;K~esOsXKnvCmor` z!%sheGjTwBthqXlMw6l%K9pXdlT3Qhnu@|$j<-}%7|YPeZ5KwDFAV?jN_PP_vtuAz zuNL4v+;S+8SmsjcMbo4zl}(ztYE<1t@nrC}D~jhFG;-U;v(Oih|GE;i!)ms)BP5!u z%|-K3G(D=KQF>8I5?{h~7RBP=ZB`V^kP=G_S9T{yDT9@`>kYN3=XHu6?qp=i}c&K+6m95)&_B3s?r zT0Jvh6)RS?HsTzE{N;gcDPOdzBhE_XFV-5p8P8vtCWz%sv`UZy(u(xh%Yjb!ME_CV z_uI&~<#fVr>=_= zoZm%Ul|@kPIe$uTqgb@+nPQ<<=iJU3_tLAGZ6>`hW4(hU~CFzE1NxIyZ220XSou{*vg6Nw!b%|x#{s$#?MnsPlr?!{c zgz|CQfMJf+g9xj3pmX#(Sn~6W-22n4T~@A9w=z2m^#O8Th&2AtbkO0RcidjuIq0~) zMk#mPdC|Xp-UwYCbbtbRj=0nrw+luTBhKEH;SpzIWjO6(j###A6eCGM-HJgtCe@gg za(~xNT~qFElV@Yyq=MD+Xs@m z;FD>aX>E}%1d9U;D5LSEWS%HztSF_t2AFEp3Z;Htp=U#}wO(_DW(iJ~gv<2R--ow$sO61ErHrdY=wvhgpQ&=F|eIU3^NkjHeHAW#YQ8+f>n)Ly*$WznYCVE z;M1p%Km}q*pCs{M|E?Udz>ffa0H}$sxI&jl*6uIWg$TO>qf{?|vAmr2bQ%!MilnlT z{a0IVeTn0I_Ff~S}M%tJvL}^{F}<9boPHzAtIOK@DrT^TO*2Xsg`SLR+BPG z+-3blrR1bD1DSLz!{$hNnBk{bnWzf2^p2?V)DiJPVO^rqu#So4E-5#yOZctRBwP$8 zQoaIsYgZ~nFJ5Sd&{BHV;k^MD_td9n3?Wd;w>d!+lokMI^*`oIs+$N@e;i1spJ zhyX)?ke>KfYDe6J@!}W=06`1Tfeuby@}JpQZi#J!Z5<_l>X?5g){BiUSU;%oNyYQk zs<8r`+}&td2~&m?G6$>)S-H;Q5P<}@bA?|_@ushJ(nTmei{)6c3`MAtnP1Z$db0-u zjzS(h>DAw8HzC?}$BSIUK0G{|hf*Qrcv;0E0v($Wxy1(tDEi^EVTFBR;GWGk`*@Fu zo(1jV;q0D#NPH^95ZEN(ufy$k%hfb$LL{9&#^#yn9nVJ0yB4dAcJkw~p z1^MSwnUm!2p+ZDXe($NZYHW3Ru*TLXVq0pZQn9Q)OMPQx^v{8ny=o%mHlC=sjceY2 z1C>1~z;#rJ$OV|O$*ELRJK#gQiTrOwM*hrr!EHF0_^(n~lf-|C3K2Q+2X0Q4s~K3p z+nCwo^v9aDjY)=QB9mcp9Ja|aGZJ}bM)P}8uqeNvGAc!Rk_r*IC^NPUrAiK4g>#dl zl7}aKA*wt)GhSg0vqiT?!&(>`53Pr+D92DCA}4<88L&+(b`smL?62z+k+D84&Nind z_zq{*sz&+CsC-FZKbQ&;IpwoX*pr5R+N|m{^1eAT-e<#>DYxksD094 zE|+ZW?B?F_d{p~p@tqsw*@Ut%)q3fD8Wa*$XHRuw zssLL<)%BF`p_OpcQ@y$D{v9+~=5>L)07qStS?O7Hb-&v7@igg_`+R-UlIFd5t1K5@ zzsZpUm2Kz3Olw{DS2<`tPvcux{|DHMTes09{u`dm32+j{fyb_Ld*4|f2b*AP<;>o! zF7ct(5;wc27f64`n`f!@AJNDzcQRi8o(dtehVZyhS>tQmiq84wJb3D?SaH~?`~G6S zag5LBnXkMnv}g7K1a3NF8+;CF;hDzH>3;cgym6L(xdM%>`DLd)VrIHlhNHFB0ADyK zyf2)ECdJklUe?MN)Nbis@CLkDmR@i=8oBFUu%Le!9ze{b8(siUK(Vz3NEN==@UHOw z@J=*6w*K&{7XA>}LESUnjyKTKGv0tX{Sqhp=-$L01-_Mxx9r7c)FykKLu}+rTP=m z$X!=|iH9n78GK_~Ioue?w=4KO;@I#WaWtAF+n{iioky6use8$hcrz`%}n4YTxwccYOUzpE)LELjW zkSp#E@Q2v{hMrU`0*GiP6|Gho%)Qfn;sCsLmOe2Ljofvg;57qmH%|`*xWmTq?r<`i z7TfSJQq7=rO!tHn@rGG?!df(P*F9mnIMQQYX*e&u7wkq;V(SGfS|kajQ@RIK@kUvC zz`1DTu6w{VenXVm0d5ZO05_o-v2}ohTR4EXPrCj$;%&0j{{}R2fc}I}-}39Z*oi}c zkl*nCC(Ji|IMckPvuB!TpO7h3YWY|xRUL{o?(Ov+<@publZ|dzUtzp`)#0r}#SM3@ zHCk6T_81PTJxz5Lx#Q{y4iUI7r>zIoT5rsmm`)Yga}~aY$%%J|t}4d?L_4a=zX4Z@ zBz5mnwL!o>w@Z5X*bi@#W%%epBWvN~1>qBIyoIK<@^jg>-|V8n3Oom%+%XKdji&u> za71`FI1J5kq3&@CSe2bYD0dZ=0nryb+DubzhhQiw-65g_?Fv_q)S;!R2T^Y`ws{ z5!VzIWUqAnFT-19ssANtcm~agtqXX!vzT1K+b`V*eu1~k(g&VIBX`{g zdf~Jy?2UF=%oLzv^aX=?UkW`{=mm&qrV8E#Xp<-Cz0>_+Cf+(rf0%|w?z%rL6pWRM zl}ZNAz_+Ls*M|3t)o6ZfBgBy-)QZ8q)cxaicq=Xa z%{?5N8{5&lv?iTeatg7nsfzFN-p`<&+31P&So0DsKK;(@fJcT3gR6?rYO=~(RTjYv z>yn?MdWKw={5XdotV>c(g7T}Jde>$4KtE&aQW;goc%K3C=}M` z#0Plei2>1gqRJb0$BR5-dw+Oh?`utLI}f{YT4$bA+#RbH*}WX_0v-60`T)msk#RaJ zK2+SDs21799F3MWLZ1y!=x?bIG5|e8g^*!T$QmjP-ovd3bO7?en!2vcj#3x;*~>oa zh+6z*Y{hO2S%wic4emu2t@8WE^}M(cn#NW7uJgzkwLga-#3<@*b4#~DDdVuwRLZ5& zPAmoYxVzLgZaGvgy*V~AdgJlk%oH}fxG9MgT<7lc-84lTZAXXa{75Q<9BoGk+1mJd zg9o}x$)ks>%u{WkkLwGAHPbH^yCJK(?)U!GBXFlwR;I4iOmk0uu-|>h(%4W75C9 zL+i7Vu?mG*lgxx{T%+~V;c5K@6+*i8N2w5Ua0zio<>2aFziT*l!X9`}Im2JY$Z0PH zJ`tfGh?m@CtITysv?!>Thj=Yge?7-QN01Y^%vqN>y8 z!hK?H>-_CSMzitR#TUXe`#cpwjHhsJl`%>BZ>bQGlRkZQY-_QU zSXw1v;y@~$ab)IW^MtsE7HP$43h zXW5!uvB2bE>ae8D{uvhN*-ZL02R5fmdTeW_if6Be=LI+#d21PCd8L^Jj2tIOpS|HxsOufHlX?O`Uv+D*Xcji6ck zE5nQ5M}>%-_8FVu%Uu!9b{bczwnfJK%sBgM#~Kb^nc7NaO@_MHQz0TJei6K3QDfHv z$JS<`7^=c|?EYrrR};>8k*RQCJnveO=xcpP9;l@ASd4*DfT_2ecQ{w4NqU1KMFQ&Yo%9*77y&R&0Q;sog;;qnkcVzU9 zjk9^R&f8t#dAoxOA>H*hL4CWY4^uYRayeMfIJXAh7!;zPh>Yl|Ky)q#%NC+htx$T5 z%9eE0N2m~f!UAwWngA}W+7u1!^jb`(?Pens=?UyrIho)qtIwx|g{1)2?6 z8Be4__^BqSB?Z5jukjNgq!kxYKNB!3;0y8ToxNMD0ISyVtx(-R-iqGz&4QtH-xP|=*hG{JmIO16Fzq< zkPUkg;609vQ-H;VO1hjWsp;~P$Y`DyXN&xv<`Zu7S{%JNJh>OOCb#Y1*2ka9A3Ig& zDmO>Q<%BppmtQOxW+gX;C+|iogbe>TP$6Uz5)y_=LKko=+Aj7CHjW@i>}2sO4~x`F zp!zX1+K&AcdZ3!gM-T)lXgDDn*2d0{sKm=m@B=D@lwS}}&`!!P!Xp7fT5(Qm`N@gv zK$f@~TN^=+3d>rRYPpuK)?lBL;tgZJ5tTPA;%Q54Vq`|JjO8&x^NfALl91KuOM=ju zC-?NMylC%R_O8fYxu~aS==0gD;Fq)EU)wmX^W4ZL(6f9m_(ZsM%h}Uc_RaEExHL0+ z>QlFGZ~m?A+xKQa3cs1HvzJXj0RP0yKJg%CZ+5--s5mFO4DsAx>*-Oj_Acy2sxG(a)=HHJRRe{oOW-eHxlFTd`-vU8`9wG?0KEYLcIdZd{Xm0~MkRl23;B zz#G*z}zPl-1yPMB8Y-i&TolX;j5;g^|^Xl1Szd4T{S zt%xdD&s=QA3%2I6a?&i>r=O3)*jbQt*uJ+r59WjVkU7&ETq4TNNkA zW!Lo7`%-xI{!N9D(eR&C2pN-w4~2@!-xqEeeNjIXKDa_mU_mko-y30itGL|jye>Cq z`*!Vbx6$uj8=2qDic7l_ZZEaq@fvjVTJSiW3L)LEW5Um>?97x(EXX7qmjfuu@AN7U zi9`SEZIpfpO`L7WnH_H$-r|(1gKl5beg_qz3))YBrHdq7fR|Dff1g+JDKL?D|56)u zz8X!Etblq`WXA6*g zA#p!|Xh&`PXW&VZqrQmW)oPHfkM~0hNEbrcYfvO?l0)o~OPG?>3OTx+POf{MG z-LHB`cr_Dv4kxfv;N?OpxA&d(ab*~8<;>o!uBLdrB}mO?m-I=@%kU;y%6c#w+4VUY zb`RnZ5zS!@LwE+)pFN?-ne;ip*q& z{CQqvrl3`g_SX<&nfq;1Jn!q_J?|@MJ#0Piz?Po3O?SGx@upZh-CZ0xuoCQW64};F zxxOUwYqc#|w;JrRwpMUu4~qJz1FlhrKVeYxZmz0m^tO?Z1Ob-xjf9H2X)0FX6=NGk-0E>1|G zhB$4DQbRl)-tnG5%VFzy!Hb%_ADYWOhPTAhyz#HmN+I!~@ZNVlS`%CETN=2qDLbP%-}~|ASUTT(Ir3}tGLB+-2!K9GI#b43H*bebm zj6B3;)uj8vpYVoR`obU3$X)k^86ID#Iwjva)j{75?FLH#BAQ7?aE+<IGILRZ5q1{XdO2$x{DMppm<-|3prfwovh8c;$bNCc{?w;HjeQj26lt z#hYWP`on1C0M!YJU)ByHp%5VawF3b{S|N6a6Ck7&kMJ#EDb#fk{1ORf1?>F)@9`bo z`9D*;oJ^^PUU45bgc?Ud{ov-EWNZd!XC+he`Mz( zwV<;;JlX50WD~Z=aIWW{&blb64fzyzH$u-%ve9C zYAfC2Q7VLA7=pIaJw%a0fRI+isU2}E(G{JoL?^GVRAWO<4&EzJue#j-JMF1Kk76FQ zs#eY9D*Oa0|EE6pg=hVD`cjo@vSE)>Ng2x0xnN_+vUE0w=ulbO`dH&kcr&b6u5K-- z3YCFkIq$nO<7l)XZWymOkEtGs=F2#*$gTh!MVtB|d|6G=)~jTn-Zd@99Dz5^a;|+C zMnvqH5sj=xnzbAvaE!NoRy0rg zgR{p;C-cSrTF&vg#9P3qkY(<9XliT+{Hv^8!qY+BD|X`zwDgK98aco#2+2d{9}$8G z5M9haQ^7emr>aBi*oFS;EvBCj?~tgGYV&80w6&a;lS|0ig-Y`p7{1itH%tM_E zJNqlj_6>l*$x6vd`vT7s;Z=SNPo`xqI%4F&Bb`@vQ4c+j;7zpD`zL5*E%ZD{g^-~~ zcwHMp4*^12Ay%6S5HbMHpw1+i6|mFgQ)4^2(`C{Yr&?uO15Pg~AFy72KQ^5k17AI6 z-r@qA6IrXtT4}_+Ei1qh+%&-TPxGlUgnuktxUN{<$yiMl`eW%_vB3Tr z9%GA@ol;TZ`IPqXoIMI~)FuB#arj8Vj7WeH3D*d|$AufAWt5Y`^LzpoLJptfIYc{? z3>Re5=CYGmQ_SZx>f?I_XbxAk8r|GL|77+O2|PH%o7BkONo7hp^$-;za@v=q)X4rTl_}}E zf1*P8$tD!4vep#?hyWq27$I4c1KVPE59E4wX)~lz_!(n+oMNWLviy5drSMqX-2lli zj}~?$m>uwhTtLE!gE1kC)fk89U|<`+4QAHG-RkzDb&;_;A->yfPa9in!n1cA6+(LT zF+zZL2ePpnQ|VLHOQ155kvuM*Po;~7$BGB2{K)W?rb0wc@wn4>)C$#_k|*ksaXda= z6U}LUd?}S7N%A|W5Pp&g0bb?^5sL^A(uxss1mR-^uYDKEb&J?m$K66-FeZpEM&ACYcMBA6~ObLE%qzu1CXLvQ09_gE}qe4W^@P6C2Y*6Z_!3gQyUCHV6_EWi$ z^rol~k<&Z##7q@V_Qlo|`<+TDm3Guw*JY8BJu5y46W7`fSdnhFtVP{RsJuz)FQ!8H zsV5YjvThZzp8z4Ph^TIzvK77p9iJ(r${C;bUx-Zmsd1>o5<41=YO;Txs+pAib5saF z;RMa3?BY8g0YX}_l)5&@tbotA-x}A^&$qL;KrnF+YsH4(LtoCf2j)-h@v8dq$YWxa z+K!}aSF&N3@_o{9T)Qsv1k5#*#kI=I(5?#B2Ql$n)d0v)HC`typ@)FS0GJu^z2SZ4n`lyOea5sG*Oak*UDQ3|Yj_haJ>tt~8G{R}j`zcy`j1Fxee}DF&7`9bNw+_Dk?nWw&(w}b-G|oJ^r)T9wd*8BmMfS=? zJv~F8&t3(;oDKil?(JawM1p%f;O%=^liBN_sq8l*W3=^&gs+C@@Jmz(>CImhGPIlQ z@n>w|pWKvS{7hs_Pl)fT@DFWzuKxvXb)OsF zCCy`~5Pq5og^#SAL|h_3NGnFj5ab^K$NSG&GasW}yQf42FQ)sd08z=3fVLgA{~ z47bAFo!#Q#)e%%xrDGgMg|L={oV4ezfqTR=g<7#ziLuS|gXL5e7LAp#_om3im?8i7n2gC7HL1t_tzl=zU z68rtAJr(Dlp-&2R^=WZIX+m6qq{oOJXgXxw`2tl8IWC?TVzfInFI-(7tcgR$u$iB2 z?uV`8wL+Se80wnL^2iie6i+pbU>o?k5s87O5n81Y4=+fJ3K6*=)7>$^H(0?<56UQ5 zADIR-8l#}uu15PhDrYjHtf4~qX(yx@nWaQrBS1(i9-$6sH%nd9*&FA_tuB{S!|Hgx zs6D<^-`|j=QldE}&>C{o1ypyC9(6v4=wObTvI(YNyPOzjR2iH%wujK{y8%aGu0Aym zS5ZTw3C^pYp>7Dz<8@RBIVRr6A=B2atsSe>I@^=jSHK{uze?pvy6l&z z5Rp?ojXQPhB(~?+pL(8&jPL1?{vkRgf-}!AsEkR{pQJ)WPI|n#sKXxfs#U7RJX|l8 zs#F>aaNz$+oSF1sRGxoOyt%>yS4;_8;Fc+Fi&%z(k)em5@nBHM0(lG-!Y>aYtINVb zBohLJv|I!nOAI%{Gi-PQV zJDOhv#izi=he7^4c0= zGQ(f1)Yw}Uu!C=hGX&_xTABaVrG~%SIJ*IVo0-7>UW@9DwP@Ouz!rp4nF4#fDCn>B zr>ZHB-L2L!7=+2#Orey6vvhEqAb`33KgiIjCQZA`sZy!YEtB1zbwJkW0s|O?wHO%okFMJ7|FOp@J6ARre8^g#X% zc~hg@Q^NWPyU$@MztAsmOrEOzEl-;!7j*Wdof2Cx5C;Sr8mu&!CqE`6o2drAWiUNV zy@78X{TX%x8vh$6UW(xTVnD(2jmuxc&~W2HP(JP$@5xf8?QC zO#+R`u?t)+Hhp!qc=ABjLS^Z;530)% zz{Y4fvjeWNhIfk{*0LPe%DmJtqrZ#Ft4!W^P$6Uyb{iGKEyAwrY!NnHOuJTZUeB++ zQI~0c(aJPjiUC(kysS7Ww=6%+nxFfh+U7dbjfA>D`+(@u9Yi zpX@)NV+w!uS#cI2p=EwSuSm+;qUtzko)iuxrTcLR0;S||B(87V>Xh?v{yeA599Bj~ z=XCc9N4PjpG^=sBJUo|iDufI^F(F60Kh#VWq{Fl!wtnpi3g;Ul<9u3!bGU0D19KIP z^7T}{r2DR;Lii~s6a*~Zi<&|VA_9c8qK9{+?dzWhoaPKVP-yWgmnVqWI;cu(WvF(& zf$V%}z72(dA&@PImpvx%OVJXnFypc35|u`)8s*nf`I3~sj|$l3tCLylGJE)V zW)%vrPL5JW^^e=*Ri5%*t^^Ed6I`W$F_iZ|qI!vRv>$MY4puAE;hBK4b8anDcGx}# zmEQkr553u60**pneL8z9z|*dtJO2`%%;%^Oa=bjtA=;j`g5Dt6|HtjgQaa(2J+~0* zWY2|mL)O`|sSuHqJ>#U}?pU=LgZV~G%rm@+>FCHPpBW!2?oL#T322y?1%}IskEF6D zL&gzQh{%bb>h724>oaOOmW+(`X^s8yd~L=+`J1SGNy^WpLPSpaoNcg0&0*f2s_f)9 zou1_6)OU{F78&((P3fKu!_@ZrF82s105ath%5F*N7yNUY!9nAksp=E;1T_1l1>Xi|^! z+X4*Q^?7=uMTVc??XkQV;6aXzmy@sz*jmjwvj5HJczxGEjQ`OG8q4h3L#U1@Uu`U;eqg0h~O2?-Y3Q+J90eVUNEPI7A3xJnzhC zQffMLQf?2i*%aU??A2$+8L42oKU*@t8LmPsYDZeH zhKAd*oUN1J>mk3?Y+FmzS5nE7{(OZXFX#e__Om(#*1FP}io?8F-O+b@WOPnt3tg;H z=E;UnM7M_L@s`#+wm&Y+Yw+0g&Dd6Uv#YW+`%q+*&TmrM^v^_fQ=OYh)jxw@dDV;@bD4k_#2f=88rS(h49NksEuTiCx#pWLR#@j zYDc6MB7lanVuS=ntsLynO&<1eREZ3GZt@VY1UF;SDzpR@Lb}BWf>0J0ctvs0mRhM) zELY)~D)vJ6=>^ys?f!eS)=-yd&xlN!W$|X?{H1QVFtA}vqFMPFR&KXY>6PJQGlvMQ zq1#_`tg_)fwz?|z6#6zT?21f+L#!l7z=eK%uOrx{<9#sSxWxqp(kPaD< z2=gTQ5ChmAZax`QRrqUUD$Msxt|1(-_W8WfAj6-i97-AfK!u20h65lg@^e|9!QduJ zWjxILX;kB30ZV|~1kZqg-(oe9J|=p>j*zwCOe%z53_@&^L0YUK5+I}%>%&Z3U|smy z4zCMuWzUbLDw(u8$WLvLYt`i;GUa3lJHWU@w5lv_8kUAPP(4GA^z|Gfu&izW63~S4y#;@ViNw^EstA-&!s?$ z4q464p+fi>CzPVHniWHd03of2C|yt8T+8KRr?Cxd>^=hT9RK9Vbe|S4L8}S2t)924 z4Yd=gs>$fJmI@I$<+HcsQ@}ZkbD3%-cIp6J;h+$okBs=jU_h{);Zw{MqIa5W}e|F(YDaBOW6mb=QJhkGB2qQ$!-(_#s~rO7oU0sBW2u%i?V z0dX3JXu@1hWmO7u85P1>7;+6Yr*XuaAD}WmYVx_rggv{(h$|y5Cc{nX-EPb%U z=J_H_$cr`j|A2PzeBVc-D)1IIS32Z~%k+JHQ&86Y=P^z5Q2iIa~Ib_+qkP0CO*Zx!pIk<$FZ5Uhx2x)~_vm`)BF4j@! zeas42ihi-PXJ@9evS?lNaxw3uV4yu-?OBbM2brM;@?2@Atf?ASqtjIXlEGp-hX@Q7 z5v)eTC81@w6`$YBu4LkOw1?Mh4R93ZU^N=9Xp@a9ANF^GVKN`Mef1Apr6ysY|h{(k_aLW*UGnS)aJ-e!s-K79m()eGA z_+w;(ERI*08B&gn&kSvZ{GQ6F6y-Nmh{#2maeARvfxV8+_dArVFzaVgMW>nZ8gCdb zNOvC&(d)?R(0a%^atak9a^hp|HV)vvxz(n^x15TXJJhw%!y^-7iD!eO+*8W8n~Dc* z3}Na}DywottfE3hF3iF;?yc$UBhdN+oZl>@;UtVx9V)^_x8AJrhR8%&6mMLY4o1LZ zHo}NR-ZerCQKwVcl!BZ_g@{~`rOo8s94Ik)pysq1yYJX5%lVPX5|1~_spe3DLmlq9 zGq}ElnWBlahsvxJr$&W{T%6dZT7L6ztg&CXkw#((wsn}5UWzm~L?+GRI9x|u8csC! z5I52a+f2;O&}6xe%Bhs)eN>3ZWjUZRW-76@wNfsVhHD~Xn~U%d>LUm~d@ z+v8gG#ju87Sq0Zf=PLY`6aG(q>@g9yQDwQouu$`VRL79M^%oA&nT49xmtss#4>{?b zN%)BBy9#6BW7tyN9fbAf9Vhz(1g_pT-T;uD062;$^~L;-6TfnO&A#YKb1vQ%%iAwz zqmf;rGzxqEs%xE^nwrE9z&jofwDnB}@g29{APY!TJx z4nGL*4)>#3v2};#E#0BnCEW$?!<%I30{5ViyY2$L!UY^yN{6?Q;Mu84)#n5+gm;4H z(Y)9?!HQN+;O&&|27kvJW$6ZgMI(3J4W_zoaBeN-pBcRD=b=l(g8?F%nE~uVgqte^ zW(Kf77jDmVxn0nlryPX0#!~ntXymR7Kg|_>4-9;N_}>;@`K@S1Y)Agmmdf+)=+eI) zZ;qw(o6yKzm);%o1F2la@x}a$!z+Ignh;y%TaJ0&8(sJd@YYxge?A(y>%t!(#ymU$ z3fD+O)-Tnn$z7>jrr+lUpAGK?pGLD|>jizS#=qV*-6cMOH_g%|K8i-}x=SolT%yq5 z!Yh6r-YXtO6J+ZZue9(AwRgH>JdC%_(lH)FBX`{~rn`<&cHk3G*%u%tKOVX?oB$Bf zl!oGB?10j6Q1nL^e=Ob}OY!$bBX?c=1w#DBBgmD^c}~TcDP9xa5e`SwV;d7zwTcOb zzUfYJDBd8oBF^;noS2RNhJUvo{8O-mw1@ zp(hV>0V0~oL(4irc1d@E*?5yIU0?sdT#x3%)(u*gh^#ZZ?C-}LV=4Q4(a2qweVK>`aQ!^L7(ZEY2HCkiv62MS z$8sv~pEBGZ-XHEm6J_fUN45$JEqkdu$~|~1Egj_>XygD#A?!w%8`{OzX99%WF8dsH z1Gc-NeZmBIg%SPw5%mJmne3)kcv2HCC9A+~l4;-RqA5>et6rm5)(~0h&hAyp zb-3&uSZF+1ZZ@v$q&94Cp9luwYG~I@Itw4TFb{Eh{1sZ<*?Fgpi8(d)n=ua8V@iyyj>PNS-T^Nd^nX}De|ElB5)kF z^|Fc9+u0X@$Aj}%;Tt7iVMa-TEIEqMh?`~E_ z%)Y?x>Dl9Sym^+{<1{p~mOW185S=^b(AyxcQrl5Umop`8L(@CKBHWPF9OCV0UThuW z<({g->=3eFx+lC1ZQx+lyY$iPQ_xT=foY%#4q+#cQ$Zbj2#>j*CkbOfzi zx*yzvH_OrwK8Z%|x*yC`2&?+HFFY0A3m!+4V(SIooy}@E@O4V}fuG@xvh;zUqLI7q z1HFSzAt^2kNmhpQJBm5~Tyy$Up|ipifWQ^ewr&ud74&}To-h$_m!&6+LnC+H6Q;nk z7Oo5U3dN(td%%%sK5RX}yN^i?1hPN6@<-t9u~hyrG;-IKUo@0*_bnw|2HDk&PwDgVbXymT@#@vj-HGJ{mn($6>6`C1ar$_`k zg{fz{H@q8fnWZ;ejz;djH{_f_*a=^88iB&uQ}UOMUk~pMUqLey-WyCk)4kztyk(Z& za2Fc6>)x=SRIF4oJ95Kta#}1oRf|b}QIIb{JQv<2o<-AR>k`2$O@ZCh{o=QH^DO=1 z88mW$Ul2Yr$nO+ld6NJk*RWSnCr9oY_WBXmu-m$HJ!K6%)WBaI_FuEL>S^qR$mojo zImT}kBQ93I0-DE7rd)@Ri`6SRMBrj|_PiaghRqZ}v*~W$5$SkHRn6mF%eK z2jHLHvUf%H#Dn;suNS|ZB7WH@emPbA;yeg{|8>x0_Hg(w&)&OYljnYDh#XCpS5?Hr zddXU8?>qJe{w+9`)p*m8{jGpcJv(Zd9N%}#{yO_c0Fd>GYaOQ)TMKW4?5)3Ys9G&m zj#{;%wt_oXtc_?HAYFuSTLO!M~YzM*P9*UG433Fgt&RAnb?C(tPU`xE=i2Q}MM z*l@~axQ}KC?kI#8s|Eqq$sQsI%x+<9p3Z)3V?W-+ew@R8Y=<9C_9*ykC%**$%N`B? zR99U&`&#(DOS9L3D(}pG0DfMYy&is^(v!V`|I0DFjqI6#l*)bxek+@Xf2?I|G5AXd zXLrFb_1CN#D(0P4~+kA)-l8#DTEifJ}e`W z@ZnGqX?Ykc;NJGRq=-cQayn@(I5CWsg72~Bi=Y>{ReN(dTGSM+>Gga>xJ@dbXAB=o zFQAes!_xUw2$^K|P$AqT^Y|F>PV~oc^7qkM>pfTT$N0lI%16>qwMpCM25n)$%KP|} zRsK}hNFslnO0N|8W)2a^aa%u>UIVeFJ|*y0{`=d*ZuWlxM`3QnTlwz`&*ME*2sv23 z!65>_K$5+BZsU4P?$NOm_N3S);OaH9&q3R5h*}2j=QXd!OfaWTIF07r6e4fBc$P|` z^yc3R3WFj>`@MN04BI}qG}$-9n(>RM=$ydTPZH3gKIxeXjgqpsON4_;6%O%!tD}W2%yn?P|2|qH-o_uTUZUv=inbaw;Q|2mwM`F+wV*2EhZH znS8x^RllKD{b*#quvljF#-VEWvVJiz^%40Is;<&C{)Y--Eeg55THaC>bG`MQ$kaKw zwK^^8uY0K!OO?LKAp&O;ZLbP=`2`2MedX8hB4bySU(llN!IrZ`Mh}r6MdKRx*_s+qmwO)k@@mUq)4S&yEi@n@+H0L)NsG0_Q>dAuI4+Dui@_ zh?38WW|&(CM_?Sb%E;3Ws|{gsejqbgEAz*#l;ZH1$Rt@Q1KmKwAfA9&g$OIR9)mQY zj-s+GL*1*X5PqQu15J)qv3x^-kXGD8op!rxbQ{KYbd7HM`a&s}f=7x@FTt}kzNtv9 zJ>FJdYFeNZ?ZVd((XO(@WLSYMQyoP5Sdl{nrqlK>XG~$!y~b-Y$~eBdJSiLelk5^D3lOyx&X{16qwPcb2V$P6T66ahk7k)w9R%|H*0 z?`Q^^0PnF4WOBX(bhCfemf>1o#J||`ivT?@0KvO!qDduo8nVs|Fe79MI+a5NW}Uzo zNSQ!8@cG)bPbAB~6`7en0?o9WQ|j<3U3~C949$}9BW-pm;3$gJ7kc(LHbm=dI*gXw z4#68@xlt*>kpoq1Ywgfl#ok8u`%3V+95%JX8@Oux-43?mQk|yg*?1x+@DrH@xODxU z^>JlqpjOW8H7M#m+M+3{bV*b9jd-Ih)!l|hc8!x!cPobo9Lg>WNck^A^I><0T7~nzMvrtCxD9WSr3-u(jU3pEF_#4p30pb&)y-XM) zv=AU<+WL3Mgz@V!9bK%L)!e3R{t&$v?Zie8tS>XHn6s4(zFj%l-1Mi!C`0;q57kZN zveRrNtCOVUjrph84WH1}t=#lg$-^O5n~VoSx} zsT@g~|4N1M(@aPjGVh3(M1YW1yo=fqW(7=C%HunmcTU)oc1moX5<97JWXkJLhyJ=P zo!MrnjJ)BmNG_T2};QD_r$EUT2p4W*^U;##rWbfSAhxmC@5JDx>e!ZQDh(TB%CJR2 z5u*lHv?EdJVl0Kvx$bTkuq2TOOA=s70@m5nI}=rIi6%{%%Bu{mMJhyu(yS04j>fQ| zq0s+6PJh<3MC~4>6^D}8zUJiaa;gLyyOjU#gRX4s#BIIzs5Fp!)OPRR-o95H!>zNA zOU7fk^)c+f+MCLnj^oxRn)wziu>f9v0R580DdW#Auwi%9i!uBS` zLeVo!ZZTItx?}C{o`5K%6D~E0l52qGPghf&LHg5`RES9ZDZpc99mh`s!_6CwWTVF3 zAA0@f0M~Ey|7K+G$$lJ=Xuk7(PN?vmNwKv~x(FNeimHFJzf;)}h4(Cs3x;6Fv0DjL z68%jZGza=FHNb$MAOalGy2lo z5@smmIAX4$;o}Rcj|$n1)-_3$;=b z))kTiPBlFgD-!;1q-`AQOoQ zI|K;nnp>zHaTCdbV>_Bi#%?N>^J-c6JLmzUeWjAd9(~F zVy@u}Dtednka9KNBuiS40XeS$*-Rz__- zdc!{q&D>nhz<^7;}TsiCxd&y`I z6+(`d7lbHtPYyV6wlL@qmIVC)r+(g=VjeE0&M*&4vow=${eKvvyn2zMjgNqh;RU zw!gNAqWDW4ICw}bgJ0F8FF{L~ALhpd5TatJ~VOr~=hFMV_DIk6ZVZdDxk)se9| zJ5CqkCdGx|#&PstRH|h%cqdha+QqV!U~Kh(`27RF)*sKcqrf6HTrUrozjptTtc|K>CiQ{wp%N!MS;>a8{4E zs&W1gDq)iIzj27bQmgH0VfnTprx2^a3sSlM*!ozl;=~|D#NZvJR1D5X!|i75I^ScJ zoUz~!QRR%~@!eofLYR}tz?)VMtHToTyi$rC*LKa(3yAq(Qph5A4i!Rr`z$Ji%qK$s z(U?!vw|TvnDV!XcKTPE-(apE5wE=e`m2f%W)>0v)>=7mKiLier4>RhjTCwFLV|xFNcghq4(@2j(!g8ROD zeauPlIQQQAn2M7dfM>%~?z7>(XTdjFJ_LRTbUWof|2_=fC+nq35}8cPK~O zZFp9`x49b=)^FIg-+ax8J+VHc-^mv%tIn-u(mVO@E6=Il16|C18-8d{r%&2CYF@XPn%(r9e6gC@ zC8lUiX z%wU1Lh-8C($!^vUjHp?jzweZiP|-X5KbhJ5{lQ$ZQh|-T{I{nxe|sQxu0rR(8J#b( zA3cABAN#T&W8jD8YO-)*7h7P)=6HZ}J?>>);dfJAIvnhvOTv0A+v(wn)U(0FlrLV_ zr?QW>r#S;onQc5mb$PDr@(~^B@*!}z{p`K0>{W?7wNeJm|P0t=N=(9q;6( z?6K~z$MIjis!0z{QRhhY;4h*zm zwYSbz`6{dYFY)w?hLdi?%Ev*&=B(4en2>Y!Q#k~l+_s;Hn=bmCgd65+ImdSxZV#Gu zcT!LX_Y{>_4b7GD6i~Jwa1>qY2lL~NT*^LGz&@o<`kG4_Zh-c?sHx8#ZpE@+s%WpXCsN zAtQL73nd`8zO7}h`(CGbuCvL#60sjaQ?JF2pP)%I$Bu6Sjv6~&;fWnm#lC=UX)7HM z;tjJ5AP;clK#|+Iir!k{C1x&yj!lnw4m;2^wf6xCTvoMJ`*4if%^vD`Y;Wh5Z^J%=YLC-XY1jHV{#?8*@VJC$*&Qk1i z(8yZYIg1J*!;Wyd|E#dX?rCRhk4~ZAT>g9rc)?YkT0*=YO|5N0Tp8$;TA#Gg^M1Tl zmfrYYjywuN&w&PUo8!|LeC`Xc^F4S*ErZXY);c%4r-z?!;LWoX{HthWE&P0m3L(Rf zaJ&Dk@H3ZrXt|i`Pp2x?Ekmi2q4e4BPoX1F4?sjyk_Sz|%-zz0&y|$GJVzb{ zL1>9t;^sj0#i2xawOY?ahyoHvsAB0BMLeUZ`gbYQ(`Tny)(KPVW zwa%_g+7N;UfRd0!P#VpuZ4q=(U~=?!M+-gM@djD?;Mp8`6oj7rRY{uz(id{x9bVnb z@nl+-J_#Fjn?2J*&1HDYEM>j~jjV;5i>VMY)Cgz$&k8lH>RHQfe1qr5*)Eb|L0|Cs zHc%5XM?N99H_n!^q25zKZhsPG6V%z zJ*|4EhoWck7Fx>wTQss3ik_iD$WSDl?>{RPO#naDgU>7e96I={1c+#+Tn7ebM9~o~ z+$_hNV(E8rjywv&4O_1>T`;4U zE`J6_LdKXsqDi%lG4Vi8^z=pxGQY>$W9fmv;mD&P$jny+ZH`9YENS6iLTkG}KtxlP z2G5D5w#|;|VP-DgFiVkVqmi{RGlL2t!;EmX|Ew@`0QbsWsa&RC`=0DQetSC56EfzU zhGy6{<^*rtSYI%AO$$J$;*GQP%?%uR6a=7U!BRH|tuGo~7+&=^Y5gsZp9mC>6^E33IDS~6Pui!k;>H!-_aNRHFPwZ4-nB5@WGQaPj9pUGzV{wr3cR9$fF$Bo#u28R2SChMBgX_nbWh54+@? zq&#on%YhdFEg>tP^U=)ORz3k=JhVRPuDAzplcg)x(8!uAic>QLKa#E}P6rYo^Rc`8KY!c2iO1^^Mm!s^f)kH z5LUnwPKlyxMXP7OV$>h@AS7-f;S1WZc`m;q-kfbCUe;QX%~06J~yL@+c-21PE!xZPXHu zSpk#B3tPS66j*Ol?voI&-nbv8VN~;1Xp~B0(*L!kzOFAd%p7-!L*vPc+paPJGE5uC zgDoM8y)hi3gVV-&jf>n`k^HjukeuBga1;{j^W*MyUGdt}&WGCsWy#A@)QngkK;+e3T(p3_=2gv|=A>N8AuQr?cyG^GoGg!Rbk| zx2$`TDfmC!Sq;ZT)%xk}K9~FOa(1g}_9Nn#o5e356Tf_d|6+8x`Z|6?TVq{LT!Xrb zHO(&*mA}vKL+xX~-^b14)`4+N+muk!h{yGbWqBtozhL@pJ}pKzTex<8CfrnCN~Nnw zc;!AdSWcCO_KJ%VFXV`UQM#Scq4mvQ^Nhs!z7l*KEt}i_@wrSD<~2FD*EgeiG|Hdd z3pk2&^#k}$9%Ek`GyH4dKN95Mgg2w**MaMs$Ty;qU7{xDGVFrbs*`uAx`B!`c}Fdm zgUi|(pyF&Y8riyU_WR9_y_slE_Q(7`%$_i=qnFE0W@Fyz?@8uU>Kk&u2XnkRZ)7Tr z9$0@ZIsgfaxIv2RHlj{e`sZ(`WJ^cuJ7FsOfkiz%Z`r#dJF+}(N8F$>x3fWGQo2|g78Q&#LEHpnwj*X7g^n4_AYQWs z+&C+}@f51yGGv^@Ax1$-GP&7pU&J^UErb>^3TU2;@jrVu;HVK}8jl!F)AfL{6W_FD zz!*X!YXQTdLdbw2{3levI3bJ`u&ng>*p5~ib4_y|c+cDWA>}jBrFI05wdmlX6~loq zjmt3dDXIW6jC`C!jDj#S$3TEDp!^6ejuudUFd}1DkL}r~hy4#Gx+70*vtI^4HL}b% z&uu_X*BYtc{UchV8DSY??n5JMG3FjBgp4u5xkAO5o5NTEG3KjdIvQgp=TgH?8LEYwr+$P zVKO5-?u#Ucqt(zN$)RYb%%#Z^z)@6jCo|G^J#MVRw{00WUV%o|;>Jo2(YYnDS$zMG z$H{$K?*MynDP7Y#iDt!CYk0~YCa(S-=!(AyZ-J%aXQGk2uK3(F@VO+#9t{gt{fh9a z*U`+_s=hy0-P8+R`AhLuSStSxG;)CQgaj{Z1d%QX5OVosBDEvT3aAmj)Y*lLabAe!?$Z0G=7an)`G?_IYj3Q zglQtZ8Z|!fpV)DyX}ka+a3!;?#xp&|L6Fk(@vU1bJqL~4b){#?lxkG_l<;bwgl5H7 zZBYvPd!QEtC*UoxRQz}}a)9E5Y%U7|kroILvLN^-HAuMy!C9T%?>4?rES%?*i^_t* zWoTbDI$HgBQ$!D?ekE3ZaN}9bEa1=@EQ+TFm$mKRH%YmEm4O@nco6yKw$heV1bgmqjF3JJ3%8!6C zxH?=@`6p;fY*mI$=gq}}K&>CdH*cx+18C%~Ydu@0Q?uUVpAW6~7=UO;{il!Wxm<6p z3wlYg58ebz&0lPn=7fAMO9GJ`2oSO)xQN;jwI1e5$W$7z-|qv{_$~+7YSS=G$wr0(VGY_r-OwQmgyT3wV1dxN{K2I0_1{-2 zWYE%RNn`*`m{HyA>42k%Q=i9!irxo3s-*EYSVooYXk;yuoK1z0QAK!EsHk#G7%O1q zG1l3rGQJEO{Ndo5GST=b^Z{4$7+tM?v?-9V28(%9C=q|s*RV)&QbPp!2$g9WLH>tB z1V)e!ewdu-_SzRWzJpdmiyQZ%X)=nLy#sI*N!%$$LoT;rImP%UzG2H?@ijEE7A(HZ zAv%{L+$n}x<$r)Nxbdc`{5Lcuwkmt47=c><8Q;96)_+7JcU^1G6vM3dvVVovdnrJ) zV~U}VYX1}?Q1iuj6D&1fh(-?3oRG<7F(8ry0YXkOK1g+5cZ%`n&K3hx28#Jq9%dPE z^g=y#(U106V|X!F1bL^LGSvg@_xprN!XhR87%GAk)o)})a1MtEtOz=nFs6Ds?kfr| zL5rcKi;K}r8THIo07p@!K7&stJjUy@h>P%zTLz8`(8yZgIG+k31BdXTP=VvDFjl}U z;%lA#T+s_BwtXi@eY>c?1s%ebI7Wvvf4gY8HUXx2PmNmaq5e9Rd>KZ*!XZXM7@4hg z-xo}NgBC^$Cci@SWz;tN5a6i6MARZ$7xa+wG~NWukn#i?SqmwTQ6XeV5&je^q}(0G z3J56^J9{)^ai&ml%KQ|1wdjj2+Ntyv|87ro*kO7$2oUs`lVk3A>gjj@b9 z$D@(8*mEouLdG89W1(Wt;xJY~?0KNGM>fX6m3sM1L0J>M47$*c0%o--#5DI;n5IF^ zKkReOQasiWS1zHlE#u0?93n8TbZ}vGg6Om_hI|UGh89CUj%LXmL#_oJMG$4aU+N5+$`7Kh-uXL5wHa};xvtaf@Z{4WA8@HAf+F~w{EHQ z18C%~EA82cX;gds3!&8>0}!}+%2sXvM$90^_rY6WsrZZSQk;;-Who%i0s%rUiC#qQ z2(to8fm=E|4Qbv(lPU}=^}sr`zZ#v5eh&>ZNXa{fN?;AzAKf@1D}m!UL|`S*xm3}( zhX(rXD+V%XDYQf}fF{bQX7+TzQAAPip<$Z2ZOeinjc?mBXlzF#YiZ(aDufIg!h=Eu zjbp-C0YT$mom~!PHS6vnr|c*Zp-G4uAU<|JXn8H6xQaZ*F%_z0D889Dxk zLj*>S4$dJaHT3WWj_;rq(E`W4Xr7FsX72zTMUy%_D*#)28V42vUyQfGQuT#sXUfB5K_6#%DKcv_+~8w#sz3(Enu9_Av#wSOchDhr0{KE zO2~@fvuHwW6&71)JjUyZ;nVoWEp`3`8oBE_&y=aur1g{Gwf;Gp6kDx(`DpfaK-c?G zyaASaKa55W(3_COWg#FE0s%r60%uV>;uZqm>g*c947RO+o#bj%uu4r3dkGt#j1E^n z&h)jh<%R}fmb6MqK89*w5m<^VlU@Ij)xZH9BCs0hT*8>?>%6ZlSc4YD?W(-*`ZzRO zMqRV307p@#E&_?K19~7i25*36AUO(+tOb%+Qz2v^5xx{Ekjx8X1uQmB@9d1i-Fd@~ zglZe5e48-e20g=7Jx1@VpNx(w0UK&8He+5$RYS&?H*<(l5MLGq(%_3UA3+PHMVkLX z^JdgK`yRkiBh7)lWC`qw9&K8QhArr<>wqCFuHW|Ge<)eUo;sH z*H`0o(W1#1fWTFG=4kR4AWPB2{mjv@Tn`@m;9Ir~9xqb0mvfGP3GL^e+|#r2qP^^e zj4K!Q^bCDIdlmcw7j-WT`hz7wf6)5+V)rvggDs!VuL`g8EAebkV9%bG3-CnLJL_L5Hiv{N)1-->PDio1wt>pxa2#u;hT$m2<^H?zatz7 z1Jk@mH7w>J*HgVnRtfLt5P?-f=hir8Yu)$7l&_*AdF1&_S_dimZ9a)BFIvJXvchGCg7+ML~Pvm zTCWF>#rW1OgU3QNvKBn{r$Wf!A-pJ5@c1Xym)&~g$DKXVHD(}}@!edpkpt8wWN%pjh*Us; zkP8xLQ9I%m0M~Z*YO68jVlJm{vDgW74_^Rq)0Bi`C;%3LxwwkhbsSj$9Kaz) zMFGIN>?;7)p!Lua#BpejjFM(o0gj@FTL5sO+*V})a16dx%V2R78d(b#ujUXPF8~bs zmcWvb1wbCnhpoQe0>G?t7T>m|%7bX+uB+@R01QfBA71JAqdBov+Ft;e)qXF&eM`0X zqLBmCCS-3}0EkpTfRF{iJZeYW0^qvNevueoIk)CG=cz|Be+GTP#U!Jf)lUk&2+*)j zNjruz;HOm9Wf|~e4lx?afQfFeeU-pVXjR-HBKKMT8%>i@*zE5BN0G$6^tvIJ+psJK z{)uncGI0DK8d(b*f8h|FD+b(4ugxmIVn6KI(^Osw5V)GyR%P#{*MV9u$2V`ObsUY{ zb*(*@UYqqkGrZnsplPwy+kfeGpypffCRl2|8I2sEIU%dd!ayVk0)#9KenbsaZej4F z&aMnB?yr?{nRKcOUlvp4a%z}AuH)?KNv4P3Md^yNXz)I?6B|9SzR^@Lv^do$oDGS!#x zj|#1Nqc2R}jG&?28+V#$YAT;>H00(T>`5BH$=; zxNDJIC%08O{g{Vu)iOTxqLH=uFp~-)7Fy2esvLfMzxpfFPOL0>})Hsu>zl<7ZaEMV5HH0jl-uoiRg=kr{2=Zn$ zUFOPTC*Ua3)Wvm{ntoa|8OB>+8BKPfk+o=2p+d-LBD^V7G}#iy3aB=Y>Ton+1C^aR zccTjIq*bEHm!Lb{i6+7@VONrwrMRpintYMUyo@Gya){9oP5iz0MUyAdvS`ud=V-dj z(d2%>QKWIBiN6Q>+~rZc1(wm|VKlN9O&+2`$Y>(GDO5DMJ&Y9)O@7tkU6pJTwIavI*yDX2XKhM7}CjIm8{FYz_A9chZZ=FLvv&f9IF6F z(Zij{aG~5*uW9b8JOLUz!F@(*7VJz`LNa3yQ#vg zau(mVrOJb7Hi*Mgj?Y(H^0JRC(TNVH!6%Zig zx089)jxZ~r0QgX6rxO#;bIR~IS1F~gVEznxfs0B;N2`aw2!h$i%~LXup%VBhm3UbR z{FpQ+1~+y%VvC=aftx{oXmuH+D-p*)!A_SzRizKB*u z%Nlp0X)+3%y%}&6N!)Fh4Y}NguW2q9+>US9GH~3AM%DtyEgYhA#euu+(ya2Y!5Ca^ zuBrS>G$pnwd$(N%YW)$5A6Xe};t->uGMKLP-B%y%MysM_jw+fgqp;aD;3&e>Mdnb< z*QXcf;+waOA_X+E7DaY)h|X0BbHsHA3S~aUZvvA-)(SVGiLq6DKHolT=!CBO4R|9g zb-xac+;!demzN*3(*A+)+J6sCj;;0!x%L4a(e?ih-VjUu??odA=ub%fvU(5+ga9F{ zhf}B>ajS^pbK(W5N^o5238R2!yc?g;%qoCQvfTJi< zpUmTj>qBn4*EAOs68Ls4!^O+c$Xd8Km_u}~OqeDztWo3bU`xpQ;A}J_wi=6z{=C-f ziQ$d-)-9FZhDPqX(z9efHL87ic(pG>vtp~Z*wXCpfv)%^cnd5QzZi`ipg19q%Thq3 z1p!iHJwTOUZ(gibO{%zjDA;NYdTWJcD|Zkq+q|_=ew$y zTc+e9Lv`?NssOS&_!fr{e(22p^F8-^)PYp7N(rxGu#mCHCpU`XlUTE+~u^S*HMIkYZXIQa~kEps^eAmAv<)WyC! z)qXvadGBc zu4%4nJ%YEwQu&{tk-M(^0dl249Wg%jr%np3{v?3Fm0Y&!FEW1x3G{&RcuOojUpncZpaP^}})kDJ~B{><& zhV@jJk!8a=4lx?ahKX*kebJ+cRzk}iIW$d1F|%g@jv`6pB1_kSv~-cdH*6U!2GGb_ zut;-=&J_xci!23MK9xTJ#)Pa8u0>N~tFm`TWn*Y+T3>^2-cswU(8yia+Own5JgUDP zUhi+AX|dJYzoRlx^RMGgu+;o3XygFR37K3L10p#PAY?JHhT0Lg82CtMKZK0kJ>-lh|X#)c-NpVf~ul>(MqB7{{+?lF`DW5H5fmFzl=EC=@G5Tl_S7|;9cOA{|gYvJ}# ze&$$#Cdnvgb{^m;g48GRsf3WqZT6bx%yAjMS<6td6pgHfip3nFbEUvkv1VXW_zhr6 z$U@+BG$FPM&+sf21n7JkzHv*PPemhlUFVr{g}|is+rw-9HZ&==TKD=E1_JcH5O08` z-fu=D2k1@6-?9V{34s71OMsU`mH_v4_N&5Vek-*2WT|{n_y*ctjlNcYt*H=bxdB4l zQ_cR$h`S=cO7$991AK`?1l9nZOA}LMzkPMUGiWK?u_5b#U!aLHs+s)};HY(gxUxsu zu75yy65qCE(D*qTSqmDEQXyo}5FQjNXnZk@6|jgnqqB>Mllfhcg;B>Jx_<~wjjiqn_~sU#Zs^)yk2k|o`}d=f1GFb(dRZ)p zq(Oj?GmJ&ljxZ~rSolL{w?t0Lr}DX;BwQk`UL5@tbORTwj1E^n$~3{qJJpn_QeeLi zJFN3LVULoI3{}G8RI26t;%6KpuuAA$@|fK0wl8Unor)DgD-reu2wXK~)H3@gAWPAt zK8**Drs;aXcnK|0-7;YO8;z_5jDJ!gWWW&q6DnZ*G>jDxFrMpdz!+b4DnqG~`dwlz z+DVNb)`kn98rCU(YKR@H(PP4O9~nDd#~}h^M+avZ6Ww0>LdPIl6)kl1qiHeMLR zfRHnZ*HSy;&LrN|*>4q7O66Js-rRKZrRuQqv7%=hHbNQQ&AfrJ<;Mzcl53HYehd}C z3skygMesa_2&@P?moTP!I_@h9;%G6nbP)rHcFZTH1CFAKyX5FGUY}7c!Z&UiI1WG~ zYk^}P6+#9M;X|PU$KR=*>;{hGI{RYg*b2PYt3HCa19-&MH0Fr0&ba!JDr8EvT&kKW z7L2P9oDbt0bhi4dO!Yv^83eOLNj8S; zzW}Vm)x(;n&F2t-*}roMVk~snm-<(u$#=UaH#ofx&5%*QYyxl;HR==GFAybtrtn&P zqs9QC$A#CRk+ryRI2A(11>rNH;=-ITR=~H1Pj&W0#MF{g&ey82$k3n3SCk0xR_F+q=<5F+Z-=G& ze?=n)s82}$vVst)g8(6C7Q3k(ac36OJG<66&dC%iHT8C;qi3k0>ZKJuJ!kLD?z58r zvY+^6toUU-|HbHSb>kb?@K{zgQ>kXsshp{D@ceO~Ynqap8YM#=KJgF0Y0yI2ao^lJ z60G)4I!3lycu;+2x|lDe(p7jyvz!_%r%FRE;t?EiG!zmO1QouNl0xg`_INxjFFR$} z3@=_QI|t32QSa<2fTM`zUPJBb=nmM8@V7*}XW`pz8BMk}k>7wucA1%&1K&&nJ9(Fz z(>YS-3JLc%YNOuo23x!(gsq2X3r%7!M-yW!wf8paAi*!gw{9u;C1_;V8{g5SrqfD$ zZlgA;eK%MZQti9Ytk|mUzl}Ob@jLJqSSo%S8aY65neA=IQ+@J|S}q5dld@o;zez)y0Pwz#^RQ8XeEP!2vE5HC7HzwNIGT zut>>8jlv--^Uw2C!eyfQyP!VkU62m0HB49f?yD4HGqHNOgGFYJMF4>-uZ)srrvQ#3 zjQg^cVt!-hA+8*-Gh%u74G8h^7ALqLBmiCnSBA zvBexnBoG3GtQ-DHO=E7|u(7js!}N`{Ts2cF7vT+yN~SQVe6{!j+I5Y7SARACYBA*G zU_GnCs)b|~E@-Iqv7br!*FN`;`uOQSk1mDRPN&eH zWCZwv$j{J9XbI$}Xs(Q6X72?YMVI<(*s7(aqH+4*cq1(X%#YB>T7dZhhv-~k zF@2z1EK~zLV&bgOCB-;^Xh#vLd&H3#k5GE4yTpEYD=l532aO!y5`=^ybB+i=1PGaP zK120wH|Jc}+5IzPa>Z1?l4wpsJF_u1nePj#RWq={I&7Myx_{Ki4N`)dA=#Wjbr+dz zj^_}8$)a*ZnCRd-))aR_2p#uDi~G?^Xwl+6G*d<~vtIxlMU}d^S4`TjR~7f* z+qR4u-#{a4G2^QoqI20`me^||`SNM~JlKO9b(+?HN3&w9wfOkq?}4uPU-1@LD*h)l za@Q4~EBDF-s($e7(5fE<5bc;@=p$S_MPurPuKW_b6_&~$h(-=jo{-#SeIU{W0Yc6o zZlt=fJA?RFhi~~fNvtI)lZXMdzZyeKeJQUE*wzclZm%?c8PmDJTG1;menJ?_d*|VC5_ST>aR0SB%n1| zOE;}JFhk&v`WiMVE^C-ge3Qzx3?yIU5P^ZDgR_Z=Zm)giQ{)1(H?7bx4Q8iWH<4*stFXslq_T@3@)O&k1Px> z;1HvsFqr1;y01F88Lf(zH*P|6WfV4h72qhkxJUE6*6Yg;H{x5j3?Vn5k+l$V9f#;# ziQpd1^D^es`$4b>SD9;iKY-@NR&VdoJZ~R#)xU?g!BX|_ppm<-y60$~mo=aA`^*Wg z{EKLAY?b#P&GYs{SN~slJ1o`z2O2p*eL~KcWrIi^1PEC+oKNkDTQ=O;*~9(4TVb0wlENY-KN;$VW57z>9Ln_{SvMTT zAqaKDitNIZdwN!0wD&E0S7fhT)YCKc`RrBj3mj)$67&a7Ea1Pm2L8kPcErZP)IWj@%whKMi z!$4m$nJHwd$)qoTTn^TTtQ;=GQ#m06d-Tc$IKTPM`ZzcSTPtVw8ZzU>f zyv3H{UyMf9GR;LCqJ!0?*GnqZGJL`rR4;qI3oHuhBX^*Av5gDie5Bc5EkN9cx7gB0 zK8r>U@DV~OA*&G)rU($S8rjA>66mSz&s_Vjb2s;{s}<7hu1{89ur#I?6@LM{Li+1- zXpLtQnnflYu^J)G1$ zJ=F6zJKiRE{6t|)hmj38o5CSteWdAg(RT3)O852U*M(OFnuv~OL3*0Xk#MP~BKklR zMHDH4siPzC6o@)n2qVYn$f2dlt{B>!14IkE;*6S{k75J9y(50YU%VfK`Jsw;v9oy9 zgpF=^9v(7LtY>rNcDTlyXC=Sh2{aSC!(Rut<3%N2?H$(~9n^C--Rl-ScA_A@0wWvl z^(79GTo>HRuAGSdYvOs11?brUe+id~Y9c2#Nj#DCP5t~F51*)?pTfv7`f+GovipU$ z<^a*c?zc%z#>ZwVJ;iQ&|C_dnw{#~nh@rUxSmG>QJ!PWyZR*|KHenD$Ga4`T7EB~@Q!~@?z=@if0wc$0#-T0A z&KBC214Iiu+Zg-Zx|956dOXYtwWsY5%Ty+5bhBgeFo~i(nj^<{v*he)lY07{k@HhC zrt|z6KN~M4v6JD?Cs|WAEoluNGLiiXjBHraS*{S$l0pp*r6o1}(a`ZL`m_0N{s5>Z z(YshZJg*GD4VRQ^N(aEEB=a<^cQ>L&O+WKG%B$v$|9RT>Auz7fsTRK@r4NQtWW9*i8L3Wtkhd3_!3 zDdGSjm;CmDUlHtelq{|SKzy@5Q6(pI&tr^D*z{dd~hc} zo6cv?W*@{;_O02aNu+PrU=#D83Dpli7{5FD^SeEVh+V&p-+vp5Dr9Ju!127{CJ~5?qFnh5BSG z?&A>2-I&?Du7s{qhHd(j8c3J2L2oTdXC%%X2V}r z66-~s`sIgaIY09!`G4?=5-n#R8p%eErt$ngJVqkxKZ21BcfEMJA3&vygOb@qVF^sb?n)hjUxS|1I7?F_XW&s1HF6q^9HSA3mLj`SXi5$cEnN5;eq14=-r>8}Uyj$nbWr6u zw}BjaCPojs3Xg>-x+^$xY!6D#ZYBkp$90}Z{poxNFCnq>G@31xq)an;01t}D>wPe? zVJ7#uLP#?S)wN-n$@mk~h3;anWy1XrD~M;0dk?ND)l{}?U@A&RhPk|h$3zt2-#K!u zxg%kjTp zKB#h>*FcV8DnAwehM|1T6+#+HsILvnP)6DAQ@_b-;o0H-440E?DO)yBU@aNLRQ`yELzLbh zIC8A1BskVi71`I%K+RV+pX<%)ECw+&6YY+Jvs%x~be0)-Tts@O!pMfROyUs9b(hU* zI?zWvO%F?0T%Kq7BDgx#v%JysQE~a1x;PAvkEn}7VB{EGIJ67daYFNPfN13idwQl+ zR2OK^_gCUaU_PiyY&61#sTken96T7J?ACJR*lv@Y$xP;{*DYDImaqB~dMjSTCXBFZ zR;HocghxeW_C^@lFqG?EA*7*%`f7rqI6%lK!q=A^Af&Br3qJ=f${9q#UQIkB+1Jx1 zFBaRw%&V}E(z0hNl&2~F!HC5=wbk6J`|?-R2;aG{zfoU{MtMQX@=oI4T%{-9N&G8^ zh_$u^2kB|)(yDT*QcQIf3zc-XkSS^Qw&^^S43P%eP>G&58AdidZvux%uJ28)6|A-^i6)K3EFSDsHKcJk zTovoto-?J<@D=%3Y1A?`m2oH@DNz{*!N@IF#`JWllwQYuqgF9Z8)biO^ucwZYNO${ zD;90&xti+e#bYI^BL^e5TpeT6xcJsXl%&i&3&|G`)_vy*k z9wI?g2lMd&i8|NI?& z21ahVHm24J7IVdMzP~g+0#}794eV-E&(u`LIe4T*WvqpfTds`F^?IdNuCcnu*Zn2( zRk%DH*BtuH~f;c(Qq2)ZK`G$JZ_?Dc7l;x z?kDqBmD1hWOo82?Ds&Zl`_h#x+deK;E3&4V75=J8!8M|GA5b+7^EOp;1|Bz2HK)PI zEmzH?x@v-Zo0>>2^A|}KE(uj64L|)=Q$1fhVYmM~l{8IFT!M#5)Wk(Fa?3R_r(Uf7 zLb<=MuUM+E_S0Qi*JtcTd7r;R?tu$LRY=1R?Zhj@Oxo1TU3kz$y?h%+Zn<7I4cFR( z%VECsUPxIN-(U0B%Byg3s9I_Gu^mGzF$tSGc?A!csFRmqOzrc(g=?><=TiTp^Rfnu#YoHEHzuOQRPq2~`@{%&MemY9fb+Nz}wD7`f$|*h(o@ zYDKzhb%x#F3oeBFE9_FZsNeVfg1=5a50{CmlVuJTQu`jJC3RCfpT$EbYG*x++;Z(K zP_?tFRO}CK4VU^WJq-l(guj3ugKI?<&`BNwip$?r(Ia^LL>2u2MsB%^LI3I0-91{Z|tHGGd9@>6b+BuzaWg9k~}!x9*| z<$9PODHUNN{)oRu&Vh?W)yPtOpb?*=v@~K`evTghx+Q(2X#1%M~=eQc8ERdq&xn>^X+B`q}rQy2b2r)kYl~bp-!8 zZ+-6CIUOCjU-=8?7jS{7!oeQNHyv49%>I-Dqr(w5gZ(VOFa|z5EMCj?s(5z5;SgEJJ^>|XXc$7Eb zE!z_;gij@*9l1Th!5kvK?q{#)=-B@J_2;c$kh_xgiRJ5aSFoR+yK=X(pX#Vev8z(b zWY*`dWB)VwOYbk>e`%xb`OmQMXGHijivLu{vj?N{{oR?BS@v1Y^~={Us1CT-XqN`N z0+u#Fzld3oqHi5F&pI4y_q$|(rWgvdu)xf3-!psX_?NmgL$>OeW-`)?ax=TeWhYo zrd$qo6snT{&Ax13CeQZ05stLJN=~uN?m~4{5IXp^dtW-BqQX3oJwCpQ{p;jVgMXbR zC%rRQ2vxK!_g(f6fo-< zp8UVpu>W4p=3v87zsml=(^13I&&yH&%O?uvsE;MvG|+err{}9yJAb{ zgK=n={z^8Vt*i_FxxO<}I^P-mPw_{cK|F&Q?W?XemPY#uhln-W1UJ7L!7|paWyf!e zav){{x!u(m27#Rn)~1+yht)};qdGcRE8{eYgC5H^a0{1eM&bu0UW*QckwtLwDzJk? zB)4(ZxP`$)9~4SscRv;gc7_@3?hTiN%I-wYZas8!yp6r& zgLhfC%dqQuu@)s3p~R9DU(lO;Y_YpPpNT2`<8bMXcJL@%E-QPv?=T#NnyU8o2}xn6 zk&}o@P6H3&Q4!ta0gmjzZPP#9x|LprPWJXfZ*WnyHr2~n*P8!ZEOgK2{};Tj)|YWj zw)xY?wiDK1+ep)F9&g}b66t>pMmCzqs~jS^VQ_1^PI}VW)%|v%%-zmgD6<(vGp+$l zp&Y=c2aB`E2ql`QsgzCeIEhM`2_v_wQdYC2^0HkiOZ}B{6kI2213{G%&C^uMVmwZw zQVxfaTdtIC?4Ht>?(Sx5t=8_d&R;46aG|JDIS@1zB~eo=Wjs)#R{CJ%mTM)Z|5S>l zt{%HoZuXbTm*F~5rGmOjG*440H{fv+mGT7`x#ddP(r^{_)^^mDwSo3&f1Nx9SBa_< z?bGuOE?+veEKQX>iAPCP$rCVgj7l6XApW`N!{w$~{snJOHKheTB2Fc{fTVaUIOgro|?Wg7lj$XR%>*>y{jw-Syt+nxT;33)Ggu=?Xa3NtA}m*%b!zV%lg6F!PZx03NR<) zM3HyrR>M`Z(waM+;V2AM4-1SX?o}D>-hHP%UDI@W@NkKylYx;9(^5))dH9c(6o)Tmd7uTp*K#K&1)&OJ9|xROt14eGS9A>cR zk5hfcayEFBl05-!`4GvL+k1DAxeTHiS1;y}(eSOOfd9w?f}NIJO}Chh$4ZpPrZ95L zQqa4&g+N@@?o3O?kG<)iSBiDFp{Be$nmtfR-d{$g1N z*C#Qt#LXcCc*sPtlwstSi)CavQ-9I6_I~Yc{<63kt^`#UyCMTfkeu0CzKjP)6u=EI za*O~Rmb>JNS-5=S03lb*4s#u$#ERM1lU*?zaSD5kTz!7+53q=>3an1#&#%>*5_{cf zeRVzPM@?f2qfwID73Ucx#kJ zyM;Ac_T=M=VBlZ3J|kb48NWmL!psEmJ5l^j62Fth?-cPnRs2p9zthF<4DmaY|H3cM zyzeSvX+oihy-esgK2fk2XLcBw=&Oj6`U}~!`ZFEuV+xGhaz=SY`w&J1w*F_gql37X zw3legnTqWN8uov8hB4Jc8qB>8WMN`gh@yc>_u7v`#JX34@6k+Flh>}4R=|viROO<5 z3a*xw)Z8+LqcBsQ7EC!hdE)r;vgZu^_{2fxG#J?!WIn(l5?qB3Ur}ku`DH97>?|}m zufmm~a=t0&+?Ito!d`+$L1g|S7`f%lZ^oXZucX<_vL)?|(a!k${Mo+;t`3#`Ih_5t zOiTsbg-1eEz_(%K7zH>qe>p#dZNvdWUc~I}nuxfFc{kblVMK2^n1C-_A8cU~zCQUL z%K-B$tK7t!`TEqrj>hI!>*NsrQD+#D(wZ!nJny*HSq=?<=Me2MG>qaoYtFI7jwlaC z-`Jc%V3U=V%G_9nqYzRZ%bg>nN*q>>2($3R5^Z7zjBMD%R1T5ch%g~+t~Q2`VWD7W zn!)fAxFA%9Cr2iO7@im52Pg7;7>wLey@oWF1 zGanvS=_!^b{~cFZ$R__y4&l(`oBsmtl!e{F##{rLg#)XOFBbE=bt`k%b8y{_ZtzRE zURLUIKV&!xH&yLP;gG*hGa(U@oCSW4heY&@pK|0_W|QmivyC!zrr6?FwvtL|Bi-H}mrFKSRd#doZ%mAKr0=ko_T4oL7JNNhsQxN88`j zA9~Z-T{WG9{1v(XkSUU6IxHc>boRkRBAU*g9JvimXZP;;L# zNNy(AX*@O}*B^$F4b%CMD}*$iP;ncU>5QpOI7cWG&JC;@p4YoyfD1~UaJI0wKQXEu zVG8f_cql~SeU>A)fyqp-^B89?Pxw>%7+y!Bxop>%(t1uNw~yd45xM;VjBJ?7_gx{R zse}sKFimB5)l`P<>}@I?3}R?z>V~Gm5-}#1f5Y5T_tAfsBe#*M?0!W31k@&$o&71@ zVaO1N)apf{r3eTyf3RlyAYO$@XT!P0zl-xxe zxecs^Pc4xp2+dLM@h9^xyof|ciEkK@giIs(HXaa>)jMHi!$|IMg^)%PYHPzX5bj zD2<<5Y?+xn&%`4m@;nVjHq2(SD}*$gP;DEQ+3=}FTfIGnmBQ0wPK2vT^_cjz7TeP8 zad;d=$t~r`ZD1{YYKg3IYL4_DyR0Ujj`H7dS*eZ^Kea^D5j@K$bH9ZLL=@pSIC2|U3!hpdMTnbPe(O)~ zZ}4goJtlr?v1MkO%?o&BM4q38kqxtX#uY-EO{lgF%WQ@n(WSn0x%sZ%1~ZF649(m; z%evYZq+poJ3_J*;*rsyiHZYZmEb%xaS>#XSVR!|JMlwH+#(Fj;pNHVl5cxb1MmEf2 zKUWB89-*o>Ec2Lj1lvZaXHB-uzvZW`*nWi7#B)+P2QI7Mq@t%|n95o_AfgESIdU7A z%4S*->Zhc3HFT>#y*J_2BpQr;Qi;pVG@Bdo$cQ{&4GkyMC!jW`6#OY&jn|Plr`R9iH*+#gr3a6R$ZZBj zHcVxOD}*$aP+=REsSI1Z_+-USZeexsoKC(1my&8H_O+BC1;a?bga<(s+ZQ=<8yLw% zmUx_n{M4VupWqcFT8MouC7O-N=a2Ddh+d@?WkH(ojNu zZCHjfeCbIiAFG(jQ>+l4X7VIlORAaJCla26VI)uBQ4rsFtTAJA900{MiOdk!!nXF$EMfvZHv{7Egojo@SIK`gbPab68p_NnTTO0 z_v4`ug?BGUZUZ}+UQa*HQU2sl>FanMiH>5wd1vNin#%9-n26l|4n{UisYG%zP2~0Toa7P0YXL*ev`@pLM|hJ-REmI z>@(%pB>S1sVdef_#Vyl}OUx~;R#!dD`f2h?x{@tdvR&!C^+Tibk2{07lrLRbzC!k4 zSKZ04kbQ_l#ClzV_a{fNjI|-^0+bunD#(>Nn$EI69wX6N_JNTNXW5fOBsVG4G*M3XW>S@PeYz%kSv;Nt zLk_OW5NV>Gqp68ic#K3%bi>Fk*Tih$6ZLwf(uM9+xhHL?syY^8j$z5x z)X920TB1%q10%OwC!2NkWV%+T`U~a$zP@6qlIc!$X9luex`#aGuaZaL>QGg32vH?* zxtbdJ0Uj$+Bj1OSTdt9<O$7JXoSi7Qx6ZSIPK+biSWm*|0SLO%~_)%VI5D52`G7 zBg#T%XX>CIkB+E=5{w+91Bc}=xq=ohtT;f(6}0KDjZv(ibtb!lHmqFfR+i50g*9vy zp#P0C7MHSIV_8bO+f_7jDeXHPq8*mfMldEcKY0=6LYx%x#@TaliL7+ye#CGTI%+r0 z7)|1!a_8?~;s+(##Lr=5!zO;pA(C4TtKB#=*d4pC_ndoY^=Yjvt!H z@kTIm%Q=qTI5T+O$Dijt;gV3#V&le{jqBa;!xOpggpp&ocIer%?T1ak0YbL@Z@L3aZaR`T2?=oUF?gk?*#Xbctw#ZO+ z`V-+IS^3H>WH<^TRc*tJkhD&bg@{9T{^RgCi0-hIBRg=|^oBkqOrE{P!5#t6r&8M7 z_E8q7XHP#DucGy>F_TSg#|(wddP1h@ufqc((mDVm8>V085XlX6lK*TWTQT_m8Vkph z|J&fAP|xN;_zx2@`M((th{*q!VdR$cKT(|jEBaTiWKV`Fm(kDqlm84{5i0px@exn! zzrxBpYuOl<{xlvBk^84$3B3m-cN;*Th99g!F%{Ds?zR1f2>p?{$79L?}qC^CB9*=4|6ei{|+7vk@s)H$Svo+cE)Ge z<51ew{qOyW{~cTqD)I9g4fsJa=8X3;9t@H9U&F|4!+XA%)`$D)2Y3(nQy7Fk++Q`U zW227XKkTOMM%(kBVd2k+@MjeNX^H@XtV{t+v_v&XFhl{2gOOVD%kQs?~8@G3_`zH7-TGO#$s@}o|377*?34q4QvV{w_F3Y+X4J;nt7pcoWBB= z!bPF_K*QSsk%UB%<z3RMEzG-?I)j7$$0 zz#}3mpbR6oTmjQXAE=blT^Va5xXoV!H^X(IYM|kIK_n+r1z*NvBC6m97`f#ts67tC zDwfq>6@SK`|EJ-KQ2B3on}BCyGXE4F4UzdLVdR!GKS`ed?7^wRD&-E*u!Fp3zzzm6 zG&5ks$G|xCK{}$qvj6`Z=BP?!|6Lfl<=ik@9Izc&O=7K_HE`~{s4CE0k8p+ z?;Y?+hwgq~k}0`|PsfI;J2q2EE4s`2>ux2?3ANMA zZ7^-}Obn;#!eb#S?@SokP+rKngKVVo!Z#8eAf)oPcYTIVyk(LbmFP>SqfV-n`nxLX z(#cJ(Dv>Xp+{htfUs#B>jOM>{GIeo@ZS9;XbhC4< zr`UZ&TJw${!z_qXLcV|UI9x9)k-57Wj>1iK@4!3a_GuM#c3KiNEag!=M53iU#F1l} zPVi0QIc6c^J~r}q7PRMU3UA>RwXRW`q&M6|F`o2#uI4E77d%!X`)|O=MnidxL&Q2l z)8AlPV3Enn;I`(PVre!1ym;_Du>MZqmIr$)W-fzh#ubgJn5Awu(P>ZHFpt@I;6(Xs z3M02%KC>42U%m5xTQ8Hy1x#g1C!Xg>=unikpQ--(P<}a6< z;R;dZa+srBqRARk`7$0ZQ7SjU$T3oJxT2L8#o-+703k1mA8;MUWEA0bn^zRq`$WM$ zq_S_am*!Iz*Ji(YUHM?Ie)S^#ZTLj9o+Z^O{31QrH>mas>Y#f(zUitsGc^RxZ8GMjg59*gpk(Y`wo=u;;XMJ?!rgTE)fL$kiRU4y?AG@)!dpFNwyHQJXWpI$fk z-zjpLkoNbO*C47wvD7 zrs8)q@w>VBoh^Rnh~F*5?_BXaPyEj3znNTx0U!N7`%kW){nN7C0RQhb{BZrbezp@7 z`~UcVUmNIW9Q)U>3m##t(vLy`d->5HT~8yiRQQu*{b*QkdaZI9aTKc}wpL+xAm8sf z25~8?Qq#S6#@e%Od6)~KXt`LJg-c|mGxtG;qtGF?r448@ zhNqSIL5agt7mRESPiJz7_)exwQ_tVerO`cm&3>{ z=Qy%0t;zEb{ds;EE(w)qeOp>9*AL={Cvts1j2y$YL(i6NKWqXH5b|Q^P}f96+rK{9 zwm<2}Od(TB=jYYt+35bXBMwE4$*Q*MT0V>tKI+)BuCG|>$&|C@l+)ktToq!z&{^)(@)nWHN2s>MBPZI{To~D~t=SwRxiMr$y00(4E>%vi%v9E;RGFPd;6K6ZwYTdt3ZL8W>#=|alD&3S>zW1j3Ux)p02vG*KNF!^kaH z$JE|*rIcNpVk?*IL5mf6T_pGWi{xIoDpZm9UL)(dn_9UWkDaKM@4(0{*UIElhM!XQ z)s)x$mGXPICRC;PuGFfTn>zU&9yw7bFT=)Xu?p z4n*x703)|tJCoL?(uMBSO17Uqd*V=Ao;}N7Fa@|IRKYZS-H6~VO5&zUR^x#aRnh|^ z$Ed{N$prauLwKXw0YX09@GsAY8*Unz=jXv0LCoFTTM(Ix+k4+c4dWt3f zK85A^#XDRDA|FGzokKW0hS2<1pNB14dW!P!!P9WLh5qH^i%-E7vND!?fZ?bQA87k? zL>?6H4Dt|>$cG7@#3Lcv#1kAjmcry75tzslufNu-b%=knAU&TAco(mr^%Z85OKp=q zjmvsUCaM3#Ln4y;HjHd||C_E5()&Ycd3pb1Jc?KmHs3}@9J%O7%}Dk>+*^EmFo zC`8R&&XL=|OeO^s)=xXlOCI)T^Fh3XL@&{{{nXj4=VV&R{di17TJMFC4J*0Z6+&7` zD6S35O2#Znm%7VqvgID-GUs2c8lHage{eymexiMcHmX3GjWMD81CNKOzQ1wgHZYax z_4Mm!q2?^x9^uXFRt#cjrp}$>`-GX8X)p8ez=#CTfsqY+*~}F}+Dj<24a{DaX40$I zotV)sep0L&p7wGET+k-ii_FHbm(%cgi0bt7U@nA< zNgZGs+#L!tF^uKocq~NKeUu}&fw4^HsmFQBxBU7123|v=r!=@bq$XwB$=C3ph{WCo zBO7*dvnzzOlTcn8mYobgR$tBiBP)cboBRQ;CDlzD+#TYH7-sUncql~8{gxxQftgGS zGLQ3;8H>HyoXQ}EX7X%scSy;}w3119Ohj78!^nn}jB$mKRuYP9!?KbQ#~Vwx%UC5m zz2q3Um{c!mFqwpz7-q5rkAZGcn9$A|4A-b>ld48<@#to_d^{9PH2M0eB6GZqi`QL`}-HlYQ}^h{Wy% zBO7+IyDNmWlTcn8mYobgNqCu@4G@sTL~q$ zVcE*)lNfD%`F{25pTmyw_LU9>F*M`ymJM24Eg558`8P~&m8iXUIdU5q%d{Gm_0Fz2 z%g+9+?l5Gm?l?HB^}I}L*$$73NblA#vSBUrT_L2kgd*FptY!Gg>4N%#@=8_+&vB&- zt|fI`X>jA1Ct_I2nRqBf%`NB1ZD1*rg3Rluon|MO`?L8eyoAI-rNNqtl9OpAm*O!I zX}uUmHmu|VR|sh(p}3l0B@PfWig3F)2MDXB9{8b%vwvJa~FAa-}Mna;4lE{C6tY@kf03veUAksX}^Z!!nq*`VO83(N_Ns zBOA8*7Ke!4TP`>I=#Gx<&tHGu`USZw*caY=?#f-sewMG#&5!$o4Er3s_20Of{fpHJ zVewWJi+Ozq+#Qcby}(e+0tV5HOD|I~=+_)fLRLHY< z)I^0m10%OwAyateSSwSQDyI8i6VVC0tT zB%EBzsg=c2s*hbJu@5?Hm)86FOJ#4kE>u5h!sMdlZmMMuJa(d5c7>5!u9m^R5Wmu2 zD_w9^s9Hh4X{OpreGN){fyq?LnRw(xr7VY$TdtIuT}9S;y3>_(ihc0f{+aJ9{nc_g zTp6lbPVky-ZP}ZO`4k>KQ8Aao$SqgQR$Zk`x{^t;(si-l0{_~Xm}2+`MN#ySmiInm_rg=XJO+RP`L+ z4E02lH}&#+Jb0pBeg`ABTrX3(!SIVE>oxUeOT90bHenD$bGhU<*XWs>N|}yFPE^Vi z7`f$2nI`JR@5`RmpDC@=eC0@gsT={9h3YHIynMw--PFoLJanQ~4u+9iu9Z!Uf~A*XxCG*rEu*j&8?>6@A<;NcTBvl>Qjxn_jFgk8vXL*PsPdif$;7OGyF;V+TY zO|4vuhfdVWH866^wK6G_EtLCv?HAWS@z=?Z;gV2wa zi&dEl`v!E0J#|zr<_9vV73oS>PpUUvDP`Act>`^}$-Dzsh$!5=g z&nf=mIT0=q)p-1#-fUO~Q$xq$X%IEE6h>~jhBh^dXSJS>`>W@paB-;WIoaEKl#?hd zfT^2v@dSvvSqCGxTsIT*SvKwzSEkC@voqR^^9_Hod=0J$RV;o_$3(L>6>=LMHBliq z!^kaH$f%%J`u(IA{H5_MTnef*4)gL6p025hXYg=|ns^#UZn-Ar_V!o$)A{^5+v_H} zR>myz9(PAFh@lyG{U(-%WiT}~3{Qiop$-_iOo zi~MnC5SQ|8{n8LiZB( zLQg(ZQm8l?ro!kEC&0zBvY9)S;iwb9{*A6MG)_CUBt@8VmRp90N%WXwIC3o2$xQ-t z)f#m6_pyiQgWI;8er-DV2#eZtIyeU}sdZ~0llg|LnT?s(vNoH|T0Cl^5c*+cquG>P zA!M@&<>=LHmhdQIh1-0KnyM=I*kX4^v8lURK%Qd#4qREPO&#oRQ#?__s=kSbN>u3A zLt>}IY>ATK)#x0P@y?Sn74iQnNn|+^jGTc&J2$9?X&3U=E*S z)*)_#&a?cvFW?0w_O>ID!KOjZ<_x|XkC`Zf9vIoMsf;Uxw5d>vLupe@@2@lXvx=p_ zpV-^i?BTnWS$#W)+gV{er|?_g+ER_`5Jaq&TuqUF1&@^|(l5cthDgIM=AbYs(r}5& z0YdiD1+H^s5Cyv#xiHyP$q7eP*7envB-QQoUt^TSX#1*R9UFB7|6!X+4%?ppj0k^5 z@gJ)~6Wr)Ed{s>Bzc=XG=BuvSlWUu=aERDOo8VQX*vyJoK!46={0Xs)#t_NWX9@(}##I$aBxzG0d*DG6^|33A+;V+PkCe*(Hrz^o znRLN*p~?i^#41)MwOeC?5P9F^Ogwg?T9(7etyfDhI0lO0JIwH6YNm3fzgjMb>ynIG z%-l_H`4k>IQ7xCk$SqgP_@H88m)2DBpubA)hwDLANyE$jL1z=0v#E}I@tBF~xEn@} zQHR6jki4P_2V(~ac}4Y->v%4%s4hzQ@y>y?`ar?^u(GYP^nScEh)Wr{EsuBp%T+Y; zQt1CUL_1sxjbIsTF0CinH(ay z3mEZur^)VdED+Djm!)tytS4*EWHJsYrV4+%7 zR^5gASm!Dcgwj|neg3|*)W%% zafsMqq4^KeO*)F*zblpc``F&4C$k+)6;+Ho$$MfL%^;dF51OjjgQ5yOJ3|d4@c4*o z*q9^7IzTMPO}|mQnO20jM+^4yXM1&>!VE`_HJ=3U zxK693Uq2hQMTcwr3BC%iBhhyDLI|#BX!^|+c!WfzFN2W{zo~MFQiXJ{ z`sn_nEE>-f{vo&~)DwPBNDsC2j1&I>JV2rx?t_urOAeJ%MwP=`{&M&WT$3S_15eM8 z!y9;jL^-?$Bez@*Q|s=KEvI@jl^(Y5$A#;I5A}w7EX+OG+aG2#h@rVC*&Ff)nV=zw zP4N(kl9&l2w_FnQ>XIn;_w^M^!FM*gGXw1Vr{Zp@B9Nv20yzq<5!Eq{fCLhkt|6Dj zc)&!t91bJ5TrP6Hs03d?U#adVv(8^018_~K^1$YcT6%^Y%6Nc8IrPEEF>-LYHkFsR z;pL43gj_%$1rW`xyRS$liJqKM!4E8+#XFjPhCLsx{7qbZAL@feA+cm_spxh$qtGU-xx zaZMr4CdQxQJ^PMf5JNNjlGaL$3{6Rl#3Lk1Vi=6va!Jgp7fd;kwDz%|zb^KMYeO}Q zhP$%VZr|C{G{vz89wt#7yTZsZ;&2#C2bW{Y?TKRl7^2Vmrub3IM&q-f{+@BVzh1($`&_e_3P8!4Ea{{;_$$oU&E zat!AVJzb6kVRLYRkYhp7H4!lu{Bd}q8$u2*rw7zKL3@4xbtbFKst4F+g8oW2pRKG5 zHigzVffj$%$pcclj%5(ojRlEaUJ1F#L7JxkBZHJRi?|17 z!LW$C;2K$p%-zIrtQHXvWmv?w@uLzg;!YUZu!uW2L~`aoKAf^G{JzQ}!Ok*+-&f#z zQ2Cw2TY!w+Wcelh*hH3Jgppg$@?<$%TbQ19syEY<83Z;DQJJ2mT^n%oHO}b?`09#&~5mJ5L6TxB8K`%(_!(B7N>ddSSfvW0YM-Qgvc{GvjoRP0+9 zlwX;;`r+am{h$OF&B|Xc&2SWgsyl|41cFgPVrNWNhI8aog{+mshNiJFFZ6N)Bgt}8;0`_R|si1q24wu!LvQAewPqWH!OAtZLMaHCnhn|Xi|7!M3&Ehkqx6c%@sl#O{ldd7>xsjj3T^#bAXW7N)FKuL&L~`3$1fp z2D4#wjw)OuE1|h_7>>e+c-n_6NE}r@?Q;o!RH9W}1S1<(@d*x*+=w7<ZvQ+mrQKNC|28aGY%mtG zk?ns=4$&6vKS)_?|Hr^=80}#RTq7%?xqTRp!iQ-8oG5Wr+5Q*dMJd=c4vVnBR-2&9(3*CWmm4`@bGI6(GJ7I z=#}|mx}twjany%U4#jyT?=%c&5ZH)il|k-rtW@gw&~PIzQw$otongY}8s$cKz(kk& zkE>v$KfD(TX6Dfy9oq*R>Mh7!F{h)W=dRq9?1z2AaCY1u%#Ztn%)A(=s~KW-WVT?4 zVo!fj?1tCadVAdz#bLpMG~FR|Q3UCllIX<4B}!sP7};oCNlRjMXp`E7M%rH#ABJm@ zkW+*So3i*29xzcBAB2%(WZ^K3$ayC0P7V;#uby|cJTcE~o9x|;Vd=s;<;nOPU|Cx= zS>4}uGlTHPauAQw^(>1RUvL$RoI^g(A=+UM8No8vtmR>t17iqz5H69G#@sg;jzWj{ zrddFfIH+90xF0_#(H`!Fkqvven?oeGgdx6ZX0rQN76^8kV6giqxExe=qu(^Ma{M}e zXd=hIhml*(apaq3CeL%u@aB0l2GNX53G*!0ziDRWdK3KcM6Rd9$T3_y^lI7e!zSPW zA=~|DT}3O}{jLH#&KEO24VK|LT}hW@V<7DRgDTrs}6@8X7$EP(#%zUB%wMbXO(S zmoBAOmC}7Z0`UVJu^onjkwGD}so;E=DUt6ewo6Q=l+KGRKLXdy%6M)y!%?Ubw>LP4 z;&kn0e<$1m{~Y|N4ZWmNM_vmfi@J=-XW3TUtTw%(GW{GWxe-A;wOwuez?s8a|ev!rH$@Ft@O{h%kcRB2A z{}Mkwk?o(u$T4io9#1`!s^eDl=kx5__JK(#{Q<|yN%5WJn$f7`{9(uIlARZZl?T)> znap8fU~;u;t-7Qs<3bRf(t>K!LQXcG&3NI`x$D^KZm@hz6+ljQm`%dk$Gv-+;9C+S zSjO5|a45`(I7eiwI0!D0mDJo$3`e0uEEWVbiGxaB_QwxObd7yrWWzP~-G5I ziCljMMvmdyp>qdqH@tuen}7p^Z2r?-6A{h-?qnZzoY0%Dl(K6(QhmiWnUb<<@GQ#& zvn8w6swXsM3<%>CVJZ#CG7miCN`jmRp5_qkuud>Bnz}X^{0rvDXdV9t*UCzB?hgz{ z;iWo-zeW{}-kcErfghddD1U>I4M+Jahe&Qhm>#}v7_FGb_x2w~&q;&tZ5c##y?O9i znacMjkyj?8Ihd?(g~vc-eIAV5a@J?b7Y(CT)0qE&Kl3NSwV^V>mpw$FT1(0>~*MY#j~|a*BA$)x5+Mac{Cy#LV9Qd?nk#9x_aKccjvlN~TcB7S%T> zuYv_^RbR|ai1fNlscgOZ!2hI^2gu`#gr~GC%NTKmtDNK*aT$kbhcP1LNGpM6GT((c zGTO_3!!@(gocjvHQTVBD8jcfz(zGm0i}@BF1<_)@0V5k0^ED2U+*mPNj1`v3Y5e~$ ziwqn24gP-%*N4jg+~{~=$;DK`Z}3=%DtG}#Zn+BPMaB$E^)w|+O?fL}5`$>QplLcm zxRqGrd`vZr$KxTYVGN8MqXvhWL5>|^t8svkV@K6h)?(~9CE2lKSfN+l^7jN-wN~?~ z?rUAL7;MG}qET9wWu#cty9O z_YlKTIH`tr!s?-$Ch`=1XrhTc2_qXO@`NjdG?7q0UM6z8PZZ2VMkH$@BZ~d(sXFDZ z$c!_a;~z&i#XrLM6rEbUV=9Xoo5Y2Dq<2i>5V78o;Nuaac+Q$}>LnJpPOj90{2z0KoJwJ_}j|SUYFbHg9rm`J=JKRXY>>!)tArLvA1tYhd z^G#&KjhrYN@5}soKL#!hmG{lGxgnB<$^8;M3?lc7VB{F?9a_Jf9>S*K03oM`$6bv} zOb>e`J3S0z@6{+n!>3@eT9wwMw=9C_l&)kM7A|#_jvN*)<`C^LER0|oYxZ#`%!tu8 z?tn{VB{g>)!%^rEH!lL3#6jh7a65ibqFLMmBO7M%6%LWya3J2YFxh>P1%eIf2D{I} z<)E?~eaphi@h|a16FL4ljNEdLBX3!lJda)B&GRS*(Tw5GJd5?WEUa7)#}7~BdLtM) zhHHn;Et`MX1RNk_^S{7Vw4(X{WOzqMY!`|(E0@oQ@(t%kb+a!Nvz0Do05}R3s?|;G zAE3$)_OL=NBBje%n*L%}$;hUEIERQWcY^m0#)z!7#-E3oFj_+vE|Zna+y@zsLP>Qz zziz0}B@Qf`|4RJ8M6>9EkqxsrlS9OwPfg$0aZ-3$ZD;v&EEvxL;A*%eRF=cWpoDJ@ zdRO9yCvtr`jNEdrr^yuoJKsO_=lfx}EL6V3RUjh;lk*4h5Qv=L4DC7vSB_0LQV&=lghQ-Y05Xp@Y;$;b2cpgSJ z%;Q%aBDsM=tV!5ep3?0-Lri24*xXHJIl3kh%k?t*b5(|;@FKQ=ibiiU=zX>D9u^aENx8AtppJ*No*1m?4p;93f7FOJyZF zw}jy+w1~GOBEg$(@&WwdL^nAJMmF5!cn*==1R>szh!jj?`w|wA=KygLTox+Z(YGTa zDVUsp0uO=6`Nv@7mUA9?J0emvjrY6!dH*(C8Y=Jl+Yym8Oz!W*!ys~h2aFuUy+iAl z(?i%a93bTMu&Zk#VtVLF_U6Qt@NJlmRHc+Il>3V1jPj`D-&r=8Wm$DsJ;k;Lp?;pq zwhE#CjZX3Ajto_4Se7~BEmtz+9Pt+p(GGLOR6TvoW@fEKxiW@{84LoOyR3BQhBF+6 zo9YbyFr}V>=`d6A2#5|d2}U*?W;};TZlai_ysTK4y~g_@78Q1m8oVC{*M`b_cy(&e z!({&uJPsoJ2g1lLXMgtL#X=>`Hnu7m#-}NuJt+JKt_PLh=yxyeEWd{zo5=DzFmlUTj(qph!gQxU(>pSV zW?TxGXR`j?OFP>O@Z%HN-UddFVcVgD%ON0a1r88$2)NZ%wqgi)E7=nSBkaLxf90OKyh;|qQM)91rIpA`b6>);dyAq#*i)1A>cP_(G z2oZZahE$2e%0b{#{IEpRxEMw@OydF$an;O@jXHw=BsUR=%^hu2-_K(5TsycIt_+px z=;n?wgx`%HoJjb0VB{FWljAwExucEi*ZsNvJzNwj*ZSs;F?|0H4}i$`%P?{b-wrKZ zP6c6SaDb3gLAPrnVk&q)*#{s;uw~6Ibt>4t2Q?+D%9=D4gz+g&$TAgd%VNgHWg#Cq z6>P;J+F~l;IcrnFQkWHyp_~eif{SD&Hn%UsQ3w%JK}eN2tegrK7W@S>?sE*=~ z7%-B=G35ZTF@8*(Av74kjv=#Gx<&tHGu`USZw=5%!Q+?BhM{VZSK^sSo4 zhBxC4Zuj!%c6Yqaqq7C}p_f8Bzy6cek)_Pa{!(_mh1&_7+gju%!@J-|CNjJejBK=m zq#2$lZ?+pOukdF%1y_W628Z9Rk4A4YeFlDXBGaeA$T3VibZpu5L;H7tkdE?#t0{@5 ze`K;ve|%)sdV5 zuH_KzFau18WUdVZkHG90!@v*VQdtSk-N|qiTExo>k>E`y`96MdqLX|NMmC(}yBs39 zWdZT>LZo0C+i$Xfuuj7;<@(DDku*&1XW?NGxt{?e$8hh^_T}UdHVp>|IXPV8Dq=A?yqxS~g=0&_ zY)2}c&#o#cZ!Ii`HET7R>cQ4!gTXd5jhqxt{g zKt2YOVKk2O;5u3P%;g!5!io5_Y&~?-G|t8kO*D-)FtTA96;}vp8lir?OygvqDA=cE zzm)6^$I)Fq#eAl`THW{c0hR*@Ywe|j+`}Pa z9VEd`;>Xs~)*R%wFgJ#S{06R*mEPP>7>>e8HC&mhMQ$3%3;2wCb+F|0ducsV45Ey4jpURm7bYF6UP;{0USB&T#|`YJtZ zvgHihExuS7*j?S4?HpLQR?$@#IbC4XW2=RxbR^4^u+~*Ya!Tmu5bZD}Ox4rZy2uw{ zZj3H+EnF`vy}3&nj>3(24O-8@bd+oG2#Ahy6^v{+$`u?Uxv4?C2CY|3`;ph6^~z}qc*kD>e~0TsRe=5)w4RHpg17Kk zh${FCj2xo^hmk-|6=6$pfRIx~$u$u%Ros~D(!)qLN_3^wjo|mmqqb#Loc$4}=sir^ zvP1OGgI!*O;FN}C87B5*0b`d~LOgPq*o{N9!!R*AOj_*Y@%7{(pC zxf}?>w%`CE2ZB!5M8rUFOtQ-ivzS;1I#R1LY?GgKK5i4Xzpj3o34e8ELXHW4;t;W8LUMhC(`42_>nJmOQJTa_Bp;5R#vriS%F1+ZV}_#; zR1GgcW4IJ?$SGnn9tY8BCcwys(~Nb6kWLdS%gbqAch$FWn!S^~^cbHnS9&{A{e9i( ziu$(YDXg5$aF;`!+$9LB7L}q{i=~|CO1!j`<2XdDr6hQ>b3!C@%}Cb5j2K4J50}br zB;5>0p+!7c842E;Q%d;3iSAK^kq!6AbBN@6hj_3uQZS9}n^-{D`Dd_wBU~0L+tCLr zBPp1iUyp}CG%{=EMWTpB9x`h%5`G)(UQA07sg`yau`G2A<} zdO0nGO~U~~UY9I&O+-u!W0Tz#dL-MZx3@p9JXATQfclhGY%y0M=#GsdK&3ZXMuv$j zXl$Ss0+J)cI1bScBg5!0Y0XFWgn2Rg$8Kvu~;d{633O78J+lXiN>)b zjBFUk0uGVfpdc12tsJLWES@vMhvAA)IgTz?#xeaN{OClcKL{hYoaxA7rIqbZ`?LLD za8;;m>x-3fjDHf3fXMiTFmepz4jo+%1z}rofRIDMXxBuPYr|Kv3$a{&TDU4FP|Jc@XD>TzmWzTqP@&xfd9YZ3qzR z5yzE7!0Y&NiAM2z7}+q2-*JeW^lY2gTTgND#y_wAdcxx@S_u%o(?0o zoax9AU}gJgf3}Z=t3qX49|GbSKLU?{$oN7SIfikE4laj)uq`-1$RXenSCbM$!0(fN z<#KMhE1k~-n>7@JPga+T-ThtcAJUadrVxBfTA2wKi@@705 zq6d8$Mm9X?1`d(je6e--Oi`l>YI=BqOPVc9CtN8s%iF;%Pi4qAH$( zkz1~c1@hUWMpe|5F|yBF8N(PvGv-m#DR$(_pyg$%qXUnNsE&U(OC1hFhn!o&*5m*o z=a!GTCL-pReI#ZM0`mTqlG(F33au_U6 zVKH(zIfO&B!*DXTmbPXuJuo*$$?`e$@XRV@ri6#VdR#x9eL}!Rxyq7hx{3T z0Imy_as93DS`H@b_u(-RS-%HHj$z%Q!^ftFJ$TASz>nbNX5Zuin+F>9N z9H}MHCWMz@j>P#RABA`ku9=nQ-2Y=Z3P06Nxwlw}6j8{L;W<1CqQ(3YMm8+w=Nuxr zkzuyDaly~ghWt+`dCw4I8ALNCM3et;7m)Z|%)xOK9t%+g!(rr>t6-iSDs1PF<^=ou zD`6kFMpP%*N}Dol`Iu_h6OV_ehTUM~7&SP|407xUTa5#R96P?_YHnie*gV-A6C(%M zw=Xj4XRp@5!nLZdNv~Rn0F_2&88il51tbTJGKXk~L1T27v}P#R!MuobM2;4pgR5kv zHup(}qc9>~wGd>9KL{hYoax9@mR7d^;m`Kp;HpsB)}OMBWBjjp1VqOF1S7{V?$FWYP!P5S z2M9S7^tmP?hJt63U5gmQo~A4pOYG4_<#C0*%BVM4rB+?ml-m(9Mx_y1MuXj1+}QP$ zkdYh>cHt21FdB@j=dDc#AB5QvS<30)6u3}Uf^$bO9EB9|p^JLx=9R^X_@Rj=avY3o zn8;ENk=%eVCA>nfmrG;%LKcqajPP-|C{(7yk0)yhn0$W}4}i$`xiE6e`JN%y72-Jm zmOtm;fD1$Ae3rJDP*1|-{cCs-MBZZNOdf?kdP{ISh;#I5kD-^G{(WmhG~rE5XlV(6T;qVV|XD81v~Eyh7X1d zLS=X|XE+kP*&GhQ4^HHHUl_UNJWr8BfsN~eKi8|_qENXGhd?a>lkXlp03zQR7&(S- zhfXesfv_PsK*(X>53X%V3;r8RdS!%_ICj^TZR6D5u+2Z1N>qY@3{F&Nn} zj7K;`a)ZG5u$Nl+{Wpuma}IbHt_PLhNs&3g&hkI;V-s0^8%Az9%adgnwJ^Oyzc)l6PtY{d}JpX`djRs)%? zO0mTDlP`9p%BwSL*nh9{^HSauwBxD-Y zMR-6&gZc!FY#7wXI7D(o$9Cb+F-Q?LRougZ^qfcTf=fkJ#SW2qWRSE>ZG0OKi>Qq| zVdR!;V@KKQ2Pveck5~Qm@d{insy;foKFFz=8hHs1ji`|qVdNN%I7}yUzzLg`1B4uK z&U8&g3^=zWJK#*@3v%{%G`1N)z0NAc>S5MdX0UfOcwpq0Gqz;0Vxzy%kDOHIa)@@A zR3<68YYwvnW<_Kw=aNNmv8=@A_GCEfToS(VrG#&~$YJ>5i7s*ojBL2bfgB>aDP%_E zHbPD98sq&eB+r?n1Q&+NczDCyl7z{75f6gMdmct^Iq#dwHmsa38uvH)bALTt94hy- zwRu8G#N_`vJP;!PpM#NO_;+aia(W0Ghy#S29%j2HBBqDo34aSKTmk7wmC}XP$~wr) zED_AJtfH$PZ=D^`dnI9*VU$Y4vaEUh+LZ!1Nj%RX+F_EI5XoF~mf>qqhKxC4BL;yD zT~?BFe`WPjXc6DWiUe=E$$wy;szf(=4@NfJ$`Y^#!)*U_vMd+74dDXNWnC=ck^evbI90^ej6*2g30-gcnCz!7r@9Z=RERltVq!` z-aqWm`-kAtP|tGx+gOn_OzuC3he7226c{;%dxzF9r-!g6lVxc5ysL!d(C}Ff(GEky7?HJRB@e>P7z4xo zaG9*+=Dx;o6iTY&`K3sWE^%P_w8g#nfr;jEH;inU$9FhHa!U@A!mD*V%YS0QV1v8C z^6PL(s4R!eOG@}=qxe03cp}%ogOOX#^)$K6VCQ?YwcdPh!XTP)8DO5(;b3T_U~)bk z4}r+}6c{;%bBE3@hl8*=I6%nZV7;q&#c*&;vNtA1XR@n;;h;yE4o-vBYPFUoZ8KdD zQRzjN@!$ilB9i05NgSdb#)Gl7w6*!*T$mf9bF72wWTiLP!*CQ%#5U8l$V~$oz>iEc zkTQ&H7)T$7NNzw7+f3K0rSW_li^g+8xEZbqmFMU-)3x|bw!e%YpUCzNFmlV;j%+hs ztC+_4GyaS}4cCRrxW3JFEeDhJr|=kvtUn1O$FT0u;pLDJwg?9ZIV2qKnur(@#wNRh zFp@o-qi^jnV;yQwR;4v-%cn3vr5RZUgsCiOY=jm9k^{md4$%$+!sw6{%|!Nvc@Zhf z=N9&Yt7N4%w>8627^!Xf6p|&5D_0M8$B#=ij$L46!#H;05XlV(wJo1`tu&4^EEdnv zUIn&WCpKNSj;m`JEa8;;m8(TibFkZzYAToXlj2y$b zLr0fGLD&`?AmmUm-Zc?16f8`3C>W6~6trz1f66kze90=aChg)7#-}tO%SiAO*Q(2r z;Kv-I9Y%stJZG(2ybZG=P7pZ}ya^Y{N^I^WhNBQ7c5w))5{H!o!JqNN5>4ZeFtTA9 zf8Y?w4FqBr2OGol&qmKXgW)Y01U4B{8IJDa5X1B4_`!)h&w`O#&U0iJ2OHPR{JA~` zE((=veHVuqzL($u5cysNBggRV(8=X65H6xE((#(JXF(kqxu>3WrE;2oO6sSonRBMS{)V z2EWh2^`P<_-NC`m@-OjY6IuQ_jNEdTBRe=)m>zqMH`AjSL^Gy6^Gw!vaImvI96vsh z?TujM7`7d{w;TY%R^R|32Y?G)Wh(}Nt&-iwNo+D)F6IX^${cVMtX8Y3H0ce6aG%jI zN~Hx^MuNqzQj#OV;T)nJMuG{E%(clN4>M$Rjx1a%E6KSJG8}~#@rFVqc=LYaO8nqN zGwFhn4Kq2DLnJpKh&L1>1=HC691F;EPPiH_3zhBY8w!yWOwO;wLm+Z~IgH$L&LeLq zM2e>I{zHG>ABIaqYT1ZC@3-5E%+F@8=w|4XmAQ!-li2USD zgl*swSxL=JXE+KS;xpC(P2!+(^FQgTCrcq^e+G>!8a z=c$tdRp+_C)k`y#K}1L8!6B%0N8d`Q#cz^62|qrO^zksVXd&a+zZfbqX|^M8CDbaW zF@6|}Ejk+xPM1hZGJXhL7b@fWTM4xsOx6#?V<57=AB-Hsy6pPY8dt}y=+Eafl~iCF zO5eb-a#Dofbu_PBo|ht*N_K*nP|j4?*3rFv9jWfD`eEvivw$%1T9s$tTahqEu*ibI zcw9;7AY!cfjC!nO3xaKD}!IT(&awA+RE33KBFdT&y zal0WBylEuY;|C`i$#pQYVI-e(g$T~vumgn}^74;$K2h|q$W2Z5N#>c^az`pVu&yIj z$doIY?v7NtR7$T?Ze#wArPK@~v3{VAU?kac5TOWA#HUEtVkj@W(jX1x*Bm1DA|$z~ zbcUq>nz4-f2uhJ*EW;T@Ge*PCjU#AtJSat~79%+vR-`zyq>&uTA=VUT>_&1o!%=9dhA-zv zqc_duQT*scGkFL`Hq7J!R|sh)p^CiB$2>;=xaa#y;-R@~VIPPa0FjQwbH zoMfS^lZ0^vVJSMb*vBXqDmI!6?MV9=&LLv$V?lCPGvfszEOE^}c7_=-++zp0Qg-*) zl;J3>RKv&kW$dPRY=i8kc1#>H_=&DCJ&I&9x z9$FZg(wHpc!o#kWm*c{N93pmHNUo0rw8+%8Ch{6gi_t`0g==MHHunpLqwrDxXCswV9$$>EjdIRxJgJ(Bzw(Jj)BQB3}p#iF1w-Z!*CR8 zs^L^>@FyaW_tF>P5fDA)Fc{hJltWx0q^E>x^753qK2b1Fxi8t-WEyvrv-&grY&fZ8 zdo#uUin5k*Da)rB^T`rNQwbK;czE^b6zN)A$Dc zZink-x0TN^9EF=|_}-zBf;p?)f`>r#m9N0ahOd0d6+-$-s3$L9Io~G=<}0(4^_5Az z{rO6^uT<>Hl*`$|D#cUYV7WBIQx-dViXNMyT8pE+=30B{D6eveHgJ?FTJoBoOgbN> z#_*Hz3<8_#?0)hdE1AMfHQWbFOTcuKF?aw(HyH^d8*Vbp6+*g6s3k8qdBs)HK@`kQ zK9KB_9wW*<=|1&hXBn$wGd$!#M-K@jQuJwYj$>Temd>$+L&Q2qg11*j@tifoI1A>% zFpL6RB)efOXE+KWVjIkmDsfnOF|!&!EYT)_wIkrdg}tsz*6?hj1xH#7A2Ud(M>u*(!d?A!1uaa&8h5l#1rBwT+ICqXZeI z@^83cR*rLTFdVgQgs(qYI219+9`Y_81JPUl2_qZc^0q64^p;RjUf%L^pD5UaFP^UDl4zKWei85MLZZ7jo!RmJp(^F(L+vykqr;|fGdRbkWfWl z9ll%><{6K`To|751Gr3f&$yG}D3sJb1}!8c4lGBG@8bt1+Qs)^WWz4L%OR2*G;1G& z4vVF+{3Z(qJL3$N{|uLe%Chn?=s2$bh##KF^&ep5mUA8b7_^n|Ek5DR_vQ=&8=9zm z8y|y?<9rq#0+I6>Fmep%4!vBC17UM;fRM`-*SLyTELWV7>?Oryevduwsh#DpYORv9 zf6;;P3UqLLmd8e0ra0YIL~=Yhl|#gi2g!AhfS5?`TKo7IOpMV!&V!3(oP z?#ZLZZ(drQjUS)rC2L@0!%Hfz5YkIRC3$(t$v#oAON;H3y|kEE-&BF0v&wDt2UsfD zykk|H^YVmv4L=M_k*no0<388AOCPz1L&W+>f|nVL6}~>fQ`cC&VjAC*Egj7u<%=*oMpL;Ku9ubI+@%ah;YPeYpl4v3$~AZd zL{qs6Mm9|43J#InATdj6!g0L+m_>z+^ak&b!?mIE9<~&F9wz&b;&Bk!e+Wj7Vc(%2 z$d(eCi35aeDJ9oLL`(T+ve%+h`MOs8LpWnEM8#`Wo^wkHR!5?bpbWkl1`8OQyM>Ts zOBv1~Vp~db{t}R*WUqCUondkeXW0QRmzCe#rVPi{QS=Nt~;B|T9!M;382WyB{&3So>h>o^io^`Fi^puqx zqFp>Cn!V;Jm%-#1o>GO&W#u<_4#SD_lxPN~r(A+ZK=hQ0U}VEnKH&->Jtb6=m#1|3 zM8Q1eie%@M8GKIRoBnlY3Ptu0=}J-E(EKMXqh{EO>psLms|)u2i^iwO*Kz^;V^hAU<_mlqk1!j9O7*ph_lFMq^?Ao|N6U}VEz{?`>k z`b(%OFMoN|Cko~-nP41K5D^v+)RsjIV)_Th4fNAHaIev@`q; zf7Wk@D??@7*axtlg*hkOf=5AQ{wpwY4D$|6Ud{<&yKsPz>!sVdCK5!!=7a;2of9?{ zuPyTTcf{9FEK3}3u&glOvdXV|tmBIU;d^g9$jHNSgD#%F=1PXV9C?*P#7+>&wU$}- z8faEC>0*>9qrr@45ZKsdDkb}?(#u$Nn_)M{IoeHd(OeHRjFPspdW@?q zq~R>#5N%*Mo5fW@vz)VFvJA^9z-6;r&T@vMTFxB)h*4Z7rs=H4BO#hj4~%S>PR12N znog)LFVk7%69t=a9!qwmb&i;D>gRL3?cB*SYliKd;AlHxXRHT`7|$K9q)6krokO&N z@yw2|gJwNX!-N^u^Aub-yY)Q4a8&D=%dICq7t?&6#A6|v&l51RVLp$!LP+xo73O6= zxA;WC%;)T6C!THi#8d7muIWgv>@Re6q}H(SzV`*+XNjAA{y%kR0w+gN_WuopB%AvV z2?-?JAS{R|ifnd&+^TfeH^?*04uyzjieNq+s*^L_fMUw2nm&pdN@n$RJhO(>o# zry;T|bCgldWhnlNbf9Xyc)>p*5s;!tjiSv;&+zdqY}6I%-4OtmTE) z%2z}r@9=JiN95R+wt^BVOZQ&89$X;A+WoElf^ z3)sA39fryNc03G6_TPtkT zWpNPOQlNp?EL$^)(cmB^HixZEA_u@Uj7el)I8Rof(fdh9VIsbJ-HhDq8T;TzcI+8@ z!OBL@_z;uG&NEDJO}4DOHO`-+Xadc`C*hp9a^{@Dqh4352J9IR~gmUVq4WN+aW71Udv^{s2sTQ1M` z!S2`+eZ)yw+rEs_I2^s?y`GOwSU^gFTDr&HzN}^U*po@5c8?5iR*s8@tTl{dVG2gW zsK7b0H;f}mN8!8z8gQjBken3 z3$f!V zX3Qgta+0=SER#sJ1=-CV9MM|85xXsnNDTMoMf&%d$qM~6@Msa%jmpC zZEZcbMCa4bk%Q5av_H6z{=Cs1e{82R(A&30xwa_NC@|M!tv2sR8T7pt9+Xn5mg|d> zZ@Oh8S-~VybDrV##l+^YwQG#e!ZeKb(SY-01sZ*VbQC7yQARUz)03QqAK9^IoDM4+ zJ>wK6k=IdSEje3a3Q-=uvDetbvTH^Iue(@s3fXl6_! z{+Dp#&%t?dC9XfpXpX_8{wyAYBlV|Y!D-7$+T z<*pQ)8*3QbfNj}8dzH298hd))eTQUI;v&hU*a)_VD^p`UQa=NWuuTN=z3%4 zY#)(MZ8ntd(kl8upK{UhX&MS|vUh;LAi_uHI3Mb2oHoAm#6fh0`6*nb(vyXfQKfGff`7*3*^pP(ziR|W% zIs93Nk}{3>;}jBhCK|*affM6OoZqjq48r98Ydi=??!SVSbLT!^K0R0)`|+O%W;u&^>>rr$K=^1um5~IO0(5+)OYHjW)!7PlqV+EWh zE6(U3(ov9zFZ(uei37{$8(sK;9s9-6u(B~<9LXfI^9kb1zIMtNQZRuI;e0qHu9TBs z_DyB|IsEXBtUm)Q=gvCuWnVk*yTWj$RvcNOaOc!!A<<$`Jo);R}lQPz6%{url-j0dJnLl$T7mT%gn zGkAkZj0R^gH92(69&83v5hsdV3b8Rs49Dfg4AN1!h>vk5qc^W9Ho}kY*h3b=%0>^F z&m^+*2;yU$$&6{d_os*gjlxIayjV}<$mE^;7-w<}CiRctF*s8HFsz(A^~A?GlUdWq zpBPU5csMt%AY(wDx0PaPf-(l@;3JAnz`Fg@Gnn;Z7k zN|idj#a%9oSGnnx?hXNEGxG^xkZ*TISK>#v$9z;?JVa$y$Pqy*(d?QjB=RSwul& z-dt3aY&Z*;#3*Pub8Q*WTFq`SB%{^r0;kN%IoghN)KNY*<_aDQ8+f4ond98 z$?W7SA)5@Zs-Pw_FC+?TGBdMX+C76U?H1eKv5yHT&rD9H(O?&5*0O8(ZhJ>J>BJUL zJT|3tEmr14-|WlIay*k51)YV^D1+CU%GEF$qp4g4XUj@AI+t`5GGf;|Z2)FJxe^b+ zv7cNHD;xdf5?=|~Pk1c_^^-LrQBXg5CflW3^mam9CtW9(3+k5}|3JeSjz+SJr%$0$ z6j3RKYH1}M)w#?5}1p#caN7TTMCrMRJMSl z6}s6s#^8r`>>F?T(w8?mUgz}ZroB>yzl2p>obuWhdpm0eU**(FmqvQWaMEwb(>;N1 zoD^%7LV57a#<*H>#Xzkz7@4GJC*DnO4Z!5xfd}Bo`)#nYF;8U8dyZV9)k>Mhyb#X( zC^#{$XE$G(XBmXa{ct=8NA4ekl~cHTOzzSj@QK1hLUx-cd>d9A1^I)2Wc%UxdE!;| zwSMOL3vl^bYp?MUPqV;Zb4EY({CVG!lE&duCXs3!vb&ASF%9vl=euA`hKINV&Y6{T zbOY(A9)j<{Y$qwgkW0F5!^3dwGv9-ijXv`oUkTY~cwGhcnTtZApgwbMwl_}~^bhp) zRcm$jz^1RvzNt3Q*IlR=`;{9U>zs@FU~2(3yg#cZ!lcJFEXvMikV-XME>qs}Uk&->F4)&+$u)7IH9efndk@dun%sSX4aZS_gLV8`BR`(-#JdV}yVOTl$ zYS>g>9i(MYtB4cBE8=)KPp%cQh5kZHN|l>cu?COHu_{)<$|+Uh;VPst;Zu-@guDQH z&37Uc7eMXV-XNV&>bKk;y&W!JYwdY&rPB&ZnbIt_mYnx1GAy!YU`owe{K<*FX_qbKcqTCl zTFTVq$hB5-H4MdQC0D_zvT}{iB^?Eecta)`z1c#p#Ed@YS3X;Efv&-O;2!++-SpZWY} z1NLLBwZ_pli&9+OSFDwKi1Grj)GW39Wbv0&mReSpiUG>hsLanf}R_N;y zidQkk)b5kvBja|F3$5kc4>J@)9$zlef<;=d$W!-oICa)qh`vKQ3N5j_P?MxMoxe+e zjUV`@_<`5jYwl<%{}@&lscDb5t?H!o^or#Ch$&@vqh4$>WGDUx1%sWnBIl2{GV>ao z8CTfJO@>mDzltB;5&6rovdGOpTe-=abz+ktJMXOqgL!XG63Oe8q5GmMZ+(-YROXxD zAviK$3@fKFmwsUA{D@95Y5738Oiu#XK6kvI@ficxiew31>08AIuvA3f$adF&nO)^l zA6>8%>b25p`ff_K)~ncz5=DhIENk^OK4h~QD~pwQ7PGku@kbqTcp^F;oH9Q(-9#j( zq!qpuCFhQhau%E~E8u7~=_qU(bJ#)>1E7dN5<4A_ zz_GiW0xKKcJuiV8a`4eqzVxpC#rH=?nRqj|Y1>EDFM;Yj~R zSUGq43*}O>Au8ax@CtYq&W~#a@C`xI$6{8&(|9b7Rqzz7oKgiIt{|S$xv}6=iidP+nh>+CLe)r#@G1jSfvb^+SLtkviJwUy=)b{U;Ads&>t#uPDT z#6=}ZXR#5J7!7wMW*OtxrkFipKE@QY2b?e~;%GQI=q|x9rjE96Y z8Vh{~B8%kObz;tcar*DQgNG&1kfSVD^o4MG_r1mLQlX;UzxX^{xYnv`EVn%v zNv^2~S$`qoR^~K|;keYdw4~v z4+&`?27L=y7>LudH4x*9t7%D^`kLCIaJ5?7OJk|cJvc0@5FsgZki{4r>{~L@7#zSP zMuRb!zz41MjpJbw#$2%m&XN^o)I&N7k;Wu;gHyl~$CZ!HSK-HXY!&^mve7E~m_&A# zU@CtUU}bzA#S-WTu7NY+%6JB2oQ&R_6uyKX-I4ScVCCFN&y-Iuth9d=8;*5h?`-|;yYqkYO+cHVD^i3pnkviOt<$zl;^Qp}iX7Ud)@!Zaq4Y7w%VLz;+^ z3DE4qyJ19PxN-siJK>C3DMy=0CGj3&}-cwW?%5gLV%=lPK&HFM#grrodrH9mgGc9|_u}mVhhh(^B zdjcP{);BJNNf>?OA~;J{n9=E^qYx3783LBkDhBc6I<|^)VP&ILoWmrtno0WI;0n$Bj@?1US5rSmPw?xmkh5)rmKV3y2`CE8KbM*3}?#iC%*&W!j)n7NMIIeZItmlcx)M|Nx~$H2-)Q|Vz6*%^xId@62c zOXK`SiYCxXTmk3Al{4RsRgK@IeHngyN7@&|%DK~?EvMcT;=c$delMICSK{-u*Fl?O zFsa{z$KXi)Zdf^my2q?9jRT(|JS3!X*wc3)!Z=))t#KF^FR3l5uV_rU3~f)=N^5kE zm~9Y2D-)E(G)$y{V2)c9l{5|GnZ#%?4HNjFwW(x#n3Wi!TvxFzoFyynXd&q+M8xw^ z0ZSZL-j3cHKdxgl*#cHJn#rb2B0Iw%o{w4?A4#zU+J(d5jJPsRJ|9gZeF%PZN74tv z%DIzHJRh~v{&YC)GvKVa($=4krV&3CkHC@mNw9JXagSME8U;Qrct}X2FxGbIt5i|-SXk}Wm7=@qsvXDmME+#Q5i~=9DW)%Jovl8cx zGzx!#vt-2`JxV$X5n&VrEOA_E6rRJ6>)1@5g_VtF@-&mk+$dNX&%Yc!9}UKHNdmLX zu8fmLA&vAb{OFFPr^Cv*lTH`~EA0=4)7}lviYsm1D5MeJ1&_dy_)=Iog}BEoFO349 z7Ca=RQMkjmNeQEHMz%&_YOz$Q_Vu@Q){5N&^p%R!22UDn?uvFAT(Z`BYwT{jv*7aj zCJU_@nKB1iT*1k{6(n83iA-WNxPoaMix|6R4z7i{7!$|UaI&muqe0S9z%=;h6_oJJ zJCj%8hj;8FSHj9hAGw@KWakm)@Voa)$~58+Q%IO~H;6w7C&raHe;>y(2$TB*co2@< z?}L?d=RRLPhgci?bv_@={w+8;uI%~#VJQPK`M-e&;>iCsSUH8i$K)^l1D`-VB&2^h z-gh9vKOC0rlE?|i4iqZ&QdxBlyTUbVEw~X}%Fqg1nY}Ew;(as}>=H{9mb4Y`WfG&o zR!nRTTbp0HVP3}kQh@VhMIP--Itml9l%W~9*;J0gkL=h~4u_SErt&c+k)4?kOBtHk z(m0<>(FFR4bKsn~a!xK~XvS~SJ{v#2BkeO`<=kl}mNGOmrV+nAocQlwo4htcNbR_2FmK^GX6(n!1|N5 z)Ee*eyyMV}Ntu8wrr^K6xt6Bj-%MgOn1XgOYOQlDz5-=oc!EVFfq5q@&S)~}C`iN? zJDa$~f#oxZ1^9s-+r>Os*=QHDnM8J$KzypxPI(^+20P;n%6q{naiyI6RA(yd58;P* zWW77AoWk0pugj@{Hwq64IW@fE+pfga@S|++Nw3>gU8UTJZooxqt+2)swrOElR>sE> zD;>%*X`JO-PIA&Xok@&_Nn<@4u{L4c08=tr$@OrGte~UINJqiZn7~%e#+bxG|VbiR>neN&G&pN%u(#Bygg53{HnD-KmM)1+9#KgCE+F@k6k3?u@6& z`?V(L_A7%qk0XiUuzluP%ngAOzIi^ciyz*RbsMal!rEgtmxh2(0v;055S-#$w89W< zk*y(U@1d=Qt1D{-^{dT$!li2MCnNZA0vWe58(GZ39=@d|&A|tl#Aq-FlUn1}EW$A` zF>wOPWoAEW`AiQ_(b6$Aq~X)eFq{8#C_R*rg>tawz93WQs^zJA1E061++_9%dN4C z?Z$$`3O5Q%M5Rnc7Jo2?BE>wls2u4J-ek;D{Xuq9$E4Pcwv5{^SZuE@pPDMd!W8U~?}V9%Uj(rGhP8rOUS}WLG(wNsNN7(u5^g z$t-A1<}4VN(PU1C(`Mxz4Umq4sKNIJO64gck@qf7!6R|(IiG@+jh^#KUkTZBcy$H! zoFhY`pgjg_+4h`iE2;yvQnA+7S)@IJy47`c_t02|qtW>8F(_hdhNjf6rM=wkn|j$^ z?qm|F?Ip`S2Gzl9UFB~u8KbNG8P1lyt2{zF3K_A-pc=pFU;c<6-?5kc9#%Gb$?up% zb{8tny_zTUNT!`J|(eY4AJe+5pUU@~=P?nqQp1++@~kfl*8sS8Q5A$A_KGJaP$<9EOrvCkYPV|_yr8|m%wqdSt` z7FN!kw6>v0siK|HUE#EkhO^>I+qR*Ijrfsx1dhZHgOyW=d(86EDDY{)LqcA6Jmot% ziR+Hzvb}#fpM9CBR$Nh}@4(jB#v=5o&i>LW^-kthaP?YCud&SY0wn&7Pb*0JznU>B z6O+X%T@U#Fmd5!&iUzwQU~t|K&WS7Mfo8@u;wOa@KLO5*D{*~)f#w)Y>Yu=4aHPH(R!*VrF{w*mz^4cg z33(mzdY~`ZBirkc30>7%t*csGp{&%p11?u>oC*sFuEcfY&>VwFeJ4By zN9sGm$|=-6W_@WK_!QwGA&tX#e4CZHf%!nTPdXR17JaWO)JlcrDuR&@M=!yHaqK@A!pcVfIp0@8_8(qjLH(ycBnrBrxo);MG$$6yWm^1A zd*PLpOPAl$FtB?o*0S?|SFKzYQ7J`hxiWdeH{r6iJjx_eTT6zwG$#=bK5ng(jJX=+ zVRVu=;Y3-HM$eOu0;Tz~S~GOhx4e!Y+Oco^2Ua%v#=n?EcJqgLmpzSiM>y%Xk;HIZ zoS3AO@3OZBVDjD)55ST4X0USZyc6%Tw^F8^-G_%W{}`MY*RxxHm%TLzllwt<5RTmU zhm}*fdra=qAMlC7LqcAkJnY-B#P!Me32kkuGgWF6+tOoc7+V20uC%g1-*!{H!KHAu zT1#yNKkX)hR%R)Sb-2j4sHAlmWD==BGPDj8_@K4UavRLb@D1OCvt-2`T}L_!5wQ|e zz!Jxm7aQNfkL%b>z6~oI&E%U*BK3UpINh99Vp1{#tbu76^T;YVO;+Ghk#rO!Vh{EvE^%OK7W(l6J2sR)SlMVOy-XrIvmo|h zw^P1`f(djBUxHKON;$a)dn)TM;D>i){drh9ch<9ZYrc8gVdwo&IPYJ=X>sK}mpy|p zhG5=VxE~L}k@?SI6jFfZFBQ}3!2>hzul?Q+#usP)q? z+fRyKAFsA`mMYz)uJ}plszP}n{w-9x=`Z#a`qcM2W_|_jW!A!Me0peq!Gh#5ZdY2h zrenoGrK?`5Rtn{g_`fF2NCzJg|I2h%#={h&^hS;zXv=m@)G% z>Qy?C$xI^EiDWlXy&X)BW?0?{;}@xr?~3dIXVY3i(Gt>8$TfCktqmNY+4#1@19WVB z+rY|3-oCltx4DViH@(>|9Gze2?=RNstxd}5 zCXHB1tX$Qc2iLN-5WRQa;88YLs`s~IRHiqJ{rIeJSxNiRU=pLjeh5}Z7PP)|GtA1E zfxZQ&&5AqvBIziI#MT>WI7J}Rgxr7!;@EJmhn0MVCCFvVH0UZQWB`u!?f#y>tQlU42Lf@yTaz0 z8%Y_GSrhGeNRBlz4pvU72@f|R4GEuoJS3zcIm@@Wg(3NIwzpL$t}N7h;{As!>gQ6H z!S!oxM&56-@UY^jlnKq^IrjFg9O*gsWD=vnb4+TDTk9vs!aR)mr2;3)iZnWsbQCD! zO_o;ZX5TmlKeS`t=z*1uzENZn+4&0bCQB<_8tE%2oIodW8JrYX(#bbjS_3e7UyKLf z$om3VId|TPH(6RK)0p2I&io!YF|N$@H(6SPFuC822jR&5PFOjGyT{}%{Q;jSJS3z) z*u!@q!XI3d?K70gVttAEuIt3FqJ7F*aE%Yxo}4&+mytgA=J>Yjc#0LX(xQ5#M;OZ_ zMuSI~!jM?scik3dBE~6~c5Dr&%8E6bPdchgn9i;`62Y7OV+;J?j{Rd(SlQ?wOPEA< zK4F%){}6xH&`SF-3MkMi90I4sl{R0aXbiz*ejpx#BlG=W<=mOiOWbEj<$gvu_fz52 zxN={h-&>HwFxj7khvCTn1XwwRy~kuP{Q{pfJS3!F7~?w-;TK-d_I|=tw$h?9(A(D8 zUFuc$`~3+G1?yMVqHFBt=@{aL6ciZ`OqrW3w-xU4&AYS=cQA?3U>Ra6t)Xkz9)E$U z7@pxdI9FD%(Zi&paB1-OAd}IXP2^ep=#EX~X;|54B2O`i>`cRKKI0}crtzNpHS{br zc+VmU%uc)V=9{{iV=$>t$767$J_T0Jo%;IHHmrsGZsFv2fpgAYw)ghW9L#+PM#@$$Cj>uGJB1C{=P zzP@U$UZhv(x{Is$i*@XUx^DARt$(0#4#$y>4R`JTPI5I*W+Rr&w^6w*wT4+gG*CDmz`%9CNT;+&&1}awboLCVHmAt z1)L@;&*&i1QILq&A1y`u|1vSaT!8der*k-g(cUkTYVc=ZIejHMw_P|G+j+qLL3 zils`mk5-`9iUqn!UsX4ak7+oEul}{2rct947sL;&C|A{|Bs`JNYu-VsxD_~=i7>)}R z^UUXOJf@Gutb&d3SRAWhA*`HI1s^U^bPL@CY26$_cQt(NsRcBr-P^de$`V-=?Snjm0VaX8Zd8myc<{e-d5GpAL+GvO8RTR1X&;8Ti+gfte1`wm1Hi_c~Ic&2qnzxDdO)5Dp?-#|N?wI~}$c;3ip-L7vvQSx~- zvxr84d3I5B(u6Ev5~(I6yBTQzX*U?7NPt}1z6+c~Yb8Y6k&bFiwpJg^td+C~ zOTKl#6c5X>Q|$~Z8=Yz=UkTZ%c-;kcs(B$%&?V5vv%Lfw*IVo^X}h|gOhdp7mbLgs z@cSor%ytc+fB6`Un2?&w_7QHY4|zX(`H zGr1B!u46N~99A}($t6r8yNPBhzZYp`{2;}GosS0N2jGmjGERQ~C5`lb_|Y9n{|r{n zopj>+FIL)bh0}fm&WbB-{rfLz#9zZBa3uaJteisJW0sdjflmt_67rH}jqgCjCC!{{ zpTSP$H~ZsfuzkgXx;5$hZa^E9wcZ-LdtSG+oYQ+=_p_t{8J!G_~xyV!|}sA_K}al%0?eKh)HDU5$0&mE8}X{ zh@V3t1zLr(;l#KS=PQ;igD|=$Y;%?xqg z-;4+1$p2fgateQs$zS>hK7n{hNdNFo-+>7K@U3ibG_-dWx_amH*-SS?-D@-EQHDouDOl*!?n>`lYh{7=Z!UB@O%$1dA)J{4I z60z*F8M!%S%)^iD*fM6r%0|nW;VU6q2Ctr=mhqBr4U3lX`;0F+1}e3}s$!XaFRHj& zSuTDAB{bPLsynbX_s8;|e*QDSe~x26);en}w_S3mZ`jeA)2^OUW#!PX*ERoUhX|Z@ zBkrcSl{#*=mPUK6xT07qR=SFV(PfM1qu+;WH8S*&c$qb3bX9x%3SIS1`i50uWv$TH zBNPv2im44J!<(1Wl#FO?=Omb=82EVlOhvI)D2w5q04LB|6VWlGqc9WKD#{p|4XBs? zGUxXR{P1gSK=qdLYFJq$sJ&e37q2z&7zdbAb~BB*WKlAw(Z7*G!p>yTUC(Ld=j(8O zT)`(VS(HJT_`iw=;fVh$u(HU|HLVO~%{_6+qNGh@{}crn$o_FSIj-#WOBQ7yCjUq9 zKpgr18dgr>FU^DV+%jqTK)Fn>M#YUpnN@JDNS5OPz9Sm{O}0+-(QKD4%$EmTT<17-T~WVJG+D@p$44lxihj`%y3 z@hFtZu4zyrIkPQbSuaGFlTG>L;FghV^+a+Co5#V;*sHB=tCI#}k@HBb=a%Sv`Z<#R z>)ez-i58~)!IHE;C@!`iB)X7})tG0^f!3IIfms@p(o#5S)^dopAsq!!gKu1B9fsMK zcE-bSY)d=A%0^q-kx697ei6Uj;c#7TpC^r7r{w#t%XgsJFC_Kne{M;2jo}}=fcV<_26MKVt>G|bohkh zAt7DLY~O(hm-6jw@32lSRr>1%x}RWqljSiQ3f9f6<<~fDNN*CqMAJW{DPe!BqZ#np zUT%>tB`2Zysi08Wl8d;KPeG7yvhzIY&x{P%&CQ}}yW0_iIF1mYnfUBxeb8<=nv zr)2vOX50#T3AJ2P?sQxLSFE+%8igUXP~`h5g`Swf2=p z*9e-0R^ZCyWU&j&d`nB(g}s@?Xs`0XC)qSG~+jEUxpvwk@m%~ za_+Qe%cmO6jA_Jw5l;MGI4`cm`4=_JF__fv!DDcwemAU~LfvEDm)3z#5groKI_&8? z5Mdo2&vu2ydMgXPy#?ha!<28M-N{;LjRS}D4YZ?ZceQuO+Y9`!b?``)Ny%aqCQ|g6 zzZQigjly^)F&d1*cs6FOmuwI75hIlA_O^wSWJMe;Bpn4vVXdjz0iR>)G6mAi0gpZ_90{y{Za6()O^KWz}f;Xp$L-2z;ay}4N&YklNIkDPU ze>$A?8E{fuS@UmsYXdNOpNa?I$onK%Ifb{!oGxtvpAbAGq%9chI}l+DZqD|O!nht< z(a?2_;tPI8L%_O{waiBJ;e!ZUnUgFg;U~T{q)E7oNsI=QFo6$Ra|wTkX^AsOx`e;L zS+W9;9wi-xh-M5AKj7kbXYle(us!;R@xs7r@b4T6<6B&!-q8DyWkNx5?=}{rx5p;=cQHP z(}IVDvy|6WHkT4h4A zScH>(%Sl><6Pd(lun6s9)S5@Q7N%s(A6LU^vVx8VNk>7_n9S}ZG;xUoOOtRFeqhH& zawV*6G?L4iM0O@&8owO3Q+}9&!F;I3)ja2Zc>hE0dGOFT9UNf?Y_7s*--;y-Z>> z_=WLo%$i&1hFKZ&NC8fg6?e2R=_o+Na|ez}99DXTqwvEz_L9S4WuupTj7enY6~uD~ z8{u;)lt8C&4xA8I!pY|jDV)#75AMkMOjtR0&WYy^HrBU?v;IDu6j#>zbB7e(x8eaf z^1c~XPT}n_!Ap<8Cj<`(=@H)TI}qU!*3b4;%1O%$^{yVvdzAm9abT^kC5qgMTxL(cljz%YkbqVexlRPU6Ioj~y0~1m>iysH4fGqndn?NQRczQMn{>=B(ie~Gx=q?%$LS`ABqP%Ck@tn!C7%-&2LESBQS}72#>&# z`0lWB?!@QHdkd-5KORo~I5;z|)aPrr7vv~R@^w54NAkzQ$|>YMrhe%j_;leRA>G3( zzLS=44}Z;e)xy|%;TZJ`<==&i)mmu|U(`w7G63%{#6c?)mF4!rExsis?ZZt>Vl>!? zaWN-tGIvKWS%Z=p%UP-POM!7#-15`)*Q!^JQ?aZbs54i~`L zvKByeD(NU>8oc4C@tY0jJpA~M4d=74ve9rFOd>lIF_%xoYR)v~cT-G(_a5$qGvmsf zUxnI6VUqtL9)%>_k! zCbM{q4jK-2K_==;dW^R*iP7LOCd+|qbIpM;H8D)-FZP2oWd$GYLOKeS2ETNbv77y6 z8GdZX{<1f$Z1k5snM8KpLOj!u`O;XQMDYariWA_hxUx<@(~u)DiGKo*z>)ZBSUGp% ziDw!zXBzcygj4?-oEcZ@`ZEnV3X}Y`codH0uZERV$a@$8=_UAd;UOWt#FoAT5nkdS z*?NhwE2`yg3^?J9>i>rSK5XG#DsxRQXI}B7RiIHZmSoHrmKoCXt)VNSUH8a$NVlW0-q2(B&0?7f^Xppi*R_hcMsMnss5k{SE;p~G>#m> z2M`ppG8b9Q!E)bnlIEb3NsI<_Ft)V4<_yk+DT%X1K5#e<&X5&!R3{yUMq@mCyh)J6 zF{Ldy89%0D`#2F+HrmJWOd>m5Fp)q0H`v}xaRhpTZ^7AcWjlqjZANYqz5ze7BjM{| z<=hERm5UV&%D)e%{5v=!u9W%CT*>H7(of#c^tkFG!jzC7POhp!Bupx~Gv(Tcrq%qilNsI<# zFsU_e%^&OzGZUkf{$N))QC95H_N1dgX-s8vNGo)+wY(2Mv}0>|FRW~|mUlCW>}6*wubr1@2)HUN|NF?axuynA5f+N#;+(B>h)qpdF1dEjR9*> z)>>;UA3+1rj9ZzhEcW4XUmnsvJi;VKgMDZhqt>RBw%br%hI#lOoF*&s=QDQ_E2d25ouytFIj?0kl_O{zMD#p(Wva5chYNjc zOuC2jnZ#&t4^xvv*DS;jU~=MQlJ_6J3+KuTKf0E56fO;ZcQYBid1-PBessq^a}%s= z^qCu(M0P%6Hot;TW=!M#7m5h8_y+Ii;Jmo<=3g%~$6!)_7LUP^`qQv-?$pY`sPM@?x!09VnMe$_D)PO7l7(N4-tB0CE)gHOM$bZMlo zrf>rN!&PunTuCRNVzdTe^1c!ez>)XmuyXFa6HhT(Dbtug7|#3wI5Dow^`{uEL73d{ z!-H_-{xeuPg}cX`FKq*#C_E&jZTN`qK!k1R%GNf}w=Mh1CG~q%Gk%D6C~K*W@V6~l z*vdR*F%MH|D45?CWhKqSBqlK$%maPfG9I+nTXuwLi6P4S4{wLFWCb2ACLM)H>)VzL zmN>4w3hBU)>)1}-1}huwWJ@NIoo#4++tR|gK(PdRhNIw&xH4A1ZD}WcIDT|T(jSAB zb0@8Q+tNb&oN(G_!&z~qZGPL*PW((f0!QMf!OAJbJ?43775KE^At9~81mA%Ot8jkC z3m*EarT+e^y5Qk{8UxmutcBJ%c*y4#*!_iOtjcs`F$h2RWgrd0PnpDMFbM5p)S5$h z5oRP#80iq6htp)m96d=o3KFr%p@~ZzSXzX?;sJ&Yg8)k%OK0Ug5ky1gFK7x4y_BmHF;?2#(Bm zg_Tp7d(83DCh*C@LqghwANw{cVH3KuwF%>jtNRKSb(f~I;99j7+KAp!5Me8`lf^Kc z?ps#UFr309MuTCPzz41Qh3jEj#!PY@oFyyp=wi}Qh=@B10+u+gv-)=De4V)2I#>qPhX`~;*kM2nNm#}i~q!V`(thC4dD46!T zBrzP`&^)8{I|^yU+wce+iT`i7h4cSy3FHVSk)2f#YZhAR(nw!G;RL#c^Wdbol1{E!Xbr&R z{aHK!N8SxsId|TPH4CkjY0U2oXZ}MtF|N$@H4CjlnB0GW2jR&5yRdQ!caJ$=+6F#R zct}Xw@PEDo5w>BwY;D7oav%RFcA;GQxVnMEm^;x%Wv#fzp+i27K)#G!?qi?D=HV*S zl*K!|=?g=8hu4|JXz&hGlS9`U%%(6a!#*q_iQ%{?nNB(i7xCgmGJ3PKY=|G-v9oLd zD;u38L(}e|SK~Zg!N%@ngGnlndJ0#RN z%3Z-`Vj@Wlhj}!iCqGRkM_{5Kk4NB!J{k)v=T1EFX)2jBjrz{v)OUh2<9e#=pQe(d zFv;(TN8w2R?XYqRc@GaDZ3Le;JS3!z__lA;5;o$BY;DA>flBGvfnr-{SGCe#>>8+- zR;jlp*1)xEExbnWkaoiVv)X(N$`F+4%yPS8m2bUClhMy4MuW+iZ6-kLK$pW54YP3x zoH1)5L}!wYLZ`tmV$Cs_{pUhF2FLz$KCEo?pU*Lg?7YST{=%l2H;w(zD6YU87(aot zJ6&YgPl0ZAfj+L`{X zaPl|6xp5_LJRnJo!=!&b9)~0S>tN*+`W{w5x(PmYct}V$v5oIQgqyf4TQ@Pk)K6}r z5Z};f>+Glf(faAPP^%TzD342CqETVp%UXbqV~4!I!DHYdY*$*frenoGrK?`5Rtn{g z_`lKu;$p4TTddUS|B?L59i@IT5HSuh3}t4s+~at`7npP$e`6ADjTFUf#6#7V5NaTwnWj0OfKx8qi37yhlc^l(ePi?CV<@vgho>BvN}$hF3Y0TI1IG z%qp0f(P#SMMA`eya?(+th$ZB$(9PD;hacLpwe-TuMr(rQh0;j<@$S{Ur_MUC<5FC5YRdatEOA`9QO=+7<2tsJ zKf=mJJNZ46$j(-XjdHAvH~1-fMjDLQCkf1UyE0C0l#@n!4t{h;(lcS@+({=k%CXYk zGo1Dwa8_Jt>l@{y5&r-lfg|zv!^$bdJ?43775KE^At9~8oxV*z* zchU)~V5L3wo?zNzNMbmQp?OB@Rw0e}n=qG#Bk|W^6L z@L;xg6=u{6$HeQi%GJtB`dMA-S8g!u23M`M!8D=~e6SIZfDeGjuS`}J`>+dq8i`Vq z_F*ZL7!CG;@k@+e^ARgxe#RWr1*gke0@41Yqo8T<$LKmf5r8xlN8tG#z|0@sN zS}WT4XDCK-ipiJKHX@1Pxa^rqI;sKTYq~6hFq_aqJP5}oG#^$rn$TQd3E6~rO$9Zf zSA8p6G@)a&-GO85@?yQ9T_%Afhv`2xvDwJw+3WiIh;wP_LU45 zfRBrZtaXx8VLC=9ISI~@bxw);NJrt(XlJH|ff7fR*DojFM|Er+pMaH(*0GvNWH)6@ z=GQM4zTc!su(QwL`wciBu6+5vY%+Fpg7_MKY)8u1!pgZ*o-VIcETn%MPWlNrC$6Mt zX_qJVbNW&I_>Qz6hLuxjd(7q14)CeKLqcAYe9U(s!VWCV_L=E4dQ-JtDwNwg#m(>2 z2II{)qRVK9jA+r%(cWY&w?=75XW+lSTg2ZCUzwjQeqjL(33Jt=&ZJ+M$0SCBUzn~A zUULq+!1RonWhtC3YXL;tkd8v8!TXIGzd5_?j33{z-|Pe{8~tWSCXtC_d=`BZG5nTf=!dB)ki>Wxzx2&Y8_$-qc4W?oO zAG9{N+zQh&=9Zh`ELnj^UnU)eh*$$IV2R_(M;_n8kL%b@Zh)1Ic5*$F$j(NH*Tt-i z|46Z5Zr@=1dpIMmjFW4?(@6ggKe{97Ct>B>Nhj8TTWQa{FPQc;k{AxRXr9sf8t^pY zlko@~iMPYbDa1YId1)2+wBR8jtwO`MbcI!zF(K0p^2V()-z?t`E>&w+8Bwbs!d50G zi&a?WTUOF4?9C)bg;n5#)~rGure#bc$HG~%0*{U+9fgRn3IdimuCxjj{J4(ogoD)g00b>)f0l>5=fWUaFi zwhAn4Wn!{eg^4s2%w3DJl2&0nlNcpdAs)156}E?Ii6P1b+1tWdvI375l8!>8Wfd4K zaa?H?w#JX^*iN>9m5p|?DU-;-Dp(jFNwEZ4g~Q;CxH49)f}Qjs_|Y9n9|$YwPFk@F z7TTWF4{Y{O8--=^jB+&dH5L(3Tsu?%4_tE;BtrNQX?7%4Wl^r~59)@E#dKOkTy3x~2 zB0HzCNL{F?oCR71%>M;?HX9W%mn1L??pgtS7uB^4#;k)`crcE2FdbITy$+Vh)dbel zNUMbphS$PwaFSeWVN>lb59@%;de{XI$gv)l!pbT2;9)VOOW_lahlF$~clb6q;ZhFG z_O*{G<+rDO`}8!pfUVUx+}}QZJMit(lYOg7dXN*D#Axs!Q_G2=Yt80bn3XZ{Tn*>S ziaQ!49o2g9E8b-EW@otyKe}UQxe``3I?LruB0I;?{Pt-&?}sTO?6Se&{UDqdSKi9E zPZMJ>sXu_n;7I*GSUGp<$#0(~vZkHs>pT!l{w+8+uH=nxpC-m((tiVw!;$`LuyP80 z4=W(u1fM!QB&3@--gh9vP0Y)7CB>X_wJUywls*&GSFOY!KCM)1y~+)bUE%t*7GLA& zA#ZrZhwdM8LmT$DI#}GTuzA$VBxbq6@je;}cBLkYOqz@LGKo}kk==~L!Kn$*8c#P2 z&X{rvaK^0cqkTz7q0`_?{cRLQ5b`O?QFsuJUFUFE+2}eS^OcZYhu2h4*LinH6a&kn zDcL@hUAM2GuJis9#gDloYn?TY8nVZPysq9osMN5f!+gP)gX}P$XA-F$Cc`~#)+0(< zOZf@R$!IBe!6~w$j=n`Y3XaAEc8eq~Eu)3pfgjYdh1>=!8!hB}Od`9fV^Z^uqE7c^ z3Isa~4Z1JF>2RexmC7egOyWQd(7w367WgDLqcANT=M@ zmnvQ5f$k#hUQp~GJaTZ$#;&%6wX$QIn_GX_QK+r#Evz04)+kj58@q+Yaa<448f<(Z zK&4Wxe7snz4mNfP5aDqY8{>(B75bP_Th^FZD;y`a2cm(+ZEeeS?Mq3~8{S~)m zqbVRYKA}`0g?RU*GaKXRG#;px2BZJc$)=p?Vnw+qVbR;)qQAwDyET5?wN52@MH$KIW-$+@J;xE9r@k}E9cI4yzTUTE}ZVOa4KBsPGoesXENA6jUU#L?NhLF z3R`*MHnjKV5{*gA2g>DQy)&N7l?wq}E0UANA3d*5qUjGZw|G^y7lC8Ds+CpBUB}HS z4s4dO)>z{`Ht$|8tSQ#43m*8Nbg*y~d)T}XjHD&pgry3xqM~Y~_gl=fJtNI&XJ*>R z#Us|{fe*t7#Q3C<`yiYmE5+!Yq@&;vpV45P#8D-f-SDG2Hi}(fWf7b_Gne{G#AhbI zV&GL1)E^dwL_t@R-_Lg4!sK$HcRB61-`8EJ7nMG7CJkgb`osrqeS+@JbeHJj+S)2w zf7lTR*Njc6QcKe~%{TF~X`IX?)^eXHv#v2EF>>cHRN0%yMWmx(X-sD} zBN4oLp>Q>RaK|2U6|8LZkSm!)cDHn9@u&ZZglV)NrGT)r(4hS=oEBHwa~W-82qyCf z@emxDKL9J|&V1f()k?iksuXL<{-$wX@1bDs>ySipLBr6-*_AtgkJCB~ll@yTp|yXn zT(;{sVC59{9uvOw41Ch?kdV&hMBjmkYl{7|^$b({>(#!t&gL|&xQ5-~y0sQvW6uEB z5QitDQzj^jZ`c(+O+*#RLVO>S7!AH*nlg5+r>un87;{NCoGdHe=m64Dz=*B!mGI48 zQos-IIFB3!D;vG!a3+zRcMx0SD=E{64^l{h?%`ZGF|NduTjMK(Fu9+D2jR&5Y*;yW z?uo7Om9%N>e-zICb~rh%?Dehjm4TT2zmEsv$p2PYIfcK60gxVoPaqx=(nGx0cOb$; zoSvpesuxS|5Uo02nljXQlKgn6$agx@M zG*=es`jgJQVMti>I)F%qCyYNP7;JnrIQ3<^!Y?1 z+Yd)Y_0yWi{$gjLRx7L-j&?)6xlYebOY|!BaEx@IUZT}zYX*za27E$V7HvxNe7sU` zGx58*_}xPMZYh4Z62DuE-?xe1ZN%@k;8zdMNEcZlB|#qT@C@4LkB zPU837;`cr5w-{|qfwQ%O(I)hNQT*(GZ^njWSsXZz{uy@nO&Ck*3b|7Va)tl)^((>^ zZkO%T>T$dC`7-(4=Uz%Ab`5LygWKB9dW#=yPT3O+m9CyDt#0fs4qBXGla4}vCnc+s{#(l0Ul)Z6HI-FGE@E}0LyB~j<4L`%(A87y z?(8l0c2+A~&bq33NI6=cT^K0WV+rQd-tCne`qzVvrM~~PGj5J4j%UaLG#A@<_7C*+ z(OX`W75;C?r|jnyQA=^4V$odYrMZ%p;S}h5rEvwZDXPE4&1!yz9QMk-fzDEYXJJ*L zR4yzplO^8QE3lqIrMq10?60n9)pz2)joa&4Q=Uedl0H=f{T7WU5cC^xN?bwneI}IfP1djB zhj(QCDy*D4>-i~{6B_kx9uB6y6-i*X16--|M`{s9`@e z9Q(m=PF%6iVqIO0-=uv2etbvT`@+h((_W9PtA_aWaKxv;iEu^CcmJZGO|GB959-ME zldy8`TqjbB*i94-?oHuvZ-leq3YWi6*^JyI{B``uj)cDoE9XvlVe6)paZ5^L{&YC= zr{Mg!GT(^x?DVmiRq!|-i(?f$0xRcU1sk?9XSp@0)xnhC1Y5R=Br!6UjqlI1w$YfC zFdmP_u@c6@%DGp<2B|lcwKCW_ybN}N)8pC>He~G}btq;H?1+crSOaf|m2IBl(}e%DI!D$#Rxh)}~Q^ zBb@qca8_KY^Lsb?2u$Ly;t@C!e;HQJo%qz`LP(AFR*wdo`^`yWWXwJPaBMPqlk_I| z(H%)IhLv+CJwxQGxztpHeQ-GJ1K^~%p4zi{L+6dDIRKOQzIXtRy!U~XbLTy&wI*02 zeM&g#Pr>PMCC$IR)e7BY{7L-Kj*LIJ3) z<~#T2hO<5gPKYaO{t#UaUL;fQRDL#oct_G_!pgamp0IDN8h?kZrfk)DdpP9p!?|#U z%pak*;x_o+iXYjL@6E7s3SWg$ob_Pnx{tqr$YrWZb9CP}1MKiuuc*?t$mVHA0>swB8pOAkuiPU{UvfFW# zA<{FT*@VT92VWU1B8lO+GMG#{3Z4ePGKdRJABE`^7T{4hc9?mvve98?`%1_T!>cN& z!@S~K+oHoflkM(8>larSy9VmTw$9^9^&Yu_b-&VMIw`f-E57y~W8HnFwO5{Pr=8Xx zc8EY(oUNU#X)}-^_9QyOw<=_>Ih09^f?m^vrR6~DHYdZd#Hl1-ygw06nw57{Asq!! zgI|lLurwUa@pv4L{bmiUZ1kH|z7n$E@X8A6HwTAAK|4jfFrIFx!=HrOGQvOP%D&gy zzB_Ftx|nSxn%vOrM>LAzXfUoHU`}jkIz<1t-8a9oe|(=wq$YW!_B69^8`Rv%)z)lV zS!wNT#`k=+@3-Wv)Z96Oi&;PU+&c15VQ~%nUNmk2Ew5Dz-CYIxm@VIRD`iVg$B3j_ zoxa^{-*C+>uC79bwjoO0Yt%6w+5@iZn9ddDYJqm+v~Nu27*4rL8@twN>#uT&_D|z^ zw{LFcCfIx}KmH(jxwyJ1Y27i@aj;EE5nae|n^G)u&DiW)gJHvs_w^F-S@*~VhdPkZ zvwkVuRgVL;Z#3mN!dRknc`4qmIwX`8rOFCAcMi1fFXa|W>$TCutI% zC}-<+zay5UWU>@PnrFgK+WfSNR2sq7E z(Iotk^E^4tB{q=!BVDD%8%RDUe*YwX|15t0B7XlWe*Y$Z|1N%?7r!rv-+zeT7sc;O z;`g88_hs?>iunDP_ zf!!YtyAMu^{kEwIo3G{224M2;#RG8U9l^@E^PWIAQ_OSv3*neQ59h)a^CY&`p2uy{ zy%ayLBi)N&<=pAcly}~^fzx{T{o$N{4rj%cGhcPBkH94UQ#=Ak;y;F!b0OR$4-ALAADj@^Q+Ya@pcBEHoR{GTcjUY`teiXNIbG&sB#rk; z;k-|P6XVL8e~;NR2$TCK@E{zyuZER#=RVJR|5GFXjd1c`gHz*5o^N1e9fryNT09I# z_E*EoxwD_vOd7jesWE>docW`0N?e)qRrE^uChLds!#lEm5LV8e^_*t15;u}H;uD?< zHf`&X#K@R7-rp^QFuAXT2jR&5t^fbH&uXTub*EpW{?2gfJKzbQK;abW^OWVmGaKV- z#T5g!(qLrXO`FSHoG}EG`F3~+j?A}#m2*GWXEzfjAH-_iM5}3qPzQ+tXp?+}TcMY}pbn?M(hb zINty&Q>zDAuJF3Dc6|v+jEr69tC#c!&WI~+zCJM-y-E6N{OFFPuY#3xCq095m3+lgJGUPVhy5^| z6j#{%O#*EIChrIF033Ng04wLtdm5!H^`Yl_PX}AIbx2}lteUtAONMW!o7S_$7|y$ybNN7h@x%DJ#N>Y{9*86VgJI>|`A!h?(CJ%h$mp+6UtSIMO}ISKRy!2qS)j_bGS;j=VnwE2r@G`1qXsejWd^nTLe@BJZtizxP6P`J%SAPY!Mw z-MeF3+mVCO{ru+v{_`vT^AP(H0}SwuZNSarbWDa*8VSq+l`C3th(y+P@5r2_0AHE3A$`#};0l^-`Gz7hVH&Z*91S_wiz_ z%FgA)=Vbm)?K1wH%=6;+1@Ze2@%y6qeM$WOQ~bUxeqRy4{}R8iir;^W-~Wi;*TnCC z#qaCv7yj(Z@93Xp`Pr3maaY#v&CUBm@a6k#k{FIFx<@D-%ADG0=Q}^gtN?B@o z7me|;;fyPAMqC;5+i%I}P148UM|ULM11slFdP>4oYM`$O2Ynfw5LeLrAxa{6lk>&+ z!5ukY04wLtd0cGwHNf|V1HK2&gezb^6SIpHkv#dJ6XJB^c%Q$n_;74^Ny9!p$o$PpaS5HHGeK^|d;8eJxl>7se&B#qpwJm;R zN5Wgf%DJDtnM;0t_mTs4dIBUiB>wx$Ns@ zCXt%hEu)VwZ)KLJw3*;*DNWIoUyW%4*7ilS>F*Pj#(Qj8pds5|?W1v!^buXQT zcrniZ`Tg6j>OiGVOH`Kn{d3ytzF6z0r750=r`LW4XoXB-3CW^A@g*c1ir#t(9+2k@PS3IMtWN)pS{0SKG3|AQINIEt)_&%30LlUl)_Ho6US{ z{Me4od<$6FXy#c{o+dKI&mIl*ku;t_(1*b(aRtryMpeQ$Ss#KQ-jVfzuyXFKr;B8X zR;R)KbU5rY;GDR^=6l$y@td?y#gFeu`y^O7ciPP}n@>y{?C*rb{x+NvSJ=v#E#_5` zPPtUzoA}`!S$_joPGRlgr==z5#?3=QTJjft?W1@%V_dfHW{f|eTC0~TD-~P*DqN`6 zDrTPe`{?5 zz5Ji==6U@7VxiX66KfRdt&8{is>DM`nDhmI<|cgu@w-s`E@Hp1NuNUhEK8H#E~sej zeOn46(70{QMiTDO*CQR}WNPrcY0Yvn8v7RbfgKzBrm(Wn*t6z4o}Dxr-NR@cfpian zQ(!S+D>u#Rl^gOzh%kM2nN z1XwwD(&OS;OC$X4aKhh&GvP{@Kh0wEwQ&xA13#)G*{{LMDP%odvozk^mU&1>M3Rxv++AyV`6c|C0_L zTOu^YOjw-xi@sGPo%!=jVlB=*?Qw+1(}?2Y*8O+o$wtH;Q_R$duXT~Re+jk%vq)k% z7PPEGItrTx-)2D{fjL)9$0Km;C{ti%qoYh@5~&ZMhMoBOyVh!jHAdNM+;^j>0xjS! zaBi%pb!2kq8(-VUVbWiU$KgnSXIMFR`U`ifR_cXPrC1xP0{X%$pcl@MYXxk?mXD{8 z#jJt|kHxVHR>I0DRp4O>q^saliid=B6@T@e*o3P%DqC04{-Ii-yHt#y$tK;z4RGCB zi>|S~?FNwLhTh6n6w2geF%H-J7K$_u*D;B;7>AL0+P=Fj7p;NY%vI|TI||)}-p>Ad zk@i@z?l{rLRVPQ%Z1+Mtw=)Xl?yfc#-yOPcR-%1ef3gri560|)T}#w zI3}pSUhQkuK*~lYj#BI~QfIu)4l9Pl9pH!PoQ-$-__g?bSp5D*{5~Rn9~HlkiQmV? z?-SzpN%8v>`-Sfu|AhWomUoUPwN8A^TE0So1X|0N*jU2v9p6qmO4n{oWyYcvy6Gcc zzz^-{BmM>}8$Kdy##30L_<5~SUh>yq${Uiza9lW=l=&V2iQrAn8{h|bvL^$i!a3)+?^SjGz z9u~=y%Q^<|qdJnU!OFRlo!>M!n(fqJUmFhlYB)Kru=%GjQU+q4*;nC#IP$*|R?eOO zdUS=Lv3@w5^@DICTv<pl4HQ2X=!@dd5i7RaW+JqXvN&80p_>Q!{4lAe7_IPk6pS|&?G9D80 z+1oX~H~+-5x6fqz>}|be)f#OkpM382FSt&vMb_BH_H@AV+^xbQQ10GZp1J+gw?O1G zw|_8+jGwvL-!f%mwmtJI;Qhklm z{)z+xt5SRWbA69!K*XSwqon~Z_bn3H06UpP#tm@G#?H2hKn&Z~1H~V8uy_2u|8Zqa z%DX=fN2U+arM)@i@UQy|tBT1tht8t3$Ip#FEq>1yzYX>aKmR?R{#lj{eLdo!b@Iz8 z1ne9U4NJb)e+e5!cqgxuj&kZW_`Surc*H^FGlL89gF3eG^I>J9g=f#TvPR?jGa5x8 z*Pp$tdkX<%Os2m3Od30JWEDIe>(2H6+!qdJm( z9#+nuY&^4QWH)&}_>^5t62ozO*gR#$+d=VsXpmimAJviU0$4ePtcMqtcAA?l4+&|f zkMJ!~VW<1DeJ#J8mT|LB#;ErbmctclZ5+<)c{w@{>|K7vWC#ZqVX z0?-)sU98jKtc#OCTC|hl^jN_~$C8eMqA`v={IvhLj>U8vXV7F&&v+2P@~!blplp{hI9W!l6D1r@<8}zm$qY zHmE*^AJmcRZ(!y8sg^1$lv8!`3&E#qJ4pJ(SpaEiU{1Nh^!=;%T95yL&7CsDlNh*glH` zAMh;~>A-7DBGrLsXV=EXBi63YFM}b7(?PoMi{TVmIYwuYj)Fsc>6URaI>ZI|Q5`$P zd9bq4AwKIXAv*-GnxGC*4T*wo;GdiAlm2mZUA*cY-Aa#moQ8m1QCMrs-Xr+79JUt0 z|Af7_P5~)JY3UJ<_~u#mh+i{_)E=>Ac1{x8;#;6CXpT8sd6g|gYnk?K+iRU@fIX89G3(pW4=*WGJ2Er zrufkvNiTtwb0ER-I4iDaG+)T8kH93pA0B}t@nx`b3UQAaT$%tr zEqF-C%Y&irHxy&oPNq50Tv@ zv+2`y>zAhDzm|I1_SFU|#m-`HAFXa~ z;4t|=kB^WjZ|lBM4pAgzcvavPN~SegT=B_<4@whZu_U&4TKFPgrn^Y|ZYX{?62FVZ z?-KF5vH0CY{BA0KHxs{`i{CB8@0Q|sEAhLv_8vU~@mj}-_ zX9&%H?n4n_bGTtY_hN$zUoAYIbd=e>F^}0#a}1{4{16_4qutycRyOQr*3>7pW^@hq z$7w8qu#bb&VZYWeVe?JFTA`ba>-eD^86OKP=gxS;wHYrB`&YuTe;Lk@EA}Pq9ADdL z%u4to9*tuqTmdWRUI~+>W!AX=I-L8j;C#4p=U;e~v73~CfgjtE^1ZNf?vyu3y|mGw zk9jG$$G-`u#})d9>|{?Jidh4%jB!=UGmO0Ze zURxC~=Pyz%Uk=+655}<$HiMOOuY>jIx>MtQcsTEm!HIA^>-n0-_+r`MdJuk4N3Q$B z%DHo$MJZCRq&3QChEqNbPKzt$x$LYqhF~&384tmc`H8S{?#$tH z_4RGk?LGVkJP1eb*Tc%WbDzoYAWHwMo$9|2hyFV_E3VM_8U=j>=9&H^9)TnA$6)2$ ziBFDiwemaP8tZBQ47Ti(Nn&Ko8oy4Hv740J@nbtu9tSJuPI*Q%Q{oAQhWh`)QNIUH zitA}ToAq*S04DEu;Q=`Eeg~|aJMZRMP1CrBx)hFj1)L98)XG^+v73~;@MAktJ{nfe zo$^d^QnViXX{;{{XMH}L6<5}Lw$?{r68{_?fg|zHz{LR?|< z&7Bj$o1AaM5AMkMd$4luoab1crfa-k4CnnkoETT${QAo>2$TC?@gN+z{|Q#ko%=i^ zWtJ=NMK1>%^93X^GRAxXb8FUNnC$1_VK}m%4J+r)ewMb_q_|o;I z&t?q4WWGBdf+O=?VddPJ&(RWQIopp5r(TB><4T?PdCMS7?#JRmIC8JR$|>AE)=kT$ z*L-=dhlG4H6c` zC`+|03$btVEf%>D`$i@)Iu>FlhHhKfnfT+5mBsSFV8i;!%*0+V0U)Zdfx z$xJ}1Tr3>3rnAPvvM#Ddw5lsR`>QMJy#-q5X{65Qm;ia(m(?82{DeSoTtkitoYZOD^ddOGVFv1tV-c346M-@9juwEi&QMnxA zW&Eg)Q~ZmtvN6SHO?FbNQ)+lOeG?PLc{#2aLk{C6XJ?ld{IvZ z|Np2v6Y$82s_%zoGD~J37`9;<1Q`$l3?c}kEV9EOn=CShp5!L!o}@c;cZL}h6$No= zR3Hel2?~lEiXe(2h@!|Qn<$D4ilV$CilPXDeCJkGcimf6JvslXPTzby&r9K(n@BjXPZr>nun8qviaVBfV05)$_K+ zw;QjR$@g`za^~ZAM!aYfuO=9PbK!vB344PZoo9)6Ty@Lstm++j%}l~4!pf6_aJDQgUW2(Ot*_#9Zd31N>n5&C6@T;leS&@VH-;=5#{US`Z{@5_w! zkBq9h)LV@E;STETT{Z4GGQ+U}sl_(O>x+AQyN7;#ahH&2`|AtmffR9@U2h!X|9^LX zX*f4L)I-~o>4*~NrEY8e^TZ$T<681w>mQe+5xQhAl9eY;e0YwW7cWo$LzVv&CA`f1 z2g#sqH+{@X_|k~O>;5}9Ren{pCVaK|SEQ2~05!RUkuct#Y+uGJXNKYzVPz{6x0`cU zqthFdcMhk#BT2O4fykyT7o8iX+l;rzt7bBOEv%e5%AN1W4M!Nx34 zj7?f^lYTp1JCpRWuyPa99$Ar2tmNeDA)yniJAK2FN~~UP?*VLMZ0_TOnbD(@5}oIrk^{;Zw*6lNv*iZSQ>j7$mKuJDLxO?U$N zMbb$Pa+N?PjJKzp2l2|8Q_lUcvNh$joAY!vpbf_By%5Z}gCts!KH7}sdaE+r=KBgv zp~mF<60Dp#-#Ic4s)%b)-X)y!P7_9XzF2fknQyb+0k59PdOKJ-bJlZ}v(&_Bz+N5> z`()TB&NQxI59tL-*!78BIaI&nJ^`NF4}Z$iH%7;6*wOK|LNOp^rQdZg+$vQ{f~0F#B9H75y1SN?%v^%9=fr#c1(*EizQkg zIJ#w`^pM{(R4UOsp|`b6GvD764OQsi_G4QnSuL;WiB|X0d!$yXo<11Al@iTQyp`JY zKXS2QGgU59<>so~LX}&J5?*YWMSs@L#fE9JCmQqJu4F~vIzzW;NccL#6w*mWl=_W# zas*k^-RtmrnbX}8SlOEH+D*4h(xs?i0DdR6B@pmCV0Sp@nSu>iodYfa#{tb^d?H>o zlkxGea^{R@)PuBv_@m*7KLmS&i&$>!s#|UoJ_oOvN%;M+a^{4mt0~g}{H<`n-+-OL z1uP#*>T|s{g1?Se%;fu3SUGdPGj;xAApT=G;@`vm;3AfvHfh`KQT$uHZYJel!OGcF z*7>ACdH##RlkpsqXvK=ZJsC^N+IE}rOuTL;<>|0;6UrW|1A2i$K5TkO=mmzq`abfi z1%`{-yTBkWBi}WB8Trw0Cw0aV_jO&Y%gD)~)PsOyX8`-aGYa;`5Q6{{83DthCG-LYxvV}%*HV((yyz7!me#vB>J z46+tWj8*T^8NpN`F&Q#~u133!Cx~5OCaRS>DcA{iloM-V5$U9p0=b;mFx}1zcEGD< z#*Xb^Wh-`UBP80F7tGr)zC~I0aD()6GAA%KI2m>dm$W=S-e`c$`vlwoChy~5<;;0+ z7{AP=yRxHlQ|2EDXMQg17%p>pETy9nHutk}BbeOJf|Z+a_n6>yjvyxr4+)(ktnb?p zl_UIOeR{r|cUVWq_VI+hq;LT}?+xBuxR8qFV@-qDlER{9f3mpQ4?anfwYjTuL!(g# z-R0fa(GyS4sZ8N+Y77>uoSm+AsOv>>BNvZ7cYI;0~~EFrT3A1t;N z5=|q;lEN7)8sl3ne%eHXeMZN%j(X8<8IeU>#YN*sU5&Owqt*|q~ zlW{AU5&Q&L*^1!pCO;=NEDYr5QF{WBe*|`kd%Cuf%kM=}=G&~##j9tsJ{wlfob^Ii z^fHitI~@5pVb5@p%TexXg-!k@+zKZ78(`%oY49FY6upmoITEc1UvJYFE*}jTWW4{q;dcDb-aGy`=^jtOB&a< z++kLt;tvFAKLoruO zWewke`>nInxeqlNi0I`?ZpgK^p?=gYR~qvbVOVNza-?`|)tYKY}Xhn`_^WI1-E7@(Zr;b-)Hrzu z<;+PNyU{J$&xX_f3+xpxZP#ve7x6#i7BGqb5ms(O++zmUNr0RdJS21yFzDM5l?2?^ z-Zu`L)YtwyditVDFKs|@zJA#0e`u_7c0KpGEOisc*_>YgwYs6)R}njq?bx%E>RLKo z*iJ}HhIFC9%kYBn$oV#ymuj=lAC83G=0sk26X~S$hehJSqZv+Rh)yUD!wq2uor7Uz zE9kscNVG4Z*it^JH*ucP3(h3t0yB&=U>9+F!Pbd|hbGOjlgra_bC`Xh3M*&c7ha>E z-J3Yj=nr2E?+>4c-Nfw=uQiq8czy|rm05zW|}F~ zU?YCad=nUuDO%s-- zdZ{C39OBDg$BYAo#3YCr5=*`5M)WAcSgh!=684oldYnu;DK0g+)izDeiX($~^~^XD z!OB(~S>Y?8L2+dN5G&}zm~-0u4rE@5?#LU?pAnUv%N}2$*0ds$9PW%Hyl?Uw z7IN1+zUYfU2b9kXiKYQ%N&B*p`DXKtpzA!&6!KD8@teiRh zMS4wRoF1@4$GV|CU^|j%#lwg_^0zb=Gt9Qwyt}NK!+Xy<>rrwfe zz9RH_c)8kB866oZm8%tM)yPn;mo5|Vbxm)scQESdFOJm?_B5$?C_mCOoU4}etHo7c zfl8~Q-YVU?P!!iI9^`9N{Y;sj>Y9-l+F`yzqvbNaYwcN)>s=YqAsUrxd92CmRFVY1gJ>@7zXCxH|2)pmnM?`iYslPN@&PQeXEWfwZN6k6KS7)@?Tg{h>_3;(;(c9Zq`QE4^P7&!-o#~yS^0a&* z2XK=LeEm3(s}4rgL4Bi~{QI6FZS8Yj^};|o5LJ8Ph#mLPHF13E8IFcaWjZRsH$ugV z`D#R$tvau4W!h969i~;jVd`YQp*Oap9Q8*O5a{#Da@0FouH;t*gxB7)(GJtj%d;3kcBD*qb2kb7zJZ&NRjV|w_YcL{#eSY0r>+uDYrYYPUSdgK^$d#) z!#85bI`XEjIL)Y*DR)@BMp`JAOJ|K(Rf#|kJTF)p_m-7ws@_o0Mtknqjou;LddkS)%L&uom7Yq%3^OK^BZHh~PbVh@>aA@;@f}%`NMlOz zje5zCg2&vSLo!Cds^Q$oSmNx(^Js}ZK6~+Fs{FVrKcUL=Re6CbFI452DlbyyCslc| zDlbvxr&M{VDlb#z<*K|wl~=0r)2h5ml~=3sGphWoDz8!HwW|D_DnGBv>s0v#Ren*G zUsC0lRrwWFUa!ips`6{9yg`*;SLKbWyh)YcQ02|4{H7|urOI1W`E6BxN0qm#^1G_M zO_jH+@_VYhLzUlG-?mm3OQ19#!6}%KKD#zbb#C$_G^Wpei3y z<-@9cM3p~P<)f*YK*D zj6V!3XU=$*eC81E-wn#Qhf}^4b_kd9T(PewVZ6=x7QAvM=bK^W%sFq8b8jp#m_HNF z{At)ZT;}p~)g}$G`9Fml!sP!XteiRj8TEZ22JlVR4Nk}wlElO$WOBByTW%9xfY;0< zJQr5ZobY^epN>KLpm5R$z+T}FZMi|)Y=KRDU)%yF@qJ+BNkTlapUNO!2`4@Rd&Prz zq6IebVcY^H@dB)zIq`Xom;Z9#n*sc)aNt+KPT>NVcjp-muz6pK8^Gj!F|2IzzG&T! zbvojI3hjQ_-jFsUnfnwC`1gmyzX$dZ7rwki&(R3G1Kfoh!R!Ec!pdd`Xgl}mYD=lX z`lWEzFTl>=vYsg(&FXt$l?(ME+VgnDOuo;-%9-<>-`J-cKg!aMUjy`Z>jkIh+mOV> zq~|heGh1Mf=*74NOyXO>%9#_N)9_ckGuyy@TsZEdVV7{nwfr(WWxmaN8D2e;_2IDc zBw`(JpEp>a70&uSuuD8yi{1ZLB!3rPJ(KlnSUGdn)8sb}2IT9*A%6+>1s8Icn5fma z85Z5^@OqhauZ5K}r#mtI!9L+qmRHTD?YHChqj>#H+7H9ZnbY1b-W@sa zcS1%dn6`d!sy2lrCMH$eK@4?Pv+TaHE^ZdHZ@l{dU*Fii;Y8Y?w3d&&jNY+(c<)$> zW0*!;_M>un?hGOG0QGI5l?R-H*UO}P60Dp#-LA$Llm_6BhXby`?%)EJTOt~!+avhHc-2hC zAB2@NXS`{%Ph1V;w}vCX1@;aX`Q{>|H*1OA18&AGVfKINAQ$p-PK!-+oy zdxJ|{zAUd>ZWDeIubD~s30OIE!n0#P)jt_GC@-86oX9UAiHS+%<#ixQ>uu6=@!FZB zXTi#ulinoumE*I11Ns5s(D#L%!yVe{oPKvhZ2tS;hA{c>1uJLHe@6Wj1_Ss=IPhWE z8(iQrme(z}2^a91nS=*m<;)3hTK_Oj>;_F7`Ct&gBAoc8uy?q`Wxm#|C3X+E7`KGk z1IA$G%zMCsy5Ab7ni%Ns2}gey>=rJ1d0n{G1e^JtxCu<=cfiV%hk4`p8H4!?;mn_h z-Qvf*(FB|MbGQji=Fh^)nKPeTA0+aeAOrX|oxyqgVv?Acyj{M9N!xGJ-U6?mNqaL` zIdj^Z*S+O9&B;K2bU6BDu!Fc`eJimPvzEr#{orui7-l~>1Xj+xAIzW=rbKFIKz~m- z^moDD;6j%feBE-J@M^qfCgD+7Idj6Z)q!L#%3lhnd>!l&E@inIleFF@eJx%)lk{g` z<;+RXSH5a&12@L>W8t(Pg}uV1E%!T`EwG6{j9b7Y{s63;Iq?mZzmkUy8qlXq4NlzF zC5eei+~m%6M~8FbnE%II^WGA{6V~CCgBgj%9DVwI{MZid`mdtn_+K&gzJa)T7+-JYi1Ju8myc- z;n~Tfi4Dq6g;RbK_6V1#Os*~S zE~5c9?^(D3Ox`nK<;;06be-~TK;JhU`aZB{xFdWMk%zfjVUynrw}MH24_G;K@{5|E z$Zqf-4(DHh{ln!iZ)j`Y7P}V=;I=S(K_9G~c`ukLmmDDdEUZg583T@>COS=5NPMU@|`zR?eLH z!Z<9NH)I*uKOBzzgRp0~*yZ~aS1WAtAHc0(l7AnpoH_ZerO%q*WoGn(o5Op-jj)%v zyMHtj^A_1X;%m4?%pUO-SUK|^F)Qv7>IOOk{*&SGpMV|0g)c8hNf>W){xx1X zlk+cO<;*!x74hC6Jhv-2gP%nb6O+!(ki%PCm#f^TcQ4Mst7WpC3M*&Mc24S2V1w~K z;f(i!UBVs3^1R)Y`Sv*81FxRR`t`7K=B#HbXVJ~g2IxXK=mFRtT+r$bslIjE8qs}t z-Au|kSUGdb)79PD2I7mu5s$&n;3Af1;@2+)xA>lqSIp%5F<3cszMD3?`rH71XE^XX zVDE5&t9PREfY3_g1)uzIy<*4l+i**mJ>WaAa^^i?HeJk~U$sU)h8xtM3#a}p>=7MiLW~d&^j^47d4ij91L$yCJNc zIp2BYCiNAd>ly3taL$LoPT>w_xf|VRfX(|r+yEx;{bA+IdC!R5H99=9#)#Uh!$FV2 z-r$0kdmHMO+l0$_%}l~2SUGdTUF0X)%sG@R8;GwBNBkMs9bCln1muS4Hsep@RWli1 z4l8HQcuuvvrY9PzL_Nh)(cF;sa5(1&V3%+?%Qcgf`8MnO@ambY?}n8#XFZ=z`=?dz zraO*b4afa5>=iC<`BvL(fld5H+yW-?f5Xa|6JI3##n^Sc zb}x7>ZVR&)yarazyccXBJ-3#f$0vo;e>?0K?#SOrya2J=U{gO9w}DChZLo6Y)aOc% zHQAf`!EoXqfPKOxF262G+i%l;A6`F`_L;D9=Cn7`-fF%-^~P}MUxQu4g}!NGn8%$q z(F~jYS8y|!?7s*rXU={@$$o8nRG$bZ|7+MWT=H^fvZE0;_g~^hFuDI6R?eKen%9%N zJdFqSS+j$)x)~%fF|dK%dG3dg<&>=>WXo@#{6 z{q?vJOzykF%9(TDSO&;(_Nxwrqwj-#!$rSYVv0B0Vbjmyb};F`6IRZg{x)^`&3AYj zL0~MrC!7!aiQ5ylOZ9~2ZL)jC$8ejNz2c*=a^}5aj_eigeXDnbcYxbqmvB3PT)j=1 zZ?pamUOkibw_xSWS6_1nqy7u*5iV-EQzB`-P5RGx?M%{tgq1TV z-MMNwH)2Hd&E^DW@*9)H#ANdFeAU=$o9u>otxU4>Vdc!pPT#Lw&aF9;j(!+BXY8!8 zGsg;-ZQjvQI3yhIfv_{U!&kmf)rKo4>OJWD<5e>WzXev#oN(9M%298=5?PE#!x@)h zcW@cYuSk-nTa-(9kLO=pfRDct+|j*jJHh5KdkfGi%8#Ur9n5_2D3 zr$dgx-i|mrdPp4qP+j6wA(8X5Vsu5}fT#p>zQT~p!cCb+9Q`&n&iU#YjUbN^_ux0)}}&Gb9d zM$h>Fy7m97JN}Ji)M`MFGTix&m-_Fw6z;wNkXzJ)Cg)>$(5Gda( z64#O23bSG%en%^8K)=6yY)Nf@mp2kkAICG@xfPYM+5w>=y(Ln4YYS8c$HH6G*Vh7D ziUUJY3mg+44j=9qQX$6#Q>x}#VGOA(Z9$tzhT3#kV4qo$7lEcHS0w01wn!{rTosk8 zW3{7Oq&F1x$6ti!`$_ZA7HO8sW3^*iq*cxj3^ojG6_M4kg`r)xH_8u%M+6a_f=ww^ zsJ|W*=<>d3U}-r=ef7Xlq5P^m<@>?0B|2?1*8&$u<^FI^(dv=#E<++M2v4Lkylc33 z`-e*LFgQFAwvg%RQ^-SmazDKX5BGCF9W@w^e4v*^LI>4AIm%Td^79daepW&~YEXna zIzOBn7^@u|XjHz^pD*UCEg0+Z1v@lML-VwJr5Gm?p%E-!A#5!OJwv_2;k|h%s!#?S zIyuKG_0AKTm=Bex?}VZvkzIFbjZ6zdGg(8S`H;ZzKq|SuJ~3AW^QudcS)q9knU$xn z8e}HgDzRdz1u0|QvUnzHm0=>g3ys^uxz+jMQ5wC$LKGl{P-v``H-`+Z2@eGnB75Wq zLE$q%F&fBK^Q&kE2pv1rpX%``)Kw#;N?sZj8tLe;h43ywN%c}nuES>nIVpukmUy{# zq+Fta5Du*z4d?R3zBs`Noe#>T(fC0*G_k4V2Pgpu zR(On7aX&b=tndp}{!*2XtMXT>{Ix27qsrf^@(ES`PL;n`<&&!XgDU^1%BNKMCsqDg zl~1ek|5W)GRX(H2zpC;vs+^_D*{YnQ z%DJkXr^@-NT%gJgRJoxl7pih2Rc@@xO;ow5DmPQ*B2{j#$}Lp6r7E{lQPz}O$5IA7%zY_M|AM{KoC_A0zqCfO@s<;=-WjeRs|pnW79 z?Srr@xM<~xgTic^?frPQOt$yH%9*pBLhBm_*^YU^(fAeE5nQq=8q<4MD;mFqSIXr2 z0<4@l*QvSqt+GLOr*N`6ki^8yvuezWm*E!M?eJ=uY`1}xGiTeGqsLhT?aAS2Pk=qa z9kgnujUU1-vd7`IGRYndD`!r2YE0IgY0nKudp7I}E?PBeW3z3xXW`W{*}ex>&YW#$ zjutnJQF~K3+8ba`aM7w!8?WnFqxO2dRwmgm!OEGFof?x}YM}jHINIO9uHd3oqc%3% zX8Sl^EtBnIu=3XXC-#@8KZaaaKd}S z4&jboxz{~mygi0@$17)YUJ5H`&UtR#RdTbXfqF0;bp-o_i&~x|leXWcy#lYFNxKJD z&YboJb#LjdumUZ%-HEl`}anfR!`n+!=p_VE{ff9PmM~ zC%6Mzu91jOM=Y`j;I%Tz?h7ktPIij@a(GoZ*b3|jE?D`V$@y-01h16Ibr@F8oNK4! z)$nJ-!CnP>f(urS*!T-8Ys6lG*UBV&DXg41+3D*0F(Vv57!LP-*cn{7^0t%uhi?|& zd+>^xeD8vlGv_-^e&c1}eI*?4ORz7vc)P?_EcI=gMfU}~UMAh=Vdc!}P8Hvk8E|*l zAUIdvjwB`~SC;Q2+Eo@XTgpDxzd-^7T5RSl`^@$3s%mYYiInOxG`XF2nTyT>hh4!%t7choGbniugvE9WUM-XDy0CKQY-cA=xiAp#8IE{&*dyHGD^DU#T5r$2 zOYz#7q<4muGbh~{pFm;|j=~AAfIYz_EazTvZi+RAd+=JBWKV&WCj;4%`RT$1;bcD! zdjcg(XW3X}Yj~|pvLA+(GbcNRPU4vikW<$gq1VrJ12Ffl|gxvg~6HgLXw!6%vql0 zpEBPb%M0-8nXKo+%9*q7j1L?$5FZqd_yE`w+<`3fDsfDjHH!DeYh{w%2UgCU?2P&$ za0cB)k>ZzXpP=W z@oJfDFNT#T16w){%wT(eINN(*SDiA8I?(=xPOuEm(%9+!hLWheQXt&!aIA`95BqkN9u^zGsE=eGlvpE?@c0 ziMHJyzwg59W>Q`aD`!r53Y}?d;JrQ^@0ValaPg|ROh-CfqxU+zQYP1HVdc!ZP9?6p z?qZOAJe=%fuq(J^22PxQyk7ton6M%7ywkjRIaVlkWhmJPG*9%c=~%SA_Gu6m|y4 zSKYE@@x2(Yn8|kxR?eL7jQSm72H<Hr>h%X4YrSkvwakH2A8dT4z6ECYw>*;ub9dA0a!V6zVvc7XC5m#WwYSi zYF(0;nA}Qk!4ua5TV!8_{a<5}eHm8Hoa{_}`LQv0mxlA*dBXV0=Ob;q9iMl^>t<5k z9#+nra#!P8Y6EglIOJ1ccW@)L%$^&j+l)`bt7bBOJFJ{J|Pqq_hQ%^T)uL3xo){lcnq(ZN%(wN zIdj5O=*mVTNxmx_?wznBxNv1IMMm3P@4zc%a=i^!&YWv!d=;kw_W5wI&%vJHf|WC_ z`vTEt@miT={{ky#PIf8<s+a9%>;ngzPZVW3=2DYQc zUW4tjaJGlTuHX*aI$JW^W_t);EtBnmuyW>XXIIPQq#ox5DDMhKyc+fh7qLA4H)*|1 zdK9mnNxBRxHz6GrF5kSP?`$FcJ8Nz{PT|5N^?TiTW|tu`Z9>>Vu8cd^6K*x=2IpWb=!P2XPB z+2D7RkZ4L^NmB$K1fs2)U>0cRo6R>Sj9IMQos!uC zJEHs?w}2T@ehMpF5#=Ev(LUlE?^iD8)>z%%;67uE;3RM=Nwgvfw7G94xVzh7(_bIA zgGqlKSUGe0iw-CitGRqJDv#F#_6Y9*uZR7^9r;^|9?-lkb}!f!w}sgYx?$xey}%6?QamJdR&j%GFpI6AtYWJvZOtmWj;-dZ`ARkZBr=sxtb%*4v)k2{y7CD}B2h`$ zk(!_!$wS4rv*_euL`bY9c{pQ5W5!n*oyza7i__0p@x;teUke-1?=K%)Qai}yjYQL3 zDOTdg-Myp3BW1cez@4Tgev=_o866JSiSk9EvwvX2=u^J2+5w>=5iLX3f=$VjNT?~2 zQm84FDxnS*i8+Ugtjd+gqQYjf8!szdO2g-aW6KJcsq%7FUZKh>RrzUEUZu*bRrwiJ zepZxGVQUgT>{a@w@EZEBWrc0Tzqb|DjTS~J`(9R9CH^g*{?4O6qgdJO8LQ<9{&Y3& zjQs8vGNZD>;|Wsd^*4)_AQH|nTR4YwQem?uw+7b(hMFz)1K5pt#muSvYp}94mA9Mk zG;$M#F$3>Y)Q~{DPr|<7;*~E=rQLR-_5@xplkTr!#N_5>HKd|?_}ZId0qYh{w{gOxKUJH@_?@6vFv7sHO=f>k4y9t*4yJBC-v zj&5>FL?x`Yc{4lj~n#yX|b_6zF<25FW>mhihOs)sQ%1yX>yf4tN9OOc@hlGCRFzowCu3kCZ*WOnS zvyY%RXSwoLxuJn*MLCyx>u?_2OPyV;w!3R3+40t4NSM-7Hzl=#=6Lb&5#KJOUp$;E zB-;Ms;YgQ5(ye#BGD!bMH|^-48$(vE8LJ)E8ohFiq(h{-0s5(|Vv^7%s+`w3^ zH9qSjt#~6%tC|_*$+XrqlcWY))lAY_l^d#%UTeBWzDTdvTjjHSan)FDSxdUc&}dIT zeSc9R+YWDu;Bc-=$KZ|C-qtF$a(;DBu~ep)K1a7wk`9oGfwa_2+R3(Ztaf}W&D6W& zTGSCsqjbGPt47?2=!plnq`{|=RY$Z$sY2&Di|E;!p<5{pt%_PTbStaq6=;i^xvDP? zQLTyu)u>o0mHX(l@D>dUDX6^H8Wc1ddI?2qBGsx~u`eD9EmDhmTj;x0Q5=(1-0N$} zs8EvCQcq=Nbb3!^&G2wkE$4fCC}LBLO}-Alfs(rTb@v%-o;GUoE6KX$_Ji<0 z@S2$q!heI6tq0+D6Q0@|KRFn9w_O~JcWaVp#nP3HSALfx%(mHXiC4>Hy9id!ob41! zMGUgXgp)lAc7$_fpDz~11}mGf=ga+~ny@S2%~KMN~oPIw9}?-+1@ z5f1lfup_u|WlWBj%B-0D2wo|Z>w~az=3G1DB|rmg=hne#)OsW_F=>>H$+6Wo*$%u` zCfQg1|06qtd?XfR4Z6F9)7=I4v-6TvJC%|#xo){lcqhDOCgB}m<;=(KRIx;E;5{`Q z?{e4`+^8&{f#k}*6_-!Ot7Wo10anhO?G#!kHpreAPWB_PBe-Pcd>b!rTU^h@D`j#$ z8&=MoYggm-kwN#{;dH+VyMs$tU2fcX^JOu<39p*T_y$-xbH>x;8$AQ?pTYtE0rmwK zu>9OWy@|Bw{tmB~N%uFfa^`er$<=@HrolkG!E1sO=XoSCF^RLh%Q#`Y9jRyIl`}ba z!OEF)o~>LZUV9s$_X`L8X4oU#u`EvqN?LD|-W#u-NqSFMIdjtW5gl(vFhCc>L9c`z z!Udfg(PAfs6}boT%9)%aSUGdf^VOJW><}?vUltDg64)zT*z%Mfvjz6Zz6iH~N&Es> zIdkGu#oiqQ^N+(Z{}6Ts7qfgqmRpXj(fob9S|;1uVdc!(cE($&47C3WNBa-h6I`_F zVUo>w^x4xRu)mym3q7Qh{+3nWDU)o09Z`mH z3z!k504rM&Wk5)@?~w7toia(U8QiZTs{+4az5@0Qm%DkVOtKv|{Y!B>nDj4(l{2Sr z+$odvoY4dB5AOl@!2aR(0N0%|$+pLkRmdsDLqca22m3Ze zWfeEHH>;R-KslmIWlF`=(QY%hLj#wy&((Hz9q!>c+O4;4L~3es9O^cm48!tl)lGET z&?zL=k~U1tZ8C3hxuV`~*Kuz3pLOSGzu*8J4D;py1-bxjthTSeKqVL7q1NQ8mAa*C zZAEWsWKEA!@oz~qJW>rZLkRQ?qcjk#F&tF}2g>Y^iB|SC#vza(`7Gpvt$Z@<3G{q{@Ru2_I7R z8v3(#9#S<;&cQ}<=zr zIfAwA_6R-*ubWBv09ZM5%2Q~`#K5~I9PcXF5nR0LP%>KQu|{tNuawDk1Xj+R>#W3D zmcjRP;e0;}JA}(uZmCHaZ*#s1ubj#G3RpRF&NKC5qk;L6aLfQ@$Us zn@RZ|SUGdbo&B_!Yw+#ZJ~+*K1@;7&ul!Iqw%R895?(8l>qH?T*zl;vS%N$YLWkK?s7Nk0ZFXHI&$dV_C3 zp1nhGLfu6Y6O(btcMtWg2Ue_}hF8qwI|WwGoNs5mJ;H#ycR1WVVNY;JuzXsIt+q$* z?s%dzhJr*Iw;`g6zid^Z!S&mA|JMqOpz zVI3XY$316B;R5P9gEtp0q+fq`5O4QR^Dz1uoIlluPU#DCep~L@uyDYu&j&k(jrt|y2aVsCHREK*; zNBYREV>LfQ!=pphe9vH%>+8u?>1;>w5qND+FG9uPW*^0k+mdoA-;*244;060M|;&> z>CFvAeLa1pYR^cy)Hm8&O|&QRiCpK7@)NnKs+^|E>8hNe$}UyTROKvH&Q|3dRnArA zJXOwDv3dBB*H{}j&o53pCbob`B4w!kL-JKO>$@!!D8nG+Y|c{g)B zZ?IEv?lq4jCMNgNY81+a4F^yix^j0X1~hjafS>=iC|nYo!Qu!(;kw}46f zc33%c;?w)&TCf57U*Vwt0Xu^WT5j}KhTDAqhF8qw`wXm{Ip1k=vEIPDb$4)Pz9mUa zWM-~jGAIY?C+$Uey-d2Bz{;7^ot1c*Vjw;$9PtsbL%1VY9$}C$-X6t=;*~Qw9|S9B z&UvBhjh6xZ-QmF3z@Fg(m-)D>6*l=*xD`zD6<9fQ@>A&jqyhR1;h;YUJAw;Z9zGMl zR2{vjvtyl(_@Bac@un&r!as}G&IEiFteiREuEtwr1M|yuhTHy9>fpg zRWlji4=ZQRc#E~Y=r^#hw{vi6)gnB2U z+^Oavp?4zw!gs%%+KG7N)VA(KTz{aP>r3rJ+#l|=&OlRh-ZT)`mZwcV71tsCjURRk zqf+}T96J-=0uK$!rG%nY+T*8R4;V|jjMefuY<;wLZWHVSkk_z zF)Pt>BY4~ebFqTQov^E%XbU%zP6|s+E*T_@w=<19@XDDnV88g< zo9=|e4BF3=LD(p?Xg>$Lg-d&(NHnb`*vy~BO<*$r3#^q^9G2!c+K~5ST68g#FGT%oetVxR z=&fz~$>LO_w{EwG__}I)S-egbJIP{aQ8+_Pt=E++M5{-la(!thvct!r+>X$7@nH3>WM^cdO4zduEa-%^7F#wM(-NGO|o~@=Jl3_>8dIET7WJ` zp+sk7P<^m?vQV51=|#K;-+U-J2WF_+J9Q{ujlaTCt$aW1H)mfclt?FqN^it(Yy~@w zen--JFJ9|fqs;1t^1ESW<(KJ0`AW5id^4;(vqmVjFS(d0XJ!ZMo5+%6R>AGtg$o*P zxdCN~h@NH4ou5q$hnA_gf zhgtMlV5L;1qSx<`=`cVt!el8>?!ve+ZWYdj^)3FpKXU#RQz`kC96Tg++VBbA&a2XfU$r-Fm{S?b_vMQN z9X+S#i+!cjQ;QPE!=2U{VQS0APaniFwd1D^;@7&B&2^JgQ8#->Au$=U zhPmm+8_C0Jn3y%KjKbb>LND}@PKr!TzF$q-Z^xK2UOzL&lwf5m#taFG_T>-@We$<{ znZf*8vMDf?_zdhBE_3+}r>hk<`A_3kFv(vID`!rAQ#~E8mHxxw^dEq|!==Buu`@H> z61xZ7hg-tz0e8d7O?rSwa-j1IIgNNo==|ac--f9C;?wQTFXmTD{nd`1;aqtjPcJ@( zN|p2q#k|*}!OPkAYIGiQZ)NBH(PD4>UW0aK(n0h)C-+|N99JDVKL<@O$y!d9e{VpEex z`d9#!1$wcf8@GTNY+eT|Tft_DkZ50`v9X$>jc#vn&yiJusm42D-*CCh6>xVu?5XA* zxE)OTC&J2^(_fTGHrCz)J{H~sJ_`GX+XJ>V(+#67b}#r4ZVR&)oC7O2=>;Cyf=)Q( zl;RyfZzh>99|5$#4A$=@d$2UXV*PH| zD_qv{;ni$`O?(Y*0h9PDSUGdz3-#kmQ|ez1r~U=lGhFI&mE6?|oBZc+E12Xz3oADv z?~w@TTtZG49uoSI<+Z*IQI9N}wKtcb8^CGZGQKg89$QwW(}}-OQ?Ov=>~poDanp(P zmaK6TiuA8{H<}kzXCUe$-f6yZo=Oq zNzi$QoIpGzbe{2h-)T(c8P~PV9sw!m#+_JYk|;^N+ce;Zmte8OYGCj-6n=aQAgaAI@fTY$up7nr!Cn13T5XbLnJbxsaF) z$%Z0UZ@dw3J_r-DQjHJ5-f}`Olu0L@YN*ZTX?UuB{bKfgc>T;Eb0(~81(`F1MEeqr z`eyT#&kW`_l1+hW#@AraaG9qzo2Ob~PcL7=tzeS>BCMP_`Q&Evl-~^cPlVI|HS8TO zeQUFMswH+0_$6)$vj_YfR&LS*JhB6wV9062LqaDQC;K);B^W2RckkEyd@*0m=Z5lU zM6}E?+PgAJZvfkJPc(Qr`(ABif>$_nGwQ8K&25e)jz!cmEOA#oPG=pP2#Lv%bu6&j zZ-k-!VUDV`dOz4(V23%oLZO>`fYC^UvdkF!}ex%9-=uT)$u$uMb=v-UmJfJBZr{wlZF_ zSdFp!!6$KJnEl{FSh-0*@JJ$b9wH|e4+))zEc9)N%0q_RyU@{7=OCH-|QCx8uuy@Vc4t7ydoci&wXSmd@&7qA}*yNAFtzeQr3RZ4H-Xjsv zxrCf9JS223@vv{uQn|z*+M7$v75AUh7xbk*TGZ$(Ra1L5E`~dz61u;q^0v&JD1#6?Co_675Sc)Jv4K&kW{&BAc+s0E_t_V9#)wCtsqZTVYQ(zr(Fy zlK%~?oH_Z#OO&+V4Eh`F6-<8~Nwgxxv`4)85+&Udy9dn1En)V6E?Buq5AetqbiyI0 z5f2HSaD2?SE31U#qiy~gWks$^-(u6ZD5X)lNH3Lc91C|{XVjVSuTfMJR0~pbnj_nI zn{Q9k*~XDVVlreKb5de2Q}vLEZQ&hA!QF~KY8vE8Xq=9p$K^JSr@nM;JkWSC~A zP>YS|atF-HnptjxUF5`F_zLNyaMY%W9Y8TARjFPm{|;U$GmLx-R<^>(H-tp{CX+6? zQO>6OEE$50M2qfUV0Uoo&Q2Vl;AH$~ylN)nKf=nHGoGV&_1T;^ds8syjY$H_r@5Tv z(I_eN?eV-JUOkibd|0^&YmYfyrv-8n@Q~1H!9~8ER;2}ZuixHV^i~ehOZNP#RBCWC z+)samYHIp%WCJJo_9dMS9490uLpCr?HrhxC&V&hBQ^pyvmzYU(oyk2Guslv)u3^`3mv@a)^Epq}V<1dmefoZ|#VUKVb&r75Q z%}8H^*Ult;HLRRD>G^tUb<+NMIPIUpUg6S~`!LNG*!jUjxCKn&KY^8-5cineb$%eH z1rG_G9~|x55S1UC*WP7=dAUlZ)SJ&$^Q&k#9-T2?Ol1lS_d#Qnv&&8BqIIGLvH_{t z%8@@TphjUyw(4s-f0!#ICPV%(-)z2-NxTszs2Zymt=|Cq%h?GE+mcR-jasxeTVThX z-Ea$-ac37;*@`z*Fxz7Hg7a`&n7!a5uyT`L;E_1!+(S+&9uhkDnC06L zm3!RT-rQrl`xAhNsTEk{a&|h#tv2Z+pT~Vwp8oZ2_U8Wwe6i?!<31rV8S;%8^=2E< z=3g*1E6?}`>?bGq!tY2YooCDvPqTH)?bz}+yk=%>c?MRtV$0J)qJ8o=pL)8f1(NnrUmm$N)0D{a3`dl6ngllCUCa^|!*&`SXc3W z4DPtjUf1%gc$L|))x0AZKkD1TbOP}qAu$;eh&r`K^Nk7S2AG;P!CVjf%L%@41?i*{ z3As>e0aO;~mmpulEno(l>tJOo*jy_l+LutM1q;(_2KV2PRan|@aeo~44VQaz!NP2Z zJ=Hvh+rgy&D6E`0{ltQW={chZbiF0G2TUW0R-~5p$Tt@(%(mFQUvx{ z9@&CUIOLS#A)ynFb9}qAN;qEE-W~oM4$@5xQJFp@EceC5aA`Oyrq3@p4DQ3u5L7FV zzqKM?jB@3k+|WR@qMSn)FJwz(L+b5FO?8gHAb9RTqNu-m)Qh;l-reaXmXa&^GrID`JBWLRK6 zaxv^4F8wVM+cO+Zu_vQ3+!SUXI3HHdybo-t*9#oZGy1_@;r-xF*hSoau(h%L;b@NC z7w*8#VfKaFVC5!#!6U2CiHV$KJS22tvY&55RATbA_MWNK*;g4E%BM4t&VAANw^N{2(cPq0~Gn*svSdW^5W%a6C>BOT$NKA&rW14KV5oNZAX{jdaZ5pqI zz2pR5*pPHmMAU{)1xwYd(~H;O^)kcBRF+GzCR&L0v8wVh5f)j|5d;iUfq`-Dqc?!Zmk zZ>IzQ!s}8=x&}vA#9Jb)O_+P_kH#fu zSF4>gepUdTH6iTfZNJ=unt(kusXnE1gVzg*$&ee&)D1T>gyk?P)l9vTa5C&EC+xzZ zq?67NF6-p2P`U*+ z@w0IYn8eS5l`|)vxD`tK%%J|waOyX~p5anAZ-vsWu*u(mTfroMJ*?b>yvO9P^9MOy zcu45{VOQUVsQh97_AVz(8`{;8Jp7v)frTk&Z>zn%#mU3auDs0QpS}=u=J0nRF&Q$4 z>8jO6P}$@Fl#!J-EF=jm!E$0QOd*|g+Avc*c-C>LiuKyU0=!~o9GMF%TXAHTkZ51d zFh{N}xG5h*#$Y4SqI>}C5-w$VwqeSAd(PMwub#%nKvG4tG>%FPrdV zt~omvzUtelbh_|mAu$=!g(>#ckdMNwtV!fy*hNm4 zBlp3|Rv5WkNVG3aP{&-`bk}`raEkCM><%v7 zJCZ~z5`KFWo5x%`S#OV5&t&~tSh)#nk2zhZ1#%MbkkDzt7koRdN(%e0V`)tJnL~bdxlHhOe}OOZ1Pv* zRxrt52`e`t?~xVg#6r#+9uhjSSnS&nl~`QS-o#>~fv6ajb97W?zDWPk(KAvm^^NwX zzoK}G+Jr?dXXmR`CpgJaZIMlBv?Mj5Ir5DseTnIO;|U=#8S;%f&$JJWcr^VWl&6(? zbdm&?q&d4p;a}vr6rkFsVta%er7}am1z8U_gBg%IU}Y;Hy&`+X!oxZ`wm)m^%&{ef z3pVfQ7`(Y~Ar;HV3X7WkU~#h_L|ZkH`XnjVHkZ2%oUSu^z#GDQz;3XExIJL2#FrV) z#@G|nF1Rtwey|g)oOwT3tal+e-DmWL-tfL~D(oa~U)Vf2W_lM=ULCpSeGOXOB zKX_yrI#H1mj)#O!RDSI{?WsiNpY7d@x&F#>DSZ#vXW)M8>~yu>3C>D{;i);!k%WBO zw_E8XY~8Iq9BxXDJ8`5{b8jT^n(@qO4wPT++bNGHWZed{Sesakc4aXVfsGnCv4 zD_f!D79r8T^$qo{r-Sc5$P(-s!Q%Tj*dJWJ$!|T~l%K)tW>S6{R?eJq;#*G#=`9Zq zCcTIxTJiK?k7V;(PdDvN@cNmw7sAR-XnV}+;}** zGQKQyRUh5FA+Fzu2E+xTskbHXguAXY!c6!=M%Kr)Ix@{8TJFqyKpm@5otB7Y(=C|A<@1p zLoH-DU1#)w>&djhwBt*#gSb5)xsc&(jNK2e!;N9~gKJ^s%=DVD(3#5dz70{C%F*pz$e2G=8lcxK z^=rbc!zngB1dV9UF4*!L!pQ8p)w~Z)H=>4MNxte}Ivv?SNKA%wB&L>Xz7c!&fvKs+ z>gA2SV1GHm7q%yzbS5HS?3*pHgUuee12KNG46_|ev zz`o&fPu>t_w!^01huguVpM#Y%r=PeX%=Dbm11=8l0b{U#xIMtUALsY`?f9?G|wQJ>Iym_>vr<^OLRzrS9?Z9G}v)fJh z-cf14Fh4b~IhH^k@kOI^jt7NA)10Gy6VOcEZX@Kp2!pedjeoxueU$q?2M& znBOcxn4> z+V98fXVQKzteiRR4fHOl`uH%2eJjDf_T~=@t5v$WSbgGFEp_x%qhh60PCczWPffzYm9ytf_$|iO zs%lA3wN!6MY7TSc70>zN(vL0A3W>>(S8V9;fDwo`It*oLO+6cs1eS_9yF+0;(n;Y_ zw-`GbVMn5QxDm`qG#gg7B2kx+XkWIWZZUQ^&Y=HRG7KBZ7XAHT_i*VaZ!vZ>#qI-d z#!X@NfxThn%=nB^A=-AbL_sb5;uq07Y1SFCVjyptFVzCdak+ZSBI|Qn5Ej*-3x7G)();qSHpBVsDhnOuh#9V`nF zNFLEM?icvUU+$L85UtRSNX>hWwB#$kold7EUlbCPAuUlP(=IR~(jzcQYi4>7_L;LY z6mBP-6rY;>P}d1kS)n(r-;Z0t3`F<9%2pt{OGvaYFx?v_4ba0u?b&LGs5 z69&oj)I8_NL-M};OXnf|LSi!HA&nCTck44^&c|VDY8dG~WHs1RPVj|ykxq(=al#-$ zQ+4Z{;m79?FNCb2)A*Txu37t#y z`Zh%666>}%mzW-ZDH-*yjM8simK=e`DQ9=94UW6Ekv=eR+|`ZruXk(fQ`43snb?+E zgr()GgXv^qYa!7znP}fE)75CU5oivFv8hJtRN@fWPfqfMJxC|Tq$bb3Z2qZQj<5U)p4nc z^#jW1@rs#YSi@JYpvszQ;>)<9Zng6d<%su9Ooi@nH!9zknl$_<;5cN=U zMtjqS&fdXNsgi!%dJx=KogJ-~8#il6zCa!Kc_jJE-OB9L?Bqxo4uCtX3MD#W*jGq2 zO&HoYpG=c&HqwPW49l8G`e7$Ic^8f+ofME-mw1h$SgCq-w$O{$%Zw(c!phbRvfNif zM-$m|f}+VjAy&{s$j95emt$U~G_;Bi38IhTa>aqspx#6_WhP}e2EzvTa*3my`B z-D4f!hNyLq&DxtT%o)j*tNHj=78TFW8H+EFC|pL@JQRLJZNVaxv%}Sf$6Wvk%NtZ1 z>P<+^R*wAP2fm1O{_s5^F&XlQx#`9mdBoE&L2HhA3ig(>6BHgLofMgx{PH?&za4X) z#Or6qoF`yqE9U%KNVG4XSSV-Yw9gFY3y(rat;Ku+NnjZ^m$}^f<7$OXelBhWll&}L zIdk%x>e+d%^bZK9zc1_^F8$4o?d0i}*gaq$+!AIF*b7!}(gQq_1)XomX~aW9=NsSk z4Pq+a_+)!mMyK`Va|8WDx%B>w_rsmm+2d*xeSA;D_|!z^NHN~)+r4y(@oph88B&ZH z^=2Cr&9yK!YohrK>?bGq!uh0=Vxo@ksatM`mQUj~GegVeu(B0eJ|!gDmsY6bd+OdY zI6q9*V2=S7=LcY)a5*QB@2T5w)4mU{pGo^}SUGdriQ{|f9y5r)8czIW*e_h-=J7rC zHrUi(#BE?w|2M4Mgu2JvuhR!PMR-W)^kI!}Lsa^3tJevm9v4!IdneaFGOFfMU&O!p zZRyzbfj5c^FVB(1xw81MEIuj^i`Zbl&@5K^3`ZqDedm7)U{%CXeg@o#DZh=;_H(3W|p&tbE`XgMvEh*($KEy zj}(h7>Ll+Nx04Lz)8tky#Q8ERM{`KMvuaLLPi4czUp=|6?r!KD8rtlWgYP8P=> z9!jE*>Xua%PXnUq1!E3c218UM zM9)Eo!)|l-gTh{e_sh5i)8N#ibY$8SV6Jq zYwdkiKc(E?Urk?3ejc>|n>(G|t#(|CA8e$hsSfOjF(2{uzs`lv6%tKjOdI#{O%-i6 zBFfibK2}8e3hX2&;=<*mlLAtkAzsEwR95)-B3>;se0&~Ow!+6XLZW>W$Sj%qy9oc9 zOu5?ETrWxav%YP|{X z^>G83yw`!1oACCS({)-PCj<`({fKh5Z^u=SC}*|zIF+v4DsjtaX=rJB)$>reyE^+? z?W7hb2V^hZZz;@8O-POm;UM2Wr89&Bgv4aX5N7Iz8)?E2Ov;)>^023zunQ-WPKrwX zI5rJU)vX^j`tiD%F{Kw)wqnYuLZW@SLj5?lhQAEfpCWq#6NXR1Ug5G%9mm#afxXam zA#MSa_$OfH%!wzDV{7=#p#Gz9>OX)z!=-K=$JS_tP5yhh6-@Hqg_WC-_n7>3{vf9d z4+)(=?CaYQl|Q`b^-6t-?>qJN`g+rw@unP$Mkr@Ts~ywgydkzTH8nXBhIPqyEWcKr zNGA-h3Vf3xVVFWKHsZ(kduIigiZrq4on07)aGRbdPUzMp39BR zQ+L3f)!EZpzKjrWDNuX8QqzzlE4a63V+_mpP+A;ajAW8p7)GWEVzdgkF965pD!?w)p|9 zY|S>`6B6yqEY;=74#yevUnIi7d=8^E$PJ> zD>^#1k5BkoQn--5lUhDjxPXemn+w-bQJY#V^;XMKG=_XcH8WrA9UAS6`tw6kWo-G_ zlG=&mdQ5s`-0vjiuXV48%Ec0WT$&%N9ous0_^aJk8{C&K=X(d~W7sjq)@sZb1G(X0 zviR*S_QOaiU#ZYXEm3VMea>9YOOne9AEgfU!Len9nkvsz<;PU{aZyIKX_Q9yMI+V0 zvBO@ae`@Ow43$=lEvrrKjUNz5cv)>mId{6&9xaS+)zPu6uuA+}95?rF(xPqk3lD2_ zQPnq9PhHgP2aB8iAR=+q+tX6wYx1r}zcOaLYsrwn%;z(rE#V&{R!JunH`JY04b$z} z?bCSG%-QX7SlOE0+ReCg1$~xp;C+~y5s3Ez*b~mVrC{ToE?%O?R@-Fn!)s-dy&G1} zoNQMk$QpQG4afU3><%to`4+uly3P1SylN)nf5Xa|GoC7DJA?0zZx0^6+ml2qo=5EA zD?h4{leBW5UWa%sUM-XDYhdNf*-lp}he7wGaJp}YoxvTw^4hn0u4M5&7O$Ae_ieCp z6TTh~h5ETtK3#Z7=;z8)e1njBuDrFq&z1V)3gh1UOW|-t86;c1jpy^%rIvQQ% z+o$y7<^@7xEsvXR%jFv%S6KI-e+MR|hK}A9@h#X>PS}OdlTJFBpChup1T-tAd;_nW z8B@LvD_b$;t3slEPi)4=6&CA1lRbf%{U2eka9JmJMXZhZ?{N#5#D5DbXHGn^D?ULlITo#t_U&0Z zi&!QkCPNl6C)IW%%$yGMQe#Lb5>?n)PUMAN(n*1-$z9ti^X>R@8eTm!z7%0)E5580 z679<+HdKc?hykj4yFvUKGAS^fxEgj0m-xmab#yes=6)q^1e5z^uyW?yH_@Lqq=t*Z z{-JR8KY^XYWxq(UZ_*H(|Gl^&O#VNHm7DPQND6dbAtw+I37uCQ?%NQRSNy%b>k`xZ z%B7LgXw}$kH}^y|U^#mn<9#TWQfO;avz8;Bm_;qX5^>d`bUHCZNKA%wqN~wvBe?7a zb5gC;sl+a@qnxMPDEzb-x8esE288?8*`vh1ybKV>3S+_An4Cd#BGye$e7%p>}HaZ$%b3Ye1 zg30}CSh)#zk2znb4RWIJkkDzvRNscEv|(C%mm@ll5U0ncmLcw=CSVcD+0|OGO-|+% z<9?}ex3AB2itr;Lv6d8Jt=r@Z@28hozz(^>hw1m@eQ^`^4MTlVkv`p>_(~|}oVZGo zUt{#NcwsA7j&eQuBHa-%QlcBkqOl2k`xbMU$YawcN;`gQI3dTjv|O~GwpNb6Yt!o~ zC5AUa((%xlAn6!gtEHpi6;WSbzBthOUO`70b2js007-P|SR2n!k6Ij{2I%&jM11O5 zN&B9oq1O8;AD_{~*h-CgKQEZJ`Y7pGwK!HgzQwMVZXTe_LL zYW4I|*N$V<#NMIQ>I|zGQPL3KkCn_C#{UKZ8#wVPCSw!*8n4wx$L9-kzHY!=Ax|xC zc@9!8QV3bz;-Ov{%ExnK<3(w!JzS}hhoizL!@;FRj#MX^;J1Vm7S`bs>*4q zoUY0ls_atbOjXWOd&1mP> zCHnhn{d8t56upI7f<1a$%fN3U32eRG`Sf0RoV=4>29^s&jqfRSBkYBuH{wPx7mD5h zD_aXi*>hjoXK)`1=bnch6Ud$N0_9r0gR~zvg2}xXR-Q!M>*t;n05odxZ;K?nyOUU=#lyZUK|{cVXqsi8uC|?`j72 ze}=REJM0fG>-1i8dWN*(`Csw6nUwzzR-QbRtuVgT$-!yc<|HvOXWa9(z=c{Ua!V0Wpcd|R?eJjedC;!VEr_l?nAIUxOCOG z{cY^2R4oyrrQ(q z@p#ot#>c?QnKPb3Z~Y9q9}1^?4(tdnU71M7uPT-6^y2mV@k*Io-wP{e&b5^_RFwx=43Y=h>B5}c02Y&`C?^sxF^TTzv1=tR;32_!Vvmvj_YFR?fT!Z0z1vX7HbLN^r70lO!f45!+1hPi@4h zZ;!Jg`*hq6CjCxWIdl4*@n%1R^_#+3zY+EXcdX0EF19FIWZ!_-$|SoRtUL+G+R0cx zoNPbr36QKa8|%euWs*G=R?eL4RI%yR7_^@ZM|&ac3NBiC?4jJNYmM4Z;MFqOo(C&u z&UTvIN@~FUK{(v+!M@{VrZFlkT@+<;>~MN^BH15dS?K@n2zwa1qZ< zAeNigEzbXkSI*@8Cs;Xi&do1j+< zXU9=*v?y;3Hm2rl!Z}|JdxXn*o|u}G*4yh{SK_rZNnZvlXHI%U$46TR@Q1>I{{(gn z7r6ZJ!qEtu`@OgkOzuC1l{4qw8INrP^#8&^{}=WI7qndI5?}u*=jpdo|G{fzlKmH~ zoH^OG9?SWD6?Sn3(iRX3*lG1Zy03;tRoNTJmit2W+_SSzYUn3U>q z`rzZ0u&11`3n!CK`oxR$y18pbbr7$c8B-!y*@`JEghcx&tIL?`Z<8$6mytbzr<+^? zdxgt7c^Q*#ft?>*gj>KQegUkUIq}40OxkBgzVPF4>OX`%!=-Ls#-v+elm9+$1(W>k zuyPaf9+SV$ALMl5A))h!{e2sv@`u~on?I}FX!7F7(jm5CC6*ac- zmC#W`_L-ol@xQ>R@!_omGi?sWc3TLe7=-57fG+R=* zaPtm2_PlTb6@xbyuA{>9F}Y935;Q5fV*c4R-gDR3{CZ1M_k#H zj1PS9+g(UZg1F+^vh_|FjulAW0lUZ@NDd>N6pq^3wrrh<*UF3>$HU52it_(2CfQ_jAB6h|f)EhGDSSZ?xeNw~AeSIvne0w>r!zaV%+4kO406aNBXTS^ zqIjbyii#pAhkzgoB8s9YmmsJpiXxu;YN~3cx{ls?K2fc0|qtcg*JF#l}&)6?{uM0wnNMb|Hi#X8b}H*ZU}-j)ON?kMdXcMNRLD4^6?0SU19o{rCoNNOtTj69YE|K26UjKNp zMS2-CCoqQ`4?BfQ+VSyX7w=j)O7oCB_Q zSn!l=h@03gOw=-yqg=S(*Z*o>_B}2!O1aRE$8ig5rIwD0JEG<6EdIlb3PauO5ngxv z|Bcj6Zf}Dnb|T)YywPSmJLzoj!)@%OqrvWKx&G+0(32nPUX?2jvrDej+db5u8_dVQ zJNGghWA*RO{YhT`EU&NdEBqa{r`fNi`W-gMfHLOF9X)9LuqxXB@?M3{m4Cr>w74Ok zT{t>nPnG|L8$rx@|A3XPoR>ED4VcRuquxNjLpb{Fm;^TKb7r5&MlX&%boaxizYT5& zk^WY&a_02sw?=<_IQnB@$57GBCzg)9Bweds6+a3$g2?>{SUGd(g>X_J#ztIME(2f&l;sz4O%jvLk=Hq3~Qhtja$?Nw0teM5v!^gu{VW&{X!+Lx? z*d4GU#Fudsh{V4LD`!r8S`zDL!dd?Yb_bQUIG`_Xx<&a{c;iIMzkrn!D0?hds1*+} z*Y%K4D;{_Gma%fh}x3VngMW-jW;L=3L*6*5);i z^^i?jU$8=24l}hLvJsaUWj!Rd$0tp8b#(ltRqJC`2f*xPf7LqQ$g*XQKVCBrmz~%>(*_#;!_T3G_IQUrjIJgFO5p^8AnU8}}yJL@qD{*s(V_^hV zP8bUwRfH-;M3V84P=(0)z8#T;$S&#b*qG4EzMvE@JDz0rW5LTg;>P^V$-13d9&?l# zPx$&?l^Kt7iSbZoOkzDY63ZJf8!NH=2X>JYZ}bPIqv5E@FWb64$n{UWQDWG54OX_o z#;aT+y)t5&$h|h*?eplJXVKl3Nnmw0m9F?;V$*axHEfMHO=P?!teiRHSt_sEoR16V zd<^UoDra%5rDnd(`bfNaBJ0CpEm0lr<|~(&oLdnI1mRg zDckLs@(sLgVobROR<>fw&0HeA8bKbwr2J*Dev#RO73mi1=V7lohvoH_B>0Zhtg2KD(Xf~n7C5@S&y+IP5l0F&y4O@0<`1(E!8SUG{bNAg$ogGd)1 z5~_aqsP7P#^+RX6^}{6bfw=fW!cp*Obq1K)Q7!k*VQ>5kOSSamSV}m;cOa>vVJVjw z4@HCXtAndyK2{E?!cKA`j(V7m2BbFXR|ikVn8dOc3Bf}`l?8|Rc0`s1cc;6}p;LZZG+r0X?n9%JbC}hR9_zZGRLxfg zTdpR|VCG{Lv>ZyRFqq0E5(|U$a)nG&(26_D?zrwFzUci1W z%~vp|HiEaYRDCTaVE7g<<3V{X#h2&%w^1;%!D~zM^eK=uhJf6Zzf%D`(DkYGYO2 z0Q~cCz(0k(K?N*Uo*S0ickrWl%S6Ht!^#PSJvJYx{R`sRwTFb-0afr_V3j+d&PaFv z!h{vZ`_=13Xo=_?Tx0%zb=^+wF^OaM!aQa>R-4K}q;@aN<`SdqUP$d2mr1P0M(o%V zW+VHjc0TP6yU2+*dJEIhaLD(o>zHJtYT0{NyisD<*a=p)!p060ayH+ucC!8m-aL`@hhgOe z)*d-rl>s6Ncu1%+V1{o;WErqqx*tfLc_=$GC|6mKEB57=S901;#-FgRU~$Pg*lO=- zxmBpuPR1fPvb$lVmVX@Oz$3m4R5|cNE-^|u(4JH7SG07M?uwTC8TB7$XG2A0w)K6a zR%~-a%X8J9{(NtDd6;cpAF1`Uxw)QliS4xNYjZ1X*{yFyF~{83diR^|c$8CbIfX{@ zg}#wmxy?Rfjr4a{D}}o6>K~IIskM8IvliL61%^gy)i!snFVBu!%hf;T&aU0{rIFzt zhON@(X8V~(S$pM5FZ=gEnSW2PHrVDy3#CG}kSi8W&39Ladsf!(=|Y>ET-l#vtgMvTX3+k2_lUKU7tU+<*c`~MWFHq<)!SVvm%2;&K7QnM`@uVL>i zwL2OQlza1RgD|_}+RbfXxL7TSrUu$PL_|}nYwd229YS8eubVe@yVJo?xyZhH!v;yN z)Hhtru`tr^VN$;dRul_tK(1^vyK25PRIaejv2!@vUtv`%!=;{FmDO0RhwaZg)oQoA zx!E^-L{CR*t-qEVRtCvblaDSw`b{0nMiwrOUSoB6eS7;q0J40)X?ue10S z-bVitGds;~^j&hoV5~>JjaiS)4CQQHtw-*{B(No0=j1YahIvGr57xxPs>V!5Hmuep zcf=beu3>BsD_d(AY4e?>&C?9Z%fl&m!!Dsx7VA}-`S$wr33&5F*2lrhnX~S!Pm&G9 z9}P!bgFQh-+{O0=@u|Ia7hiz4N+f$OteiR7sf~pRgYF&SbZ>*bL8U7mIX5h~@7-JR zmWhPF1}kSycoLiE7;s+-hx-ET2r688<}#a{S$FPpc%wwFPs7UDb7hNF2G{k9!L`*q zCefbSN^q?&99mpwuAKU^W@x5T> z%!zj~f7O?r4bX$(pa)=QP(h2Ck~G}r8{rKT`S!uene$!Wx!P~g{#ZEeYhc$Y{K zX=gWV_E+L&5ZRBw%9*pD?|9^5kpDqA`R~Jyp^_J0c6D^Z=6)}31d;pQuyW?y=UGp^ z4C?;~r~WtCEmZ2_Tb))HZ03K#O&~J=6Rey$^XclbqXB!Xf#AY?3ntN?!d#qVuWYv| zZ-%!`q`Wb#oH^yr`U78s?-AjAm%^T)-ppbxj6bH9&QmMehv2Oe$sPvr!_ZK8HjfYN4#U(5Q{wBG~H&rJ>E2t@wTvX z=8R|SyV(rT-Ql25fPF%Z*Yo&dnQp&L`#8LPBJE>f-O8U z&&As((moqj&YbpKb0??4`?hf2x58eb@)l3H%pTapzlK{tB>ojxIdkGu8#`$Y(l3OQ zeh&5qm9(hI8kXCHpT=7z68<%;oH^l{@g2+t<$2}c%6m4GXiw!mhiB`!^)~4lc=-I> z@$}Ns37dN#ZUm8gFRYw7_bKA-2?O;t;i#{KeL+PnjuDe@eMkqY=Nuz=yF|K|z{&}9 zJ&q1grw@pC&OId5=>re)_d}3x6UdIp(+7&_o<1;5e1@&e-l@)OM-My!k5cCls~z9^ zm9N|>`N~l1_p|wrEsEQ#y>;R^h2U}DL8VS1c#KPoatc9ehZ4<*_1uUk|AAS_F{fSz z`X}rvC+_G)rlVo0iLZIajJK1>+>eA^L%qwz<5XuiZ1#ua zW)RsQ1}i79_ox9>86lE}hlDC4e(W2#WEt_uFC(@%#pPt3!_Un z?da&gHM)#lmW@PPB>lw|?C)#ybG^C2YGGBrqdT{%ucLdgTrTd?s}&TN!^77(_9zFx zKm|p^^19&-yR{7FC@e1Z9cHSq_$Zf1M6@uGkq4suf&{2KyO;-zl=Cf^omF6bLwDKb zZ|Yd5qyA5H_MUuvog*&iiOU7zav{Gs$3gUICa7_$iD{~fr?f^*WNy)|p%_7oKsUq6 zRs_0v1sm2l_8^Syyt z5?DK25Br14SL_W{w%ZBfTD)x{<*Q)j%qh=S+0}6;KO9c_A=oEW(qdPcZof_Y0la-8 z?fYQm1lk_CT$KYN6?jOfa^PU!j>vN0U+InC?d^w4I@HPk|rl**(;gV}}j4wO7?*J~veD-kJ3(jds||T`KMD+Ga}2 zE9G2oPu+7v{kg$BJCL~bQJ4N>f}OVAv$8%K_@SD)mf;|zrE+;F-{#(wi^BsYb~ojE zR#MKW4(Ls}eu`%Iib{E)dnkYMaK6;T`qobW^$rad3vABS-Zq5i+Svv>^W7h+kV%eGPAZ#y}`a!fscIa(8xzyVjW?a~T#XUniu3)Fc)~k+O zv7TdgWYF@JLjBBe_CErgRW7m?dfV7Se?GUWFvN0cd!5yv!p+z(!`QMmx~s5LdvWkL z7kk+8@07FH{m0cnc~w5QroeLLiEVV&V2%ymb|&M-nFmeaUfR8)jipb+xlZH{@ocW zuc&rc`z!gOel{2jCHBdWb|!`@`|iLMf)Os9GNEW(8)YgYcX{1IUjI*C_mtPY!I>`n7l5P*Z0Wl;qrQfyuMdnkCfM=Xgk;YqD`2Nwn$eKPZ5;u_PX-9c-zEv z<+EXBYh5{Q%5!r=`XZXa`Zm_3K-RayUZJuU@2{FYu!(;Sw}43eE3k6r#HZ()3z-J% z7s6RT2m6D{THe=9+il8E<82cu{~A^vKa_VdzjZKgDEN+^%_OkL9)6VB61a4vdeT1w zZ<|PYDy%$yDDP@gerGu4ePDn1QDzSyEXsS~Z4)W)0V`)td9L{g#faMj;jAOrD^%7Z zN1HvciTB|a5Q+D~%9#_N8Gnpr(7q;|_LZ;bO9_;2Bi{{nl2%2?jVG3#y8 zf5KZQlKum%oH^tWM49B}YlW0#xEvhWJ)zOO7+v4pK>23`xj}N-T<{I`1;dGCKeL=l>6+bUW)CpmIZG9Hmv+-7mWY2(=GbcN(xjosy zduuq}ufgu1;uT*nXqs-{y_4$bRFv(vsVR|%`=!pJL@X>Hi1QVD&8)U?qpawbGj1?I~n)wKH+5dg8e|f zZzuCLX!Z_=MRgCnO(NCZVCBrIPHVn}V!(~U;r7Aqpu&~k49c;M-uwj`i*YaBG?8%* zR?eI;`|_7~1;{{rWjNvy*c(*DjW2)6mzONUm*6cE310*&XHIw$d;Q9Qdv7@0yJ1IA z;ZEVfx&F?W#r3;*qeQN^!^)X+o!NL7%`xl!OE};^!5*Ok7SH_S*4w22fVWO0{UWTK zIqCHqzS7=0H16rmRtJ~T8#9Ual+xnBU}raM_8Z`45ZTX%l{05QyWuqPKA8dikZ|Y+ z!#<(j=i>Aw-F}<)L3sN_+WW)GnbU6G>Dmjp2J|)I(1&5yP@(I0y4DSweFZmz$i56K zXU=~1p!O!T0sS-K&_46-mE?T_Q_6KP)uD`!r7GJhA{fc%qi$dACTphBL? z>vHi5y>y@2%k@LNSt8p9Vdc!(&a(~yFgU*v&iOyETd17HM?I`A*!S~4aTAElUxSr1 zXWm&qC&9qH{hHvCd|M{bo|0TVd*tUwSad)8K(r-T~nDvd+M(Bc}lkXVBgb|aT|!#C&J2^Q=cNv zo-#=96;65&*caG6Eziud?&;m|c8PR%hLy(yUB~XAzHqv|urE-$?zf+Ec)LWpC&J1J zbUi)@puQ;}PLubLP~Q}o=zG|W{HDOHbU%97l^(2UzWWEst<4 zLLWL*)@sL=Ile9MDc=F5zAf+xE-}it1ycKN^0a2ZjZE<%%t_uh>Wf47!;W&Ij=sTk zG$=K(WvOYpT?%{;Z<-iR?t+!AaPl24k=|#A=7>-CG~H#8evO$Ec#_rZL+&6-i6S#Zi zd{s7xMByQ!%7%~m4q#a}+>~zFFp+&6Z5QnmM9bl^>I^Pp{$)aLsFs%;#X`65FjB?B z30z`46bqg8E*sh79GH$(C!7WQ$O$+)ndxXefmPBA5^~aFB7^c--NeKq|MQ;@?d$m%0BlMpI82c^#U8G&OtWj^Gao{7MdKX z;!nODRI2y`mq>)MFui~>t=VrQU#xo?%E`(XbC|?fRGuA7M}s2gl}*#_dUGb;G%=h^ zgO#mtGKEW|$5_rQo9;45@5ju+?nsODJ7A|cZ|cY<9iLY=J7DvEJ8l4x_y57lne&d# zE1NDen3uwtuY?^#Wp2(Zo1L(^_v1zox#wZ!1nwR=UzH6aQFutGvf)MFbS2A%52yQy z+YS2i)sF5$shY10mf4X+`Ht?D`AR8Y)T)Rt!QDQBr)t zcd)6F;&WUgv7|^Z+tdL%d|(8iAHx8xr1K-#Y0fba-NAG;K(&qeqilCS>=^U|+zw(4 z`aY~|#h`nAB~%O&BP%EdeLBPn_RXHJq&szC?}xAH=pHPWi|hjm@yW}q51^%zbI8?> z8{>y!%-)8%+DLYUn(3?ySWzy=lnOOnTp}^lq&Rz-t~zeSmt9~|R(#nJ_LLKLv>DUU zsK`$&DckLsvOV55F{W$_D_b#TYc7#qMwu%fD=B{&th<>#ffJY$V6RYFi_bThJ+O%% zhg(1-ehjRfIq~(>L#0IOwQ%Yez@DK}7l(nndSR147q@~){%lw|fxJiZSM`HP7akI7 z4%6w|5jltX>%>%-KIh~r`J6V1(W;1tSZ}a+)c0beYt zmbi~gB-RosCK>LBd!D96mmSuQO>{YOjOQraP;J;cBFc8m_`uo8 zHe4bxqNF%G>8y9z2qTBXbgVFP80;f=7}=ZYXguU&cn-=69ZT?5iJ@aLtZapj1Gz+c z$wEGccko@yEWvWS#rIU$A5^~a$M9~-tMRspl&i3E=9Fiv`rSeL3*n?c2m6FdS{z)V z+i%Z2K8?3eqqyi5KHS^fYwJl{PR6OPR5#lTC9})hUZs43~PUg>orZTvY#0_KlT%r7(~$RoVX-VwP#y#*zJB@O8GDPdw)< zp^!iADbb)fE<);RZSju!CNI}iydKQD_d;OB~q^d9enf55-j9ee3!%i zpz@7ZfNsj&c-utEC&0>?Q;t=D4$_x~ll~~|6Dn!50(8@^;q4P?UjQp7(Do?bR0Swf zfro@D2d4XWM3w`8OLy(L^U(6pP<}{T5_*(%0SigaQC3?VTm=?|aaz)G6oL=?`dk%) z4{?c6ihxs>H+Mo`wrNMlvXSUgcIm%0`aHWtXC3{fj_5k}r?n#sqqFzqe}9g+oF^_9 zh|7iYzu3<&8(Bzsvd>+xW2<^ucxqAq@bY}6yZ#>|wWC|QU;GkPdu6e^x3FrYcFY*- z7I&5gcaODjxsPpgC=3miOKobQpxcxYx4RJd3{}8|0%EklGlIpYd*S?2`qVo{S#fq{yYhz35Z z7MsQ-u=$8Hc1BM#r)XhM?gCM^+v_t^@V1HBc@nH_W#_ahPZ8nDApG`l!v6>Rf=XB% zek8-JbfB6~y$x@dNOu=lIdi&QG9Vgw`@`|(VP{bBiqDTWBDuwPIo>dlZ#S%*Ip4WO zBX=91FAoQODeM(0Xz_U6?13GxKZ;vGBwmA+vnOuWQU>vR!inDrdj%tI_P{272W|n8 z_-(Lq=EP^~wXMPX&*8lP2>XP}TdbDo_S>{y!rLd(egRg_oc3IEreW~j>}W2L`U+W3OCL!ev|PrL zKewn*T9vOIO#&Qa`FwlVItpKVC4k99w}92Wf7S@Bve*@uWv_W zR$iL!CYDJ{%asBBq1C@w53m9199^|{wahoIa&n2=rUfHMM*fGd$5lrD8<$8uBOlw+ zL)-%`^D+OaMay&5p8oFopGRtAtK3&94-ZP^sI^<7hrSPuci8+O5GbqHr|6-f(1LP@Y;=cCcNJfs}KwKb%=HN}{Z6w<({9w@sw{epoqk%CoebVSv6Q9P~x7 zOQ@jd^3zQ;^KI4_;>{CTpARc%&U$7%g&U~98;<&R*dtWb;)~>Q>uu8C!doYj{syc( z4oJreDueVN!b!gfdjupMv)(5CJl;By^s}&X=A`F4%3A~Y24@AQ>-kJ#ES_N4=~^6; z=jepZeJ*YUk^3xIIdkqai?KO}0sNqF;QPZK0q^jb^)~5!@z#l?_lA`dNPDbmsf97I zK;j{x7RLVKyG$b&#!gE2an;10aw*cDRei`9q))w_Z%%$jT%Hq`=f&lB{Nfy8wbmP3 z^TmAq<-OH~p?u4=pV-eX;wEcT$i{M6t*eq>k+0<0Qp-rh_lllrjH}kY5#y>hr>8tH znCoGWeR7ptUnMu#FBMPcilZ!|rS`m~v+f8Z#M}tell`4sEU+Unb4A(9&%%Clj)Lei zrlX;fuYhre@)o|F{fwaXDZJHD%l@LZN3TSru_!Yq(-FuA6Pkow#xghog<^ewB^IaB0G<^9wfB{rSi_cf=JS5G15FO zsNQ9xTIh#4$quRvl81fdL>(Q)bTl5aP~f0stBTBWyj5Z}>4uf1aq9LxflH)bAvpM6 z&MXP65H5xNLFF5-5ZshMinmRqT!WP}ryQ#g9Hj3FCw(XE6Dn!5LU7Z*18<*5`!-lP zfwo6hucu@&xe=+rLqbKCy?r|(3xltwyX&TFaV6JVU{id3=gm4FLZgy%pw*VN+>X#{ z=M9_JOZ&9c<0u9G=j(Y@3jCW(jIwYr>Ko&=$<=aCwUTEG8;#e-TUV*I>4j2Hakw|X zqEKY-?AKo)ue5Yp(cp<5{k$1RPvVZ*k*8+W0+Zp*Lv+7xz#bZ>sJ+CReIVXjT=E0&j!EUiuM z$qn+&!b@vYE4kH5%kfI{223l>og$l$3e2by_hH5bRuOyg{;AC)grPfyf1`z+^)+&S zt&=V54Oa>y(QKxp-Kw=W^QX@J5MTFM^d5 zxO&uesx%a(fro@D4PW;yP-JQNdb-C5P3|r9qv`x%imxuu|pXkGaGs8fxa-$zuWD zJdyRLuyW?C=N(XH$K@7E`AQ>}8F%%O;k*xr-9o*q*W;z1)didRVYmrI=1XAZ1m+&u zUKI=?Ie18@g5gKLfl3w(x2F5eyv|atG&DS*)eD!xW7Rp(2p_tM)c{bvAdS{?lcQYt zsPCXsF4>lU7vN7b3KRVJSRhozbOsV#|jpz6FD@S<6n2df^b?v8C#TgSo_b zs23*lJ{#r2$uKE7;#Ij&f}P}q9W7%z8j#vlJ`EA5WV5PTScx}Fj41uEvK3MCTq3<{ zVTQ=JF2dI{Qv!>HYhi~_3D4$)W5(N=<0`yyBInCt<;*$HQJL1o`k`>v55P{LvR>C% zR7kk5@52os^1cUFPT=j4-Bp1g5`u?>T2eU3w?c!DQAAtgMy;N|gr_xx{!V4?62zHmZXiU{11wsyf&X_K_2Hv?0^cc*uRL z9F%NT6$jhktrCOCRI32w^kosZs= z7Ug+N0;`p&l;fKd5?Rm2np;(yA`)rg7pMgnPN#v8Tlbo=lOPG!ZL_TT|sARLMQ203BEHRK=2P<2F zgqebs?iS%kV24l%#~(E$aQ-3QIFa*%uyW>{V~-kKtltP{{U6vV zRMzIBh6LXK#0?N9f`^1E5Ki&!h%6AcOt(Oo(o-HhWvI|s(rScv zT!6+U=Rm9F+O{2`X||S?9A(1WSy!-WlpI*9O!z-8F&@f>zZpt9XguT|1rAEKs#X=&$6F-^k#%8ZD~QbD z66qBRa*u+8?-FJSb{|@N7sLLb@{R9Na8o`IZ<|PYKUg_)%CS8P4$`Z`NmpT?P)VD6 z6x_5=#@i>-F2TwPv^}!ADhxy_@Q_f2!C!n6k}M4FN_RzJ+Cl2{Y;95DR(P~Jhg$8> zmWv9lPS=XP12LkdA4fUxHQ!;R%7L$NiBZadQP0I@0!M2_Z(%=QKTxZEi!Zri zQEWqLW385BhgXfXRlmT#mb<*=Sc;7m=mlGL@KdhBK73bcXD52%cPBcDE8Lhqio~-#`o2>@f3!l zIBKemJ>XS$8+#y+CTL?KE#=o#b1T>rcRz7ufyKzK_EUu@g^6YW-~su0!m5 zFhhkEr*v2IrJ*wOR{H{=cskrhU!9t-=0@_-cA}D98vT-0(Df5eetE&dReAlJy#AeE^U;p1qx_84XeaikrP0p(-@EYcI}T<25&N|?4`rR&DEQ5l#0!I0 znl@q*W3iHWA9IN|m6MMh8^VB-=fq1J#virfx<%j4nf%6Wnr<_`9&eh+_*z&wbH=VO={*{b_hHx*RJwOnLA{ejoOXZj=)HKWM6&OJl`|)saK`vK z;c(A_ok4}$;*9YR;tdn|egIa^oNs6SnTipdZwZHcGwcZ}Tyf{}CqdGAYUX*KI;=3Hm2P>&G}zSBPvTvc^3 ziS|@g;(fZ9@iym9ym2Du39xeJoIC5!aSgzGh6COm_5}3?7Ll1heYWo4UGY|lWOss< zGbigjSan4>+8)>yRJ5ZWta=jOERpRpSUGdHQyZHXj63(TaJ(18-k{lzKq?YR6A zyk#Qc55vlt6Q0bsju?3F3dj2$*cDW~;_ekYUaZLcZM<0`+i$|knX^qewCd$>y1$2= zL8U8ZyN&He7T@3D4HNnP7FN!j?_|DZ%D8tox+u76UY|*{r)n1WuGr~iv0WE$mdJJv zteiPp*Lk#y!_giHdxCo7ih9|7cIAF}t3PS*Xwv4_LiJ_P%M z%69Y*jy-_4OQd@rteiRBY0aI>T5L2m|t2;gCNFJB12aoW^H#z>d@(zzrbsJ_T0JoVW7? z)tkd9-vqmYN?ELIB%HK(Bi<~L?Pp=-%-MF<-v=^o;3vb;J^_1zidIBv{uYxJr60#z zC6av%R!$)6aa@Hu@j{$-;31(-y!aA-zbOYCdLTO@PrUex*XO#TO_p?YY`$a|^1c4CrFgD@vu~)nOO&eI*qBxxNw-|Epg37y9y_$e;M1Gg2Qp(Y0(uM2p7= zefwTU6|cxo&6Rrk%au}YAV1<54F~#iP@`c#E-}i{C+j8MTKLVFUyyM7^1IZvnFZP#nK1+$a$AX$1ol3?vy8?xp$NF;;j;MNDfxEa>$8XBK4Ed>Yg%cge#dPfhVDj z!2Y1}jh}?(rhEzBHj(m0uyW>q)-XM*bl4JhmvaC_bD54_IuO^77T^XDBhIF zykm`m;z(vxU_o&>>>4Wdjrg0@&TiOihlk;25ZNz*l{06*u{y$hbpB_A^Ir?Qhsu95 z&Ofm$_82%7H-$I`R>R5(W5Aq$tBL7M0xP+xoa0|}Y1nV4kS@G^BJECC zIdj^vuemflW)R;yocNxwU#P^*uemh(U{l{6w}D7~S6DfLx<}Smg@Z^D9ulf>xYajU z$)$>y(k&cj^20tln#VB5%ZJn8LF*iG=^Y{6Vwqx%?-)}x#4wi_4>iQ7hs<0LlaqIo zdcJWj>?|kz=)+7$FC<8Z%v^;xPmDB|!^&2qxs*$!S53@sd|NGcV7ifD9%3d1E>JuG zJBCVpgV+K^i^GNP!;K(vzXw*%oco4qPOrJmVE=kJ`@h4^p|an^Se(#0VpkY{#SJ0y z|1+$dz~7@hP!)zqARZE`!l?LmL{=C-naFl3%t?Cup7dPadzZw7Xw{(hIhZ{zLqnBw ztkvGva(_&tkR59I0gvWSE~;Crc8D<(6gw7$ zSiw#n|9ZN!lWF_)R12$e)k3*6q{Wb{SwFCH$2q>n;FD6hn1$L%b;OM;e7&#Y#${Y0 zF>Wl3+Ve@N)*I4derOqOV?Vp7Ctn<KE!acKe3YPuJy^!(U`JU^R|ahCk1{fxJ)QER&+oGaaqC zk(-ox^0w;mXYp2vb@)@TvQ>wtO?HwEcK%2(*ttvsn}JfniuqMNH&|R};f)fxPKT8< z=Q>?ge#U*fe>mQKVSiBZip}TBcAN6vc-utEd&0_@Q=VG)R6Ru-jLYGSi?BDSjK!gb z4a;r91-xY<;T5oQ=7cBnd5?kjx^TQ#!>*v>l?S8o>6#UzufUrnvb_ve&YbOZHRUt_ zKNt@9e%K#Wz#>K~+wD8}dwAPK%6GxanNyz3r~C%s*TMn63cG>|Slq#4rNX*{U%{It zvV9p=&Ymq_Z86wxd3kXCynsoxr+yY}#Uhc#c2m4rBHN8%<;>a6h%Iy(gbxoVd>HHy z>fI}j^N$&C$LA$@<3!GjVdcy@ch*-L4Zv%|0iOzcf(lq3wd9-wuf|&?lC8qZnqb%Z2mOfDv|6BuyW>Pr>oUJ zHo)QzR<_%B@LTb=iIf+@%9&H1)_mq>Kt3@X^7~zI(?rHc!^)X6 zp4)Vke6DJszAzm1`LI{0sOR(Tzh)0?;^*KN5Q(1!D<=^5*m$S*?umU{9ujKb@5R0k zKjpsP%hEj^ZF1uv;`l2?KY+)obD-5uYPpFaU(65WOV!ndp?u5zVzHlH)UaB6-0j%Q z_kG`CrS|gO%OytH%a^nld(1ZhC!BWuGE7U}I%*^E?_oDNfk#g;9SupX#c9{S!y6_B zl;6V2RzP`%OQiP#(JXm5NTIK^yihgr$3|BM7yRopiLog7ZOYp@ zR?eLDJoVC$jAaJz#o@dUgxx~DtJgDL7ixrK=~lJbe?Qy=BJ+2^$_dOpvb`!8L~`(u zPzA%?zJW>>3_GWLYTA0krJ-`An(yuC9?JLClQ;Xr@PM}O|6F+NItN~@uVwwvQ_1u9 z4q6rujUQapFu!3vH(twGjxyqG-@&HJh%>mvcqk*91mi9+qR)*mL3wwnn&Pvt&zyrG zx}51~d}6Y z=bzjcyY%=mZVPb~{0LUgd=xBDr3YaoOt>m|By=!|v8X%kNU)_*hq(GQm9XX&>;juTD7!QSq>uXMVn3L?FDm0eEK60Xtj$k@^p)uOmoVxK= zi7Dj-SlJ39$8m}D3XAEDslWBLu1lFEfrZ3JVSiBhipN;Wb~{zn@V1GRFMyRZryM)u z-SJ(vJHtue0sDkX+C1ak{e`yM@b-zcZ-tc;XnSOJRTzj=;31(3gFSsaA`63u(tW(K zexo9ctyT==b0uxL;(x49Sd4NGJHk=#ja7)2g+k*8?d1w?y_TjN>lOd@rKHM+*SW-a zC>xp#o9h*I9~cwXEv`lxT6M%`OkymiDKnUk2B;>E{%#CKts8dA*%&v27=$)}m8~E& zpG%}ySZtaw%Xf@`rOY(!F1AL%A+Up-fgrL+z=F}1Ech)gjZsVI2jj*N$H76ca^~Y; zi&54r9An|M@UgH4b`o_gY}IPf!aW{_af68Cp#m!>j0ca(LKP<>;dn@>;^gnXX-^g> zFQMTKc|jvoi#u-~RV5pSPJdmUIgbK0@v;2Rz@i0=_jd^gxH)H~Ze4!+R`oBGbU z4MggTVC4kr9$8-%4kAT(NT|Z$tG>ZX77jm1`Ef^Xpr9{dtb&KCbDXvDaR)b9OHPi0 zVaRttse)mUON@ttp|jp)BcxmnbFzwsD_|cvQAg)69gT-PEsBGZt*Y7RWq7N^AaXIR zYz2{zaEbH^1^Kwc!S{Y61}o?It5sTV(`*=m9PwW7itI_VBdQ--=5kaLJF>oE zQ!P0HRVA@Kmq@H6(n~j+kLn7e!Z;d+Dm$(=RJ<4VopW47`!OAjQ|--s>2uWX*z=e7 z;N}p+)SwFU?Xhov0!#;Bkg6LCBN8^*UhrA9_ zTA}7XU&XB;2B0s)%2ojSB9};ye9|6rd#?LiW*K$|Tl}Aa{X^wH>K=0EDEJL-3vm?u z3RdH8lE%X-3;jZV!n$*98xW znM?vJ?5IPcO|xm4+%Aiy3lug%SqIVboY!+SQY7? z!a5utway{ercYtjt<`dyqxLw=cPOdaV+of?tUc08K$BR9jXBQ{49LnfgRqC3jH7O* zqtTF`!m3k}jjF<80B@8SJ0e)wiXDBv5-N6xF%uL!7Kd2DW;T6ZPi8!hZn%P_(OMVV zrc^)ns;Ykn>lW4ttP*k#uG*583oV6Jrz~o$_2i0+>i?NvGnlUw>M!cD|IyR5PaC9; zka4rG<5kGG$yY+9jvIX?Wa?P!HL>-@-+5quRiQ`U&hwiwV!t?;eXlUC75HEIx?F+( zg|CDH|1)0+3I1(f_r3S$GbiQ-a%;3r{@S+&DFJZ!-w z(klv^Ph>5=$1_W?+-vbY7WM~~ul_{VMfoVaZ6f6(VCBpyYfoe?(&vSf{t)aFDrx(P ztc&)Uc>6@!r^Ct#v^}bMH6akGz(Yb62J85CL>2}=O1ChWxvE@QUKr}=Udc< zMJ>4;4G&r8c&i;8yzbB^tUhcjEFE_Vdd|YR9&8k#s@J^ecaEQ6=9y%+`@| z(RRFrrO_#@W9PE}-jV(Hk~i2t(N647OQW6nzjxt3H5?5u=wSbE7613O^$rztv^!KrzVB^#sGP_&G1H2xuTirBT z8^Ml9dXFy>6-n>p5~D=Y)MCoac-M`{@*+&kiY(8=zH&m3e#&$-F10y4vc#>oi?L_% z)`{`uDOlNxFHdrb^osEfR52d+n!$Yj$I-jgVm_Bij72SOGvC;##pC_3>CeLLAkv=> zD<{zRNDV5xh#=x2p|Z;zzQb5%mq*jhE>jMW2NG+w_)+kXb;g+5yIUrfmd}41=4qkI zkwT8}9Y89DEaeiTq>y$L;|pucTRI8PzRQcbo|OZ+Qgc1*{cUI@e@ec)SXh}KAspR+ zccDKw!1k~8HG6Pk8+y>6D=8Np--ZSnRa>px2Jw|S_7##!_wxJ@`xIt(FWWS+ihasQ zuG_X{kyW#PlC zeLKVl%f(YxvGtSM32h)y$+3n1f$ko*ORpWFNy-oAD!CQ8o?Y77hiaw0^3{>H+-A~6 z)#09%dDesWPtV@hhGA5%B!@@RJYz7GuP@a1RHyTfPW>YlZ5dwrdV5~3*)3cetziYw zxg%`xPF_!y*VE+n1M<37UQd_T56bHq@_MGco+Ynm%j<{a^&ELUS6y3S)1O0cx(SI9u z2^GEADW{olv;HRDJdyR+VdczO&$Ct%4c@;G=lwg_EmYp(gQZp%Z05hkO&~IV23F3T z`Ha}Iu0ebK8-k1Tb(utaigQu1#f-N(&%qlfa-In*XU@4xuC5!54-99#AM6b39W5%h z#$y5LLRGQ718;e1Q5Gcdl5Co>k`m3YHMzWuOr=6t6$pD`JP zuMa1DE$j{|;hDVrZkle#=&SIiiHt9Yl{05N$9T|ZkbWqf^aHR{sHDZ}x6uKc_kFkl zMBewn%9-Sm-}1@e>iW%0 zqCM5M&bVqb-W+e5$aoW2IdjIdWY`nC4-C%l4d?tG*d^3^S*($0=G&|f#hWLxemAU~ zIqT83s(&yX^#@>&P*GF1s-J?lP9(hwR?eLCWWF88xSMYZM|>mf3M%5MyxJDKh@|_} zZ27ZzvqZL^f|WC8OZwjE6XC2Mhh0Nu4SjF)G29Fy`ya!~nX{*yYux#%;NololW0$I zwjsaG?N80R&Nc49tss*B@Ba_v*@i(Q!0#GPeka`LQwpVOzEWcQlh3bpR`M%`D}@oq z&Z7kK^=*$=56rbMhs#Qo08ePZCw!IV1IRyd(ai|Ht8B>KtQ)BZ~1ikL1qvsku^5 zf0@Oxf&7T$g|q8?2a|f?>}oDC$_rfL3z~a z!5w(B#1L{DtZaplTe(Df+t6o-Ptv<4fPZGD1nx}!BkT|=VewErX1rY%yo5JSr-NB<$Rx&M7GU4a;(?3N0h{-FxB*1o^I+u!-X3{fl?Eaqcu1(y z;0oV?D@%jHbW4M-QhrS}w}QOCqPZp?ZC1IZ<-ib zhGAtZuvEB2dIiHAk#n2wGDv@snG;wvd>(cRm9$7CMh9%(pTP|v^8O^OoH_6LD(@yS z|3x_SpTUlyGT(qNAv!u?bN>l$1d;nAuyO)-kL<4s2$3i}Bvb+MUf+($0%9oL0)j0t z@}mdiiwo<228~e8q1L{061D8)C>hpe9l#20Iha(*Fo#Qwhmyg4#^PQuBiTi@xUdK8 zB`4-+Yo?rElZg{)IAhI*8Yz2`;Tq3<oLNDwQDr2#QAa1># zE^>J5MA9e1%9)d%t1_&U_DDGGOJJ{1Y0o!mgrxIRFTyP#62A~uP9W})-Bp1g(t?MC zDiCJ+c0?8k4|;v#%KJ-4UF_@Kxk}+wV};={)(b2)Ifq&sR~VGtT5@uf3qSTHqRNFI zaf$IzE=+6o+n9I01{1R?hF4)nIiW|-G93+yTw!RMZl{u0@TQ4@!;p<~yKN*>C}u7!PGbXT8ftOt}T-WaW{YVIMhBN7pkQjfebH zA_pZ~Rok0y!doQ|f662vb zm?AoDlm{i4m6bkL!d`OXj*e$K8WH&jLc)^mssf=OZXMt z1sK#Ol)q#>z(%Qah!MV&;GH$N&02_ZB#oc@l2A$Gr(9w@B#p_OlaVw23zM>P#=l@E zIblaHF&zy^P3(ym!^=t;|G=9i29m$Q%2pux3ztYQWyn48F2dV=9=#VW!rL&3v6yPu zgyVbS6F6^$H%{cd1+1Jo=h&Wj7wcogSsw*Eg?cxed*Ty#AAuV{MDPT=j4-Bp1g z5`u?>Di9v^4N$T`SU25y<%AXNt4HzuY*)a;)H%ioUkmar59$_cxyVr*T;@BRRB>=I zmlzMl!6epWqcpe;rer0KTVWSDK}VlqIvS4J6u$qZj!8DE=8|8-8zlyiufWPy0QnM^ zNUt!MCN_lGbYEbGU?sXm_c_=dRJ!8*hNkH@bDno&Fz4A! zVl2u(`z{vm&uiw}tY_fO6IoA%l@nNdWOG#zh$P@4p$dYJ_zqfG5bTrgiowKuWkrux z5xf^3rOr^&#wXC+WGx3dN`m+J4k%R;9LgoeLrKtC@3K)748xqPtWkk|2~@ zr@Oa(`if#XSMBH?EUz}Ux6k|n8kn48t=9Sz&)!Q0braFI6W@ z;S%GaPME==iJlwf!p<-?*-!OS+#=XjPVmvDOh>~~6Kl^g1oj@~fT}1&((sT_6~!dqj>w8)X1Yrallo5?ELXL) zh99sVU}4HR*4nr^LD;NiD@PIWeP0r)h`5(ajE5p(GVimIP+o>fS>?m;VJA6ZM^7*v z4T#*FAW+F>)pEn{@MejDbApTY;&9dn!cL*GHa90E@ZJwMfXMqDuyO)#kL<1r1d$LtBvgTL zw{L)w1;RGzE;+EXd~<`RY6Zf%#z1}hJ32a+jYRv1%f8~WpST>rFV0a`JFvIhGqmH1 z;ZjevP-e%6*SEFr*lKw}9pAS|Sf*v2Mj24+V&{l zU@+IimM(IYTpx2rzf?SfD~^lefP2Cy4!#Iek{zC0EU@Dl*=g?L)-|udH-*$c&jYm+B-5rOj|x&Eat1-^+2Iz30x~u!*8u`k9Ouxj^?Dh zq|lW=CEvkZurjYz4U6GX>l|{m_dBbGHG}y|p?P9B+h;4Q!5I zSe2_UMGUok!9Mo0i-hUIaxGUm>W2>28?5e@<4e^K|K()I!?MGSSkH~rvNcRi_EVJ* zTf(k#f{*4h9Sw`z*bp<`jxY=G#)%PTQ&`!GFdK1+^r{HCu_5L#gZ7ckpuj@naM&$W z+VPDIu`bxm55r9$GG78KXU;sfu_5L(gZmlb+}Facp>j7jHpIGNvp*F#gUEh0ten8! zqa08bg-9A65~`y3S71f4UAoULW{U5^vx;K4XQi=O@=kc%ItN|tq&6%?=%2IK5|^W% zxWjjJse0lzE|FMIq?cx9X@7jr!;2Xdv3?$w1-Z+W#gaoOU_Xi?-G zZiEBJ@%7Gz;SIaB;p_-Ao3XwGPFptS5{Y3Z#bwVqM(>SCb0EykiZuJd?sB4!c49gj znwogJVsyZcHSfR;AjX=v!^&2y`9Cg^US3&WEFv0CGpL`;j0&8>lwj9Tsf$w9*$tch zO56-0`+itCbM_mnCDGCOUmwo@TG%~Q{+k&qqefTkF>n=b3ULfv4l5^&0gpmK)fyt1 zcu1(}%m%(4kqe|Rq+4rDZA@o+^poU%&ANfbE$5&k92J9C8L}W|7Hdh&QD6Mh7lxX~ z{G3Z9))(oen`zB%8!4vaW)ziGSo|0ElaqGzN2a4Ok>4|Enr?@bf8k9NL&`s3Whb z5o2#=Yv7DzPcD%dF;bk7OkzDYg2i%}g%vEiVHY`ZMoXEFhC?1MRmUV7RogF4z#Aoo ziQ`~pD@+{2B~nZUqGY$}ev}!4Wo?UY4R!~WZv1d5C*uq7riqNtg_SdB96Maf=6pvu z=i6YHP&u22OF3EJiZ@SW{WVxQfwf1@R%u@(0S^f^li1z2BXTBjRJvO&W;bRM_4gT8 zIvN?dXlZo7E*&<&4IqY^`LMDTYUcV%s8A!uQc$S*tM7=Gq2~B> zXBZQQ3dLb9yewmG9E<=p6_&IiN%AdpACQ|-1teiRJ*g19%(!UHR{d3qSRMO@-c5d1~ z#oH&+eiT+tpzV>>Rbe1ffro^egB<1C5m^{~C*8tePPM<1AL=i&PaLp4-<7;kC2aUr zG&(s4T&>_-h>T_a9b=gvsuE)M3-h%M<)|3eV_m|kYdO+X#W0UcjE9P0uGxK~de|H0 zXJwZ?VShP?K(vtQXl!cp`NLGR2ljMiciaME)Y%nQwxZ5XTq3~X?o4zUSL)Q zRuwB?-%z=4%(=V!Vbkxy?I6-W30BUW{w8V{MT-$|MfeD~4E7Io1Z-|>qcHnokAjPF zTZp6JBd~J9DDWs7ROKO3iid=%JZAfLL{=WPbXPywl0={W)bnSo16a^aW?t12arZRgN;^C%)cRWyB*~Vmy=)Y~i8LeD3)=Ov5T2{to-d2{igG)6sY| z7akZW*{WK2_$%HjF;x5+R<=ULAGt(&vYur5idl)2X+n>xxE76!hR^;J`wx7VdVtu9!Xr) z0U{@ONT@pChrUrt)&YM?y$G`|EMug)VQ6KM1arlav_)&UHZY*p0(U&dP{hKeu3%2ufOJeSCz4zTz>!z{t7 zZj0}4V1H2g>UDsN@~`l=iIjfd;;j=&kHE^Alb)-d6gcnb zAB5BXKI|1LZSiE#?15e4--}y7Bz`xnoIuqy-NNRSq2J+Ywm~ye-|sVx|lY zFJ}i8_vjzO>H0bvnw%r8wm7sPXc(s@AV*2i$qdHoWI23PNicy+jE9n7YJ-W9Ft&%O z$WE%G<+g?W>6qfP?S+Z=iRZ#dj`~z)E8(-}u78Ah5gXQ8WtJnw8&KaqH zutjW1ITIeK&S6$N-nlpse@6j7c&TBpmWUjM!RfvON)-mDaf$Iz7<9>A8@0iwVNO== zxB+&P6LoYk)6tOBrt|gX1}@pKDi5y58zzR5Yhh(8lw8Fn(kl<|4>{>Kto?lQx21a%;IAZ3gQLR$a@Xr4q?hE-@Yw$+RXfBbDq56SD%$POzh#(4)k9k6*H zj~hVbeJre;Iq&%@^EPi0gZW3onSU5|43+r?Nw2Qi+|R>}Aaef@ten8zBm1iYLL>?g z2~|K$_U(u)AWlkmuX^+B-)cpxAb!ZYfki3jaBJt;zszDSO*tl^5BkDTwZr{fBC&Qz zFRe7r{;gJw;PPh}l~p?Y5%!alcJwQzqcPFX{$<2u(`p|265cd1q`UwtTOs8+UkMdb z#P|scDc=jRf}Q>QV!BIOlPcxmQm+AymS%V_RPnIIqDQCvqN!l{4o&N6j!?tiKq}`tz_; zsI0||(&&I)27CrLfXMrkuyO)#j~uSb0Fe+pB-G5}ExsL*GmFP2vR9txEa~Xjw*I7P zVRY%H9Uc9*MwhY6vXR7~wJ_Qw=~uQ$`im==WNl)PdGyxrSqHF~&YW^=%Zr0_UpVPr*e6ud=9U*X?Ht}dk@ktOasq9StgZ?JkqSH{RAKOpZ$grV z!5`9HADB3Faz%d`=CklHb&j#%9k1LlE!{ZM|EGM1jY|KY;1c5^{nxu}r2hwD8diF^ zANG+GX!H%Hqw#1Qk5L~%vQ?G-zlXO<3>A05%2ufO4wpzh{X6)+#w-a;|F6RSpz@8U ze||e!lwZNyCQ^PGR?eJqEd4u3Z+TlV=><$;EDCx1PBzoOoA#!7`$XCs!O97=J#x27 z{~{H5NT~GxG2dY;)BkPhrvJ&MUiLxr{2J{6!E$({Is-~ucDy$1)e@1TFzEIjP^vIE zflDM72I*ywF4<|LG&l#wB<~sZe(YJWmz<=dlbMc2L~eL((6aKz2l0l9k>mrgvK2{A z@s&`KM2wxFNOD|=73@LdI#W_zVVvHdE0sFBSF>GX zuN&R4SsTEPkaD*#5EW9s%Ow&+N{UO3Gh#hA;>zz}URGTBE$k{M^5`+9qhYCur&TfI z?U~0jc;m#_@*7y$iY>q566xiR_0_|kn9~g6>wX)(LoMQSn8a9=rZ(}7j2&^YZrJQ+ z;${%pPlJ^c*n1=el~+Un@sLmz>g~RRSXQY2O?gjTvE0Xw4<9HO^j$1R!eiDMVro4t zvx@Jo`k3Kb40EKG!+i&rN-c+RiSdwHrmKz{ab^|F%!)HZu&12ZqvcFTqf!%#9m;k) zxD4WL6NAeDtZW6Bh)blGSmuiDF3Mj9>rXLzu&U2u{R!ABRMz4EFtZ0X@sHsa5Q$#{ zD`!r8Jyl91QvY!{^&i2Wp;F(_s3cS`Z1O+Atss*BKCGNT-lGaog@i~K9ulgMSmN6e zSx8)yZXq#^t#g%z2lAC%RX+}P*6nDdat^q*%unMsYw5~SL`-M>z)EmAuv8Jz#U&Dp zi1f0{j9ABw#Ig&F%StRe!k%&xk2YgE8WlM`jTvu8mhJJziIHVnSlNm!Tl-3=$Rfs2 zP-N*0v4SmqO-lE@->F0871g2sN};q;TlhMebptDboWrb*QW777dH79aVv=ApNEwb$a_=)s*n)r!b3t$QTly5BBv<#r28~}R)20_pit^_K1SQ& z4m4Uh2VE`Ka={Znhf3N_eUi2v>q_8EWg9Lr9%_l%dgqO3b2v=R$}xw*-g1JE_GUVI zJt21e==R%jW(nRtG0rT8m902)AeTt5rr1a=g6V!UxUXe)1=bd)!rq~B-_%$L(|cl% zfYrDq#1T-1l@msQN19NXMg$WN36*KK^6iMsG=EDs(@bJ(p9Ov2_Z_SU*obuwH^MSl zzymdAvlhY}6V=;%NvMhHtz2R}B$vsYlM!2mrCRd<1WI}zk}Y37U3=?fz?=4!tocz6F7I`jT1RffR!`n z9D8Bh#d^)`xFqh9qH1q9A$mMwR#29latZc=Yk8+9hYKINgG*ok&LHz+{7FN?+)bE3x zL#4inF$>i?V)MTTH-yOlPFOjCzej>lIYtB$4+)iH%Dx?uIcCpvbIfG+u0WwDKcqc0 zo%~&N$U4VcTV6hD*sDb^#}srT>jPGM%K@d*$~s&kF|DK*X}V;mjmWYcjLC{D+rVCO zl8)A6IvNrA@==49Y*@`gx567HMv^UHWh;_w<}0Bhi5NRUk>r1Yk>u^^Mv|^dejvwq z=k;?_3(S{T`g4x3+QH636*%dzX`MDs9g$;&FMSm`dbmVl`fk z0CtoUZM25zXiyr5q&AUR;p1GqX=3;|8&a^}2a=c_keX58H`gfo8*b_|uddA@qH6E^p!aU+P_e+?@q zaQDdZs!R}x!b3t$I8O5Ih@5cjpYBG@8P&>gsi&j6x3H?vt8W5-%bjSTa*nv#A%Ud= zx3FQLmY5vX!kd}Vf%A;bxx{#=7G}n~ZiJMBVLDbCISBTZ6L7Q})6uxp=J0ilxb=1{ z*&lD67)$nrm91E^H{B#(xiSf%As!X9%dE=mJJoyFI3**1JQOLZ0cp)1|sz$ zteiRZ4b+ll{9ZB0e=?l>$6?=4$!~0|SjPKd)4vY4gGm2sSUG{dNAg$ogGe175~_aK z#J3}|eyF6o%rLb-SLt=U=C_UwFL1iE-@a83U(?@ zgP0L$Cfw8TR-5uS_^Fu@V zB3qHjR|>20z0U16AA`rSa}d_b&ZUX4^V8%rd(n+XFQ~h3uJIjxs?xZUON@s~W3$m* zVMM08V4_y-@g3NA&Os5~#B}u9V~hA^95+~Lje4T`ZQL4Sg!(3|Y(=QAbBXkpHx{ai zE-)ruW>#Wz2y0CI9`+S=OuW^Y_>R^uJAeHSw~IJBehVunj1G_Fqw<#sLLL$-e~tKd zMCPx9(p^ZOH&9PntMi4v{%S|}K(1OT=tl@|e>XasokOwK+lHLQY?r1tEY|{{V@kX& z>kT&1lfz6Us;#-ict})rc6$Gf?DQU(ofU}=g&pR^AHALFXmD!l@knHK!45j_#!Vmw zop-^?R?sIOW+ae9A0hwJSsO?8@Y~|%VOUFrJ~7!Tp}@=q`05Bv)*N+ zWF3GxS&<}yedI(P9mjMu9*ys#)yI}>RV|tI;jI#bNH45x1(6(=NH0;y&!al{Uc)TG zlDftBO4uJ%zS{TEoRmlKwuzK4ft53-9REI=eJ6iEobd)X({K`auf+`@@;((-PT=j4!&Mm|5`u?>Dg*u-SO)wu-RGT?1}pV~@0^h{ zN7jx+*KW$btauMRP@SW!jmPB)o3(u8C=l-S9a5@5xPwcKivof7*(ea6he^qsMtvvs zS=dQV*wLd*M*|`Y1c6F6s|tjt@MejD)yh05A25E6Lri5o!Vy*sR&z}q9cs{%nJ1P=*S zAl&8~pyWEil5`7%snuMm-|=S9>F{WE4z)JE85A>I%S?_^;WXdDrAmc0Tw*+w3e#1` zje6k*n3=qXRK0LL>?tSq=p#%=qaxo7QnuR<7OutHCI*+QU}Y<~T+SuZD;ngRLCRkS z>xY>=flCVy!Cs-Vj=veCdSDZO0Jnfh{61JYbKi-U>{yOX#Ds}VCAk_<- z{NHgah~)nYD<_cmr~*_WA<~71geoM4eLErxi7nFIi7|I0+S#y==p|7)xhSVVFTGr}j|d_T$4 zG+WC>j?&;&UmmJ7c!f(OLP>EWB0mSFPRpndHoPC@CGQ?pAFRhDuoB9NJetIGG$yqf zygq0GlP#+vVIJNxF{sRjm93yMgG;1WB+M3>w&5*<^ShWe*nMenJ^=O!m9yBYrrU3) zkayzk6KU@QD`!r7U6pSWh!2GmAB6ovB`yx6v-@CEAHZ!OQjcKe1nM4HUlk4_MR-W4 z!r^7#L?sJ{52XCyp_1<@3|7iLxuRA&+yW0+=V+_FJ8;<`W}cRg93{fdzC%cr2sd$w z@lYa6R~>?tSQ=x(N?QIU@ql$8hS~Gl{X72H1DF z`FKI~!Y02hZUvG2*06E{d5>JL$_0@wJS0@PaHH=KmgT}vQ+~W)ZeuLLW7Qd62ro_h zE-}N?bXe&-oK)%1&n3n~=`e})*oY{Xz?7_-;Ud^YPSDX>rlaAI4<726WTR?L z;X=GoVgNZGR<;7jIb0&WVnIH5u<3r684|dha69Y{D&6>l2Pfli;Y|}6e*;#|oN?^I zgU$I5;hbNDT|(t-K6r4lejab0$og4WIf1oDHdh6KNCF-bsvyYwc0?8gBk2|dlZLFP z4%@!e%WCIf{a9SU<2DS`H~y6l}#M5{rWLa>r!eWuq!M3g zfqmp;9qq|KB20=fvNA~BAn_~>#n@3Rp|ZiY!&f#fFG zNlw_&wM<6?A_Iv)Wd)KO@n(sE7{6-YkCCDKb0@)c?q;U}3X*u7{Gegbv~m2mtG zsRYiCBf=r#vvo)Zsx5q^5E&tStS~RV)luyP0nWq-SzmDZOezp1I~=eI2tTUMx_@c64gf zEmy;Cp<<4ox#os_1>QCh_GPfL9Eq1U9g{ZY*qLh%(hoAb0!iNw`-Do`Jaf%W`+Io% zMA~=3$_cbpny21LwQ0+Ti^Y7kyB;L8{D5mkYVhsr+oM7miuzOz4N!i|bT&XB+jkisVC0oMERxDY-CDN-8(Ce;I*_>s5;MB<0T%9#_7?QK#%GpL^%PW^1yGgRv4-X_%xoBSEL6-4rD zVdVt!9=X1rsKt~=qzexTRW5Y+c0`s7x1_ukx>RN#qspH=Y;1+Tk97kJRL=2MJ2-H8 zfte?*)AEv|TDZs8@v2(5lS_<;YGGQl-$p2T5$0kQ3(v!ja-xlX%5*d+HL>lbX}TRh zp2eFc#*e39Wh;I>$tBXO73PT7jhgNc`%vx*+>|l zhIv>C;|ADCPNdPrOh*GEHzWvDvRSo+a6R5EFDlU;;Ss*tgxClSWOu>qB zi}1s+L#Tw~8xj&YKZG|<I?3=j#yLqe4SYkWH*%YYry-T6GZlIz{2H{Yif0{i?B4NJ~(R(n_AT0z4$E%P`^ zfxVc$*tAFv9#snL!6n8+DbOW*Z4?71!Az`Fu?%*T6KixR)6tOBrpu2-ilHPMR^`C) zc*Df7aV)HCg^i=QM0(}GEHTM;Q~n4uCa@s*Fzga4W$|*1X1+aBJP&W4$ofODa^|e( zsTBe@?{A0m{wC}eDsSXv{4gm@*|Xp zygSrJgAJJkRysMMMpKxMMx-{4*8~!lY*&>8>*4JZL&iK<*$Nr6xkP#;!Ay};os8ej zY{Bk2i}AZ)k5C!U;f&+f+sWYoymcb!cf!h_{#Wy+0a$rKbs{|8!%0v30tlxkKs&kYDzpcOx(-M!P z6u8BA*r-zAW-c)vN`cOLmyJT;7cdPgN&F1c` zz{*yr_#u}_uMCjyA~^U?dN{ZUcoUNti$c%l8-EwUP5BL&MU6=LKd^G0hJ*4+)k2Z}J_sGX4KC-Ms=6*cMXl0l~@e zD0L=_;Lowt?b4EsBl(wn2aQVpE4jpYNdA*pkB!_v0<(}eg<1r-1a^@VXLJVB(QwF9 z(dw9Fqbl`Zgf~hI6BokDR+u=SOQe_j<*8^k-Mg6~fz$u*!tS8bjh~9hzm z9_oM@v7Q_Cz~L|(*-upu90t3}i8tDt>1bGLVozDjc)KoGf;Uc#Ba2~WD~=q#G&^WbR)G=l(g^HB{~! z87~&Zx?!{bG;Riw{SB~k0(+07uj&SoG(03!-LRE!M`Yb_Y`V(@s%}_gykYPX>j)OD zoI`HR>V~>~T7q)a4KMgQU)2rIafxwNH?W=?nPmEpQ8rfH(8VOM63dA`t_3?+&|#O50U8IGOK?n?Pi~6Rey$ zb4T4^b6*k8y$5y;m3va%;ADRiZU&M4GFUl*y+_hlb%RJ69ulf+FKhz=PH~;=+$QV)hXaFZiVI7*bWk$GOCKs2Zl%!HA9D3I4qmGhT|DD+rSTg(-_6n7?cGOX` z2R89P;}#H!{}EQsoOt}Gqo&V{JN(U$22ej>gB@7$(`MT1Ge>Z<%j3__l=lt!Od+BHlES@#kUX%o)eFCD?cIZ^AkM3U&#V zv$-w7$@&*~^F-D^gOw9ld*p1D_C*r#kWgv=eZC!$Y5%Y3E)z@{EDsf`g;jYi_iy?W zG$J{NS#5FPmV~BpTE=k{02?ubv8q@OA5{RX&n3n~0Wh`EZKDc!Crm|lQf)@q2lkT_ zY_vVo(U{a`@W+%5%k4C=7v3^4bnF2uTcKk&E|Fd-Fk3vvZ+Oe#Jix38tOp|4CsfX2 z+q!PQO}h_opGdnGR?eLEx@r$X0`Y6YiC+o(g-U#VV*^5?4>t7?+y)}`OJL;$>K?gW zl?Nh4cu1)7U|rvi$nxOsbXNr?_T&pitu%OobpQ)a&T$t0u43IVEd@Esg2#Qmt;&MO zxWsrU3p(p8j8yR-n1)pn{1f((6KM1z)6sY|-c_uFlC7$hf!FX>iJ{_ESlJ2{uW*U< z%7MnaiZgoHo{ z1_I#`3?u}Ygg`WaKrj$q5(p#)dD!&K)Xa3Jr+d=fGbDg`q9CB{iG~2mLs5L7ARLf~ zaNvT7g3%~P4vHs=ybLD_DvCzKLGP|dcUA4RE3>}ZUA24scAkqD;7zoy9ljyz-yMr6u(58SY z#=pTI&5ZG{U}fVm4sHsNIPdn~+Hu}RNHn9vqrYOZDWHn=IQ;RxWs)v>9f|bHzxO!< zRfNAJhN9U3d;xX{H^RZs8AQbSCj8;dIDZaSHXi4|=L}S_{)v99e*`;)8*BM<1`+Xo z8Xo{N-rt9nBjO#ShWl-RTM%MM_-()`aSid>fWM_X`yZLB|IW{$Nl8hWb{pW1 zEL3$AZNN@qv{+;8f#bIUJ310A(FQm+OKrexI3Avb{*i#gU?(XQ2!&=J(Hh7g8JZNcks zWW1k>-xh3!J*5n8{&}Gjib~CUlh6;E_iVp6*n~funL}QIl}QeH(UC~6H>kf!*zlJW z>&ZVye}yF0lY|7;Cv#&RdXunW0o@ath>w67@m*nM;}H+ON!ak26!nGrQC|Rih8uPA zCSk)08u|J7D43By7FLdke2il6_X}>hh#}$k3y;T5T3)~K;dGY`cI?Zp%=HcQh4v4w zgn3oMru`Mf`q)AxNzo{LEG|5LqwrBjq7@p2F`m^@4!IqU38@@kh25kKYkr;335CS_ z3SvE6-h=%X;mi1gnQ7yTurf&-H#-vPwFur<5YDT)Gi{s?E0eTwt|O6tTcC{cXT@MN z+k$_GUBZoWs4a+!^{4R1Gh=-ZR*@Y{lUaSid>g7$QG7siO)g=|-sI8+i^FL*~-fu$!UYqe7}Zy@kT z7pg;w)?jN~zx%Dh7Du8LS_6B}$Bl~A9PIx*8W-Ua-99`YQ)N$Dhkg8PCGXBxO9~ zNTk;qjCU)mGR9+msofWh5)#em0BMXTI57^6o)(7@_|ut@ZiAJLM|wBEDNsiHJ^Il; z0`>~`7ww)dku9JRpN)@z8S%ql<%o#KsO5e;;Fg6L5`H`IA90hE*AA>o_YK7z#CpM; z(1O7L462ec?R$xwfrSc>q7^8|#l~+1N{&P;v;w1Slch%Bb8s}g--W+Sa2@O;WkB;+ z2%S(oynBh9KzUE~+kmzBQ<FmNdFP`2{+R6y+rD0zm7kj8STxmazwOa)Na50yQLt8 zgkSy(aSidx{}0pMG}u9`{e;W^;s1jsBqd|o<=+`tsN5*Zf4dkgHvjRk@yq`qjzmk8 zf7@iK{4ar{;Th{4c_v%1jlf!^$L8oZ?8NUj7yF zT`fkUS^h7F{lSfIu>7l|d@25HW|UXL%EqG{DF2E`-=!bvJ7Ax1BQ2MIb+m8CpU;f; zS7GIdXve7Ce))GxK@17M{LhGMh*$pCr@I+YfAOs?Q!G_Os{n5ZL$Ji8WUXo6M7GBl zsy>Qt;CFGI?{@>QITEeV4eTs_gSpOZ!H$g76zsYYjg9wf@tcC3g#^|(DZ`upKjE)X zSfp-8C4|S*nEEg>S&HDoNA6&e$GTs2(ZWgs;Vg#%~jDb0k`!O&BRG zmfC|K!?7R*{UT3<g#K?jvRi+Z{-2!J| zp-Q7D{2g(z@e6;(k!Xd&Kgu>)s{B{O(eQp3{=&eOu#c1h%~yp^C?4K!ffFe2sebAI z82(gds`x0ZOj5;VjzoH;-#aXzi0}PkB$~DVUf3Vp_y%_i)KR`0e>OA9cf!iXqa4^R zP(=D={Yd`?_6axA@@|1T+P}h|&y4mjVdaQu$Ee+Y`FBe}3<(8`f&8`N&xPyqQ=|UjdhzeI(M78#OFnTt_19=p zQgWvKiQ~rLLS;wM2J9;ajJ3rcK7Jdpw<8hh`WcbFkKuZ2|A=5YG1;kZw$uuo2uH;; z(r*P$fc>NlY<{-T3B|r^N$PmZkx0EgsC!F_^I`gNo+%`-c9|RJV0%y>KaKWu{Q1miPlJ_>M?26S z)IBCe{5<`LFN6KUjkw$%)NPwdcA^o)-d2ODcYOG zfUstrM0*qL7H+hIXAJ`;(3ro14}lr;7hz@NF%O(I3^+}S`=sA!$9=V8W`-B_k;Icw}{50BM#GlWM z_RX-e@n{E@73v<7BK|Y|i2oG!3pe8OvO?Vk8ucIJV_-)8hp=)))MM0kzddkEL<|YP zJ@`OeL%jCjigb4!b|_et@Vf{TUPP0Vk~8fyiO#@6B}ma0j2DB&+GYPrN*qVR(eMoP4Fc&{+pf+2 zPyS|cD9k=XcEfz<@Yv_wKR3C5ZgKy7(fQ+9=KrKW1v`fua`|wgI_y{D&u51HN?17} z>@kYC-v_ugA%=wC2aJwuh}Q>9PPY#j(bL%#S|QjV#*ZZ?C1TpIB--N&RUJhaus*J@ z{Vw1sN1_$FfRVytsR{TK91D^$-hf@C3}^mVLMIds@0CP5Ox{EN9^iNQLz!vfHCUOX ziB}zo^m+jAl|&ldeO^L;X(YOP2??wX=0-R8N}@8xd*F{|#&~yF*?5ctuO!kqpQaz@ zlVO)|<1D|DsEqZA_~V(eJ^@yah;@vb?U#MG2*i-^%l?yb6O&i=f06F)z=%R;`1{D$ zz>q2l(=Pk=xI%SCQT9I(7aG6pf83F1iLx&&mdgH}a4bk+_y+7EWjOPn6FQ-AcxB%X zllM@+?0*e^C^Jpm1}l>^ajPSddfBJZ{iPTP)?kz9{v37(H@d;HuZ;1t_@kLIeg;-H z9^*jSr*R(jvUZ$D2#IF2cl1{*mwjcd+wjLTWBpFEVjZJq`(@uP0x=}~vj1;!4e`qU z_;g=I9BHi>kgg&)3C2{JOKK--e#FQfS*X@1O8@&|B)ufzm;U1&iB>56J32N?#lIJh z2PqF0>?CDK^Gk$IC?K_+oX^|1q4FNp!YkKcOG%$6%*$W9@##QZj(H^^f2K zV8;6)SUDozF>1Kq2Dk+whJ@b+yf3aHUK_AWx^2LS{?f&vMgQ$yK~s{FG40vEJ+4s2 zQM3U6jO%N^1$f($XoVJFq_9|O0H(pQ@O~8jHsMqu(TsV+u0kgi4sZ5vhsk@WU;g*S zAIeM0{VQX9I{s*8j8B1;jmJ1J z`=@cfTtCj2!Y<*)S)TnXW4#i8JTukq*waAGk=Qs?)<8D?cYgAG^4Yl z@eQ8&Q%8A6{MpPX?*Jqq*%uur(ZWcjF{I@(9#&u2#aa9BAa+A(Uk zU;f=v5JSQ*|M$gBPG0%{S-RzaTrpd0%T!C^t3?Ch&Hq&}u1eNwr)us2hyjZ6Il~JT zA4M}T7#AYH8K^iCt?vh%^H&RNvQRlvGzoLWXtCLn2aew)%yJ}Jp-I@$ zv02I<=fd&uEcE+>rLdEfA$_p6aAPf>7Kn)V zo%jHl@%{#^91-srHQa9l+=388!fyi(jcbV42K+SLb%T-Ole&lZhuVNQg#}nrQc|Yf z2Dl>&RUJhe@Q1km_S=BpI}$C?1~@iLZNToE(0F)14ZjVTASAF}Ng2|7o6rdb#A^fG zPO`8_acuKUVN97+583wbM2C51bL!2N)_simu?BaXIq4g0DLgt?>t}^N$FfP+V#goE664=;_Mhdi?3kT=EpGOmfMSjzoGr!tU-G ze9&W3yx$Qc(rgvB!hYe#+r4v++CZbe1s?-5>Tkiy#-qNczXrdJ$j^LDJMz&4hC15Z)zXVY#_WLdLs-~Dn$p;9hW4(gXnZ5TA_p3C1kr) zQfhE~NDFZd>?~!7^DBi;C@?kmG;?V9G@pC|e>^jvd>mFL`Q+amiS&Aice(X9K< z2pK}-{~|sRX8eB*D@VjXMib!o5pDsAA>sEC7sWNi>my!Fw~yGNyRQ_!vhcwFMRS!B zHtn|9C(XC5$P}MNBWDfPq>km-(pZl`)2(4%xHfeR*r~vjN0v&f43CGknqd@ zl(>d?<$poChZ1+}vU=u}v*8ZlC1C@Wla!d%7HX~^)W;SoI*KOXg}6TVn}CguL@P7_ zV?3*+K46EW+psc8 z8-I5rKk2l#wu9{@v>ExeVhyeLf&8`N&xPyqQ=NRwZfLZ9#o(p&F!U3vP@H zkKY#D;7GJYTi{tOwFQsEG4XyNep~P;>?UPc^LGlJP)NMCpdK#o!G2rtF#cd>+ISFF zCTZh7MDQT`q55^j`(Z9!zLU&9~IjPUINydp zoEhg^VP)fSmfl^Ef6YJFkM*;#Q@F8Ky}O`@_cQnanDO2KD@VjTMh*Ad0Jk8-knr1p zv*H@!wE_31+Xn14P^?&0@$Q1vogFBM|4XiD|F`O@{_u+o@A`c>Q~l-r&Wh?^-9KC0 zKmTz5yzTr^qE|axwU5x1t!6X!BWL9XSG9K!6g#WAQZZX-xBqM7AKRUw)<Ccw4J>_hFucx?+qZrvg zq*r1lN4Q36D2|4M=y_nrLQb4d72n5j52d~r_M{Sq{4}8x3SP}U!xUjnz5W~|{%7t$ zj>HGD&3trNL-}x6*>lyHLatKH2zT{)&T5aVG`3@)P_U{QTQCHipP#r0=Q9n%#>E^? zzT5d9=Fd#`Ow-L(zNddDH(kc4wzT*PZs|}_ve2z>^5c0^Pdtr;XJgDvkMx|L%t<65q%yX z2{RF04=a0a@_+Kz#+9&t@~)>{y0j8cMQ0QP9r?xSCZ2H}x$4Eaiq)3M7Q;s>UJ!;f zBh#Fw$~0EN>a&W@lU2=7;Gf&Q0XpLg(OYkU0tsegT<7}<=6OdVve}uDUbnMzz;Y?6 zZ1*}E8^QEKb)CI{thdXJn~mZBE2|Ibk8RQ941A( zT|e4~2nlRbz>T)MwoXi-F`t1Cff@4yVP)en-@`wn5FPjP_2Ygn>>6&|_mW=22$(@* zzZ4$^Gxlf0$`P@TQS|-3!7UmwB>e8>xwwhTo3Q*g-M(SBfr{1Dmg%$l+A<|^t8|w& z7}{jH5oT8jo_do-JS^9#UPW>KrQIH!JvK2kXJnxQrRW=Oh)a>*H>`6cBKwB)%E<)D zc&V5?3I~R?4iCfLQpPs_4WSc?OwC=Nl?T*U}-_Ep_KAr;m>BIloR5m6nk9tVTE{AB$M;w zhTcym=QC6PO5>_S& zWFW4DpFmuSv=Yctol%I^;kQeR35hS3|uL1LA_-KzLCJ_u%_`5#!BB${7166wu(_YSW=1{^0vf7d^tzf=NKv7OP>^bJGwdd1H1nSlI-!u% zc6PEzedIJ@d>(%?Ghtj0E0ctAZCnXIVYu{YC5(#BD8x+VwR984NO8WjI46`WUJw>E zV`g%qDp>$C6L(}GKovP-V_bjxIpcXpA~I*BI2YN`v02I(+x-!Z2gw-!gq@_$7;gxj zP(Zxzbhx4N9_!CH-o_uxOc#HLl}Wnzt0R$KLGa#nQAN02Kf;FyiDt|&XoQ3BxSnd6~O@J6zsNyJEfE(gMg0`XG$1GQX%l)ivZfD)&_*dx+i$-2sNmkfJL%CoWTdS8$di5!n@_ zS3LGq`#|awR>5H+m1GchnljRPOX!3GRCB-Nqqc*lnhHJ+W~%9jl}W1Ui!0%$8ka1s zRC9*TD8xczTe_)cM7AsZuGn|P__4l6iJJZlLyRkgsv?)%AJ^A@F1go{h|DD^E;5c3 zk&rUSMmQEEb36~bNEy!jQ$i;cj`|EkgvooTKf`zqe<(9e{0vqmY2v4jM0!P{KEoi< z9sMTyOC!-8DI}WFdD7^HW*Dj%Z;wBk8RLHqzZeH+7$nYf_2WDTclK!UF27Y4SCXu| zx;9E&EHY5etyBDp$qYjk>sk2YnXx_;R*v{R$EewU*>{UT3<-aRad%v3y&1*<>FzJ? zlC895irH#zP`oZKTK&*YV-*HgSu@lvz>xEbY{eUxGp)}nK$A}_<6?VN-NK7&>4luGe6iteCQXxxM@a=&zU%1Eg6|D_7uXm`_21vb8?FI zX((r8AzBq(%3Lv8Y@X(U<7bmOjzpx>Q(UOn(TRqXKF){ZLDI*$u#?p3<7A-|3P}Al zloKlNu?IEYzF3MsmYFWjhLuUWIMb0xuLZ52hO%8HMfhql6s(Gq2ww?1gd5?|X()A^ zKZZY?8Rw6}%EsdyJPoCY_5J#>z87{1H`e4dlsevb;{#yE`%YLnBHl4-xZei21tErn zzi2Tlt|9g)L>sVgx;Ovs-C3}*<+e;`wzGGeH`cr*?7~u&lD*moRHvkdoNzd!^ahFC zT=Qn!X!uRS9~_CuCLz5#GC9HtQcc<8FKD1hP1#*YV6Bxh*7*@aC)_o-H~U5yLZ=-Q z@PRP%&3IUuB!ZoU~IFN}Urc(ECIWnQejVvi<7sA8gV zPTV;AIpi!yA~J`hIMEm>ES3_+DmVfpVGP19QYQ>c=!C-I?TFf8@*a9nW0Fz9AIeM) z{jf4g4t0gaKG9q{OYZK$T>`x4nm)b*zZ%Z9k_J z9f`=ClH#mmlpPBxf7}2^gXE8Ou#c1h&3|0zg!9K3_f;>OAn&REyyLU@Q<{7!v;6V|iRdytzj<-MPmu zje99`#X+kazL9eFU(wv8#I1IQW+za;%Fr8Ps0JxkA`cV8)|_X|bR=4#C)hP?ywn|> z14oEdkF#KJDTACpUg(4(Q*(1lc>FY{oPj@|nNv=Kl}S!H*^x-EPnZC`;&X z|Lgcjm;`(UR*oPbMl;~|6K)xaA>sEE)8iWA^%I{-cjI!5ShH@+3{-Q4(3-;Q!U`;B zDUpkL-J}?kJETy3QgjZR<2u`4P1xi}M0O78m6Dz6R!a$Fm%pK*AT7f2Znh^T{cWL}WfmadomDDJM|MTk%)Gks_(32zyMO zS}qhi;nd=OzNg+>1%l{};h@HeiRJhhm`SD=RwhZtawO6#BYTBsB);FIvhoEnF6>uI zVt*6t9d7L1zBI}bT4p|nkAz9Ub+EE=0`{f-d?W=w(x>2Q*h5?jrb=s^oLumId^AiF zo`97jNQlub_zj0!USdf2GnA9!8saq^uciCu=nmP=Qut=eowlHcK8^5L4!I5Z%mSU703#pJC21kPwl9{lNlmX387CNDL)VvK(J5b(J{kCB` z{#0hFmE z`YQcMUjh4s8)>rPsf_k&{Q1miUk)qF(Y~&$ZM!!6KY91Z9ixc*eSljNVo3OXz;1>fEbuJu22P1bOhgv>vz8+ zc-)bQ>N3JuyRDaW7KfJ4R8xW3<-ZSv0q$6yvfA<=`JdcvoE!D zZle=>*P(9URbdF0o0PECj#uqoiihPoE!79T-G6Bp_afRC(Ak3u)g476@KRil`_qUQ z9Er$AAiY{4!cn(dDiu5a0}Tf$6*~wCtYcC}H2)Xjtx!;E?&_02b~=IB4u3W?bNn-I z`2FAP+i@lQ%;6HGl{q%*j6zHxCZwA=cB|Se5IK=PvV+-NA=@F{Hn$K4R!Lj!q*(bw z3{H$KFtiY`iY&4K2Gsj~`B`MXBhdm`#12i!dMTIW;Lwm<(ha*y8QuI+p%V&C?Oo1h zr)&YuD4qBSm>K0FSef)97si$FGm1--Rz^8iXA~l%9G33F=HC5Qxzj3&vs43>ZQfON zyRfSntx3GQs=QG;gGBDC`fA*0_!;KQjzkM&n8^`NkP^+0;6RZ?^EB)=b)tDt=!6rE zdskJ2AvE87A0G%a-#h^;lYH}7TnRtlxNK?Vn=k5&Lgbsn)6F-|2gAclpgV1CPG-?w z0u^sz_6|Ao*-?xZYv?_2{EV`LBN3TVQe6VIZI%+qVQ@T10+|UrNu59@3!QKR*~#ft z>{s7=X}Xw>KbDy;roqZ2T}*W((wo-Smp~N}K2Hn8r=nk|TLg<5^;Z*lxU*n_1gC3A6CGVIYI^NjDsb-&*gJnl$Db_MAb zj@_Kt1gw|(gUxVgNcGqRyGt3}{BuGl+#h%=8FKu*5ggQbZQ~Vu1k9B3BCJeO%CF-} z_$kGuNh_s1sxu0aQjSXZa*9dv#dz+nMreO!#@o%wDyPO;9}Qof<_#}|uVRh#Krv*^ z`Njc`LaBT#C%ei){Oq;tXP@G z9jG%-dplQb`(_%W3=yqJI9J6Dir>my;YhSV!r5mVj*#-sx8Q)0yz@=ibLzbFd7%@E zQf+@{)ngmR(6x}Sj9Tu7sa{T*kE0&uX1fi1afr-KEoUgV{o^OWgch zUDY4{$k^+`kY*&Ch00{ZyXn^%9P@79&2b&?rXI5UNef|W@M84*{)Pa!TtS}Ej}xFp-75GiDAx^tx6 zDwcg~Mt>nE{&Z(MtEF;iezZt9wHb*d-uV$RICpIIp@oQ5v?`~^Wx&rPr#KQVkVov$ zgshj6$qG0$B$*Upcd3)fg+eD38t?pwYyr(E%kdE~GfFS4OfrfUSHjOIE=^h)Y^3bTi7xY$YeQ;;vk`dfi9XClrwSD=ki_yvH8YSft&6KbDy;*2BsqT|DJT zq_-?z-_KPNs!3AI^;P7FgMMoP+zhidY|}AM2Syq8XD4 z`fDcpx$1aN#|OZS_cT~JBHl4-xZei21tErnzn}Z{xZrvdi{sO619oYAj!3cVQhOpZG_*2SfI7S13yM z?Vj#0RvZ#3b%obEe*YO& z{Jb*Lk!XRu;s(YyUP>wFz=0ttXdT4&CSxi?=R=<*XKkU@m}iBmdn{y;uYOe(P?2qYolw0 zan0yl;vEZdhH8)0dEea~rx>Q)$PD@3%bK`h@e@tWk!XQLv(GjhAtjyr;ee5(b1&>U zb<+8g&0=h|2g#^|e zs#DJhp%YF$?#G}bO`(Zr0zMRG;u#Mslf*MNu7sa>T)wmt&+p?>ZjVAFp6$||N9|y5 z{f4@m4+=LnBfV&U4B8%8h*!nT>72MR_jAfwjznZmNpa(MlpPBxf2@L|LGs5S>?3vl zu!K%19`(D??Lc`?J*Y8Bs^Cv$riy-8nWTz7M1SY{a3f9bMps6A1O9wwwAaJR5z&rOyZ!R- zmVy`({+90pwx9DR%r;``jm7UKX5nLDW}ZV~Ws-Rgjw|739+xn!%ri!36k_5rA>Ad{ovNjJ zq6tkus=^GcAyQITJ1$n9sg}IFGUUu-MO=6LX{G2$M5dJ#XC7l4c1vmG1~?idjjV$m zr3`5P<3cB#M#j4r9yUTovc_leM>Dg=zr)HTYkbO)NUwHGa6g6^73n9%aIoJUiS&12 zr*I?fZp=vr&^hP-!w0~O_kY65#^e1i|09l3F@IA(=6`@4!;Sf#&aYcx1daRe@j)=- z{=cwtMBHPPcE3At3q=eGe_paYt|8vMWY2WFgRzZoL`yHX&E5`8Q%c@y%2Q)j!Riy& zs9v0_C~sH~{BwK#OQK?Up`xUifE*@-$TJ^}mVnXf_KUfxW_wwR?M% zYypk{!Q33+^D;^`lzg+k^eeA3TEWL0xL&EK1Q+k z`vtdL#E|g&h3Rn(@%n`eQa(RXUrZ8LpcjW&$$VXyh9xg0gSEx6Rv7974UUt&mbp1@ zRQyGUO^!rlE0JD}*>_u>km}7Y+oK^Py~Q{ofpuZZsOR4n{tNdO?nmagWev?hWAM>1 zGteklnPi|5aV7i=)G~KT^0$aHY4lAyOl!>F7#cKAtx=T z$7R6JG^aQcEs$yK(1fg)vdaoMG$gweVRxys%Y{NGoL$^*RH!PRwfz6 ziYwt~6qhEgjB=9BD8vrQDe3Objyq|k_{K)gUXjR#-){L2VMs8SoOx1P+lA}$i`_rx zxPO+qf0j9al(f~{1L$4$-C&)CY^7pVW`+JsXGuIdSG3B`o4LV%YH$2gyA>Q|h~4^H zNNr5n>bA;OvD5Ny7x|VHiJ=W}k*ZDTEcNw^D~~e$*>bk0obB)R6u;>xMkbr+y_6aG zDW|oy9ck|sNBDDU)IV7JNBl3Y7yrZBv`k|bvMg8aJwfcR4`%H> z_Q-fX2glQM$ByC-D61^!a4&878SGXi7x~A8PAHPK4>^mm3?JP%l$>O`> znXVN-#jV(8CVRS}{9{Ks1|&^qgyov{Otzyllk4jb|N7fTpuc|4#VBSew=SPO6kq7 zj^OBTNF-8$PUyK}UWJoGI7xo$#F)Mk*ghwc0OL2>sgq;m58z<~2h_K#l zxvSDE-sM~_<+7{wLAw%m9v8Gi@}T*Sp}c(zH;l>KM`2~-yuBCZP4T&=`}JwN7j_+& zwtPCY1wR7iSI@g~vzV;i2`d|C?P!R#in!#$>dGi^ds!d1-@xAE;?|cuZUN8G?Di|% zGA41qgq4jGhs_BpIWi~MWe4qsZJdx8wsQj8C6uu-xJgXLM#0L)8N)g@`ztKUj_rN= zq#Xr2kDJs|=-7P6P~P5y8^+}A2v~WT@n)A#C2u)>-nwDuwGeNN(xM57*E`pVf z^EMCa+N!-}tI}I4bV(D^>-BNF7WN$%x8=$AYz@Cq+CGEZ#iZ@iu(EO54q?%zSiSw8 zK46c-?&1RW;p70bT|t?86gP#*)Wfi{ai(Unn4+t-f6_;q%KSjDJ4jYTYI9rFZ*eaBIa#bm9U91mQ74{bwtW0uXIliD& zt-x(zQdNYNjZ?*|h{BVVTu)yqCr=N*qL0>>V5f1>O0XjO4xxN~0XK-r*G;gpalUw2 ztG`UU`2W&J>nE_kxM(GqwH#kis(ysq!ldeHSb3OGWkdBIsTTfIpQ^WEf3*NrjxQ)x zf5&ZMQuS9@**I0aQ(}Q#T#2niMrltEX9$U8riTfh5({{Q5_TYN5tFb3U}fWk@m5JI zv>2YNkJeJyUEH*l;3}!@3d+>kxG7Ag&V-eR3sdxr#FhF?eGGP2D=?)z8}U)x6ed%b z!OF&&;>`;Et$(Qy-m6d6-LTWRWFf%Pd`RTB-7I;c>aO-h0-<( zw~I;J2w2%TZBRy2Eq5KI588WRx3x}2i&*tK0yl}t*lbvNcrm70{OZo69v z26ho{5|gnDVP)ftG1tJ{mvI#f71!z`_8Hh~T*Q)G1M@vXE9Iwgi_@&*m10V zY_I=l9KRHA6xlytX`=bKK5dV}9^}%tBDtOI2=7qx9>%R>lJ_92Y@9sas)m2ST!QTl zeb{~nJBKW^1H039r3IYtJZ`q(#u59b7veo*aUk=BO z3p)RnGI4#KXQ_NkS%eQfbo`qPF2${2a=p?~j=ZHTy&I&YOUl%q30%u{uEUwe6c4 zUlrDBURd=K>}hWLTf&|gcY1cpzi^fLgyR=*1DG6dbd)1AU-TuOO~0Q}I$o>dBJfiW zCcg1wvnUPlgH%i22%+0NyC*<$A6T(PTkv9wgu zs}Gn3`;7}2e@Y4{{FlcO zw(6dsP_4l&VM0}dm5oCs9q~|>#olaRU#{4rPFqjtqxBfEx^rT;x!*uHjdYO7`d%aWVDN|Tu*N`)0eH5 zb1S8;e^4K>3hX&9V*K|Bkc38DLNV*dO=4o!2P+%LjI-3*Un;B`%oZfLZqtYBR@h%$ zxGqSfGxHolk-7ypgo)IRu(ENaj$vdjZ(&hd|B(oLMxU?^u=}`#@!wKG(wEvV6u9-c zT}Jq2 zkA@eAB+zD#)t+Kb7ZS-#G5IIeVx+XNTPSYRaI=`WO@)<><0hSo+%|5F)gp!zUE9#kfsO&=$eU#z8xU->YqFsYoL43Vrfc!@lH_w=zlcw&f&> z;^nxJOcXDLm5rk)eYs>?IWM%1B(ZmoK6`h;&f~I|OMyLiv5~@d2W}M;w%cK4|wN! zNM`ns%vO8Y9~7{WxIIk3wuhCC114P#v#k;;b_)s_aSAQhX;q|zHcy|jxv=lJ39UED z3L10@MQsjl6ce>su(EN~I9u=DZ+D>u~H)Ji;r)mN0EpF;MFEOeVm&VV>&0ykm zEUauCC(bTCZFT8vw4#q!KkPj&UdimzE8Rk~S08Q`6Sq99Y#cXEA4dI3rk%Iy({>B& zJT7g?^kFKmP}pw7tzyD<1FSqeVWShx4f?RHhn?4AuqkJlPvKTEVS5r*HVzx--ImZK zO6vNz>QlA__8OP6WZrEFxr64iw{UZqc)bZLN8lCX?jZmAA@}l_7!n5WUwe0W_4veW zHJhof>bFi>*)Lubw6`j}K(WsVrHJ(-;?B$AoTevm!w=&BnkT|lIEfJckJ192E` z0u$w#j&kG;MCsiXBi*#1bWGsloggC@>N9d4?qKHCYy20MAw~kOAhayQjbYNV1Xd=A zZ*g1+Kk>QD4zI+wzm)i_L2(QqGV5J0oTPd2(Y3IjxyAe}e%5oWlv5rxoe=yPeDF+y zKkX>DK)#dK;Z7u83H-u?$?kD|G#8+Hy_3SePm$yeKCSp#OrK z!36qGj&fwyOYxq`Su8*TKl@$f-x-8a3Alqmvkz_%6PmqXWs(K= za3s>3L`WAOMf~#GvxP!up;VD?Y&%PgRx=Zw0sD-biTG!IalGpOplc|n;r1};IvG|r zPM36XLnK{&S@~9wkLZ(i3G6Q}Ss8XeAA>C63rf|+xGhYos<86#p^EHceN&&RufzUo z4XScQO4V0zTbNXR305{vm2`$EDpz&nirI4R600ojCj3Glt^bCd#zia1POIS%%GZD4 z1~K{i39M|KFJ>(ipOeT-Xzj48c9*rCkVvM9PqG%;zMxe76OMh2N!8o1vT>@I{d;Gr zf0g*kw)`@|;re8?Cq`D1{d?UXl&(W?dzf_1fR&BYHJ7*c&{-M~Z%h?SMNt+@Qu6w+ zK4Ry?j^oxv{)>8eBOh`K7O2uDe^p>r?u8T@Cw-i&v7h(e?$U z>Pp-eCRHDUm5o!yTsiH^^@ywEvl3X}(Ff~(*kxR>_@{&LyydxrvUM+R4wJ3BVP)fN zF*BA`?(USp`mH`#FT?)gf|X>(vVB3R`VDRild50A%EqZWgx7C%lS`C$o1i^K+(k$v zGezWoQVh>l!WERMakwc=rpCa^#+i~XbctHm>MoSB)l7fsVzRPzygpm+gWbkWSo{mR zW3c7Bgfey%ZW5ER_rS`=8Dmz%Zo1D?(1$Ar`-=-#lGV`m1*NJRw}nYnC#*bts48_y zJ=W*-sk$EaS8GsJ>Y`L#i`&Aa>NBviajK+a(~I+%Y&u3I zw4Fh@dK@=~$G~b4 zY@9A;*6Ll=Uy{+d&9;XXnlnYm$-S<7(-tx&&?X)h@C+lL^VO+A3%vp{zC|6b77$#RM zU}fW6F;^Q3R#|S~zpjtfS73i}u}X5a!S)5E>PxsSOsc*BD-Rc{`bu5$9`t|fQ}ti4 zzgmGR+ZU9opWwDIsrnJDY@90In@#P-Y>{4rvfV`O#{HkL$GBYaucgD68(eQtvfjq6 zVUqQCSlKvP%=5}cYh^XtT_w9Z?fP&XA|#TT6()IJx#1AX*9_bsCSM1_%EtL(&J68S zr5!nW&Eb4~y3U1N#!X#G&I~X7PEt|Z zc-t40s*mBeFsb?|tZbYr>4St(J3E#BY`K!_UX`g@_D3J2h4}mR0lOD=9TzbEwVHU- zCAo#Nb~kPoleIfxXq~uS zOxiAjm5tMeRZYcf*VpTVb}j5SE@&xaH1*rppTSLHGWKa$**Ig|8K;}k>MtEj3GI9O zoIMV^j>}o1GtRJEXg+%sH;c*I!?3b(*51c^H^{3Jp|_7E;Qpi!+#9g}xWJW?ub?5{ zQ0jh%+s35sHCWj=byyWuyr8|$yR_$?dkKkQJNHz-r@aSm5|gprVP)fty$8x{>esbT z)5q*&*mK;R#{WJ|jAdK5h(^A(eIjlZle80HW#gn_*-Y{B_Qm>`RbjVrF-u`ipnivY z1#S|Pu_CN&oH6OMG()U%&{w&?qL0{@V6Slzvy$)5ly7u@0k?=r*iEpqal)i82o6P< z{}!_}5BM*A(tZMak4su#3Z(g-p|gM=;g&Ipdm2_YP8?P@6|Z^!Qy;arVYhKnOQCM6 z-}e4HZW5ERzrxDHjxqAm_aT$CXPPsF#IT)dc8lZKG>;vKo5W=709e^LV@E}mJE3}dCjQkfVP)f_Vfjq;>iD=lw5I`MghVpafE4ms#2e(JaGRKv zjewPnQ--Z)C|)E#N*}WKz;5FvvlP}d)bEoYft$o+Y&NVs%otO=R^F}8SSReZ7Gg~O zcKJoPNleBrgq4jm#{52mcP2>rlKHjzlzj$v9G9{rzt0eI3Y}$s8aIl`*(YIT!bE4>^m-MDV*GH_=VE;Fm4x4>l zM!tvs8g3Pnv{zwe zNpE3G74&3%+)ji&$jxdilHYxjyhH2g3AlAk@{WU*jgyD1rL8QKdR9riRrPsW0sD>1 zTMBDwj!!6MMcgJPWy@h@k`)8^9XPNWIlUOl&L|gtQ z@xRLdX}mp2iy<*>L|x*C+uIWPNvE~79lUy-J&v_Px%Ywmwc^i(;=fLb_?P_DsDH5b zS8L_37m~H9;fcq|R?#YF3n#7Yx5~Lb@db)(VcnJM?2))89ywWiDtow)NMp9SZ3Sg9^X2XR;lgnOt9g7>^I@ z<8eOj-_g0ExVp3`P`$b~s%&)+lymFykBNxYcFGnzdrRV<`mA-e3!0BdzzqbHb8$nM zpe%)zNwz!Nkw}jy>3t_9QQlrl+3FhTw4^!ar^I+G9a%g(zufrYUJZMVTS@u19JBLI zdnV)!+WB9JTf?O5W3aMux@Hbp#M+fqeMg_F`(bZ!srpa?>B{v2rRiSW3MNf=!^#mf z#b~Si&de>XF(eFjX784u_C5(#iR{hZ)Tj9maJ0BIe~?de-B7tZtN*`;96-wM?{O2D zDF3gc9NC|xS4^daj+0f633MjG{(bMgwCm`eLL!;|oxjjgKlfkZFcNSDq2*n;F-%%^ zgOy3*+a<1qpZHv6hgag;FP!*J?aTI9q2GKE=q18OnvLON*v;Iew}_qea<-8Y%+zp# z?;?EYOngswlv^O#9XtdLfnRr!i_7)7xD4e~W@WC?)zROXL z%yB6$xJeUO>XyJyJecKP(r4oZ+`Y^!cV4sE2snXIvJp3fNy+oDGRbq#ITGnj5QhAf zHI|pUyXBAajNe;3-Ha6y$;=S=OSsH*6LbV!78#8j!h~uhtZW>rqlT(l4PRCYxvpHX zCv$PG*j2h%TFE^|pRaka^SI@Ve_9CTE9?`B+FaZwCTeqFW#gzxXS)^UFx!>wujU4= zOm?s*(_bnT4)2mU>(%GXf<4FOjQ{C6E@ujdP{=xPgP4$IVCCTm*&G?N>+~U83wy4G zAe*DOOK1&l5EHT*tUR0`6JO+UG8uvF34O>OgFV**kogXwnd}kVASPrF!OF%VllB8t zXph#`T?O-Cc3059PNRf0kWs3F$az!vP|)NP3$-M7P48G6+$(0-{@R1DFuq2rC`)JSKrVEK==5I@z-XPf?pcqZVEns3a z6;>V&7|~?3Odq2qu&cPqC;^O=*=R9t0TZJ|u(ENCW(=K;gcFNWe{_XDN2_69aXI3j zYUl3b9?$LTKEV_ck?f4n8&2ny95 zxFJlaZikhPLpAg!N_{_y95r}BpQ(+o!?;W}f5qGP14Zh2+zuvE&%w&W2r06OGIn3> zCVaGzNTvx-4k^_p%1GP}CQ{qO%EJgLvWYTJAE~*p!^~$X)h5au+zuvEvtVW8NX;6u zEw>Z?Kv8+h&eDgf19lk~stcRGSP=9CEq)o?5++s`z{f^Kqb`=+= z<}Vu99-tW2a0{3iT>~o{$7tw91KWx6qQPVO96bX2ipx>+7Y!U2P>>$NO<;ob0IX~r zq{D|SbKxWU(lXTR`b2GpoyH}Kf0Y||87k}xiqT{@RnyX+k2INoVsn8+|{}qBs?|gNf9>u<|fMio77PL?5Zeu*0~?DmkQ7%lV6N zJD5nF4l5f+O8O2^bR*w*PeAJ9SL=gyIqWtrSp18?!3DC0H)zJX6t{+n*GgE~I9@}a z4D^z};@taP`efY!dyGp~^G^l_96_PF9XEst)mLHVVFVT3(B7yI)$_2&%tNKz*M1H+ zgbCHpU}fV_4SnjS{sUEPZ;zg;-LQ`o63H~|%|CS$^aRaS+vAonvHI8W!)h*fD>85} zTcce$4+-;5(axk+N(26&h|R+7VIp=YtZY1UvDf13+Z^P)e1|?^8Q5>!qL|oP zyzdSQ*af&bOu#+_D-S=w$XfgweZXq4-&zJR)mr>DxH(L~J^?EaKfuUZ{3H5+Jp}u$ zWdKvH#Xo?X!vyTxu(EN$hQ7bnYiaG85OK18vp!;*V9#+8YySPU3Wv}#`3i0j6S5a! zW#f>s*SZwv>?a+dJ%OAkB$AmxCbrh4K5oA&ZU_^qond9;P_dUKRHyD2=ux? z<*!mDyVJMmGj${EF)mYyl|S1N6sj9=LzqylgO!a#HS|l13YymI)ASVVDlSdUe`!&T z(UZ6ZOpLw@D@R}y<0EnYcjnx0g~gCC_yu8^=3LRrmQN`3SRLhTy_ez`Jk$J2mTkY(%x-zAKs#TUiyGkFl zD`3}gLF-F8n}s|>aa)aB#>DM%SlKvk+@_+vvs9G7XmOuDW%s}y<5C8!?#D}KwnHdf zci{#x;kpA>HV)SuZZ7M}WqZ2CMVC?#f0p6SlKva z^0I7X!R#u@e2t%`-H(kG63I*xfm34f5}5D@MQb!}4->7Cu=4Oh%gV`L#5hJDt$DD+ zxTz~~w1ht>T61xGm}t#`m5rlyG`BPgSN3MAW$`iUY)`3}El4G@SD!Nr_8ynB{-jH! z>>LVR2W}h_x(uvr96I*$h4AZOwos8+yH20AwXoB;tR=pD;rWCjwg$I}iC7I*HjbEl zjaXzi)+_RwRnC;kUE=@jEA?4qwd@If+#Z7+$i=OabZS%hhobigZXXl9hhSyn=pDl? zskvgVn#&e)mspwVK<9F@diFO?(B-b_j)Q5^fL^u8FX+ak!4>=Cr=-aw}6A?8+2N#Z1xa5m$8% z%AbunRiCznunW0)Z6N8qrt}cSZvk#06TkVevT^+6*W@C*xxTEJqOQzXEBmE6!=OHM z71(cF=JLriS9c2qtsggw30fblY#cQ9PC;L(%gWG|+}rdqyA}2t7qi573hGXwkllhC z#f0oeSlKva^1VIL*=(Rt%_%5*MxU|`u-mwlC4NY#ukIC!*?Qb6CT35;%EmF9$L`r2 zht_|*QsI0@pS7*9@3^cL6EB=0*HGZL;HEKwdka<`KEU;7%l5*Ddevj*LE3ZC=|Uoz zxoG0RgPG~n6!(HYZX03ead9i9l;Y~X zp~yXt+r~uhIat{^a_l8u?^jIM-o{SXo;Zva63I*)5?|u=-9kYdiJQd)ZF^XG*nuX_ z+em3`o<3-EVZU+HT3Vn9w@}dL;ASyFn*}Qy2kiu~hzgHx>x8AHPhAJ>L@sp~r&LU3 zA5jD|xQ$E%FMySeBgkF?_Ns?)uj0JrT7B}?z`o;>m-vcY*fkWm8g3dBxNBf#;CfrCSgs;HL#vw#k>=Y+6C(qEH)J_r-$xLd~TCr0f(42_d#YAmaSlKvg z3&DJ+JcTIbyoLJgEr31A&3Tull=GC1qIqvVZYUGRV_{|EFtXo(@OtaWQ=1ii0{db2 zaS2TP4G7{Lid`RW9TU4etZW=Rbk`!{#M7<%(A@$%j|*K|yB2ldP~>jJZDS&L1FUQu zIri(*_1|*+?4nd^H|R6B9`+uWxx`3Eh*hvT^9xFXM##TK`2$)ww!EEe$#rjK6aPG4&-8&_+=6b|4{TU#qDFFw-Q!1jvjjAxLO`4c4n*MK34JD zmTK)?`t02SdyvasS|^S}4x;egjvL5?@2jw~arn^P+-f!BE#*~988-<^2yWCz@Ojve zTm;kF%~iOGg7_S6CKJS;!OF%#WM4*IFEFa>bVkqAo@$H~63I+862FW(^W{ZEhN1|8*~hX?E>5|CTt&qm5sy3E})_ISW0Va^l7WXuH({{cmWN0hT?V& zZW$A|Pr%B?abqu-C|Y3&x<~Y(dkA(Q7rMk3Oceg1=skej$3*Yju(EOVW^)fhDX-kz ztWVn}*k@eYx)U#`&a{aF_6lwi6R;OytBNr{IHU5R zAoXsm#E><=GdKu4j$2KEkB{)Oj=~?blvZ$in27bm%El3szXK7C*z!WAD>o?N^)-FG zZiAi1#S8elE{K=w3yRjQxGhYyZh@7Jqa`olMx#|YT$Q?>)o1G&*lS$2E^2;J^isL! z3<}o<+!!WY>tSW%aLMmCYy+-RPo}?=t5n2o=!yc_cBpoNd_s1*wZ6>f*=<2F-BBr^+44ma5=6u0TPRZQHb!OF&QlMh%%XSYgU zsZ{OFs4M7s`mim7oyW~>z*oA!+!po;MQsUg6BD(?u(EN~_=U7m>b4ITm3wl^LVA@x zY*)bUfj+4U6o50FX`j-0_-dWV4J)sZRW3bz}a5cX$%HE)OJ%U@q#Oong zIRdX3N4xyfVeSc^7!n3ghaD82mY$I<=K2Q;;$ys}V&oaIxAnpPI~*`B*cY%nzP^C1 z(n+yMH+b0i=f(bt8^UDz&yI2{oEMW$%0@XSa9}EUYV5#v?OEpmLL!-2C;y~u3|ayX zA>8bTo5bX13am_W;bcc5y%S{8yX(<_d4~_Wb7I@l{#;6_m@Pyj|tx(tZW=U>E!H?@Kv+REh*jIsgK+@V8?Nhxo*@f?bdFDkVs}G!T+$44t&%{6v8&# zMka*s3_l2^RlLZ|m#v7GRLZ$7OTG*12z}^g;{jp5^u#}%76&@tCls>7aGRKr&4iVW zXFBO1aOdHcF@akKD;o!n zozA-e)r9(It;ks*6nAF>Bwx3v~z zbGj&G_u)1%A-e}w9(Ir&Aw%|>K4h=LZfh;bj!;1M5^fU{vKL@wpvp;>J_ZW$A}v9Pjn;J6FBou$G+U(voEp>w&k zuzP|&Y{$Wlk*f;dy`Wo!A z)`4q4vD$wdZVwZ#TVZA6a7mZ9ME78&f{fPB_0f73b{H2e{wsTN7ACrdH)z&+2DgR@ z)&^MFI9SqEp^;$qTG_!|MVuv*s^W+_+KqjikVvMnPxeiyhD#`7@4z6`n22qKm5n3D z?YeqZ%c`^W`8q5yzLM>_Tz^owX5#iR;hGLB4A{G>iuSHbS$g2lg#BTn;`n@v;K z6}T--s8++u#-ZZ2Ud~sAJ9C%Ft=EJ4Y~2TYjmuWDtyjY(6tR17lbDFz1uGjzOu9-a zvb*mq4O)tKe_z!n>?PP~T*9nG7gXyWp@6-BTf_uxBdly3utS-Ju|F#>OH4RId*V1= zNF+0HQVAq?S4mU&q${TiDYJ^9f{Ub#~l={$+$U8v?jsI z#?d;Oxzyp@8C>lxTa{ihE6o*qr1JRzeaudUy~j;u#Y8b9uA#^+#7$!&w*XciKFC$Y z{VSar|85%zxmEhe4Z_}Q5#(goP~>;;M)b7H~Vxo2j ztUUZs3%r+5e;wf^ebionJ=bEWsozT2h?~Vk?Ri*vxS^)J{AK)mv}dqmg+wwFiBz&$ z)EzLRakH4Hjf9nrqsHCD_bP?@evV`GS(^vDj+@q!-NX<3g_h8{xLr)x=D^CvVFSB0 zeBQ(fV)1~-d|S`Ah< zj@psfQi$TP?-TlO; z_Hu@XOK9Qj$4z1))(0yaM-1%L8h2huo!V{sq}>WTk4suAom#^)6u4V(%b3932rC;0 zZXPxRtzUs5@%D^9ZyR9Wad|7GF$=9bhT^s!H;jqfQ?Rme+_)d~^y&q@BIF%?(ze2G ztd!P0yRGX(mg)1i1a>4h+pS8Yt}4AmL0pVm$pmo`tZW=a?!^v`g5qA7 zq`XYz3Vi}s!ye=knC!(4O7~FoF2~JdqIW5*Y#hCqIWTm0hBUXhN1wpEU`KKZOf?6F zyhK5~1Gkb1;_a}qaS*w;#d$w+)!h#-=!3Trb{rSHWN(WLdWC}aJZ=>ewC7-DEo1_?J*;dTz~eChtJ&pNCR->KdoqgK zedp=pHy3sxH|JH-z)$iIg>MdS9}~V=u(EOZz%pAc^=IS{z+3vrb-<3}B9}^;b-Y4B z%ivZqLAwA}HVztiqC`2DU8_&p8rXAO(o)&xcilo!tKnubQM(3K9&V@&sygkVxsl{tUUZsQygA;T_3g0u;*F~HTB`8O}JT1)Lwy=jibi>TBP0o zN^{c5M{CbXCkcsU=A_AfEzV%Eocy-sY>CYF6|i>xVtYg)G_Id?V(VeYiPHwDPdBakRLHld9!h zU*;04T&hS(>{flgZh_s#|iu3&7?2W&m;GA>}r zev>q6>EbEe9wuB*!pg?sI)=FyFi^~`7_c&(rDDbE9H{07<(7Y|K4@ED_i;fhCAtql zeM2+aTexjZ=-z~tjYG%HXv&4M>Bnf#EvE^IWagI1X0)gkvZ=T|Ot|)im4^{rilwn7 z`fx3VUB=B~NyDXH6I+Da!-VT}SUCbND}S^2{`yDO&B&j5Qd`@F>+*};Kj*lAmb!nI zIe$Ef6{APAxnFJn^I>)}h#@g;L|x*C+uIWPNvE~79lUy-J&v_vJiQO(uN8m9aHd54 z!_=sMu=bCTx?U*OCW$iKnXP8J%cZ_d#S(?N*eTcJPwSKXNjN@Sl240Qk5y*VQhOCX zY$mW*z{&*JAyApobXN8YH+YLm<-W>EEBh@mBejavY+>D%>uhA*-@?QC&^!qHhzrdk zHZ(=sNNL%J8t%pByW+>|T7MrtbS60WILi465kL1C>7|Z?hrppdlkMotz(xpn!+M7(M{Ws9A?CGk&v*1Foc%>^Ui0)og3xDiZ5 zHp0pzw>3U+YwyTbJ9{(suTfg|n(#jD9)7%#NT!GXP?K@;y+CW#SlkLG zPorVw*5|3GTpH+C@pPO%PshOi;?}KZ^W=Mh@-z>(g2~fdSlKvF(lP_hPr0Hvwk}#{ z6;jLfk?MtA#zpFaCa0*7BPdlCZU~dA4p`YZRYUca?S;b~p0b79CGw=~bNWzS2YZYQ z)%i_^D(DBw)LPsQCR1x*M`67CR2~V%EN#ux0O=m zsXyy8^+(ua#+VBDfim?vZU>X8&9Jg@rlj)@w4?G~1N5gn(!_7SW3?xKQ-nk^6Tgd^ zTmXqPC|#3rW0-VJf|Z92UH$|}qU!_tbe#&jjhnU-qRV#%rE4K>43n+}u(ENwr1ya$ zb603CBmuTcAFx5#b6mjq+k^Is+>q1oN2-W?x2Kiz|CP2 zwjNdk$7y%@@4${TO<2Gkl(4P1IZVQ~z{(MX#W(@uAEI$LxMN7L579LL zWW@gAt?;w6#ja9c^l8{%+ydHspc-zVh4YiR8BCzAf|ZQ}HGRnZ)L~V# z5=)Qjv-B|RDlSV)o1UC(4^WIA#4TWAbRVp293$!6mLe~8<;uCv-hx$?So)nlORvHH z;dE%?$%$!?V~rJ|IVPSi)~1lU{Lyu?4A%$%IHdrqJ*9fupigy|Sq**Hwn zX0@Ws)i-D(y6_eHR25;jajD|pV#B3M_6EgkIc^OTuU=T$I9@}pq0~3f6g~MD^vSvj z_86Be{^3%XELCg%IouE?RM)}E#-U>8tVU}pRl*{qA9DWZIaA%e zA2?roB6xt1NM<6KNeZmUCVoHM7A9I#VC4w3Vr=yJdxh?PPYelzdxh@~6Ml}BEqC_j zian9rg&)>u`g}NA++@jL+^EzImAYNE13X&%O~Z3>6PPG3b(C9S(@?r5Rq2_)mRWG$ z@M?WXuEage+&AQ(SA`%6xPsvFG29p?E+2)JN#?uEkw|a%@MuQLsZTKniskH}RmkLu zUDirzMsU9vx8`2ry|DMVnP@q?x?+%d{YJboduwTN;5roBP#Qa{)EyFP+4EA#S$ceQY*~RUBf_CoQ zQ%EE;GvQyNRI#e0e+wH;O7Xk!VKc$q%~6i*+|nzs(rJowtdL6reM+!pJ4v62_v5Z* zwrop)BsT;R0rLqP$KwVt*?1qUOp@ABaV7ku<`O!*lG;=$sg=YRdbcq>yFBou+4c`(b}u8+r8asM*29DjeR z!o?%t1_H{LaYLA(d=XYA+3sdXBE6a^y+nBq{iU_%ii1|Unh`e)_6=0C)f_pj@thd5 zX72eJ>^W}kv6`QI6ds`yg`eUUF)8~otZbYzM&2q|EA3ymGzH!M{n}{#3w9S5E&lmL ze%|ujKzaH<+zcj9|A3W^^K|Ucbp@egvqphaf158~D^={g5ij-V^Xl+mAcy3>Xj5(byj z4wN9b`@Kpv*O@IuE~#Co&-Ge3URi2pHp$3!>vav=+Og?4kBaI2W4y#gx_N78cg zODdBWXp=TcNF+0LNQ<;wk&-qMw~9&HuCVfOBdwS%_7Tz+>XWtr_FOCFG}kMXwE4JI zOwx{pm5q}&o7KFxcjStlrGcWn)K<}FtRMCnmoffTczE5c`-9Tehug!XD-SCV7rHu2 z<#K1q>XsIAZ`G&k7T9O4Kv&%#l&%|bdzf_H04p1(OWq-f==?iNgA!O9^ubyWyNe6f zhxwaNzQN3PU$}xY^%QOjlc^_RW#de79jTf{Zq>(X3+yp2R={d4j+NsLO4eJrHB7SJ zgq4RAS)`YrexmlQahi}wX4aTAS*qFMRNNXSS^L7u#>tZ2ygSGL{f1V+dc~@Isi&Nk zzr(gfAFjo))3|9X$raXyLulq&gd4=<>vUMzIA6?~m{YwkyjmZw%VCdk;Yu=dx!#~; zU5Z=7Bx@zCJY2}?v$}Fwc_sBOeX{O=J=O|jx!#~;-HuzsBY zp?qzR8^q-6U&D_tX1`^-lgt$7>cce$j|KC%M3ViM>kUfQEZiCyUu1~3lV25ySj6{!z;sW0(n9T7bC$ZvzS4Sq(4K-l#|16Pmp{BL?|Fq*&L?rJn52CdRyIx=)~7i> zRqQft(P!-~*mqpkQs~nfexbCziQC1b?GLcBaoXU#rq~decCz-|bE=R?X6~6zUQ_Q2 z?2B8)ByDe4**Iy~%58l)T$+9^)<^g2*OJU`h+%zV4BVpwT z?qW1!en00HGrK{9gnbno8W;30IY^7pJ|E053tY&jXt2`?=xT-z)|F6CAPwgG{=xRG< zi=DltaxvRyt?PZj^OxTyelRYC9%L zBy6W7t;WaBBi(=9#$kn1Q|nQXbIB0+VZ zK2-O>?&CtW&D-PYq_{of16DT9*8xhtO2tl5`38!)?o|>-FX?0S z0_-I&MkmC|O@gI{wUm~P_-L85JP#`yr)3`%E%xSEmnB~pIsP>5`PEnpIszk#E(f2g57a`~ZQOLU%>(X{D|gXADOZFS z;KOI~G#^$r&Xcm1RSLOICqv2o@Sr|C71&2yc;eME-&UG=`th+cN$G=?jgz8WiKz_q zDVv_#^g+25b`ckpcq=gtQz<96;6r6{awDwVa-7)foGS*b0V`vloRKyFp3&!I1MH&2 zI0>6dIa!YnmC4Cdu(EMZ_6>J3&fL@9iR{i6D)PeaJNlSxg+0W@ z@_?LFmg$qS1a=TNsi1p`Awwx6i}8Un8Ce7?w6ykS9D>=rgh!c2Kg6c!p9& zF2@JTWaLs<**GI}RCPzZPgSlur-hsYoRxu&`hT&?QW?5OADp{juW`Xy9IFg%%X&)F z9r);(G~Es>4;z{)qD*yG2g-7(dO@G2jj-2Jr>S8*rRjNm^h}zbgO!cbbYOID%5{lL z1#;pjqm+)uo}t|pj}{Wibj2rXq@#wxl$nwEfSJr}4=WpIW)_1PaR^wQe&*@ZGZ%Il zH~lPX20gy%l%qNL(3u>~f|ZSPG*!h>;I$Sh?^ycebihvHk~2RRIRRrSD;a#SOja&{ zm5s9^od)kDuRuw#tks8Q4eTW@Ea+))YAvOuhL4s>%QdjFaayKCW)^u;{+K=|kHG%n za&k=kq*9@TJcN&vNyr1Ra!V4@S?UuX7?S5puj>=C8TL=2gm`vRLN?*!WD@cUtZbZ+ zgA_SLc&@Kh44k);s?Ov^+Eb%RLL!-|(MfT#39*<`GZ7y#lbT&&W#iOLR#H>!&h>=O z`YzN5WdZCQZc;(-cyQVi@qgGxdI9iH`_9LQ$)w|0SlKuohp6eWuhFVxwzULY(dVTf zb{ChI)8Zu-=k_qkY|2j`K5QmGd04si`H5O}xmBN^TVQvk$4|p-%Fm7Xu$lba04p2k zM_rxz#6CfK*nRyEzFq4@#VP)gYOjGqU1JzQu0LFgxzQ5Wl&5)*_sXarQ zCM1%XAuWj2$b{{s#7xD<%OqxBSlKu+$}H3HV6T6P!VTB484V%Sm1W*Ny~%FH5s zz)WUNhn0;pqdMK&Wm)~=zzk_!R_nuZIqV@WEU`}aHY}x-T#ApBNy$oB**GPW6tzfP z{t{Ytxl5mpJ7CXn=|JyYbsAgSLeKU7n#=9@7@1sr6;?LR#a?PI>|Od08yof6cpml+ zmyK9EL4pm(O2Wr;_&Aw-{0vq$&WCDF+?DI@mKxX5XK6RCBZWjVjccqqv27&H9oyrB zWU}$E;m3w_o41>Bog0*bA99+jkH#F_>&&a(kBT#==~CYkH47gllZ``RW#f4x{51sU zlNXt;fqwD2v%O@JEtj*a?2SVAf?g?^bm$Y4fj!2pHD|;kCdzV}VJ^T&&ZOu=u(ENA zrYpLW?p(2Jo4Y}4^zo^|uHxdeFb+P{WXjDo_>h_0d;(T(ZEhOdAyV3TM4y|7U{|HX zO~Yi$%>($5ncRFERyNL!>Qqa2AzQ6lfnzNaHkU<&YbDW|4k{5ZQFkdXTjJ(2dD$FRcFv3GE5<%m{;FLCZ8|za4$7f$e7K1v(cZQ1 zCne-y+)gGT2g1tE2{C;Y?MJTuGNi`IXXKoG3XT$&lSE%dN4%x9EWxd1(lP`qJEz5T zj;?X%iAKtIEG_g;}2&6hfqdpVWw+dF9FD`UfRuZi#bQA3`5sxV~ z|AohPgh|c2u(ES%rWn>?f*3Y-cePn+7dbc6TE@+sB+D=cpD8&z;x;qMnF=dAC&yUT z^kmd~!?zdFmX{ywDuBpm-6xj+*~FvpM#a1^J4m%M1QdFM{-1Nfg{63B+=I-H4pvJ2Vax? z0Jo9J#rI%k=UjZ)P^SbJ>Z>o(yjv~u#a=C){8i4%pW$e6Sve?4rDF7&((^~$Y9>8T z!^+O-G1V%yeWFZ%DX;HMfAACHo@jj~(VCtpQLWPOlv45m+)^ebYr)FSDbZfXs^t`K zH&K1emF-%nC6D?4Yy^yS(>c2G+mUzMZr6*x9rG!j*?%127Z3fx8}8Rx;u z&dD(C8LFr?J~-0XOnxqBHu7(XQ*VrUX5T+s!2CVOZHYL6Zyw4VH(BxlC?gu&STjUioNoJ^WudMqFz4 zOF~V^S4zsexUEc5-iDQ(lVZ9(w;ny)BsEP=%Z^H-HQiI9+jBL4DKS%Vdzr*+4=Xz- z#&mnG7D0Vl`lKA0d{H+NVxU4dnGp z81|6^^HDfn+$57|oyOufC1?-aZYDvy!phDGGTmwCM{=;7_m13Ac>3k=^unRy!jtGu zJL)p!rW-ez$xRkkcFv9I)%tSI`yy85n}zy!BwvvevjPqhmzYGa)`y*?tel4%%Vgyo zSlKx%rnO)dzG``>t2$KHQTdr1m3!bAaZyRM798@Gl5!VrE0dHvU}fi|nD#A0(F?XM z^o8U$=+1LnHcFu-r*PxQC#+`;ZSkB3TaGd?l5KM0Nh|EGqYf2=ggRH z@z6u4Pen`Q&|m}Ef#bh&INpVW!-XT!%76V@HJUlz#?55X@g}T1M(HRm*3R?pc$~P?nW`kl zQm4~bT1?s49ygN7#$;I8IUA-m{fY`( zSaHcobU-R_l>&1EZYmR)>tN+J0b}RH^!a@~c*FUu;cE9k%29b5juID@M4#VByrr}} ziCfF0Qb`tW`1}I9^=yuB9YeQ}ZTUPzijcq>RIDWs~Me~;ua}I7V zlbEw$<*`nT;R(ij*!g1Gkq+%x$o;b7D+OcA?*#`T50HBY@Y5VuB~D2djzMv0E$hMlFXY=j%jWMu}E81R3w5BUcbcC+%Cgo!?ZYGnDNwBhWJ|-G2SE!cr1BUJAqveFmhXcgTBzq^h zpKjDq%E;lkp-e{R!OG4VG3Jo6+I8;IHl05wC*)K(JX}JOB>Npw|$*=@?t zblhwvKb^3$bAC(@k$8d36;*GLt7NhjZ%sv?qq^nzWZ`IW@k#U$iP39H&q=t|OnOd$ zm7UXL+9C4dsNPP_EKu)r=8F0QjOWS0IR_3D7o0>pM7qP2nX_<%narF4D?4Y#nsI6u zFUMR}c$XZUJK$(>!AYKRbgwBrx8YVZ>A4wJc21A!Dh}@lSihz)U+h*BmsTOaBq!$u zI8t145?#eXJf_q zgO!~#W4cr~^t&slkEb)0!E9H)sCVQC$kCYv$BUb95?!im@tYE~A8t33puJ&b=LBgx zOWjM0*@1l5Xk8q+zN0KhrUVCwiwyb=tnR2k5Wxj61>967C3#rcIVIYcM}50xdh!L8 zTGSW!S{-wR9Foi6_;4XXzdQ>2N%P1hxSdQwE`pVv6QX@hU+Ej_=~0CE5!4`gSPsd9 zaEQ2&pqWH-m2z@FZYqs>p~n`sf7sgg54lMeDerEObu;-&X7sG1mb`Y!h?}lyN}@GQ*G^3j z*n~Z!EbfR~#$<6StV~#JHwEJ|<=mkDu}MZg{GWtF!OctCHy{3*OLW|i!%bq2`_Ztn zW!w`akRS)mm*=3vJ&A0xOgOZlf5B=h7ml~(BU@^l(vRmhFNLi+r=0E1tA)ns9gLU5 z_!`+8IiS1LRhibEt!6V_g>0pg)BXqVnfGaGi={LCztidc*PXo$(?-_H7Q6aNWz}`& zR`lKC4}H*uU7D1h2UZ@PJ1+Jl+7tQsS>=P7ndNeJ=`m{S+dMe;z=Pul?AeC5cfkQO zj&J`BN+&WnBfHVuqK#&!$v-lrciQ_XFjvUQ}Vw6A`cXoy5-CcB_3lOGr?L{?Q^ zQbt!6BuFd4n7@EWbPe@hQcnHq3MmPFW642@V(+9K-X`9B?e2Q-}(<@2O34*oc`hud! ziVG!HsI}zJuinVj2U(0kS0sX>Wi|f_Y4SKPHy~DXV<8O zkwr_xigGb2$-#>9LQlfF&S+gfO0t$8zoNWxrtwj4ZB^MgOe^4F@_)L)0^@mb%#0)5 zf2z`njL%5yiJZ|f?X-C5+ZpT@oP*oR%ztNj%GM!o6tBOi@o|OzL%7dLTp}uL&eP*u^(PG#U|o5Euo&n&1SOmEUfIDohi-Osdz=JR(Nl+ zKn%}DN+ONIo93L@qvdRP>V8vtHo)y>(z70{?3|t*n$Xi#8eCd`r%MCq069Rj;BaxX z&!Kc1oK~ThiltNS>v>5xaGf%=A8tC6p}k>c=L~J%grVHPU{$}srYy&&1V@UCPwYpS z-2CHtP01@wogTuweCzb3IxK0_m1UH?@&_%Ga zbB4BUmVK7$@H{Ms=Rr75TzFz%m}KXkr8!E?{kY9cYVL)Vol~=86KZYgnXwIy^h ztoHKbJ5Kqz1~;6^&sDJUnCE98SLy35=k-h5o|NztSa3(*G!OG70 z*{R9=Ra8r`!#U&1^SEwt1-+`0XiWuucp7t9*m=s)O1SY%j^2C!anx-0tE4Vh>MQ9N zx$P=PXgWR$%pLbscE5bTDLtLI-AsCRfR&wRp=SNNilTmBZB~xXNpPUJGgvD9d(COe z%?Y^COm2>am7R0btbebC(A2-5BZucKI9gnIQt96to>PL(z%6GIbULi;oSYXhvzmpP+WLY$vicuDK|IcMl-p&308hTa5JQ>IKLq0<~cY}?dE2Pa`P;1G?SZW zU}fjrG&`fAzUnFIrOrky)9ranqR$?FlP8XUKLQK5IOiT9SiPfMdi3$M8`Yf0xVmm(r5Q z?Pb!^11meHWwK>$FgTE@RXCT)fw=?@6Bii6m#2JS0+%T>7vUx|nYjQ~9<$5@$LKU> z9+We4KOCmEFcY{;nYkA?naRxEu(ESzY$pdp=btoa-jqZ0Ivgi1G@_G(A)hHVui`c{ zsd*Vzc213LcB(~ifx1vTr(Z@oxkubaO;QrAX`@85Q{XaXW+HAflbOw6W#`OnW2tBw zr=7GsbGRItd2p1tc}Da_Xv1Sl%v{`JCNXnhW#`0fZ6Rj#c#{Uqayc-|;2?2RAJ?@%ZvFO*L8AUu7QKp9$u{Hx30nsX7X|+tUP9U89lzF<(DVq zygUvEsV%&WI!yD+W4OUgULJv!o%3SbuM8hm(wJGbS6uh5q$FBX_lou_!%kCf-h)SX zgvrf2u(ES*Y%9O&oPgn6)^s^Coh?H~wDRlwOKI5wx0gxF6j<3gEw(ruMp)T7 zMH4OSHHLG1&&jcQ77h>>n~zDpUofBFdj>a_$;nf&@>u3XKex9*pSXWoPf4_US`U ztmuZtsJRYwuqw4(G}hbq#m)Nyl5^pPBJDGBT&hJ>1@1pY#sy`n~n)+*!l8 z$Q93qE4Y7{l;hwE?(cgNW8psL3H1+&Gu2Y2m|L7#pl)@_70I{h@DTaG+~5xGC*YtN zN4fugr4t#Tkv(Z$PR3MSw_JO=QuC4~zsGSanaS@lSeYchM?8u4UA??!EnMmeRBc)u zmlqe`t15{!if;bN*Qvy1< z1k|^xC8AC z<=%>US~y3J!dY-YxF}5Hpb+wnVsHj-8xw=mVP)qStUns6dJff+!X0uFZi8dOC1DqY z1ltsGGj1LehMQnz=P+#4fFVeu8WAtZiFghU43~&KAR+=EX^wanw~>j(GqAFAEY>hK z4;%H1n}-dQL~ELd4|7Pc^$zRdW-$kU9a!1<;IFNsWSkpj$;W>`I2_zeuoH9qZPUWu zxMfTP_Joz4Bd~rAfgoFIGeSwuK>>~lmjhOf5Ot4E26@~(CJa5WvIT|&%g@0Ic6|vm zfkd#5{@tXDA~h@23igieUBMnVzf`W~i@lLoB)14+@BN3(F3O z?>Q6xY5o{6z;Toujw9jVaOVo^`h*=0&qs>JVYrPSvsw1)qRh%S?wGddk+ZZ(|Ft zADa&15o%Jy6wFbk3tREocwCLGIHe%|1&Oe4`uW{cqT*(VP)qK>5n0WBOJuhxYc;2oTJO(fN?pRFP@D$GrIp2rAu-9nJ8ThD?3L? zzd<2{QhiTfTQPh@&d)<|l(_uFe>4_y&04v2)}5x%Jb)X`gyue2**P@&$A+QE);54m zr=#DIbMqD)C@wcC)ISZsDLQZ9b~Dj=4OX_Glc1{(8uNNpoBK-^$3`CMyKqjvZYcsBh${ zs~DAinNj;9ou^?Ret%^%*5&#%2a5wA^CYYdqP5IVe{o z_rO6j4s`!fN+&WvBi8lv=&*)1<)e=JrUvT*UAU>tJb1FFY#sJCt_y5!8TL?r99|W; zKp8IV>dwWZYFrhd02rz%)9=~_K*(i+!r8ddOcc(9m3`xa$>@uogf&;Bz9g`XjhU{# zQXyAasDEmBx3W(N&7E+RxLLz+sXPSDsL!;Fx*fNf$;_>=vU6s(vNEHd<2|aN!ij$NuGtFEK zD?2B}Iwh&l^=VVmBXU$8f+NI5MLH$b{H3fsfZNMtn)O6QB}oQsxVrj*3((RNCrHSLkKmG&H_v}}VL z%%o*2SlKx(*19EM9M)JlO3uoWaDceUMOwEgcPS}{;pQ?)IRsXAPD?3|nr zH_19x6~oG4sgl$1*3CrRdM_)Zzx8MmFu&`z+jbB3(FcWJ0frmQYG zI48p);({aXy*-C1EhpjzGif;gyy3~Wy;B|xV219eh4c&=frwovr;Ja(&I5N z%3*mP4iXm@!|OK?EWXQ>n7`mAGl}^Vtn8c^Yt2$A6^8X!Qgb1!?3^0wif=uDrYhzkIX4f$f#Px_UGWXMP06_rH=9Y$Phn-} za5tkWhlAeF4drW!R3b&Za%NDTm80IC{MN63@<-8mQ$B3I=#JqSOQ(g|iEoSm^5UlK+ z7i%3eoa?HV%BJ%&r^uoCG#n@{G}1aIMobcLiI>X zW$C~`PMy8#%GA#yX&w0Wa+KB}dtk_3lg}UWt!s_a~yYX{7I;MVhMeWnO^VKJKeYf;qp#G>Y z@HV#mLy{X-E>e;sYtHxXAJ<=)`8WLIGyZZ$4v<`MQ@<~~W?JOx6vN#%|4PbmaJS7r zJ&E>2J~zoSyxx#}Fvy?g!P%@LF6JjFi8PA&)s;?Ua7K2sWyZ#6hHf+o{PS~4aGlMD zxP{DwH{MgWj&vKZvkC29G$IkY*Cl+F&1_|~@K%zUctnj?+0ZfHFVUEXJSC&QFK#Py z^!I|5$#nM-Pr{muQ@_C`bl4)mM7_l_kX@qHOpBCdLQ0Boe2kgDpHi}SGD_->(u!yy zZYUFxK3I9|B9bp^h+Hm5(lI^PEf@B*d(VAAp{zPKKCqpaNX~`m6 z;dU|s*#cI!0Fq!~BUl@$w@nEof)$!|lad}-QE$^lR=kpQv7ly!TA}&TxVEm)tahmS zGPM%9es~c6RT;D9$U#k3XBuzS&?|@=|I}IgaJJHPg=Qcr!@&wozb9es+pYarlC`mB zD>RXZHs}Cd01uG=iw$lbJ{Jy{ag6&eHjhie8BosxsQFy?a-yAE}Nyl?EcE(QZTNZ_D_@X!D!b9Y{8x%)J z!4Wf#a{p|l6B(Tm!^78&q3*1Yr&b;L9{M&0<^7E1Tbc$tR5gU_ zqtlet!ddSWJfz0@hz`5qLr~VRhkPXfd>Xfw3BXcV**7kjaE3hzYhFmbLed^)tp8{l z&&jC^yQ=wOX&_H-HNH{VDWv9lI9l9fVYo<#Nsa%EUdV4+HeHL`&E)55SlKy0+nY0u zAIDl^&KLFXah{U1^Lsc_Ty_lCk7DfjK2vUfi`&fP=GU;Yb8dEQ%1vp&JIhKk&zi&H z%(J?ZzzRDqJ@ewav>F+u0b`lc$hh_Y9p7`x&?>m)OolpOW# zJcIc@Q*KVgZDw+FJgn@T8|?{UKl_9#M{QUBTsbpm!%^ZgW4M}$SM`MarM#Sp+sowT zi?FhDUd%mtZN8@!@||*4ZigepWhHjcqF%q4YaHKK%E_&`txQgS2rE11WLslpT#u`{ zB7RX$%kyxYxU?8P3gl&$h{u$fzu*=#nfVi}?3@|xW%48Im9QT{a|JwMvAB)eP)W3= zjWS%M0zqS~e8=M^GpSh@R(4K}c}6lu#BK3#8>+qlO{62_7QEM(d#nZ5M{OMxRnv3pcrbkB8K_HA;s) zc55_d*h9V&0Dg;G%LL%puritUe(6bA^Fr!dquK(`C@KE(vWl>_z_aEOF)gbri8Lx| zN=xhlPb@8gzqAQk1-F;UO9!m%oR=xl#$Dq@-L6p&vqsJCa%yJ4vEoiG2gU6~aHwf` zP1)HQx0=b$PO!3bb~ZDzqav))(j}+mWH>rpS`6Rq1YLU^E$ZJWA1C5=GWj?jR(8&Z zc940tSEYA0eq9z`tOp`8?@=a@g%IBo3$KIzfE61_~_FxEbqa?;{Q;C7X2MKTE>y>e^Kc~MrLFh zt)s%@82T>W_sq8~XwBckZDVG*H#}wQ0JpI<-%KCiP^%hl%cm?AH(J{%i8LB5I@EiD zLml#w4Ei>>mCQlk3RWi5+7_OK_4l88JN_X;$AWw@TV9&!Dyw9e$rY>R(%@395;{s5 zDO|xh5)KtNE7-4N_Od(43Y{j0X)$ydZZMOYLttg+)P%2Nu17Tvm(%39oC3#)i;MN< zjDiK1h^Lg3Pve#{IavxTJLiOEm&#zaT*<{|mmB4{Tn~qeiwm4xOb%0OuEh;zQgbz| zY@sGWhY~b7^>QeIM9^xz2G?r7BY_q5s#|2muOwEeR_o~YwpxbkH2wqsyo|q%k(rWC zi+7F2zmu{XG+O`iB&>C~wa`kx(ONI4wCEKY6PJlAs?C%{8pZdTN+;T9?PM#yy-^Gm zRCT}npIy*pO~5T;1HG zoI@Ux5ub_M$Q1v+w}%Mf zc(<_@3O(%>ibbei2v> zalypX;YnDtL+aI$1(vR%fx&V~f7N(TWgM2r2`szAA>yV9!xlUj7T;T1Db2vGWume( ztn3_>@SWblMBk}`R~Z`6wkUe!q;$a%;*w&xbq*j!IZHt~88?;*%89V@SOq1QFH%r0 zkb`nA9HBOVQg@buayD)(6O=PyW#^!TZ}tvl6#CT2-EvCqgu}z7#JYvmyh>4?QbcaY zEoCBdE3E7skfzw77tspd?z;?MU*7=|P$eaZ8zqjE9w-BVx%Th9+l@oRQgZeAPAvTO@fzj>toBc-nx7@|0$g2XIT7h};J&TM$XGR~Kye z)z|+MNCa!YzlAp^d`AK+>bp)ND{hfkp*9`wYVW4wD)V#I$Y$fF%h4L&_>*Y5+1U6B zkbch6_@~Z_GA^>4W!P-oSQ(6U6#lRWn~fjzB&?fH*6oD!Hyg)CzxmV$XK#3Ld|!i& z#y#P18OOJOiqeS;&B%0m#3C}1+JzG}-+b$W!&bZF)-luE3{TlQ#%(w-#G+jLBz;&h5C(OmuFAm7Sxbz4u|r zH~HdlPJQ^IvGcN=ofqL~aoIT#u155n<2y~^c^)^K3C~|(W#{lT&pX4}!cb1nJDYt* zJYP*v5?JBSWk;TO>ONC+HpFdaqB9;=c8-pA*Jv&8SnHcPa$aV`5#sW)H=b((M=2yT zaYLDq>rtP1U%v{nzSsINPVtXN-Sh1za-wY^_-kDHS#=E~al zO`D#A_5#Kq#>l}v*?u z3t}tdc!w6~Bij(lY~j*!7amjdHiXiNj=bR;C+5h9yd?~rjN8j(;6zy2H!hfXj`t+2 z*&+4q2yKPO|KT)N%hX;(CbwvayvcciGE<1nxp1(!2_yD3;Mjyg{ia>n*|^pLMu6^?19T@GE-pZ^kGe7eDwnfM>z-4DZpSTWB6KUP>>Qyznjoa^ zV=Y%Rm7&4GQn^~mwa+nsuF>51C zy89HSB5pntriHMwbC`CDpXM6T>>eU@)0J|PE{6lgCFwBv92fDOVst5PI}@XeVdeJ? zMuWL*RV$Sqkz@1_955Fc)qJNIJ%HQJ#OOX)**Qkq0atxRDYr!3f~FrBdPmOBTX3Yf z{KOtM|w z^8*08D2|83heT7}85M7I#&V=Y{SlKy5+M}|1`P`SSWQy6M4$xC_fPN3h ziVM(OIY6UsQ+R%ho6Ush*RZm4c&5i^Ab;;ny-VCx&JCysw6r#U&C|qH^y*5YHC6O{ zIYq>Oiqk5%{Y;!XVCDAo$6Q`YEW#>3GY4AsX zokN4&*{a^)cga~g8IBm2r4$~^jkp|jyw zaS=+PMjCaS!gD5WHWQvN!phF!Y0{;sDCUQk8Ueaf4$$pzytn|R(4~c4rx4wWo6dyj zhp@79h^93uv};XTH9xE_^QfHz)DqE)a*m#dL&oLkh!o1~sP`15zu?w0QTh|C>>Q;g z`KZ#Btya~xM^Az5x=#3BsVP8B4il+^{R;{?wT3;MC!4T~d0;V@CecZ$(M z+;%2LeXz1~jGE=4I!1$~#aeB2xtyU(;b?IgN+S<79H#(Xj2q4b=t5Z8IY1wYudwy+ zK{EAKBYj`wAvsPDz_H`vbbJcan)X@DXc#D5_u+0Z;rc18>>RES#luxCWeVz)nwFa0 zlC$&%94anL2gzCTy{72AhFi@<=O3`Lb99=lJ*pt8J^n$x<=^h};#O@NCDEEzErqqm zQMV~PTj6Fi;n@OKb`DRI14b%}s!u79%kYns({mUcEN*U2})t9DC|0gXen+w6QW^Q**Qeo-B_b5M7EnA zu9uT@EgU2+If4s98vasTuEyQCN3}sBrlUg9#dp~ zja$q_=9jRtb7U-=V_EYZ2HH%u`sw0Ic@-tmno3!)IcD*mqSS#~&qV3}-hU`rx-I?c z0*#>=a)x%sM}c{%m7v?w-KOyDgqzKT=fkkF^E?y>Pw1)w4W5(b@SF(8iaUQv;R(4- z;W-{Rn+eY`u<}@ir}05~tsI~?Gn_4l=S(^tu$Hs8;!t-)${sIT8o!FRfT=)}i zGZUNtg_WISqdm1Tx}syeX<@@Jh}*02N}@IGRqVC+P11~atpv?4>*B^TL0KDCb`FZ= z!}#ds0$MpdQx43&aHO~iMsPJp)M*ONUbxXra6SSnI|s*-VT?B^6y?Aygd@ZSMv!4_ zHz@Ss#xg<4!OG4-v1~3hZV=Ft%cXKwE{21|Wks;L(D0Y$l?!ounYf$}D?7(!TXUZj zzAiu`<^ee|_rY=E67%uoy9;5LDKtODO=d##6Ij_fG?UEGj9w9-0rQ3&nAhMKaeehWJhK*#ftliO;66 z@>s{G@#VjkbPki_a|j$PZqi8spN8KQpM!9_nfQDhR(6h$rQsg^6&i0k__UmzrEsLU z><)E!|uzN9JlcMqFeBHO{EJ6qaw|<}zXVI;`v* z7E2cu{+wR}=C^WSehtTo3yh$P3cF09`6X^L6Po{lm7POl`2dvQ_T%j^2_w=y-t*aay%R(?t~<%V0?EeEXUyHGGX}ytn3^XO9eA}X@lYJ zlQZSOd=ZWl7Z^bW6Ly(G^LgB4CN!Ugm7PPgjd>axjUc(=y)Q=T=1*{-xXcJn4QVX#YV6iqj^oy$>CNr(OCd1 zJ4eT|$K(gGqFy)d&gs`8T`VW(LO4=fas+!!QKu<5=i^2*!TB<*>>Qk}Ed7&_nET|! z{1grmmzbG?=Be&2Mdc^BwMn5T)MW^nc`+@3nkH-W=fEEd~Yc#o8s0oQP~()c8-c=6F~*fbjjKw za#jw4W5mrff=z@`cPT6%$IWHJvOlcs92U#B2P%4Mg_K^Zwp32bFdQTumf} zXTh^GGiv9^TG?V(U#VQo4&+w!-Qx3f&&s1Pypoja2O1JDc@pgzi}>dxHjl0m)Q4=Q zVZ=5(OI)XqR}yK|=^aWZGDst_xiLDt+8cFIhsjv4i<`{Mjca?#Rs^Q>+kTG;eva`7 zXuGD7h;(MM3)GIrz+fTr^W9e&Us;eKA3odo3G9VO)_DIGg(3E_K0XW~*9jIM!Hs8P zu^X)H8y8GgyLb}q<0tMH)tT{EY*j)nl-C(?$g763}p`M3j2lD-TpJ10r| zHdLG0{9k2vPJajDJ~>A}g@eWAD0VqJK~hrgQ;L3qo6n@^$FQ<+M)m+$Sy$BPTnQ7JDd)gwSz`VZ~_lcj&d%FbDu&RLsOku2wz zWQwKofR>qdk^}W&CDEETF7~zB1WN*;Fi@&KguB6{YFk*@IaRv=RH+xWN#S(79IIpC zsB!bu3F+sl+ONxt1Lf)yxF1Zej)0Y&bA@Cp_1MWmEn9t2j@9SkpmDKkQMRgufl~EZ z+zlpGpMjN~Q?)ygt*R=XmBCU)zYgSwa5ev%KcX3~se0>L2cFq@T z{h%~dCDY)aL4JoFna>LGud2B7He?FF8dYfn&u@N3jo`CTR8+l_^8J;np)5 z+67j2&d^Srs;N>a_0sbweR7a;aKN}A9i4Kq`2?L8LdKBef# zxcN+qegrE!r-(PZ4R_bh5NIU*Lr&7);ec^TN_}>#hk(-bH{1m#O@D=zozpapQ!7<- z#Y(B%UD8kQZt-Pt^R}syXif8WY|7PABM6kJjd3TKM12rec1{#)CA=O?Q`K~koT-n) zLF4AAv{%AIVW3p)kGsL7>SM67bE;TXxLWq@(yQ=cIZqWhTwI>guEMEVoTdMP zJcF9MXMU*H}vS^7Dw?3^W5-87u*s+P*8^G^RK2kJj?(6~UQT{nfoK&kpS?go>p zf5FPmsXBnu-}&LJ-FCDvw>VQ-Ixvt^=jysL^>by~D#C})6?c6fQWCA{`id!ceN93` z>Dv}}jY;3uu(EUdwEJ|UyLpy-3XYNE^$9pq+(dR*N_dU>PWd?kx1Gt)p|G-Zeze=) zHGT~D5`10`&u8HPO z&dzRdl-iwl%=ZcGg4@mHW*V&QoSWFZGx`m^mUnV;b{4>q;2Gc z$7m3a78j$mzJLt-PdOUE?Pqe-4=X$8h?9*BH%NS4j?vfPU~w@@IUAX8j`%8WK9i!a zz{<`kie1t7e~pb>610i!f8;3r0*)9LrL=CE)MG%i($8@pm^}RqR(8%)Y(Hu!B zi2e}m!-9*YQ70#Yus)o zH(SEW&biUvD~)#a^sO!>4f5ne;4ym7UWQTjQ9%Rs61;o$tV5;e~WiJZKm88{8izXTO4#opTnu zH%4y`S!0E`lwM6qw5F6!Yj4bWW5~+5*-UEw`~IUQzA7@_6tbI~oL%rCV7@w&d>-PEG|Q7?P!GDrxbk&H=jw-7hq-Q6vcLDrkg*0Ea&G(aG1FKq}82S zZv40fH=Ie%4`5~IYn}O0DTM&7B~5%RriG4r*+Rh zxcN+qJ_;*4r)ZzJ{;SFL6dGBBaVJ;${`eA$)>x&Z|5EjT)xWm)es=qoW7#=|7U$b?tp)W#^2D$obFOrWm!g{GqNYm zlVn6Y%|4QW{T*&4Gxhz(Q?`!x6zk6|!LKcTytgvOqBE0S(3Qy#3>G3k%{49(7w@Yn zi8P9LI`aD`9{G^Bgn^ZDdzlRU7pBWME|_@Utz%@%&8fq(g&CIKTwzG7rFN5(vI`!0 z;|>WWW#8na)Lf-C(lp#uCL}w;%FZF#+6+lww%lD=oUin0q%4q=l7WN7olOKerQt8d z<&(I*Ok9qGm7U|VjTx6hF1v7Prc5)-m*u>Sz)|AzGCO%@2^^-td#KJob8t{A#-V#i7ywg2>gyS9`XEQ#%do6ThA zqp?BN94K=pOu1QNlT;IEP{D+X57cOyhr+$6C=ZAPuV zT6;I6=GVTusHhJwve6aq7vP_m@%J%uSd-1Du2Qj@RhJHz>4sF}pE|uyWqczeyB>y3 zsppdN9BfKG>q%HQDXe=GNwx&zHz_uaZt~j(Ywe50b@>`fB8|HI-zs*IAsR8%TgH*q zuBHh4>Svsw%vue%mYEJ$_LQw--^L9p?O8?!I&_M0tR&Bj-fikqRAi+V3 zV1GLUhs!u^^izP2pk)=9MmjT5?`f6wN!)rSM#sU*&N0$1F0)`%85+pps}!JC$PoF-~9W3vceg2Ic4sz+vK|6MJ15Z|3s7rr7l3Rx`2bg_WISqg{;{ zE}B&U>3sDyIW=E}qr|1=KzZL@cbY=;72IehG%H}`u?$TvU!>6dLJrN(;V88cn!3{z znxElDGoiT$R(1}}R`&ji9w+>_oS1*XA>tBaI8KNz4=Rr-F8{dQFWepTE?ZLK6)(?)$x|C%X>?3lbOH_!OG5oiODaOs=mGX z9XT)GhC{^VC58G$c}%CHZ{Zd*arp+UJf?9W`#@`|=ajSE`CPFYy&>gr_%~+Erz7*yIF#DkFfnr8(QqVn z9{juZSq_e*&h;d$#}ciF%hErRIw87bWFDvrJW#&J!AY_~IB3SP?$0Ql$N-J(6W97T zMpZij6!_^|8XQI)z%6Aa!G2HKI_hmajH=x*--t%&P-gfj>erOv!jptw#iMFGib}_S zj%fTt9upG2g4@g_VFj%08y8GO=Xny=Op*FA)M=JP(KxwNsg?#aqrW$85B(R)SRp_^ zheO6qAhEBXjyhDaB@na!v~&9zZa)*IdthbfFljsKLH@~hX9v`|-rS%D(7)vX{R<8g z7a(BKlJ6kJ>G`cuCam60MXr6aG zZ0cT9aJIy)W`eUhtn3_|>9(nBG{~9mT%}93CmAC|N5~;M6b>3U_Z%gwek>87Kpl*G zzy#_*SlKyH)=X5$4lFQ3^cguspMnF$g-Do*LS9pFmf%)1!5M;;$1*tOiW!{m$iewG z9H_Q|)9{*t^DW$JCOF@Km7Rm5eZ3XbKBd8GejvXrS2ol0J2^eSfuqHxC-&Qk(V5BK zcE#My{kj z9R8shv+T$rY3zk89QmWQRnWf>IsEhW*}GXD|PGFSbbetC|ue9#r^^EcXquYq)$o@?xsMzOB zhJ3>!+0QU9J(V=z!MyZ)Pr^DcSrbwETlC|D%k)eGv-0KWz>taQzi_yWW843V(uoYs z$aFd})t@o(M>6z;$*6C>b-{-GySR1C1oL+M7`JgleseO$p^fSAR{W0g(VnU#(rC!& zXzvA&cF0RI?%U&bGRJ)~tV|}BNuGo?3#7jNK7j&~EflovuH%$ZSdJ#C;Al8B+*Gg| z4u|rP)*JJ23z=9P4l9pIEQ(7tEWRMe;&X6lT8Tw*DaGPc+(IT6%VA{;771#|pbV|g zRS6`5GW1P&BJ~{!tf*H-A}f9?u|gHY7q)k~X7xj|OLOJu!PUp$AC&ReFfzAEE!=25 z<8D(e)a{GZU51kQk)#v{CGkU^#8@baH;nG+8;0m#@DP!y@SkwRjHBHDN2L=Posm80 zRM;5m&iZ(2$IW~XeH(+?_!ZnnX4ZSjQ??Fv8*Ae&O@kdO9K+@DmRE=?pv{#;8s#w^ z_Sma)V}?ECD*<2=+*&388^OxHalwSMfhWM*zk1yE5d`7iNcck zKsZp`JQ4fVX)G|_{XObpSkGlzEFFNG%%o-(tn8c`?PRl&noPBvEmj6g75#+a5;;FZ zaLBm)#9oie=O=KUl2pcxXOdKcm7SB+Jpb&X=bvxM`S}JMC@w##tQprDI=V|`g9ygvz z(qve9jFZ%z8?5%Jm$P$TTS6+KdIviGZPSW<~H6OpN z?Jk!FOG8zy6#9Z3pwGdP;sO+V{)W?v`94!_PQ`6za1oZm5H9z^!Joa~-Vw{$PhpTYr?Z^E4c*cC%yZ;h)5++7(c+>L`$ZS0)(QDd`N`sTGx<3Q zR(8(MjMxrqV5m^dXZmv4?o75?RaYa>4`NoxK{^i(8yBQcBs^i!*eo^$fD&~M?f{dh zvtVWCMC}+$R5{l@q&}TloG*5l7HggRJ#v)pg5$+SDfWpaPELw=P8qrbx17n)ZLqR) zhW3hOsG^=V&vj?IOVv#6HtnIVsx>>kB1h^aIDA~BJ}J#kae<(Oy?{HyB0iS{g@-&@a~EwqYqQo> z;@Wncl4wnBo4AX%ov~RJH9Qa#VJOqr}ZA`zNhxL;lig zWjbyzlb23d**Pye79TCwGx=W7G9dOvV2qiwr z7Z(6Z)NQx}Ormavl`TXixOFYKxUGJjQv!+LHlG*ZyQX|c0xRk_h>5ItKw^cuKJJNC z+j`so>PKePfyaT!Rmy9A3+*V3KbDbMO|FlNy-Hc#XH&B)axt0V+PKw~tyt^g4|;HI z+$x@g^(Hav^-$^Gq`ZD`iK<~(c7%t;cQv@-e<~a;*E-@ zN7?txw=K9TZhPD|W`>*WDO(4)jaS8OrVnuF>a_4RaYrkQg|~jq$HQrS(3lSOp5Rc2 zd?bT@IBq3#(C5L*zHz~XGS`!^{{B`Kdj8hU=mCgmlu))wgm6X)Cr*&5;DXZe9GD%qpR(4Jbooy<8Lp?nO z{g%-^{% z-RX^{c7K1}Ki|S&P38*RLT19d%u~ikI`yVoJ89tsBD7)=UX^)N*(~h2AI1Y}T$Q0i z9(yR%I^-cw$>2YT+sYjL`(b4=+ufT~BA93D2#V&JOXOD6Q=Z6*r4lRDZ1>LUZJq7b zo~hoi9nRLS?1(;Fv)MK1@5`7EM-EG4&dY|3j3igX%r`+9j<&cH?n1PKlI)*xQ;|6okAcJY;dZnLL~XEBnR;ZP*E(gtcBy zy^7NAH4Xic8aEd8<_bgF%F+sDrI4QU;8<~U$f0xzGN_@M^!WDy*IcKo3FqLZGXXja zR(1~1PBEFsk78f8++9)kbN6W!-6N;yE;wLZisq+BQNw?V(jB<{Oq6bem7SwxpVS+< zsF2GpT$(Arp>=Cp5Hc65?E`&rRk{jGE*o56sL`F512S@04qDkiBTsF&>8MPIY$S;vEp)+ zVx3fTodPrqH=PO4ez5ZU0U*P)HY5kA49Cg=KsDDXKqcICCO`#P**QSkH$bKdt&;B@ zDCPB+xV|B0=n6PoT!xNFZ!+_}rx;y^ThGMk5?J|tfswH$dQ^_l!*IA>V)P(x zJrkq*VP)qSX?HRkvylqqU}31D)zK)yCDEG3EcShhY_KgAv(8~&aGZ>r%mii`pDW416hFA%PZo6H1e zC0N-xFfnI<%nO5i$eGy{4ih)Y#J&>Ao1Cl*g41!Unb>r~%3~TE<3eD!9Gfg0rgmau zTL3%>x0;E~39zzrY_tod!sT#nPu;Nacb=S^bKp2}xtS|p_#1Vb7Q$!YW;4M#16HAaPDz>(i0|u74?(YA}hvAtWXE?-)--K{55B1tJz7_rGwE=(4K;S zXvSa3$h`x1NOcK(_T*ZTg4tCq$1$)&}YmYMi3q zP5c)gDF4?R9L0YZ4w`YS`(IKzkpUVpe90diqiu|;ww4|E>026nlJ+)kDKiPa=_y-B zy^Y84x3-LW=s0@#5dPHfh?}d3)0cT6l4hjMQSc23B^C(ubR6r><-Kn7o*s7(|n9ZU0*SDVMoVG9ku`Te|w_(e}aI=rGTnx{X|3zUb<;Q{(VB|;gmk7mV;pFrS{3($3D-)nvU9k0_`pkPhMyXxIFg+s+fDfYY?fBN(M zrtqAE+s%aM1Xy|O!_$*5_UI+}d2)EpfkV}1cs#!;JZIr{GvPS{R(1~0Ud^Voo}r>T zlUyohDno;VrE)dbU7y$VC4#%;K-~d{j|)^Lor%pF3kun7xGzk|ZibbeL$(havY}!V z%wCdX_5vJ0E@s)3F{9C-pgo6s!vyVFSlKyfP3x$Tv>$Fi6Q;dk zW#=$8-EmRDj9Y>#%XuonQRDKI(vFKB0*X`tcY%pi9#(da)XvSSC>77pl8d%jeuW&U z%ix%Cfr`EQ2ue_)08pGR!5v`YbP=rV9H*umcnT-=@QiV`dsq(BgK)&SFr~DC7j~bb zbU$uB6Qz4$W#=eyDyJbEOK;0rdJ_&Am!n+DxeksL7oXVgotn>CVYewd*WhL|(YXp%c8<l^ zA>z(NLRc)@rYGR`GGRFuR(1}HbO}7eS-1g`la(-@uqs8S%*mUczQ-p5DO=lu>6RhkUA??kDpy^g|4DAML{nHC_ zfS!Y6#RW+CX>8PSiqEsS;Y@s<5R6n|S1vPvAF&XK&nYCOmt>%Ff}@E~pNst7jERlk}hfkbdK*6Z-SIld!- z74>V8L{|J-VuiXHYu9mYeX4qm{mVJ;q3RXk`*v=Je`dzt$jIy_7h`$5iPQ4KOFO-v zM^_W+dw^H|gJpwLxZPxtv{kOupJ@ z9Ga)$q46mXuEKf}j+b$C`yW&~k+B(>L07S(W7%o&&bKf0H9u}2GuJ)tDO-oRjTc~T zK?4!G2`c3rM;?>NTbrG18%tctm%M<{3Jua5^gDT=--2(@{J27n0M;*Y&^H4 zW9nyDEMGCD|9o`~Mc*y`7pOlcu1NjHD-$ExiWgt4EZSAh$aFmN#@!0a$X*GOLZ|O1 zErdF8JDG&+04qBuWGh1!=_(B_tzTiKL6Vh2auOUO?#!`o5=a79DJLi3rZPD>7FHgU zoa6=ut4lM5{6hW8ymRE7oCSxdrJMw=QcljmO=WU&I;`xRlSzhr(o-%CWV#E3*{+3J zLb*c@%589rxS;HpB%y?SrKH@9+sY*6CRo`yDO;LI87dS^3FQSjC(pqV;&PIxg6$dg zlv466ZYh(JXJBRLluR^GQpgu8Dw*iB&PF$h+nf!QL~Gidy^|!9QAa5w>*0nn8CeHb z9-EAmdQFVXk~6X&93XBYNydopC}m`C+)ySXd&0_Nl97R2rLVV49`P>887aU4YAGY5 zj#5VQxS>o&dSGSejBIU~Yl>=VdpKw8hA)$IatRzHE+-#LGT(%qrL0_p8_Q(n0$ABO zE2fpTQZbk5E9n>PJ}AfJemFi{OcJfE`F>JD?#1n75^^`J?3@r&f1@H-G4(fZ${Beb zju4lTMEy;}Q%cFJxTQ==UWS#OQ?jXH&Z(C31#O{Z@(;wl%_Jq!n%?FkN#>fGla!5# zxRFdYHiMPNDjP!@8;8r;m>=TF+|yziyO&gV-BqBoDI{y&9Yp%WSm}>%L!Qq zhloo^qJ5jdRm#a?+*BqfRan`=NrLl1!4aeS5rhO1!9Mh3Nw=~CE9&Q6L{@xXVud>B z^vm`>0l50?+;F}t`u^Vo@Gr~wvly8rIp)+|w<~gx#&F2#zNGX9hn#-uNmx(6wDFMB z`a#`f7?zjdVex;c!4any;Aj~~w*LvG6B(J2X|{5yK8~RSPQGWpZNc%T=WyGY8SYt6 z**d^&Jl?dKKERE@(x{B-Q11y2b;w6D=HqNs2`737tc~Q2_Np;4~`5s30TiLT9QDg`tNC}vo~%ZlZicHW#>$UmgMS* zv$I;t)WfNfQIeBUfaAj@1I`%@FDV~++)5@NJ+QKcj|3HDP=wZ}s{|53Df|pPm->zb zR@AE^krh9YSfNVcr&n$3ng7)e8p!rWE8*MW-<0tOF)~w93FketBITB$5WY1jyFnrR zLr=n5Cs`-L^iTV*7tDloP@aYd#fLkngP(+hWgOT32bE4_U`BSb6-VAEhRWc&U%q8Q z75oHl88f*(?kVG=n|hfOS{?R+5ULNuHSoBb#g)#gN+OLKm=5zE&@hKQBm=$@ZX#(LC~)+=_Z?6Ito?f(1|6I_hm)``Owu z>Y>RYJpEmv3>P-~m*G)0e!E1+e-54gfbkD`Oh~u{x0y-8MX<7OTreG8;7M5P;M6N6 z?E;&|52*2ydbZpVur*=KQIuB?Buu>CFK{4-feq|vz1 znJe}NHYopiu2Y02;ifYYng}a9M`)_G=BZTG8RV`^u~e*`deBnPd^tgf!@=UFpn1aD zC+ax`XdZ4k6QH@UvU7m6i?nDCG9{o><@hXzL&e1>_988Q0Q+fP2 zZZH#<$6#gWxM=TkM6!!%RvLG!xGY{(NwlUcj(wMdm0v6q(n`3=Ol01B{~=>t0yLMw zyUK}~j)$MQ1bBd~4E8;yQ&J~xF%y^_U}fhyMtjI5$T6k_la=Fg5*#A#j1>FaLh}S; z$u1}0_A+5P7FM>vl3>p<*gUQ8UL=qR)~xeM7oGwu>N{s5D-M!ap*BxfYVY-*d%$64os=>vl-`8>bsZmy=9` z^e8+?{_i%}HhmZlnQ@%^?@&6C;TbWUf(*9J{1Mf*K1O}?tqcwdJ&0S$Onvuz%GU92 z!3%9-A#A9l#mgvaGPJgi@AM%zk@H%cUlYv)ZWitJ}>`7R& zL+YEQla0wC*fA{VpC503n;4kMN+OMhi~KhYsWDbYJ#GPHzK&H5qc4YH#isz5J}MC22FCkYEB>#wCeXJ zExH0L>b;uCif>A+P_6nO+xykdxH&m>$~aqywCZoczbxa=Vr2g&t-5#VJU!uDzw5u( zH!RWv8d~%>lJXn0=&yMa)|Sm$gs0!4j}N}wF%8V-KN8p6n<$AiYVL7LCo(i6)9I3S zWF$jh?~MB9XOf^T-w3ykndUa|l&xdj#NpR|uE;C3<*$-~Od5eZ%O)Ig;6z>^V@E98(|28W0XiJ_NjGHcWy@~V4E zF}Vb{l!?hju(ESZcA!&D?Jcx&HB%WH94wWqwWnAI3-sRfhvmpT2#1S{jNwJZrpTDR zruf{CTg}AhURc>VKHE}!x(fNh%s^J%)VM^QJ}wVv%QkPzxp@X);@9X|cXF zW?x~6_)1Z^2Dg=o%2lxPm_}t#y)enJ5Z_lN>O?(EZ70Rx1NT%cQXRhj7p9r!;5_Ois(uo_(gk=XDRygooFnJsEI2@1J`!vVHvFWBoPpcPMC5c> z**PMir<6x4k=|T2Qyfx{Ddz|DdgKl{CAYyb;!D#b1mz}J**Peo zi?2sP>C09!#cWZBQft8&DvK=j3{jETCKYCX= zH;^mpE$~J^7PmJWD2djzH-=9{nytYSex#mL6Ey zIV^^nC0{W=vn>Ln7_oE`0A6{yNn6Bm{Q`^LJv6qr|WbD6-r z3@bYaX0o9hs&&iN{BX{gTqfTs?u8~PiPrQ&Gx4rj@e=ly;xZApmWj(|u(ESpHZkEs z?zlT#&d5ACHr$-DdlE)Wx7y9cO=N;G2Ud0thM_{KbY-hmwHeq`AZH4e%K=#i$A}9^ zf(j+Fd=ydR(1}_j)qA``wlEqUzXK338%}E>1-J? za}!KK7Pl!tJK$zB0h$6UI|s<{xrTaaxF=uG*YQu1^Kt?l9`00>;ByV%ONz&_xRp#i zj)IlPC>{lMQdXOR&XVJC1{|K&;!*RG;&D1|B@>U+U}fic81{G6?@FCr8q_a}yG_o= z&2W6Ud?eW48FiBaauaSQ6ObEWW#@nx4nV5NsdllD)ep!%Cnw}tI6z!N5*&bR_(>6Y z2Dg)m$WySgb3_aaY{S{YP%h&wVC#?ZZSWIur?Z}tXicY+V1X^{Dg|X7+*BqgYr@JF zP!e3N7TnHOzrrbjL~uvkdP%>j53HzP7ACUdA4#t)t68D$h+DnA*SW7VFI&tH4ypC) ze5n|@DDFh~_hn3>BL_+@iW>-97rBzma9iB*Nl6ZFi#x`Xu-+tQy(cRD+u}A3`g!XR zoeB?;|I-a_bYBj~%s9&Z1*H=ipAqXs86MNnO=1x*eLI883aFk9?4eZY8<9Ges1IB}<> zITCC_K2vIr#cgI%a}=!XoSM+0V1$|;TEUzp$K?z-KwMlz6->=p%E{@tu}n@*gO#0g zVw;r)bLD}dYVF7j`9Au#C@&Xwbga}-`%nL22Xu6txT61v`k(prKS$O79OM1*-3^-L zo8gFY!4XYQVectGH{nJz0lE=Zb`FrO1TNs>+Vukp25v! zvhozH?3@+bGE6yF>B|o4ry(}DN8B&1rzBd_FIm5WZ?%bt{AFHC=5DrXU9;4@Za# ziuD5|PEPT>rKI%W)-p-yf|Z?aC@1w zoC_;Er^T9As@blET3)$d&dR-Tgt)B8@=DEHO3K~1wM68hpKIs+}v4rZ6+ z^kd<#%VBvH4iXoZ*^>3SitjMxh8xS|WCE=0oD*BUGE`KXCu9zqCr4#293yU85!EZczm%3axV=nTX2Z(PX|ZLM z;e1a2mTj3FmBny?xTuJ-O3hiyNfkGi$;l#E**Pb+YGqljTrzAzUn6JbDmX}7Rz%gx zsKb<(D{+IFyj%_|TX;!ulr}hxTR)kXKq5F3TupicBe0@=BvfR@CnQ#=Gr`Zc_uc4K z=I5%Bqrk7hKQ7}hV`M+cQQ(R)DssZqa02)rNx2P90RP>SupS4sp6*Nk1n>uf6Ttd_ zY;>=<-rhh-q)~6Lq;w*~GBVZHo2d~Do%gNzE8X6xxxdRd*iV*p6;b1JcB*LA@9go?}^*T9P8a-Wioxu@Fc9i_SDbvhMu8O zKa9?yVqUHGX4I3(+7ezt*(Ky64@bwC&HE`AyYjgR9HdF02RD!jMi;E?9E?!E6au5G zG*l!{6kQ@`<03dfTsHQA*{J(S@wfoDk%`B-u(ESJLd*XlJo3fiT)Coe72PlA<6byI zTt2K1&s6lPVKh1VPEtVb#*JhGawn|p91wH<@IE#rEB!poJY2rh!HMCM;J6t_ynmk3iFVh9EeiA4cE)(? z+Z*)VC*bxnbKioyS+`BDFoDoAiS9GF`Am+Uf|Z?fG@Zv$#5rj_C4p6iT$+wenWjb%Xl_~ucY?{(ny|8Srgmm975c1ILux-cQhUQO<05rT znn;CWK#AHD_kl^&?y$0RqBs?k;WOWY9Hl%QEG|l^R!rv4etU4^nGAKo%FY?$%yi+8 zV70V#iJYa2;Gl6?N_D0S2Z83L3vefxOq~lWJ7Pg=G^JXF+rARM z8#kZH(VeiebB=aoR7~bChF_P1^eP-LE=cp!td^`_5WkGu&m`$ZSlKyAoJz^?HSwhT z#eLjFCDEEbF4aoO{B`kWxbaMeCcw(h8Tv3I8=1Z|o+pQBE*vdxE;=I3Tx9w3cn)qo zlcL$MvU7?!bDH@p7Q^x4a+K4Iigx16YUZz(AD4sl7#uJzNS{b`VzYkD{0QykXic-0YJFt= z3VI4|Ka-^GU}fhdab~vB4?ne4?GxlE9SaAHn~_qT*+v6ESG1499bmF_B&_V5rLAMC zB*U4cGvxf74hM<$<6h!vU6_Ys%RDR#&H{M&U#i(&ogkaxb&n_MTecI^VL(h@l1w(4=X!o zXi7}(37xOe5L)j6aU-^ll4wl@eOMX|eaLr8(3-gIOoCR2m7Nn5SMeCm6zwfXXHPgt z-0YJ|#bZ88v^#DzlbIQ?vU6tQX0Gt@87=MP+ZmMvUxZI?ZZ_HA6Y{&XsVW zxZoU;%0y*7%X2wyIFp@AVP)s+#8t(HGdz#Uxp@Q*5|^7)s$%omoriFvnan%@D?4W< zuD&s!*?CWn%{y?MxY(pp-&oJ;yoKA%BZgchhK${Sn$A<4CF7b(e+aq~;%YQESTxvFg# z{-GHY?8w1s+^kpe4UAmaX1Jxkl9c1%QoTV>qCL^iO|lHJH!K@P>v+>3T>=l1|GN$D z)4K=`nQ@%^PggpT;ThR8u5R~7RJ%%V)JNaS;1<0La4VUq?_5vWI^J!(MQ-xKz@uEI(9Fh7WT9W zIW3RCapKYUKrex=mXVN$Cx3MR*d{rD^M8W0H-a_^pWbgNIcO!*U5cEdCEQvKR|PuV)aZQOeZJ(5}vLuesBvhAQO z7Oo)Qjfc~`?Vxm`Lv7e_iXG~Zk7UsA#I0lw`t7hXoz^@F>+e7H&4x|&pMUMqv*GFb z^6;z5EFl~(!@=R^f!)D8;JZi*o)>WwnPfZVa_AFbO%2zZP9nJoRKOVCN3k1@<`ZOO3NbLSSBq+SlKx(<~%Y(&m&jK8MzV; z4wsQc^~elE9=RMhkx9m-u(ES9%z0#nJ&!ylXXFt$Ok741<&m(nG><%l8_T5S0a$qq z($bw9toAL=S8|zJheIlp_vEy^1Ba<)wCK)KTHeBqWzzBntn8c?x<=AnE)AB3^!?}^ z9uc=VQGo* z<4D{}CLf2v%43%gGR2%O=i@XuKCR}%)c>A>Tgl|()3EZ`<%2XeH_7?95spu*`7rf0 z*W*?)`M4HVcFqUwcnkTWI;gF!iaaBS<0&{eTsYv4x9%dHS$>b3$Ry*pu(ES9wj`BD zp;8^l3=MW?t2qsibsiO0rfVvR)>Ni@p_OUKPs+&ZxSdQ!R)LkBGx8zA$iPscn$Ps* zvfY_%wVEqd^QEE&%bs#rc85d7%_Xx@SWFI6YG&XDGpX4bR(4L!G(t_KD_h8QXSz$( z%wW0HJ=9gT($gcSrwa}lmmb4+`tb(^;vAw$HVjdjEExbG$`>8bS3$88;?%9&l&{BX85pH{5H^*B6S{?9l#F!vZ7 zKjVn^->q~aV>M!U@VuTJ!{ghT4crVJp|d&fn;)F1djvP1nIa$ZloL>q`l+cMnnDpe zfEGSv_nvY=c#i5FJif+5b`+0K+A6Q)c!a`0KzR#ygbB(UurirTU-Kl|cMfk#bE3L( zg`xk)-I>72QIvmwITLb`a0CJY1~xzvn9ao*1PM7H5E3AP00NWVncm%=%uFwHY_btV z6uBHh;vxthC>|h+q6mryf+BeEmm35@Km<_~MG!=g_vvG%y1Tk(pQoyOD*O8Rm_@TZ z{XD<=_ES$CT@@(g_j^DZr|DoKj!_?v)9M6pvNYhUvc2gsAW7PbY*{%;o)KY0&hFwt zI#nK|lgUzHyRB0a04bECljtEJIa)!stem6a`~I#zt(>d$m5tKcKwkQoJWd}WD~84C z%mi>^O7Pj~JbENZs?H%>R!-Ia!}oKRmQ}6P7hvi;@=Se;tQVH44Gx!@usEHX08X|DJWIc$2Z3biF|uXlEFtXBzDOBPEdOST9+OKa#sAXz$-Y*{%=o>jo8nF4op zETkO&lsr+NBuj=R>Z}CnCyx|7SD&DVg5>H_vSsC5A?7kGe0TR#d7yqw)(Q($5_6fB z20Tf3&|^T7bUWGdh#<+}X2t&|Ptsq=S}7$7G~h{ki5>%zq!-ARm6L=R*;UM*YUpg{ zE)PkM>~;bZBWGmCl;Ek_fgTBxs!3$aBY`TbbPA>FXnCp@krl&csU+qLm=Ziy3+Ry` zsXBseSvghd;b%0feb!aLW+6BURh5V8Y_ecjsFK)U&=i7aszeV2$<$i1W#vpAKwt{? zfrd;+eNi5*&y#h-qLocxz}G~})q^MOT6#Q4!mcJ;jv!266D8Y+>1?s@$mHT~643y+`QoBO!j!wj8-% zuYH@VJlpjmWby1%^KRGM@?q)9e={(VOy!U3PDyllWZ*dYUt*m6mu#6!c5jKAV9Cy* zbz~(w&lh3~%euWaIdW(6;qolcPmJZr&o+EpPqS`}-ZU2$HplM4bjOi7?f~0zWR7d& zIiH?c*Dw}5ueLYC^~zI`ql=5&kc`{-hor(I0LO<$4*|)?S!ByxZu@|3qJ6#PY&KK~ z1*yBBW!Dz9Qf8e|%9-l|D~&_ot>g~(E6AE*3o2xniAytG0U`MD!DaM7kXU`3Y*{&0 zo?Q^3Sm}d$reLfMe%O4MJWoF%i-qOsWYn+|o1hvB@F4w=9sv@h?~^Sn2Wjpw`KhQE zGV64sx38KhYSpr_K9HgQE>F~7$*N(A!mV6miQ=T-(fTtz6eL=IB3o9D);`0a1vGK1 zjk`V~-Qn#FCXyK=B4-eg9iAONkI;^E_mK!~N4BgSp@W7&s8+IW=z%H4ir#B|?wcv< zTJU^^W8{%qOjZt?p}J%3^Frm|5j%<=4id5VlPxPp>_9SNMv$+x`#*{A0k`kaBTac;U26< zU8GgDOm(ndkDN#!{it-ozZIBBrr-~`Dm~&;13DPr@9v-;UHdl6ZY}R4@C(qUm zH>bydBOPhyJ- zo`d*4y8B3o@3AdMX16x(gz#+liqOULntOBHTk?3kLDv_V<8W)&Bs@GaaG<M+nL_k)@P$G?umtlvd7K_2YlX!riGI$~fG6o;dJIUC9w1v*P7PH!0A4DobDm(g~cg}T`3J6c%ts6$AKj3PO@d? zL?N|~3;v-B!G2qa6dkS!}`2{CVJRKm8*?e#n95#1hO zBAF3g67!a>3_MR$>0uywnnJd$oF_zXD&+XeX@xvZ%gAD>%uTikJWEUIK_FRLLbj}& zCB)1?K`#f3@N?u*8YF9lMJb7y0ZRj(qyc&iNRldK%gRZbIs6`iLfGQmjq)sgm8=$) zrPC5voO4v*X}X>s1(K%g$d;AUgvd)pGZ)-7@R&SH50kaRvXn$#vNYgHdVn4SlBD~| zmX(u)$V(-y#Gl);#go#-cL$hArua@GFF7jkG`&l1^E#5Ix5<{3(}dU=UeecBwVo=s zJ~vw)sB~gLC9yNSDFn~dOnM+lruHRUR?ZY+e!$wx+s)nFeWpB7r<3Kvc6Uk454bY$ zJgugOf#hiw*|Kt;5VcdqC z>scD`B#ouVfFx-&*>VI)0>|;N6MdW`Sp-a=&*Y5%fU@0K=Xe2 zBEQL76(16w@Hse2^Z<}>tR-9KvRa>QqJ1a#c#gUYqo}OsYT4kGGhYNBB~JgmNT5?={i2iP1WYLG7d=N5AMI}Ht3>vUPs$VgIJu>; z1mlhBiCz_|qY2;Frgz7N`#BYVg8r8UnGGL!~S|KRN&xBR_yX4?!*Bvbd} zhLC73JQ8q({4X&={!6yZCAhalO|S&#a5}OQ+^($fUs}|9qYv>sTpr^2i9x&s)jbvsy?;VHEODT zLw6cU?Nzqr$XwROLx?>CPhJwwEA7o@zmn(SUb?i%Y=%3Y8o`4nc#e#p)7?jsaTnP# zm(PA;n`mE=@44tS1R*V_^;eAnJ);fu!k6)8VNUS-(>K9i$@KC%Sv72W!EL?4;1nVR zKc(?cdLT%!{!X?$(!iP<1Z&#U(qQcgCXyLOCJ5HtkguC}rw4)rYge-6kpdPRIACWi z4y+U9!CFpMO<~4jLhu>uIC>yRu#O>HRt}bDzALONjOqbDB+t_a$zox7T8SDSqI$q) z{5(eM>HZ@zs*x>^5RACAbdx+rH;~0rhf!EJ_Z7PTNQ}Njwmd>Gninjao{-1rQLi{ABoX#$(EI4v=^K24C&Nz+2An?TRkIPc5e(-Q<|t~@xiMgllJA>iy!cO02b&u5?0=)aCKHgsc)4pZK~h2%HD!Lb~Hf za6U@5tQ?%qmh}$kH#d-YejrcIZDg6S>Yq=dVR3{z_RB;a8> zh8_YErp08-%3*3fM_uM;i#{mN(0Z~=Scc-8EwUo#(W%irN1{_ETUL%v>)9epz~F4r z4f5=Kg{%{no%m*p?9h35zC?E&3C|bEmX*WfIbk)V6RQ*qYh6CP7kgBmqKC+WVJX5L z=7j0R{2K5${gxgB5~tsgEi1>VbvIV2a*OnvKPO#Qzekn{3sHRCm=!sX&O3C^k?8z~ zY&ilQflpxBSG3MokpdK z??<(f3b?qiqrncO$ADycu5Ec!__o&DSw<=2`O4J$iLEYANjF_#siAM{L zmkd1`Brj)>Epxf=G}}b`zPLq!rRDM_EZ+s@5;lUXk{{b%P8JN?fo75d%hiJKQtR|s zkXT(pwyYd0&wTs54I&ZCnx)`3Nw3J0^)gv4ELq4;x#|6(B?J%Di}XN{K>d+ySvgRc>a#0nXuUnK zhb7P#PI+FsFPsb}k}1X4B$cijV(?&XPY(tO)2R{;k%5zL1ixvj$m7&c7E3u!paYLnksb#Ur##uRa-0tG zZ267MP9S4nrdozMd9BwhX@x-dcbz<2pCc=WWvef#?k^|`585^Kppc+lMYgOQG}KfB zXgZ)3DgnOkm*?wOWWlg}B{tRIYQbZ5FFh6{RzD|OR*uzSnEd75I*~C-aKT2Vzih%G z_`w?fZF$JvB+G||te8|13sr_k?sa-(NaX%WwyYevLovwpL6-@vndKb(Su~3}H-WnE zAEgJ4)4)VBgT}Q<0T-eRkK3N~xRAK*PPVKZw}Uab86~4?Xa!?~o~hQdYq?u#SINV6 zB3U|Yb~BQKjZ=k3Z8<$EBx=WzEh|S2HL1F`YzFsroi9(Vxz^ zkU*^`TUHJfsyZubYxPWJAeSkbrA$fh)vQx~14DqDJ%x0|5=68YEi#lPxRHSqI?JYP_t0PO)2_uMAl?Y^T_h)Zo$Kt04&w*%|bZ zkdU25wmdQ*>(|QGBt`fP#pUvl)ycXkhs-Yt57{O3kdTmFNVcpTGF0_t4J3OCMzFB| zkvv{MAS;H&E3xXUAqEfDZS-J}V11WtSvgqVi-#f?!K-?yVwPbUTr-06UoXqU^&(j{ zEL^#yI!Lb|JYavM2ZRLdS+Zs2fT1=-SIf0h7S6}YS(9Ob5^VCHqz8}NgNbAYkBM!F z_9?<6Hjy3?60z}Q%gPZ$tx8s_8F#LyYG$1GHvrl~dC-m|i-%2RiLFY8=)&W6I6W>T zZu7~OmE-0;ge1Dl3|orqmnW=9)(cD6S&4O)wiG;6d3q>FsCvnkBcKxaj+T9j>wH8h zU_#-ixZVqG%}Pa&zR>nYd6vIQZYC_t$O~=l2)#oqK4cdR_R;P2bf=NjUT0h06h6B3 zUTDin;`zeV`?c-E@;p31mlin_i@Z5vcpf~#b7b64cOOZ{ugI3Ue0HyGqJ5v&dO!W( z5$daT!``q0{6(M!>v&PR*ngKS7B;IOPclVN#Ny|>#kcAHBQbiDY*{%*dwXW^d5qQ; zGC5-)fKXZTbw^g16PAKbm*;0SSt)D^ zIw3ZG+~9eDR?(eD0(2tTvT}gDi_?7mDVWxE>_(*mySG9*vy0?Ox_~ShmZa0-BPpN) zkJS0}D3C~fh-`TiN2-BSsZa<*>Q;HAZXrw7ex!mb@JQWEj{=F*O=Qc;k@9|E#%HNY z(KM@lneg83IeDO-Aq$2D3VD=8bks3{p0*TaCWXlmq3CvBh=}l+4O2CA|=}pglmd9%)qrV0R zniys&@}R+^WmEEMTJdxE}#d1c=62>$0 z=biRETb_^-U0~$2CvHiHNQg%Wj+M3aP>`(jku7sMPq$69Zwl1YjYdMHRWcRpbO}AU z>*4d@tmGMk*ODc}W**#!|5UD+7JO%VH9Zz2SXYuQD+lX9HYwTytcsa6?C;4km8=%r zw)JayyzV0lhs6uGsfLc1UlAU%d*~4%A-kJwSvh2=>{Tu3TBVxdE~I-)9m zD0?-v;K6#09t#qzSIL$~6j+1HP$AScFD%tXg0*kw} z?j(7zR*)szG%{A$1$N8mu^_=(O17*VtT~8!D{B^N#S#?rT6S$M+ zsq@^)8A)BP(qAxwXT|+ap0mfua$)hpoy|+d%h7=c>S1~uNT41dTOJ`mh4hYFzbswR zZviHfspyje%F=-cs)HT}5~z3o{{#vSvC+6|4(7=NHJjcL$Qk)$fO2%;flAZkKms+B zY*~4R@_gwU+2!>Zuh}~&jeY!SaRA9eM zpvPMvPt*})#jpt~nQd52DR`_7qlbdT>JYMJZ8Yj1WG4c9w9)5Om$u>57gCUxl{ucKGk_8Jq{#L8_AZH1GO(=ec6~D=<)88hv^=& zR9KjBAMQ|VC}TFCneL{?fCTAIvSsBUVJay55UecRmJ;CU4SAkkBP)jGDVYkYDFu(! ztMpKiSiM5FtQ;%P=Y^4@yrMavYwL~Rc^-THReGei2bf4^q<1Fj6KHCdYAC@&HI*I- z5~?X=%gUjej_CCIwcyOb3VEKEk+s5RsZ$f-2}IygT1pQBiP93XW#uSg_UAQDo9^Lf zqt20MYLF}%mZ@a+=XurO;ToVvgM_O>wyYek`KUbQp6>3RlWb-N^lYHMx>268uaecn zQkG9BbA`yl<90ngEF^B%ku597&2wCGWUbYBduyeTZ1$KuXAhHQ!*Z5Qlru*U9pv9uE?*eaV)U1LnE7HL}Ajo7F>u^QULZb9Fjd zEo?t|dLsR#Ed!6!YI+z*oK}%7E63>|M7eLD{Zs8L>yBULHV|D>OBqV0%lPxR946|{j3YP;1$huvgtXs)qVaZBn=FLc^;tvpnHWVx_VC9~NtYPwXX$AJW@n`~J* zPzNK%gSCyek6CGqtxm(j;0c|> zVg=oKBo@oambpx})Hcz+les;6PkDa2wQ9C6V~HJ@eE$e|DS0IKd1S4y{o;x7-3Jrp-`q*{t=4G4w5YhQ2}8s@)8+=y`^2qpmX(v_S)buaf}6iAwY38O z)z>z!O8047gNbBnWZZqb!-M3FpXX=`y8lRyI>?qcagOFja&(Y9NAt*PVG~kp9C_mB zIhsxPAIVXgYHZ@*I-P7ef+K+mBR1#cOd|-G zP&nr_mCZSw1SgJ~#mF1uJ}VFKXUNTj1^5`$AhB#m=$Um23E2gMO*?&>?lh9xPuZ3? zg=r_xZQ{Hnp2-*Qywfk_dH5M!TI9UbNpbPu37#Y4r*!v`Wc-+HnagK)*d~&`$vXSj8=)p@Lj+f`>Sh7~_ z&p*xZd5DgtyN`ru5!teGh^Dp7KfPM97)(GL}Eiz(g{YIqp0wG#DNUI7GIj2Z2OnGqPna!~M^p zZ1S-k9W%}!I(KM#e&cQ(9euauKLtPFV!WwQf3auOU+Ad_Q=bNlbi7a(Ma% zZ})hOJOx+LWkt@OFO#Rh6E?@g5Z!Sk4_A;abII#6Q4=hAIaH3UPqq~n}Xiu``2!;f@HP$maX->d|!m@r(PtRD@sz#-1WVJ$Md7qVs zcn!I&u)QM^Viu;ihh+b+FL*8yo=JBf3GwN+PNKL4tAt*)o^y&bLjpugCPxIoYxXK3x)kw8?|ESIyU-V-RqUXmy31+rc$iE8M; z6ZITD4kS^}kS!}G$~!h>Z>+Z(=*pS{0ho69mvnlX1SXQH>QBK<7qDOv=?Ns@IhsHZ z0m;!=vSsBQdA{k2>g%#K*lQD90a_rB(h+2}uz3l0NGPqRb5!7II*c9#lBPq*mPZOr zMsV*Q8_AZHGll5yjIhn6_sIiw4_PfNP)YQ6jtV?YchjRl(sU=;@<^bm zsOJnV*x$V&Pt$8;wN%pNsKC?oDm@A$O|OtGE2jxDlUdSAMV-TGuh*r=b$ft`WX5&4 z1F&huxGMwC(^PsGNS>yUEi2~i(gQ&+$-_X7GyU8|88ODp@Wp zP6_pRmJB>k*VDs5@^l^9vT~jfD|cttv{Kb51W!+YOdhC*$$DXdN@C@%p#x9U1N1nM zMBPue96^-8wiUMX#o4+bU_#-}7tfy1lYw5NI_O>M8S-vx*!B(S!N52$k<4HKw? zH?TtVEbxQ{?Xtl>0o#V|HWJ*eZOfa&ZWqtGUx+52EgoJZ4wXmZAiB25oi4aNp(rFg z;d5}zqX&S5V>a0`m(|j?iT3Sq@m%H>Mv>WHHO!J$$n@&fj9$=-I=9oM2RxSC>5?Vu zhV3tL_aotu3e$q`GuO~#LDF?5*>VJ30v#UfGo1t|U?SLO3YcJC-1J+kUlK6Eytu(O zq2)gd-#}U)S*}=Ye_eT^^JAs+<7DT@YWs&Pr{zVhJO8&WJ31o!fyftly1?g~_E(x) z9;H=uU-y0s`Na!;YwD-w%xq;=POEB}Y(cA3^uYh<(Xv&u42QYqGF80&|A3Vt>Jx9QOOSG$zx*L@Wa}4wHq#$)QydzBk=p zBqw{3Ei31Q&nHDQr)P3za98=M@}QhdmIvF5NaT}7xO_f2iS90vlNDsk$~oDI%O}=p z^npI-WAcoAge(n~kt4*Di4`i($9Z&Dk$jv(wyd0wsT?0w)2-P9kbFlTl5dgq!9pU@ z<22*tN%;odUnD6vk}WGIW%n>roEv)e;0oIxh;j|auAaOPM?F!AI^+m%>_i5#_ zHpox$+5dOfx`t=Isf3WJy;Y(Fv#GrkZ4;Zqe9y#;6?dkmR?1q-A%V2Ff!r|e%gUzq z){)f;ZQFbg*zvVYeHNeg{4Lq#kB!fARl0A;EO$29GMD8_wu$!5=%ln2-^!xVqMB6NaRiRXMu;0J(^ddw-<2n?|`eK=`$XO~qFyZ1Wbiak%biYcLT<75)aO=4+h# zfl*1P*_xiMJ}f@hL$<+Z3%ZBMRMTNwj%?{Rt}=OcdNq~sOsRXf^~{rR^VxJoL)V%3 zHjnIRTDG|-Qm*yWbYGFJKa*^k>uC11O+;pd*cX{Rm&Gwmw2GA(1LepX@QjwWxy*1T zS)b6%pXVugpHOD#asuURk<;mpA`w|lwyYcx&m|ZPk?yjo<+7lkQ_BWx*H6g9aw%CU zEG$dJU!Bo|Vy?C>Aya%B>jNM;~&m{<>F$H@aSf$k>~kg;UTn7)CJ1VkrWRt|{g;tw|7 zF)EpE(=24dx|(a{LAjbN6Bd+^?J$^f#1}6Q%$0P1k-%&uTUHK?=ZaAuFg*oRtA-MD zpFA=5kafZmvq-Es0b)D>^T^yycNmGxon*_(kqI3fgMvmW9GExcfq9Lr5*8T2!Lc`7 z9+y|??jmt{g=|?lE>T@lEsB@D-j*Ky>;Wc{8U2WNNi1F-n5lGsk-$tLTUHK?=Y|W` zC6)C`tx(N`43<~O-i;40 zf!C5t+Aq*04c+*_H+x98hiZ0DtQ-K((Y-|i@C?~9*X=!Jn~2N{v2T5t7fy_}vr?D^}FI`@!u!lD!M)h`YmU&K5!chfyaGIJ-{vT|m^vrbt0 z4xsafJUXwD<-(#PoOQwi=Lve1?l_X5SICwl2ojjhV-teTG=YE#HZ6IJ=s=Ts;mk}) zd2xk|7ceck^XRsI6FhdYbNJ>uqvHP->&SPgL)g$arM@DLxk>kgP}@o06j;av<>BBs zZQ$(k%qA%3+a@CCtRg2O;-8?L;_qLh8Y@d~EH`F0OSy(DTWEXdSAZQ~6V+QzS9w}C zFjeV|)%BLmSDs1t7MTuDw=GAueH-U1J0siPGm+<=wEP6PE;(s=DP7mlNlTuB<62D> zpeXP}&GB#%-ESlh7mzKx&asZ^eA`51)`)%ja^Du-jxfpOjr?@FhlNnnCj1Y!wV5idb~JVF!bz9SJD zOSY^WAxvME3!W^uKpvnY$WmbeinA}vgPWuWJLHEfMbPri8EJ1PRAPAiY=x(~}NPzAnTUHJbCI^9va{~muAy3e2WU;UW z#hHVw*m;CrrTdOV=oPZ%k%CaL8{6xD(j&1wz{I9M5(9)ny0NKr-;oGSAzN0C(5&GH z^W8?(TB6BlrQnEcg*-^h$dX}m(aG@*={*YY8EGj!0whjL$d;AkG#8JPQ5w+8!INIj zktb@9tQwZ6Q{yMf5rKzlfF1-AstVb%a;Of%Lsigws+mfk(GvvgMtQKlN>&aF)*11G z#f0GDx}F{g60YmWmX*U5y*}OC&fG}l>>xW#^raCTq@7cMP#Y4{KUA78@iF?0=nl&e9k9ZR*nxQ|Cp8F?B(t9 z{M<^`3d>KN`3FMh^Up1G*O36-Ot!2XpujgLp1sA*v0F~>omdlK4GEJvwv^pmI{{22Gf+DrMvCm-ck@$3zEsqF%*7pbSxmq5dE6Gx+z-N6wkIzQB=SX}m zCtFsI52gcK-(Q>)0O%fhfbJ%Xg#{?i4$O+3N9azv??{AxM7BH<5P~D4xtZzLzl^d>ZgbRp>Dwk?JQ~R*qEQ^vJN;Yoh`;JQ>yC#N$`xX}X@Q z7nY`z;-je%J`d7$boY@UeU5BdIY@|+n*m>R1!s;PmZ#_evRGJ(VjQ{IvGWMsPxl>( z(67jrM+QPA?sK+|&86$@cgbQYK?q{!5qg{MI})Kc$(EHPgjhv0Do|+$S3uJ849x@+ z$&A@zTt#z&=ONmc?mQBrX=KaFAwn#H6tcy@6y)jh1g$1Zh0Q`SE`dPgJU*-Fo+I%& zk!)ExK8PJf1-%kH+vp;Bel8$uh2bMh2DLzW6lQJkHb*~{be6y0+q zK2MM>E5`>htS^|ob7ltsny`iRm~1SVNT!~SaaeE1&LcFM?mH5pt;m)~3PQn6A&1E$ zbO>22Yz~SUp^$AM2hx2J2%PmoU53QJI&B{hW3=b&!7>qvky zWXs9{N)Nws2B}=j<#cXy+LiJYZ6phZrD$b*>m1Gad6X`v`;SDaPPVKZCB*lyAf=Jj z3L%Hp+$|5&on*DFCSvJ`d8H zboY@Uy-v2Q93;dfB@BQ=m;GmMB|UW87fd8Gbc=D4vKc>*(lomNNR;*@TUL$|qI2sv zD@I68S}jk~DzaV*a#ACF9;6fL?ju23PPVKZB*gZSesf)5_5T8ShR!ETg=Hwl?IRF5 zkI#qbo+I)3Alb5Vd=Nu^I2da#91#^j=oWc|ZYIlxMJUE0zZ*S|(M@#kkr>@TwyYc@ z#H@B%&l>$@6PDcqBt0Wf(oiwXI_G2Cwkb4iI952H#x= zilUA3{9I0!3d>K7BQ%Jd$EQyB9Er~*WXsC&LFFIr652cE`S}r9D=a^;=ATl?`PV<7 zyN(3tHnQar0npjp9c!=11N1UkD-{4i=zIoxk?uMYpg)o=D+dVi&3*+AEiMOF&!&u$ z9*j)}6Uhw5V*F;`37&^&d%E*Th$fOPD~AZN;8Ce{SIb&9xQBL$JVp!2dSNqBjH~&L z@OhAqq`Qv<>2R`TN9c9B??{CHNw%yUA;byT)iTH! zeggKsqoqe?)4)VBBeNJ!!1hYO1GOhT1SC+qlPxO;YLDm-u(j^sSy-#&`8km+5jGPo zmjC1$BIa>fPWKpz%W-7O%5h1xz=glf^L%+;K19|C%gd4&cnQ76^MiDkk-)4cTUHLt zo~?li4!CZXC*~%yNLXTyj)$0#g^L^LJ|mI&3fZ!9WLkAex!`4;Pss!G1X&_1FmZHA zxg6gmJxcc&iOWM|%gS+Sm0?P~h2ZMM=xwBH;H|(!GBt1<8ODm4M`m-n&q!q68+pjI zs$%#(83)P}GncOZXrlzz&Xlym(8cww%X&|(Yz*aByt73|eT-Jh_L=ZkMSZ9qM->yg z8DkdRWh5~BlPz!3IR?}VRx#c3#AL`KVLPQba*P!-pJUFT`;0{9G_qyo$h68a{6f{` z^2F518exfvBgcfUP+dZI841jVWXsBdX;sI7dci{!eXBi&~tGS8AND@UfqHi~Yey3VNRA*Ulw9wR+w z+8#_KGiHim8-*uwKI2TJdyd3sJlV2xd|K=YY=~%-26S#)=|XvejwGvvO+7K}3G@fg zLv%RZc_c*h$(EHv)Z(krhK>cjr<$qs89l*Wf&KCz70HTWL5kt4QC`r$X3Cyl!%gTXiu~N=& z#yL@*m*r%Muz4nimGaQNILFaFM&fb|*|Kt6TICnB5}YmkkUTFRBx{7_C64?8A@liV zJ>6v_Fg3De<-l}CkFDTju(@zXR$#08P4dj#K$Z#1%u@M*l^ZpW%~$ANBeD4s*|KtM z_G*ERF<|6^TXLR|r{+N9H|p!`6|=yhFCE9GMp7uU_s6bWL;Rfti&UFfo+B5HXL-{&bI# zxXd71-lTEiZWqkR<8lUBB5a=&2QKSF?lwJ*?lBUVQ^=N;lQqJooEYjFD`Xy+`E-|& zz#L4rtQ?pY!|dK{a0a+2&r6;x5tf%2#!V10k4rDzVW>XzKss9JuR1~ z<~XuQ*i;k4RG%F)kIXT2pOMHcCR^ULktuN}7k^M5ne}9m+KLRs%p+5y`;0`UOt!2X znHKwKj0y~;f_oxvkZ0yAWRq>xsWUp7MK`@*>=o) zhWRMnXCyKoCR^Urk?9X0bDKOe-zAIGW@JJ(dVZVkGZL9^k}WGord0`S_69e4{!yNo zXUQ62iHV~GhLHIj^EBOMBrs2sEh`6R@91R%NYPp@2b*OBd1m57>4DRDFp*3Je4PBc zK{IY1oiTL3k?4#fTUL%vtI<;fonXc}T%MizWTmhfCyvomGjJZBgXxYV;W>b8Svfo{ zju(OV&&X$0;C_rb!?<>|SLtQ3--D>v`hti$?GJ)S!0!%{hcfo5~F&IeOTxbS%0N_j>PBBWXsC&X|cJusI51OwcrZp z?vtbkUb}*cWCmU_Y%X@A=CjVubgz-v>`1n}Nn-=s{CI4RlgH*5vP{^F69+a<)I2te z>0TqTIf`sqIW{f!hZbvvs?lE<49xSam*=KN)(Oi^4EsYHVe{aW>24#zG0B#dgVUl` zhHY<|s+lQqJ=Is_(fJZtDJ(iMl*lY_9-c4I9Y@0RS+Zs2@U+M}CB0Xx8Uw*y=?}@H z^INh`Saf2@I*qV-aDGE~8wt)Y$(EIa(_&o$rZ+-&=Da6Q&O2nGu;j$BF42seN9R9u zzme$tn`~J*IxTWezgaOta?bwSNe`@MfQe)VRx#w9M%X+!`_SD+g40R1tQ?#cJG%PK zb%E;mG+an{&yQm1EOli%!UQFyEDD=G$bAu*}4;MaK%62j-h}myy7Hoorb- zFf9h)Wj$;3mrYnL52TuB<*|91tP~cT7zW@ha2}o~>5e1ed7NxnIXo@KQDwcT8KoR| zhROKtrK{mFU?Q1nIEHalGj1N8QFOnN=xj;0tQ?&dJJ!o)trR>hX}&x*2a`p@rkogd ztlKg3$Q(fT8HvmsvSsDSw5V+=MsF$5N%hJTlOt<{B_@X2#tNASMx(oo1m-NVW#z!M z7;?ke69Ha^3*sF^|h-bdQm^e4K1qIW8^pODTBk&t3Ao{DiC#mX}!a zODW{mpC8g)MgsGFvgJ)0n6tT?o&PQm%wNeGwG$W!na?nPrn`&;=1*kH%7JNdPDur> zZYc+sD|g*Nda$%Jm`G-@6vH_sPS89wJJOv-LbDy&vT|rzoMT<7!XkGTzGdhw1kpK0 z9-YNxt+3f9hI6dFq4NM8MRy$u(EG`jl>^jbC$Xzy$Tb}`d49@dsj&RSu#?ymIggJ? z_Z*2&foypM;1hBh`j_PK`2tz0_Tv+NDEepVo+I)34B4`Bd|E6pxbGl;Hu`Vn>G=&= zDJ(rPEHJRZ`P}nMy5mTAenGaZ9G>C3u8{MJ-;t;1KV+$}^u*V7g&$k|Z@TA5eEvnY ztQ?U>llq7Rd$!a@{Zrxw0r=Ulqy zNPISsEi1>T#SY|3t-D&*vcaPXzAewrH_19-*@J6O-=;L(PkpNvxwj2SFp8xD_9UbQmP0z1b+|hC7Q2s>c$4ckN$r$+oue$S}C_%xWTk6m2Qi+ZWL&Zy`^9~-is=`_gi$*)`JyHYO+0Exdh#{ zd87G%C(7}CO%spVCfcLEo{DH z@ikBVP=0!wYtgRo7`cZ158X>->if5CIkLT{N4{ z1$so5B36>+!KR4A#X*5c`3mU-x~E7)jwf4Ij>yyqM6za(k&ntV@?o+*SVoSJU<5+t zAvu@sDiV?nWXsAS*)1B9;N0N16&B|m`J90mB}PltUM-L z(tSl@vKiU3a!jJC68=-pgXJkXfUFNTmB>^jq2F-Mp}UHNq>F4>IV4fJ1e6O_B{_LY zG_pWgN@Q}06)T@h&Z7H@#N-2H%gQl{$|d|hh%4kNxs0q2mJ*p<61oB6<8)V%kX%f* ztQ?Z4Tms4kcMJbSo{}Gu1;SDylS`~v`CRgSy01t~zDKsaDPt1sa{elh$)CvrwF#4u zF6U2lUy+zRPqwTalg{w@l5WFZJqx*yZ09M`W1StrL^5NYkR5o)C7Lcz#C&Gij_xrM znQh6Il_RrHYh;YlfXcns^J%hW<-qLM8kn-t+ZUd4ej`uLFUfLY$qD(ciJEdek@E=s zg6=sIp`Vd0D@SOU0-3+;@IUhC{F^Kj7M&Ohrtz#$`Mi>%yNZNlH?n2rkVLFN^P5>#$}@5TSsrXYkywEa-OF-3 z-BTnY$C528M8 zi0ntUtUQxMA+o+dfQTlK$XR50u>Fk;BJ2BkL_R?G6p6^GWXsACi5TUC9R7QmJR=_` z>w{%PVw7Wr%0qH7-BlzcA0t~<4oOr+vcA7KCy+^gC{M}v$pT?1k*P?mSb0poNB0$p z$#=+>H&sk}3MRKU_-A=c{zMk24Vc)m@|ZkN_Z5lBAIO%KV=^s#AZ$w)eo)7bQ>BMF z+kuH>hB+bUNMY9ly&?0^Y)f|;3C%dNW#!OB)F~mS%pWBW%lpatU{i}kof3Ym{QKyx zA|W}HY*{%Z5#t^HEO}F&kpfvBEF%)*9f*|ABL>}5BqBXz%gPann6U4KGiG7BB2dhJ zRvwejkR`%mA~9j_M$4n}X}Y&aR6a$vtQ?iS!|N1RyiC}9>@Vek`2|@hEHEL*7h($) zU(7r!sRo{Zgh8%um)D}!2RvwdebYGE}RLPc= zV-m3s#i)c_F!FVIPQFG~2+N7YJ`^Wd9+WTBokfE3MY3h(phV236tcxYHhEm0l1Iq$ zU@4K9O@T;xL>{DjibUl9$d;8O5;4{(=#}81fLrb^UBYe#CXy*(CB`~ds5~V9BR6Fo z3CVxSmX$*i@!g=MT<9dq9C=i_5<^AeyFnH(56pgahmpWcCtFqyOjO5X_69nhv*bzn z09l@PbUbD+kI1QXPmze6Ot!2Xk%%EN+}t^5b^wx(%R_Q8Ss*MV5<_A;Rvwd&(S1c? z@)5G-O&OEm7Rc|*WAZ(+KyAV#WE13f=)NK``4-u-a!jJiShF{Hrq`e3DS4i(50(;{ zG8RJRbIBj*t|B4%J=wByNcIe$vTt4%9q4wp+e3Q5vn`lNX22tHr9v}a9+z=+f04Ls zL$<6Om#9&X*{kJpA=|6pFVD;S$SPqoi_EB}888pbp>&6lz#K%jtQ?q#qb}fmGqPGC zIl>;+Ox5S^o^e=g0 z{y~-rOH2&iQs@axf1`VhMCLDK%gT|7*kfDN)*HoIaPcsek{&1R1}2gjCrRwFb))68 z%Pw?pk*MrMw!F!r0=wXNRF0QNiW4o5%F%Rhk*F*pTUL%r#Foiotxz@k z3xk2_mksi)tRriLWkq7kWFuT2mMYy{BrIo>Eh~p5qRfTeVVSC#DRI5f*W_{eGFc@o zE)r!f3z!Gyi*$#Pz5`{qKQNKZfJh>@G{WU!nND{X3CrGO%gSMi*!v$w72qk(kUQTUL%qM6FUW zdV`-Y8}gL&koCb*B2lYYq4JPq>8>InSwpt09FmCPF&u>uC{jKx&&a39@?aT}7#>5U zJR+Z@dx}Kl6J*QE5sAzrrQpRaKa*$Vr(}Jwj7a5?Qpm+EKc>5igyasgao?jm7XK(?$L zmWUFz%AL}*PM(u0SspAW5+y7|$|G_%-BTnYC9-AZh(wgIAY8D7{jxkGUnJ{;WkjNc zwL;|~`8?fKBqZ08Eh~p4Vp8rAAS@*k(`t6CJSM-U`-;TmKCMogDEO)ALg!{wBX?)L(oWOxCxX(=~g3YMHiSFf~v~E!KMV^3cbItVcWT zG7xy%ZaUib(g_3(X7l`XY|jSld1OUnQpCOWGnDLW@ifU z^vnR9%4R>kK1M5L`%JjQv8WIA-R6)|-v;h-)XRD)tGkX>0@x1km}_ZL)-3kJ=s44_ zm9<`|TKZgz{kFwO?WaeIFRJ}kCzp(#L7&`L$0K+CV_?T8WPR&S=V|VncM<%8)52HU zVYAl;D`ft%riqP$ChFT1j7l{FCyy81Hn`lj6uZ)+7DAgF1>L9hkKkFAZc5;xXoqM$ zy0h^-PVFBEO65`eHc=DbgMZO!^MqvHW>r}$RXCylkeJY8I@uFBsedo369fBqq9ziT zdh|)wHip#6{XV2O-#aO!x9PMWn1%;(Lcb@f5)=9zQ4>L-Sp|X3WA(A!wL(F!W~^M~ z>k8<$^30v0XheHM8$unhbZe11K(s5G(Rh!HQg2F2^=Zc1TB>N~^g^m?rn+lJA(t{s z@XvnU4vUAk`V6N!=&iw>^p#n&=VoApZ6^|NC!=L-cQUp+L%v?EQ6A)3cXo&^A0?~1 zJTn*%6g9zGf3BzrxAkXiCDQuBRbXoAz+g(NK+88c(95Z%rE1yC)v{H?EcvobZ%nP; z$!bDlU@)Uqps5=Tua`4$lXux1w!L$rO0)LXY!d>7pRnGOSDC3=MNdH?oMI8r_o;kQ zJSyi0z>e>wsqfUe%1p!K)A0DT_wih2zd&Bx^IMB6Ug}-BS;uA_)_?d>l0CB7!H+Ur z+pfXj!8^A3T4D zz+jtIdOE?@{Zu*e6ec+no-=bQw=J=PWiR7DOuD3as8Qo>A zZ0J^VeCirsb4=YQsdr&&=Ui`dG<|^P03W#Km;#P?=Vh@ayk~GcS=2=0&9U=5Z*v@P z)z(&9)IaHKi}xqi7E?OsdE3Hq02%@u;2Pq6qAIfY;!sf&!G;j%R9L^{ly(9pm=|Y> zzTj>t|C#od@;f%OUrH+trV93J@9+E8#lu*AmQ%kMbgc~Mo3J_E*$1;S9u5#4gpswC zdj^NC<*TC1Fzn8@O+?o6v6mO&^DtM%qj3I0u;Z`YTg}4^$;)?zs0sGITqbIQy|qpw zO1-ru882Y^<@`}?9f0rGcx#>cmlFn8ndNLBVg}~75N8Z^Y;Xn!)@Xb)FjdPPE(w@pN*?6$0) zSK`q(-wk$rl0~nc_sc6+6g9zKmAq{t_TqLcNMC_D(@(>bVyHJlC3c?14MsmDst<$n zlcFXPmpEd{{0E82+;YkMHc_3J)ZY~~k+{_1L$%*0rgW>J+V4bFVnRPAY9c7KK!wJN zJSXi7m|$KUD;kK~&z~q%g^jNZFeSfw> z8rU^AFOzdTur|(B91nb5R!A>D3A~al>n7MH+StpFa)tKEdq6z$<~zZTPqg~z&c^e& zZfK6YdR?L>*vqn?Z6fxbe(Mm3SHq*?=<0cuM|HZ7<3wI1su0VICyJU#P~_=(dr3OG z%3Ng5Pr)@@1#4J1U}*5q&Uh`gu5U2qzS8!1F=bRz6}@VWC{~qgda4`#TJO=|*m3w( z9k$}I`5EhXV7Qm+DVxQV??u^QH(_2+HMbMH`-p9Kwt@qx`~6eH=euog?K-Y+vu2I` z8*A1K41Efc>Yv*W2<62Ir0sw&xV5?Wri=zc3VV z+Ww7()A>u_Z{zd#u>D~-RJGAEOSA%v_7Z5CF;%@(G0Qy#IF-`7W#OydP$#Te!+tHH zc(CrHx7&UgUJugoWvvp6-Ufc3x!oRlU^QfCFBVCJQ?ncIc1iqt7l1WYh5#)<~w zR;16icgb(cQP#H60?r}4ckN;YtivbOHgSS>}C6nKk;e1>x_76r7>W~Uy)AeY&;d# z>fxze$+R>4E0Qnnj-n>mE3=(#BKEp;+|pvdS*}_eC9eIbPw^w*fpJu)yyD|K-G_qU z@K8?h!$j3$=pG_!0xh`k@OH1}R$%LUAw$olj$f8qQihMQ)|utC)?Tg;``STEtQ|T# z!IiXDNo#4>mGtq;(oI*Ob-)#_biMfb=ac^Y#H63u>39T{NW&wm+5nHzmPcu`CvAC@wmjlm;6w5)@Ig@% z?EP5pG-A{TlcFC=?6cfVm2`M3V9W(CL>actcbhOE$Z1tARUPcN_t#x^gRh;woLD>U z+qv9KTkcquqwP-Gb|-DQleXP~*96?*8tIFo3bWVb^P(maZ=^X9jnt$$l{0$W&q=MW zW#cWr_PRH*_L>{jUQN%^9?z@}{}#UKelDszYr4BcO(foQJK0~UTI=Vqp{$sKYHLqu zpig|q*Fb+stbulRzLK@aV(|R5^?Yascs}Oa_-E zEA;Jc6KyO>c3cT_k4I_QwK_~JE@@N&zPIqu#FU=g2~SVEPiGY$uk1nc%FYut!RVju zG)~;5#<)d#k5&HJJGFhvpOKjI<2#*)rk#g!D4!;(7E5}kh?+=V@P%+|M>S0F^AZ%? zd1#d2=ZLDs1RoSNk+|R!UBOrMSB;{vA#n7_ml6|wQl~3AdoV}(7erNK!hcrOMDoHf zE%n2o#ac94rIma2sxQ6Vlc4bSgY9W(_raX-cZ;gVguheNMB>7aUuIS+%}?Wes{c7L z)hBdXPi=k-$9JQD64i@I{=BG(YQka#4*Kpmk9biOU?Z z>G*qz3Egtj@pnXZVp4xg)I{P^hi^K5A~B^~Z90BbR3#?#L!u^vLJM@&thaYkzkmtm z#S+m#+}{3Gp^uA1SDm&wNw1V(LT=6>z9GZJ{bR|D_3c^jUbY{Ufd~2eqmV9qJUm>o zf*m7jg0_yCrLk{VkKdZ0~zx`(kR{ zX-@0%M=#8?KHSdg8Ebid*jHE=6_qt@w{0S_3Xi=)4DU}bjz`w~I2R~3=)VZRfidOO4TbefZMjQi+XmI9- z57AQ-6Lkk$)W*(;#7hR?2~SgR0(Bw!O#}rOC`wsf>-5|LCYTqq>_8%?8HDR5yN?f? zi0?~x+jqrMhK3YQP9JZ7_W}es_o;+XFcBP(EJw%NCIre+(aLGu0yvVi$2}O@C+EDx zV* z38E$vmwOvaZtJ7(f)DP&#KazBi|ss-lX^f@Cnj}8)I?Bffh5oR2`5hpm|$Kw{e*xC z=7lqO7cjxR*jBXLwY-2?nAh7o3o~( zzTGwv*#YJ^bO#Skaj#=^jzg)M*=kvb8wm-Y)Nc*f4(cViXzDlc?D{D9N9$1jp)-f3 zFK=9u$gk?m$*e2G(JR)M_0G)kg+t4cbIdJ&)3;h={ib_OBk#ch%>#kmwI%Df-8Dx3 zw+{^5>1h4(tng-@H9P9i%9j69)Dh#>zXa!NSa(hGZXMzYLW6V3oxFMBkX|2Wl(K~y zoXY{11lo;}e*u~&|DyHBpRGUsV*T-o^~c|>KmK9;@f!T0*GCt%^*O!2+BbCUd+?w7 zsH_It+2P8h<@GIl3ugDwCH1ZQj9gAH4P9Ix?>@)UF|A>#o!j^m0}=1_GnOU1!BI9H_$~ zPmOz0J$zh?-!ndxUKwa?~x_ z3Ol(+o!AuzAr+^*byHww~any=^F`D=JTxs1asv&EJoT!P! zn_)ZW{1dwspo^?oU81)IK9N`pz)Y`w-izG;jYo6hUn;5`6aOMn6KL^;XPze7%NuZZ zymdb{clYAA6VrZ@v%cYdFsJ-CMP*~kf890_U2?}g12WT^IX6n~X%EiHSS$6jYt~ib zsf7itQh`%$vb@j_BqsEJ_MCdtrL=WsR=VL*I^Yu51oz7~!LLM3F!=8kHNnb92L!3| zF`;hAY9IINm1ZkB;INbQdJnTLFkEjU-NkYvt zHL`h*4IDkW*X&q|@{m$tx9E1UoZuQ{5AZ~?D4!~7BJl>|ARMe4JS>8JaH#o*hradI!LB-HYR31TbrE zW_D(+^Hg8a9x?zfiM9!A*0rK0ShMztnsA$Szg7d_$dQ+D)j8(Gnvq=#9|x5EX90XJ zre>Y!jD62$PZ_QmuMriHHRDybiO5Ym#cf!-tji)R6z zShjh@X^yxDPvaUpe>llI=EPH4@f44@F9)#pIfV=UuBcipFT5>kA}F|EukGBK?z}<* zCYTquCe-ZK&Liu@4Erl0@6^w%1e@J`sC}|1pR@LdCreh)Gek|G1sCo&hTU#-Qewg* zw;Qbx6_34k%WM+@-LYt&5xw20oS2-$Z8tLIbu5UQU>qAxQ^eh0L~b{_GBLe}*>1E^ zR4az<<)S7Mmpfv+(f1P*yXAJH?}_Tfr2dYmiJ;U1y(*iTbn=vd3FbvY9dr2CuP-Im z-mSiVeL=LXSaUxoY9c7KKwGiqc1DQ;CYTpPq6MWp*ngz0rw~l@-BawlYdqqT;yvcZ zQtj9Gj$8q^r|7Wv6Hf(qBx}Jbq9$0QPZl-dHu`s39Z3*9Hz8UK*`JUsDCp~#!xV+p z4!-HT;}UOS4IT|=nBcZK93!eNOD>B=O|TX|$~F->*(TZ&s`84tD%= zLvX2yb9s&PP;M@Kt*BZ|@IFx!i3{F(N&Sk%M8_i)n-@#*8`3Gy>TI}` zw%l^=R06ls&0H05i%V3yfNzqO@J^y8f{i9Hf^sY2q4utIj$fv27_@HgUaa*7ws9|w zr>*f{M)<0S9F%Lsqigq%dF8UACfKX7#x@cA z5MnF)+i+i+s>73FIJzoSV&`dG_PIn<9|q@zq9ziTIO34pZzU#k%R_R%A*vIT`bJR` ziAx@;Oz7W;ng|Ll*rPhj%TC%CFu}YyQZx{^U;j(18Lr5jD7=U| zZnky0>O!;F4`1>5a^si-V#$q-Zhf86KWlcTyJi$}uu7ikE|{=&3jUut@NuT|a9*2hl zP9sXaq?^fj0pCzw)!yQJt3}oaj=s0E8zP9Ia;cAVRu@iMykODsi--M^E+eWNOY~>h zCffH3PPMPCvNq;uspV!>?>5b~DQg&OY3h^oBk@R@KO5}$U(4M(v(_zX-~`;uTymXA zTZ2}6O@XTs&y$z=98nYORUH&H!CqCTv87(s(`3AWSM@jTeO0$xyk4^=AS(7nVf=f0 z2ZR&Hd%Lsq-tynY4*L$@E-EN{hi|n_M8Cr=kATQOX`KUrKm8&9ob~&^gh%F|hkvpU zeQ=Ko=A)nGp2cs!SJt@($kkKpS7$~^I;&XhFY8t7a;nB^tM&VbM*hB0gh>*(*{8QT zJC?CNShJ6!sKI*PP;1XL@2X$xUtQk|`K;nD5W=Ah`PUtZ^3Pa$J!^|*{qchJ$BWh< ze}+Hw{J-JX?4uX*Z^A#-!>G-_1%Go%{y*^N#re1GfBrB0d0a>S9s7U03xA#ow84oB zjnfeTNtchE=2LqO`eO=v{1LMg;xcAW48HN@1;EhlNvy8N*Z6Y!w#lJHkdOdn(Jlf`` zfE}N5_2Jf|_m$Uiny3j@HtcDehuHqpjJF~vC?K(|kZsK7QNvnN&1y7hve@JH6^W3oRWY9c7RK`KzH_$xx<2h(t9VSbSG@4WUizgSDd|MEi~UtUh_RfO)&bW+9qNzX%F!#;u)&V zJHYu08v1Q}(m~IqR_jJ@U$v5Y{u>tsd#Ym+YqCTAO=j)3X}lfIhtkZ!wCiBnb&z{` z7K^q5OQuJOnn=7MXPykbSG7-f55TFKsjPEI(qL-Ptd*UPtpat%H6QlnwY7;g-F}_m zQsYE0y^yY&>4r;b%O$7Jt3b^GE^&?3C#p1SEM3$@u(1TXE!Oin`BuOL^PS!bHCbfOci?Pt&-bKgE3lX6aZwYAH>7CK*Ku%C75$c-Ms5zD!rm2?khQ|w zq9%f^AkZJNF3m}#0w$OjPM0QNf_dT0w+onHUTh{hHnzNg1(hvExAPY2{TJy2dco{> zHWFmb(tug0StpIctzNLAXPqXVf{Ur0B^O^8z9=5l8z;2)){GpS?KS%V_$aX9QAUGJ zRHXsyOTorEViJEXB$hUWOe*$dkbuJg;k9p~jsh#oH3HVlr zLe|xaqT;fgm$ywsmTj>QiNiO{eKHFN_2pJ-cC8SqqY==vvlC7%~H!CvA&*d}7nmgC$taZvo)kNOlJdq^xyhbRu45bWdT zEy3ZToZzG3$&z)&R-z^n7kqmsc6+YY-L~$(#keam-QmbF=a_%zqepwoe8>%l`-y7D zGRJgL6KMH`my4z}5;&A!mI6+K2N19G(SKrMt*}e;Y)km?wCREMDqP3E3d==>WNmSr zZK91?eC$ftqR_2n*TR>-K26U~Ow)0l@XU1MnOs6C$*Z_l)C42C&uNIbC&I?9w08@` zm+k#E{}#QW#Po*4LhXmbhwauwIl-?GRf}PJnW%}x1>a>6+*el8n-{94ti_s;ub*yD zO#WRv9T%F{tJ;e*t_xga+$yRhYm8e&O(fnJJ1lg9Ci$D9 zCW4X+jGEcN+v&XpOfWBo894}7QqvsztqIGDVSTUyvzWEAXEO62U-+88sM`O~q=poG zyRRZRlXjd*JI=rlduA2tD{zM6WCnO7In>z4HqplVYMk5u*xQbL1=g~}^c~;mah!*8 zIxdyhafzr2M*2dhDPpg%?C<~Ftr)H^9-1!N*IILe7ev)!3C<8Tk-Xq8;e1KE zF+suInku5Cyd2u~|Shp38Cm9Z}7g?B5bKk+|$F zYNsa>6Fp*e`%zJqn9vW2ng|LlQ0}mb$?1;;OfWB;ib=o(^TL@s7cjxRxKnh}*zy7v zOpa~!xnT6LC4T55f>np)}kX0>@0PwM35f$s;W&X1)Ql=+0#w+;}pgfazOlq?P> z+a}sr9EN`5_P%(u&hH0ye4^D`eB*Ygym|+TnqV){JljO%vWYP4t-o>0z*A#b4-63; z^NrgXqO!46ewriOq+>feW}H8C?$Gr7#@#wP`fkgA3Vy)%^O1sz9&@w9!dj(j7E{)T zW@R(0!~L+OUSAn$u7jc`7|{bx)5JZ-!)I?Brfhvm?YEGsTFu}Y?s*l;$o@`-X zw)xWG>j}2L{ap4z8$WIKPtm4ht^ar1L>nuk-F=@*`MzW0iqjnqORE2dL(wC@VYA)f zdYwt&i)0l#LDU3ee5`FE_HO?GuNwBA2ulRY4*r7^YpMhNO=WGGu$&|B-akN8efF}< z5jBx`1McM3ZAGoJ)>;W@u7Y`&;7(7hjdpI7ZtnA&E24bPS}m#}Ylc;#CK7Lk8QkZC z?$J@LzaBg{v4)w+e?91Wg!p)HgQ(7|sn&^_2sV{KWx$FHr;`&f!Mt#a3jq_%3uh8S zzy$MRd#AUKd(g2RyOtt!$I$l^<8yoOjTn&|hrTCD5d-l%q9zg-e+#&o!dFs0m6+OF zTDM^EDftOeZJ4}|ike7V-dT-HCg$6FQ>KC&Gwe4iD0t{WHons{QCBOPcUY7*X;SJlS@X= zpzo!d`My|&8jVvbqt3{lovGQ6_D$c0%z5t%?nsU{rr9PUM|QD~A;LfSIW`_$^M`^R zpJ**V_&Hi$zD1%Y*sHNX)C8*;oJJIQyOC(F9$h?-!HIw)$w z&AMY-eR3QBvO?$L5}cD}rr}2lKD;za))@5!qhBvrJ9yzjJm~&>>Gn2yaltp9M! zL!$4X`)!QXMg^n0td$MjzoYcQcv>g_W3c0syx#aW2A-W}&*moM{!dgy)(*cGH4)Vg zvB`hHGQIlzhd)zE*;j1XRcnJ&XGTs-Ipeh+>kh-lpvgPY^Lk?KGp`ez+qaUoU9$_< zhHK7zoR(&;MSlqLPf_hz^Zi}aMB>f2|7ty@m38+Ff#a7iUAZci)2bTuH1=%;)jp$= zT2+H9pW!q&U((y@@K`#xkk=~Rxmr(yQ)&BPgS72b+I7mly})uR-E@k3-*y1cB+JoB zq9zh=uxYEH?>8aM4W<^k?W93JwP>)U72!+c0-W&~xF>IZVhy!7%!jznq+Msy;7rasWL08tZ(H_*=ZmQbrZvQB2RM({BIZ=KWOdwb4ItWl;oyRNN12^>gU zL-mFOTtl2Lsv>KM)uJX6Z-{Bl+HIL>_B)*s9Gy}ys)NlH2Y;pT;lvsR-W0crOIyx3 z-H+=`bNM0U%HO_Q`yNReLXN~QL30_>xpoLlu;da`1-171F<%K#WvB7S;gu3Ps1k1`i!H? zT7O?EtCdpSdTPKqVtfOMW1}W3s zdYVaTSC~yH(^@5MMW433Oq=k#u9sZO*wzk8;5r|M(>PHREM;sXYJ$zOI#5$IceP+% zye#@^xrytYR$mD;rh2$32I0gtVRqMCm|tz2f#!R4&HzEN_Ye-+-tI_KH+QO|Tc$X+)_P zb)}3Kkis7y)#9+q_-D>{TaeA_1-%SQ)=<@-dh}7&C2`KkE4XjqR){Q)_cr>XJ>MO5 zKKw%F%5M=Bn!U3(i<)52-DI1HOrWAuE zHlgM(<+`9pSm@kPVFU&eN4rgDeKA(wea)Kae=Wvwj^%n|oU@fZL?c8t30!Ou&}rU) zcC-WX|90$gPzsIkQ5c`f53@hEw_80O-6ZyqjF*FZLk_p~mKuW1cbcqy-x!XC!XNcM7+htRvwfkw{~|HvCw98ejh6jqqM9+;e=2GsaoKk|-h>r+eSMz>Uldyx zrMWjV`Z}YR6O(^uxQh-J+u8FQH$(EZ<%^;kvS#?BsEJ@RP`W#}Ct^c$ryCJ4!MsRl ztai}i0j*GT2GB6$fnPr znS1GmduhwPG`N>`+_N@;H{46R?s2uij^LwYwY;6EiNqVRx!MbxLfw{IQr5E8y&V;+ z@wk!8VTrZaw5BhtnVP;>EfqePIYd-j_NE^wY9jIG+0h-!RA5yDTI2YT1?RI8Ymmu} zk{X_F>EC!d_lA5xR6o`Pr;3^gHi1BNw)L^j@}^PB>FbAG6u3yVDOhV>V4H|s6o`L1cj7W#E0^r;0QN-^ei^?W zkBs@xfF1t?;-t=k^Dvwq)to%7GbKf#Gl%j*-J9C>!l z$gZtawQ_an!lC8$$}>t93;dzy{|$e6+-CVV;m7j)Tkz*4`TxM57w6x$|M|c0=W!kR zckKW1F8p~WyaP4Zg>hV`y&t09HLK4o>a)tVQb{k*vUYLKf-f)Z|K`kWWtQWs-2-%$ zE7c)q|HLSGwoq-$1}IL$33R)`*G9ku^TO$I1WYh5&KHH)tsi!4^Hzh^WuxkB+s(ou zy1op&1e!I53|x=AX>Cqso%M9<;~uzJ@Bb0^-2rwKN8V^9Aqi!IKzW4-5}*f2WK0kW zAdo;H323KUZEZ_c7y}u6C)zx8os_XSo?dq`@IJI0+??96k;&jU*e}%|1@YTKQj$dI9 z15yWNTbiR=vx)d9tzqqg1+*<}6*Qb^~Y8!?^JN5<@@mvUA9nR@jl)BjWT zvKVod??a=EKA&g52-JEOJ@d)0L=EZdJ4y-U1$GiraJUY&{B|57iD5m)=(81?RJWAs^! zp&Cwzi`DN%gWAapg~g@;40759_xKW>tUe zh^cWW6j#T=8M|(~Cz;;nmzvH`S{pQS=4%vPdhsjyErPdE=dF z9V|qOm)E;aiWK~Q(U26UG$IB0_k8|^{h3Y4IjUo~sDAz4h0n6!%WwQ!c{+U<=;>9< z`-ht|%IZlPxjo(M*p z>+pG$$;Z9d(B%7Dy<-Sc(BxbF!k*&p;~t@OIZ5}#XEW?Q!6$K{~jhrF~o`ZZ@0AGN+E7vWKbnU~9p z8&}_^dRfTh@`8F<$c*JqY-q+VZA1#1vHMiJGcEVPx^AofK1bsxn#=oX!@DwSr~7H> z#vrw`eGj##88g=VohIFbmmD1)d34*-wsJr1Z99_c)xZlpScmFWvCP)DTNb&qwfWZn zvDwQ&zuFwlnoklRrLtXnF67!W6ZL-^*W8!tWg!#w^Oi;KSg!X4VqE-PLp6Nwq`I0g zd;>}z@4jc4T@P=sS4T2HZ>yKZh^u)*@{CuCerm)Ny%#(oPb}nSiLMp zT-D)M;yEivYDiZzug#=d>)H>CqG#00BCY5;9?m4!iuKX=8>?`r? zl~L5&Mb0j*>!ZH*h<>Tix8^+D407iBO==ErY|hBqHIJ=WxDT}>uDY$)RbA;B)_Qe* zy#qzY+PRiR9S``rcT$tqbPx3PbkMOId5bHx4m3xtrk(ic2mNF^-S;ZZtd5s8uE_3s z6-uNK zv5u~>I2ql)t8v}Gqh1!WRK1P6ui0;(3s!XY(4ES-aI8XSZ@49iLjHbve=B{~u}95- zZ;n|19JtU*VtWD-kR(e)k|kD>OxJv^UcJit@|Aj7jCj{9cJs&U7&e3Sx6%)~yKJXH zFWNQW?h)&v!;&fFbx>+Vg*ydr0G&U05#*8PToWIn91L z&89A}T4%&o4M#fW#uK5j;s@{V9P^o&?H z?3>I7syko(o%QNY)L*HW#fYmvS&+I1yLxv9JK)_T)&a60+1m5F;GOmAPr6`Ny)4pQ zP{&hR9`yXcse^?`!4LX6Scnw-{#yqNk>Z?s_f3$3PBO;U<-SwzV|Rc40Z5q-9pmpJ ztV#LV-`SjTzUycBL8yyY^maYsRndlbSPcjPt2jgYOJ; z>SZAlX{Ke7`>s~+Dz~@#NJZAaVii@}jN`7X?)TB3r{JnH%0HuC&B<^+tzH%*ul#k^ z544>w1F=7^NZWb0jiB;v)k{>>8RbXyYEG2Dxn33{uKfKr&<}cBw?&JfOfC> z8`-PrGtTr$JNgYhK8f>wGHspHVqQbPsG#80WZXPwj5(KsZzE_i{~BW>pGVMQe$53w zgJ6u=%IH;`a}1+vxWJXna~wxr#aS)`8g1UeH9UzdW6aZ>^GVLKnbS@|&M{^?2VZ3_ zKW8Dn#podpA};&(Pj%r9>qLA#ONx{G7e~rc@YQ4bCzFnmOUBm!)P3%GZ2h1 zFXj4P#c5}9@fh zP6irljz!Kf=955E%=1VaYc_BVcOh*r^F;(L<`ypZZUm#v?Fh!1C%7N3L_m$^ocD0? z&m$OXE=4fi9LeirE1)&FtiA*D%lVjP~bp?_e%7P<)JefVK1+&Uq)&4lut58fCtPaxLZ!KoiYh zfJU3=P++3jh{(Oo21M>M7}#+dgZ%UJV1pi$-l<+?N?W!{r8m#+d6l=TuI6meZDS$h>*=`7OE8GVV%P36ef zaIg-+XmbT;X-6=|Jj2Z1$XPzck>5h``DO!xQRdAEW}25Fm}kC#EThb|C^yR7z(V{8 z!31+6(k7Vy;Vg$S&!;(f9>tfM4=}m~!30xcbT@Ok7r{(pkaL_l0l_G9D}piRV+f|2 zPou!WrU$_+^BjwN2ht{(-!8M$C+K6^I{Hu#W}yq zSq|aIUvlta4!+4*zQe&L1TCfoX)R_fXX)W!83(s=!>;23yE(X#Ygo=%wsGV=obyqR ze4exH%jirFe#33}1gE{0BR|RL9H16+9HYIMXEz6bV%AS^fxUPT^>Es3j=Yo6e{paF zM-DRjZw|&V>;H-CrXS!H*@j-=E%=+@Sj}ZO&q+0 zvwRV0qs`SEc_;@rvn+ctvpz2VF0SY)E_XSn{fG;!;w(SmETcJc9P8|7Tws4L@J|l@ zizB-@=MTB~XE^d1M*q#s&gBAMV01Yb_$}ug;3;dPS4(8y+9Qk(++Bov1j6Tn3C@#Q}hj7r&!FxEZgM)}8kK|w} z2Os5NKNjLz1oWij?mvJdPvPR%Gx`~$QxUY7%eeR)PP>cK1~{0`-SHyMat}wom~-yW zqi!;%9gN7)=0gbfG@nG!V!q317jW>O2u7JBkv7k~1&9Va=X?mPk2c*v)6D}&8*BCi z8fz}$YF~k1l6gCV7IPqH=|z@3%|DshyEx~ej5Y)9YbGJfL^Bz|81pYgjx!y|GS0jg z!5DKor~Q(L@CTU7vN+%@Kj17kbL1a5XBSuWMo#-I&<3*tS=O3CF4u~*iRNYm^UY}- z`4t4S%uHx-Z?g^sTFg0|_BeOkG)8~s;3Hhay&QaugRgSA?{Jpc9DJ73wsCMVi`&KM z_Z+;9b3TT&(dJr4H*&RaXY@l3uH)cv=JLN>d&|=<+EG_0gIC3@z@8fdc1J64T~6^%=LYP zgCn`zH-W~P?;sdsmU84+o?Lr!a5WcrHG(PTHJtMp@SJTrxxSxpxhFa8X#|VSRF3>2 zg3;!3&iPiPwV3~9^e78>AeUQnGRJbxTM&#kmm+8}A7%7Y1pAwAX5Gs{ zKL5SHLa2O(6%e1&lT#ON)64 zqwjODi_1O4!OJ=FSZ4hP4*rN>v}xzGOPI@_Iqi1tvA;3;Hi8y23d3!*d6s#8hzpG6 z;@2>d>2mi-8f6c)XF7SO$8_nnePCJUxMT}m|!GoOhQASrYTFAi(T;Op= z*K(FuFnT!$C5}9T(M~RKBS-$2Bma#fzso@j&*^;_?ZG)O<(zNe$eA4cf+MGJfvFr^ z#A!d{;8f1?6Gs2W%TFm*J^AC*XbMQ3|KF+LXGWrvO zG3LKGvV@?;?7`?j&hlH1yq>#p9#=G&$aH z2TM5ZXfALTN1n*6e~$t!<^;|%kt09B6`jWDDK0R;Sypo7CXO7%JV$fdbS`%Q2QT9+ z2XSx~Wm)&;QRWwbZ!nt?>}B47f{RTD&_r_tf^jC|U<-m)vp=$oH{WKavw$X>zW|Lh ze+AmpT!>(dc`G6(n;#&UXdXu73UeH|oML{0c1|)Af%Y+Fq)~myIoj+%pQ2&S4D2qu^VAjJF4zoWo9GY64l%^ILlW-*wJ zGap3IVqS~17PBv>wQ|n$fyS8ok!70s8_-zucchIn*P+@`W+@kc8yDY&V50d4XZa@w z??k!r=7)?92inWr!NvcNh1kuk|H{nX57c6AMli~JACXhdXf$P%F`V{s1k=pfNSk6l z#gRYf0uzyQg1M6;|HV9if!ZgTegtF8TtrT=*ZxsO^MOX$8;l6yS`=#LTM)UIbuFf} zw*yTY+%*OE`u?b$O!oAZEtu;$YD;CS7d4G?4fI8HO?!8H=U_){*8d|3L|;5GZ>BFQ zn74xLA`)5qGU9LQq^Mg!enKR&CT7IHwFg;2-a#a?#%9D{)=N?SAcI6AYZONOH(yOr z-v;?E$oE061i2dIT9E5NZUDIvq8ixeTNqWDw+Xkewj^2J#;uuLgN7$m>Dg2=XS7w}8A2 z;@=1_Sf&3T9 zr$Igg^4}nz1^FDv=Rv+eBr>pYK%PI`O;LXY`4h;WLH+{rSCGGfJOJ__$U`812YDFe z5s*hg9s~IY$Ui|I2YCYINsy;No(6da?#RRh)NGJBAajXC<`uEZZ~qHL-2w7* zkUK$s0dg0}FG21Gxd-H4kY5prtf}ecyUol8M(t6y1}D_?7DDE&Aa4WNMI;e83K71 z$h$$_1F{?By&&%cc|XVpKt2faA&@ITJ`C~^kdK0V4CLb=p8)wJ$frR53*^%vp8@%A zkk5jA4&?J7UjX?c$d^F=2jt5j{|oXJkpBbuD#+JBz7FyYkZ*!~3*_4%-vRk9$oD|L z5Ap+$D?zRTxf7Ske`D54CHo@ zJ3xL8awo_yK<)zhCCJ?%_ki3>B(l~@bl6=}kptvzkb6Mx1^E@ouR-nuxgX>=Aio9q z9mwxN{s8hvkUxR^8RRb@e+Bs)$O9k`f;h{tEXZ>p&x7nSjmRjF7Ld^(V?f4&>;tkd$bKL*K=ubY0Awb}ERfkCb3o>T%mbMZ(h9NwI#q# zgM0+!qaYsx`8dcYKt2ibDI$@zDWmJY(n?YP2l7>ruYr6Wg8UHVI*{u@ZUFfa$c-RB2Du63W{_JzZY2_#uf$XSs6#30 zXpp5K%Rr6+ITqwNkmEs4067ulB#@IqUIcOq$f+Qwft(Jq9OMj;6(B1?R)MSrIg?0a z&Fj$5o<~sBIFRum6F~L?nFuloWHQJUkf|WkK&FH24YCi&z99R7%pejOn2EvtZJQ`+ z7s%T|-U0GXB9R#%ckRO$Q`93MkAge~@(+-If;;@<}3*IVK)7j~j}50^~`Mr$C+tc?RTPAkTt42l70~9+wgs1=0dC8e|N}SdcwI z#(|6nnE_axoG5Bw_rn{m)lX)Z-vefIJEE6v)#c&k%|1c>o&!>eo=zYluYlYyeU7 zUQ1E)L0Ul;fE)<25ab{tH234lap)T;Y7xj{B9Xya0C?Q}R*Jd@+Zy^5;@*g0t0(mvaYd~HL@;Z>$gS-LcjUfLC@+OcsgS-Xgtsrj$ z*#+`;BGl<|wZAXX_2GX6`7_90K^_2k2;^aqM~To=C7yx5#(m@WgZvic_aJ`+`7@Eo z8nw`z;P)+I+(M#Uem=Ns+LlUZ)ZaGH)7BT+4^3FNQ`nQW8Wr3Aq~B?yKpL9kc}g6T>S zY*>O|%n}5vmLQn71i{WF2nH`fuzU%E2}}@dVS->369ns+AehMn!Coc^hBHC1pb3I0 zO%SYyKwqP9$eIxa!Ja4xhDAZJFbaaHQ4nm7f?#|U1S_NLaL5{p1;Ju0=sAU8G)3B%C>*lZQ$aAJ3W7aV5Dcq= zU||&mQ>!4@Tm`}SDhO6sK`_S(f?ZY+477q^sTBm1tsvNL1;L0b2-aLdFzX6}eOC|+ zy@Fuz6$I0-AlP()W>Pq0jk|(i6$DeRAlP&T!MH03R$f7{Hv^qY;gB^v z3xWk&5KPg6V3QUEG_fJ6{ZN(8}x3UnQXL)MZi2qslQu&oM$kyQ|^ zt%6{76$JaMAQ)l=!6GXNCRL!Z6b@P2svsCy1;N@X2xeD7u)hj|(FJHWg+tc*A_!&} zL9oXNf?-AwEHr{(su2X6jUX6r1i^|U2<99?uz7d3T96>nH5rmT+K{(qxAVD}75`+^XK{zTBgfk;SI6M-BQzSt+P7;K3B|$h~5`>c`K{#>}gtI3> zID`^}(XDM2`>5`+^gK{&b+gflEbILs1+Q!PO_-V%g!Ed4K{x^v zgtIU~I203v(=kCfCKH77GC??>1p0RhhwMS6Ae>kV!qKH5oM8&WVWuFQY6`;frXZYi z3c`V>Ae?*(!V#z-oP`R)p{O97jtastsUVz}3c|suAe^8I!cnRqoT&=J;i@2-bAe_Vs!jT8iwGL=GdMvwj1vS`6`-jU4q2ZSL2zCX1TPjraAy$&zZOAoa1jJg7eR1& z5d_~CL2!Z*1aBBYaElQH{}@4Vlo14v89{KJ5dAh;X|g71MKI3WmvH-aFzB?y9lf*?352!h9gAh<3Ff)9frI5P->SA!t9Hwc2C zgCICO2!iK>Ah$1P2UBgC~X{xMT=|Z-yW^X$XS1h9J0Y2!j8HAUJXef=7oSxONDFkB1;QdkBKp zhak9r2!bDoAUK2wf@g>zxQGaXuZSQxjR=DGh#{@^34(tC&?ARq<%6SvAb1=Ig6n}G_#g;^GlC#^B?y9hf*|-Q2!g|cAb2haf(wHn z_%aBBQ-dIQHwc28gCO`j2!gi>(1$4;vTi4W;C~_rjwpiQks=7LDT3gmA_&eZg1)WL zcNBsji{ykuiy(Nm2!e}?Ao#ing42s2c)tjO8;l_M!w7<7j39W(2!gAOAo$D(g7b_Z zc+m)gJB=Xt)d+%vjUag12!hLvAb8&aokZb~b;A<`e>_3()&%+mg+tbDQxN<&1;LS1 z5Ii~s!L?Hmd^`og*;5d_J_W)3QxN<>1;HUy5IjQ#!9`RMd_@JpX;cur9f9tpaLBqn z3WEQmAh>PY+#hYEt5 zs37=@3WDRPAb5}pf-9*Y_>>BQbEzQsy8?}&aLD?F0)3v`K!>b@s33TX3WCe1Aoz|7 zf)lAAIEw>4dmDJdYg`cA#|6QUTo4?}1;HU0Xgq~O)-zZTT!aO|S6C2yg@MLWNcL8R z;5{s9a3dB37d@aiQaEIN^#s9bPY}HK1i_6@5d8TB!Ld&eJp2T~)lU$7{sh4b8EC-v z5!{gl!7o`59FzsY7Y*nh3Wuyynjm|( z34*(uAo#rrf&-i&c)|&SOPnD1#tDLxoFI7134+_4Ao$M-f+L+Ec+?4kYn>qY*a?EO zogjGK34;5bAo$@4fIs6=o*?+l0sV%;A?rLR2wrr8;7%t9eszN2 zU?&Kkc7ot?CkVcGg5ZQF2;O*t;Fc!{{&|Ans3!;>dxGG)CkQ@#g5b<22wr`H;NB+) zetv@B@FxhKe}dowCjc5iP7oaK1i|x85Zn%d z=1@3f{SO7f5m6945(U9EQ4o9-1;JTS5WE%z!F^E>{1^qnp-~V#8wJ6|Q4o9`1;Oc2 z5WF7+!3|On{2>LwF;WmbBn81$QV@J51;Kez5WFY_!JSeN{3->(!BP-BEd{~lQV@JE z1;GhZ5WF!3!7Wn|{4)i?QBx2+HU+_TQxJSO1;Lq95WG4C!7USL0)<1?KT{AKH3h+A zQxIG?1;K|?5S%#$!P6ONfI{-XQwYA#k_IPeLGXqa1m9wy9TW~(|570H8X!2D3WBRK z&|MS`S)XG;a6T3UFJwXRLI!#*g+taISrGh^1;IgC5ImIy!DU$xe3u2miCGZ5nFYbE zSrGi21;No-5Imj*!Oa@zixdtS_@V-Rmck+Hlqv|`se<69DhU3ng5bC+2p+70;L0ip zKCOb_+$soOu7cq1DhPhBg5Urv2%fNl;1VkcUa&yz6b@N;SV8cM6$A%aLGY9n1eaMs z@SPO|Ct5-9rWFLYT0!uy6$D3HLGZX01lL$`u6nTtV>D6$FP}LGaua z1Q%XGaGD0XjzaQTPzY|+k_LZjL2#@V1P^OLaJ3c$pKC#Iz7_;8Y(a3x76iX+L2%F( z1W#>2aM>0F-)%u~;uZvNZb5MC76kupL2&dI1dne)aQzkpA8Y#AQz{MSC8ihmF*If{t-UY#<8t6s}hpcP0Aoy4dg0rN%w zbN8<4d_h6fpm>zD8Hl=i zJIe#ndeTByKXm0{miKKXY&O`U8!fd;F`MZBx0nlw(vKG|wgI(zEEMOr*}R|H?lomx z`a0>CQ`hdB_`f&1M8Y>i(RIc6I zzH#or?y|jqt+?d8r&M?Sm#!7h;3F?}`v&LQSHztZ0}Sm_>4 zJe7+%#S9KqNw$4d|MI@R^3K+-h(7h+K~1zW*|?I*t~ec{k{l;|5sc;xeH|#_HXAKW z;zJziM?0#O2X5}8k3qDTNqc2T)*tGJeZe-JQAv1kI@Jl8YVIs>;^wAHD1M96sg7UL zIBE1e-RN{l<{O!B$G>8+LuR2HRaHB9KXA_EWQJvX`8kcjxVPs~A5~>G4b1#Zs=*8V z6xZ04@@9zg{M?Gq!G4P46HuD%h$KEBS7dOjdosrs_tJOEdj_I5%+>z3o-Nea-ob(3 zaIvE>C%;qPug7}K=eBQ)+AnR}Lf>~8urjCCfvIS?m&Y;r3^R#)V0KS8N!D4pG`N;b z29G3%(%HNu+9@oh_Lay@w;d?{YtB&v$x!SX{dv&a+4g60WSNO34--> zb5BoaetYb4uX1T6t0brBR9ETsRO(Zlu%1eiD#!VKF~8D1%#)5a>F08cuJXslf^xw@ zmdfXtU8d$Ao_Fm%w6}^(E;ad5 z?u~BI*_4b6b()hfH5Lz$WkcszybjfAj#pqb&H=w9J}6&gp5);eEAs$)u;*;9_5wFf zR`SgDicpSJo9t7}#)Znx*JTq~Wk%WlPvR91`hB%Ol@5mBZSFBr&fT2Y86U{YjVhZb z{Sm*Aw&QK?iJrUfw9oxaPRDRFGmJGngFcwjX*(_T&>9c@B2j5~W|BRtTe}XkZZqZP z`sEV+iC*o9P2#SDJg8)bmN|P?WUXag4q8siC4z~-SuMxqBlA_YLc3vWcS|9; z?Fy}Ox#5NH*d*J4gXu9+WW?G@5XkG8e#@8cP&WaFU9D$gNCa~`#t-?74^N(CMV@_g z?Ray~zH|v!LFBIqSa-LT`?uk9%=xRgoxYizj^X#zbeQwXsIMn~*JuZeWMLlh%%3mu zwuiGr%`SF4J0!2-u~6b2kHE0A50WIlBxRUaWcF5Vnuk$L`}2-UdlcMt*hSpWq+~kS zPpKkR>J`E-<>cDpcis{`K8GEAc5hUr3|CS%NBIlY4|9nJVXK$m`pS+tS+wkQ;8EyhR$LD95*(Lg zya^|}93=52uMl&K%s5t8EZqK;s?Qpms^pj@1+ufrd)8!2&Qm258AbNgv&Q2P*{^-c zvu2)H5C(z|N;`f0OsWkF{1m6mRF`;f@_uf`$1|zKVvtG#4NFbKEWgMc@6V8Vw3(-s zH-GuG&GR#{SY`7|e=Z#APn@cT4?AjtxgFy@efbXevktpR*oR1N30J{BzT^kfpp5#4 z-v!!P9LVdKj`O8H$W8a^CPUlt*{qJ`8O+j6pWF?q-KyDCE*Te?B?YQZpKQr_s$^i4 zrKXR^A+q1TOLi>#+ozKq_o)rB722k{=Dy1BmPLLqR@b5(^5N``^_fbOv)aquZ7_0% z>%xnQK*K_|j(k2|=>JA8wx? z_7j4HzROwOYFlhSAxM!Iar<|T=`C0KcJG>p`*jAEkb&K8(N2bqy)@We*|KvH*`aOc zSmZSL59W6a*Yy-vau7!ja^z7Qxq{KHoQAItk^rkYatvqr7^fY_2wxwhEFZCGk@?74 zGU6YYBjG?_xx2rYE((H_Y-e&YPSVG1Rg1i%g;~o72k1a)pwiyDqNgJw(!HJT$tD|1 zKb<=aM15ULk{nBrgNT=749=o<(?J8>2LsvmUqNP#p8g7qH093L)$yK{c+IiARPqu@ zHs7Su!e&2PNp~gcZjXE>vtlMB0Vn3On6R48Y@*A1`Yy$d-)M(Kq-vXa0u}i3ci%k`px~{S#>PQ5nHgWIU==`BM>0E2Bc74gc!*Sv6-1}TQv%{O5Ulpst zrR3K(eto4kq61$#N1SYxkl<8nrmyd-bd~!=;nW_U25~}u9s6z=povrNB;&p>;!Ing zq~$Z1wPA2`e4u$&)Y(fXb*^to2wsMg97{MyfLUZt=4JC(UPM31=y_gXH*j#5O^esk zgYwtX_NZ+uW+_%vyP>A_)y28>^ov~2EzJ4d9Nf+UzV1rTdO5}2FWMPAZy8si#|x!7 zrhKix{T?j#3VW`jb#=}_-_EvZM|;#8d@$RWZ^_~~-D4%8b2sKer`ZELbB}#256Qwj z;-d2<-aVjG`*iOGUh*m)3nkw1NR|qD`AEIMOBv>seAi%+dtNW)VZ#q;cty04(?UNT za+m0g3r7lN*h3ZAz3XT$v;>+jSjHZw$Ld&)Sr>J%3KrS=T4}>joEr_Pai^@P-n^S19w)p%+^QYA(P|3-lB)fPE9fG#?^<3W88FgREJNUPh+Xs63DzAk1P}JSu z(^u*xCl-ob8spu&PRyGG!89vq5t5Ne{r9#Vrqzt#R|Q>s94Zz!MP2)1hf+=aYBtxjXr>~1V)cSe9)bKP&51@^W%byihH6=>Y z$=9R5la3dfGkDT1+0ew6I7wAQq)%M(2uxR6F&Ge=eOxNE|LI}uGud@)74 z{%DTMoy_lDya)L=)8DRjjVs-gQi;ET5}GzxoaDRCYKp+=!O>~m(8!fswn@z#E9u9= zOB!!Pp1|A%kvZDEh*;ag%>JG&16}1Eb{M5jGbTcqI9+w%9KR6dNtqO^cd2SM~xkTn5Hmb+(^z&jLQfn>{co1xfkH zT*HRBxIbp0dwV+vgKio2Aj)M>a?f?KPIsw3@D8F}PE~$^i*@A#ZAcwNxe`wAH^pvA zR_(SK{q(U>%P%!El4c+S7caZ7bkf(t@P>ax?i+r)`%yzF`EU2G!}H$hlRRE-|1JJR zX=jxe_y8Ar9Vlg1n?ODp3`*b2+vugTKgWVqm5t1WtSPN(L3;7FRc7Sq=y<{9K$S|4 z)7#pj%Ni5o*xI^-)PWk)Qf!T0Xem%*Mv6S+X4M{+p;5aowo;8siZiNOkP6Cie9e8r zhFv8IjSX_<3mbb2%2B&MP-8}l7ra-<=_?~e_Y1BI)Tnept5+}CxEtz{+E*`IrILfj zXkWR}<*W8F%5^G9R*@uq{o5*A8XO`g)jVO6YLz@INuDN%b7Jk{#I-7E&`}}<~j{eIl{d5qW{oSv1^GR~3mds0{-BvcW6}FCQ{5q0kRU8gXq8*17ZqF%CSnKR$-SH_s7bCxd;Cq1mO#>2Lv1#h9bXI52)_(dW zUhvr6ZoXXx)$X}2)-^k&IPV?8s$TfyzDV}ZIZfUMy*mBE%bAd9(FRJ5vm*tYN?=U zDs>VmIoH>6u2n^$-kH{_h6ZLSbe?rVVs>>4K@-&3V816KDSdAAY^+U`wa7VPe(#h# zp_H`eQ9^OUZ+-zambIr(pACU)$j5V5Nsvh)bO4eBS-aqNl|9nrcle{@msW?*vqu zcjD9dujw@71s6XNP>H|U$x-t$m@CMhRU7@?QCk1&o1%YefIF#EO?bJJq)97cTKXbq zk4}WFGTgKctdAYZ`BGe*oUHl6jD~g{Y56Z`O#2}rmHxM+bBxqHDB@F4r6a;(s-|qB zTTlAgZ;Ko^=`u0;O?pSvXO~m|+@hvEA?^5U->`%QVPPY4lX^8ejNfmDbN}63?kE5E z#hiHk4(Xrmre46PWs(D-Mtjt2@Ee?dJS1ohlFWSRDYg<*MPv5 zaCp(Y_m!*_aM6 z!w!GdUK7iQjm7_u9`veLdONGHymc$N<#&~P>(pBEHkdW0`F&Cf>Pu=@Qf+eabiYES z0oj_dc&0^Bg3^x-Sba`V`Uy&62z6uNG@04llXAc=%2GyFmF4nat|B%7uROJ`ASXVwdOpyIv>X5;eaP2tW z?WFA?%bd=reCbZQJU8qnW}Utyi;`u-wHt=SikKt5}dyo$#{iFZ5#ElT}7P|CPA z{aziO&7`xTwr#OFJJmJTEiq14lFac7Ik82lo?Bw5bZe?~pb;szM8zdCujA3hzuDZs zj9)KWg`~u{*AUoL7QSq*^9vr(-qqVy2_Bl+>+Cq$6}`=k1bf^R|2lHGcdDo}>Y{6l z>1dK(t&S@6YULO4pVjA_D?g}QC2R}7XnA~T(w$y?zvX2vh3i$r;ljf2I>R$oCpg)k zkg4T*cy2kr$9g$G&f3T!#LXmi?oeYbna51lCR8KGk_gC}j?C-Tk~*{8pF8gDw2jkM zKh5zARh_n>(ygh|!%thqB{ID{g?QS|+Cn}AojpCg!%NLv`%G{d+zkAbn}K#Mo{gjM z++S+jL;oa)Qo_6>+I78MbY=DO4*ip?io=0PwBry^Me5K$DZ-p0Guc)k_( z7~iaElbs@7qDI0jy0~DN6Z|-XYQ$VsEISzd6Z}y51?lnu9i$$vu7p#;n^Zeybmcg3 zSPupyD*0z7*|V~H-q)FObNzAwnQgn1_>z>5%-!z6X&(Ux<(k#(#4PcHXV=2KRo~C$ zFZ6uBMYVO^D@jZFftjV;OXm%RQrwXn1Fw3SBL2JZLBrQj+NkO{wwlXwwytF3d02s( zLaxcEFW0xP@%l0@$j4N1L9SBW;zG^KxEfP!xvs_y*OqZ9Ms0bXiH+AroYhD+)TDt5jEPmSJg8I$6w$ccytHNR0?Wk_O?1lN%pWdBV;L6g{prk-J!O1 zBt{GPs+x|g(ATK?>589PYb&y%Io_(qqq=I|ULRaw9(3vb_0pUpu1r7p+xQ~0AajJZ zv@fDd1q+O`T5AGdrMYE!cJ!)^Dj-=YYbRe?&zLBpKk!wpI<}v#7wU-mYgJ*9l{jY2 z^+o2*zHxKT<@8OtDA&MZ-;gB>vnZRhe51t7%9ggMGrnLZWuTdeF&n45!u#=EtzUL; z$!s#m%{!Y1x6mcYA?t>fL$WByaHDbO@Hd_~ZhTzedOGOoKBg5ZMEsV&WyD zs7~Do71!#)JiL%+WOhD9g-nD|VqVB%Iyd0@dpYgxQ0T`GnfB6$lb|&xjuQ2JPOITJ z8X5MPKCgEkTPf3{@?!Ca?IW{GanIx7!H80txF!e^m*{2+kgynSy$>DbiNcyb2V;5t4LO88=5H}+JzelU7hCjuQ2J7PW>wUWR>U3fDVLtdv#u zc+FmF3hnVS&Gq(pERfQtx5slOo7eq?_IR$^WGABp_7|ea>~woPzMo@jj??IP>@AU~ znmRMdUe&uLQ*N$bE?_N7dACUU$gENBRWs?ny{?|H$F4R0#pz1wIeww6;GSD(sB~+p zbU^%+Td3j^nej^FxT2&D7Z2v#xoJOG;^k2-Y4sA^7+VfMQ+Xy>S!^7xCUG?>E(duD zj!U3b_M3J|e3n~e_V?|wv)M7VJM6P-J>QZXEKb?H!?z9ZZ$BAg1xlH9t;eiQbp>Zw zqptft%3PRNt9-iM>eS1lw9)D%IBn$X)XS{69ONZ9E{X1>cTzg_3Ng3HJiy-#`;8j* zbMU)={>ec|Kh|6=S(IS&CEm%EYMtldEqN7>g%a<01lpD|c}p4Bv^(oIdAIkv?NlwV zmr}~#gq`j_3Q*0LEo<;em=%1zO!AjpeM+UZzFub8$)GCodYLWXl-J8F+nQf5vn+C6 zFVCW!7*uWu4r5x*@)eC0F?napmtp}_M{cCZEuEF#Hd^)hs#to$)Gk^*`_r(5i7-mc zO_aH_f1v*|d>Sk4U0!9(Cu2CX@yq_iwg?+&QlwFWZlEMO)vDz#qpTh>VitMD%(8)) zP8KEP1(Z;mZ9L07BV!TUc$N)h3?0Rshj_aCqyE{F9+LG>8pxsahe;EEDWvetDcPoH zG+5-NF3ZMhFnCJ}#H{t*Gt0k;VkW{UZC=P?x|hA?^>~qY&un|4&&0$KbtqBK=d|MQ zo>}%8bryN|%(984Ouu`sar3=?Ehe_3I-ko<0;RZ`?19IZo;CH2vz5}N<>ioSF=$v+XJ$FsZ+A>>QTqZcs1GTeA4DE7`2%ss|i-b zB$+KAGD%*-D=pb@ap7XyrQ6EnOhq>Fp8D5}^t1Nd0!MoRVe(f7VL7Bn9bB*M6)d6-`f06z5Kg%o}Wr&0mzTfp(M8X)8^cP`h1H{F=Tm zntN1#G(diWwv63`+fMflL$SDV9uoFIOd1w8jx42_xRGV6SUT99P9MG!`>QiuNtTV% z&2wzb+31Wpwj&p0J2D;^QnOtfQQUAeowmA=5NzXQU;rplAL z7Kyr2iS~M9;ir`LqO`AGkbR1SJi3l9T4}~SVY}><_H8{q{SlU}4l?=0a_9A0s#( zi?*ZH<@WZdzn|u0d%3eSd$U12^RhZWDqn&yYgPRT$W!SV?5|zx)>%2M^)ypeQDk54}na1NA0bz zGQv|lRfQ)av1>NWTBFqJBPVSd%yj=cg1%BcstBc zHno#zFLx)m$OkrCf%5cJ^_IRshEmK^sqOUko~~Z{yfvB4Ur7^UXIn?5J$FYMU`n;x z-+OU)1v1dr(y|pO5nhCAQt?O~=%Y`rS6OZY+^PDK^k5)EDa~9}eH_h29A*sW@4^E- zsZwvx7RXQ%wyL`0xAsL*2R`&Yko^`({M-((qx!sMJ&>W~@l_R`(9=6Wzk2Jeqekzc z9jei1tg1YfzC=qK!?;YPn+8|j<1@gQn(8fdfefWAdsY2vPVepM@2_m8CBE)qWp7-| zAJzHQC~;0_|HihSfo*gbW?$4#m)m8pl&aeG!%VMG1uQ~jI_*KPd63@>H`%qz9HL%= z=KD(+tRE3wMN_i9OA7)PuX)}pP$+}HY#qA1qfB>e@}-oO?p93AKpE=gIXOusa8N2d zD*d7pU}#Ip%Z*(J^Rk6sXpY81)E2R$H7s|k8vE?XttMfpTC>FF=b!uK74?n8_FXzJ zBkNZ2Uj+SKRHzH)R_lU`6xXAR_Q6Hc301XoQMeZlUAuhU8HI$;9Y5fpWG^&+Y`uxa zId}XZTUhd9<40GMt07xWedEX0;QeGjcl>Z2nD9zl)B_i6XtW0|*r0e8>;bB`NDo}F zp|KwDtEtihR874-Ks6NW0o0M{fg{etGaHL

9}^H;WTCsxRoO3BL5E+A^0El@77n zfzUdXU=M791uO_AI&Y-^Ai z5}9}KR%Vgf!vtQ#;&;wcxqqPAYgj0ozn?j2O;>ME-@ryPbN17HgI$?9sozq)+GvXt zuyJ}BN*UH_EUZY6h1{C5jAVRxo7g~8vn9i0W?iKV@3B4fiFCSi*=ocMp1P#6?jbdl zEM@Cgx;k@vg$`fZSfLF`X3r*Tk<71I$#jmNvYOmt8x>Ibf7gquH@kHJx0;D0U2F^m=cC!O`nVgh%bE(T=DcCsuUsS3voWnN%OJ z*aur&@+wlTKaTXgo?i7=C$T}qIPQi6oesOl4LO))(ds9y=Ziq8VPcGf4J{S46X<1|wn3lo{eY*zab z2k+wz>iZZyz{}wkj8-!GutoHn8S8}*Ho)~qmkrWcZ-p+w3LD_O4E_SRWJ6Lg^=wbx z5~L)pbJ{#0NhRTg(-@_H9x7rEPSeo;Qf3AgOJh3~7lkB|NmslIS+N(!AWgvu#W6 zfwC~8O1v`$iI+-*o2t&Wq&wF$K$s2JlJ4Xir`GA?G;Rr9Pe^8U^1x`PFWkXjdtku* zj5_d;P_=npClVhwDa=;2ZCNZpg}$1AbNSqds4%A{dZ%I%?p5< z(w}>XAuOpXZ<8$XaaBGuRhdh_Y_MEx^jWhyuUOeyz(uh?GH%NbYD6)G+1K$r{+5lZ zAeMhiIdmCZyaNz9NlVq_w_FtalUe?)w2`JG6nmi5X0J{uG*g39KbAPlQdNAas+f)_ zYpvURf06d>Ug&9CxQ0TabM9-a8~&E;ispy{I*`gVFt#EV9u+NzDtAXim=+<*Oe zd9ZiW7OJya{|PHqQ9PdPC7p%psJ6POt3I70BOd%Vfn3{a)}m+R%gligQ`NS3fZ$T- zLQShSK)^&XU(KVB_N`>Wq_5@mM_ci+A)enf5&Ftq#fGK#E}Us%RqiYf{qUY|{=Cv| ze}ns8UbB+pesUn_)BD~~27mu{TI`WYYcwr#WCYkwEw<}*o?=yHw03%16O}~%E7sRD z%UNmr1ecB8NBZ0QD!uv7TE(7f4tZKY14+%oQdN1pwJ!7w4v>ol58$G04SAE;8Z#VK zg~zJofn4X;bOXIzkxF7Sg=@foem0%3HR`6j@do=bba!@b?&-`Ot%_+ig=Sf*_8qkq zJ^;3^qMG!cxJnATvcs`bRV?3Dj-Rm3L#BNj`OCERbmx2WD#p}2&n~Hw$ZI{9w-Vx{ zN+4g+7JDv`y7mxLU2SKywM<*-#5pM1(OY;7&O^XI4Rv6MaERAC2vLuGpfW}^CZ5c_;3}G`7@9BKDOZ8r%X425lA~iW@)bLg5^j`vL-Ig ztK=0|+F6=D=F2Z97D2m8k*AHD=-Wm0w1*tVoGa~u5gP3hqDJiU^&v#Es zl@i(Q2+~yw^OWR~xt}eU7xKD)CQpWa-OWkX3LO8=%wPW9uY&l%efO@|Q0$GRR1UwV zkKt1O@n^s`rx}patRD=odpZqA@bnrH^K&EgcWOchR=#LQdqmz$Iks3Y)t7z78n#Dl zvR8wyax8Z5@{UENXelSR&+)YM_~a%I%S1Z-7ak&Gwzk2j~aNo5|aL zRbO8ZJ=Z;T`&=^_{kEJmd|T4xr5WDaYPAZ(E!c-za0dTqc9nFBXQkFGGgTlRq?sXlKGs42T{q__XVL>L+q?{2JEER6m6l&E< z`i)+@Yt6z+assOr>*w-YaeR@nWcsqX-#fl1WJWlHJ(}(x5K(wXBQlo?n|C=v(7ChvgWQKw)(JilOUbzrroxq$AYm=k|0y{jDjH29PXJ@X`sV==>LG232=iA)*AkUW#YA<5ww z+{Z6tEW^PWaibj}R{MihAg^P3wS7G%i#WHe6Yn;1S)9LNC%J6PBn$J1i_VvLD+g7Z zf4QjSRXi3-yyLNgev?_Qbd&F5Vi`FAO-kZRQigd&<_E0lSg-^7qFy?83@K+XaN=Yo z$84`iwjI+@%C;?3cD^o~$SLyMOIDM3#UnB=b(S34A2Yjqy6IOKe49|JGbTceI9*9U z$1mhWmFlO9_@UCRsnUs{!Xb6XvEmY$i~Vta5V^D18EDT!awnku40|>!H>+$~Rfo>R zjUS;)YiNX8rNrr4DSn}=za zYPg2S22a(6a8~oyw(#_~U6sk{7*6n4lqF8|K98m7t z+EvMVA5q`g*~rPN>t=gJvOVX`#z5Kmx@@4|QnS(L5t%Rh3UbRn`A>xw6MxyKEUx*_ zs0lrb_+L&=B-z7OQotniyUUq(HV0?SN3SSAzLOW{I!$g|tob*ORb<>_U~v=@fICulafOgrz&u$d^55 z{j^JhpUJVgQ!Pa^a6NKp2#>exFC{9y%uKRp2e6&{Jb;l)m7D9A3+U3$-6WpwZE)oy z^Fj68o6*-3@C~JP!^(?9RqxCsdsTTe<>vb361k-BQ}Rmr$Xubu@63L3AdUh~PVPA! zrz@%F_=U29dz+U~>DE-~fcUA+i{cWQ+x_QssbjFWv(k>AoR#e<7`;N!_oC>yoMv)p z;8?$(YK6F|WpjsL&5VA!kt4*;_A3%yu?haXICj*%p`lZ)4kc1DL2yZTRXWgw)T~onBJ-?j!F=qU=|(>seFfZ+Y4x!3s9dTw2dX5e z*wkatz8Le8t+Fdlho~gSDbPOa&XB~HR5902liYEeeYLY2;d1buJ=qACcPMG>MmR2# z?WEL3I91kegr#gEs;ujQjj-bpnMwXqad7H6oo80DDh}l3MwQK9c)^Gb8mYIGs!RiU z9nkD<78w9E0WQ`JPIE8o}8s-(~4SRN+ z#Jd5dct&Qj8c{R*x6xP3!;7w+`Ej~x-5kGAc2IdUKUBIkRXPz^hE;0jD=v}wv|5Ar z&wVwrZxuFGNk2;pWM%i>DzYW#sgeP?Q*RX>hsgZc-;U0y{sguUFUjJD=`_`KbL~^N zyQhnOZ50}$wkcj7rG!>5A!l^jPTK) zemUF7ad^R^G}qKGsa0Se-Sp6f`v5yC0rzlv{M#p;pGk?oz)x`_Ikj5b9Tm?9Keys@ zu%F`i1hirA#ZKZ&ektY`nW=GC%GtyL?6?{l)b{Dm$xfaNH{jB5uSm8>y{CVm?0j7| zkye)J)YISR5t-Mxp=bq}PfsCwvm;+ty0b9&9%Sd2%B5Ozph|M8O?8pCKU3Kir$bbd z;}mFKYJaARxn5f5dTC5=xk9cnOT8a<(!Htl)3p+48wPKDuV%@vf8_p&>yYh@=10rL z0Y%HiM|D=Wt2VQDOB;A*Mn^%8G)0alAq(bqx6s=vm3CLtPx9%v4CHRupfot_Eh>$w z({;@i@v35VG^3M#XOz(mHQK&eB9V)gO*+$ z|LpwX6(xtqLW!?3P*aCnQpTy`8TWL&6pMm#c%%0|zB@6w_0|9JaVFItcT3jUOG?h- z>tgd98)LqtEPDi<=2%ipoWO5Xi^ohdzT($Fq5iXv^Eh3pe~w=$t9$Qp9xC0MDjirJ zQjc@RB{H8x7aSMH?SKq~F4iKQNf zc?(F0C5_ONtE@SpA|ai~Xh=vWj#A`Cx&_KUPF4?g+e?-=($f_EOuy^!uWPMEeCp^mwQ4h03?=Q$8|n7k zDr68`&@{2bL*kNhZ*M1E^Z@=XDrB)&+ zDPP=-v7*?^I61c|;)ch_%RIF=GDdPlKfgJmdqOI$U*N{Zx@cfqPe*e`$C>rYoDxDw z`qE~Mk5mORLe@7)lzRFBCl&)WKTGy<#Vw_rH5c6yAFKpxTaAM5I{+IQ6u9Zz+6Vc z+9rq^9t$t=)LqY5s4Dh(%@ErYP-*+@W{!o^YLzrqxsq%{BjX^&SjNCv4T>1<{|i0! z*3<5dYZ{TddL`O{n9Q@+db7Z=u_xqRV^wE-hwx3>LJO$Fg~|GJvX&vL-fe zXqHar<1Z5VA7u?^@r{~G$SzB{x(BqO3$Ds+u=kl~tm}Rv{G2T()vuW!cm)|JW#wsc zIQ3yziX?OR$$x6Qy~~eo^6IPLx;JNH8itwFysSXY={i)Kk6B&m>mOK)-z#mX(5F}n zs&;XHy(xyOwo_8OvYd9NSV(i17Opm|@1tY91UH5jUm9y8U#<>_%1Z@qH*)MF#RK-yZRPgRLtbQ z;`7LNxuBx;l<6skkMZjQWE*xREsiKe1um4 zzr3{U$o$Uo3xr#EMs4H8XDAZD{UK+#_ywwumcwd!uGnA0g_UI4DD5sQ_B7%8dD}$0 zf<^g_vN^;0JfgN|hP{X(+>V%$YDwlIhN?xSgAU7YOI%I3HK)`zI$YZm9aeb`yL!_# zsP-QA68e=u(IuqHn6PXV=YnH`>rdKKWlY$dDJ@3kWooOttiV}+^1?Gf$FZ->u;e+8~UYmw_-OK(K5YOlNj!O~SL(axazK5;dD)(x=e$e%jNd!*oO30%_x_d|G5$57$D7bBIV;afd<&d^;M-E_?- z7X3!1Yqb;LOg~o_BPDWQxub%6+$-JfJzexAdHb1j$MS^}xvCgS(yTx?0b-hoT#8hT_@JHW^nFDru*_I!SnVdb$;w(hpZ zpKa9+FfxMX)USkGkDiqY?szoP*EKCc;p&x$=juGXiEl)}(`#8HLzOG>&g2~Nfm$PS z)ig;|txBMms-)y2jaYLA$#PEjG&Uk+HE$C)dXkwutRzbCOLX?Fee_G2jyBq#4s4@$ zo~B4&&3$wj>GQ-(8tCag$N|U6oUH8=_QG&DXlk9noZDi!suKQudQB7E7hfm|n zL$x0Pg~tfjsf2m4Crq=aU^O?7Y66DjP(r`L7kVUyKsBGss*>jkqr_iJ-u&&jF>MQN z4KEv{GD3h&L`PNCv9!?UALx7L*SU$FZ znQPn5-X8kATR(k6B>DN&F~k3$B~UCrRKC{!P|Muley?SJsIi~>1)1-pLhrKU=t*9p zG^OhUTxLp3{X%Fm^4qvfsX1OLIxSA$o@jq8mBdTw$o$AjYIPR=C@9PxbV(e2id}yk zDKYzc8GMu9vUT?NWmIomJns}n%9B>KbyJe!ADRg_rM7cubaugiWru(Fyni52g;Oh9 zQfU`UHTE)clu)H)DP64+YOPJBn}aSLY=%^Dq^dzGzutgY^c6X>-@ zLGNh3GHdG17PPF1eDVO?54)L3}? zn-y<3Z|7>_ftwO;bu3)NN~`u0^Hdw0(gK^^m9aPtstDd8dHb^*VKSOoOWy};qpy3B z*I7?@xzk!+8tAoZd%(0vftppPZ3twD=Tid`Rx?W%kT4ctctIN;YK;mS7*)2glecjaA1V6WA&sj6kOq(HVo-nBZ}lJiu_ zL`>OfrmofTI7H@ob!;DB>%gCCO19qiB6Ql9$DirK@w_}^<3#_-b=2~XGF_y)JzBnf z>-wIa&Z9f>HsxG6^Kj6bO8`(^b>Pqh}3ep!z62h+;4{pjIExA%sm`=84y zttUO~7Upmn5!!wdDx4|drEB0?H};k3BbGh=(Xgvjl^PNzs)o!*r^4bTg{3h^gjT4O zyx~^aekd>ja{D1Q`jc9!^@Bh3bG4K=?(t~dzI3H%LH&L<{ivY@u1XCFliK^immrx5 zx&7efPBf(IwEa+ED(Ch?Y91%GRO<(S66b0uZwA|bSk{bw@R%r_6q*lS;R5r)%bjRQ z)p_8`_S~PxBu@i-DO`GTQbEP(@ZokGs3{pa_Rj7A%dnKCm2~&~w#(@Y(mWaJTZ>Xm zl=Q>uK2=y+5}X66+~HOova+wImp+0%Y-{W_dKqPLVbzMv_l|Q4iS+in!8y6YQZHK7 zwK?jbFTtcPiVCbm!97q?TuDCc9w;d$vIln&Nxrc32d-Ydaaer^$2%2N5)V7xQB(Et zPC3F-E?iSYO#332?mLuJavm|nyVMz~N(?Kptl>xc}%fC!2Fc|D> zVn*7yw30agv%F3mS7#!%HeaT)g(Y9OcEiSX!%7|0F-j_lht;vIE0H#+V`K?SdMv!e z;vbOMFS4_7Ap4$K($#2h|5z!unhZnLnuFKUm%qw=!|EpZZ053xU(%|)XLDR%qMzWi znKLE4R1J&Pm3P>8>ESon!8IuYBwuyu3v5fPNuS!87M0%LoK}-Q zZ-44^Utlv=P5RV+uBi0>madxgdAqu!*Wq&>XGP@>`b0BUvYy%9JSQ#)2lP)=fHmAABMGRP&h3 z>L*aG5^rt$wy6D5`nZJW!fU^NU7yCPozZy0q)ed?=rdg`e!w^k+GsoU{YU_0>ZlLkNS9)8}G zq#CY1G9|Z6vR708K-NKxRwG`}2eirj0GGM?f}Sch$17D}L3gDibGP$qvXUOqKG@|R z4gTUv!tMoA9w#d$&-RLBMV^LIe1;V$J71R#2%frk-{%pTd!6j|VH7^~;U`YcsZX5f zKWGkKXFaj<_S9U0)S>s(93A^zDfQ5^z8w#(Hah}I8OfWKDkB?Hy{A^05?<*V@Xpb! z8km==VaaCta1Nby+S`-!8bEj8)3+T4c9L%N?dQ4)F)PLYaC?naQ3Yv>RGK?o#ie*3 z#aCoeHZqK3Fy`pr6JNih1}cEdPV#v+J8x_Y$Uao8g5g@A?R7_V*k@)@=K7sgOV6B? zeh#F)s`^ey5|iuci&m)*%yX(t zxT;zY>o0H5+CmfySpci`6Zk03OA*s{c~sfDE&h>p{(wkc(+N%Ve;tysQ==y34m}R7Rmu!@^pyv;nR`1bK?cwcssTvO5UUYTQW?9_>+ZE5n z>+BY0T{KW0b{jJeykF z#Gu>DSC-R_$=jF5%xD{OEVXTzT*)>5Qj1dMnv_kxc6PF^ReODng${_5vK7UTr;C!? z{j9w?_93=IsSXk8CW5}oX8NQUDXrRXj;cr*lt-!Z9J{fkkC*U1tU)oWy(d-?Gm$}w zW-sEmNjz4Yp~qEq4LbVTdb`4( zZ?$i|l&0EtfXhs4c*+gZGh?Pp&GAYFULI4w# zay$Kq!tM@yJ3!v79lmN>TB?2TVt5Ae{mV)|HH2Qa+3BjyT0o0m6fk_{Bz?6HjSSDA zlon2l9=W6XTK&X_ueov2)50myyHc}&FKM7PY)j9Gw56@ex;nfv(sMQ|t!msxoWGWL zRGK`LRyW!P7D|bFAw=DbAJR8j*lGstLJD_cDRJ$+E?rT%o6gCzw$X-`nQHgC6cpGA zrbONZ4cB(IGJJJ3JI`!)1Gce8~t3D>>zXladVgQ1{cG$a7y%-#9s>@ zkyX6G=cg7;iM^qJa5H^(y~(q$+BS0d(N&6NQi662T;9``JdQ9nMnuyWHa4vDgj7v= z@eaNhs?v#{TsL=!S9=jEpm`-33r(MMcgI3@+ZkVyp8A;zZM-Vm?d>h}@;qO5lw!E{ zbND;BLszZcl=s5#m7yg^+Y-FA60uMk&Uf)jm6G>dZI4Q23%|}TK6BNXMP=6(3!lAZ zqNLBicsNr|+wQhv z<3}Ix_;n<1N3g*j8-wHI$ITs!S)SW zC9AiJbB9~Cm^56;br<*aL$&0uXO@X-OR@EgD^Hq{znj|`TDmR!!1};yaD<82M;BGG5y=B6Y=x) zk9=Y27bEGoViP)F|CWi8znK2H@}vRz`nMUwEm*Xn@S`JN|KOqIFQ$K6bs~Pg{*fLSupzOeL%*YudvCwku6T8i1IHXM^W&t2qMH6B4UDxj?6XJH`kiKwdVKjZ&%eW zMtA*l&e&`I<~QeDbImo^`%-fZ@O={h%P%iJ%LKyq;Vb$4_Ep;d8!oRvb(df+Cn)tH zuT+0X+p&ttrDx>9L{t$o&SnC<@*^!8h<<>g)6KkehG9e(Y+ZI)0i+-$-hcVZ5G7DZ zQ0MFYXL-l-l{SVMml;6&st&wRAnpg4jy#5fQTNddcZVA@eDFy!_>2>T0QV9{xj<;| z?UT;IXiPU;jRv&;=qg+7<-Hw51JOSi=9RBtP8lpl2A^^69^lREuOI1+$U*jLk5Pw~ zGp}IX6248MH{FLj&DHiS;lSz-s>e-;ut&QGhdigxB20W>z0#KY;mZV?sgib0c{|^-#v8~)$*G8RR)+#C1p)Qf;t~f zDX(6UraS$oHGA50gVy%qfeMF?W>RohH{U9`)S$6ZN>HeqkzReJeBEVQM~!@-#MisG z>pG)@&V=6ezRGrSscc^h1>(MIwx{-{`7L!U|YWo)Sk!0}Sb{Us;!g%qD@;}JU*VSI+>WGNW1n6_0N}t=KN2Wok zW%_}gy?HNkf?8Lom#1E-5WZQIe+Tv=x4EPHq<>P-sIaIy+^0`k+|iw4^o-qGzpUGP zPz?9Kf`-Y1BDqhdZcZ>^NXB$e0kovv!!LsQKX7(JBQe(}vrtt{T#WIyzw0PWw>HI{ zM4?2)J(LP0{tDFQtNE;{zGbPU@MOa;xv&l0S3#=xd|h!`3D$U^p;>QMMjsHlxCtGr zy(kn2``-8UPmksxZBqg{UGY676^Q#4s=zh&;!(2NKc5=UzY0>lJ6YUnDTLNilnE{7 z?K3!JE?%;LQJr3Ths!;}o&1#Z9rWAJa3!@yZRSg75YhOuH(^n}1abI+Yb$<~7hcG@ z*xCv*(UH2Eer1A7Y8C7EZOb_KYWSvq~~79VnM?ZoGqKZahVxi2MpE*e;!k65t8SL)AA zVQZ>CJCVIe5*xk^v&r*r?#@)joJ~?0D7Y-djoD<1T34v)*f*S_nW?|Iuh-`aWkUGIGRSAIDq9Xi{t>x?Rv zWWFzIh~pL2Ud^|_;=lPTsY4!*&rWF0_&x4Ll_xK@;GBX$#g-kbNSW}88y3EJc0uee z^z)r!?GHsqBfA~7Q>tQ5c!O2nGNTQINmRb+9ec5yplq$*axm;nJ^h-p+Sb`?(;Mw6 zaIg9rnt^^i9T&}qm{U%d62W~9M0kk~_4xd(F|ThFqUmgW3fv3d12Nu}-s)Dx%!>>4 z@(jL7M_aZje9Ni3o$P>aikyM-#Vf1&8d&KqbSCJGUMoN8bE|9JEmxI5 zVey3)vg1cUfVcXxkZwC6FCazJ&57bL#+N{pFFU2%YWGJEhnF!&n<$cf2gIO5}UF)vV2p39(vr>R!xelv4Mjojcf$qn57YjKjRa`JTz%99K}1pks-%`?&4 z3ED_D7TlM^@5rSn|Czsptz-oj!$m*3>nG_y&GCr0_jJpDC_C9I9KGSbGzuOdk-;4O7{Nqwl4R_7ay`+-J`=4Uo+}YCZpjy+SDN)II8qQ9-vkI z5h@cKb;2W5CUK%sQ9hAD1UJsD>V+}C{A;yRjxj(5vhP9>GmthK<>b5keY*v6;B*^` zgi~m-ksH6n5Pp}p&b$VmV^O{zv|MzDzAfcAbh$#1WF?U2s;Cf@;Wjib2p9!VLQupP zED2)4Av%{O$v~{O@wdwoyh3&`pW#RO$A-K;Uif>JP72#2HsMQN=wc4hZ;e zPmr~r3)j)5t>^`kwtgGh`a*Y@?`oni@&pc*fojV_oHv}$in&ILT30Be*>J=RzwZTf zQT}u#>61^H(8kX}@$|`}yWKFeEQ!l4-4%+wpZNYydgjSWAkPI>ktxG%Xj~AjHZnzg zQT`FJE(@?QInURG#ky1m(k=^eF08U{idt7FL)65&0bP_oATg9B-Sm4hXqW9nV}hDQ z=Ie_!5y-xyOQbX6E-YGYF}jGR20piRiSRMh;yZ`K?|T~M`4#04f_}G;-D3w7JiE00 zS)NU>Jc(aVv4}y=yB3AWo9NBQ`h0h8p@8o_i$eGYeWOh|cM8AnS!l7xd%ZnM@0i2m ze3Drllgd1(TYiFfXAfE%oYmciMNsz9Kp_l18QQ}VJsoAc*QYz@;8L*1Y6Rr1LOr6I zBR2sVOcYI*Jff;N(BUGGdZTi$;b?5WM!|9@8qi={6-Y%U4#K0#%0c{HHSSBm<)*>K z&}qe4G5jvgB62IrH-csh6uPWNz|o(|K!#-@&TB%&rxdlWP(iX-3rTzm=%W1JW*cDK;m3EGf8nGXOiMfuk-0^R2!Zl~wQxE*@8#SL;T zbvOc9#Gu<DD!< zu|_TQc7it4Noo|h6y=Xf9`F0i9zEr9+8v&DPP%3{&wZvQ0$p}=iC8!Z4XV%7)WGMK zE)hO2=liabK2xKlhF*f`uyJ0vs}DPkaZk~JRNJaRgi4fCaZeEgmz%0UxEQJ>aZiCn zvm@}m-71{YMa2H4SmvEf)bWE0DIrKF*$T4B-I6U20X`sr-`(_U4Jvb+4yKS$pYScp zpMfa4xZm%Z0iW|{R|xW~1oB)bl|N^=4UG#j#-N{!>?6J?|225v5^sREDu?q0E(M8K zBOn)92b&JIJRuVEnd-plH004>MN;#m4hf^;Br$H z2$x`&SnElPS0K-=C_e*o5W464l*a3pQe5G_7$jL!kj4r(uv>^V6i6yu^C-$8%I@~u z+dIElc3+ILD@dd426hXv(`DB@it-mB2ilv^D^zrZc7H^9I~|jtw;7seg#2YR4It3- zg{kaw?fGIO-&C8>@SQg`Q8u_Kub2i4HX6f!uPFa-2+*r8T^kLJ^Q4sEa7QBqATQ^H z0hZf9bu=b^M}BS4E$L_kA$okqr#2TkkM&#(@i$S(E1<9*Wb(IEo3$cbKN#xW#it_J5U9Qok1hkogf)86J>FL>* z0tINW8GaU%CRN4b6CXqZDR9^gKMMy#6<&J|zwZTz)Wr9IHcLF2Wog1A9WDhKRwE#< z1~op*k(+=F62{h)jL#H@qWlr?pT(2@@Z1vGuNPAx$h;EBbCK03*iiv)L*opAlTmQQ z7v&jP`GsmegI<@KJSZM^CXbJ4)8n|`t2?Gmftas6oq_{tKW_@L_)Ow;cjJI>3Iq7s z7fvCTuNh{$=e`(z-D;lFfrd=rfvdFA;e;_) zvpI_r0+7P3Oh;I*gvz3X67W0nYlEXDS(G3=9~#9#O)OLUtLe;qU(CfI!2 z3b%(=o|;75uNJBs;=7;&hjO`$vwD1D@-?i%k)fF z-B+FL7AFqrLLl(JR80Z1VwQx{u6WYfFq+O5;i{|QH}Ym)5HL6aG_;8bLy1a zd?fKa?syHh;_p&hNo{j<<=@=QLG>BnaU=dNJd7IWHSX|x#;YiQx2~?O)A8d@F`yyv za5OY+!wmtb#5n&>+nBcBIs|qBZ~4o^IftygjCS4lEtG!RMr+#)h`ZCJlRBTaB_Mjg;GkCK5Kk0@hfehaCI+ z#>JOp51%voa*wWB#JUFMHqkkwf!vAwgGBL(oFveyT z)M_Ii8&wm5S$1>@S8#3{u45l6G&S&%I2^?wK8BT&tqVE7qWl8sn%R?gE0Uh9Ygk^$ z4Lv0^>6LoNx*ONVOrqia3dKI-{>X0C;EU_*pw(rx`u)DaxPJ{aTeX z=&;0+C3UBA22JWk>z026`nSbCrB4uy>iVe+U5>V?%zO?jJ%4_#OFG@P=U$ z{}6=dQ7}z^w{E)aBh&m$BWhaB@3aKnrQv;t{x}>3sk}OrDq=tTrcI@X* z#&mj&wtWqJJf%5_Azf#2JTfktrgV!t;d+SwM7R8LZ$dw!zfJAG6?0B}EMj5%xjwXb zw%o*hUt2pY_BWR9mL`B9L*c(dxny64f#kirN0_L^LGH|op3#7nd zH~idCuiTJ>E2o@_@|Sfk{;UtrEz)OBB1~$r`FB8Tc&@tV!?}qcUi)oP<|>F!3H`+& z830UhuaRwTQ(m_BHmySf{}<}08Z6EmVxq1{Y z#rU+fds3y5wc{ynF&43~{Y)*DJ6}ilYCm|`9Uqz%#-U6T37cQl-nAY5rEZ##a}FdE zR;#)VS2+iCmsVGyat@#sre9UHBxkAINnnb$Qa_d3<_ zSm^Bp9egL|VoApXTxfk!(nl6%*DYsMtLwGLA9&1}5`s>*(o%8xBvVk+2Pp#h-Azk{ zpP_ED2{lD}zD4;Ly?0fWa6=-?enIa|9Md5s%Olv586`-1J1Z7Z6V*Ab@zErM0LSOD zV&P~gzlD1QGN@?(^HA$S`~I-4_JI;)4cdodk#)NE0RkL@_Muofw%0yDMf?8&v|pnZ zaa_=zIdj~^y>Ora**3$^B2%KJ>V*R-aM%q$3kO51q!$hl(dPGnHp|5$N`1{p%j?p< z7^GNJkURi!eD;oNV7Cx!h|kd?{Jy7o6y-|QRdDdR)jJ!Hsp-kJ&mEdYX1gSzlnr9g zdZoJMYb1MMuFHqr(<6Jen+@WN(I5)aXb=Oth1j5YjK_&VG!J?nzUq=$^yl0ylx?$Q zPJHSBVw(S?>a%>;vn}zVew#UWsz?T=3ZX->$W6v60|q-!54@hm?=&40W$bY=&3&W?ltWZIBlMVh3Et2rZ~1pJQtD)=CEbcke5KoFwGp9DRY zUHiAEc-WnNG04CHE>71Z8mRVdV7Jugs9p`}6L;1;it^hqHqk|6^vbu@rdf7hjIt|8 z?pI271G|OT>9T7cMfrO{_APo!W^^*?j0@U0Uq5vMRG`T&6p1?|mBFFSHxwWTPPd^* zI2r0CQzroP9Eg+q`x2F4`w2@ubzDF4@Lgvg!c8VxXM&gIx%=w@XCg=f$$KLdJO=|;M4SIneS z4ZaI=HwpJZbpT;M2A|wM7@dv#v=UTMM`X{wayvmXu-XkQ6VoNeSG_IL1FvVXOn4d9 zko2~Q^E`|4J9H-JPWYd8>8KPfdp$m}YlK}Sp%cUXIs~O<7nd8lJYNjTttm*}vXX8i zu8FWCakmk>OT!>Zm#4p9ln=E}-E|4sxHzD@sEe`dJSc6Q&`KR!JBdpit!wDTFnaJp>_o{Dk)UdlC=mF801#vzZb@c(C4p@gM1y zp9qz{<^}`>b${jwN+0Kh0@U3^VBRcL&<>=)VK@9N7B?)G1nmG3lYOcz)%np`|FBCr zp;hsm68d70VogDEB~;rsuv>^V#829`=24VC1#!tu_l2t*lg2F5eev=}HQg6Lx%eu{ zsJMgfZn{sS4F&S)z9>UcF6rp>k}Og9V|Lu{b!cHg9)YF}_h;^{ZMt}%cD3V;ZpLXw zK3=76`DP@wj`mh{4i#Eedh_ zB+#hCf))z+-m@r#uTh=JVL=P+`4{Ce#EH9Ix`}v9J5iFg5X-#W_0-UV^v~B2i2{jX zcARtYZ+kUB;QodhBH?bB=N3+Q)-VtY{Z;68*8J2<&3<8yq=5qD+zda9WQpD?k_J-X zup53B4u)aidG5^%X`a53~s zjvFYDX!id?J#D%M?UrckZa?9euZcja9bHnRoLUXn)WGMKE)hP4ddX_IMu~oZLZ=P4 zjOfYilP-nb!Jzd_yX8A|G<~z%d&WEHXhke}Cc#Jang@4iz5R8rO|`_!$NyWc(W=wA z@j!qO2>c<0t~gcVd}DZMrpw$>hbfJU(DSRh+FNO&Ag*fQ2-|W?MiW8EWlc8SSgk+ShDE}-(l3urWRM7J+ zRzUP4!-_yE_~$Ak#Z`H_yMEj~F9t5HEzHShHWW~apyTpCX;)-oG+za}-v`kYB3GAE&ghqB&HOc-$9 zGf9NAVGTahAAYytVwLZc2F_O5qF3qZqDnfEQx{IT?tuzq-Gw5NG0|Q%5+Daov^JiK zLS7WKiZLW;31s*rz@4~~V2A<>zzwbqi=T(&d6xzY!Y4?FS%HU%Yt`KBc3FLV-sACfu zZbRdObkX}cYK7nTBEBeZfxO!%XKrW6Xn5GEi=E61$v}r2SSGei>O-w1AwBSV7R!WJ z&?IV@tR*2%>gEIJZ*(;Dxbtd3*M~FXq^YyLBMHbw=cfUh*Ov0PNDDk}#NQkAO8hNi zM5kW{ofZ#919M%G{mm7E3@d>=*FgDOhTG6Mqc#$Mi}<4KfWIw`N2hOogJph>R9p%Y zuSP&FvWiqWaubk-&`Iy6I27eKfR$g{H$~=~efw_!d6z2ETv*OQd_+nxYY}6J$vt8C zeNV7O`QLzL*XU)Ab2=YoF9`cJc%cA^HxZZ%t|lP^DR9^gKQ}mbG6@+Vo)eAaL7NqK z7KKJ2mZxx^T$O_y>l&2nq55PCy`7+g$z#w-`efijkrjMqQwArY=_K)n>s1qhE<3tJ z%$mehHQA`CfzK^nB76+hlF3Gmk{Y@V`mNDZTEo%VV9>Yfi2W^4fJB?&XAvh+OZi(M z1rEF6XW?Kdl=xeKh&DaYhVs{wLEqfwQ{}I&7^I;5H9&G_gZwqaQvRy3hWJ_j8hOwy zI@nfD{9A!mJ#bs8%0c>d4a&t=ZN)-wCul=~q^$s#qTB}!Xs@xmmE2N*t?!FLe%fms zAi4O;`UaNv8f&Z}d}4jgqbLjToHe>er{6mo*za&~I|vk@!Djebytuv{1XAFz8-5lJ zhAK%r2oTSyC|?iSYz|I%hJ$WWf7Q%m*|M4lB-+s>B2=Q5idvc)_}tPZ!pBf9iCP*Z z`n?GHtsjm@^n`Nbm?M&aOk44Hktoqj<$#eEc-)A;3lBr9BnONb(doNDCp!M!r-RS# zw)Y9`3p%aY7Q}YXNkKk3duOuBTNvlxtiL>nsXh-pUsuo5(4Fs!4!_s(rb%oV0dEdo zY~#0z2xQ#J;JL=yZ|nHnviJmTVj_|HZN{%Cf7t6+^2FR7x-r05v11=f(h6p6lY5oB z<}Xuj%^8FJnk%5VbIK?|yW3f@wAiH8^E9h(2^j=9K9>~>M?>r609FR|oQv{Hup`}X zo`&?mKRVWy(AXw}ylcw7HoSigzUbrmjv&0Kn}|QYhREMU$&j5}@Z=lwayK z_5n%movQ8}@4AI>{z4LsxbadnqMZO8P3xI<%U7T$TfASKnp^mIHp3NyiYtLUuY5I| zk>NHp&ag)^n-TFvxehM7EyE<`ONjye>{+#>rd{ZcH{=b2MXrsWJ*(#xmhO}|wri)e zX9iDN7X%mII_T4GP}gFKTi}jR?GngoWqhgkO*hP3^gm}0QX-g$`3$n+#I~n zCL>owAn8s9&;3(p7?5qKYenOF1|V&6kp5? zWUp6uu;(@@PUtPB-VqHJ=-mfTc2DnJ%&3mO|DC5#@5HS^%e1Au=|HM47OnsNhiNkq zLmCbvIY>NE#1OZ${UIGeHz#IfXFC(XmsaS`U$^RIMI@ddtjYnjRQn-bs8L@j%0K2U zU9ymiJ$lQ``V{AIuF!v{TmA)cea3AJy2tmYzEc)yK-%pToHq#`^7$sAh=I#ZRnXvp z$+lw!^4w@=3TQ@`Z_=7MosQh^*W3rfjSi?lF1jo&WsvKqGAAGhPIOtC!6`KNI6;wQ zP5=`vzs+k|{j4^+Tl)fJKaW-YV32m!#Jb-%VUIEQDG8W`TCnACHZ#GFmY^IEjM8hT)Q zFWxTLN>(;~0|uDiba$m;t2L_gJ74q6Yo2j`PdN9=F~IXS-@oRjOe;sB*lD^Q&p=qj zz>e?H=Al*RpzEGKHw1jb9?Y!Vn5rTKHk;E}@aRqx0eq(_aknN@l5Pejo{dZBfQh?P z(c8q*ffMXN0YJJDk@~qQ9>q3D2@^JLgTZM+2yAGlcUo#%j3iOvl+B?LB`vGmj&Yq9p42;i%|?vSFDecLd* zp%4I!o*yrI4>|{fk$rZDx5z0P0Mh}l(S+`Wru1OYr}V4Nay+&$Xo1PD%=sQ3Z=HI1SUrOlnB5QpcjIuaL_EsOD1p&UDL!lD z#JzV;3aplD<={a&mjYm&f9l-t+ZX%sU?-9Qbm^e(Og(>#O9AjYD_eISW(F}%lWP&c z_+B7`Oud#hCs_>`V7}CERFg{qaEs{adK#&z+8SXeGiZSs9W$EJ6xrp0Dq%3`+#ii- zp{A}adj^^c7`S&|rZ!*>hAAPi*``vCN%ey8AQZ`f#SJQ>>t2rd()wC;xWQ$Vz=)sf zX==0_n2ASdj{sNCV$@2(-4b!A_GmC2FxjHQ=Jqc25~+{@-3NR;qI{s%&6xpE0fW0x z)EOO+y0mNFY>YhDP(u$)H)sqwa>vUo|)#o@s)FOZ}zjrXTLHa!) zdPwC=3ykjS?@e)Mwpk55Fnv}N1(&m|$Ni*94GiySlIT7bM@|)Oa$tGOnW7^e;O96j zejL;cT3~h$M-@|Rn&Wi?2AEfua8IpmmK2%ht(3N^Y2!?(arVes1W0)o$r@{&9jS&M zm_CO@%{9*}{&fIgyD_B);x?^l0KEHFpK`tIbHKMc-^d14To(o*a9XPfY!)1{H3eX| ztCF|7tk`D2tv@3JE}K>HR}O1>N z3A^_07IsTT1K>rsZ^9DRACsa&Am8+>nl!E7KQ=o^7F81ge0f}i`wOhi489m3E7VCI z(US?5jJ!ryl>=yTJhCUZSSwcu zOc(&GlZV}t?jw6xzyn_)0N7&P?Xs-AD+KZtihXq_lv$Um96+mX*|g4GSu`Q=u%i6u zvhv3hEt?IiRn*ZueL|-@} zPyqvaG=mxNV!QpeE@$&d1}sDd>Nw~sILisO44z7i`Y8|xcbkklqPr{HDt@(2Xd1Sn z(a~>(R@NJjfLG<9($aAqggu>00YDEFyKM#zWls@uSkXiPU#$Bad%P0^ zbzH5KeKIYW?P2QlxhMUcj?ccI^g+MhN|(y!lx#UFK~kCtts$inAYB?358d4qIl14w z=1awLzoysb7SE5nW{~Cp=L$WnTYiVMj4--6f1_EmGP}>qH|U4ys__I)MhRcNl@!;h!t+rEEil_Xrit#p zH+8K`aXU>3fz5j5*)`n^SA8S_=#Ko}unU-{q!Kz{BHt%#2?9O#Ir3g%*osF)eI_@41YRBMQlZpmZq4VwyP$^o?HrKnDLSx}zN11ey!T@}%k;Q@^`Ee<@8MKWNqI4SIDG;U+A5Xe_1 zM`s5I_NHpzTzt6)(G@i?Fnyg5iDvAibo`WN+ueqThaGy`?dg-}>H}y-tSfT4cYH!S zz%6U|fd?0ZT5BFM9GMm9b6iFd1prsc?w!GCWaa_fq=f)rEBym{6vLiGWHVOf09rpC zKkgKddend{-8gDT5`;cHa&4|oP=-bl4=u{?l*)_axfjgn8pd-kpttaNu7XS*&m~wM z&qZt)x5fEPV>~B3it@KfOF5Pggh2M95y&b?URBA&RD$I|7O_FnsDTm4 zgaU-N#&_`gld3Lk8h|U67GgUl6Qn^7)b5@f)0-DmO{Gav7Yav zbyYY1JEbn3u6DB=qgq#0RQ~JT^7nvmUC|Q9t#koIjFnV{S|&^pPzU^eR<`m&o@^LD zSthjk7UlO!%;4F}rX`2Nf}WmqhgKWblZ8h2Bo}#Gk3;jUkC#h@J}kTV~aVFq-;D7{czKd$n{;0c#|WtYEteeV%fm3+OA zbyXi-_V3AAT@U9Zz8GwKkq7hGqR+`eYUhu1?7Ba6=PXBKGfU?!uXO;BXV!PdD$Otc zo*XN4wQu@XGR^*!uQ#kbA6pqVJfLM&D;u^B0EWFGRQpA5T>FqFj~6mZn^Aw*mQkPt zMsz0hWYDE|eCjuX_=71x1}x_DJg?Lrja|47EW`7xj1YiKe8xqtBe0;H=o2&?O9!|+ z_2Wutc;TPhwpeiQnGymUxfQTl|Ebl3=L{-NniiO;b2qh&l5;mq2TT^}MtpN1$a93Q z5Xe{ilL?&|@0y8pWqnVOz)p+fNzDza9##*jPcW$_1U4)WZJ(!mxoP8I zF*-9RzJokK35@&=9qw$v6c_Z9fMjewNT7&;-HWcyX5Afh(`^cy287RSIO>K;30{#> zGyqO8q$UFR3Y83KoK&kyRSuvX`cbYX zuRFoQy--32Oz1r__b{_P+s*+<2mt2pXrY*0(_i!2SD*kOz2`*hQM8IhQw2japtHjO z6)>QuJe~J8cM2ROQbJ(!yf1CrF>rTT4*}NnDu9zv$9$_^c{)2M1y*$Y!?9|L^xXd; z8L*&-1%$$-m92Czw|FUAX;NTS$p!J;;-%yQ zT3{x(?X-ygJe}(GY>fZcu|KpL%3OSETE^FULBuj5hcitC)@!@_xBA-hOKwi#t0}?D z4y0K!R7U^cB`k|yN1o9>K%ZrxRdih;x4rmaF04UG~UE|^$!<`1P zzQf+9Xy9wxQs6JpweTF%kqlVel(IoV_s30+`Uhs_z)>?N1y<`)ZjS&s|B564y(Pbo z`-evjVsOAUXn|QU=_6YZFe%Xhc(GU5mtb=9afLv>P}A7BHKc8gZq>D$n&(Z0z?)|K z4_~Y~+{H<0RSux#{o3@ICvtr;K$ePE&g?B`?BrYufQ4dwVEGy=O=Su3BXe_-Cw_#x zlNagix7pm-Laq>aFVQc@FIb{@$z3S|Xm^+G6b#@}0BrJ4v?^OSCgI*o69IhjfbuO% zKGw$-rsN|t3RL7HjIIlZJ(HSEOJ%@&<#1fkQ3!KVjJ>HU2M|4%#h^~Di*Sk!RKQ@d zf7~_av{)lo2;?+%M|V*5?c<2m)SV{)*pizAG+mObl}l3q9cHpBrUIl#otFC(vV^%W zlbe+tP$47 z5)r@f28*2S#HGNU0cLv-fTYC}kNOtx3W5I`{Xz){wR=k_PVoW-0N2CM=GVN%gg1WE zZ8@i7M1#gITG7CF1Gr{yCwE2yPIq@Yq4~>p%o3q168pPNouIH!JHZv&klsH&Gu@YC zMO6-8T%l;z4D#gwTJ_V~19R<<8@vzzY@OPtd!>V>8!SIy!$cB*t_}-Y%&d7{kH07c z09&KFsc&%Xc!2_dt8`eu-}pTt0N6s!EEYG@Z2F3_gcm6rux!EgRh7dR7V82Uha6W3 z}_%K%GgY$JvkKu_hq_zWUMuJOG~U?uJ`GI>;_!VMx|CJPw`i)3a9<9)6k{DZ~8_#n{QEW z%Lc)z^At1-cSTAcRcMqx9%i2w^onvB&6Dj zR(tg1XEAwDpAiTF=)S~T<}HOd@^C2t=y?n?aI&$e42T!qlX(_%t~FN(~Ulk z0)QQLfkTZ5+o zDl`)TT)s``;2u~q>u)<60Q>iKAH@#C;=rp^)%U5F^;bjzn=kLkQHJ!swWK5bPCziK!I z=RZ=EZ^?7N7gP#nvF8@$aw<&-LUZn?OPS5o+)pEbALo9$RQR>a{WMba{xhOC=YG|z zc=qvEH_^uzk5)%1tZtijZF(ZzVbdFUw8~?yzq7CSV$gJnm)tF@vkP-609Lw_S_n7K zsvJP;d@W2Zjz_GK1fWZ`7hAA^Tnd17{)skTJTMKx--;vvT__%#7~ktZ#`Up{1G+)H zvp+bY3pg$NaVt|a@TGNEaG%ak+rfZ^j3fYEJUDB(rPLJy`I`Hs)*9Tg2MPeLQf5d8 zChhpfX^Ideu+iZZSVe%aW4f^Qkaqr9rsS^)0l+q^tunQ)#o2%+0{9B;R_Pqsod!E| zRSuv<`qAv2xHoo%K)&XFX|8}kfj|nu_3p(r7bpO@Na5N{$XGyEn330CHA3Wgw+0RS z`}C|D-EmNJlM$O-6T#P(+!e2;`M5oEDFD{_r&yy)g0JA4ayHss=zmPZ?O^voHE$fNTsVr^gLPM7Xb1GyuNM>kgfxqPtJ` zKv6DU_c$`|*tLj(-NMkmgPc2gDg)xR@u*MJC^Z-La10I<0Niu?DBTmBv{vD!lFoYW zf~^MO`Nq2@kY`_%U+p(L&35H%xBTsrfAXB`rLNB1=1VEmfuB6lR#z4%VzAInRlvSP zTwa#*GVw%wa%F)6i9!CYKlH7hk9NV;OeDAibcG_x&-Uo8-IYL|E5hB&OKvBdyCo8F z8yfd=E;@HF;dg~E%HJZj!2)dh0j8T*uvbBRms$+zQff~G^6zBuTn}~4f~E#Ow{%HE zm2i-XdTEr@$uFUPz0u(8ct{sL)#S>opC$sic65oz#dQ+hMCqrgfe(!m6ESR;OZ3wy z(eIDSRIGQPYQoM6i5y0&a*$?SgYpXF-5lQWEcAAQ4%HD&!fi18z6V^2@*jW(+Y@@Q zj?O&M^N4g|mbq!4y&1_spBq?KQ%@YDy;?{Qyq?7};T4pLO7dp@@cSO(q_+Mm&~=xe z&pf6>VsuuFlI;#T}!luL}oX7}z9X@SR$ z_`C2h48(30e&352G0ht2w8g8Gv?pu7Q!`aronN3eP@w{;c5?=KljbdxUO6BKPPd_` zK}Eh2KB@>X(eiuI@hJoxQU5_Ly?Zzs+Peq122w(h@K#zXLMC;o96v<>zq@Iv@C(Y- zI(~{2y^lce?aA?IM6bRMUZ`#EKDYrH$auqGkyo$|ZuPvLwRsuZroqkNS(NXW&F|dG z>4Z3KaiNU$RXQkl)_Y*jFLBq9QG&*|vtp^1q?*|ey;o-t;P_ltEF2Bh`8wqA`(6f> znm&e_UZ-3K_>?paSW3 zp-6;F6jgB;$br*sC=yPFnn@f6m}vQ{&_>k*$$Yk`J^_iZ8+$^K@NQb#AY_s-q)3tT zhoLswE`oF5S*BPl0wnh4VX}`9L}ZMn9??=FQENq@8&^p*bO59o!~zPZ}X zQxd)yzPzR&d0XdP$ct=Xw-6fyjBT7_MfiPB^Pp!#z{Di`pEK0KHVzwZe`^!RI_$L`69Zn>aK2!?K*rD-^k5`tW}($eYmmm+}Q z-LzEr1-)wPFGY&puY)Ld>xi;Rx;|nwrWI{E*?&wEbNr3u1r(091}#W?#~=`a69?uu z7<>gAAmIAEK_FZWGw^MO;rBfQESC7w&_gfp*S-YE(Z?5qWNQkN`>={W26hXvLEu=Q zN%YY?it@8T_BG!v*CZAkxdR1guo-?9izfA?uEPzaz@d5pLOyMW7WST?;$Fh3DE|y- zvp6}m56$t!pDP3j=&pf^Jg);a@t5H?G%g4i?awhN{Jt0QMfqPq8(Kd)yHAa$E^4q0 zkpyJlioe%XfXY`RE%3Mze-|D>>ZnbUuSSgLRg_-_b+FPf%;L$gsvIO)*Py&I)MS{2 z-cHbl63Jv3a4E{a2ie4exMUK^c!hwiTBYa4Osb)%%3DY!dy(`VJMUMPs*z(k5H#-?_ABnBGxIAKwWIb z-^HKnb&9mWgI>#_8InhIxsX5CWQV0hr-<>qit>+wPR~}Cn$og4?ctOKA(k=mF<$O4 zsXvQ0`o{VEjN(d6)N=rr9#0+Zuk|KcL z-LzEr8OkT)mlP>_|I_MrX&!Q}KR9xMqBHJ}m~+yO*&!o|XVEQx8p6V=^QF3{w0Q_5 z1fbf6{3|EB*_p+5Mqj-0X=S=(rq?AY|@S-zaD5Ag_Ajh7Noml z5Qw0OqG~8$fPm}s27z!j)K7*223Rcd9%u}1=LoG3ba>z2q}q36nSwhIix{MK`%rCm zc?e`DW&^pE<_raV?^zTL=Gb)yM_!f{?gsuv`Lo~|AwjYC@j!wiFEFMFO6@C5@f+D<%@)NvHK5<%e9Yj$#v(7nRpzucTmXDzyS?TVVqox;vs&c5Z zbq&gEUuDP^nzn4jPwKjiR!A~r;8K*YdJU@SHahoH^X|3ZjmE{I{O|WI#6xNEmCg>h zMJU>-d{%SQ7*}jcDD1u&Y`I*&$ibrcVzA_zg5-u&V{Zeyg;>LxSoZMyp5{@MYashJ zy)fd|Y8n=5IFut9=yC(gqzNZ+k{#TK2BZgG&tjSI3c5sBNoMvD=Xn<8AA-Qh=dkK- z8s)CeElN59kZD7H6=@R9R97dIfZvf{1#f7RbajFdJ$}gd`cFRTq}v}qeeyib2G$+B zqcKAcM+=swTr{G@s@*Cmuzb~MhF*vD z=SBH+f88!Wc0NBy$pM~yxBS!6(3tBs zE>kP4)55-eM&3`Y^g`oj;$qm^|Rg~XVHM8I6!a(cLMF$q>k?FRfi>a&7_3xp!Z_#c| zdg77#dy&j`WgZt8v|y1t27#C+iDhbBV1R(@^9F%%H4L7N3kIvFY6!QmbBr z4sh{5XT^WP~M z8scaiKP0ZETC&8;ghz;@k%!?}NlQ+76=h%2DKFT#aBsgfY}e#C2UK9vT__TdPn6?! zS@m@Kd%)?o$;nVL*(d=pskwgzHMdqBKd_^Q_b`8eAx=!Qc{UN42Vk{06-Ys=-SD&6 z#?UBPoC*-p=F_CkW{UxGqNr^QsOWVJh>=%3$<7-w@0iV*UyXcZv>)HVq~6H5f>>~U$PG-_er zUK8~>S6mY1mLpBhwuEkSi6I1N+d%^pGYHVOf(9mmb*(tQU+lYG>sG(Oz(4`jy+ES@ z3&IAWG9X^0AIy8|xKnh6Kz`Ljnaa)XxObP7pLb|u=ddsjdGg@PCI?9u`;sUp83HTj z3KQ}gt9kO&Y)gImrGCi8rNDpLYiHF9PvrPwfNUs(SU4W2DH;H;OZc%py(zyBP}|o5 znmBua+TIS(#N97B2XM>X2t;|k_9Dw@9K;P;Fy5jY7+Gj`23H8=ThP~AxGCAnq8lb# zIR2h1gzwEf-d`9GO<(1RKxM%Fa%W{Y%C_C7Qj|OPpmcWkp|x>8psb*IPNY)VNDG>W zL22Y+WJO6ToAN5k|GAn@XH&E@eYgBuGP2}c>V>xBsR?;~?}++{r%&F{a!3^+I-{c7 z_s8AyVnFSO?mV@8k$o7byzz?ij#l_;8e+HnVm*V_wn28w?}wc9^=<8VcG@5GPai*h zQjKKqO`FgZfVSan_kyfDctVGv=?YJO7r$jnb|H&cEc$wLoM5+#h7>}^3DKXE5l}u( zNTRZg6CwwrMcCs6;Z&4A0Cndq(Nnk=N!lTdQ(d zo9eYWO$(vo4iU&RHtK^GKTcR|a$tF@B|qPTRr{&cw}IJ91~Ye!ZFR3jhhM>lW0L|r5hu11rqo2ZLmvBZlI zN@f}?Ez8I%*NlS>SLq%RfhOw;Wk{Y*Pz$;!KUwZ1;W`V$$A$zp)i#~hs-U^}Di^5X z5vH{w4?~$G7f5*(<)?s7Gmjcp<1iyvLM_zf!|HtM}RtUgxS9_!JxHl@y>-`xf z1OTIlIn0weoLo~G5W72QDPy#PkKbCr#W}>jHz7dc)vw%k){f|M-O=H=Yu;JTZ8uQh zxB9hn*M5|mPhKw{7qp~o4lfwui{UFPbYXhk#kV})U6li9jeo5B6zdcy0J!XaZm^#( z28a`|?)F>}P+y?SMqj0Cwdw8_`w=2`A0hDHD$3s_ZH4hOP1`KXfH4mXDm149$907= zLP8Rn1G*?bPljpSsz1MN2IsHJiTCursb#}XaJp^Jy19r=y9K8ft;WZy0~I(#`x{rh zE664b>r>`#5bpu9Yd)E=@-vxnW4DrU{ z_DDCG&Cf@=6|-F9rjc&KH6Q6lu7(AsjdX>3QT{)WPA$3-jTI#91)Y^Zo-4<3tg6nC z6je=eL*oqblhZejT59g!iM*UtwVoC`?hgAWw6)mZq1<*_3{X0uy4al}+>9=Nw4d38 zP4rD8{ctH0w4wmDy__pf_PdLtR23JX_N*#EWh%3RUjBj$)_e1UH&#_rEYGk@y@G7& zyWXs}!TW4A5m@``PJgievz;p!NZlQKJlNdlEBHX@WtwNGdGVAXz8D}|2YtHhz~%6D zw@C4D0jPk%ireT-=Y%X1^Z2nU2hg%RDK#*kHef-0aSk~%?*a;tvv8>+TX6AUG%x`i z7F{8HVU4aOJ*QU<_sy**ekMUE0JwbAd})9$P9cqzdz4r1Yy0Mtf&3Ii{|&%>jdRr= zT^wcAiq9O~881fxK+06l3wou_yvBwHb3y>Hg_EvnXCBN^84z#M6geN2sH+`rn3@RS z@n}PJhvuk5&lOmDay}t^edxg+RXJewm^yPv9nWz+~xkbkZ^J?q_Ye6aeew{>Po#3(UDoj3fYEu6GoUM23Uh zJRA1u;_^;!G@KMYT2Hm#T;YQoIVpbqygAtT;uO*tY|d4%DazjrN%n2qfN27gOOjOphIml{uiIYb>yVQau~e|_vE>jv*i;a z<`G@DT*a0>+ZM=`K;CGbZ0qEP#!a_Q#24kifn86nPm#E580Z<2C#`podwLl5#(RFO zJc%P&B!L*btggpPCf~WQ)3@PO1Fu;x4PxiM{LK@dja*)F;S1cD&E;;H^^&9)Ia`+J zz?2e7Px4`D{oI^d@9v^|Z!F<=MX6h4Yo16g+5U zP&{&Rpd zklsu_X@*7;fNs&lO!VF_9sh9>SvKO~H&6kCO}hTdLHU|s3(un|O_ac2Yy($B0H>Q? z+!O9JWH@n|ZLJcVXBf1=Y;)jkI7Jmje&cS z-q;;vIQMKsz`ZP&YQ+31=`16jHj+y7W&!9a)B|%b2FvRTQQkn_C~tvrL7tJeL6=^t+Va6-3X~#DBI}uw3B7O(>tT>9>*Oa>Bt+nR%P>i zdLs&~x=^0`i^7tgj;ArG42jRndSWW`#57Yc-M)9U{rX)e91W{-_|&=v%@nx2XF#UQ`i&LWUpd=5}vd;`0MSVMU3M8og2iPL>c ztpEMeo3QLl2Vc-5Ni2)_qWouI<(2-VM_H>m_sBk8m4npl8k7sJeB45B zCul?b#K(b4QGPpUu=I%T4Ktt0W5;oR-h{xgI#WKR4&;*0Vxi{1Z_OCDNp{H#t%xToHpw%+)uLAp0w?G6UD&5UbX z2*6s4-I^_#986qcN^Wl_tjObLOb)PX)Y*2&w5nh(?eKh8puq3+B#}z`UjB|N1o8{I z`WEk$r7U&mCVs7u%5es$;JdS@X|;PyYkT{}Vtin(XRs+;A&9ha&^Nc(a?(O&K)i7< z7}1q>wGXays8TclUOZ@W9ajkCvv;Xft$1|WJ*au%o}2SfC_uCo*A3n8 z*AM!uasVyT6d&em*K0(oP1nl<+gjho(`Mto5|C*3Lg>6O&$ z&7{&fq~r?ma;(p75&(F~oup8>8EW$8u<-j{0uAW!2i<70=HmV1L>+Ha(n4$sj;-p48&JkTPnzmY!>XwJzyJj4j_GpEddg58u@gk%enSOKSC!7Ub|y7^np*{u z0gH{J?yyO89y2K#0IyW{0a*^@mnDb$&OHFM_n=FwHRI0xf_CB2IT?Br;G6~x^{vs} z_0tFf_FEPEdVbuxfeIMhI3}qcx)bm6Y>%ZL4+SzxV6;J3p$*TDi*e1(t87|D1K<_1 zT-{Y_Y}%?EL3GXQV>)4P3Cy6X96)RSlI%{;oQmf$U!VZsPW3aL2k9Pkd*(Hu?D+{D zFp;mH)-P{W@YAskG-t%M*rzy!u_gR!-+yNZ0V??NB_rRGi(%#z5|8J(6ux)mBati4 z@p5*T8tGoVdoIc$4B=+B^lGe{JU8Ly>L*F_I%1#jl}bn>J4yB&C=Nw=0#dJq^&hJl zvttJe@RQB(GXrxCSO%{_AO#M);b-AsXp$Uo2oTSyC?}xJEGb5{s0z_)!kt9Z(u(e%g zt1P(^R^{?KP-%Kxo~v*h8fOTdr0Ee~l-~>TUSRolO|AImQY+8VOTR_=-+{-@yez#M z*Rk`Ds;H4KXm0}2Fjf*Z6o;aGEm&)&JqydS!6BEIjHP5)e zC)|Aog1x||D8B>@J>#y7m9U8;ms&Ywwwq%^&R`n4#rBfH*J$aQ4nhap8WQt0~f`7N9on_R;3!qVQCIcjO@d`Oza>b!2KS%8C zg^hiDu7L^JpyF#m5NU@>?Y?GpEZ=4=|IP$=rb`nwU#%y+{CHvO7tk za5K!7Y`sW;V!D6gH7;3J8PK&KPIk*3Fxdhv%CJmHi{>?RDg$Mfg*a~xsw+!Tv{L9l zK`2A*qz4P=qI{3{f3NE02Eg6&gP=AoklDjRzW}XPl-bU-Kvt3Gnyc`FC6VdBZwaVW~aEr$uYF4}MJWAc@-8!#7HIlkT&$hZxSGXzc?KjP_N z7+866@``;9+y{3m1WT<1@XXFtl^8Fi-Zq}ef1M3`bg$)k&2^5|hL1=D676L0TrJK~eZ14uz=t-D#4j|| zb+&ONqC~$j)Yipz-?Ia5B^&p1%~T|hw4m3G_;0yx1=VlmupRF?x1%FCWTTLx*W17suVRk|Yj7{y!Xd`@Jq~TpJMH)4>@-IZ@1YqI zs`I(5SQrPrBUj$-8-Cx*pkjn)bZiPKdg~1k-SQ`)yJ&ypfo-)CPDtebt&&}RRDy9E z8W*&T+9%0w#24i`cr#7*QzN$AwwmmxQm6!)>=!^Tvg+QL43Iw9HB?#By(tbw`S-zB zXF2!6_F9bxWg4Z16Elq51f*f=L~6yMD8CA%zStoWmSW3|)7ANtTnQBoBQ4nfM*O{@ z5|U^bG16dmz~2{$!15lRSf(bM?E7b@6`M?4?m3dKP_ zGH{oa1@c^M)um-PI+@+LfRuD;5nq(wDwbve-1I?r-`#^?Zl7csA_>UurVlhU*FZIp zNDDmN^g+VIsDh+{M2s|$KP!!%by^#a==oZj#5dbKyM3SlX*R>p(pr=FrG`C$6gcdL zpM`^=PBQEX5YgsmL7OGoJuxx|aGZ2-Daf!I0eO|EwvZz?0cl8{v<1bXDDO#-@{Ub6 z#J#v*99mJAcLG=CAo;om<+5|w@wu;s-cHbl{K<4WaG~WzXc^1>32o3fU5J-~d@;zs zrXacaY8lADZXwnXo?BD+eNXc!%1;FA(^ZKR^TaMkAy)`;uLSa3Y88bt99=V2eTHyB zvf9Kt;*0X1gO4vzleRpCyEG~TX_tjK7glv?Dar-9hBldWX#ri7Zve|~P)Xn2k6H63 z2e&Up1Cnp60+A(&FlrB$A_guuRe^9ZjGs&-E0E__l<$K&2%0^zqYY?AG$2#ZOu%{F z7@DPAf@X?Kd(8s3qWl18wmzVf9`zl9@8bdq=(UwVbG39IXY;s`^DvZ3`?!QxQT_{v zP75_R7x^UcQMf*kgRy%hTXPb+g3dG0ehrlvSr znTt3><|MOo)FSTnf?AhP5XulW^$*nOewXiSXs(2gg@G1$xO_k1VW^YF!hrF-it-~+ z6DxEsw|{(QUbW4+W>pT7xYsEHC|5=0nihIHK^saWxh8O-Ek}t4{b3L$X|G-bU!G{7 zK+PH$=xrK6hEEc@g$9~SQSO0Xtx?7Lft=NjIfeuZ(88_bDPXRL8gm6w;NadFKn{j3 z$(SoZJg1_39_nMcevyfDe_sqztSLyYgv$L5>=t4T@sr$N^C-&45KR{;W|?Do?x$QK z$h{KCbE#E7mEkrt&X73iry`yXIf3UaQeD)`>k3icK;9^ChI8qy{|w=#%Ny}U`D5T4 zAy1}pyXEVUCld`wAM#`Y=SmoPa>^y-$%>1iQq2e;a4X7h1kYKZ0h*-|XAD#Znk)-( zu7S!JQq;Oa84@QMLqHehUjRuL>qh46_iz1>yP73@6xqwLdwaUf|T+ z9LstL0m!i-zlt2mAVldQlz`unUj;v14?&0?&p^!CpnFW+mCYR)XeNCww_!yC(rl{& z5hzhewP8gJTyClY;bN$jv|$Aj%^pB>TIJ`%PX^{q=UhWV0Mcy8uOdpKkg6e}1pJQt zDtJSc#M1;Jdi=-WX>`@@#0*BP}3z1 z=%V~=h?+~abNGH-=w|pq+SLfi<<;ZD47mwNL*{f`7&*}EiXim@-NenUAc-k#Un&EM zmxVZ&S9wB;T30AT*2EJ6nr8gKXBYd&U31!%+n6f^SyuviF05)}8E!-43~`e-7V$;- zQy}j;y#wN&Vx>DxECaI)kpyISPmXA4u7Mi6Mq1!;BmUkH<&v>$#CTps`K8brX%>M< zEOn|`1S$n7s0$WAu7vV&CIckRA}FL$5s8m04n_GBP!n#S=L_a_Ei5&c!nfT%&kE2e zb&ho7!-$+NwcU9mu1?PJ7bzq^l6SN_IGCKuait??fK~*cY8dT+|fd(~dV4=4Y^mGk?OHsZZ zG~jsk221`BuigOCbG-6^Ty_;@U9>?Y$E$!e~lep_Ei&MIz?4Wx# zIPLW57TDbSuUxl$mv2ht>xQ)X#9auhn4dLr=hFan0Ac@bX{pRVjIx^6 zN@YYtG*SZ$4x=mq=k;KWvQjQ#l%=>Bby73R3f$;;qBh*l*@P~PJ1&kpqaoGJxm6on z%?X{DX-hM^sq4UBb7}G8o+T$0mfxpYZt`>D9l8_k)Sl+&=}1i^Z2oKM=D7}TN#%_B zGP=o8|G=E`;x56Ug$li65U`?o#qz0tAKnZQaDCn&5Uxf=^Xq}(_dNsbxzq4Y8+4UY z&d%Yf$^EVZN81ffA{ElyFOY{QB(46Gt_`{{3)@lUg=27t{M{WW#s2VqAB=JXa zD9Z1F>R;&IHx=fQ43&Yz%R-#Xt41;@YF(iWS(A}WK-21jm(-j0j*m<3^ptCkbmL=( zI&U*ba#CfJOVvG-7-8S+y1fzhF=#E*I)r#%k~V20B&c8MWMY-v_VeedbdxN4o?)197qp3lkyWkpnG0B!>CTx<0n(l+$ zi^{+p%R-zRL%COqqFmDVP=qoJk+iXZruA;^Ua!NxpGG6}=vZwo!V$a{A*T2-@Qy_n zima}W6MI((##jmDxiwT`pW!w%&ag+4*hhR(b|I*T48^~eZAs3&q?7Svpu-I;s|g)E zrGVX`!RuL@m!V;DuoH1!zM}jCx(%$7S9H!!?foy@{|SLqZ3nzOq+x@CLUe5&!8wkI z6G_2jLCsiRV>VV3%@#4h^L6<*g{NUYKB5+W4>?52yC{DVI+De%tbHYeK=0mRt*c5I zRswmmd#AV!jSEu7?mu{zGIyi; zsP9UlI#wef*Ih^b47mwNL;E!9M-DXj(w*Qs^^>j-l-QZn83&k1B8q>GX0dxp)}w3Q zyXW2hpnKo$_;}heB@}k|bcNhKDaJkbj7u`8u&Rdpp&EK&{sOd6&QKdF$sOuRD#`sM z%_K>7bR}g-&QJrgMI}WJMfnwI;n68=#cdvlc?&0mVuUyAF3#N}tj5Ds^^{3k=H-BF z5ewUY>>GejAnwr}4*P?mqtnxKdQr8`CHOFA14cgbh1xqd=+^E2etn0`HKJ&Q$!BT< z>^k-Ju+UPT?U@n^yYGe`a;Y2cWJ=nPZ~3m&Bdegd8Uf8MKSOQ;vV~Jc4n_GEZ3LP; z^OG(0_0KUB$;1G^uKn{io2kX9gdNHv7PhCluIV+!LI1RK;0~12R&;YyDhIlRPMEz_ zt9$Q+o_jm(5Sw;6KYM2bMn3XhZHU($l4G_01SgNR2>HNkAbu^n`nTNG_pVgvaiMn= z^4!mK@|fZ_!ehpH>CyRe6ucG{rZWVi>MyW4p;|830Hi5jz-SVdX%q~q_ zwaY_NLSgq6Ra1NNNhjU@_~{dPB!-`=?G3v0n8swUHyWPOjU&Z)k2d_#!y4}0Ia;KD zQoRdw&)vJw22ee4@>L_6rv74@%Q+hq{y~)%;643x=94e-=(b-5u$Lmv#`ikGjo;Tl zJ$fm;>-jdN?Dict#&&XVqb+d%xG|AD;}i@679i z+uc)oXW;(XX+dh;pVwFRf+nEg!;Zf@qoc1no3S=pnRPq8qobIgrb;DH_FR-z2e+?9 zSK5i(szuN2tb0l$Q1zRoz@7ZZTOO`O;|FusI4TB;f1_4h55BHN?f$i>9fx{%N)A)M zLzGrGW=ki2EqV{;uD8+*>N^B5ePQyo=sf=b7H@T~>N&LPcm>|IR`dK@byN&$IVkR2 z|Kl>8Ma4kzZ<3ZBE`q(*3NPp0u7h5n_R-wak>ld@XtYlm*N5k(V!RKwYQBf_&O3rq zADWv|qyp5`F!sZ9^~|7JZ*HnZO+dqe`+e@2M9{B0SN*cop-)?@;@zTi={SRGADNqK ztOV5Bkba`O`Hx5au-9O|%FWL&qb8ss-Pm<)@nn8Ar!KdvqGTWLnwoE=%}+0N16HNi zNTsmX6DsF7>{P0NPaf$@B)p&j*g-kC{Tk3fJonfl+{Ko&4#(CE$%Fe%s zymn>t{_?ys!`!=+RM$Cnn|x1oC+lFowNf<ohVM8rJbb{ zoI!%Phr4wLKLhu@L<#WDLwSaI?y9w(-k(J^ksfq9#s{tDu377(Wfsj)2hgunPshz& zIk$JT&Bm_1*_0a&I}hpos(5J%2bFJZ^Xku4$C!|nwH{2&qH2>yP^$xYGi>hlI+sWa zDu8w;*~>$7*Rb_m$1K&EsR3FZB=5e?%~ii)9<37Ipsl8nWri;4L*`X^>G;0&4Baes zSPktHm7pTeDjMluu1nv!^#6%2py)SNh1lI(m%6RT!564r)CiP*6qF9#&~<5iFpq|t zs{`tOdsW`l6$=o#z1#8vO+8Zz zYWuWOea?Ne|4JOn&1F=8s(_l0t1>r=rR#+D>4c*{adh?hdp0aToTE=`eL!JZfS@Bb z{+QLIICQ5{=+tO@DetN?u(X!vGG?f1(o_sg@GZ5J@eQ$gTVOQDy3Z{TPy6wJvDN^S z>L$r+aQ zp}UNI(+B3I6z;P<&D-xBLvyIIxr{1IRiN%BIm!H@a8PzG>7=E}6kX>SaIaa{G{g=d z6wN*0%w=K@RFInF1->`Wy1>WzguAKo>62=4u=NSt2-Qn`AH^lUx6-{#9moHYYkc8j zw8;0~w(%~2l2txaD6u1FA`dRG%s125V4<(|to%%$$d~%qMLvIK7vcL=o<4cgj4QzY zP6IIO2NUOD&X@HJW0c# zr$wsQY{~1)-@GQhk_m(1{r-?{=z6snUsI*cvBd>du;yszS9wj!&Cw&B7NFO0Z*=mQ zP6_zCpgyJ}iD&})jeDarn!Fs2hUA>1YpTH36Sp%rZ@Mr@sRNq!_xlI_dDZ#X;v7BH zX#si-_WOt3;_P)-DFWK{=}F+;HK{hoT60=}UPlN0>*~N;Z_k{)#z+a! z>cn5;OfN)TTTj<|zs&`-<2$KY8PKwS@NtoSIW1DX;uAGIgm1ovZEt3iUQ6~BpU$av z6O{+!B0g9@XT@62k<4toJyrv1?D&u#0_xLv_nIQ)9LG7L3FucIJwB;k#hrhrJ;$13 zH9)gLe{!7z)H(Lrl_H>BIoSWWXmP9tXx1MTWB*Xy{2g+R`H0g3^`c4BkAv*kX#sjY zpeG7vTqK$~Fvni4^|I~E-`MkdfNsNK@#wUBKri%NQ~00btU^!)G#t2*H{E)BP5R9- zN>+-1c73|d`Qu=0SQ{s_M41xm~H3iF?bP8FWxc(2;lmd#2>W#>IP{TrcdGF2UpUR=+Nb*gdeqZb!w z#NMCn`D>};`A=h~8qeRMvq^0USu!L1@fNZ~F9=z`t7_gbLwvoO58JN%U)Z@pIZ$65 zeEzfG*YDujoVe^yy_Tu*RNvNn<1Spw)Q+?+jz_QtMx$tQ2ljy0gtuH*f zaNVX;>T-nU+Gf^Mm0KU7xwy(T^X%f%^Pg@{b)LUVXOr(y*?G^w|3)Y~3h&zT{v0_9 zc?}cuskW_;LSEdR-D(5$y^?Rq9QXBR9rGU|ie8|!)bTY;;a`6p=M(ypa$L*2eyZ^N zQx0pEUuyUoCi_!`=iiF+seg&k^Iri-wVi)=l&uGdvh!aSxPE1`MFKg*dL3&8sk(FA z3*|pWkGQ)P5Qxn($rEPXueV2<|0GXP4AhnweJ!gBX+_UJMq6tP(vIi9)R5{s|DcsE zJjmJXWV-%(oxAnf>;pyIIT{`sr8rOcv9{3L+Ui*k zDMzSo!O0=zFRylcPA=Pqh0iR9l!Jt6I~HbIDDa7k98#X?YtWiocU&`lB5%>`BGp;r z_5r?s+&!d|sh>wmLCW@qAH;7u)E(qIqjd5d!8S5PDZ1_3o|{2*iw|ZQ@Hh3+LoO6 z3oezynwvg}2Zs82 z<9wUe-1K=Pwy2Nn_vX^8g>hW#XHeQY8VL*@_L2Sh^viS9AnAzri{tynzUzW#nayo! zuh<`5dA=0H#`>63o;1JuNE4$@f8LGaJy#uloy1TJ9lAqcz76~8bx7;sqfUpJZsnM{ zO|-thttIC@78z>dpg*MJTXaWs_jIPaidud#w(lz+I4HqEqe60*IVaFp-UmjxZGAr0 zaum@g%~9m{kF^{n$_@2%=zc#NUc->B^;1$U8|R*u9CYf8Kjz}IlNfaPsQcw(EIzZy zphX|&4Cb1GwO*KP>t854=p`F~j9G(u=$I~^x84BMTGi^TVm^!0PVM;w_unwJlbD~? zw#3qp6Sbo{P}>u4|2a?TrIptle=7ZO(wG~gUVg! zG`>u=yYd7&iVv+Ys5PG<=e4PoMUY))zRwJDY+-9yoMUb%Ow*_Drpv;t6P@}8EOcesug*ZRh@8C#rE1JsnBPEwlr z%%Y^#IIr$JYSF0V$9B#lO4j5oQv9)zss@c4{jC}G&GSBgFF7r^SV)IIq_8US6{bA7^ce;ba;{Le%^vRdZxHB}t>s^9<+#>o8 z{?beSLzmqw2vXCg!S<7vfJ`?J)`R+yyhAA_oVenzKead zW~<>V-TiVzY2!>;?}dyVR}I^5#k>X8YpFdsbL-Y*85VsPI_xs($16t<3PWNqnw)%nvYQRo zYJ*I`+a75XdI*ItANgkjFJ9{Qw{*L!2r??G&brfwy3@qix%Y(?lqZNAuw0Z4*xkB*cGZ`Wu-Z zFF@S$EQni{`XVw3BY2qBf}8<)`ptv#YMDfxlzzoEzz^o;v+0Y_^u`Bs*BrQ0(m92s z)%oF|iy6Q3jo!A&!YR)=5jfE>J-Z0ay&$52IMUJ=Qf5Hhy`sgY!y&R*uXtWv*~=? zg&p<1WEtcl^oIp`k_efE5qx$rn|Z0JFpFwj#_32b7BsskAeJzN-=ws#B~K=<+44}^ z@kP9Q;F2yOeaf}Q0y={TwrqQah|@$UU0bjU6x5z+d5$2{MJPT;)W9MexNUhRgb|uw zR?ycMNqO4?T>*K7{>j30n2>Md>m2G08XZOvrxIhS?N3;Z;y9>t!Ycbtj-Ae*u!=dF z22EojRwu0D7x`#q1q^Ap3&3NHzJp7Dc7SLe$Rtu=(gta`dx z<%%_L9#v^pfjERTBZIWsgp+w@=)onEiy+ZFWZ#lRMgk%4EGKVx^}?Fa_#p5^rh>S# zmx(4!X&?mNCkTv^^JBv}hTyA339EU4iY=u%Vv0%Tm!69$^66+!?wwzC(?E%uRUAsL(XZ- zqbIb5R8h7{nRC;OVkdN+$?L;bDRbUtdGwq%oI$=2)`#Gl74zM=BYzxD=CDmIgsA$B z8`#y z;DWK!twv>n3zS5{24M})V1tc~lB|J85dq^VUX98G@d;sscV94#7T)T{ z%c_kC7vvH0FL3hbtuFOc9~=B{1efD38~lMk6l{U=$wPU7XuU zqK!jcYt)jQk)lvWXdm_B$uP7!nxF=bOdlJsdDW<;!)VFVw@?XgnZAS;N*`=L_wCO0 zslnL=wI8E}&^IGf#)T;&X!)x#z;fvsHJaAcs&n zTKy~<@fj_7`aXL`{8hBS34LLB)xyNnc#Wt|{|m1obWJddybA|LEsVTYd!HbOP#KM) zwO|pRZ84{UNH4RKlIpY}r-sltnD~nuB8(%j>W~M75Xxe{J!qk$V5_rYnIb~#OZhK6 zDm?Pmg6_ilW~=K_g`^Sc=RC`NywJ8b-VR+)oY}cYj3z>_Xl-a?uhvGM8i2BCqmV_YetEhzD_d}CTZ~zSiy}U~eNikA785U4WIij27u0EqZ-3e8qO^QU zd~Oj+h<*BV`)g4blla`q6yJ=TU&>ju@EdPNuBG-^&(G6Hx&S}2LSExpG!u-EtZ2Xl znLfe*eymZ^g3qEEVSKDnBSus#Z1L0I7PG#U*9onzAF#^2g4M2!=ta1|E)LPk5*R0X zF)LvggXn^FF@9>-f)rHu*jZc+mFn}dqB_i7V=n%1Lv*=;F)nKEvH3e~mbS~hFS((bW_9A+9!8%n& z^k?f>U9fm{E|r7!*Rb-f-0E77po)k!@6lo<=(Dj$3*rdrFH1SX*M}BOx$#Lk4Kz5X zjSzl5C42!(V0j5|HPksHi;&Cb-F&rV5o;xRx)(9;mgyr5c#U98dZk1#j-zR^g0g_c zvOFiwx4G1-Bb2b@Rk@stSwYM5qSY0pLJA2J@^V4eo))bQ7bzEnP{NY?Qm!pz?I|w~ zt*)WVgb|YYL9)uq&7vj1_#oK^N#%w$iYppd{!gIuZvW)u(tXDR(er?gL_@ifP(5eX55%s3@e)->%?X*?&l zqEe=zm`F+eT(U$;G!zpl>7+}RNQnkcWWBpYrf_mgG}_!qXBoz4z^32H(}mn!B1f_0 zhVunhjm=#m?2FutLB+zkR{Jgy!+OZ1!T2r_!@^6Z4L!I)WE{)4eQKoIp@>} z*raj1vb=`rZ7ik7jPz_6`5DQH5;l$)Y$c6(MwCTqs4K&F)Ci6A77#INn>f;@G`6K`wk za+-m+o#<(8h-03*w%Se*LE0{HI?TeZ*P7PIlXsVEb(KpV=(U#lcMJ-2?(b z>(%Pl6*Z8)e9Uwxs|2q0Uu@>*TQ_qAQRaz)Pp>UC_834+I({gt_q%e<&9XFYa#jj7 z`w?UAu}|_%ufieC5BGyCcfD{lft66_H4!l|Hb+w?R}-R&1NOft9Ipk_nFou!qj_Ss zMOFvF8dsmqBaF|6GcFsJx$-oSX6p?DIG$%}H5E6mJR{85Jz`vTCk0NZ;oF>4qOC?H z(+;4Fz{X*6=47U$uSyXioX?zEZOy#(Z9H?brZ(5MsGQS_xy!97a1B6o2ZV`&dN2bktlC-)6KS;5+yEf zaO%#%PiJS1+d@$Ef$=UENmk96D(>%LWRX@SB!_lm)}=ynI4&l6?2kvEg(New2+5=6 zaNLdNW4oc-x_!l@%XqQbUY0o}l)i2>opz(3Z#8spN%}Y?guc~oWOe1cHCr?5>uzI% z+?IV1vAIU5I53SUW@%s zkU}UtlO%sOXiY{3p)HZk$uzP$UEf-6vT?j!*-Qu_)Q!&0{qZauT3rCqfV>thOil@* zkM9ZQ=4ZQxCNid*HKy^NU~7)@6&p@hA<^6>{cIze(?y6*ws9q^?yZ~L`9?N(=vo`7 z8A*gxz6L3bpv5+@`5I(hf(2oOY<@i9B841<#zs|ypoe!Za=}wmX}IuZ0SuavRQ6VKgkUU z1#md;aBaHIa=UR&WW~mKx!t(U0zvu-5DL)(s(_5envyPk;0v%Tu!;@s`kfKS;-s&Zy8_t4}=T)?%T2dyI zH)!1T>USNfQi5iO2LXuTtPzy!Y@x6k2@c>21Y|9qE22_@W~bSbx5{Ut6rXR&7aki$ zpxgoT(eccKo9@p9>t1&i)R|YAnVu?_4-r_4*KZ5-tznu)yg`+<*jK^oH7I9Scx|nxpB55njCl zNA>jA?Lp_qhMViKAB3k1VvG<7#M>CeWI*o)Rm+_!Ycid9V;xv&wFJ=~3DInQQsvv! zVR}(*Oi9IMsNz-s;-JEc397vrukgnved5J+nZ;@*xNc#%phRt~X+hh;#0#Q1XX`M| z+p2I>kWeK-vc!-i>r+hnn|HukjLHBIcy}{+lj(dMv@ysWt<$J_Gz9-$Rrs3?HM)>! zRd`Z8T@F7#+N9kl9)@r@4h-=N?><@0gsX=cSL6A}mCV-Cgra@|ZV%4>&d!5*;3YPr zeTNbzkS(fYxX3CdsCF~+2+W4QKa86U8ZWf#GPGWT>45kxGanmpYe!9BS>*)XZ35kF zI&Z=-%aNZ{TZAa~mZNCcq%YP&lvYa+-O0elak9%GdB+(*JYVL21k(l$x>Tn@byy6s z$I#&2*?iih(OqE|SP1qLGT*}V}?AD&cLYLoE2d7juLAGB()pfT~{S~-Dr64?a5jH0n*+1g839^kDt_@=-hP;X74j{D(CgZYZ3S5T^y zpgGQea68!O&U-B|r8OX`&^AzhLYp*3D?kvmx1?lEYWQIUHp_XbsFEN##FD3hKLazm z4?fShdND<9r_BFSXK3r@swW5!GKBM4)CYKpduTFSweP-yZMW3vx3qSGFXf=fu^NOc zt4$oTwK$loo*-m%l3ox@z)WZ)a&_h;qF#b&2evA>`Wh%Y%QXjHBf-H&QNWSdCJnIE z8LrY=37)+SW!SIU%~H?@^CMIp1<`|=380+}P~wPez@F=Cbh@76{7g^)DRpc)1qOkdHv7<@&4Oljrx>_uF;oFSP#$K&nH*s)O@W%sCTejqUq8W^ zHu^Lg!AfTghXTdkYOjCoMQZdsj4G&uxbiFr15I9wt1{FC27!7zYk4`(B&>cf|uEOE1uqX^G^FzPuU=Cad zB*j2LGFxXAIuHz*4R}|_)=6t6c$jx3{e^`!G(c6yyF%(F*qBu>JZbj0@aM%yan_mf7GoixnHJA7LVp1-M~#stkGGC$RA3OOr?D?*d4w&}TnKKf zp&1K+5V&l12UB+lNr`7QI4X2vEfMAQ5==~4r+UzvPkLaj+jCCkzW5OX#*P!n~eT+~Z2u?{$z4`-oQtMy!TKv6w`b_aF<@f+B` zUVlFB8XSXX&=>2dvqC5Y@*addhQJo|AvF=bI?5uen4n@yE)kr=cWw$HEhON#L3gcV z(iMXsXxZX;amFSL-B)7(D?vfCj6|UfwGDTDmM4Y ze)Qb2vQ7X=IS_)H*%H&BH+SK6sk460>L#F=dYlF$&`s#89tPtT*gG%`M`07sRUP$M zf`Z^>9_uvcWE#RsOH-(IJk}}zf|A7wO#^gy0KhX%=9P6~h2*LUGB&)x&-G)jgn?aW zc#&!*xR_BP{hBSDG*LQrjEZ6q1TBk)-))_ zl@c^*4_uATExHFnl>`YJkzz;|J_6jS+W=Rc5lIC=P#!_!K872By=dACz!GRYr+odP zZ4cO%{M)GGFfM>X05i)o+w#$XopmhFtYU(S*>LQ~wa{<4L{-NhMCvBkQY8kby?e_T zZ_wKVivFTYodgk7;JSc-hA~0p^!YzId9D$&VwcxYf4@Y06{6* zH|aS(91~!#l10a;*}lAHf{U%n0)xjeNd+?{S+Z&Xt4^Rxo6k`b{j)I#w{N zl%Pq+h-o;gXNly;)H+)MXKC#OSjwg;*dg5pjaQ3JSSdlnl&qr@CF;zk)RQEbAvsU( z&+MMTCG{rip^hO*>L%<;v0*$!0u4f78nj_8Y;xTM8#5;Hc#~ex_hF%tIf|lTqXDXp zpQsoFLCaz%FeB_&nTA1}1coLWtx0RwS!^uCK(MlL74yN;mbVOY8H{Vh1BgMP&bXSd zo*JL6W*!5<%Di4k4)ancmuFU<|5mWlEZAAc>!s9BFiI`%#*<#V#ii;A zLbf^~Q89#Fn_fKeyUn7H>a0$bpdfhn^w!7z2u@~Bdrt#DnWfVrS200#VD(zB59gkH ziOaJR;=eTSW5&_q>R8Zc6&1kDS) zF!s2$jC>kj&W;hhydn$%P6m2TMV5|SIH~p;ZyHS4yw9S(FR!dGDV0?e43^0;idU2# zqlghO9k|h@7lIy*H#gD~7uE9(^Eu^%6mRl&B)hRr!SQIjc~QFK6mw+(H=n0am&?;B zsDf~HpYF&$gTlzked^51poEeWOZWOce*`-WgW{+=gMzaSw)Joc0EA)tFW9cj=03Yr*C%ULxQ5ojJ@;^m^5({~s*lYTnPrW?i{5a$Gugxs1?rT(T0Q7}oz=rD z&K-Kq>mtpwq|^Rt%_T*WF+evnsDM^765I)+0Nya-PyO*qmCaaDhjNXmZn9lbmbfRB z0VABfOMs41LJLLToWpsuS2t%cM$M2B*l?UMzs+T`&K6}IBiF^WnIcb)WMJS3_&Ydw zlTg))x)eFl&CDyx5^{pL2xP%;{K+IZtD-Iiw+nt};0XBBg5T?|d!=p>zk&l9x7TTO z(!Crm259z%FmXTQSh#iPE1SZW&=GFmF5u6HRp+Ty)TIcCZu@aXS%TetfJFe`BLi+j zv{j?jSfLWsh>bwMn?nZ|PvYQlE#CW;d7C|Q4y^=uw6bM^r_hRlk04HUWg1rbdMl(- zk#H9r=g2qEY)JVJo5R3h+Zu0~bMn-%pbjCWzFq{s+t zp$_54DyNt&W*6!(fkgldb(s9JRn?)uMxYB`!>Z9%9C{L1rGV#-$9NaQ0f6TOurOU= zJ|DRjXBVa`;v$fR>54zKA0uMPB!o#DoN$Uz_ zlhIwqLy#T>v&w;KEgHMYXp=%A_znxR&lMY+^l1TxV7w=FOlE4SA=bQ0wTU-D!A79p zoBo_weQ?qPTt4P}#?r*`RDh1a-{-*U7ow|+3a`?nikY7vYii!RLPqWRqYm3zAZ((W zWIUvGmof{vVTTepn^>9|8iq0$^hiuby7G3T8fwB80>P$*vp`~4RD-CDXO=C~sd?p9 zy4#o&$HU0$b3A+sxl+S5Omy^8DID|4aiO6v+GwAgwmv)vz{|Vo^S!^QI)Z z5w}g+oL0gB1cT=g)tcS~T&h}Q*is3RuA3WQu2-u(pR7`E%;M0Fv0`*F4~%zdIiN?c zDrwO)hZN+N7EU+}>U_EDg`>%^AOeplGa?FlWc8Ig+yOUXBDSB{=rPfj{l8CZCj?r)L3ML;=3HwlyPc#?h9VdQq=$A)f|O(f=*qI5D!Klo{Bn=op9@vWvgvwmVY$$Q z)wsOEocREwtWwe}Cv`pAvS8A~wTo35m~xmUJzgvlf*uBWDD3#QxbyQ@?INKWc0LnC zkc8uK69bD25`$PPH0bU;1^#f$UdR7DPC~{}hx`}Q9qqKt2sA@Qke+bMXaTmlgbQE{ zZ!qW+9hIt_QY!-7p`htKf4CAXPkq=BP^O}o(#~a zy09i%yeMi@cm`5+mfMsAalinFAUx0ubk>}i7-jg>ZQ@q=01QEQuowEpn`Ui_&ETo- zXPa_52^xa$NRk5E{)c)JQF92dVJjzS z2)-kb0!L58E-^N2WsZp8JQR+{B`dJ?+PR^&K{x~<3_fcP8@iz!0vLksFkFlTr%5{m zs4gbiG(?BtAsCNC+B7`xjo}(4hd|Z61hzmqD1!Dxigps6b1ImsEm#LGq9S-XcVW9m zae%c=HJM6x!`%cFL3?}3-5LB6Pok0w=<7jNm*s5ANhCKB2!V{?J`~O2EF_20+fYv- z9D?xR#I2%gI3guz2)_MiU9wMgaagtW*>n@~6@w$uW!pBE;$gJn)~ZyO<*WdvfCvW< z#nG_j*jbyhvp(KX1`!THcpzRY4kfRLui;n;UFa@=R5l!WBv1tHAyDikTTANkv|;Z-I0WJ0HMpM7=^)e4mScEw z7=x}`(QJwl@eqv1*Mcq_TDZmRO$ii1yPEz0p1$}DEKSDiBk&(i;UpPmkT}#^~iF{eo5(Ak7Kx~1w~c+Bt==^jx0OYL*$Ws zhN246ga*fYXbU6G$Fk!yv?Y}I9B+d~NVu&@BSP9zGfP1|9gyiv?dQo7DAZ0^g@{V7 zXEP|$1)`8%G`j~-o?C@uv72+L%&}d`C9I$DY4S<6 zm3`iSi#l9K;!!a8m50j5NtElDY?&`{KIo1P%IBmyW+y+EA~`h7?)Cv&HIl4sXDr>Ko)hFz0Es{fLFJLNzVud|3u766SJWgtic8& zBeNmRsxcdG#lp< z3QJRt7<(ZP;h{KG0312&dxv0khYFa06_^O*UGQlGkfQgg6S_<}=+MD$1kZi}(*-J> z@v1{5Krn2<;KO7xk;dZ}OeRt{GK4F^VI&)0RuO8)vdP-u1}Vf2f7NLMxiZiKWgB6J zSdcWKKA_fnt8UUD*P|3edVN`ldNKatYi&Y+dKX3985Dkhi?!SPemIJkIRE2^LOpOd8jr2V3_|KK!#bK^_(-G}9p zd(ZQ;-gBtRLBm7`%YeR9ww(xnmt-D`C2YT?y5|%YLi&w5@0Z}^t1sy_w`495OogG>kljUj>>uEHs6`G`LQHoo)uTEHl^~Q{mT@W zluK#`sUji^hpJ_vvOppis)53qqq39|8QI^Rk0#Sdw?JQ6bmpm3M^{sHDGb8AeUKQ> zbbR0B@smz~^o#rm8|Fi=j#Ge`QNKBoXe4wI|y*8o#a zE9_qLb+u~It;VMeV z<4wU3zB1PWlPU24d!B9Y@9YanU@SZ$8UvK0*emCW@3na4g+q zSQdDKNKUG`uK8 zNbrh@0M|e?iQ&G!L=3C1>{&Dsd3b~faZ8BE)ti?D=^IM3B1`J7FvF5WzaZEu;7{O= zDW_885PpJr)MBQFxs}DIW0$Q9|l-f2B0|6(@ zj;b%d)-p>G7~Ppg+L8p@6?}R!!tvH7L*OH12t~=M)m))!*!)UUG*^@q93epT0l57b z&Fd}J2RJMOT4){k6)e~mfH&7VGBg5ynOpXdLq1#GDdU$K8}>PLgapC=xa-egyS~>S zI=04|^IwKWz>8bZcn-%yt?o`PGtHR+Bfy0X57YQ%xYNBCu7!?mvgSrG!A9U`d}r|C zgbk-6?||W;F_%{2~-fEIQ={0jYgShAd17j<*HUf?3Ig@#AZvxkF0alAoY)%Pq*}P`>pO@A5Q6WpzgMfun6|!d8ecs zCfC;xc{~MZCGX>wKr7*)XoZu`g%?x^M19`o@es6dI$!FuZS3w8P<0FO`o2cMl;CXa z*K~7!^!Tkmt=l61hs0w3f-;p20|zWU>) z075voBzyAQK-6uw)61ZYg`hmZ-F9ves%LW;U14p1>ZhbvO(Ga8uz^HHT@e>&9%PGe}&@Dl#8`qvdSii5!SP05v z@QX7ao&Z{Z`kaG9uQtAWslMRXDj1l56X7L4NXzGiESf^`j~FvUU8 zEpb;|V+W@|SYHZdECl5t{!2qorogC+i`9>c84`l<2yqL#(cty%Z~}(lJe2;_)HmsZ zlf}-+lYkKRa)C#tVP|ILWPQ563qe9en0W{P!9@?x!>z9)bEpX9+tVLoI2W*2d7Y`Y zD=5o&^#^eZiU8j40;!Nzb+4JJUQb~VYLm3RNBUcYy%{FKk z?BmWlCp}mc_WzV^>Ms36j`m)n(cW+|1B5&pTtie=ID~%d7(~J6qM%9Tq#5tj?E@}@ zqAQ&Qh3kSY%mJ4~h_CV$MSd|*g%p}ssEj%%HOqYNxFd%!H^(uC2svOYKSFJ*~8t08Ypgio5)}C?~DuSaGYj zNeR24^j0Y+bU3!wluM^XP;<%UQ%;D`MGe(ZbGf^zR(Oxm-BIO)juUP>O3@WoqJNZM z8svl&$NfXS=}H(jWj9_qA;Ym@lfMuv6D`ffSWXCWEm{TlW`(?;h|8+l8&XcW?I{8= z8B4_YFWqR>9!ZYJe+e@oN+^Kx+qj$voMQ!`Ue+Zh1)58{oKWI;Qc!TGS4K+t-CkRg z6!q#a(PyMM(MzV!NSH~Vc{$f?X@+F^!1$&xCk;1ptM4l4AjIF!UAyj@QLNzTwiQ_z zZX6-OeG(7rZ2`1yKamY+#mju$sdrg0SrR*_iGCx z;Yf}-LL$c}+&YF`^I7o(-_9MXTbIuqA>ngBjoN^-f#6ImFFBcW-mTjHW-gFfK+TG5OD*s^(tvrl^eNZwXaQJvB9^(xB^RoLyPU|xU6K#C zg%0XyzAS+x=tiM>4EBY-ee-YN6fYPLt$ggO=S`TRQMWxg2-uj~311$b`u|pie^rL>g9|RADZx znVIWK_zOJEcL;y2JGl{@b`;VJRhH-+NYq;k;1D49m?%U3CYhVG*4K17X|2Re#!x&xP@-8))^p zCV&uphlYWFW*v@QcEvk&ccUrqG9(1y;b8 za@N50WiP=%QMqf?`lu2N1l9gHTp2~7?t&(Zwp2IOnYLvLBZtkUoHfA4U=VBvl0GmQ z&WooRhE!*rK;4#RSVV{8VCaIuBguxUj=_d1oCoqt6R)h^O(o}-$H)D2E7h^=1~lCm znXM&D<-$0rHdkTJ+$JZfQqo)}%{EX;5XuWC$o_$h)6br&pJazxoMr3*4N z1drLeUeW!F;=EwZJ&a8$(9LYEDac>bC~gTERqj7Gs!QR&Zt`MOqS&hj2#LIlGYv~` z1Z>KAoiD@=yK-Tm;CtB}nN6{~<9n&dl-=dGb)bu@{;n7ti7wl=am=Nr5k3W-gWF6@ zid4%{hbl!t)g4-33^gwhN8unmS7PiCDMLk6#^ExH-d1Dkj8ZTUOGB-dhIU5)R$mX0>MuNj-SI5?F?&dO?ze@J7^X}~cWA19% z!>)!S(b&x~it#5H_~eqm=NQacR;GS0gnK~1oA>PM8B3O1p0Dht^OfDaNVD0BC==!? z>V3PJe2RRz35BSRDB+`K^OVX$$s9#{dK9O+3|`6nMC|2?XVJvtcnZC07Q9d_WL@+M zuQV=)jtV^4RwH2~{66CM{1N;fOd3NMU85Ph1t5a+7$%#Yvsl%l+1RHu&Z@a9K_Xa% zG{AK|aThvidUt?34(qlrRO9A3a_|TZ$An5bU$;(wm9v4AGClKwlvbm8i zqN(d*nFbe`<$?5OFG=?L^D!)oMeOQ?@#Sn-zFb*kQwxI;bh|;e4y}f?&~d-l!!uMx z=@9b_+JD>)Jf@hLqt+6ZPL*?3bgHZ7jdPy(W}jYa=P=*zd=?JF+4|$7}B3-jRdMBOu5M)uP+?Kc%4h$>xo)O7r?b@Vd$?1Q!uZuC=))>(>iHZS^joV z+xh?&rW3(@X&{ByDNN62${BvF7Q*%eI$1O-j!2|#QG#)y5K@U;p5lA(0La?a#Y=Ez z7@3`$8FspFf%}elbJUk!Ft9K)7bQdY*DOzoj2bcb_R_QK)Ahqt8sgKkANlI z-rmbdD%2tMgv156WoU!|!tHCe8n>^}aQm9A%WWAN;kFQ$UND)hLVQc$C0*F5ls6TZ zJTyYUX|4);(`W*l1>A}G>mRf20o#&)8#-goM7yNW2ySt;T>7I^Ev}m`S^&P93VR;1 zQz3B#Ij0Ttke%uiN04(WMd&{kXYNj(^~cMW54K{dm;oYEEH3UF#+Jg94v!;aevic`O7e@~_d@BJefg zUv4Bp{>etGi}r28KN*Y4zeWR{6aM9fHRPXchF)y`$yf;gj^^#ni-|Okg&^JA+~yTc z{o;B)lTMLsyWfRPE0EQ7od^(wXB?Xw1=A2)PRDR;ZaQy6Y`Olsr?ELI8nmufF0elj zy0JS2G<92s*?=p-AkucS$bxgBPqdo^HP%cK9)kEVvDjQd)dhU$j06INV7y0Xi@AVY z*KXJ0ViW{}caiO9=?YDOL!B)#z_}B>XtcTUWo6EEl1+A`-;gcj9K}L(PIS2xaG-aT z!9dO+t>UnfN#oqAbDV37ArABF?I4sm%6Fl>kE2oO>lShtmle7)w|LotQptxMsanFE z9mxmbxY$djXO7TO>gtB}!%kWy!LgeG_mUIWn{h^sV5&wFjnaw>nscy-?I4~uVJ)RvmTv2C%mN`@mCYLpnah(~)4?hT)A#9gh(TdQljtm4WKY<(8}qI3&%QySd$ z3uTA20AIROdh38!Hd2cXo4O6vP4VkCY}yG>(SGZU1kJwdEkr`Ww(RT*1>N@SrZniz zB(iLV6eiI}OU?#0G274u1eqaLMzIrORB)p81=Qvyg8)XjdNR}gZUO6@IA*-fkP*bE zT#rYB$GY`EL&zlq(2}!(M}TcEyUIwjWC^d+!t3_D4Cq<0>UawDw&wx&Ep~bIBA9o39GC{ znbhe9o66F}gpPqD92WOBEl(rA*M%G&`o)S5xUpzQg#_KbP39!zVG?458JOjoMb6to zX9m_GWEK%3#B`|ZkG-TpoD-m%%b63v;SuoS{>)y`_aQtB;!#JFVQ}8-wbCtg_h*_@ zQizq1HQ?QwXYCIof7TLFr0(L(f_ucnx zH?R>K;kLM|l<$`F;`w9}O=n5$TtcLKeXF~x)Vu{s@e=Z;ynl%7b2$E_WdiSY(oZyq z35i1R!YwR#h>gG&PUkT8mZNCclFrgOoy~=fU?gM+GX=7=JEXWVQ}QqgF~Wlmx!N2^ zbRKl8Mv*`gLWI2qguuFZOS0w0-jX2_BIF)2Z;uLRJtV_O$PixKX%HudS1b0G&Jk@c zQ4&Hz!XZbKC*em>kHNLEqzYzBr?ZKLqgj%`+RP}=<05=Lp8e`zIwTP593R!fAY&qE zm-xh@@w`VM)wvR@k#al)Ab8wNm&%w3 z+C+*od%+!h8%uEpir_sanFj9A>XtsLb*lu4VGRb)Bgbl_fqDfoeJsMTI}Pv(ip`Dm z=$9*%iEA#S?C^L|774sFElB5)rzL?iUOi%mW|87%dHJMC_UNMdDvKhHcXeH$^7|5Z z`z}AmPYY$Fvd}EHvn(>0H(3F5I%(CEN!@6&&K&1WA(chH>L6vcQ&hodGF$hC;hEwE z2@6KmL6y}`Q0?tcAzHULocP@{O_`-ehgQ517`wIrzIIZdfc~@GaFgeqkX**2?xt6@HnQv|#WO(xXj+p5nltc31HTQ-h$VEVs<< zT+q`oUZjrenGac%SrPOk^5ue_M0KP!41=C33ni_i3wo+7Dc@S@Zk#OWX}V%?iv;Iw z855LbM{&B9N`hJ zi{p;Q(Ks2=3zc~j?7Hw~bL=TP0$nWrx5IRuJIx%p%JD-?_8T)=xG8lDYSlmsdLklp z&;uPJ%yqdXXI)KT)GbFDaZzpQ!>;<20I56pp&DdSCpze+^9Y2xC9`UT5)XsH1BgSn z{8r&iJBd@eOK%lc^U8+DPP$Rs;IwX~JTN*`n^wt{)BHszcOTN3e})ATV?)<6DdUP^ zl^7Z)d3agbiQc9lnMsh%OmsqC0hC)8xdXp5s3iw~Uqq<{jPeUp@ z`Sa3umz|exSYXz)4KQ&&1%vmIDPPse{VTyZnEJ!Yllyr-SszFz_wQ!K=%yfS@|czb zdZ6s&{xpX)`AZ8Y){Vi*{iOwweqZJmEd9EqzwZLE@Pe~*?cpY+g=R8fk4IEY7_=Mt z?E;Z1m82=vhU!RF6HLdFqfMtX9!H$4N>7IRl>!5fsY|7m_=;f=tOvToaN>=8@Nk~T z!($39(u$h0W-Yrlxs<+6zWxGqYe9DwO)nlgseXcPXBx=gjAg2!P{D0*!r=xEg5?0* z9~n(zxTrq)dc0CR{j4atNjv82C+PNyUz5{xoAIk`VX<7qNaZECCJ+d4(QqY|6I{0h z=fikbyz#)e4a*ifG>pPp36g#NXg&?$a;RY3jd~56u57`q91*RZAiHJ7pMjsHS)|$x&xcE{9;|8-I6Gg=Y&z_ZF=8fmDk{^y5%23&oPz*^l1PAG3CNb0<*qS-qNfMR^%_#)#I00_Q)9KPlT#0m~% zqm8{@ptTcZw?beY*4(T??d6QuOVI2|0sz;l1CUC^H{+6hUzF=6s1BsRh^bpMUfElH z`T7aE{qUa80ujE@x<3njtz>>_@`d(V&1$m9)k2paDDDW64#H_aE?c&V+@(+mzI|(9aL!eiZNj+( z2SIiy350ZMw=|JDj)fr%2Ja`)4`0F}*-Hc7<6ySA@x}UZ_au)zPq-$VCmaiA)zbs` z9%cnsl=!ybSIKgR0!dvjuAT!Z1rUqBY#W2}Rf&E7Vz{9M^s`qMcEi+zQd*{tuQ8>& zlhs66up>?HM)R?D;ZFmiEX-f|go9v}5gfOqIKuH-FpYIOO(`|wM%k*G@(Bl$)<%$U zj^M;u=Y~>B&45^QgjL3H1cM=&pFg*>mkBp|M;;|%n^9SpEBQd~e+Ow4;z7f?dU46n zGgZZ1oHZByC)Z1w=d`ZRS{F@vvo2U%X0QfoNk132vX{>1?UBRqIt#m*%;|1rH%8A2 zgR+#Wr}k?ikn0nM_BGIX-6Yk5lDNkqkpZe8liY2Fkr zyS3u!5q(1E@o7$j%RW)$5E25#T^^T!Kyj!UxNEi>hmg$Ds^&lL>)U zjs2*BRh>QD0j0Q}H3-ZudZ>(#NW|@u!R<(@1@J=-<^>Wwg8Qh$d4K@yLXs83{|?!L zcFkfJvLWLmJU;H!vKL%-(FY4m`4etUcmY?p+un4PFS6N>I<(aVSQiqk80W`a8s!42 zx_8W86{}YG3Afg_K~paayw@^Y=O7tzuW7bZk!x=ITyvG3{a;8_{4# z9U9I8t&2XUSjs2dTF3&d3%M;aiBEF-()EbuLKZkSCJVvf=!3UyyLY`k~^>A7%NV)Jb;I3*oJ0YAO(k&4&*~e*^#C!gA{zjN+#`K zaHMHTF=VV#hfo=#0-Y3r zDK^7X7ME7?VTvcKn;=8}Y+pEkw)Y4MXI`WXPXu7S5k*3ixx) zMdXiMH{s8|UND)ho(tmuZlxKoHIpRUmdn>oknQMAqe(O`wn+^|sVw5FtgEF}5*$0z z#AZs!RvU^+3$Zk7rkYrCeV+5BS?8*WCD*@hhAR-@sGBBQ$99xpHImlZHH>GYbf;_+ zC}o@J%A{7Rmf$%wg8KzSZ#D3HUa~=aoa_~B0<0`%xeQoQ{RH93WJ73jvu*@?!ln@% z2L!j8yFjY?GPD{a*)d*EzrBNsP7$F*}Ejls!h@|gkYqq5k`7!lFe8G zhX~h-&im4|CSvN|sVuiOExyDWhGXM~x{D^tm|e}e%sf?N3L6uXpe9XoZ~J7Z*8?{u zBTvQ3sz2?;tJ83-yC2C#o80AIz%uNlWr8FfqHtF=V! zJE5sRTTMb}qM^=(=3>xk!G;#l2}L833=_`<3_r{6m0X?zPM`ghG4c7q@&xz=ET@d} zhb2?Somttt>Q5P^icF`B(kIfyrvwh?-H{|f!FI}MRg?Xc(W-cL%826dJR1)Jzo>9? z;~ES1f%r-mgp--?U}t(AauX>?ivSTQbL|i%#39M;Ux0!%zHjL-Fsy?#yV0!Fuwb>p zQHJ}=aJu{%2;TC}h2x&~NWnTR%Nzwp8rzhX9B9%oUa%fi-96fjl;b8k+LRQIme3H5 zf}wXV2v=5T>G}Gma|Od{l`s|~TW99Q~@^{i2ISe!(uC*~Adj8D!X6qBU!8bKK zOcp#k*=Mo=aXK>~Zsq0fs&7Y%N`NhDgkOQbPJAHQ5QRWEzi{;JS{f0?wGcDH$Pr{* zv}#CT({HzG`t;`Jt1awCc2zK8-%+X2vBV}Vjs-w-t6}3s&5gO`wpQvVNbk07=<4!G z6B`YBB^NWxOe<+ztA)j2h<73+Q6hE=i}HtZ-p{L#p7nUvezw@nJ1P~!*Fez#>(TF?UtYC^}o{qTIt zWEeR=?RpDfg4||tnk3rak5{MI@w%zqx81EC*gpTfT5k}Z)_eL1QO=$5!L0^KF zae|uA(M>KyHDAH7QvTTp*+QEz+=Q0?I5&z*X){{AwQ6~|9)=J=s9Qb{k<+^S z`?jb(gRluD{(Zr$?J0i?<7R@I(}AmEX<$_8?HZ&((%Tg`H`28WI^Q4 zX#l$sbvIrVHME{b*$}Lr!dn|Y!^zoizh=*;Q4s%Wvu2-tCX1=GX1_a~SjJ5Rm6u_< zW-n054Z#bMfpC7+TC+Eq zCgsUow$w{lI5f3-TuVXkz|2xJE0vQbzSB}8RhCYgRy_-}4&ag|wF<*vJFz!6Y{D?o zZ{$Xm!Y~ft(K8KNl@$-oY7~aSa!c*1)=wJNHVng{eA2W=p#%nns*Q`Pr|K(jHc^6)DOcbdga6{%mZcONOEh zFlnQ^TNXC;RQLjYXe4Z+QxxNGsUe)>&qIfhdD1Bry+!8W*i`8)entA(G5!MAVk9Hd%`hz z-yx{qpBeix3~I`Bh>;Vb_i5L#i{9**ZK)Ug86ik zvc9 zVPAPhU9TnT2qA>VK5U^d4q|OWnwiViS~8OJ#A!I|pcncpeV8UJLL7~@OxUxn!)YLG z6~Mu=iy+Eqb4wkfA~C?AQVie#iA$LtfKS?InjDA$r^bWD;;%&GbhrE3I@=Q79r|$` z#Bc$~)L-vVcc``4XDVZ*C6$qqAU2xz;5mY$T^2Kv4_czQfE+?E#N36m&>zC~O>Z{uo>|Dq{`#kH zd%(8j-^OZ7WGhq=qWfp2+QZVFsiU@r`2;_q=-kLZ1NSMf^^)C%-Z)r+qr%tBJ%bH2 zZd+ZokRU?yaOA`2a^8d1T7*tAiVm$|2V_(b>IN`n43fk17eQNFh8w4WPq9VXxXUv%K4qjLLKn3ZvO{p4@bw9Q?MnkQsej&I&>Zp>aOr#|?V3 z$a057lg4bzR4pKf(7U=Y`*g!-|F=C4JB$KO75bI!LO`Qr(rg(5%D$2P$Z`lM{@TQW zj0G5nfMRahgR9ifxr0s->k!cD@`-EMEL5ht&=Ozp-K+Cum`1|kOXkjj>dG>`YPQH- zU1BH0N!Wk;nV|=Y&De~ot|`NQ$Y@NcF0sQf65MwTuWpa&MiJpjlY@IpTCl+cxubPb zkOVpG3r}K&!#IX{Tx)V;v`y5AgdAE*3#Vf|99{ynwg?b#z=%ERbA zS?@k5l`i*j%Uv>ZRWPI)1!2kGNcyG>5$7Nduc75atYuwfs5P>wEGsA(c0)gg%h+M% zq2%`Xg1MVz#n~`s@eO9$#G6@*5h zZW#FS%rlP*w5&g)uAR0M_>1W>j~CpUbmig*MSGdY5pGSoa{D08bfe*XGzL8aH!heO zz_lqe@={us4#5B!1w^vBoZ-=%-k@YsCwI0jTlYj?>5<+Xx zizh?#gFP(k&!{sB6R<43!?5S+S%^foL{Ea9(gVvkzIo7%B?nt>ABLUKGwg>j+p&## zs7;p9s+48v9YO-3uAhVwf!DQlg=n;LYE2gdPbdl!5C72kXc@~YTb4hDU8QGk?DF1v z^vr1hTeoj9jh2A(S=B**2!t5_XzleD!BA{E%48W#tQ_NT+Buw zqpP1SOYd;>gr?<*-~Iq(bmopNIRKnca)!qTEMydFWfmw?KxmusU-&9|5aFf?AW1LZ}^0<}=u| z6v1A&h3L+9T9eQ~=<7|R*$wRv+eYV+TFOQTp%ZE*xQruiHnuqT!m{p6E{)>FEKBbw zWDqL5Gl;=$-85-srjj5hw2YIKMRqWw2r=9C$`L^*?9HNy*S=%7l^%xB2{j?Cc8xr^ zf+=d>j%;PsB*RbW3Kle4x8m(A7^Tn7$04}eJ#bscL3eHwq;DzwnJVnJVQ{H*&~{t9 zgna@Gd!C+4*C((>d;<1oiH@V`2!al6&Jtyx$iWiQS)zxM@)|@*VBruRVRV)#W|rb2 zl*&mv+nyy_Svm=UFp3UiOEiFEfba5dN&M#EQ zUCWSX<64MPHd>rAF1kcD_vhoOzZMMPd=9vQ&s21cYt2-KQ812ixg7$VHx3H(bM1tA zwz&ZdkiGdZFbd?41A5}lfh>OiSTJiOx-$^k9VUJjz(B;6RLgmRf_lnYP&FkJ;WRpl zTMJYbNNhf<`;%Y;@(eYR&HYLIBUukg_a_}=Wj1L_RsuAq(fvs&9=S_wV6>e?-~Z@lkbf+4r7U)Ntw1WG6~J_r$BiFppd3pf6R6b!OVUZ#vciv(YuuhqAEVCFz_jOA~?3N&%rY<6ZWN+$LG742Sa$TOL+hm%Cm#nhY<$!bsa? zWmeZjgxGAzu_?Ypn1f}wbugNnpYkM$gaJ*XV740dpk<6!7_7?faO9+kf^IaOcB8=f z&Qz;9vtHT)Jsdfq=iY8)y#Kf+DMn``Ta^vl64nS6-R^t@$3PovOdG+@+QevW*pd*$ zt_^qGK8TPL)dfY&6a1xaJLDJ`P_Hc}XG zHrP6}Fx-Te9^9im3R)+|DBi$|QJoYxp{9?C3uv4c`i+22C`#_<9$kuBjo~J=B(gS{ zM#eF?R`QUk=yqf+0Zyoa{fYi~77mSLt7?+dfrL=MZ?2@@$0Dqu zL3L1n#Gf_O>bI!?Lhv1iWESsOa^{LP!dq)IPl7@)?t>r7cDPu>yQv90K*5j&gU3Bo z)~U~6F2+*l3V0R$SCX37kWvu2kS=NWN1PmA79Q2x?G`$osz=~0_EAM z$kL(36W$;2d%fh0Qx8i8^$A8=5;MhmF$-F@fb!xhDEjI+^WQ_5e?^ZnimMIDEdV%;dl8bFiB}Nk zwV!wLI7ovY$bOwg&AF!zrUuNH5Y8fkZVwz%@EhDo<_cduEg@qd=#uuGJA_xeeKQaQ-~MS3&xbP{`AKg2EqSpAw+Kz6$$Fvi z7}a(;D>XAERR5JxIUOB5!sUB-&bBB}BWUd?Ah-y0(FQSW`j26^-4<KVj@DRj@UGZ8#Rs8^FPzex%@njL-8+1(pwJukS@G!)|;3*H2{R627wZK1+ zF(q|1p9>S0>y>40g5vzLy5CO~@vdQzT!xkuYo_xh9H97hT2{)L)BaMWvMs}1BMaN3oEyq`pwp&?z|(;X5E5Q{d?4_Ve3t)Q8)ZpmMDfW&UXfu5Cn&H^SLFXco@KC z9`S0}FZQomLQn<=HTcT1M1`mfFdl?o7hG zF`n@~irX0(9r7I@6233gtpUj-I<1nk-!&SH<%W0&#`2c!hCmK7Z8>}FS%`d3qe0W zA<#3SIX@X)-HN(*C^QMiV)(Ga*wTpW4nATe@K?Cb!Jm@bB-_$F>NYM*nG~8whDwML zW5CKZfXjv3F;d-)0VzsC!YXf%^hd8fRjM8eU$;RBRzgmflM}`e#}Lkn1Bfi^RrIR5 zt=6(cAzB{XnH7MLKo>KDVNh~Ka#QT?W&{aD0$zA6l3!ZXqwc&G8BjtC>E9Z$W(?h6nJ?|a;I zfM$Vk@t~!Nje7c}r9cYXLEt202)`WsoSai~2{`N}qUw3LqtkKF%M0DwCFoKZ(UP~@YcU@ZGBxHzL9b5}gayPW45v>dm?xsbEk-!(z zqBvY>#~(UMV?$&$6Ae4Xh4$nSdg^T=HERt%8{jBr|WO9!XGcJ;_W!<+$m}j&RA%yyb8N zj?!_oO+>(SAe#v&!cD}v^;#Wp(pEpkWAI&V{19AiZaqrS2ygG;KRDdsAz(M3cTjW$ z`91u%Y-fZM15BWA?s8HQ5(;3CI@^rmXoX84*X^b@Gh8xc1Th@Vzz|DY9o#a#`TAl3 zL_&k;rLLCa1l!&9(){|{lC$j=0&MfqS=nE4*wwxY0kXM0mfuLR5ZRZH+kUFfds_-Q66jx(DKjyMSE*w7I>bZgx2AYLkON*}Na+cQqV#74+j0 zV{ZGx5@2)_TO~j?@9POBG9Dd)6i1sY1WX4~sqCgW;%*m(L!9ciiPQ2P1h>XXb4RF* zjYz>#zw8Qy+HQj8vYKEbC=ai6-5jPNB%rxw0!ReoF_$|`1kUDTXVI3D+sXC}x5C=o z?@hoF9xsI>-%YfFU~qG3O)wFZ$N82Kw~SSqT)i(qQ=aX{U(0ytgm zRdI?lzd7Zo!%ZmyXmh)?U>C|^SG!LH%;s7(zujcX*)|gavU!hJ_LZE>wrRNS^UXaf z88XuA4@1bUTc{4&KDSfk2w-%yLqs%wbIpXH2rm(*o2?*@anijXO8|Y#%}WwYgqtTI z#o^`-!O`aD1PWjT?@5vDn70o4KIbIm@F_s-bl-{KadS_k1dVW6V1|fdw|dJRW`IU8 zCz64D-giTzxV!~@)Esi&M}5rY-VhrjlUchL3;v}o5LL^g1ya0WdV%f zJ@HO^yiKEss|68*}dJ6l9-4Z5Mm{@XqVZR?ZXPOpp}I`8eN9 z=Y;WMY-;YC;J65*4@1PZTcFMDCV)gRE+tXrZb3G;o0LfRBks2AiAHa3&#U|M0H>>c zc}{WWH{zX^ceS}~{pJRfjE%`^FnH-hcDHFFnrF$2xVKtDfya!}&`Cdh9SPi(9_+g0h+LP@1b0b;}xRtki_LlEO zTqL&u7G0x9T*U_2f^pGSJj}N_mF+dOMyJ}chDCHFC`8hZ@*gyN3k~bYHb1L=E5jlL z%!2Eo#7?}5y@ZBUWoT9JgJBT@ZH9>O_7LZ7Nlb%bH5t;fi_@zIuM7!6DE8S^?G?0! zs?KK(ix5neAQ8->SCz$G7*>?AwRx|~$64$t-3w?9uDK+uLUiOuZb~u!v64UcP<3@=Hbx%gsdprrJ{nhJy6Wz2$rNtbx_H zrqsQ9yUX_KS)-~i_xZhfyI}>xje*wyQ*JNbp3+qnYev=YiwTCDRF&?%vxe0`s+7HU zd&~FQEfANww{A(^zvf27RPUrAg&i3SY1KWY%V35@XF9CDtSJj!yUSL%tU=Z9mHEAL z`*nNetZ~&Ji;DKf9UTqRL%>jJD_sCIEZc>&DNB3@_#QJijN4IrEax}~ z&-Rw@b+cw#eZ8yhZ3A4eNau!SO>hAS!moXry=>MDt8bST>|NVkws*}MR(-9O->bH# zbg!Bhn!}o14P-yRm+T;*((EO(hE{*QOaLLRc}OHX;$4Hj$vH)5D#<=k z?Ori!9@h6vNl*wE1xDBk;6{%$#|Tge#-ycnd%>*P*r=sbBm|-0;ui2ha%Sayko$Fe zy{uVSf8J2Ew`;#{Z`UHR73}3Y!1qkK=^pj1a*l&Y-k~f&%?-Z#eIr9c5FX%rqTJxC z&p(cXpgRc4Mzc4|TK4LXasmj!cYyDCy4c*~I0(AkWqYrz`BvZh%I$qm5zy;J}p`1Y3Xm9lQw`ZEi4 zZ`7XBy;0V%>dTw57iu@ex43D?`dT9&`2(CPiQ!!+r^c(BuYbh02W(6J$&r+MN;f?% z5?+3j(>~26Cu>~wU0em5nhx+_ayN2T-{{~th`QMAESjr+2gnC=?STYGF;n$bMS_8F zYHxYay0w7SSFCD~I^Ze`QeP;pd{Fw59Qf@<_UkY9$yivc27@nnXcB}z*o(2~gJ(V% z|N2(;-z(W~Phh`Y&i*>W{(2wF@)7pezp&qa_cHu^JNxZxSmFlz?-T65|6u=p9sBOh z?5}6Dzy6$k{DBJkJ*1;$P#~)WqBI=>o)e=V~%KHq`QPqNm*=Mv`mYfS%9e4c^lg~8SM{$*J5n=$8aW6nRs z_pihBPh!fC;rln>`(yE|2V%+};`9Gu%JcF4?=jC;V9M{}^X-`aDtw>d`}gDXQSiJl zxC7EJ489tF{VV+T0>1CTJWoW9{S>DEF{Yo#_jP>k#XJwg_b21~*J7S0;aC5RRQw&L zzZ23g4E`S9e;Mq2J_;!p1}8A(>GABM<(19R@h=acaHUPO2R-~R%? zI*ZQ_Vfqx`--{)D5$1UxzMsVR-T3Phu;dS5`sd*D<(U3NeBXu7C*kwG_|;!Y2S|N z@4)vz$LGT_-r0P{|U_h7)*HuJ`dva+ws>fKK}>5{Yp&#eoXmg{OTA!FW~boeEt~z`a78a zE%^L>eBOZRKZ(z0VL6||=V$P%Z^8Gs;j@F!zrwHHgUqKK}+&ehzvhp-}mGDb@=`WEN6_*f5iNs#9tqQEgoU|=VQt{@%;zz`4&u>$Ct3NJ z@(6t2fzLN!%9r9---yq9@af_6ahT_eFwdJ1!!KdVtMK_LO!;+u{{noT#GJp0>0gK` zAIFrt@co(i{(LO?llcBN%=r!Y9%K3o@%dtWz6I0o!}ou|=g0B+r&!u|;I9wE=fjaF z@4)vL;IB``oWGCH$71>);``$;=igzTf5F2>G3PFP{}W7q5T-m7(f%2xJQ;ue4}AUrri?Jpn=$2wFy(*n{fF`W z5WfEyzMsRK@5lGoVfuae{zOdwS$uy#zW*iu`tz9bDoib8#rMC#=Tk7} zhcW%j@p(I@{0lxkOt}-^e-z(e$8uuI)A8BG=Qm<{51#?1JQtta@%df&d?MEPJNWzn za`h?r{v!P9_wfDC@cqU3Jd0m_0jB>Yrp)m9xyaQQ;;(;=DYs*uCu91fF#XFh<=gQ2 zefaz}Oh1axufpeZG5vmg|2usD7?w81_kYIphv56Yn0^mFUyIK#!Cxo%>wn<;*JJuK z@O>HIKL>w(6h1$VDLwr4_4vFQ)8CDJ_!j*28ur9r--N&Z5vF_)^NcY4D>3~?@O>xz zdSNif_sdy+cwQLXgegA*&kKXkL!KPOa`t2Te`0Bm#rF^4^E>g|_u%up@%eL@|5x$X z&&TJFVEQUPPvfs6eE)lRUKo50=J|I_{~dh)1FYq>`2J>iUKso?KA(+wej2}hG(LX@ zpWlq>x8VC<;Gi^X-`b3Vgp2fBi*#J{R-<62AW`KDT4agR#{fg3sT=^q1rF75ID}lyhM)#M1r* z^Zys7e+r+E!IU4z=Q+&t8chFbeE&B@@+FvZ0P{Q*pPzvA3xm5c{ScOS76G| zV9I~tx4($x{351&HNJlY-|xrgm*VpS_|BG0(r_^I7=o3-H%}!snl1nLm&3 z--vmx#ytOr&p*VJkK(Uy#gv!g`@iC|kH4;9`pYooT6}*SKF{FuyYTs^_#9*Y2|imO2z+To^QkFgYm21 z#$P{y&zE8P4fwnfpSNJ1DZal4pSv(+8@~T3ezk`0e}(D$@cG4<{&B?cQcU@COxeWe z2QmNS@%a__{8`NNxA?pg^Slw$AB6A!jOkb5`zd_C9iJb?JpYF8zlHB#iqGpY=YQh+ z@8GZZ;QQV9>|n}s;Qhj29drHxq+A%h6@PsRru-T{ABY@#Jic$kug>6Cuf~+m!{@v3 zt4Cwb$Kdl6rvDi}UyQ&03BJDsOL#9n--pkg`0K6sybYcg2ETyshw;}V`1~L~pN7w$ z$LIH8X`hGh|A@~Yz?2R?x8d_kF#Y}b{(IO8UxXz;4WIvszrGdIeSCi%rhEAONBrt7 z`2HW5=NB;LbMbj4reBTEJ(zL>mhktO^Lk8wB&K{XK5xS3e`C%W{(38>oWPU^V9JB= z`MH?>6nx%=zkV4$_rR|g2Jgc6WqiIG^Y`%mIrt3l*~jOT@z-C$a-NFs|Ag-!#`lx> zd<~|&37`LpDc9k*e}Ysz65oAHe-7q3k14Om_jh5QZP?cTgLyuU&*$N^>O&?d+_-rd_Dzhd@1Jq0?fG=-Y=lL z^1|R-p_~hYS7Q1TF#U3TKZ5V?!(Tsw@Bf17iI?)iU^}LN4W?}1^AqsAfAAmp{&krD z&G`Ood{3N{7Y09zUu|N_hw=TJ;r;%>AK~+jn38xUFAN5l=X>zE57WON-~R%ii9hnf z;GOvXY5etFSXYb~z7SJ>6n}jhyn}BFe@)zw7Y6s^uMfswUz@zoxtnqDPH;D7p2#aU z9+iZgN8=#&hT)lDbK{BeWHlV0@ARUPACBYBWPP?8jW;(Qd3bpcbZ5K9v+4TgH-ank z^Plm+ZG%^KFWa{9us-;-6DQ^7{j<$iZf-n2DRRej>dOTWu6xyG+pZWKKeTPz;3vQf zy73Tp_(l57lap_DM&lV&8cZcX@^?S2euwbkAmrX~;&;z%rnwQ@tBbHbEU9NU4TmJ_ zR~Kb{bVi2!!3T~51)o-tJdRSJeDWFf6Aorhz`Uj!jQHTrlK|$i2NZUyVCW~0S3h}d z%9*(rj(cG@hzY3I7J+)ILbCGl8*c}I*Q>QXJo)s#U>ebCURP8NHU#EnGAcLnHx_;H zgrsmLfa+%tNDy^YL{Fi_lze!#`XMq7T=nq1*PE?R0?xR%|J4Jw4Zi-KvK|7TjQv@- z78HE7S@hK-5`=!NRPoJ4nGqG^0sW+V4Cw!`DvZdqtOpi+^wE-!mZy>5>%s>fE~JST zMf$(32pkFy16TI(FYX7JuT^XOBHB#a&tIp0j%>+3nnk3szOxAIladpYN*m#IyRgLftw>Nl@Yzd;3!Ig^{KY5)JVB2Y*`KOFaI_j^-OUWowm z#dn_o0v@7*$q}G_^KkW>FHBmHTQOcdpG>0ZEJ#I_((_wI7@tPIpO3XAyt$|ZQqH?g-I zMZ<#L^Y)@|5Fr!nu;|O{mVg_-qmBTdpR`pb;N{=`p8740k?=*iI(kPD)ZCa=R=`t^ z0^)b8wW5B9kIIzNJB#W>b4IYI;L{&YYI~nr+ZQPODf{>X>c^-G0V;$ptoqBtBGcyG zMQCwYhVP1%;CqTbk%r}>5C8lCkoWB>!rZW2`ssJ6pJG3P4@#}J_ZHz~{UP>B6#V;( zzM-b(yZ;l%pLH(u0-Mx4xZqriuX zzD7MZ4dP^gSB%<^6n%l>#e}-xyXl?4mHnzNLrWs-@nv5gQoqD;Ar4?fue3uxR*F~t zUe%!=FZvGoDt}kd1yKWkqUdX+SN^)VSADYRTkIb4x2gbP#h)tr7{xYeNsr5fpLhYN zApLLAmpFjJxM{@dZC=5Y3hSmNsLXy)(U&NO5HHvbyp^dxS>*=zn_dRu^qE8`@(vE> zbeQ_%coGi9bnhAGApg%4<;TH&J`VfqyzD<4K;G{z%KMx|{r2FPKCe6UV=$XLeZM=4 zrr~{HkIaH`98EjjN&3c%d;3pAac@41Zh)va2TaTpbFEEbot;a^v3yeMTar>Aj9Ah_ z)u2obLQ!bP1HBN=Jdc$AR)#qMA5$+aUJWWXE8bu3dLhgbNcnF|%73^&18>aoe8$t!y z`88Eip`dRw2gafcVm>sIuvaDZ)dS_OB7{9!!pLt7?@%}+- zb?U)OMzr8u-3PNDIviLvVi^V1(nHj0)LZPVt0_=U4_7PNZos}|B!KF-=k(q2R|AWl zbMP{lC%yWzZOj}p5vE*mou#yRY8qkb&xO*dX{284rZPrffnp|MP1}>2=z^Jg%U&5^>Fjb`!KQf@&+!} zccWV0-sbh?bU)Vg;-sd$?mynVE+J8=){cc;fz|F%2|VVoQc#5P5Y`L%7>#w_s@Ca} zP+q5)Sz@KTTd$OAEv$5(TIor*+|3(VSnWZz+9PhOmCP=zaY?PwfewO}EMV#}wXTEB zse`%-d3jQ;&18fV-Hs8ES9efbo`tuo72VOCEHQfL0Fe%Pms+)nr(rhDHP4Uz5DcqV zf)ynVt0rCsQBddjQ96`jiB~0dnYEWeEmRpkvGi+HtIxzPE-F4hWMcW(CFLtarpc_K zpo-kcffd}4RFEGzYLcMzIIQ7?DvM04r2_l~y$ox(Nv*-e^e(PJ>RDL$Eo$K=-i4yV zr(RJD>{2T*ng178P}~H2)GACS=cQHTbsaKlzgkIMIRe!{R2-InNG;!FQc^&KP;2m; zJSo9yj;Pg`sO*Yr=tzVW9ak$d(wnfNL42v(-vD~^G!$m5H+eywZ(>%-7`&yJp>VACq#lE{D@tMEq1X) z2tgzggjho?vBdA(@6~(n-us>Rs;U?Mpu64gobR4{?z!jQcbB2IGn824Fyw!q<+l|6 zxe{^sSKRezR?|}WPgkQv?BiI`W-Vmw_5R!(**W71JpIQq1pHm{aBB!?DNNYHI%eWG zcPN15S4@WQ3scu+6ouUQLk~24#F|=)SjjHuMqViS zgp~}pI)Q%sQ!X@p&YD_TbVxH?phOh(?-OUNshk+D{N&cthqTA|NlDcnm)YB#UpFrp7!Jl&9@AzY-RB_ zrFyZ2rv`s$rUl%B^7Z_#1jwCW~U@QV0GW!Y{i} z#_yX1ZjIk-rU8RP0}lLFqum*#*KRJMW2PhHcGST8guG!3VlwicaxLC~gZkWQgt=j; zMN#>@C+Z#+wLwd)3Ws=-?i;G4?t&-j!68esb}GS8kFcbTTB@D9>j|{ahM7S)>3Wq*_Jo_}Fk9W6CrwOZ>bcKP=D z8;jedHF27>f3UO`D=N2DdPaMdWwmC17WF!dYRzVHk6LgLCKuy-qTU&r zs7^T~S|~^RmC%RYGot*|e7zRhvNIchX@#T@hAPSI_jF?X$C{*8Vnn_$V10`Pt4}pq z>$gxpXa6ij{ZA9cn>4J!vvF`PKUmK87IPWR{_~qT_E7AP*SH#!M$lVOlhjH-D%K0V zHETZ}q%EvTTc-uP^}6HrVw#**{7a7EMw<}9=xaljg!{v7OD&~IYQ-nySVw%o6{NnQ ziE5>KWboxRNv#Bknrx5C$LAG5Yeh{MCtJDb$a(Zr*b#5|q2zlf%cRiC_c;1Ru#Whr zaiLI0)Tw5E>EwP}lQYFK;-4aEvLfRoa3FX(&sv8d)*dY(_DmMbpLt`B@lQ5eJF$b* zb4Eg{o#a94`6D9L8sH)ILYBHs+wJ8he~^1I%WdDXb|MI=myC#1-v+-N38{912(DMM z)b?H0NfsgYY8KmmgSm+#_H9f_Cm7$!qT6TeB%ly`4~ylYO0HEg$B2V`$o?f97^WX1W6a7T z${J&sosH~pewhjdyO>i}j>y#vJ7=un&peJG=NC&VeFXsHHM#P!a6~)5sCsIBCF_hj)U3~HcwxtpY^VO8{KT}OWX4t-a!yR} z4vXEc)=UE8Rx^pV(|$WpTxcqh+76=EG@{)VAO23-f^7ebK7_AhgwtmmKCaYUetcgB zQqIUPpk{rp14p;!I_zl|EM2(9W&%OHAlO*Eg0X->OX zmdlqiPL2-+TWSi1VsU#)1IgQHlAFXT)A{_~GbT{q|la1h!h!XwfPWeFLm}XBV&C5QHX$qx6Z=qbD zD_=fBNt>J}BhsKqvPLA{4w)py?pnJg2>+g;>5Nair$;i2WrBR(2!LvQ-)N!{WshNN ztJUT1tz1Udi5;sQ&Gui!=;|(%q8rridtdJLT4R=Rg2=st14c`lqR7S^z&EZkD+y*n z!i_`AnBws)!PWuDsSLr<^PX%qUy}xpj;e#v+8QI=SrITI)IL8FS`TsV^G%nQj{801 zQ2SCLJ7+Lc_06@OMh@4h1mqa@@3V#7EN%|(p0)&Fj)6GmFHfyzYL%|KJZT!XJB+uX z#&5Z}IThSVR|~+X3PL9Sy6$WS|O z)`W}=cRd(ztQ2qBx*01M)A<8omE&6btQ1riqn3cJq-tX7lXp`Dr?xaQNE~^ z2bV7StW>I0qJ#^@OImTXbg?T_D8-{JN>{Yf=$vv-YNjwRSLk!uR1*Pnd*m_^=F_hM zU>iA^TJDYpecX9ERl5#zQDexgy+(ktdue4+(QJ)N&(um=9nHhMXHt+8IjVRrt)Wh4 z6bx!MYz28<*u1F5z8W!WWMSB{=JfP$xjTC!O9JpN2ExFF-aa|d-}uM^W(R1@P!*Kr z%S;c}09I8PcGl5Sm1ViBc~waOev^R<8(%35x?VL) z=LoggYy@wx(NMjNLT8q;QPu%UM`)DL1I$daAbkw?u|%LxUKdVR?1ed>eI?hb##}C> zW7ljw*E3Zv1sXFx^dZ2nGH_>>jqmEoXkPI(EUpPy*!PlP!=oo>a(1v#H7pzs*AWM7 zfk?vY3~powh*6Q0N?*O$D;qGXk^SDgPndsynyg{$dO~=Ahs!#~bnKFkFM|T`XaTyG zb6I;>Vhth386obBeO;&Zd@1JoI#emNAjF)&V(@iAsXQtYc!wk6BqPFKaatvf%f1f& zM`VuFitMY~<20^FVv9`PWy-D&g)@jkVv888&fsijkXR8&(Ocv^7L(W_ff&=po$CD5 zi11q^#TwIRIPjmfV~y!EbZh*AtC3<2k)m7UG8U6!4I_rEafN1$HIn>u&#<#QCb^1C zg72wXFNp-`cDaTtv{6$o3C6jOWhL4;rX^o}qe&%Vz>O>>xZ^V%JFHMLV`4N40DB7= z2HTi4!w6J2$!)AZvHKYzx~JU1QW6^(Qpi#6HWK`9;|>M2!Xf>#o?XmF$@D{ilA&Nx z8A7a~!1d4=(=kJbFG0hY>k_I2vL%>&od+|_(faGfQcd1xsL9Q4_N_*X{6*+5@6tyW z-~&2xxLH3NPa^&)x5yjUb?e|RWUi^ngm)&?PqszM*?KbZI+`3LObK$#Hwp8Ns#J_$ zSpcK;HA$CJ!fK)8&=(i6XbrM522qiIm-}^>{judTy@?=}2iYsUW@`noX!R zrJ_4&0@IwbSd)2kJzI_^&LFn4CMS)UoEt6|N^(tFK5y>-vp2~?;5bd-YAH1>6>6?q zP0%EywV|0e&CL#GqAeNbW_QOeCTSwmtX0eQdUwO4a+5VVX&&!OkkQ`$T-l<6sy%$WyTQtG84ptw@a`mTh5na^Z({n>5JRya;Oo(YGbaC5+y=rxt@x=3}vpPk>>{e!$FX@sgdU=zt|C@TBsw}FS(`!%m(++ z86aznCQEU#kezpEN%Gk8faLa`3AfUuDm@{T+E*3!Lys;;*E>?1q@JCrTh;FNi z#B5lvv=LdX^vf$a?(sGV+d&g%jm>^5o2j2B=i8bb?2Xh(S#r#cH^%deU9#gwOlWd< zr)750WT&*Ukv%&*PvtpYlcjX}usw{d-g)JOT2CB;v~qv1e5urIxVt88V~!#=HzS$sNAKl5k-4hKX`09;)|1yMay_cF8JaX@unFrMyx*Z!bstR z_2t&m5)hIL#+U3swphZ$OI8tA$2*#iJ=g~=0kMvPdu5DV=74)T~TKrFw zjL%sOPb-$Q)nfb&Y>xSmbdgLpET6Y~O`~{Y3CnD(k*%#P;pf_P#afRDLFg#u{ytg6 z%4fO?@_9^`cc~^1pYelgghRNS#OL3U%G~Z&#)>5_s3X97*(F5WscFY*W}v+wO9K79 z=E`$f6AYbb;!C3ZU{|@7bU7GvrqrYyvUnnChs2Hn*&&X#8AsYIjfa&l=rYAMYPo8$ zFJ5&5wVWo*8jD?F$Z9M7b$Rj2JvRVZU79Q_{-?;Qy9O(2k`k-fT`0>{&;2#AR&B7i zvr>veAZV2|Vb+q9ORL)i14wai-*;v0X@$+p^Brc#bmKTxY`QmqWZ zl`4xt!`@VDCI&h8o8Gu+glRlbw58Pum5V(J zxRnWi)A_v5eC*^b1S3{VGIw&baXwTDC3-+CMQ8M1W|SCnCIwGlr-q8pRC@NPm2^KXH#jK%;u~s$Y(#$S7WE15SYrZPfk8zETeOZCg z!{Qw>I56&bV8`Xh&bwJi}~uZADE6^(PuJbimd6zRaQqiid^`1`#K#A}sT< z2>&%+$T`)>al0dq9|YErg^13Ie6)se4Enu;sOuTEzI6 zc?35s`piG%yw~R1qs=(m5o}hs0k!!BZ~^yW_`taES}sQiAQv%YDMLm+1NWL~o@_aa zS`DPO)JR!7=r!P}Ul(%IW{{1&9rTIN84O*_kgOK^WJio+vu!kbs8L`u7xI^nr6I?# z2@tSit0|zZ7_@jm$=R6!lWnhYLRbkoIhYw=6KieBRrWUZ%N)wSk`AbC7zNj=R^qL7 zptO@l$#N|lu;~KA=Q6IZ=UN20f+33<6X6~jr_pxS*nHiT4GiQU4p~y@?8+5IhmG5e zF}pDaO;(d_mxcIAV%TS##>i?i5A%jG(Y0J(ugNsj^^6LvRF^52W2FfiC)-LkqV_-W z?0GEPw-R9vV+_vv)aGXUvh(6~ahPe6MhSk=XgCk_{ujdPhpfRn>*MPJ>=cHz{7q@iA7 z6xvRXmsHHgI>()+YqYGk^FePIQ$58RytY$e&oB&*+g0h!_Ld|!hk9S3;(7MTqQNkxONx0dV1Wh1<)T-M|g!W(_j5Gs^!{ zE03*x`F^>PD`&P^Wz897`MzPES(5c}Nmd;Z|I$RjqXP)(d`kmhiY=lWpH*Z@TBv5S z<{OLXbrim<;gOjo;K@qwYZ4YVA>F#?2ln|;D+y@G#FZ;;VrW7+_B;Unu{R-hk$DLT-kISg)i7+Aq{1#@eR0$20(QhYJyt%u*EeP zdSzd=UpBrv$GX96Neuyu2Z&^UT3SP5yB8s;wU*Ve@DKA*Ia%j7H5}M_IMVnn4T%;g znUjJU^Y%yB&ne(GtdITFvzeqOyapdM@4+Wjgy!J;6@BY!=a(em0s%z$(0`p zziC>9V8Vc(g4=2d!L7>~lXoaR3Aq6ygY;NFYg;oSu$!T=v&KiWNzTID{E3)ucea2x zK5D2bjDnuVHoV|Xm#}5QZ6A#roG7rIip(u6wtJ0rVS*huZZh@_#$sS@Ao|Niv#r=6 zy1zyg-sBMVpcgGFOc&&~!g)Sos(}|~FtW0md^B?i9;6Wr^6wtGr6A7XVE2qx+VY8- zi#c#HsmGE`#q$XbwKStJx6D?%t*eqge?k;|aj?u_{WT_QZs|f+TSOr5aZ7r0O9k`+ zgCa`BX#XH6E%4pulw!!apGnu5#nKf@9w^5kWR}9-8NonmA&r!kS^A)xKNnhM*5GB9 zD(n!3!KuoXvdKh47X+_GG+vfdd6;wmE3|fG`JPj0sIiQ~q>gR1xW>tv)H#T6E-o&$ z0z0fXsbkDajKO#&Jz6He8T;VfKSjmih*dBMsa+{k22y# z48wyohE`lwkxMKs$O7x~;&L*!hp}+$2BK)TEXCI(foMh}YQ<$8I(0)~`k$G!VCKc; z6!1q3woNLZRr=$34VZRnOxdI^^3MH)=#%>rQQf2p_G!kV|4L^!CxOELyU=T*r>HTs z`mcw1<{N@Jm7C1#zZ&XvMxp=q5~q^J$?CrjVzG^c(f_z*y#C9W`S&IZW8A69rrKOj zaAe9cRYjwPcp9Vw8t^B}3cGW;=H4o8BJ=`=2C0DGj#Z5u;!%T~1-Nt{A$1))3Hn`} zq1f#L$c+qvU*%+rdbJXzCdaM1ztdQApAL>PD<=BmU#8^harF#q6C=UabCp0RSOWT0M_7^TM zuqSvfO_0AbBrr>ytAWcOH7>SU;_}B%6)Ib>T;D7nVrxdgEY!39q*1ZVVgt50K)Afh zl0CB!JxVx^pQvxIVuHYQlDW0n7S9V!27 z9z{JSKH>&O1We*pJ21Jf8I!pDH3tfl&$)&^6Av-peiVn$eM)lFGz_?)a-&8i7*l0K zyi@cRt*AMtAm^UsdW8=2?~GY~ZR{jguIt!%YpKm;f#=v4cWvF0l!ibvm&oKwa=0<1 z2eDTevHsM#J;69RZ#Jwsg0Ip9n`6Vx>m4$V1mnzw^HCMtuhCSPoAg^y5nOB{-)j2% z%#m=}mhZk(2L;z@3cfQu1*nVjU;obaY`6Px4s0#Mg6l~cRe>s9|-#i1}2Mk-Rn0vs!2Loac*2K1DjvVfO zkq?E^sB`9;|2WM#OH;5#JLc#r$qhw?D60kSoF=s`Cu~SXG%|-^q76=v-=)cK%LzmI zs*e;k@w*MdDCXEFd_2=N*K{eb8YNB7uEWy9N-CO?wrpjNb43-Y7UH!P6KSfN_}$y7 zgAp%MgM*8KGs$pQmXnP31>9)&{^2W==jw{)GJ#?_CkK+`MGLu^hu&O)vU!>^b9}$$ zNY@=IGb5DK?GDpqPaKkLd*H*k?RM}ZG)?9`oR(`5L=EG<2qI-Ij2xwDY0Hx_h(}%) zMs>$%$7)K_QnpY^I79}?Y^0<&xZkyrB%sZIps8r9&4YUMm!0Eiko`kV_LO#7!jT=F zwKsm;FPmhogGtbLil%S+(Dij!LC|s+NKRvTT7<9NK@HXLSv44nls&9GH4vqU#!NT zi{bS@*A%oBS?5+|`%n}lq8LJ{)1{gwvyDF~vUZm$opRq`7}Fj$3nMjI1h5kI?VH0p z#_c_Q`fgKaW+qJEbL!09rjE~y+jHuKNfRBh17>YuLA=%%yt6c>1;LXfRjF3{`((B` z(;BeAbI=H+Q;s{dFO?3FK>YW3EhKI3)39WRp*h}q2_CY(Z)7>A4ARnjUzE=8Xy%ue zB$H6@q7U#q4knf4xmxU$9rKNYqwR{V%PC{0=}%C_Zq-6dh1TqlL-KBH0^gHV!D*=k znZaMp$hZj$)ci{$>JWXs`dK2=E#3obzsU~}q6#MoJ_L)Q7HSsp@ zmVy~(q4o+1uU2GC3pFe$c)Z7#`>#nN_a*r>W69mWErzb##&71v73Zc;_g)WZec5~v z@;xPOSZY?MhVIUabyWv6{ZrF);P7kNXrrLZ%JiwL(lBr6xX}JDP5ad0YnQFHX1ir3 zE0_K{3g6Nc?l*D@%{49AQbjJ7CDre0s?(NVTWnKzw*$=jzNRWIFKkVf*i(GhKAiz= zA8Oi$--tDHpLM2BJl0ySgu?%73MUVz5u^SX^hMWaKGW2t<-JX6Rw)gb`ykDwXmX!^wHR#&K~sKHQ=PVk(A0H& z)r!(@X-bEcj2NZ00wPh93a_H+o-v$uCEZGmSJ$)-Yq&I@VKS92=gN1q=vta8b1P)h z)VyhnI$wOCV_i+huo_U#P0OPQa{E^_cm?-Tn$x=O0JedqJ8dPjY5nZoF{s|gnu<1) z@F1dj$^FOEBnjU~q+3aNn_l3^Z6w0@TVy3D*n|uDrc^FmwOGY8;zmqAWc)7 z2~(mbFP(tG%!n&AJ=jzaE(b2*&;x~?n!*X~^(eQ7Mj`&np5%_`0x9Q09VnV$GCo={YcoUe^=13|BtF!#a>1uORU>!a z#kYMy=_D=9Y|{~aol!LMQfVlhJPHa6y`6>NEe|(OfWkdBg=T|N8=>8=q4#_86c-Gp zYYf`#3ZBLe(;4jfB^2$gDQYuRYKl6|cbur#LDhbmsYxQz=U_sM&HBH0p4nbxkPi&i;X{={mpfIZ`9A=DZ+}EM?zPzR`ZKFa9&1NpS zEyOqOpjzFUo_&Vb>FRSUsfi90&(;*Tx$fb+%DiBw0Y-7R7xZe{(zZ${=9KGNJLRaa zH}t%3_9(w4Lz^}9q^+Dc6)YF>RIGcEApc!$=xj6Vb?JA=@!7~k(DA;eV|X@z0~{N>zjTPN5N zt)r9ZnkG7}?tR6+f~=^?o4|N~DCD{Go>KSiU6)H+>i5LR6T7)NvODiPvO;Lx{{^W# zndWi6u%(Sk>4G~N_q#Ss?Xch3=y7k?O3MV(6-}{jP(v-ojbJT|aCu0v-Y}X|iwQ;# zU00U2jMBU!9s9~_4Vtn^s_= zuVEYR-EKoA)~zF0iD0k0jWcj(d~E#*)i=iXgg|jOWw`(O8f56mck@k-pe}Eg14?SwQoN_R!mzuX-$D{ zzlXUlY2W`^RF!18M_F6iR8Q4r`f!>DK0&riTP|r;g>Jn+a(&W1fw!zI$$o!geQ7C> zsxQrUe@Sw&4KF|Mdd-OTCoOG{3emJE+Strv_#2w0wtIf035hjpdE3=;=7RIhKcD$0 z*s$Do+eGRbDK;zox2rJFlQzRrTPMYC|Irk*J=O&C5X=yjto|cSN7@>tT8Ts(eWHm^ zTYWO(WyQ^3@H}9BnSngzZsBZZ2}?{z_({z}sI2xYQG^DNa zdBzB95m?(1{TEGi+Rotw(Zu<0n&4(mZd*l`V`Yz?+*&W^iR2rqee3~d|A(faS#NEk zz+1Y6o>xahkJ1vaYkHbZyzTnfHx`2Vo0`NGWa`yn-ZCh3^_M!#Yh?pCvK7q|@7z^- z%ptN2V67>woCNCFZSvlsKLJ=b>j%!He4R8bjq?yP*9dWE-K!=_nYi0TkHewFVZC&; z&f;)pu}X>@kHnEg0sJR54 z&57->nOw-u8Ju45%yM!YY$6Fdn^T$1T8TBATE|4#}37Mm~Ebkw~@#&^n8&nMJZCh{Ux-BH0oKtaG@YIV4-ch}qhS?l%#MWJ>_8 zv$&O6BwJ#JA3|;?63Lb@V4cIAZE+}iVeFoEI0#tha36EPz541Pp@pvpiN*$r;j4ky znLN@K6D4px)((@jsPzYCvPN>9L{eX=-_2c~A}VIypbwcd8Ul2yJi}a){d8uw><+xo z5szd)HDH~?Uzh{#G>v>jJ}a7srsd++u&ds%u4HhxNb+Z8aO*oJh%p`V#kjvzkT0y7 zklRcK>11ZlYcr)ghfqdTBXIs{mif)Yj4KrsJvv3Jnmo2%Fy= zPmbGFm(@71B^MnQ&Avgmc8jx2cSvz$PB6z>CYv`UX2=By(LrahTaqej&i*Hm^91Sj zU7ESM>4(E@VyRNC)c1Cu8UV9piJ7^6ErFRMM(6cS=H+$+hu5UovBH22R^K94W*H`d zl_jJjwLMp1ZYeg~BU|j1C55T-I758o3+z@Wb}2S<#OO9#i+Q;*$+4L$Ftx(#vS2sE zbp-Dz#|E8N*nsMpVlIQ$tG6+;a0h>f#dO)*R_Rr&zA3RW3qlD#VN20jjbT=17h)^& zQfxyo1Zkn++r-4p9W?&ejm&3Q(;xJ~s&S91IIBel^SiLO{TO@E;i#dEt zb2l?_+T10uE)j5-B^wP9Aax6Dz}iz}%#>%9YVxTh+Ls7_*qCUzOPdajNQBO3Q|6Os z4bLUU5RJr|B>BTutUX0WR28RpY)do}tubbNBto~w4$LRf8lH20n`k7~B*`;(VeKh0 zqN+I77*8}3t+7QjYfNN5?gB-_(Z=VZi4gpAcjDl#eZ?@n6{fIW)eht30nHxyDuOi* z&pD?N2h|Rq2%XOi=ChI(F~(ObeU*OK7W)tnJOLi9@r1Srpt}D3S-(1Z>=vGCbUfl9 zVxW#55m@JtVGgPl!HEv1_rMtqzWpnObePa$Umv z;AHtR>>3brI~{a#7y0C=3elV(iE0Cpck-zwZ@dX)rt-Rnc$rJ~;#?LUc!Sgq|wub_NmH9Blv z!2V2r>P9aIDQt7*d6JAH;sy52bQvZLdoupYGFLv(WT-(iUJvLYckU8 z;aqkC5&zaixJy1Rje>Pk7bN`0NN|@q((v{JKEQv(csClm`h(vxaz&zR&rh_9xB<}> zR4sJNol0_?EbuhPOFm~#ZsbW26`fIYq|L|QSJNz1v)(O&g}%agcg5IcWAK@|g<^M4 ze2NotzRGgae81LHnVXT@!uz6c&XBTbn^H_7#?7^ak>Yn{cZ6_jB_H>c9`JQ0ljb~i zbD_3Ur)5}7S~n6g@oR4|%5p3qEkHtmd>=WWa&1q`}?q5)OPyp`LXF ztZD=}tDhKQ%m-F;)g!JM65{SU(7!j5$02XbnZ^uvi#OsjKCkA(nX!3dXCPkM1nd?K z2A#p%gh}8Z&XK|JNq!&n&FF^+#>Hzox$@qjpx#)bc3gh*{@UR z?ZfiDw=X?SK<&?{#f%)-3gkA(*cWb;*^}tvq#^rm3+`pI{zLs0$5|D2(60=j>a3R~RvvTdLpTL9ay&6?G zQ9w0Kz$M=m&g-&fq%<+-rXn_A5epmhmV2WV9b6yKxPHx)tX7J0Yj3eT`ZSL64{POv zm?rt1d1I|o&qyYfm$Uu}=6O^Tf#@2Tr`Cd?b1Gt{Mc9QfFvn(US=8bzY6)Y6Tu()| z8O(_eJzuc8gr!%tmm8Nc#e)j?pvPtl*$25nmN$@?tO|RCVT*#8nRkU91gu`ySfNWb zSlNjA>OyHeR~mB#ixOcbG6sH?FGOh**u1H+fnNn|tny18B3xExxrl@@7ay@2BNj21 z$rt0p_Mq~PMrFykxop5)UBcybwmDkY;$rClUc4D~;S*U46ocMyLY6iR2XY_G>N=4{5mgNo%SPlT1`*TTBxL00)?zb9O- zW4WFO`G^}C0r{nV?;c0+Sy1DHtVgb&lkw9r<-%HFE9-F~tDCInKkPzY)}w$vVh|dv zaU)(?b}u=+7SniHS&xGI+bkisE9>#Ho+RXMjD#H;<@+jgJum#4MiGu4M0ySQ+QGtc zW!8iwJr1*p(A5}fn^7hca~v}+rEz34+PHTIgkp(3PB$YVD~yD9G^#}N9k}c_G@91L zB?-Ks8MRJen|KqKRQO2@N7#|?eO`kvud%ekj)Pd+c;mJ#+Y394*?}<_F8Zvf0Hdv_ z(XoaL8*sZxd!};Jc*6xj_F~9aO#*R<8<1Dls9;+@S7s!!Yr<@M)`73-v1{wNofrrI2ueF` zjW+Di*ja&H!R>dL@VlJ#c!50$`71`k+a;psqQ!i0+g#&jdAozy)&zvh*k3$vXUr9h zL6S2d8*{zDy`@ITN^)Gt2~}aV8Q0cJaum=O3<@X}a=v$M(~Ob>S=;2WKV<1XB?g_s zAhg6l!QB6yp}cE*jhE$D3hp}vA$J6~hUZsF$fFpEmEJ~qS*EVdDa_5(27BcIezlnM zUg3bp?WD2ZAfD;AC~IE7)MP)l*d|6&+=JVZb|6c`T3RPQB4=`DogpLN!p&#oFf4BW zsn9rMmNGB3*3!}hENjNJS!`EtEv>1D9E(6;PG)_!#u@=I2%0K#OOtVSvZ1gQD>i#F zw!qk6JB@rksufa(Dq_VOGIiTNH}F zVLe`$O+x;bkx0{LWS_P|Ro)gIyH@D$L8t4h6aXD}xyu!#g!NYG`!IQ;;RIqeM1V zxV@*K!O+@Q^M#omH-U;#AeYPcXz7MgefC#lU3 z)u6%VB0yzdli942nJb%{WGi7(+aIopL7rp`RqySSL@8QW1m`0)M6k$aUbb`E{1~mQ zwd~+L@pJG|(ry0D-jDfBqrvjUfuiSz$7?#Q`HhM^_hivE$brC{-y~zd$Jii<1db)2 zCLBYYsFAdT2*Ji4FAO(gEq)NufgKDCR{LbSo{u+Jqd`yBxY?_HF6P>!h1h&7AMS2N zHwE<-Mg>u-zpt-St($Qrh&92Un`luIG*8uNVrJKf!%c)NeVXw8H8a3&4~uszVs2nD zh-8i1IUKhJ`O`J>Xc2*!$0!|dIa4cbwTOq=`xL3!F-*y85e;=bqmW`q*+zQEbvZ|4 zhq!N0{k`$3395d+R@_Rme9&PhNp0pZFE7bbVP%E|%gM50#o6M88Z%Ts@F-E?qTWAM zsQrR3U#nr!8UZ$Wpub*2T6Ihu>TlA3mdfP8 z{#Ff%q%|O$I^5r`fuT0+r@^`yd?E}c&vwef!7sa%g@Y~3@~MK%i0>B5vhlo7GtX7` z%YV#bi4z1M^-4`Df`BYx=Hx}fD54$JEhPS-6}N(b51MtJ^tAO4Y_@u#!ZuS@Law+}Sl!0bJ##6bI~W8?y#?6~7%d#ZRv$N^|5$S{U$?lqzU+KNG8Bbv?KP9rX;adI2c#@zf9 zA@u}TnH!N%e`FL!nM3;Js=8t+%H&|Gg*95%@aKc3{Zx2O<9d6ej0&58LaERzpEyI?U6qwF`p251Szq4L1ibP~A^Z$$_P)F|74aO4K-Vy9j|Hi2v{MpO zi|4g(g;v)f)LWMb&0n()uWRVI8yJTcmz7(|nYt>WF+uG`japC@DQ;fBb7!|NY2~p} z5@h*Y`Ij{W95)!472JwfO7%bBYIxtPl8_%W66+;dIXPXG^M9FO4=rmibQG*!SRU*#PV<4Q732 zN(7%F)qIX43wmK(%~beb7#tI2V4b%G3w@ zyzcV8#uvRf*I$(@H0!dMjQ4Kkk_>nG@Pj3`Z3skQ|_L*?yt1 zh53WttRm02K&Vb&<9KVX$=FGZb$Rv`vTpM&kT`4hc-qJ**9gyT*d|Fl3A;UGkwX>c z$;818`wM9VtsKgQ^qeis7GNuQIg|ogh(Sm{x+?wEqI?}F$ei6V!*Rx(?<)*or2_joI7lq6)nFsD@)60Bm6u@DYA$U_ zO&Z#@J6rFGw>P3YFRc}}+SP>|e~uV!DXzEIt_tWI3__9-6wP>_GMCj@S@{y74!%N& zy}>%Xd`ZW>%{X|0$v>NZOa7)t72`B+K=MB>eoHG3dz<3s)3?3f2Tin!20?-y__qdp z+9Xh4aJ{@w&xz0lI5Hrr7(lfkcY##pIuQ9u2CQ zx27CE=o@BX>s+pyH|0=a7cdMh9WE4SgIxnrS99vMu0|AjYzWU6(p7`Z8xpxUV7(QR(=9GTz}Vi=YbUja%eQ=ywh0w^?TbXC41<#={}Pnz|?5 zVdPCU!qy<5LoYd3*shx36l`HvFTiUs7*!4RMYpcUqk-d8V>I3f)_M7+n~P3ltz4Cf z?-knY+zQq%?LjkSB zAf!}XMVWB>hj_v48jYEi`l-m*9u|UEu`VyAO2%HpSmf;TFowDIAT$IRUZ*j%a&`~% z=Iz4mT@K9N8jyy1pHXPgE}0vaqG<<6-KdeWe9VPha-DF>vvjXP6;L;WB1-+PkKNJ& zr5JL_BSPsWZU%*t2fCF(*iP70iSMm~jc(HjS=$M1z-PA#od>zH2xxJLA;=>PLBb?g zXbi~S!#D>9qdPQ4R>DN6&5Sd>$~wG+Nyoj;IJ8|)t*=y!CN>~;w?@ozCl|8%ox*BK zZU(RI6wuNPYEYsmdT&!oHsskGgwoMmVWLE!;~0eVkHyWLDDZ$r2kBBHJ&20eZxbpn zuvC~ccBNQ80Dolw90>SXJCj-=xXj6=v~~U=GuFSq6#~NVfX@Sofm+)p3peKyg}nx<*$2O=)B1lM!=6-&qut& z2(-6+MK|x&WbD8JN`KTSSOI+b3LSZ@Q2O{hXm#stp0bxj^&HUe?x}M*Wk< z78z7%z@VC{gpGeKw5PFdoB^{<+Dyg_mI22K`S;7Jxi<#&=@PGRwX?9s1SdObtjlQS;jLgBQSNpnQT|&MQ7^xf7OWF zrdFZH-Xe@|;D+^0oeaL2!Pq`3&kSuB1!eTPziSMw?V}Fjmfr}mCs{V4Z0xm+d73fE z{c7^4U8desEyyK-rMz{M9k{)sakHkMiRe|${Gr6nbY?M5_j%`I<)4 z%BgI?gEtGaE7=-ePDPNb83Lo5f=SNzhQ zGVZ+aZH=Slehy;VO~UM~1WUy3$Cz^&gZ7dAv%ML4HZ6XA1`YaejTEw`hT#advq_cj zU@hqC7Bd}qHv^FYDzW=N8Z|2^bs=XxAheF;#_%#g1#}F9Fc9~bi?aL9+`?Fs6|}mw zfCkHbq|rmz3M`ilKjC*mb$8Z^yXImGHW4s|1;CO6oZf$;QMD}TLChfXFiZC=sem43 zP=k`4cEfs~H>G4lX8m3$-Nn+05`lilAasXLoRhK-$1i%6tlgA)l--Tc5;Q8qmM~H7 zXYAEpcSr#Kf`OpdU9I%@IUj;SuhN7b!+w8{(A$}f;L%F}j$>u7*Gz_Z0Gq;F&q>A}%viX0X>%~dgOOpD1w;00G_CYo1D^4iuzZm%;-%k-(3cn* zkQ|dha$Yl%3UK_rLUJZ+@<}E^_hl$ruT+r@@A4@@UNn+$$nAcZ#x>+7v1Yp9hN1wH-cs@!&7GW+ri^FnU(W{JBWrR~_WVz-K%bFDC(z!vag zcQSSoV-W=8GBmRdOb#3N_REFna^N&1JNrl>+o?qlFM~=JQGP;Lf5;X>yOj#_LtrGc|v)>QP?Kjke4lWnEiR#T)jAe6e5Zi_q{KCR}E|*V8ANd|w}YaHrY=wqpVPHbmY zAMNbpWpA>bx2?3E3=4ZmaJO)1wrd*$W$PK|rKmOjBXvE$ zEad%1USKH~Z?3~}&}+XT=uI><{L@AE6Z|9t-&}(uno5@{%5GP)!!@kvr=JSqQw@QR zKR(#YKCaT+Cn@WA8wnFFW8BGUrOlL9ip<;5ioDrZM{R{%uz_La%aL+tgKxt{NVzU( z_6?C%jC2jH6HE&;Vg*u-c;od0Qk^1g_HB`VWPlC*lgf(rl}P)>tyn!#*6e#C-5Apv zy7w0U;;OGo$~S36d9twC4@KHB7W+oT=Iqd4zxR}M%#GZRi4_ppyDBuyR_?Iq`yY#I z|5_V6g~ZsU>?yhXdig)2%AIjxg!|ps#XwKW zdXtr)V!X(9MgiuEcce^CGa?p7vblImz=|ex-K`bH0=p?1J!rIz8CM_I$_51T(Q?ZJ zrtJ^WN(NHP-EqjC_@0zKMk^bTweAcpm_cC;t>Xk@rD#OfSl8t*3gYNqB|Ad<Klt<+5$NpK0?x?8`sLt!_-8}TeSx-sX4>hqUD^upU zb$|Sbls!T#i?JDH<@ktwSL5xk3glgl3Rrhpw~OrikQAMzNpBR5Fa6lkG~9w(!@+9Z zxu|cx@HZ*>Gfh7nqT4Ke#AC!&uS@9_G`SeZ8l}A}DgG&#Pc#jnUF?nD0{s0yr09cM zQH)r{T9N8SWX0b8$i2?^layXolOL3pu49#+_KcKXRV$6I z7Tl#>iXQsN|5b{gtQAKSNar!zz-5jXhRqXR7QmAlAecNBN(TbyPRx&;5J}J3@))=Up zl#KG@r;O0)nozWZ5a>HJY~wS3C1szToz!Oas!YnmvdjHW$}X-^KyrbyUUISJokqMy z1q&nItWF|sK{h+fhvL`?zi!qi*K^k=F-!KajYr}`uGl{CtovmJUW@O9Q~WzM9x)pY zoLMez?ACPzFF30*W*>ciIK@Rwofce7PGuh>eb^$Bpf63z>=Pr6+84L*yLU9O;|unY zvgB;dbG23CQg%?TJP6H+XT8sJKRChfuh={WLp(Q#d>jxl-Gv4Gi1GGJEa z6LoA6>3IEZDf~yRa8!>i6dez(BK5dgdz%-lN2dC6ADleqD_KHb)?($WUf32(m``cP zYi7o-3D1X0#j;sq&z8Cioz>|6NxTI14^iLD3*^bIcs&-6ZJp+JDy<*)X3NFCej#mb zHN#UrYr1}i*{#P{9xjVmzVLz6bZ1wehB3DZht^s6UBSHM>VZi;J!Zdk08}pSY!?^N8K}~V#X??IJ4Up@x&MAFv_RM`Md*&?bV@<*1C@ZjGwHEoOK=yGN zYGKf9x3e@Y^qRoBT$r{XCST?2#ai7YjG@NkRuvDu+jS95qxnKotVelT-I($!S0jdp zV1tGd1ioiFsJp!hU1wZ)%~*#5`aXj|&ep;`8_{FDi5{*#n8eqY0H4TkuYO(tx{;|W z_47ctFvzQ4V&obW<2SEgBK&&{_v+^bzdtcRshGlRVPB}UEPn5fyb{Sx87WjGcA zYw{^ydXDUglRh3j67l?g(hG{(o=yanz}<9cehYyv&JWrnM8wXP0$!5AK_Xj^7aKva zq!C0`-ymoKPT56hJz=a7V#@+XOgf$6Y%jc=S~*P zcg=oow^_YCz8WgaDCof{A^BEUv0tVJx0N(*7*zspDzbBXVOV4f;NxIyv}A0Fv0?rc z4eX$|sz%Rh%3LL$L{&BuR{!955WoPnE?>CpRD9b>o z=n*#%;_?!<{JXbe-+>19TWIXDLnC0Hg5Q6vaKDP}hU7kW*k%&0VF_q2vwki2XvhZJ zOub)jVvRmRf%n!LZv?r3cOtrDTVcHi>qLvitkdyR8IQ;}rzb02E>q1$S2=_1b{bhk z)j8Gpj0=kHs1>!Mstx${1gXkW-0)shCCE1zf{=*1IzLv zn!8Mi+U%-ft-g^ep?9KG?_12(>l@8wtim#2QCxj9PhPi+md`qKN=bH0N@$Z?r)9as4aGAxvcV#<#0GQ2 zoRg;Qs};9A*aQ?CG;xyDY77(eJXnQo#js!nxKNh$2QzPuU!*|yIzS@_O+nueZ#%Mq zn{6%x-{MRa`Bd!3iO_c$iWCRS)Mh=+#8}6K2Wu>?nSqM@WGkV$3HzcqGf2j6##rdA z%iEh~*qg`K8^NZtG`3cXk%Irq?!tLTZbUD|XeMDSOTZ$m((`f}S!-Frg{)|LTpvsK zmK79GjX@Zbdiv$0c%~$)nPH3n?Fi8^Njr;bjY$lfw5!0L;wJOPqy*qI41~qzm_^=b z9UasrYt$@@xsc+HLhD$T?paI${eVH3H^}7+WUf6mPS(7^!z^T`UN5qIZ{DDxUSbrg zB46e+jU(DjZ@Na$ntmmLH~5b5T$??|n|`Ij*JC&chh)pLDVyxMcN4-%;Gce52>+Z- zW?Or+ z7B31V0QX}cw8(jN#2P(&rovBScwo=E93QFG zGx1kNQ2mic)wU&)*`(acKCRq_a19WpyvTUV4y=U zUYQ5IGg_nY2;NNxrGYw*;$Tn*UF__$Z}=^eG~f!yfU76D4<&zq;2c4x4Cq<`z-J^=d0#x&R1o!9UrE~ zj6m*(khAeJW6TbiET~e7xugK^~$R$VJLtKj@5+x6BmeBc>Jn zZ4$7QY>LXt)i|7htT>w{T#2i2z zhkm(_0AAAo!Pkd)X?ociQu6xblJR%BH%yD%p|QqdPrh2|lW$XT3(j|#lwU?Oi(Njh z7mCcjGXC(3|^mZ2V_Fbws4odm?H9oLOS6tI|%qr00ng?MmR!TdkOq}t$Uc~>|T`m_^qZP3`G!DZ^cRPrD>GXl75^UxqvAju20= zY@uCC;#9@jZ1%D7-)-HBtk;xxg=p_?VGHyi7?+kU)d=w=dr!xGZ;$HN&?-?|wv+tcq!n9CA0 z{o(iOYPnV8cm~oarSP3PjSW9x8@%+I@EX@cc>VZE?X?J3_B-62q(*$WO7snTb z*mDT7D?@Az7JtmEj$r=21|M=1Loiwn=4Rx55qGl)qzMC+YNuT7<{oc>$$K=` zUbIosPybXXFKf_l&%rJ=xyUOgU*)59|NDL@g+Dfd!~a}>XcGiPAM}v%#}~Lp-Yzv2 z_E&~sr7kPMI&3wN`cxxjMNAv8qN(y?TxBm}669+PX^@HiA7uX5luQgb?mQv$Dp!-p zc#zi_g1ob{Se9G+)De4G%vj-_MqCtem%KsPc715ddyub%C)t_lRJ z?KM_b@=B=Lmk6;zZUZlQ)p6fr96Gbf73CIBC+O{@F|#_ehxzka!s`ZuaR&ykGi#`u z8HLUxH)pvS#?Bfg%cE?-Ugrp(2U)V`Q3QE}A!rVK`Ym=1dM|mS5yxq~FiHo>SORt# zGfaG!_2KJW>|<%@ETa(z=gDD!=*kmtoS<>E;-G^#?F3==96PcX2O0Ah#-J$=wQkJ; zok$Yz z)nYk%f%{!^rQ6>%(Ma$Nz`l%bq5Gxy7MlDZp^%#}qqz9U?NatuO*FVjpOf&`TPa4z zCpv#4fb%o}g!fggivHnuQg*pSBBtopp(mXGpp@NPD~ld2ha*a|1Z!7wnX3iyrsm~A zsI`dfe~%QMUlZPl%5gK6u9c$8YxRRc%pnxFagMxA0GDe37{olj6kQXzovGwr8V?9J zMP1>i+$(_9Gyn$RdXMbP>#3BY)>-W)DWB8Gpd&}+#gukKt^aF*t**f~Xtu>g7I576 zrS85!WPKqWX7)-Khg;m%Zz{!HIc!~BhDFkKrEM)Ch}4}W*~Krr*}O&7&Hhi6exmsT zdPrfgkSP`CL<^()TqVW-t`$cB?#cGb70mvtlHGo5k`usnb&mte@Y^t@+=tL_pJZ)zft(M{> ztzdqqVUXwain6)p8kF#CY}jFUxLa`VYdDxgZYheDlv|{t2E{bAVA;{>T{ja~BwtM?*H~xuj5&^#NOHIXT9CvLj0(tUB`EfWX6;&$Pt1F-T+1ahknWH`4%LDLO$jcaDY z>L4Ln!R6A_C}GkPeey&Ka*oTy`f{FdoA1shdb<+{@5^}ta2x~So8fnC?JD3u7?*LC zd9x_}3gM?1XC=~njc}dIdxyaz+P#YOcd=cx>{+FUZK&_i&W^Tyn#yf*g{n=-;`5j(lV z9ngC-9j`?QvL8dNzQUf$H1&^cea4%Up`_A zBdjqcVJ`Rzlk&!t1mJ57wECqwk=&XIdi_#`ZO1Un-(+6t%|UNxW}d$>=1#^~wo911 z{**zU?Gk`LW1v+dp7^f77Vv7sn3Wh~>EH?Teq7$u!I%RXV|}zsnrOd65#(g=qg@j6 zJw{r6R3o5L`>Uy&Qq*Wg1|W{Bl!35x>1Vvy%)3Bdnj zpry?WAj&GinrsA5TLN$$2EvCLQCnSN=wgOmo*6AQgz*|n6Gg@$)O)(L<%zWz>fJsN zsnp=>GTd6uPFq&^oc-5Z&Q3$m$9k=Zt1e8u!V0~JtHNGmn0Mhz%DTplOw;S$N$VSD zF>*t*+!LqKEw5a>!=k)xFUczy_a|Tj&q`m#_>i&QC7S8@|1#eDMx?D)WD-yTuDgoBX^v6O~%dsyoO3bp1?>eO42KIuW(rKq9j3HV~CY2`H$Bf%zV6D$w$m$gk1yw z$-9e~j$Z>G@^glOQ_v>bOLv^_=xuyVatzq+Tba`KX7T!r>wm>Ks?0=%crDt zwD^Yy1jll9J)a`Tt_-nTf!-bbFEjF6fiRyj#?pZ|2*Yt0?-d@!<;C< zDH`56e4nfD&F&JRA2QTx8+s-&#{|8$AxIZP91Y&p#l)3$C%} zzdqu!1Vj+Aw5J?bVn$xX(om~1%G%1B{0QXd%+DLsld@-T*Y*_jGEf?-w<+g{#FpjU8d-(DW#Dn?kIB?~6r`=RS_&-FZuG3ztN(-D2W!@HxevxOBMF6K?f z*zNAWS2~G{`|a*SCNl)Af`}ruR-QTCh%w%5TE}%T&i1iTSCqlviPT^gm zbt7S@zOQ;cqrCY_67nWSD*DRt7Gk{4I)iPJpwCC{!${Yf+S{&QV-Qb;iXIv6W?J4zMUdGHu`DHA9z==Ga_>lD&V%I{7M=f#ZXQJY( zT;8t*VHRbKT?_eA6L!91{v#@W&Xx9S;X^KEh+PXQ9;JnEy)7yZ;_`ki2$Nxqrz5h| zil2y%*SNf*!^OP87%NW-*Sh7A*wA2ay&;;mWt5jEB_VfUBnIvvzK5t{d7uzKS3dRw zQF#>uz0WTx;A;}VuGUha%UsP}jPIa2_(ReB8wO*?Xq>2pniB;4mIYWDP6)0<+ZxBt zFQIxzc405WNdS&zpmlj$2&!VssZ-g<-;&BsWv<@kb1P8pJSVp9k31eDg{d(UC!O?pv()?2@Y&2e9Kg8krz?vJvcDp}6Z% z<#uGUow-c0w=dcw3k`c34U1;$a{o!EJk)tcu&Z>ZA#3TjzTZQ^^uRWSdXKDx2GWOK z2W(@RTa3p(sMwoTj2m(V$i?6L&<@xWaur?>znDj zBPrcJE&%RXmcH|l4dfj%fr9*qDp0K7%?frIdJRNDU#Z{i&a+uVQmDzv^YevjP0m0> zBJS^zP_z4h?0mlKlJF!&Qkb#e((z63!mP9~H`6HxCJOQJ2%%F%D4n>%S9>LbIie-~ z788YIErdwNMBePH_AHlW@z%pv??#5#`|bOJ6aGbZ{5_4Dg9dSuL<0|4S`C{ z57K0A-HyzJ+GjMu*Z|+8y_Jf0YO*$NfuzV%>RiyowPHsjE}^2=E;=JdKm?`vSKk$s#dZUqtN4(mH687x^M59pw}l95dV`u0PRpRFNqgq;!6S2fbz z?F~sIR4#?OxltzwOOEt4Mn-y}x350v9Pk47wOKkYq)u@Hr6D`;CQH85XFVSS@$0ep zp|omOzj>$3I-CaK8?x{nhR~!XdDTIPN7HV|-eiPi%h^zpz1hgf?v-PW-STXg<1JgT z?6E_zNf3k-Z`_*Y52YK))5Dpb_^Sj=z8#Amim!<18vDwQEPR_G*u~t4=-7Mgh{=t1 z_`(>wvfQD>6m#E}VvXHcI%dO4ug9P2gMCr=_~0Xn{a-oKiTzt9m@)!eF=KqTo}DT3 zq7)7SzbXRV=${mZQe|@dhxA2_bc+8;!6IFQJpJWcV+kYP9RPM4ibXo&x4|&VxF-5K zYe`DQ(`yiGsYjQw!A#4rh9sv;*C4O-Wy~9CVON3lVwpV=wT$Yj_sYp{x>Re+`{WDA;HamG5?6<%WWW6^#aJsH9Y@ zxfbg?Amp!X?>Er4K#A`lG|1EPNQ$t^FjRKAoi}C5g@5 z$vg4{1$(oCq}7`i6gXD_K>mI#f9PS*Ip+lN2eSB~H?4KZ3BtcSqQc`dQ4pSG;Y0Tu z`*ahe=UMtN%x)iSg81%{6z`mAg811iK52EMxl?NAn4qPXwG6!l>@!S|-pA61?wQu{ zA_%Xs@S%qV?_3cS46uR;Lmpz(qeM_M$ZCe(1okl^NdF#7Pg*8u?neIcA!ztMYZ!Vr zb50IH{Lv#T-a0e{@yD_Fp~rsrxDe!@!19OQ1+23|5PlL1AG+(<=Y$~rM=X8lX&j#p zf{xQz$1uzj9}R-=Gg$c0JyXtt#3zX${_K$!9~}sS`14r&FdEl73{jT*W$uZ!Lcwa}6sQ z`nc?!<3TO18&L)B0Ujv0krfPm%=8cLK*KGpVd#y`$916NHr6rpTKLCwpy3YIF!UHg zr*oj7K zrhJzubUeX2hVDdkg(y_~kyQ*m4{&Y|h4??Q_@TFfeRC+J|Cyx^-9P=+zBP!jxE)>%L&eDgTxw{vILjEf(f9RpdzaSJEUSkbIZ(4ut{S6jA^rjWz?%Md< zEPd!*%DEI2mihO{inne9h4}xl_@S?@XqSgV%SWtbt)%sXd3|zgy7@90N8r02moLz3 zAMSkY+_VL}b~FUC)^la;)ut@#E2?!yWVa;d8;Umfi|TqqN1A^)%2-#pOIH@ zU&#v1n;FgSN7%hbUafVm1zNXYtp|;~R=&3t%C~0a2aJw#I|xDbcC32ekymYIh0&HO z=-rX^j)J{KuXpwY%Ez+uQK+;VQZYHrx{h-TSic&XM=< zNVj(dEhrqo6k19(tTR(il@1np*2cM(QVmO%m1>NO51%Eb8nX<0XK!6gZP%8o%msCSdInXUA*Rx9maeGH{lR@&0=)vD6O>wlrWpS8Ev7h5#9IhYZh zpn%4CtT8*1M(!`yD%HBguv($p%$G8~h4@AaFgT1E%o<$=@mnk)aKx8QzK0h}7ZT2@Rpg8lnDEh)HK@9kJ2QZ70(GK;&6N#FSQ=D3WBwpYd|A1^d43IN)gd zp<(U}4=p9kEh|ficBdG%G&Cd~Wp*v*>>r2uf9#qoagU%qFeL2uPBhd{$WSc>ix$)* znCL9kL@i|=)@B8#vCnnw)KUd3S(an%7Hk#YSGI~LTI>R{SWBZ>TM83wcadtlmZskA zsn3>5&g0{7$DbSR?pWH=yr@mp)~ys!d+C>?){E$uv)WN;XL*)3TP@1jLC2wg#kxnq z(vl0$cGUhKs~rX3GKa72FCJ**U$g2=E2BeuzLl%=OZHH%l+9sHr|LJb{!y@azStGL z;ErnF%xd=^`D*8j&b#!`{2SIh3Kf=}rO^Z9Q2Sd}+tMVYy>{*@&U0G#F4o#oLf)oU zoZ6Gm!Cr6v9cv#2Q+N4s^ZqYMZG6K#TKFMW+fwS)rmd@zJUMOrd)7M&!7F@)(^366 zs~&|a_YC&M$M|9DCt2?(M2}*PQ-P;h^C;A~l=mC?S=KuWU8z*4y1w;1tKDzp!*q$G z^oy)`6zbbs$-BeSORRPj>MMJg{8{YFtaucXu5w{sJ=<0H!t_5`_bBuxlljQGFeiTe zi#3lzE6Y9*cPxI3)wZ;3(_W;OOIhR|u`am)tYDULoQl883`QZ0%#*Kb(H&t3obR*V zQ84(Sg?iSh?uV=vPf%mk!M*BH0$;pp>^&ciD*RVuSxYICS_wxDIo5o4VxcT=qL&iq zx}O=w&N9l35mS^f$Nj>nq$QMTBd4}n$oI!*{$b1oj-Z)sORHRAHW1w&0%;40G^=S^ zTIGr)*^MKc|BABQSxao5MGSAJd0Of|Eh|fCqQ#9`YNDhI+#FXnXH}w8_^{TJuC)^P z@yj1 z6Akn&GEhrPXf3EoFwrWiiCP-zTTzsmICZtjB1t!~u23t6M5 zdyK1ltuI5jOa)PIPxrd4dwMH9p(UH^rrzL7Q0dij<1azw7H*?%$|_s>irb1|^Eo$J z95b4_;;X#TQMO`TBNiD7y`6=8zF6*d!riv4al|ay<<)Kn)|GgjfIa%O(rThBy3ih` z{Prj+EBZdN%V;X|%{ZQwwUqL-Vn$gntw(PUz>X7HTT3ZvOWMjZCzS7?S-FUO_SVNN zIN$oSp>ucEIbv}$4AtHcHRVfC>BY@yUxG?6Zq8tpE$z-|r7?|R`^(DczYi;IX$iU& zrNP`HGq+gISLQlCv_ESdv0zj6yW~NvY{a^xQRa5Z3~Os?Hr2*2)!n1ycA~l`BYX6W^($rXXwfmuW3+mo@EFLJ+{KLJS$%1g%+Oftlxt39g)`Gv zmB(?siPVWqX7(tN>5(=O7L{sV{@q(Kdl;QgaWYfs86_%m^u1opmSoFGrrs}4ak!D` zR3k^2-g-oC@N}VDgpqk<0FOP+MC^KDC>z9`> zi_vlh(=ED6Mb{aB$@+7n)E2>KLK(rb-iEv@nZszMZaCg6s{pd&e85egu4WRWHE7gj zpL-A*8GmW^6a+SA`DsYFRiI;OmnTV-lX{j>#@bL7_hVsvFV zM#+0vT}z+V3~zbWFn)k=GX7w{vg?DRs5n$w zHV^Ok4f+TxZf&8U1q;`DE0uarMlrvx1NUaj#lC)- zY|4vuPLFs>1X{tRrL|&PnB}BXEFHG1I{Kb56>tJgOF_9!l?g%TIis9{PD?Yqb_rx_ znVOkp7TodiFWi1D4bttauT^qIHbC5SVuf{q|dAP`6hkOU9|O;7ionZD^Qy-YGJ z5grdJQmawXRusNIWzae4fl(X znpM!Zq3BizwDeo(YJJ=(tS+kq%Izt*)e_Tw!5am&cI`-UGwDV6IkyqLdhbjHDEB)M zu^2lH`U3cAuX=vmQJ3lON+q#6DyDxE@bqH`?&Z^B-R@L`OqBsDz)P+TNw2w7l5CXG zX~U#_9abKYDzP^e!D^pKzxHU>+wW21&>%&&%82)i%tq+J*+Kdez5S>ZnY6fVn50nx z;eiy`Dhb_h@ew%8_y|Nl~{*K1ItSgm8VDdw=g1+_)NQY&7m+$LFV==@2jem+g~W7Q+^1dav@(bLsNJy}Ig zJJ^b|8eder^;!f~v+Da;X|xUVqOCSw2Bq-3UbT*$^n#bHIPo;pN}nTEva9BTb#K5B zYu#kDmepVlx}?7DEa2hvHg=?#qUKwu*)o7G)|<^@-BHhNxs5_wZEfnW)Wy2G3g`}s zYLyV`6SY&-Pq_N>lmTl?5$~qJ894VCRN^|E)u48~@1@uoXxngN-2GDmTyc&kOO5}WkB4-deS9S`u zcDbS^_nxHCR=prd6T;dH^>m@9ftS>ax9SCXe55vK8Rs0@zWx9uR(kMOy&x-~kaqQ1 zge1Lpt1Pq~Y#om6z&%U(QKy~vj+s(CTamlktvsY}!3)i1VZy-t zcFO$N{+Yw-;AT7D>NFbACvL$&u2Ct7#Z{~ncT%9RVOXd+2aB+j#b0DEr&<}pS5iZO z>CAS$spL5s!aWq>-F+*ot z7Ck_a59DI(A4-*d!x5WM8T)Tg_6PSbJ*<^z2U8r3?>8ym!}{hsQtvd&u(%)A6T-eM zCFFdY^6y`6*zE?J5f#4QrF{F3Hk@x>>^EjAd5W?=v~QJQb5QG4Va=VGQ)1k|Pr1LR zZ|-BTmKo2YR8;Z|yY za0T|lmdB+9mrOBlQ1&rI=j^2$qZ#kNQQl#LhVWRU_m=X!x~fs_?-Z&39tW(ru}AH+sMsuMsS$?dgV;b^o;pPEUZ< zC@cg7`4A@fCX{QE@O>iGi6gCX&( zFkH-+tBoLU&BVPMxs%~gJOnrzvI=`foM3x1L%0_a)FDx5uol7|fn%Uk%k8maf@h4q z+D8r8 zJEK07suMd5*O!7ZT8_b4NfjN`4=e&?;wszJJzal@f+EYaxe@(K0f=e?q>bjA8w(Fy7EZ92a{88RNgu7#`L!kLHR8 zCDdAtdMjv;8UHsa|2R^Mt%Z#1KPcBYQtw|1k^0}1e;ldBjzlK)+vu_Dail&VOzQQM z^DjA#_Sh=8bqrUZj%!-qi1H7szhS;oYStTY4w+K@Hl=L)tu!86&9^s8jj^VPEmC8w zdB|3jald}YPt{Nqye;J#*1-(3Tcy>mYE2h&=^ZHRdHsdYL4M{9>@F+i*6*yYRKY=R*D@U<*4=ayy2%fL-WmRZUt{PVwl&~(h-2o^H=WBqo z+P;J>c(h|qn;TYu>kx)CH}kDDAvcgrMc!eMgT=9W#c8bw20skx21HVOyrB-HC_Egd zDV<%xFm9w6VM!KCt(C;uLWXcNMF{J`*&@KHd5Yz4r4R}2p>G^!CApo#B-E931R+DX zlOiP46`nMx=;|vJBB8FlLj+Zrdnimo-(`mcDn+@EVkERjxfZONVfJ`{A{>>hqQmx4 z23ut zl=@R2>9jMr?^3vgj;)+M%P^jz7zx8bL-*|OQ;4wqgQeD12I)0chG!^1SbD$`paoY% z>5a>C6eXcGTJ?(9Q^rd26N-^A%t!~;F@)zSLQ-9gm*j(88OnB$J4qLgdHeC zSfgc$0Mo}XB_o|>!j$!PiW4?0vcYlK!B@&!7zUH0Fi8v|p8?GH&!PO2s0;45tisI* zv>ba-oFs;CI`Z-_R+7CaLRcTz#vo0nHCAW@`F95KP70C47|nVm7}zoX`%wO2eQcW| zC`S%3fc+^z5*@YRWCceYY{VemMIjQEK|Z^H0lb?6gf#?KN?KKD6jqDFiy6jyDMk`Q z%L~&P|MyY;N$k+UP4~rMl*=HFpb$xlFkW_otB)A}qbUC*X27#aNQ^y(VuVe!vQq;5 zhG65fp&@QSV=gtsVH2(FL#YKmK|bPwF=}D2KxulzCTfhlXk*K`jw4sn*oH0qG;?Md zdSwMNV?9B;F=72#zC+sA+jgG^y`6BjqPMXAEdNqc+{wyu0*uv3z)ICzSbsKz8`T}- zyA=5n-Gz0v!g#Z}l3KkAr}HZcI2F08-PkaLhq1=z(j`Sq=+i0Nu-5ovb*pMhT-IOv9ixkn!soa}U);okc za4<|+=TUIo>+8rd0@OvBSSKMz;-UxGN;l}8wgr2X zd>b&fOKC$M7C@+^!3ka+xHVm2dn#oc)_{hxg*-Rh&K>w86Zdq=w{LOTLQhrPGbr1g z!ZgcIOYlqkbr)QwqDH&0eQu#g6DZ8;B+`Xe3NDK5hW-rldlCNh7Ja@{q| znZ)r2z7ITwJ>>Hsd`U4V)I{QQ*$Ko`h3OiMiAqcg8`<>S$xUMv6Z;}WATcUzkl7oh z2#d(2P0I}95*pdVMo(4%txmAtpYgvmP5!XsPUqj1`Cplzw$3#C-=*!z3nsgvO{=h| z+0KJfkAs!s<1z|o9$IgDGk3%Z0gU@6Dfa}Tiw+HAekEldUv%O=S5fZqMQ^o(4fRa) zYf@#dIp%d~G9MQ^D466oQ08F`ptrT$4=umH7UI=26H2@aYXC!cr7O&y17>QR3TpsE z`O)~q#QX_zCh;k3a1zd4>O?WV&m&*8@r%K<7R=c&rY};aJBKtQtD1!dEDH!$QjPo- zZ1SdhEJ9ee!2fnIkN?V#bZSL;X(D6w4?G57qkzQYN!a)+U|1-X@*ptZ4hWmdAsplJ zlQ7#iRxbtpF9z^$6Tlv%w87TD!2$?54qNr$>{#D-_PQAgy%GklQo~7`9wUpv{5*eC zA?`0ZB7}JxN5x75N|)U9$)7qZE5<5BB92PWr|TPyHHk$y@1fFB^maBK@Y5qeGO^J-9_1~y z#jKzgQPA`(S=H5gNtS3tp_fuLdOmJkBeu$;)p|K-Vwp0#nF1QD_i+kHPjZW0LI7-3 zI%*92Bt@i4i26k&HU3J9l02H3Yx-3bimq($w?H8^{2GcycmDN_6;iXWqhQG`MQZd7 zS)h=bd?Q7nC&~1yI8zP2ITIj5&ApWZ(M3{ym&jCOZ>LDKt0s_!3nHsEb}aN-c5N%Y z7J8zs`t9I6zqfLv&S`hxq;^s0?(HaMgLym)s@!&}`MlpjU?R>%#%dRrCf<5*#=Fop zwtG{yeG3c;M1#PClrzmhMhmPb(U>CkL%yVIMh`uXW{p(Xo0DJRz_P6|IL?Bdx`daY zv|xosF-Rse$OCCn=(6becyO7XV(Nn_-1{RsN$Ab0M-Jkyx^^BmBUSvq5%2WpS3&O@ zj;U}~m+{yK%p)quLlilx2Oo~i79Ztt!Ymk5F-;yy0q8`Gg(mTUoRSl4Fkrk7r@U$2 z!j^Y?LM(7$+~=jpU0FWExX-8D>F~}{cE(+`>jKKY-@3>=3cOJ9mxai8BgpZ<;wCs0 zFl=0EAvhjIY4DfDRPd-_QK&;Unw^?sSJ_XdkWu~37?65>Uq%sQ8NXF2!|)y=nri&h zDEnCT0ureP3waxRiI)sM1gexZM0)Lr;ZpfpTY;U1`=1#HQ5%cN{ut5Ro8Z8Uk^Af`0NpQrfbpANQXibk}lz*Rn1MU+Nf7R*Er2sVVY+C@8_4(mL8z*YO$%SyRV7@$(FATRJawxW*q!@IX*wePt91OKbr(GWb0PH8j zSsMz(rzu3NVgwLlxHVcW#?=%fPRm_#oCdTRnjNmC%=;V+GyCczi0hH9UK!%VAYhD9 zT2cDvOw8kWWvM(8+=9To@+PVcx?rKV$CSvJ=N6O5QQ5pOXDoH##&+0_fXiPJ3LiIT8mQ?v_;!tSOZu@t6*sEy~n z6eU(s@E*F*#{d45K$@@!xKwVfz&y@aY2;msz8=f~#BJ4s(+XK_e1w9~Z9~0lX35qNwLd z$~sPW)nmPNo_{eoR5= zj=#~>?rqSb06Cq((X%#RpeSo|3K3`YtU;(+ z+LB_#8FvW`*3AM#@USZ*^`4~`dLf#^u8jyTbw1$=|P zADxjqnxe!RvbEqa`h2|!hjhWYxQ0H?u@ojw+Y>VNeLUqJrIO+&xAEzmk*ke^wn}IULh-nDF z2zhlUGK;PiiV{;%=t+3HlA@?OWgjPt1d6IbzX)O~$=Wt4LYyWI5Sj(G;ptG$aaOay zS%Xy)NLN$dv7~N75G^ViKZkOT(|e$689zuF$7x)=6N*?$O?CJSQUYMt*dc#?^8Z5= zAWj#WEh_b{<>YF@%UAtzLPV^%PC~kGxb|0`ZI_@{5Gna(i6w?*a95) zCT{s=V9z0#y2&cite#RrbQNq&F0@$YLovxuC{$Eh+_q4-RF3Ca6tw3lT2zO%>jviw;zoj@)lT6md0vu|p*C<%j9%NfE=m%miP_@_V8DZ5&Db^d=U{&Fa<S9(r85(5H-_GiWZfp?p3W! zt^F(t5tX~_1rgH9Z<8)cNTa(wMM=`=hP8q_QkWzvLzrPWXjj}8!(4i2ijt%ci)}1* zuw5xgREnjS^^I-b?kQuK+Pb;vVi?=Fy(vbLm>Jr(4N{yWmEP2*?MES!_?EeiIgo-R zY0$i}QAlk$n1Utg2>YpnX1N1P>|p*-YpjPTT-2mkuX;n;%|lb?ueO(mQ~pVO8RR$X zX&%K%5-LNQ$@vszw}?bUsn9Ou1ylFOqp?nolNH!vBAY*~#=ObD~TVJE++AOnCd6>q6jKpvg)+rYY zu*_Orlfer4b&48w0)l-B1!_Auh@2rlOcA5{d-jM$I8_3R=_f-N+M^Wh^i;I!&w;^a z-Ughpl2>-rG3akm=+jb#9)Shuu;r6@(sw9u)KJb|!xZX!SwX?Zz7f@L{+mLbnTk67 z`3G1a)o8GDtGQ0qnDajr{;YK2VRAT1fFDu;(y?lpsQO0~Dk_<8??5mSga=R} zwt>*T#;X)CYS`5q5E>HcSSS|Ie@8KrwOpc&G_=frplDGuA-zi^(6ko$PZTMtOW7OA z*b@JRqC^eCdZSQBe=}_e+6w(6Z3r5D|4kv11^V!)`?hn)99S}sj*PbJQ?z8gX+R5$ zvKvvXWVI(Wx^7C55}PX|s%}Q1qH?mmt58@p-GTz`64lvp#$i0~_q(rK1!KQs;Ea1| z>=(5S5)ROSuk~RJWqBMPo3D)eqL$!AaHZotCh{WWPsV$ZF)Cd0VDu%OJHk*-q=)}U z+Ry?5)-3SSDi&Bmfuhy|MCnT}!zq+?TvM23e?J9?TF&ECoGL7JgHz7~CtUmwaKc4v z6eo<5QDUKa;?W_@PXy+wJ4RJ|EB@3mSuvI%5^>C^%%3HipNtp|hB^%I6vR_kMnts= zeS#Im{0~EWKShhmGxm=boQK5VmQ%PCHCYNagfp-_1xrzrEwO2yp$${C6g3HGswN!@ zmtx`I{t7>wvBHf}v=j>mX!|R0E3$@Dby=fuQFkTuR|$s8EHvifY!;=AD=Fxy5v_bY zPfv0M%ww-Sb0RnUPZB^M*Q*0EEdGG@}5mGm#1FdCZ5V>DDZg{ zJblkvt(ABU1x+tB6dkc7g6a1nik4nT*PE+LC|HU`tBZSESkW$}Xi<5T{@k_XjPBnQ zN0>0cE(MHQcGM?ec^r=QQDV@?DPDSE-C5ZYmm0I;eUieZ=PFJ!IIE9=U70D^>fjs{ z26hz%OHq-l8`b?3yIqqd91QBUfN~v$i%Jjo=avi(wzLxGyn&*oSNlfU!JxrL24=(? zDc~uowGjt*?3~g-b7p zmRsOB!J0tkHeaE5=|#0lF*v53f!#yF(rW-KPD>q&-bc~W>#rf2p*lQ3F;i4$Jvfw^ zsq-NM)|uN)uP(qnY5VP~RK0Hyz?9+CcIlfGE=6~#kE+AAZ&S3WsjmJa8R!zOS#-39 z_q!A_y$&`&;!*Qt==Ri9fY!viZRV=qr=Tg;MX#hy_wKnRlGAZOM6fwQFsv%AzVjBG|1xv49z({m|7?CP%)oT^` z74mh8nV#FgF>P@C5}c5v6!Q%VnO+Z|S?_3hzrRtq^qOS2g-}i0{+*(w=b?HE{9hC- z&7x@;@O3W8aH6EOvZ|(Z@B`u4TVcDJp(5~){3U|%=Q#DYR`pT zXCH29QHr)B1&LZ5WeK8Zm3O8nQA^tGQB*J7mBOT;F>TUwcM6h1S!$!=bS)O1=2Dmx z45K$FdsCDY3Pa{n2PsSnh0#OaeiS8z!jQSs1G9oro%vu2lf1PEn=2inV96U_AIvaE zdML$9-t+bGLgq#fr6eNYB=yRPXQXv3o5=Nxt0PJfV9%g-XHS{JCSbFY-Bxm3%}JHfelQ zmSFm1@hucA6)m#qaBVPo8^uabi~6|k4hojM-(Z>){&FTjhRNW&DNypZ+&Bq*FGWi3 z6wt)xVH*)#tfnMx@26PFOJ$sBevl$1k4@$Y=0_-0@2c#Yl@b<%iy7rjMHy21S83l z-&3&ULC7naoTq(j^=lX9J@z-Iz{cl84>UB^#Slv^}FX zxU6nCaDx==?H4;99(o(>>|a<{cJ?1&$zu>!9F@n}_x$2?E10%3*~|PZnSjoPrXNlLegYr0~LR(WwNdXEH(FkAkR2 z4wN#NLKk8=6=Fr^LW~ufrPdf++Z)^qz!Z|FvXrMp7CGE8NrtH;mCPk+!Kz%i@Qw)M zP+_w7)>c{b)-ftY_Kwo3kF*VrvSMw>f_5>;QlqlCnY&7R3{Ei`t5<^AJ?6D5sVHY; zCJG5>ZHgYb<6mka`fgGN^)R-If)_I@dPw*>o61ngR0a|$&Z81U9T%FYRUgERd$5$5 z`QI7}pPdl^9`YR3y0}7w$#4;sAv+Z`nz|oeGL`U%evs0;x|G6a*QE$+uewx-?7~n> zx4_4z6kTs6KS|NEs{$ddwJfF8KqLXuK-W!cuwnlhs00IJIo7iJq^uw+=B&C4)C-#YQMN4 z`HuTg0+R38*S5a-myRf^d_YxYzhP9M zb=STx0sLSEH=wD>qHm%QYO=^WLiHoTa0PB_titMoRj_4OY=vfh>u*yTtVekL$ly#k z${kY-{JRv~z9xD8W#M*%V}&X#%^fwB|0ya0-U&R&&KxdQ3aysY8iZQghV9Nyb5I#x z^;7<_Ld~fE?^As1X0sps6$Lm{wwWJ>lVTjWw*WG~;}D|_4)F{XD3fa831pDqIVyp5 z*RCIxR6!A|9CqAbwE*`NtyaR}PpA};hdag$iGz)LWnx^L6?mRvTlcg3(SR43qT<7g zRFq6&lqZTYOuR&8u4j!w052<;3gt|4^qn+ z#mU!v)e$G$F@gS01*&JL7%Gt1F~sEg*IJgRB^IADdDdx=E^3xFdc58oh6^eTHF`ZN zNYu4evHNMEuDc->;Qd*63JRbO6E>m9nKXaYIrZ8ygG!Q#H&98mYBFe76UVQcflE02H~`8*tNxWJmdzYKEo)cEmC$2^H%xSYMza z$$*^^o@7%7t+l9J@xsF9uBr+nPgqb?7=BAisPc9v%CnA35qG7?a3N}&YgC(cN>AEK zskq=`pWx(ban|cY%J5F z!7?gEh9(%%*$N%(Rn<51~BDoKVN1TUvu&|Bz>*Nzn0!097Y z3hOD$82-VnVje$TMn%cqEMypUIh7*I3d0p*98Fz8C8^owwqlzmd{8w>#mU}0WNh_m zDus0_JGN3xL#(T*Ala*fjI^$$Qdln`jjaxSz;!(p!g|&=z7QefuFp|nvbPHve%-Wo zq|ioTw@@jpmp#Nc3>l2wM#acJq#DO$cTh>PR|p-NeVK}peGoH^(C(&!WUmi8P`j6k zk$s&d&l9-(q%-!U`~;vS=-WM5rOW4XtvAldsV8PYvL zrLbO%6FaI$jqIMJ0%adXR>P*l;D#@jZ+V)Ek-c@!cG_y{{RdQv43l0|3(r#g4D$`7 z_&=ub``8XzMjcqHtu3kj8Ss-9HAG$jB+tluytEnRV>m+SZ1M{zy|SRedhM_^V8|@; zFA$n6X0XoK^#Sk2{H9at6oXrFSq=InHJVn;4MrZyBiB5}Nz>i} zrth8b*Wc)*wHf^QuZq_Sq zEa5`bwk`q_N3)KT*5F>48W~aZ=^G%ty3WPAv(Ybht5Pn7>_6I=ieWvuVJk+VRA}IZ zoB6`{XueUeSN2mUS*NcJ8TMCY*nBEwfD}5@gC@h4REE=S1BkUP%qG}+3Zb=9Z#RX| z2dGA$O`)x~o!TnAB<^NpeUqK00#l1MyHL#3gRD~>c1jp!l*zK)D01o=)+6hl6f^Ql zEVpP|bR4?fO1-0%VT9*_+gNtaH2k%Q!Q*SlPHJAa1okWGU+L=3mVy7M= z{phTr7i`8vf5c=%V$e&2`z};~XkXR-u6O3_nP*v#O4?gLnZ2&#LKZ*3`b~ zhbVMbI&ZbLw&%kXJM|#|0sSZiJ;*u{2j?^un)yOy)ERE7Q>q^Ww$faVeg9rzsi)T& z@dyqVnq~h4mPnb@v0iyliG?1LbpI5}L6YwFiSKx_6iRL#+88A>_5Y}itrz>nRLO9m zT^xf`uj(CrdH-jqF!mufo=#xFu$m104=RK8f}NNODU}POBaq`!4D(qkhkd^zo-Rt- zmZSfidJ*6pFhvWWry^J%3=`8DcobP4j{iWb)N9)Mg)dNfvaYot4;)OU&P;xhiUB9d z*&UY`Q!Qhl7C5=C-h@Nz^3^(?PvZ zUH?brnxY^?dSAbyqMS1|#_Qb)dzH$Tb$8iw^N_yS@2Egi6tRtck3UdxvL5*P`e7X+ zy^HuKDo@ruc|{(hlK!&Rgo@~=y-9_dB1ghe&q$@L9^3H`Do)lzWzTT@&;&>&z?t>R zQ2F0fq$%nA>aYm#-iQ`FG4;XGh=?t8vnHyt#wK9wx%45e>CnpD_` z3X}DS)#%lmQaP-zjEvd(hr07-RF=$nP~yc7z)qUPvELiPSm~2D>|yAv&D&9QW!A=i*{&U2$TUq3fyp$DeHz{t+>1A3 zongqW!cm~As^?J4+0U8vDZ&c4l%zbaSb7f%Z@m)=%K{g-mWor-S zJq=X$qs8Bg;@cGo2%nXC~F+w+?Ia)Rt=3P_}`!xZU`Ut6;@21eFSPwBRp$&ENy%g4ZkDYCuG@1N; z6xV(UoMmxgBY1cnJYot2h^%`@Q2|m9#u0Vy7z&@d0V3<#aa4c@3^(hAQW4G48Y?ukVRf4dlWCAE)+?QA4ToRF6-tm>MFp{*pNLa$AdD0X?fgiy zUWH4oA+Xf6!%WVm0$C5l;|Nr0H7eTKzvoT42*fOFrdR}6u~X0%NM1xmu%1hgV~Frh z$|Y11>lI$HB!R9gWI>gBaw(M|Q@6zVjf#2_b9XI>&{132k5dt>hb6HrQLm^1e3A-~ zX;*&CDU6p}(A!X);Yun+rp_=%W7JhsE&_>B*H96xhsbf9p}enRgzG4LrmnyyuZpk; zRgvNbDuwk)zHyXLt&clo$aEtW!a8*uM~Fs2t(7-Z{7ic@{;c$f9v*I`f@C_t_670h z%+Scb@$5b-f%Ss8I1;e*Uwf?Sw8o$s=_lDdFxAp{rzMz2_YbWlY0Ts5Z>(KuwBhwP z*RC|$DEr$~8tXMLvAo#3nj&hj{aq@P^%}DTGKG%0pQ7?uFX>DqPmiJZ_o-Z&j`+M> zuwexL%-WKKbaJ0tJCYd2<3FL2WZGDI*1-*n`e68ZD#}ziieXIr;@Xo$8ydevC9z&H zmY`CTUf#=8j!e^>o|~8l%CAsirovGSA2N1kT!aLok}qkZekup zzd?nuUgeme?ik0?f1|QwI(OrlM;}uEor*CPeHMQ}OTx;(s64B)oVpIw;_VY;7t`S| zQXgQi(}HPr^_KRHCU=RrqjwLn>INX&O&ebf~)t6~uazMS}VsJ>s1~ zh01g(gr^-`b`Z7{VkQ-7Dh$@HH}dK%;Vdf1RJ7xU%C*hfkz|}^;J05}l8_$7j#QFN zXJyDrnVqQsnYQ0ib!Jy8OQwlDT3L3d5@gzgfYmUj^+I#07@1B|87k}ERD?`dQ1w`< zG)TqCR3nC|6;rHKtir zCNk$Cw%U(Q8F;i=?=&dzdiRfH0izYYlZti&o->I;N<1vn7(r7a^NU61=h7T z;HI?(OMH~j2H^@UgVG>a_v!iq4QUo85uP*))^p?iiQv`ZPOVuOcPjaEt>mm$LdmD8 zL9G|7_a{oY3|CVb_O^E_wIR3`cuDSLohoQKZQ@AnP#3x$C01O>`rfpjKp}4PIfNu` zvyZi&>M%296=yZRtW@(aQ)KIuw>`2KZF*?oZYqm)1KzhRCS}}9 z1vtRk_tC7acDbmXz1stk{9>xZ0RKMh!bff@nvnJ-${1sTFEfO^_$3Al3<-{!KGnt`+MY?F9BG zr&NSuz1b|*oe?GaJxxV8BSwX{bkJg5J*nsi6x}}F^<7I1)#BMH7eMpEA5#G`j8kI} zpX+ehy_$0R8I>VJE0pQT?S&~7pz6Q@8tR_VUr+(8GpYT@0t`luCc!VM1R44PlYnU9 z*HnfK{lE~Ce?tYx)(nkiUETlodn!SOjl#-Kq1G-})P0D5q#{_a(COb7y&i+HdHVC( zki^(Z{gp~$KSb%fo$z#`H&$;^A?#BVafL8P?0-^Gte2?A_7Owip4KL#w(R9F#P4;f z92xd*J^wI;@eQaT+53n&nr}=+nG&6lm^z&bl6^okhStrgB-U9XI4=oK7nx8x&szdN zX=H1iCGvP_o#tg6A#_B$HA=6HXsxqE)_@@++3gUTjAX6X!r8;u8<-h_>tsfqcHXHt zVEP0w zRbA!CxO}NcFtMLR1mY3L#Ygc}UV!uM;4mRgNlzo1njKu29IDwYOc=m^K*6HcPkBZ) zTO~NSuK>sDLi)4SX*3`K*@EeYMx`JQOkz5HmI6nG6g%J|96#e9*N%%m`~b!ff1DX2 z>|JQro60&ZhWN8A5S?KcEg zNGB(DK`%b$OHQ$=^a5Dn-pUdZGPMTCe^SWg6~HfLr%{4CJ`~5Cwwg3~$?aEe7B1UuXbuQ z+m0e1o7jM`+qD8ss#3(+6exKG2Oww-8fpdKi6SL$;{XZVvQki+(_JW3^2!F6DZ{bF z5K*A%QB=4aMT}dB(PpGEKmp_XUgQX4-_()9MivL8 zi4^qjO(TkfDAN4cJ`o_1k;Hp4fgvM^LnzE)@k>KT4u?_x@q6+SBZea>PW*BhMhZt$ z{_%s2d4zB*g*ZC4DMCjE$5WIeVxt&G1Se30_zjNVM>dZHPRatxJOWrsq2fETUn)b- z|5S<--#*43|LGJVzMqBm^v|Fu@q1FN^$+RcpGAQVjqT8IMzGq+C{peT%+YqLE$QT0 z*0CO;2=UF~j}^$sq)buf#nzIKqK!x@6eE7i7(NoIQl z0me80{4hm`-*qt${60z{;>WPi0pG_c%5G8a)hv|CPEDk;^Vh(P+ZQI38Mi}h80fP* zM#f(R#_FtFWbpHOgz=^`Z%q9ELKHId7MXGFjTBUAI4}s-2QsbsLv4ooB}7$c;F1-t zP%6N^A#EqP`7`2ndfWAtBqBep0I?->&JSGspe*-ests?lGmt0bm z_%#ZetaOz^b=U;-_4I+7Efdhg6eu#^6R1nQU{t6Pr`)U1L28=N9;IlJ=J=c zDNH!cpmBcjIwQGVhNA@UqU45<9sJDXoBZl_}ikC*I#F6C;h>Zn5kB#x<+`o8m<^<~F`qYStU|PB6p4 z)c7`xDQce~s=4a}Myp%vX9lDxZllbAG!NXA0wwixelfk@A7KXCjG{!fr#1$vwAxjz z>1I${P^hSV!8TCUPNiMW!*SK6JUiH2-c!mjx1yL)tHx|Fn+~Sw^Q&ODxR|kIVB1o# zsO6b9U^u_#l=7uIY@3CR3Y{X{w2CLVlY;I*v7-`TQP_r->+O_#RPLZR_mJ40qc}-Q zp;g^ElzWm=gtkz7P@E*C(Bi^glzWm=gtkcUOb;irCEADLMD=Q;e9P1V?N8aq?LK>{O1&Hgfh8E_1lzUX>DayWKEz1!UB5GMm6hzM!S7 zsXtDItI2~QJj1+}Vn*fHd6oAa!K$bwaXuMCyq+RPB{Sn7mJ6ePzn4LNjzXqvPuN>K ziu+g;*qbP9$|ZHmqhku>Efg~4k^&^8>su=9Z4@?T&n?$rD~(drJ1Az#o(qS!D2QLC zh*3G@7@iB4tU#NjfZk0(qgF=718tU9D_b{Mt+|&XM;);n9~l;dYPP+fLT6KGNTmh$ zC9pz2NRgusm5X0!lEq{2k5KrOD-tAaG-W?VF;fmx4ZS8kP9dWfK*rGWN;OzKK>?$V z*NXwzs?a~YV~U${XyUlkvOlB9DSH#dB(b}V+4cpBnR1gi4o4Pi0qGangE~ds zuD_(9DcjYskeTWD*A%&$?r6h9#+4i^oK^YOM78R`TAQM`PgL>m-%x3yHktHMuZ&}! z-&45A(Y*bbr%1*+f23GZtKj=6njZN7OpziJ?e?X@fretQzf!1_>}4F&yhY(sDj6Be z{F6eZR5IfjW*VI&i%jU-+sxao1be_?4CANv6(g=ou~VuAblkK7#Y(9b=)Js+DN^Ko zjJ-w;EKH8ijrqplt5b3yROA488A<1}XYl@gsLcuGfc^tGIg-xkK z(DBb~ij`7GBjcW(C{*MOxqXe$#yh)Eps00PeKd8Zan5cOEhTHwUhtk2YdD?Wl9wax z9j)I%MMx=v>O-pmij-6sr3B}jgF>LL@t2w$q`C#Nvro$o=4^bFikcIOn3(bi<8>7K-Fl|^(7R-e) z*dc^f*OEon9t+HHutONK5kr$hl5aK0S~8`k)bG}fIXEtk77kmV@F_x7ic~O ziCdta%3DCO_Kc`Y^3Bu!xNFg4P#+8DD)ljHse;TytCfoiwQ{2aCxb|r95D7JV6WEA zC?B>&p!JktjUpDQr%~;QIp#MxD>oD&o` zO-E`v@*xNe@mz`+HFodUpiQSWR%iqhGYs;43Yn%coApXCam?^8qnUDTg5I`dVXfikC|nu_Bdy>~6ekTehPHmUP`or8#L(*9Mv$IcxCx_k@t}xsh z4@gy(Wk>Dg2<1tKvrOFWkUJU9Mjh}Kj=+}XE9)B>#B6%PYg9T9rpBbZyN~LCPIp#y z8kNrDUu%hjlPSwxiB_Z1c@bQxUYW?d8}%AhLn1M})BxK^QL9(WVg)oqn@d$3wei#j z3g0PtTVbv*CRD9~IT&v(X{U8Iw(3%u2D)ic;)#^3u z2r0hNpv)cD1%p=lLdz64IiW!Q4!0k98_BuP?V_P+Z)AX{SQ%) zs5YuM2rb8lDa1|@^Ga}mx$mEI&x4@&d5El1AA8^EPf0jbnSBAnw9>yG>X#o4eoV|S zB4-l(qTSnYC48`%5!x`w&BCU@AOX!_{)@IV(V^S|gWahc%&9Y&FHxANfu-@%dA%s? z+HP^c4#T;N;v_B(JNQm5&Q~eSd;7L~h(*3ec}I0D%&PKu8!Yj4%06nq7RlaZfrlyo z*y0;B|0rd@Yn0~UUZ-*`Sd4w~6A%Et3!`)?07PBx6?uKTA5|FBr*P=61cJ!0$Hmfv zi~qDRT+ElNji9D7gzqB)2?$X+r%368+5~MLzNnPu8Jft5?4J07&#Twk1y~Q+Jhj{& zTjD?Ux?DWgBbF0P+_I8AN6{jiKc8?8{=;rwYwf)%5UNF;7V&A_ty+5+7cDp6=&wT27a<=aIW z<|?`fFKTwCZ@^Y3xH6C7olWr~2RL@>^a@xNy>$k59tDdGj(vdw^oV3Dnvl^#vrcqs*n?0nh+>DudNfdf~O=r|vzIFSQ6tMW+M5N4fEQjo|{ zZ3p6r%Yqonl@uj~qG%QNDhiUkD5RoZLs60!rPU6)N=#qZWdfo_(;Kn?(QE&W6eOx6 z?_Cq@x1slc6&mQvAQ2!n&`}-v$XkXLrk7)OL1~zyI`WZxX@ktfz5)?QgB;~6Jy5)M zN*dZToJpD|Ndcr5ECFXApQa#DY3AsX=q0#1Rpy%H*HY$lB6^9dnuP{z6$^%v`D?)g zp8zM8JaB)D?+5e9DL>Mw73HPKjNOx1CpHR5m$oM_nCwR7FMOc}3#C#X!1J&Sh!4PE zA1k;;4UWZxUF2i+Qjou3Ku?>1_9W7e6!5-aIQSdR$aQMa&mJ5uh=j|-Z-54#KVQ)R zt%GJBgYyH{OBrXs4l<@M0#mgP(z_Qd`3~km6XkY3uK>J+0BWkA)^ckEeYnob@G?S> zS{}a~Rk(~7PaRdt@d_;m9j)1x1Lx)y?!Tqn<7)}dHQ+v^K)gmFXpFKg06=tVBlSv2 z8?` zDIh(4=d@|=V~f|DHg?b0J*=*~zreRE53VfPn>L)(|)L$r^Ul!Dxt^?{lC&;+fO9I@xJ_^*X^6kBXdh$g;-BF=_S5V*j z6jBw=TYfm;Ja9EoClu-t9|@>$y#mx*PLicsCaAA}6R78(C{yng)bBhC)Qy#I?-$gK zo(JkS3U!-H1KjQJ2I^)C=j{b`?stLuEroiNpnmN>pzfhiFB8;hPXqN8g?g)?uE6qs zR*~v%K`p%o)CUym1A=%LH}Tmw|eb^6hnkx&rmQrSk2Jj|Eb_^PqL6xi>A7?Yp0#ZaEvM|5_qb z4;0k(b3i>|sZ9N%pgwUjP+OL49=rP=9`k{OyUC2QvTdM4+Cc za2^%Ztquq3JmuT}6x2VR4%FW%-+oC@zr6)et4etv5Y)pL19eFG_60%x>Y+g0Rl$8r zP#13v)aw<_osS14I(;rspHZ}Nm7qR!Bv4l>ocI1j@as6mzH$B)0dC<`px&ow<7z=Y;yplpR{3`2XM%6P`6r<6be3%2 zj-amm9Z(<0%hax*uKzcn7L{*5E~vBjeA_hl_@eynX9V@>pTM`5pD9!STTst^2B>>0 z)P+|EGC#UGaQ>fy{Ovi{1k}y(+dY+UKPafHr@^;BQe_s@2Va42*C^%vq@ezBZ}|3V zr9^iN>VM>b`qHp0)xCl`^mpKVg@Sv(pg#8!PaBkP>LP{n6N38Br-AzSGvpFIDX1I$3aFJB#qR`|lFfO=k8*43GU`pAC(_1_A$AgIO90(B2p{`N*eea9z&x=8unDc?SHV^H2Fu7pwIf(cpX*97%jV?aG_ zT&C{u`QY2{+zHgJ&ylHT2>tzdb{t9-vW26zZ88^}`CatWiIqP}>^yGYa)j8ud+u`nE5q zGOzzZxx6zp>ShXcJB_-nLcK_%jw#evHR?SIb&Fe6sh&}&cWTsy=gTtxK%;6qp zZ_fkuj*eXLoxd2!{GGdi`hMlxcL?gm-vjFJV0u&xIadnmvMNxoQYzyg1ohR`Ks{rX z{OyLf1-O-mfV!E&`4mCj_-vpyly4nD-R|>1Jpm587gBvlP&a4+^-V>p&k5=}j{^00 z1@}Qg{kjX(it_D`1@$SE>O4iN>9+?Z`aLH2o>2nV&Vo9E!RJlIg6|O2y>15TN~J{S z3F_FfK;5-1m$!RIfV*)8s23_S-z=zW3P62IvHo#)2H*bXR-k@K!F^ItuUiGwW0dm# zT2L4N1E`CXa60cR0q2L_2GoUhS?2i~b+JPIjz;~8LVZS~KA=z+-=*Si-;i-n*QmQH zR7a!ktx!+ATjl&Sg<908zfq_)jrwPWI-ybjsZig2kBa-Tm2!#xq)~Th%G86ts(!mj zp{~4Fr4F^^Z*SA6qYCu}je5C4eO;qot5E-`QEyVH+uf&1b-zNrOrvh8)P?H=mEFYs zxZ<(5d@bP2?hM6?V@2F}Mo@zb9|iRVL1ouN;nj$O>fRr4W=Fo_r5S>H#sdL0I3-9> z*9a=xD~)HC2&H*mVm`cf`Hm_*Ff`o{IpJY-Dayj ziAmDakH=)Gc#gB4@VvVzOtOyR<)g5<86J4=&F!uSr=vrv`nL<$n|8^h`-#<%JNg~} z_fH=Jsh^Ub|F`t~IqCV2q~{Mw&mWeazbHNbx%B)Q>G=<(=iir}|Bv+i+tTyzNY9^_ zp8v1({3p`$pGwcaAw7Rodj3u6`M0F!cT3Ojk)FRMJ^zFB{66XV*QDn!NzeaJdj7if z{7=&JSET2!O3xpVo_}3>{<8G^SJLzEO3%M1J%2-b{ulP|PIrS!Vc3Dw$I)#zg3|%v zE;wiPq`S$(=y}~4t;SfnwtBEq$J^T`yIbU!!nU6lKMm-_W_>kg%`XZL?&&don;H&N? z-R+rFhOahV!nWJwPQ;6AIjREX?!?P8>%<9|)T`w*knTzQlFrZ& zI_%gZ{9{ni2JugyHdwDYt$d}t!Wo2GIS2n5z`rKlr6+(&HWm-~zuBuGV)vMoAUP1| zat;&`_%2I{FPqa13dd30TOr`E9{~D5nm~nSvoIla>A~HOaQFjo`845z>0SbPCqm*6 zKrTw|6ho-N<=p7ZBivol%b8mQu8_d{VCt?^X~2mi%=_B)0shyd`^;kWKJftm?Y)}N z`vN`)$$`N8_D}463SZ`Z!4r<+K7h8tpG39^xDK`J%YBtFeYyKF+XOEpRaCQF;bwt< zOu8>E1&gc)C(~CZz5hTlj*Rcs$cdW(IfDrfWg5VE;BnV=@S{R6^=MvDr5eR=!|FNq$G8~e)9)iBZ%?o@JM0eoX@!h5~ z>3-l8&uu!~Z93?c$=rsq=bXW97N+4gTw-h(QGCwZodJCe_5%_pa~r`va2p?FCW7D( zfFyGp0iw8#4>Svb@CWsu#BDn0Ha^$meYatDJvC9??ZA?qQn~1~0{0p49!$Dle?Pd< zbOa8b@jv}<(5;S351u1}dwqbrSAyOG3hhhDO6I$n|Bz$3??MCN50u17uOu{(1k!lG z??zz!0pKNxJi{*$^N{8KUmncq=qk*F0RaFP#4jmsLFT@~{x#_?JPVv;eg234Ux1jG z0t9Cc{xHVTC~Dr*3)(oL>|(gUK)mt7I#@$D zk)C*e1l`1A(}JCJ5esb5;7lqOrP8V{hmI3{@Jh1@gE?h+KB&(fiHD&n&e zx+7>g{DIP(VzOKeyrBY&`T!3G7^qxcF82a7Akm2v!*u@#`}z0-#af=su5ziE zY59Y|x>!cHi`F&i)ZErt8(6X{_od+FYu2g`l$VUFhBgdQ%u%_jnUqV7%rmv7fucPDr-(1x>^UR{pe9p#zy zCw!B*yA$yC1mKw9*Y|M0PSoAenKRdtA96HzId*sO2h^FUHI{h?<8q##kx3qG9%1nZ zU`NyOW6z3McTGO*+teLKX#4@_WvTdYyDs}~0CYF{t?(evWfC=?#X>EQ;h8BI{usbN zCf%6@@YRiizu7<8d+4L)fud!2lmR&o_~$pdf12}aF&H!7^pQA<+eItk50oHL3+?mO zeA0jH!F?Rz@CV=$^}v0;0i5tfpX5P)5+U&iAdPcNeQI(D_%G*HXAa>$hW>|M5x7F4 zUR80-DXz$mRO$uK{qXMr_V=Xw`XcbaP1!5nBkwQ%0s5hNCc?ImDmVuOSA2%MVlod= zd2??R&p4KQ6E=JJ14S{W_4+T#5YyLkPen|J?hnvtT#-U`i6UgNQir>_+Ictzstgye z_}%(B-tz(W+#efWbsX4nmWdQRl^LO3&G|1|ZJ33dbWsqn?+e_%iF#UL3Scb-#pl@W zxoB_vfg+X?G!q8&A@A98uF7ECh-G&F7ahR2fUfIAdMG&~g-)dnyPM%qEN8Xk3La&^ zqxjD7(^J72wl))k=PEmNh(zr|sF0H`iUTh3DtC!Qz28t2R{4!oj_>Y_Q5%1tpkoQ# z!iX{CJ%upNZ4|f$mfd{?UBkDB|B9DV0&x-rL0=vbAG{~NGwg?vVTSrJ_*)2(D7!&~ zm~;^qjQ$2UdZMP8a951&W#$miU5#}ge?Y6JreI{oTNqb{`ZLTg_?9x1Tg=m-2AEde;{+v87J5r*PX-)k3Uejvr?$=0kSYWJPOQ?Wpy`! zl7{FvQAW!zVb+cfTE=mEG--cVhoIZpS z=cNKMWOp2^J^n!XhEuS;01(E#=KZ<~L82$j*{3M=-g&LAM=g_-6o2R0({BXI=X9F0_0R9QF6PJ~4B0cf`U~gl* zFfSpp92+ve0We2{II%DHwB*(aSPOUKg0phD_hOrXKTwX7l3Ir`<|bM$gY1Kb;u_?S z0W4AVA1TAxJuKj}e@(idU53@4|Ka}^KoV8|0EDv#qr5kT>K|}r_K?JP*Tss0KOlIb z>aRlZ>MsLrfI#>IK#3eo1rj+x8Ej(&!yf=kQvDgvA(`_KtN#26FmELZ%KlD=e5=!F zuv4dbSCU5qpE?jwdEWwp!=a~v<82@Qf}j!B7&?-v-#ZtMaK@U!MFXcjjyvtD?9_v? z-`4<PCphWRj1rp7j40alV z;SYc%Y3>-$A(?X?-ORH&Fi(^_0Dp3td4H(Nx}dz`;qw81sLY;Ey5Bn!oNX5SL?d}m zRYvITiE?Kl!f`>sE$iGZ6XniAFu0Ra<#24s-hgrO2a1>^cV<8zV$UG5@ac&wz zYiN3I0sjS&r%V*};Z_!H!pwW(Cr_5*GRhh1!{BcrM52T^5dyYC@&%MHbVRNITwu%*tO+fsfCr>$b=;9;~S{y>48Bz+Y{Jwflp zYh?_;k0LPs0C1u#pBY$cbqwI&LU8;6@Y51>i4^RiGOX)HKMGu!Y4}6jg%v3PHqpvV zz@_uH;IP`1?RF=FBhMty@savHx^tqHnL0!6(TEQoJ;^;fse2hp3OoKenLBIo zg*|@Aycs=hGw?KJ$`BsNU!s?tkTAw*f=s%I3_f-P_pzk4N@MSbP3bX5be~7#;t!N5 zSr=1LQQ%!c;H1zmA~gO0bh6H!8Cr2{3jY$q;}5`}p3JQ!=FF+t-+@b`W!>x1r44?R zXeJcga;(rAD-2iUtuf%e{!`zrKZ{wbEhqt>X)MsWPfFs}zpw?ui|F{DHzHnF%G@V&?WC1B+u>-8<0YX8k4`mBQvUf7+T?GuY53Wcau=09J`u0ojAT4x#Y}pp$Ijlg-E67k~oKWxD+udM@#qWP>tw z_nPmwe2bYMrDo#9+vec9%42+z?iN0cANOGd2OoZd`*2d1k~h-@=GAavfev80ccESJ z2ke?;3!lcFnO57v$MC*`)-~xg>0neW5%A56PkiIP#a7yZaixcBFe*O7$dq(2D!6g8 zA}pBohuo}5eOTr0H#y?zq>Fg&8Z;^XK!K8u76kLakAgmxpn1R-Au#>`aMHo3U>*P~ z@k!7<@JkRJe*iq;U{vsCZj65hA&P1E8FXSyWr#P?dlI=Y94J_=w;i^poX-P#PX=%$ z0!%7xiz|m`s1Jj``Dck;mJv>Og%2dP+!xML)RRW7{xtK;gm*rYLNp zJtz^va-qQbuW{=qn)Hsqp?)Bhk159ePpsbf1I4W-7%zoLq4~ygz{kU3gk{{{qo4TZ zN!yvJ zu~^^n2a1v?`5>_l+6~@dNfZzCcm%~C08P|RN~{A=(O5}T5BLNG#vcGqvh7LYJjDOa zLz@TlCVH&rHi4rgs=_S?7A%MEcmZlKW9KE-{O*^FlX}~Szrbi_*67`dMy!!SPr4`? z`1;1*VCG1)A|n!sd4A{{Tn@K}o`FA5=#>egTqw>EP@pg4Py6ZlPgI7x5vZbvK@ts6 zWZ}eQFgy*s$D0bi0MB#Wf)dy>zYtn#l0iZnA?azyh19v`v$go z_ygXMByU8JH7}4cXQA;?=TyImxJjj)l~8a@l0Nf6odK+J$0dP<_zK%qiTx+o6#$ve28q*i$X*^OQj zP&vNqqL1JY6ttXDgA!n99sh#d!c`zLClJ;Cdu>5T*WAyxCfGgXo6=iZX^4L zL}i3PPQej9ZegvHaf1s=@QgRXjqIn4t0yjYg zxCf$}pj|@LpQzQv5mnwF^s$iuPp;te0q=Qm2Gh>i;h1G2@uwOi^o>Mo&q9QobWsp+ zjKjHOBnqP;7|bgSG>+~55xXAv14T@-_RN4VgwK}ysubrEVVT{-&=;5m{1>F7i4t|r zVMVRvVaief7Bv_>XgRd;%R=mk%#M1+qXsUl0HC8J8b$XI9*%zHos#3Z!<>^OlJvl0 zjuY_?m&H8ek!cDp;2!xnZQV2027zR&~l;F-r55b>=A;y4CJVVA^#zKtYE3BpS z_o$@KzmHG_Q0xobA@m6ZNtdj?T)Rl%E5=C zu(?z5!y$w{s3$CVhcnt_x8)2JYNdfr3vc4#ezvul*xh=8_$UV-<(9FJ0B@it9wsoG z<>3xqapl2GSDtmJ&y!yProCOQS?{3e4d2y*zq=cqjHKMM25RF--vteoaLBJyLpk^t z)D>O>b65j&fggD0aL>ZZK3Az;zgY8`s0y}Q6t+*}^1CC*U8y8dY8~<`0Tt6_F)5@v zyvs*5X`@F?aBIjp+T{<7;t%f3oHo#Gj(Pi#r-3H2kM!*QqPRy_Nkn>Hf=sCShaopt~{n zWo{|HicY^vPiCA2g!XGd68K{Oo?pyCXpG2>a>IdE3jzj{VkUXsor!|LtGN^XR{>%7 z-U#K=ejd|x@t@sIj-6=KAO{TM9H_6V4Ybdg8a22gPj51^0-^oH^a;q&!@wxERW z7JjjOIOYw<^#+kb0?v+mb|}N8Z$PQDUKdllSID{6??W>nwTAVP+!F2|z&eMlvFjx? ze?)IdSB=3r{`G-X&Ops^N&{m~r2*U7{DAB$XXjq8b#teVP2@`T+$txBjB=b&E?{&R zR)FJs%foseAP=~*GoU--fHN}U6!94QieDl2vj3pF7wf!$jL1BvyJ}8m4#HX}F9<+| zX1iRd3{=ajL5D$^J?rk=>$UFAOZ~9L8RZrsquhM2kH@_3sNT98uGc!Sa9Pw|XLZ|w z8x}z%xS_BEv#Xv&yIQ>2-R($ZHzet4&)m@-!`ytIAt)+zxWQc9%Vt(aV0cl3cnT7= zS>MlD-Kdm{4(8=Gecu&fKf9N1^rt1|k{Y$Jj=z&AEF$@-a5xdq%Po z{_Y8MBQnxj@OMVCz;kDE{8myvQoyFi{Q~kawc`gxGV|IILo3W$H1{@S8{Jlib(XmS zd;n2!#U6Je|HuY;-$?m=`{wkv*u4umhc&%}kxYG=edb;ya_>c!=4STjNQP32nS*9f zw6MGx)Nvj_oW9!5LnGm#J&bPcxUC;XSgWRSek2?l!1xW9Zg-{O;<%3?Zhy_)A&~+E zb=GU3SW72bcdzDs8)0o4vm+wGSnD*D6Xo19=eJ}zwIy@EhlqQSmI{W)=C&#tSZjJ% zo8mW9td0fEl>0OSTQ@?{H4c@lH#gjl&mc-za}-_UycPoU3rcwS5wbKlJ@1aRifB@D zywxGBe}=4kH7Q;}k0jhD}6!PtyA`aH-&GOkS$K}bonfA21**x_%knoUx z)Y9q2=w%2GcHfR{jXrA%b|z^t+y(CH?t=VePu<^A zKF=d1R=XoB-8W6miAgF^Tzy>3y~5oKx%Y5CQ+PIkc@CD-JkK3K46~~lD{vh$0X!x{ zu<>q-4W13KXOr%a&V^vSx&FAj`C|X$+#>uKqr{%3C=q;_4?s9m2*AgH!0_EX%kSol zR_enr3U3seg{lKHShzF-#Ariu#1nLO)GOWD$1n!D6MY7`69oeh#5e>u6kyJ%gA-_c zat;28145WmV-pe3eleBp82L_j=VKTPHa#$S2u%7TllSEW7ZB%6TfN}tLYx7Q8ykdU zIA^nn!Bc<0>#OXbm|u6_yF@AiFv&~BfJqWS9^~_v;<>T~5vbv;vm`q+Z*fmVNE@FR zu_z%o=unQsDwaWLunnhZ)&ZKZ4;O1Gij~yP##R;1>VqZ`oMzY=gDxE;w0R!Mdpr<4 zo^&f?5P`PzKaeQhEthz&=Z^HbU>tgfsowbCtALz4gdzt@3ZEKtg62=>@F5G4MZg)iP1o-qQ|I^$O|5GS>KO*?W ztJNX3h?@8La8KDTlnzN5PX+KPRl^c{x0wUYP@z^t+w-ha#TyU|tSYz1FpCX|Pp4Ld zBsTNjxz_J@=N{>^_9mBn);VOIJ6f;?wHem|`1(*ieNMFw13YJS0k438*w5sep+4-+ zSOhP@z}kBW5c*L{wXnKeEuW2AVN;|yGvaMi_X7(Ytkw>cV*P%1?xKJ-Umbucp%b9* zG7bwByd*kjjY=_uNUD<||4~j0HEs!mUPx#$B~g4vLfb@oL#jN8?%Aw+nEH#L(!3#k-^oKn|w{wp3x6G0+t^z)lXVc98Ot>!SNX1fvzuvSgwzftxTUyy7)e{x}OCxpvG<^X$@J! z^$C2;h_AWVp{x>1Wr-KQx6g2=T*2CwAFkAkEBIWu|7?Iin{*#ojRP6|ad-10y^nK8 zvX8L?v70Wm34wEjLVST2LP_w1i{&LpL_owm3B+S2-nM?CL??G=`$-cK?l6DS%KhR$ zE+!e8P;?v(sH{EUEe(|JHVa^^t>XD`mNxJTI|f~&iqi~ipgr!+@(Xt?f6+%#vU;I~ zf(i0szn^k3qnt<;2u-qX6DGQ21IJ1Sn-tO^M8<#Wl zog#2Z1*UG;QZ7cGR z9usnN{c(5mrLYE-iJF_oUIc-a^o$)`r&b=Bzz!)NnzLm`3~@^XrMu-a@AcebmfgbF z0r%*>6*UKHAtcahE1U_)R<(;`Ac9xaSte3<7Q}K$q~QmUo$@{a=p*}wF4wTXS#$;< zMK)G1`6`}Co_A+1@LtU=@?Hf*5^tiMf_pV{C}v3ahv>{~tw7*ra+kTM(T2bga?C$+ zl7F~AMYblFkb9WDnfo@+Y2M(z!0Mpc`iJYGEK(sDe!1Zx!z3HteF-tb>?}`4_b!KT z%A8_i_g9EuG^#SZj^d9?QVXyGlV@WvmIO~G-BJgXSq^9o z#@Rz``8$-NAI}d2WbFX_1xp1wu!am5gfoe8LAZFvR@aI@0m(Y7s7Otx0Sm5Rv6D9w z$gnoko_04oS$z%gjRxoRuWW&jLb2#zQ^2@y;QiIz;0XR0_#PWiV=YK5LgmRsO@9_Xg>qwc2jq!$3@#CS#I+X~8O z!xAyo^L*4DBHrlkz<2QA=Q-6+S-Th0Upg%ZZ>Ps36ZaSKpu6$1mXn*uh)`%{p{>0` zaz(bQSoi!9yoa@wk=EUcYg_vSB#0Rp!PX3Cv2b~G3{U%F_S;;4+}->H{vs>}<}U)IoKvzg zCF?r`_#Df93!5<7q}Vo(0lOjimk9E#9PYHofcNxyG6Cea?Li3EYDMz|Uk{lZg1x*+ z$WARmI2Wxun!()&5zK*IUPxdEB0@OV&2(h026K6)-;Svq$K9F8QHtU7EW1%c&pb%8 zcdz%7=M+_-ayW1guJwPAdxBMdV=2VyQDwew=;`E5Y{hJn|ZB7cm zZVpk@xGS%`v@@+Sta5AYhWtYVZ2w^aEThL(cP?VkfZBgpU<-j&Z+a*4CK1%O*Dw6Y zi;_W1~26_z(FatM3({V?Gl*=E`#z3qap|iTAy~ z+)9}laGxpKcgVK^v$0!3=CUT|wTO z#v?`~kb$hV8nC-UjCEN8Q9Pe?zuba~#dfIaB)&|ZCG;TC>@mX8@7(ZOAvj|_=G>t= zod>YB5pxm<*z}Fy9UtUjY0CpoGK*0Fq4IO18?eMz*}w! zKE_aXjC`lN<08Q#=g(_-%YWIZdS{ASny3}3<>EjK8WJC7hWfBO<0$@8ZV7t{#Fq{- z@O6QQ7O{K>TzCTiDvmkD6)f$+B;PiS+}(C5e8_s*OYpbDBRGT1e*-QH|&2D9+b+&mT!0WJlSLWPG((}Cm3(B zCA$^24A$ohLP@hcGN4~*+&QlIaazQEc?qCK$+%HC*i{~Z$b#N#D00UpoH!gJVEA7 z2eFrdsi8(-BPg~zGQp=S&$`o>Lc=GYTCgn@jrDIl6R*$z=&rv6`|s$IGlOUg+8cuZ z^EchAF?RY@J%iQ`3R|x(<)nD!-iUl?kP=5%pwJkAm?N_I zlvCrA`vqhX6^gc3q=1McLJW(|?rq3{#Gbb+pRw=)yApy}!auzeKQ#uLU6jxLvU@Qm zCt{3y7qSSAC@LFcz~GYH%h-g44si|&D%6hyyn15|%0cz!MZ^`(e)Z;@A3)CigoIs{ zqI(sdRcycO>D36z}HX1ZrV2CK8Hvbyt5R%Ve|)e8=ShzNQWloUZ_kxfxHQ4|oxCjz3Nh~S3u z0Ocuy4^a`7|C9gsofB~*?#;NFw<@!Gs{8lrsJ!<^obQ|yCr<1Uk?@=^_3`hM+_1uZ zRfan)zGiCAmFxHqNGe>Av-ZT6X|@clNDgQ;hFQ>~*e)V>iGAVs_^0 zQ_^a|Gdt^i?!~Wap!KrGf0eAk{s4B}B?1cnrG=z4Ia)Q}0XSlMt(rWj%o{dYYh!^X zLx^k8w*TlQiY6;_1ESXai7Nr2*=@RdiwIeHIpJ&s6qzInm|E`5!(k1Lb~eRm6o zg&a7stc!)=lh{%rv@R<6iUlrdvWUqdlMGniWMrOC880zi7pZk!!`J{`J}63ZIYw7- zvXf~yquScr^ z#(0tEjlATV3U2ku07o>}0gg5uti(5y*-D>Ym zvU-0Sn}zZc$DxZwGMW}V-l9CZ3em;G$eu;k=2mS6&on2vJHE|*uF7^3 zI|$5+Ui_m?Fur!if0wM?zYqHdY!oo>)qw*jD=|oNhf3lO7%50pooQkLwZ#!u;@c@$ z9|K-r%cBKHBinV%z73Hs_pTRz`~e8KKL0vde<+)ndE^cI4MtI_ko2%h>YX_=IN{dr z19glhPf9OPI9u(#Nmd_npTW=Wkj-q*i6T;SYNy$d$@I?Y3Ob#9QJ=#Y`UzCL0(8Z| zILQ?|eG+Vd@`WVGEE3 zEPfWr1#s$8m<75`kAZ4c1^u-k!;#BwJf;j1Te9j(VlRO4O6(M+tLX*nMZ_Ae8?QytZq<3-GiDye9`VQ%pJgKQH&`*R_TFGxtW}T9XPB4Q zqR5iz#Y_u3d<&pzg2(KsMl5Uq4s_@GWk33ayUhwSkUi>@H zXJwmzoovLLZ4z-pB3^$3J*_tc7ox7zAjWG{3~#7B6n(2UoOLo?_*m_|Nmd`$sS&t) zVsCfeAxKQS)~r61h!Jf=-}_|4-O{C|uQE|V-fOP}$=7kBa)>rWuPC z)-NrNkX*W(iRspvSgL887|5R63nFV>IaxEy*#&J~_GPk8YepLhREO!_9Lpw4^HulW zn`HH^dcvw%itmk42U&!pm&FoB=PT3aWaT0IsRU0Lp6tw4jyAXkPI>a)pkC$YNIrwu zFrM5#KOwa;eNI;TJ8er87{44SWAS%*K0O04Qf!x1-S96)W{c60BZkDQS$f08%#GgW zwQV=>pmsH6UMEfu8c^`l9IgjieGR7p`&DM@uX|wd%ei5xv@lMfK*1X+#YoCm%C2Q*UFm=YJ2Vjfws=aFJ-w^Dq z84titEml*1K(Kw=^+xovjO%ci@9_0aFMiZXxO>@50IM`F#r@OB^;uoL*Lo_Vt<>P| z{|20)Ab2~QijvUfD@sS*zVLHF?rn0x;WV0EKjj^zQ%F4H>J5w$c}wtHvL#a$*d&mp zusYBwZM{F^jk_O$0=*omr?- zUkuD|==w3i+Z_6oZ1&~D{IMhemNyAmh~+tZ6=}8iChz{eO{#?iT>%n~i>iQ<#mJQq z)p-1?tOOW9K6jFRh#OZCsQFxf1FHct6@QMUn(Z$~UJIZ*S~W<~Y9H+isSJeJ7fCEo zc-)ykL0Xwg!4?8#@5`iESW1d22c^NvN`7T+T?v1Mgo{hV0w_CMSIYm~M>%8lLvqUJ zIb-ngH%Pb0zFqGrsA0b46yW+V`KXxxFlb4r9$%r|3oMdmx6=A~Z~7)Egt-MmsGO${ z$$59%t4qSI-jwaFoNRB0;PAg+Y>D z$E3N!5NsD|`mEmL8<;v%5WI}*)X__;Pfesd*3Anu%K1i)A+624OV-|{X=H4ZJ0$T*z3PCW)U$uKS?8D%mHn9WI{p*gEJcjSsv@$4=1% zxSfKm%f3WQ*&8X9wLqRN4yLaZA=qsynAb@ioN%k$`62A+ogbUDYwEK?rEclST`_WS zLMoY&!+fK^@MH{#<9vBBQ&mt&M z+H0zJCNNahsig}tB#Z4gYy$Pa_2TEBMrL1J^f|eBr;JXZWq=Vsk0{md%{Z0iL-Ak= z_p2!s*{J0wB#Ib?u&qXM?!JBZ>?c2qBZfO+EHT^(bMF3qd+%C2vBx`NkMAYt-`T30 z5vQw+iCV#M1bRlD%7ckzhJ<(?WH#2o>~LFx%H#&N*Kybh8JoipPU2_N{sv}#+S@LL z)@+`@%10_Xu90+_X|6e0iq1^4fdv;rr!I7Cez`?erRbpgL0LAG8l>c9mbc{~L#%#k z5({FF)hG0lDjl`8FS)`JxAMU&{0NQJ6h2{hM9HQmpIsM$KicDZi!4J5cdYD1`+R0 zHfFJ}kD(#G#($NpIW*ZgcskMu<;mg(uF2yS2`yRw6%Jxzgh(TlC)=8z0k;xbvi_@N z&4KwDaH|nO)|;#!qJ#%)^(;$wvBMKrZ#)Wg{e)LP2*l=AwN}Og*{8V4!3c zW1PB%*;M^wK-XnoChHDMBrb?TTv}a8;kg9V~T(MZm}GJx0he+flSuG=9L zqC+Ga?cWEYXx;V^Eie0I4VyJ^76n2pyZ;J%y!i>cr5OQai>kz|m)Hu2&52fQuaUoo z^!ohkWc^N!fOYN~5fCK}9^3o6?GD$LS8l}pS?mMgUoFQgl#3o@~uMP+?$*u5vGuRXYzHz9W*4=7T%wuZ#OUv(>#@v|5l4*lB4S z6G}CHJ)0ppGHz9F5gDz{qX+dbnl#jU{1$1_m>QqTbc?u(2%%n@JsmwLe=M1|k<9t1 zzEES9qatM?dQkpYD(?^~YW(G>NbQUkAM0{UTD4#t#>WW z_mbv1$mgnOk{+>zjXj)U=k|`$=wvsf5cB(%Lk7Q2$y&zb%AJg!C5u%FmMgxUj6X zBB>PgH9VG0)do6R$5~3BB&C(M0wk^B7UQZa)LRd_r^=0%>YtM8x=j66PFSg@P)u2? zSz@0RVYMD36*tdSWYVmgASpsiC03mjCJP?p`4$+DX)OJ5;HKg(_^NgDM5Rw-%C z50{EJEb8&~CEPkUZCAw!Pb<^s1V6V4N0iiCGL*^SeuBv2Sqyy%we$2L zIq!CP2|7h%vHf(UW~sytbd`nHD)%DM-`n^RG#4PObVaAp9x}q(X9&xm+wchl?Kr(K zW!B5tOta(k@-5BKK;9LM(`N*&1`y&Kk%a+z1wJE74_PKJRKWO&B$dfWH@Q}vja4rT z%RjeUVnBM;Wtw&I(@7(nXXT`^c_P^r?^J2*OJtOHpIe3<>?VJJ0dMJHVnL7MsdW}h?eUJ9%q&dKwfFBMu`5g? z+f%Zv`1f3C^$YM#UPVk zZplXpda^VFIiu93NX^f!f)-TJ7OQRK%S_XdI!;pO-4#>5Gn2h{FJ zx#GNxJ00DWFh;^jCXD1Jh+I3a7azfm$Vnu`2E|LF{X*&rcU~yimBxuvl`b3B*4t_TjrA2_D-25X z>mdQsdncWh<6XOgIETjmFpO`s&+bFAQG17X9X2Cc9jStgrVoo)-a0uyRjV*CP^;Vv z3{>8|Yeys>A}y-| zoV{8nERxzJ`dx+^ekP!H9~EAN?NkUZKOuBHmJsILq;B#|V3KW%cbT@*AOi!mFl;i>=lL!@pqa}jh*KE@w5 zbR-)K7Pb`gBblWPeT;*)ejo7bjBen3|GZvqcO2f`CdMMeA?CG|boAah@q!!NhV~i?{SoI9&(- zJ$TJuQOhojaT3EwxKzfUwNRC83VeZ1G67owyKZ4{>L+Nh!yQaF2TS5i~4irfNegZX(i~3ufn}kXG<8PH#{MkV+KfshlLMOU25t; z%B-Fb&NG6W#GZB`d5K1-FhV8cM~mELLI0vptJpsu#*9Ble_!B?3x-(wsl#jfYn&-e z{6!M(U*lY!W8(|+{w)5oavXG(1p_br9QRTE3aRF1f=kPv8#@;H|5@a}6>Mha5!^ks zgY7S{L{P|ngJgqC1PeM2{j%HA)VGXR0KQ3pLCbgxW;FY8eBT!C`3vBG5wKLxzhGvn zA35i^Os`DP{vXi_`$Yv~3&RntPK}3(AN~h`8Qf}gr&SEG1kVfkgQOzPdBiCmB=t_~ z&w^;_$qyI?8YS`n@K}k3G*^n&!x-W@%$@+C4YwVVpbb~pS_pG2o4~R7(EL?u$@={3 zWc_ZQfq*3yHsXNZPMFcHINlKJ^&~VfYy4NqnmZT)C!!%7)R`(EKZolAC$ZKLp(XFX z!rDxJ!a74n0QZFr(XgVl7vIG38?rR4iFKutvt~5K|6oT`_MJAPDToZfqPe{Sd8EfG z5ZYs1d7wVuX&-D)kyct2DziAh(Jjo8G$umD5cgX|Ma^V)9?K9@uNtC#sPQ(Irh-;@ zQN`7#?y51d=t1)XqZ^bdzM0flT0^873Pwx%HCh#`iXN0dmfn*{?|ikog;5hD;z}CW zlBM=kp{7PgYDLbrUtVibc7UkK^+O`@Gf2}65W$*AwqPzcAaaZLG7EcATDwGhz7f4@ zI}U8@Zs%FD6LN24J@+tO!#qj{C#O$MD383@bekW4TVIrIld~qWPEyJqa`tCSr|ZR^ zdN*?W_wS_aJ8@K^6gbL$bmZOO|<+G)g1N9nxsFpqkEyWDL>n|)< zUbjtPQ(0qfV!~wYAChSXVET>Am+9Kk$qAkjX1M+&xn=;a->_`CM)8|$bJv3uqEC@$ z2H^QE%bDltW@C1OH+&ez|BQ??0ON06&Wty^bKU3ibRhUyQTd;fa|Yo2&C8i{%)!?& z28l&U!uMa1ZwBD|P0N|@)&$RJ$JDg2{WoNr0oY#FrLu*+iiYR^O`aKm=Ve_g$+O%E zW*Gkx8E3HE8J}yLMu=hj%VeAZ82`oPY}{acz9q*?TYvJ8WSs$6U%r(kTYYV;r$OIK zise_yH3M+HeA^{C7x;h4Gy^cbe0@pQ|9yizGXT%8UAC6(Ilq4=!wiaDAe%Tsz#^F8eAXsJqmVb5GvaEFr*Ak=QH}L=_ zH9C!nPOWXc_Bj-S0fczlvK8V4nj{#6s868M!4YNH6)9ED`DC5}nE#ctg858Oeihkg z0QQe9>A*~NG96S=%>{;9mZqh_hC4=#Zd%+3Q7&~aKKx>g6Fqi6#);M+G?cy3qT@?q z134!200c6EF{7T28U6B^0xmOhl;_tzTiX*IZifzI2C%(fJA1hI#+5{jnoLN1KLNI_3A3lq+Bkew0;j&hCKgD7IvARpq56!_=?X&H=4e8b`&8mgD&f@x{ zX}VtgD{n<_w1Pn^tk~#SVW7mNS+$S?YY&v*=z)H4DOW9IAj|YUU4l8>$jcM8jFuk9 z@jV7m&(h2eIB1+uxHw+D-lb&i@UegOv*iO*s<-z z!q(#wHFxJ0+1$11dhtzfLv!~&s0q#8IV%QKwnWWc3#`puf}^?n`6X@c`jDlXkZFRs zIcrg(rDxNk7(hKs)Z9&>%Qkn@1eRB?xhqV6ADLzVrkBWZraX+mv}^7P*EMp@09-Fo zBWxU8&&|1}f$%*=z8Qe;C2AUsf$v5OCkjr?&vN$Ncz|PMoB+JJ_E47G(8Nyx!M(cG6gp~C>y_Kq{7u2Q|FjIci6UQa{>_(uxB00O-8>=3~9N<@OMQUV5NO%}MF z5hB3ANouFj_*49+$|@_u#|1z`X|e)DX~ zk$!i(mZC6#C`+?Kd5OwM#_O)96bvB6`_GCDah+BzD>^kM#bgtOVE|!%>#P(e)3vye z;xK?X%eG}cakSCZZ3q*cHg>&Da}*mZkt9Pdp#%&dL3=4yyJd<+}Bff)dJYN;iz zKR3nw2yq#l30&MGZWa9p#AR?saOLbH$>2XCE(72W9lRP)#0x%orN??WdPhI_Z_qClc`DnHGvrbc*#u*2Oc@+@wY@~ z0OZC}JC9DMd%Q92^7#t{X8`b_dwvUwO|YBlmnHo@F_FXmJ7P09BP#FCA5Am+{}7o0 zkeA%beBiGTn8BII>$%Q+eX4OHmHKN0XK*H@K835HY<2N<0y9{8;G;FnoU|}zCSLnr z3CsY%Lzh;KX5B|?+(jv<-y|x7rAOs)k_PoZiOK+|OWX#Ts-KWOmLl!9iOT@ElS}Kq zrshu1S|$GvVHp5+W{F`>w`w!E*eGjT59d52gQd^q#!L;%Dn#4o5|sf^m$;g0%++VQ zIKR{&uOKo5ARk#;h0oZY#A;$PSb80|rW!b5PISDEs0@}KwNtO*giJx*KvV`mUE*@o zJzh)8(PqLjSbAYSW4ef_41l`C6>t})^i0*Ufm*bDDS;UP_$fn%EW#B+Ra!HK+~d%b z_XY=UTX4CUY`5lWjaI!QLl5awFaGr(#qh%__X4N++Nd0cc-m-4N*_ZJ59(0F!aZop zS$L}5eGdFm^!VkRPGJCf=0}sKe>@}ryUo2z#|^0F_@~GSgNK9>?FtAZKTSp$fRVW~ ztq~np5I$Z_J{UX{eCRlX@bPoxgTX_>hxC$!kJph82H@kwna&q``m=EI3*>~sL!l8J zmk>VQOg`9<=<;Gy6{$1Ox3zf3+DfR8io%gi{2F!ByE!T^k%aZ|P98p6rD z$q55+a{5dc8gHCKnE5p_!vM^jI^)cwV=ltWZ;%%T4@nl8;Rxa6{p5rJI6321>of8} zGQ!}YuoZ8dM6~iDGQ;4Z(25y15k`KGj4%KrI~UqmO&dGa^p|OOeLowm+2-VZ3oa7< zcUN#2(7iQRz4YRby^EJH_J2q=?n!URuycBlbI*7dJu+%Yn0FD4MQ z_a4>W!aZi69DSXsOpL&TCvki=3jza3_k$x#*WXzPz?&@4FPa_hA`WUNzLrce08=k} z$e5DT^*WfyXx3ZD=8mJEE6iO-<`{svmp=5&b!VH6Im_Gi1S0{AB^Rz z;J?b!*jFT;KTHKa+5U@q{IA5JWq|NE6Nm@6<^nVfqI2Z|y2 zp(S8RflzLLPs{B~mH=Z&=@IRy2Bg&JxVXrFHHT~&K>C+256--4USaWCvd91|zGAts z=+?svkJph$2H^2$mI;qXJMG%kWUV_lA!Cau>B8#uWR(F}{jp`js!o{*dygS|48Y!x zFBkUA+=?)`jSMmXgUNDXP$yx8zZ=OP1Mv4#%Y?s13!|xOhQEmp}UgJqQ0hD}`~D$4vGa>)Q({^T-IW~X-S7~1qRwOOOeXOKw- zU~;*5aLeR;bFSgBx|6Ij0INd}i}J0eY$IxLzaZ3_*p_D%_v1}W&$r~TY@^{lWSarl ze$8?*gZgZib#R_#eYI=SrkLXt`da-I8!lGBfsoF160YQGvT;&YHR z2fsfg(RK_RH%`FJ+O2L#LhtjoWA)~|h|C|oc=OvK?YZ*X{DF*S*@k6DWn2u1(uWe( zsS=(!Htv~mPJ;MlT*krx+}}G^5FP6Dpb|nc0MxU`3YE@F_>#Sxa159)0UKIqwp2Y) z*3!N-^T(mL7KuM>&AY0K(KpHHnnCXpwfVCYZiApdTkF1Ax}Y59*9D5Bv!NGXU^iBU)riyPEzo z;$1Gj&%FiMvqqJ&S+6~CdZJ@JpgdOi*o(jMGceKB-W&5EvDs`iQ&)@kiCJ((gq1!< zt<>y&8y9&oQ-`Q%@pIVnU;uf{lFG3Hs-gD59w96Pz#bcO9lM7KRXH&Z($&H&F9^W2Mn>>aS!HU2AkvI%Ij zcaE&=ECUJ(qphmZn*Ea_*ie?fTCIDhc=2ml1u}q0BYV2MPMw4Gz8K&)5SRgg%}%88 z%IaBepVV(6I0Jy+JF4kA>Q#t&e`+LRMe&nqyfmfsJupYEm1k^AfIoWiKfRVMP5Ev9 z0A%ErrUg;@FwMPcnj^O~En%@qCqevndK3oCmQl-B21LE52lXyOF#y!az9a+X?9PLG z58)UvUq&=IlC65QZ=;22=7ajkrj=IVT6zEVOKDp2+x(#jqh^i;>BXcE)4Fd=rez6> zX*mhvIX0{qfcue6D+8jYy4yH5({4;jeQSRA;y+<8d4+v+zW{j0sAlE?DiAE~m|EJ%M&QvFW3v*7K=CVC z!!UptBey^EP-=2nz*iBF0RTttC*=X1;blQzLr?|)Jusr}8Oqfx!Za-~wGP0HZiHT= zFKzH0{Sh%j{nP`X`31nyjnD!1VgkVkPmIe59c?v2!?)nXN9YVd4Blm4A?G(%zqbN=k8UG+5 z831zRE_okh)*L<97Za8NU=NP!6pbl}LHZc9NM|TO8jDH7_qI}#6_k(;N-g z=BfjH8#9(lc8VRN^-kkNl4iR-D_M(&3Lkp$JAaPOG<}wz5|8w7g@ z!!_Ze)a%1YDYY*YGkyijDFaCN?6GC41*zi4{i;1tZ2arYQffC?40kB<5zgJ{}cXA(5HCtC=}Qca#wjBmY(w5i-7p<&yzKd)C;p z(qL2@)Ay_56zoIHNMD&_wAs1N>52NO$@;9iT|8Fwu@~R`BIM?3?~Oc|*vwP2b1gRj zvZy@GvZ2_>)<4p04bS9^0Z2-z!&cmQ9UDRnAmhZ?GS|W2`n=P~V9~mP{6l6jb!}e* zdW^Yz@^}Lq$Wsq2kH!ao<;~1x?~Qp#oyHh*Im<>bCN^^U&&Qt2Ss=+}_eyc&D_MjY zj5U`XOjUkbk4#bH&q^-4C@e(b@svrNPQx`e!M36KhROO`>zJ-u)Stch6F-mKJl{N} zKLE2UT$?ToM(HERzNk4Cp7dKN?>a3;QIvlCI@Xg6!1tbD`76&hj*Rgre}Nfb)dT8# zN6|{|(AoyO8tI|6(gSDy?i>R|FD7y5{cEcC@T5jby<4`^*+``xKbKl(Kx-L6>!5GX z=^@wgSE+NO7myx>_pXj>a1~umfA`{l#p>H+g?)6t0JVDr)jKGKfbzek$`4QXl~cZ> zDn7|_EkeXEVFoY&>jj;fQg)vQk<*p4P%k4C13(pYz!w9>8d*AEo z4W_XX-24DQV1muleQ=#AobJ62v5WMp3hwn=ipUO zLy+FF__mE9tz=r#j79rg(5pI{+o)yH1c(-lDV3=` zFWG`*!L2a0brlGXan@K=RX6>nu5)O(Y80PF~DP)AiOA!5NO_o`8j z&>hJVPHj>}RGH#OGNTwkh7sz7094jIGN3mQl);bm=C2R0lqg;5l(3jb2IDpwho55* z@Ycn9?&U6TOMa*~Xu!@CXf0%px^~5ynQFjaC;e6Kw$6hhDsmtJ+tl&)!dnWzO!)&&8Cf zRxL$!{6vA_&8p#zP?7m$#qHY{DoOlCW(osvKSHC&QccZ3`yKYR0ecI<7yxX9ZjPmz zg1P#|elmc+L_h`rynWFoXNgwr4@138dvm4$j8V+3eatgA^U#a`oVCkJ?9`BtSbUfM z1l%a*=D{fn%8ixV6AI04AFvi@nV4oux1AvWUZh0`z+_He5 zCm;g=j$m$vC^znCuB+~TK+Vm*1jY#FHdF5&KZbh&qzu`IUi<{^id>mKdp`j;g1K3W z>fML}bNh*r&CMq(=4M~0B=I4Ze+J-w1aq@gQ-`DGW?vhydkDq=U?Z5DrJ8~{bF-fe z;IjzG0Dy}(H%qi?e;DdNF6NfL1jY#cj~3=pPt?6peSKla^{?W7p0$~G_R)>)-@f=Z zbsoMK6A>o(S~bBD8eDnOVut=p#foG41_n^%2)!$xa%v%Jj{YYDIzvzf0IiQteIlbX z%K-2!ff)c;4?1=J<9s#}WEW9#zRD^Q;K*F?tLJqm|}7h}vHkDkc;IK#fqm@=(s| zvT!qmV*ofkQg<;1XJ}UO_kPJ@$@}YEJSU?E@;fxeOsy@psrI*JYAg@k5sCoKPd}w z?87$RBCoofaR(7+zv6tfufR{d?U^8Y-T}sEslBcgRZR;OeneGh7VlVqB3{_%ws8!L zM{9GF$I0zYJg|)ny&Vim0B(%CvS}7a*FVRX0Pi9I17}W)0BF`u*E?j~u>BrVWdN$i zqDG;bXZpP)&j92fDHb(=dR4MNoWW*dAe_2AJJ*=OwQika+i_8_?&Kp-=L-(PfL7m` zrlb`;dXN=43fkl)6`0az)s&3?D8*mKo;ed^Y?fK^OpJ99Gn<%^WrS_eh!nNRPvcNIK8{&k%#bm~uL#F2&@;+ex1R=$n!M@zBp_$GZr`06=ED&6t4ldGa12F#ysy ze0ZudWK119iNw0zOArPCF(XDJiPJrXMw3u}A1N~cWi#|OD&>4${1zb?0Ad_I5X|?L zjNc&!17M89a0SCF82^j(8G!!d2DGBm+(Y}@HEdMXq4v(eMpd`|+<6?}+oEoBL^aT+1dY11NJ~ z;dCj}VHs^V!JWV$+pSk^~nb&YMg2o zo-U=%7=Ra({Uec`z&5>F>-5Al_LvL66$D@afYJGGoi=2zCRqj`YpiPVeB(0miOF`S zQ=gohz&^v7+T2{Dh3m3KfNP1w07zy4bp)ga4(aal&{;$MI#Oo<>c*8Vo;uGk=1KO= z2G?H-_t%p?1JK`H#@3`@3k$x1tJ$Cs@~&wi{1_5u0K%q{8iDas;Ml5U8!0mw2g}nn z+0iL1-$=p?K=`gvb#bgVcN~|5G+MLsa}y_O%?9dNLAjYI41i)-`Qk}KMRI8Y@9yqqRP{ZCVE~wsi&mqHZ5=65f?^u3${vX9A%TQm~eK-UZ< zqsh?#x?LMUj|j4Fh~vHu!Pi9bUL?uDO$~&Tp*T?tZs}7wcqiHMdUG}~-dPy27hnHJ zX!3m&orq-3j_zD!2vA-#B%jy5fg8?%(uOwfQf;(H709&|Ln1e3W?@@%*niq( zTs?TExjKOgaW2cxr^yck@bkilk{_;cHahw&d13&bjx8}yCr&qU$6#u}e@SQtfSx@= z(0RlC9C=^>9=d0Whx)1dY6aFS5}3A$C3dCU|_+8#6s8^y==?Dew{qtZg=YwsB5R%GZQ95jr`jQ&j9fCC6a$0 zgCJ-L)0B zZE_NwFdQ2*iBU2PH%Zn%iTDhFKfQGLjrM%k>cAjBg~$wmY*xLMcS+@x&qdX-RK$rrhw;~TN6zES z;vXbFgQZpbT)Q)QJSX}gLNfrg*;hL5GL8X)K0~{QunYiubZK(?WMeKb?6Zi<0H{wJ z)Q=BzgiXQ1%}3G52ZI(>&(aEd$8< zvT2fTPP0o|^0gDSMw3IEA?ChL<`{svSDsMXo_|bwWI>o{=TZ#?DoqWPhUDuv)ON^509B^^y6W*ConxF)8&TWBh)PeFj+7ipCy6~qMyN#pG({`wh4HX#@FhYGl!59Ec*FX-;s;aVU{mwv-G_0_r z%Q$elHO({^u@`^ygLHvtx+I%-TNgNY+@E%>3~_{xnz}<$ggg9#y2FBHFach~W4l&C zD8^*1g#)>NKk5Ib6*tLNy7+08r+5@$o>(YT_D~8>LunVle>L_l?s?q@`fJjj5kSx(*Q; z0I^`qdvRH&h{gfc>40*^GEZa%Kpty>n4g{EBz;?!?se+j`6k;5BJC++G63dNgDt&) zu+Hmwu14t%bVbi7$Ur$tpQ}R)T7BvFUi?wEr#}q;oUGpMUW55Zl%cKZ;obgQy<0(N zM9=n58SMy(S?_e(sD6d~CrF+F$QLyy7DGNS#-9*}0dV%0$xOc%a10=`%(!Ac zQ$9@q1^_7X#g5J(J>>!NqI{M}41hF>i9wVOR&GpUT3wpmezyE2F&F@26cY<#AYQQBS2@ws^Gj0(_Am3`WioS>!p30nIk6 zc|S+~o)`>9&XE8{UZ8&<7z2QrUH^+L^u7rHM5+uxbu?EZRP#*#Gs!am`JzF9a#@{P zn{iVALdpz4xu_?)K+1XM|BVm~08ucZk#aS-3~&k1DPQgXLDCFBdNhCGNaxxAFJdqN z#%ON5(UNulc_(Oc;{PKK1K<>_?=7vSAWmMe?+}o|$b#WIHH?a3GYQs1)R9HJR!N%j zQV)LDUBF>5vS0-`dBM&jAOir7W^mBse8%UlBxwd9J(|He(s}mR5Q70QM(`y%jcD#w zVw23+*##ue0OZ5Vy3-8oR^3mNI@E$JXq}>0jfHYFgmCNBea8(6|A5x%D`AVt>b+?) zjz$)=PF-5FD>Ju3Me6wD0YE3_5Vh|f+;!UvGWYs-35shVQIOo%pYAs9+Yq@`*wPezG z=HlK@&UTQihM9|4iWq>4>w`lfX~Jsyt5}eY+odrkhQ$rtxB)%>!q>1H=zQ~(oPS7P z18=p9tg#^6F%|AY_i5{V3yTHoQp zZnk)&+_z+lM^IizOaii7JhB?!v9-#*NLJlVplGi$bBUJ<89mPipWN4HxLB8cnXKED zi3Hru9)=8z(6DRK1QZG%0B2B|zmlGLb;xaUST&QZDG}q1XPF>Wf?(C? zPO#Zy3XhZuO*F?u7kKtf0|w`p^`&u!uPIM4Wnsx!ujw@rX=uz zGIqc9qrg+1)X+8Ziy1j%@|JSOkTvp4m2&0_q<*YYromc6Y=|L3f__6(QVB^dz;-t& zM#e;y(kn=*&sdEnompz+9wTQB)aWI(MUD7sM$A~{qqetEft+a6Pj2_QkgCFe(Tkt< zcRb%V^RA!4%ZkY<1ym-#4=@5v>13$T|o zGD*S2or_?i&f_YmlEw`7Cso=l<|%}#9G}NgaH5}Um7RexlWUbR8wrbsKrU*xjEXbv7`Yzli_DVjT*Dn@U$iPE!nb1l0}nMtxknJz8nyCVPIaPh0%lA23)^@tjoSk*6lHoq8$hKinebnM;tBoPMvbdp-1S2 zriATr>IU)J5;2o&(G%^|DXEY{|I?C-QgRTy$gkwA%ciZ!0(CtlOr+lw_>yeeV^!dy z1MA7<^kCVm_y?*9*yhluWb>Z+mP{^0d)x_ZfGcaRX`(*iwm1&FZ!p(1Nt6+=BqBOu z6)euIcX*^5y0f$fI6%-0N$m|W9m&4yUUnC~m64ZYM5uBq0lG`ih+X@^rO z-O4evGUtz)ZVSeNaGPxt>%I)9H!UJ%a??(^f(-qaS}WR1IJVQF&PR2lTN`s|shf6Q z4SvtSA!i>Gu2P+jad0SHy65rZ)vQEvp8g3#$*4M=eP|~Lsw1&K_OJ#8GLt!Gq z6u8fuhe~4$R^FiS3;Qgm&mpOPZYEGU_jPEfMArY%m5Aq}D}i8eCF;3S zSCaKy@sr5K%|)K*OD}xQKwnhU1jQ^Z2Qwz-XQdHt9xL;hil}~)O;GO*4;z-)(cLob zP}Bs?(o{ldg4Q4ayy7hd9zL6DEA0OP)^_OJR3@A4maX|Z_1U)J?TUeMk}FWhlLRz9 z6&Vs@MnVFdl++2%20^=YW~PBDGS!LqCRu$DpE*E}&!AZ;C*AC6Zdk!FSVC}xeN0vy zJiSvsfYh#Xq)s$Cb2yo`Qg7i`yT$fMx6*2-qb!1O)sR?8bdQpWd@@lbI?(pUSe{Uh zBOU#kX|x)sHl}Ju$o2Wx$$A|Da}mquiPFMg;0c>2-WyC;$e5pe2F;?O#+=1zx4t4f z){w*4wY-1?@3WauFB^0uUzoWvk~`y{$4Y9{tES#huV z0O=l6E>mV|lWj}rJbg&c+h3c!^AOFpsOy|l(fmWrkf$&%h^`AR-ej+vP@O7K*D4n0>)Djz>R%N+vUMz?}x zBHezzt}h)wxqd%LN4pH^=(dz}v=5|n+!l4Ma#`SM1?~?W%sQI3Vji1ApKuz5QPcb^ z+Z53rCO}RVjTGhJ8dKkG$e+WX8Otk8;z^FglX||nl%#O7i-V^{#&h^HIp^L(`zS-v z*g{SQ(<7L~A|$yG)E0w{{U4HzraiyYMF!AKngX^nyNu zlK`jGYn^MW{C1C2je3jN}M|K34Srm6jxm5l4xS^0z3q`I*Q~6I2AynH9*QFA46zLZBqnAD`y+grRonU#3RzH!eej-*stRu3xKSkUH zRV)RaPR}|#d09ocIwgJ;(Tb{&M+}uMb=>hANyz%`f?)@bBhwYiyX^R_Bop@0m7(0g z6-Qb39RD)u^*QCDjsXbZq^NFVQpfAXwaa5K{=UCrXUTh$tUgRvub)wc6m^!eG?frK zOJ4$G11g?us;zbf8|NkrFKaXJlC^e8+ii>j%HLg3rR6BkwWrz@4i@V$8>&u`bVJ|! zWW(Y1u6DE!QFVw+#?6byrgJEA)+bwmr!gVKLE{Gu&ZfYZWYc~g4a!paEJWv!@dK2o zWUie&-sT8B=1~mBYVS?5`rhO1=x{sQfzO~>)WXQ|&*^CCBeJ)ODHAlwL`@s}KO~#( zMP$rf%s{j$=&Mz)5~-+(5kkU#xRW>?#DJ_75c@7!C-iU8C_=huW+X>?cD~uf>>KXd zk=Y&*U|sfQvhE-vVb;w=0^dc=)*SKf3>Hk9ZgjWOp2lFdVSjVz6MPO6h?*L6-RMq9 z0JuHn%vLHo?m<7HW96pP#$n7FG;UR=72=?HiFV^OiYx>)y*o}mDJgJOG=`s3LTA3E z;~3O1x)QA5W;69M$ba;gyPuniu8TI0V;)`-2RR5ZjL<;Yt1 z0ud`SZTJVS>}XF{8eHiwFqaRCl3Z>b5(q>j5P?9{o{skJ+P%>7kk*ibtL4GIOXSh- z78W$RTwYbllKOcSCH^9-iJU_(sBb(nMt(Vl!Vvlgsc)?4))(IxuDU!@bhi=Ru#OoT zHynSJJ|9{z^WX_BWR0t|6u(W1{a$l8G5SU<1MnSY{2d|I=Oqi;U>;}U z1w~@|JI_JJ=lluyEAod0y&#XU=L$K_Z2CSjqvN^4cm+{PIlF>Udk@mMGM$J*JJ$1a z@fzY3JGI9SEeeu_zCVlClVskFJ#{D{TRg#d#sQ@sEZ$7Q!yMIcKOh`ieV#Cj%+zmmtlE6Rru74pUI^_tK5rZ)h>LDuuNWtbuKO-p$XBj+yi8I`72WO zq)1i%iX2M3n@ncOd+nh#-FDpuhlv@SuZxOJIF@&uqPB}i{*!#K&%aLA@91=DGA*qY z99_S+FnAzHFD6mQbf?PXHAM!d+nQFjsJqN$sj#=P|3k9T*1t59bXAMjdL9fV{da(L zFebq3(*);&+}q>=?av>!(Vzrxti2Qh7X`5D6@YaHz`RV>DSe7ys#k9oW-$3q9p{DB zJJ=Y4<~fxmtAggS`pIBjHXufF*~!Qh>V;G-hYPh7~gVGFivmi4NIF zAn*E_g)&yfA~~yQr_HIr_yA2mWSh>B7n4lgAJk1Aji%zmBpS9S*8(UeD|rfnzA44` zk!HYr+)&j}g5WZ>ocMmy>o*rSzF17ow*!$|79==JiI0%>5Q`|oH+33ijUk>AzWXe| z>viWC_uLfn=M{ej?{vP{LKh>{;*_KVdsV=ns>2fkni4MP`+*OO^Cn}0c(^8rT@nE@ zsB1ItlC=jUN+c}M8(u${1McX{&|BqRB&+tK!cQrAlTJbAgez~=sVL=w+}q>=p_f^8 zTI@_z%WQ%iGcIIuzB|{R!IUm98Phf4x`|HEww8&SY~AY!MoJJ9yh2cC+8{Pn7xh^;Ff&ibN@zf${2rG4i~ol2U`gF z*U9=@^d`3GkR~o{Ap}5_D2nGBAOZ~H>7lX|NVnCT*T`Fmlt44%+0* z!=Rnzx29znQdE?a-_&w)XyGKb%0g{4IKga1#K-yxOrjsf$$7^rXc8I8qM`AUNY;0w zS>lnxxJM+UB9elXdl$hXG6O@9{d>qn zsdcO}HwC^V=H-MR9l+nS2;k%B?_i^i+=47}uJ+y}Ypd=_=1&%*(WyokLP(7buP>Yb zRHOYLl8x>iZf}>!i`1xeiYS-2Kwn@t1->Ni<%C^!Oat;JGfEo}y#P*E#acgsTbVv5 z{5c_?K-z7-D?_<|t0oV;@T$r9H&|0=H~hh`Wvjyjp~gXBZCHiBvO7aVW#lt<^52Ut9Mm@!uzLzZP-}B}!2v=Wyb#R#CElK(fIq z$89?;MV~nXV+vOliuDO%U1jPNSrQ$tRi3i2JUMbiY7o{MM~UdbwuVS)e}=R}^+%{XS6p3HfnX{R)D0>1za;g1t?~4QX+#|~R{f`SfM&qokaoC+ zSYSCgazrtFf1ir*1;P|m2n)2@BS(C9pCbG{5&CKZw;QEo4)=NX6yP64Q+?m1247fS z966FY_tcN4Fkcf*^+zC1uxD268Bq$1D^IEa3#n&3d~l2jEg+pM*Wn=d*o&{`Sx~FJ zH_7UqX>2liZK!^C@uejvRM305_EXZ!4>k$1Nw%hsSm2BEXn3N;OdZD)Okqq&c)Dyr zjO4PNmPgE(Y4T{lNe-TaV<0I#GxCV3kpk!~oHptEmTbY^y&zn0G9m!S6CBxc%?i4i zX!%dcW`Z5k1iom&X^9+G3*)nyMu^qvrofkE(*YAbvYS9<;59S?=5XY!7MZ>@wBu`# z_j%iSQlKD(XkZzL$;6Cm;zyC@kh~6!n0OeRSSXma0M3?d`&Le znNpNlY8g*PG8DIMMJ^)DfFi+N+zO$PJlOMfYy|k{W}nLJeD`=|wu6Jl8pm)?HMS0L zUP7j)L=rQXKOkOmt?nC&u0IG`+YjD#Lv+{@lesby1B2coI#=xsV33V(Gw&pv$c%u# z&|zjylSm;e^ps)EZA}jbHs{0%`3rJyagG;Hf^)~oL4;t(cYp}kx7)^ycl%_k!ULj= zajeh3#uObE>&;enAtF|ABO{~%kY2@pLlA5pULc!x6C6i{X?tWD>ln!LC!s&J8A}81F z)SY#*D}Y7_qFlYhru1AkhzoTrSOhMUySgX=156m6CZ8vMlv_~3X6_Z(>yopYCVE4jVbk^+0d z$&dkRo56)C4HRq+=3+&F&BG0S?~@JtP1NWv6BTd^^)b|ke(a1?xiAx$>iWQO{y zHU6t))6Tt-ozRHB^txa8`ukqa;^Zx3F6DygBu$YySAHkw(#4TfaENOF$Nnm4Lvn5A zU9#3+@<)h;R@zgw?(w7TS_cE?Vt=dL3#`FPKZ3H`?K4ab(n{8tnrx+HI6q91ftHOsH)<%CI6u}jY9iODiSHxfP&+0xa2d8yoa`!1m~fjT z(};=hCtT@9%AE_a0k0`RJMfwk`SwYCgiMrge7H?iLv@_ZJ2V%h-4SKm9q|U;`G%!?vZ7Y9H z%eqEEJWH%#GhhMbkaa!B!u=LNJV(lbT7MzsP?nssXRbB7x~5Yk9IE3NpbcA%3t{K= z9u#eaD)i9Gg(6McYS`7~X%3sZJbod8hF92bZS>IcG}%b!Tx?aW>UuGu3TkS%bbcs( zshE}GOGz=UqTMR<5;WX8d}HegY4z2~3#d_C?W@eaf&{bmaB!%TGhGvNr)SNfhJ38Z zV=u1#1&2DlH_7T<_#7Q(Y&IE!L!DWIN(EyVe++(*B-kd(CfS-IR`ezU!^wue_sND` zmY-<9Tv|Y`f}@Lt5V$fy?*ua_n;nY#lx%iD2h#+=+8*i?=dduPF^Ma3DGZi7i&EES z-XY&L3WbnG@xcaa0ojyGJ3%Z67h8n<=j37wmI@LbmYHRU6YPoPa9dc@RYY8+yL?cT zcVjPUc;*)(-gZWE2>1a7RTh*UZ8?mq(a3KW3%B zsNidI(Jf|GXPOT?J9az+hi#}r&q0ROPGBTk!3Be5xP>_=6 z&ykrJ`KaRzYip5iL8g?G%Lc?qE*yKhr_S(XXMo-@h4d)WC z=NUu$fV^C@tBq6L;h1~t6ytA^;s6IY#Ht-lN8SD_Ee{Wnbc&7fIl?e}gMfHInU8l_lxFEj2GDT zM!58KvfhZ7zCnHKZbR`LgVM&9P+n9F+akUA(NJ_Ii-I*)CTUvF2!Y3uK);Hg7;+JY z%wYc~RBtBLq5dye^0U0AT2XPIM7kl3gPp?G=`O+EAS+OazY)kRa7*l^ATLg{e6G#dnbmm6&R70o5@`Gd%`wkY_X3I<Bh17j;!NiJDjI7 z@#4hE2Y9vKB--Vou4{%zOs?7K5tIIwoJ4tu#IWLp#K2u}&r1P!6q~K!%E=BERA9%; zEQX(Dyj7UGr0{!k33bDy6DDbN&?E&5-r+*7bQiE7bw%ANAA4ZxlUNdfnHZy*%LheC zu6Txi_U?4X*u13xW}Xr9`31}%6L4TD*5Xc{W+OyyX+cR5Wn38km|Tclv5DBXkjrF> zJHiFX+;ofmFc^cfy%GbvDexuPw8KVEM~8|Wc0ZoGzuMdVN)h8Wok2kv4RzuIv|%x* z2FzXOx|vu7iRVeYs7Qsz?^7~qiQ+tLTAHM_E(JhJ6YrF?r71p5ta8Q0-AOgbRI8K= z@Kg2b5#Q>MpvUT!nE3ew9#}R)^HBjw4OYK#AHlK}Yu#d)@edMnXfX&a)eqo$Mowe) zOF;a?1S&T7P;()GklJ&)IMNu%%SgV!vV#i^a9zWMxvRlDF$Hh)7w&xdv#5|Z_J6?j z0*zDIt9E3gl6Rc0Gm0QuFD7kNM{ff2a5ll!3c-|HF*w6Bj~X3W;irU>3vzFh^%#=& zq6vF9hdf#s#Oy7WbLd42gU+E34j6{%Vh;%y&B6BV3Q3{9q3?aNfxAes6b@0%G$GU! zT-Y5(;*tn>MQexxvo8BGS;zICIR4+c-r#6`7$CiJ1xIa3<*bK43ebh&kI9Ai+8c$C zNPLhzf-KYp>%*<$P4<=%oS{X)_>EEq_5`gmG*r@0I%`0d?k|yU$d*c(Qs(Sr;q&dJ zmpeN-G~Ck9A1owm4l4M&Nib+Dp@rf7WYr>4e8W(!G3^?ul)d0fg}18@P;J8wcObx zTd_xSPA_vp8%LN}_dcT=kfZaUX>Ph!YQXB7aR@_qjx~=bVdQVr0{!k$ss27 zF0S&=Xe^^rSU%Qz>irS|w%U86_e+@1&`+?-;n)^gPIN(!Bj-YGg?&s`+;a#kC3Q-) z44w4IGNof5GpBF|Td6sI)W*#LvgS^Oyv$b)j+9)vQ(dLpzNA+%qUG-2yb+wM>f^-j zO2}?K5CIpn_27{~Ka@4C#?(zFD{zGVO}#$z435y`7#I6??+m^5`Pa#MG5tL$11yE1 zuC*gobw8DA{KxbXxsrTCV1&*ktdbACN6nPT_+LmQUl2oUIy@>;##k#EhvQBTWd6i| zNsW^;9Po5)D~za8SqgH7C;1VXd6ZErK`?%PeTXEvNs^K^>dG`+`Qay>xI#8okiNny6Vo zrH;yL%crIC3XY9h=xoxhZp=|QT$w&+FOTLK` zU;wVmV{oyH)^f42|3k8IFMSCPojH_7Mn){8fVZ%iJioJ43wYp5(SF5Hf4^V4s(t0< zmKbil8HK&bd4vY`Eg|OsFp^~_9LRlqDJibpZC^quq0yZH9aoaYyiAGjL_FIA?4 zotC~rfwSXSR{i1}Uqg((LR^v_3#Tm_(r0H3t35JR1V_JR5 zFrbC=vN}4UV2MfI z*C6(wxU-L}kXwS^k}ZeQBw2C8J;{DZTUz?Gx{z}Y23NMJadScrw?H*m$M)fIiYM?< z#=PzOtcam=0IY4O!Mgg-E3WZj`hh?Z4Xv!t(KDsVcP%u*_T ze;;WNDm|g)jX4A{=03_tNjX$jO7LvT0j>#SNwaXqTH|Tqc|eH>_M$V^iTz-Yn3~o?oU_|G7uB^P5UEKn;IrJ&nELk84R3}UT$iYr51KDUz zV`7M2EQh!$@Fm%_*GA9a4X%(fcz!p~t<@G8w*TkiC_ivIfS@H|r}=eOEIl0)3k z_deNh!1QT+q``f{jC|orHHUlEkXXr8VSnTEv;gV5$7|>>I}0-AyP@xWvf&V;a{s#{GCbvzg(vuTEy zpOO-FmKDjn)NRGDCgCD4HLwy&iKlKTPy6RdyTBn0to2jU?9JM4u3J@2UlhNA#0x!7 zaEdZ-KUM2oa-`o((m^*fu!oy+ZG1&-xr~A1 z45=h^4BpxyQT)3}v)@IOvz6347mVRk*gyhnldbstiHp^`nptzZ9aqPwx>Ue+|UWQA^ zi(({~?UIj0h8OHWWbt`_>TJ8&z(P>0K1#nC(JwCgoLqe8dt<`K9;yjY9J249hbN{~!m*_qNC~k? z-No7Eyh=x|5DePYmZ=-wNfZQW}6ON}Z1TUJ8ZsvNQf8nDQ0>8$k#A)=-1X z0jSfoe$l@7GW}ab7~(!dJr+x z*Fd8%PR!k)L4D;tV4pKm_;daY@QZh6gG+9|gJRp>cRtF*3Nlg7RRzZgFfG}{V)}{s zS!`%EC$N}zSV=7Jdhv_DjMnb@{Oe@>UQHa`Z6d-S2Dh;WK$IxjzZD38biswrfplB_ z0Vu;67b>{547zT?_8Hj#3eL8LXiv6hc`=->G%&>1WnU)poOVe`KDb~pM4l~l6mQYy zdHRr?caOXTnNWW$M}?Ef%&jPsGx1|-1EI_awE*%Y{SLPB7T-jAvic*{1^5fif8>c# zS57w~Y5d)!)~~hD!m~U%PhoMDWSq8w>xNL}OxTO6v~7tu>3v{O{ru-($m_B%lXZKs z;ltkWB`uBXf{M!%S8_1nJHQ$JZ5|PWJXUK7(_{{rt?g=DR$MCtaH1O910dX)DqU}_mCbcK-jq2FC=)NSqt%#H+r=|04)b6wSp}lI z-i51M${Du3pOOpd?D_5P;C!)&D+b0%u8@6~hJn5IfO+qhfZ!m1zkX7Sqb z%^_RZ$kODJE8*wb5;2o&(;||p2oTY>t@kIVF$dgQV5xQbP^fEGf85ck7|=P2FC{#iKnaB1alN?3e^ z06||Dy80(eGIewAU={UE=@A<&#PJj%N;$I7T|ik#S|8>vix9Zugd6IqLh}S! zC~NahIPXX#&q>8i0+w__!<8zY1t+e`y(VdP!EuK6F@C6f8o}-bo!^NQoX9NlmdojtQE%>t# z1#U06kggzYu0<$(4r>t(uaZ4&SpCcXO*=Y`0xC!s6?{!D+S9?7hB|I!;DOMYvsH#S zzCCnmoCl#OoI4?fS8VWbkL%^&|8W1$Z*u2IPS5j@6cIrVNs;GdHHq@4QVm|gP?Qa{ z6SikL7r-8+4&RIQR8G{I*g#_Nt}PKWxt3Z3x#(Uchxrjc@ohJ{N6EoZf`ju#9M+nR zTGt<(7xCBUU*kw#M)Zc10CfA%Mx3YM)F!MCH0?OM16Xjc8WJnHDz%_oTh5iS;31Ml z;t#~j+w~($#!enNkjv5RUQUn^Wr^MM5f|XWMDa^4bU|+I_~}_5mW3lID%_$fbNE7i zQ{YRo>9#a_#68Pq;nCqm8G;*+vc`|$C_SJ-JF>#Z^{LW_#ZRtJ)t-*Ci&?OcV3^$_ z4dV^16$n^KrY&htswQLcYgoe+`1#O6%pmbh+fvBBo@D#lmP4BvTGFakS;DEE)H6;d zeiKO#@WH|1n0|jrl^8E8&NBW*(#`tbp^ZDkFG(5Ss|9xtadPp8NwdJI-MLU@rT$6shE6Bo&*F~} zazUQz&h0$pYrE~z)tcL3DBEXhtp+YXkvT}dKrw2`0AQ`TjgS8KZPU%htnU86k6zq; z_``9=J74z9AF0j92BQdQy8a7<1?fX$lt4sHrHEg1*ST=T2mte}F~i8tD$$(^6#qQI z7y#@!V+Mn*=pB2 z@zD$_p_i|R*{#jIOCKc-M|bWTKO2e+bNr5)&p{wr@LVQImY1MoE!qB zcA5daiGU0MSR1=+&NefkPar4*fF2mxDwT9KgRl;{<=e#F;}A_&;~E>3-@W+IIylr7 zow`1{Ul45nSRoY(c6g=Q;TURK!?g%R=V_%7q2e3qIT%2cF;q->Fl&mQ9^;z{$pDaJ zs3G!@zA^f+Pb4e@z#bffH41H*qmOX~?J>0z0F9wZ$rEwa8s%u=?cc>Fr5-D+e*km) z7>v-s^kO2w0w1duI1aCFB@pvVrHJ1||G)qejKk1<7-M)2?5zZ20I+emTp!FcIS2SQ z0y1F!jBalrT-C#onLqJkXlZHwKXdf_?_&B;YhL-)i=TS|4DCF9uzw-S9b<%25ZKyN z)Yit}zMU8}HcyoJ=`8;YAjGrBD1=w#`f#@pjsf7t;8?SAIfL^dcN3BUAoq=IaYDK3 z)34Izj70!q9Jz&4RO-*Gi+k(p?_T^>dbkz#(ftDC7%E#smyikt^SfQmZwx-jqb_z~ zr4XUwchDs;7?VwS+M~6r&&xu-n~)3uIflwMFP~?Ke)h$`Mpy=b9lf$OsMV}!dufiT zod9SYUXX`$t2y!)h9mw5-H-FI!5k0vFQCTZ1uc|FG$KfV89wfe4lzjc>{68ytsec;wX#%?rhfe}wtO0Md-1OKSBb zh1c_jS`@Q)Li0f6rsy>2$dt5#~G(_^$vXEMMVLkDE8(bO86 zKhQlmj~x*CZT^>)qX;m?lWK}%=zv(#l0{C6_+!iz29RJ3m460CeW3^ThXi8) zurYK%GGNZ^Jit#9kOA{&WRoM|sz?0qp)Ht)bVitk z{UTu*0Cx1YprKvOV*D_zF|`u_jiFk8UcJ+vn5|8TMe?D72lN@}|5m2Y`jhcEsWOIY z*@sm$SmjTvRgR%r_Q{J`+82ry|0#2e0i+p2wQQ;9s%87yfPRLc3;;TYYS~gxL7i#Z zPX_oe2+RP$her01mUxvv?iZU7bBTL2Pq7(mCGn)*ra6IoZ_E_4 zJYxfJoiokfMq_b}M$uRHNfOXDcZAzJ3xHG@nB$w(91A*J3!o?#=n19>@iUn%48Zo@ zV78RRz;WMH+Wo2o(Ng>-W`T!i*Neqw!yBC}TDYYtpS?!bU_?^_gC?{1&K^t{Y7GoBOZ4n_M zrQEzQIk1uIF4kt={r}v3XMiL}dA2}0Wt3$Q!3dLtVNX~D!Pq2a8H5B#NP-iix!u{@ zsoR}d&CK5E1R@EL1V<3G0NL1pNyf&AWRnpl*fJo4F(8A%7~5p*4?dCsW4`C9x2n3T zr)GAhx_giN?#FxG)wA#Oy!Ad6x;nXC2Ybrwc__kWibzPs`y>@(=BhJA!fg0Bf}yTw zlb}ID9zAnHe22V*#>%s4VF>EIOpC2CS4HvhhA-ZU^-?U~+*)34a-+S_>~t6SHBFr# z6wgU9o-fkHnY!TT=(CQB9MOdZFYLk2ie@ZQm1%jteWe#Z& z%SEvq&WP9m(iT%sTWob3tdB9FtlUUF#yh)-;Cwn%d(zp|&(-qxnY!esNa8_xfo$ua zGG+13Zh9yIK&Cz;nTmII)BDp2a>0mqbrkC}bo=t={89_ID(ZB&AK>9d{D3X2eK|fE!yn+pW?yuMcb@ng?{EZz zd5qsJG_hVBV#FnB3p1qlpCz?}8fu1}=_DS)LA{#-ph2W7GdIjh01bC=i&TSdr|rwP znEV+6U!qX*97Sr3NrnnNp|ON6wy^ z5LdvE>TgJ@<0Jk|fgrIthWJ-^<)noMb#>;S$#Ah+mcyN>g!C9RFFQ8dvDMNbz@>zAkHJUwd4vshh_g5*0&Q3CyHu#}Qx7H| zF@~U2U7fgD)R_FsH_K1{A4ud*lYU~4ju6%kKskOwm!fD(Ia8zsq5O{s<+93zVi6`u zC9fEDF~vfIFqf+m3;j=$i--RU3dUq-Z2doM_S#u#$!Y-p&(s`m{N0zEViD^@lU<5C zr0#&v>spJiA50X7B`0T?hM+o|-82p8J!Ixoz$eZst*`yT&BYpDv|W#3q$7s^Vh4O9 z#>U-8jvmlup$m4nXC_s9=tm|=1V$2$k|e~h93+HjQW7F&ifHOOwiOx#a$!n>La$6$ zq#xB#M>2n`*6>eQh2=waT|^;m(k%b^KxFjj*dbl&6ViVGN(m=Uh0rXeOc5S=y^G{E zzSKHPUae={A4X6GQT>d$r9n8+Tg7L^jAS>jUv+2Zmz5l=&iEqzWCCl;!w&jSjKtcb zo;R(q(46(~uQRoMKjij^k#bYy{XKV zN1eo6m^!l662JUPH)Gf7EJlBu{)BFj3R8wF@jUA|Tz<+IBk7-JwghLXrUX%*K6@jI zP!LF@=i!o`gb_XBHOP_Wtb={dV>>oE@f%#fsxK^@1W(3ELCaOd)oyFSZrJuC)9!Z2hK zFWoZS1i8?ok%qiQ4@2_fIsM}~mhaXd#y}tF{+=`vhM^dZOc511I$v^>Fbu`q2AR?W zhl@~sl=-4T6tfRQMYKF?gxS)}ah|~BMe8nMS$Gwnx^FkzE2~2phxGoO-p|zGy!rhQ zzsT&#A23}Br$YrufkCF4lBtBV?}A62B(F>m)bH|yiw3l#ms6R7u_J}&uc5cMm`c#K zq@Kd0NLA&PlQ4G|7%~YL#dLY`Z0sgpbvQb9$dvliO{||W@Yx5bF_bbzc;rn<-V)~S zV?2BL3o1eo)!o?6Xb{fqbN2|Q%_qTvH7*9II?Sw8@@REd5wtsH8A+s^L1Y}zj*TBQ zFQFWwlEVWFL1aiG5xsKnRGDZ9G@@aj?vz>>oj%B`S5L9#K$w@S(XvRIr zA#*NO9;@1f`4~QP?t3yz-6$=#>Cf{PmLo?G=(5lS+jGJSOO#5c2#gFrQ!<>;bw&N^ z?2a4}G<5+pOM^gWUtt;X+CWKUg@u8sXE39z*3l{~AF7iw{QLP7MLp~wuCT-o=~ADN z{sUA-LN8qi%~Hw~;gQ!DNL~{fJf+X6kNy8vkIg#O&x_vsK1#s^K3`4Jar`+{-0# zW2Qy3xYQZT!x98_PbP|njW9ktm>ERwyB&c#flxHmL`6{fO^qXP_az(+;Nla$X#;C$ z-{@QL2d3Jtr{F{bF75Fg_3=94-bzepazvK3y1kVS-lfB}Abmb0`Q!sbXRiZNcjsK3W~>sDfJAqraQ7k{4dCK;IVHj6+8c$u z4UIuk^LI!x?nMuN~_x$ugR-y$RpAmh)oB*qttun7BI z!qNaXx@0^XsupB#MTS_b6!j76(#XYDH1JBaGK8_#?JQy(cfDP2WzH03>eZa9A12gY zsV%U7NrlF5!kso|kAh%AqMsFs#^*%|j(v>=@u}NzXre(J@$-RHxIm>L=zavH0cd>r zAQf~(ry=kG1f~IS^x>8nah*~_n17&DjdFaUoEn|yu8TQnx8;#5Ze;2pE}`$Ix6OZu z=HcaBi&rS`YofgPQo{61c`rrIR=uAc1Pz%cja77pvpyTY`d3!5R04b^&UFS$Ym1BK zQC_p1sV5(d>OH{j=39VCoa=Zn;vV(pJSDss7o^LRc6?N)z&39nU+%{SaZylrIL zN=xormCa1um3P$aZ}!{dU4d{!7cN)74WIf^_f^ zf*W{)tM-pQw*jEi@)96HfV>X=g07#^@-qB6JoquFOPB;2aF6#TGh`tEvGTIjr7k5D z4WLTP%YzE#<>2NCM+3OB^6GT8yqxcYkQG1cWz&=2_k!feoh|C!yaDMzx9@E-py;e) z`cyeUtN{QALOV``7C+}qaBO=rFB-L-DWR!A0WJaqWaQ?G*&9?v+pPkMQCLmDV z38K3AWNCK4S__uB4n#ea8KD9F_{u{fjLghJu-_vX4Zz}8v=YH`!G(a2ARr9@qc2vO z4X+V;zcFe7G6s`*^!w6Au&XPD^&@u$!s(9tAla?3LIZ{+i20@l*Aw!2|({IztpSZcaHZ zcSPcU-SH3xEh|1m@|4p#jXeY2Pd`xr|1jo<%4cKt-Quo+<%&$qo~b zJA-Vh)#;Ry$+u1MxK_SiEc3m!?ogg!7N9vP$<(1oLRGg53+;Z>{0Nc7S18sGEe94T z$m;@;S8Dcik9ssT`S8P0TbU9X5Fgi<%ur);Qo#vW46IEs8i0)(6K4b)QCkq*5&>xd z7=1m(v{`YQ3*4Vi*%?820vLA+uwH1L?hbrWOWtZ{RA!1Y_1NEr_6{qQ+5$ZNp#O6G ztq$wQ>46IxJBi6vV03b@vAxf zv+02Z09t#tXl+chnaQVFiO|7_f3=%q5e;aM=}}W4%wk7gQ|iS8q5;qtLC+49tIXy> zr$xP#U^D=WpB_w&#RU#8jAv0=F6(eVX2oHB|10#WC8f7Ab?|*5s7232LoW~za zo+cLKT>L_EH)_ePoiJ{ZW(K}YM$TE?$oUBk_$Cj$^ye}ylP?eA9fY6(#F#Vb8Tor+ z!e2@)slOx)4QoEJD<^J^=s{hr*% zVzx7N^#z<=+1-2#fMbTQ++%cUECJ^jmgb_NT1RMu_l1D$uC|Fk|K%GsQMo zle_%@h0RPo_aTtr{$|f@04)9j|Ji~vV1feu-6HxMGp$LALk}=sEb3F7*3ck^F^d|> zKu&zF>eQzRM+3MqBXu%dAiW&&vxKApWc=#ptcVm|?*CKNos|SIO3SW|SCARm$!4Y= zeFSA^_S^=*O3N+>6BNkq%N5BkcddIpKNfWn=P@*hp|tD@Kq9*U?#YCs0bFU>72tB& z1&~i6Bn=?T%1#_N0{{Q4WoL?jQF;WlH>2shxGs7G1cw))U9Mk*rl0>Fb5c8f<1ql4 zqI2l%yP~r(bE%pAYLPke>Y-0W{nMasO820Kx_3&D1N|O>XaF?kOeZatTv$2SBM3$V zu=pazOjvmL6mHpLKGb)IfRfoK3!zMt}dJV80I2NR42V5R#h+{l>M*MYa{ zeoAs(x}S0-(;pF$D(DOv!O?xzfZIESk44gT<3x}UPd_4=13uRg-lC>lVN?x%bRkrXRM*OK}; zfoK3!x}WlaazW)_HxrBoU}gI$c*TbeJ5E2Wc^3Jpur*;9g!# z0+1;>hnOB*m6!~1Ehes@(7$>WtDUA2F?kS1Ob+PP1fr=#OdgOYCI|K>1f!`!OlvC* zmu&SQ5tHP)w3v3Z`g(SY|1)*i<0&R?imgIS20)xcOs7{QCQF=Ra^zL#LR33V6=L!s zL`*r*GJ$BS5R(s-izx@|5san+F~Msi_k7x|?3uU^*YVpD*6@9!&Tv<3A=Vt?cZ#%# z^sSBmeNT#rn_}Vk5z&?9=^bZ^P9dK2K^OkwJ>2yE`@$9_45l+tu&>?;ky=b@Eyb?u6{`Xno{EM z06cLxkbN!!2u&GrbayrKdf9p_dk&Ms(^DJxa?gAdlpC44kaxiEr?<_2;2XanJcXLA zbMXs>^uZYp$@~$8#@!3(s#r2c^T_hssdh9nnS$EbFi7V$u7Yh+T0rOi#DB}`CiycZ((h@JvY@KWa@qoMvH$VriHr?ew6dW z9GskpFD_B_S4-7*6aBEpr-)dB=feuk`Q_dKiqa9inX_FQM6xjq2CbELbGU2OGI$Fa z(15|^8&U_30bU%x&>Sqa9G4r(g$7)9)XQalsXf0PFA5o~t*+uO47>(=p}hkyG&Fg6 z2bs`-$usv16J0wCUZ(z%oM^ylZNoWvMBYOpG$69GULv{^@w2qJ)}3b`V)FEUQlSBr zrFyC8+nsewH`pH{HVv>JrU$Q?I>AQX9~y_T?rnx9xuextZf(W)Xczlv<2!r(?ebXD z6di5kPcwDYozUg}F9zq`$2`jZ;P~7(J704P?KE*)4+VAtgKqfM(hbYItP&kIS{B9U zIZYs|Q)|ZxP%8nqChGII^{cq}XPMe`JgWDxIPKVd#2H4^$5Za`$*O%=DMsQR)%qr> z)~A;8HffA22Bz=nZ{o{>ZZ>T~eH>4-Xb{{L8&7Ak-|G(BUCfnr#h*_$G+^_zjbwup z+ySenz~@5pp#h)%2J#s+mvJ{CKG3RbnJ)$i=;yX zIvd!UEuBK^>5vT#*j%;Y8FFp8xww-}+f~vsY0-ez^s~s39u-dm%+v!HD=FaABPW`T zP24uT8r&wW*>B@6YAvHa+0cN^H5->WvH=OLYExS{1L&^GCyx!cHFBfbU~c`^LZ{v3 zCwb?4E33GjThHm-yjR!T<>W>KZqrY}ODk)e<;IDMsivor3Js_{cLP&ssrY9H`gF;5 z+fOGk8W4Nd#u1aDgKbWaB;9Zalrd~*T zG@$pAJwE~6!x&+w%FGYn+Djb_Db&zns(gPUB(NDP6PDm zuL-2qdhx1Q)1FvqE-xY%nhnWpdM2Jkhu`Bs0Sx3gP}{SOFE1MulDQ_rkE10D$*^b;)~$PY zSf)#nIRPfai#?NI6Y6&uDh)#Y#NHih2Os8}Zx5QS%R4ra|H)=x*Ly6X(V~8S`xB{)e&AAhu8Kt+8QM2zOCpm7=+=-3^C?Uok!! z#P`L$Ha@vO1YyqOK9R1Tx#$_qz?~lJ9_F?@RiQz!pWMrX?PB4H3&&lI5vCn(Vt6!r zb34@Q8M^-r28RO~8x3OnyS+7aCN@3u#*6d&cwR>9@(>0`gWzuY|0cL55@-TEi~-W@ z{n-;$`tz|P85|9Q`}p3PJ$choI5r%^z-SQIUOS=Iw>NdL5YZg;mUpyqjdD1@)Ldx| z`yIR+NH@RRGfo=B`S*Kk0*i455#Esz(jdaUc8!7&4%&JyGd7iXVW2b!^wWEDDuY0S zTprI5X%OOGd-}&)o14AG=Ad&0uHxuccz4D{gSbApx2DeAvaJKU7XzZ%n;YHA+Hehz z#_fu&3)*v}`!G-%1p0x!HFNT&9G$rPF&-Mk^PFj~XpAngmRVfJEBO6oZfPN77Qi=f zbzdg1W|?uy=W9kQW^>>MPv)P8)%_=;zIWg5G(OC>hgSCkRt!#4~j-gbn` zq`N`Zt6{U&uYID;>gv9j8mEEAH*hh(+PHX`qPf^v#vLdotSt54PC+sf!@5Zy;MZWyUHcZ^PZv<j z?FLpn)*{>e*0PcKwD;>pI=h0SOdaz`3@E2!QFHgQV}*Y4l6|uZqXdK0QS%a>xw^vOUg8;>kT{yD{@=sezx^>w7Ipqiiz)_wb&l+ zYA&|shc3jk86pir+`y{>)raU3=&pL`6h4OW(d_NjCZGzfSDr?CZk`ix<=+f<4kIKIj?e;wBajEe?w{mtH;$YFCU zpVh&D{hpwJ;^qP zMT4+5@G?&IVGVco#wqNIp+aB=>A(&o-+oM6-yOM6$cmmHmA#n9!htH*jgYKxy`QPr(5mPO}mHkP*=! zqP;jv5}?V_PZ$#oVtU?&^+#bHH)Pkf$jOa$`ln-7)|Q7ITo1zi#e?bJBUbpUOx=7W zx{ejTrS0%@LXUi~^!KLj8w-x5?bA8hekN^ySjO3;Q_v!|eO8~fVEI4iy_Sehe^rBkrthRB_Y}*V``c!!RM`H?qm8nOb z3sE)D?sgx3p7Ch(Kbxoujzv^-4pF^EL^b_;J|oU1iK_T>BdR6bG`-9#IXcFNv4f#O zHm867z36%!SrvaCGTFSgikoJ6%aDG@havVz5~BgJ>EEwaL@GrLy1`u&x|&WU8=5^= zO=Pnf=Nn-)ok3zWAojeeyQj*lY4gs`a4BSVHkr|EWCA@JxPxifz8qJVbpjtlHZ))} z{R`4c*3&2(?^$w9>s->J0j=quuq#Q6OGU0{M>XkJ8E86>CmkBlnYwQ;uxZ$R+hIxq z#&)LDzj0!K_v_5##oBDt>-XvA*O_|v!_b%i7S8E*AMgb6Fxwj^JXmptzWY7WcdMye zoabaxpKX6;(<6_-%bO2$9QWi2Dh)C;*f?}gx0=QYq(K83&)h&7?(Mts4hm6$N%4Kj zi3XgepQ+gzUuUGSKO0TVX8kq{c}Ih;o6Y1w10K_lTo#}N54?w6a|vqYcgThYY^I-T zlxJh!Rpiyn1IdI2Os0N<-4MYiv2@!X*P5q)BZPjN!fK0eh{pXaO}zYY+q6AO>`yaw z?y=}zUW57Y?qkl!!y?B!-^Xj;>}#ffOLPoECXIwa$MY%ac&5L&KF;H$UMTuE3%iiZ z&OC!MLBEb?0yGG5`ngBc`8ukP{*6b->z;Hv-biLNd!8ADi^=UaJcFW{y_w8tz-;=r z=|$sDsWaPs+4n-xvB*^Dy@m8>KrfrRU$38DF~K*ICk=SM;@63%+|1xt={rc322`)! zb5uDp6tn%8q(%d3)4w~h@@xmxikW^7InsdR%YIF&&)l-&XZii4NdubK?m3z=>K60- zA(Ep3xtIRhkSk{TugQ`IEU*9dVL95OKSrW7AUgfIWOdEPycD&V<-a8@8qnIk2kNg# ztC-(UkRJ{Bz4+IG-)LrUAw?QcoPIT|vdpq0jJM#=kQfb!y=dd>E<&uB-G3xQ8Zf-> z*Ms3`e!oDHG$1+s8?h_PZ#=hOBqXp^h*0s*^fJnyeE^`sN9cK12FWPA7F=Zi;omjh~H`g;c=bi_GU?2h&zH!D27IQ!tDzY36f0pqeN#h0#e9WCXh3B8 z>nha{@#^DWNrMJ7W}D3T0nS(-xW5Ol8XI)@RSi5SCLjLNP2=B5hX!<>JyS1LEgkn* ziDvZ;vZC43tO5mno2+QSYI&pTYS8AF40Nr0kN7mepZeNuLBP7}M(SKIxK0mwg2aj5 zX)|tMAGR0QmUVaKF4N7;FY_y(xJ7T@N8ok9M~)uYedHPTYn{j2A0vX_h;gRK5%s3U?p! zsQhmk+53XTuB%j zz?@wXjEmu!bWQ{3=1uF<` zK1m>&>H-PIyT7M@n(6|H4|e}RAQ}LjQ%#KlXmxoFC-{22`y2si0Pw_00g5@fl}I!| zs%FR=wz_tz`z1Q3f%9sHJUTCi@D-xa0Ocfo2EOijLBl(lHdP)yQNI6_?()-G$=_pm zW*?s5POMx!J+PzQ$Bne(Pwn%cWa?e_!kPVhutv4};8WdS@+|tdCut@3Ah*KO3(o8R zSkCJwPOHK{NsR^!7p7-8HOyvQOk3ean9G~Oz~Fv}xHQ0R z*M_^)>TF*Nf&ZGoG_?Y6$NR|eb-&)i+A^N6(wg`ffoTA2zG@e53we(0b&;tODmA^@ zTEL@kA@bi6nWol|@lGqg4%-j;69lFK@O&Lf#s}CVHGK|%qXP!b4qaR#oLZlV@x zz;EKxNZ`a=LCe(>9JLVMfUdC)Bo+;@F0DA6&GYj0l^v~qhhJX7j7wu4LQEQ9PMmQC z5loJ6kuUOJZta37@TqKkc~m1EMkE>_H7km)fK;r|BMC_Z$nz_L#J4c}z2RE7gD)(t zn9zg|k^m4hFxf@U__-4;$m5AaQ(@KuoMP7QPCyy}PMnu{m9$=chJYiD{Q6D%+-4vC zlaTL41~gzW@uJ%d40`y+k*U%9&^=9snWOt+Mc$7%G{BiSf1e?YKHh84TL}bmB4KC% zv!$YD?ZXtqI*E8Rz?*o!kQmmu2KON1(g1hjLdy)ee$W39`lo^ai3=^W`Y%@C?-Gax zKoc)w%>Wek^baQj4G<klH_kWC@DRBaPuSuOu?pXdBQ{VrVsqe&8<$o4VdQEw2p|y(pE849c+xWT2-@zq8 zP3=HXQ#9+PYF7VVsx;6c1fl^@g@K%8138TTX{rt6q=jN2M-qqzK&MTY$aqEynK*`i zY2bI_$=G_CuzrigZ%+W4YKXgp@s)!`EEJL5M9ceqx19=+3)tnq^PVh~Rt3=LpTDN{fF z-fEAZ4A!;&M0%xx*NLa?>vWF`;3Qd3i9z>aM0dq)VETwM>^qx;yEc z2EHfWW4%r-Yu|h^pE-%;2LXn5c69|oXaG`Xy2%%#w(#apT`O18DGi*KnQn^HV!b?* z-f7^yOqYb4LW9%VtLT>oe#>-8&TobH0{Oo zOH&Q;(V5yy2|!a8fNy_ZYGXkJFFHb()x(7=t@P^&Km&k@m&n#>qxz-A0YFhauOt!; zkWQGeY$ZSq`OmN{t|d)w=siAFHGYvwAI?~ySYCrEQv_@)=sz8-!+eg!~rscNzATgY#M$a;7dno!0kyB$JG=NFGadGZXy~D z&?ZmCCZmlB<|A}Z1NRfJSh5042E&yBDKEM&hVgOY&;V!R9a`();CAxWUS}}qb-j$- zOy@LkKJn`0OwNlTe3B?MK$+NBbd59wYmBBRHWpdN9otysaHbyhP&Ae=pz-eB{~Wnd z2gD{emfW%YH5$tfX)M$72~uy|1$@599)$*6CXUiMm#_r}PLYCnd}g}YG|_&U-f61x z&e@Ce{#AOXf%l0TosRp~wZ%o=tRso~H#(<*^NADvX`SQcB*yjE>6!+vCr)u^aLpT} zFrCvH`xgDvR7V}BKic(o>6!+vC!SDDM}48aqcd-5{}+AJR6|>TE!EKe0bSF;^%;|f zfaz$rckmtoT_HcBXPRm};|nTQB|oKS8hD;K6P=E;{HnRo;ZlvJ{&ND*0AS+aI~_p3 zy{$9gD{rM88IWHRga#lJ$Ez7Zyc>&kF#GUcXPRpAFlgI3o7?)WRorc^{U1dCG!^;hnWHbHL+PIe{wGd(rmG>` z@fq|BhtoX`+*i;Lu+%!=4(jJ90?+`Ug03C_9h@5Isy~*lY2dno;Z?iFZA!-b9q63~ z-X|`>Ojq$cjN3cWEe+hBUb?r$ODtN(@o&;G4IEFJkqO;~{Ad2QIC0u0#OynnTFZPX zz=?9kqu&pZAKA=VkU96_ns3v756!K*>$w{b&6z`U?og&~yMmV?{KlB0a$wXWuhyH} zpK~H*DGC?N0&kRA;P%SvfHf7bBEeSwei2eggZLKo8E7@(=^M1S*m~U3EY!bxDy%vX3xpF|+m&0i1xKvX79;PMo|1KJ_T(N(4duH7lM5 z#LrHuc;~T!EhwEeW}F|+EU=>T${D0-aDWR-?SWH-vWtKAqp#w>X285nfW8LIq#T29tAt@S=x-6;LOaf`h!7bF{7AyE*5TRt$9of8$ zs>jQA%*<4uCZSz!Yj5qhqD!X1FE-CF_3&8u_FcNQ*_}-NJ^R7~-M+VpnlV@Ri~0#1 z&j>AuXf3}jt!2zaxD14rr;A8Os6Nhak_J(YSraP_DJ`M^d^3S*06b<*tTb@0`~vtV z2~Gp>Cq`ACirpw6-G@@nWdyu2XKphC@~$A!EVnYX&k%y$q;G)9?Eio}H{P=(!wC>{ z`cTp7#TEM(k>(+(N3lnuK`>P{3RideX{l74u0?ekA!z_P=A13L{vz@38EC`DcnI}qR05bW)2~^hTWAlp6!Cwij<^g$+?ShT0W)Tzng}Bhkl08`lVo6x5lN zoYn&X#w>Twtb|T$n!2sb$Kb!=)ld1DpIcFre-uE^EUD2G;dMC6XLXwLj$*MXGKRVqT+K6<7>Tq@# zG>EFAIinwyZV9Ge41td#Fb#k!nlp|7hceCcs*WW%4Zy3JGg@pdR}ZO8$>uTwUPZ$+ zZqL$+#s8UlRg1$kH^l;`qG8&=2n5u*ChDwcn6^Psm@W`?Haij;gi%o=_kl!?Iox9i zM+3NuTAdG)hEhUoyx3C~oYI*@=g0IX=34gdq`SQGHGm)wN*U(u|kp^SVF4^iHOhF6S`q_PtGnSJ5zSy~{97L`d>w zBFXAHj66Ei8+s9{D>-1%AgYRnX+J7&n6|}Iwd$D!rU7t8!?Z=vnPjYiO#P^@A~+4e zs~M&(Hs$Igy_Ay8Wdyv6Mz~Iww{uamdMi`^x(kBcBs=zhz*V%g)P8MjR7{*Ei;H?;sov;3`vl9+xjX8{uCPk_M2~%o!05L}&fKjgqrUsA&4Lyw+UA z>-u}r11_)4$zG;D!VCWghc)`%NewXEU4-c%qI=P8}kfKLTelWb`rKn4E!mCrvZGgngwVtMw!F} zXAa&`L*aB%paF$Ts#3HKld{J47LkzFnEE2cZG`5eRnffEgtyw;Y0f63U``ig>RXpU z3}Tvj82pyMvq!d*#%1|)Eo&HUiRvKN^ANS)gKivJenZZwyRtlAzOuh`t~ z_vqZu)c1FIJ-RM(%}(#34yx_ZEe(N&)c?DV9^In&O4sq|fK`X{e;R~WZI2!R2R*t6 zzf5=AhN4wA|q|0Nah73Ljy9~s_gw8kZT>T#MHz7kV9OI6?MUQgQ%JE=&elMgY)@K zvSa^8+!ZaLIyeD>;D18|U(o`p^RHFzg`^(DB+?+5ik6f@FwwIQ`4B?V0J5TqY6zJt z*N6RG!qNb?ngvwtz2RdVOI;e30H&e^rB%Bo$c;>WfVXMxr?<_2fU4*ksD%;~=oGz1f)XQ*{;73c4-fgj^4Is>0dCHFc0wMk(x(ABrDr!E4KUXYl4C*h~ z8PFhxiuza&M&#ze-bOGQfK{Y!4=k6O1AHd|X#n{9l?d&!e#3cx07XU-R9ANcybaOb zWNNlE^_h8y?Et%*ZvnQVD^nhgTQfLrHMOWQS7+UE@e74@yQG}xbTvclK;_`Y!2YD?kj$ZPOYN>1wm09ADtI~I8RlJtMFovF9%)WfvdMW<`F09&2TEv&#ngsURLs)lJV zFe5}F3Yr>l-cEy%s_K{ufKHGe><+@x0Jf@Ox&Rvp(}UhcXc|CQG)xOJ1?u7SC{kZB z73CAJp&#`6ctluB)$L{Kv;o9=P+s6~Bi4$}IGlg!Hwg;KK0_p1(dlM@p*uBKB4MhN znM9iE^y46Oy|Sf7z0#7b;tPj$bH@5U z-*)~GE-!789s57vDmt0cenr9rf`tD_BwW$#$oUuX<{_!qajr*$U@DqkhG3=__8{L# zNE$#^G-nARJ&}5_Zze1aV5>Qq(x?q>MIh=`l%!D!U@BUg-hr=}n@c{jnW<~~kmLSl z&uuWWYA(Iykb(t8zC{#S(J4<3pe5)_Q2CM>{h%x}ZKS5~#TG7B!0L^6? z06&1hGytyVMniGm2vGi<%Cv$3QdQDy&)cc&4!w!1gnXW3f3xQ{09lnZ9i(7En(wbx znhrpu>BXh4X0m7yPgT+k;fyqW(B~7B2B1|*GX(Xd=>xxzz%&4^NSfMx!`F&>pGZ@H zE3H@DXYX!4y*n_mZ|;FTtIav8Uu5^(jfxe`Q3b=%$P}TW*-waOtIKB)ET@VdvY@J` zatNeBEmw5z+?`QTGW5IaEt)j;vO^r?pOK77NeNkG`3pcJpy_PkOp|DdIu=k`v)x2zD2?i~2 z9hw)BCJku5Vq9z=rLOy`eFkfbEi%! zHDQ5P`YmatV^)e&-Rs#|tXc$DUBbSe29b@q5xx|(G_nZ$ER6RY)Tj4Hn%`3LeY_}hhrX5aBc zC7c=W<7S4>6ak^`pNhK2EY-~HSIasGR*+Pay&nyN7_(H91|~v|L2e}^4ImTyt-!6D zBIeQ!j+;o^grx!O^1@`BQw2 z;4#r-wm9@vqI(`kEmLFx0q_46UDJu(^Emff$FYNgtM1Mu(;&%--E+*llbEPF_7g+k zUL-&R0*T#o%)29yYdrQdL*hOpK?4$L-E+)&LkdT`XJ%Y&LcYhVEWV_@(&~0r*OpuS zgm!F};ve5UzuZ~X)xZtBDeDS|eLuZz{zI_wFK+p6riKv&2>DnMa{N+hl56RVT@>mM znJyYc5byBQVN5rigZ(kVXaE+!`kW4yi!;xWdMyEIn4eg`J2PIx^L`9vCo+KlDw5Re z&bQ<`I>Nzbrp{P~)b=-fZUb=fyMbqm$H55>1a}V+TzoM#(YZ*@i${HtQ#hK6bl~F9 zP)2q>;Fk$V1HkwyXUW*icar?9sjm{02B6Vf&=WBEg+iwbb$1HTiUTO|Nz|+`gJG+S z?;Et_hBpA}f;kjqYWD)inL!b{3fyO5_r68 z6%e$dy)r>m?`BGA5LSGOTqZ293m%1jAE9Xg9bd064V|lb6#j#RrvZHQJw2)D4Z*^f zGMt{&qbOw~Dkr0JqUY-7d%v;yp*gg& zh^Jck!V2)9yGuoP@spFJs6=}XO_03mCbk2zppd@Sf+@pZsvLl4MJ;`%eU`6Pq~!3jzoh#m1!SW!DWW;E*AfG zw8N}Rna%iB*C6AEBjZ6aOPc;4Gt-YQG4T1mB+CRwmamp9ml=+VzHNs6@=Os=ox;{k zgK*-v@k}RN-?d&fMIUV*UMNmzU9|r9VI{4n@CC`Uo_tV?vKSUM(MEX==iF5G_J-%G@cy@WV zdJbk8t0yrBG+_zE|Gx1_v@L2yqZcSV%T08bgq!cF*;@kFGb+%x({^w-e##pcwmBoM7*tR zB0Q&(h#(5}KF$+pz&!n2z6fHbq9N1=2}J{_^vOUG%4^#p+=mHA1Gr>~8J7*0Yn^*_ zqe#pG0wMWS9ydeIFEzLCZ1uOvBgDF3P6{%0-Af@gzS(hp$(EU2^EahV<%{5g2ie^u zvP(XdFFMxJ^9uz@eVF|K4XQADyTue;z3-OqMw?&SV(Ug%pZXB9C3R>Il#!tRcssrs zJ>MRn=a(-(70NR8i)SKlhZl=SOF$%fK3ecD^HBmLfuE2BCeKGBz9oli%fn6{yacMg z!?s3)aH1avnI?^)=SG2nLHax9a-?1Xn>-EfuC2(414Z>1g;Qb}_7{7IMiop`TJy*=BphA-e{fn;1^OL1M;`;8mBfEtM;`j+M z9oj*8!R~|3a|aPn@>RCcfTVX0$OybTfV~zC08^*uAzlN!W~{{w&E-%Xh`NmB?c7wA z2H`aFYSi_r4kKJxq49gKrc_A#^7-~E?=$AR+~?b&VBNtveb7kvlB*%zJD@t|qQ~{2 zraR>MrJPG?F6LB(O->N@okZAADI@H0Ail(P6^xg7@~oVa8;h^I{xLtmDmZFDJ(#km zK}~NjA;1_1X#noX7D=pa3mX286epDt4T9;9-q}<_s($;>6pkNlAEi2+PIq;Aq+OUo z(;kj{F51HpY!5-XF2ea-{`ahas)?o6H0 zAfnW3>qSh_mjSb~(rEW%PFcZ01+X@guQzCCSj^N@9qi0;xieE2JRPY#(CzEZralC) zh%&u8P#j%n0krRZjZ+7EV^M z47Ig2$Y)9@m}5bv-p!00%8a-&z3cvlGDyC$ixK$Xf`{y!D%mMD1N0rc#$*cxNqvS{ zqCpg?w>$YkNTvX?MOUanIfdzBCAwf)Yw0JE#?eB%+XGY!uVHZQ2>Wwhd8WR?-tlOg zK>v^~)r|a75KF$wY9sXgNjFIn$m(MytI0Q}jPV~N*Ta_J)jil*(jc_xQ)g3-f0T~r z-AlDsYB0}X##!sJ`b|G)gFoH{)7rXRm?_#)GbEn88%aNsNe>U`vd~58ZrmccscWVP zk91!w=}x}L$LbsL?oR`CnB%8`r5e~MumEef+mc1UK> z>LTik2@WfW$t=^2SuCAPe{QEipF+^^+^5vsZnfW@@8CJ&;3VA?8X-TGy_cTb1?4gu z@&BHYmzvx8&ZN^KHdMS_RGhqM&LkC``y$pMju&yMIpqkh)v$jcQ>37dr-W%xlV#?V zzH3piDX{|9Xo_0Wb4vgB%wqB)XQ7^b`D)13QTdkYi7#7gueF=Q&Pp4f9&!V)E}b)_ znYw{jWpz&+9+1WxxG3Ed2i`=(golQ&6b+Z^5J$YbVK+D;A**k2Vnu_Dmgx`!-y$bn zgwtQCc!T#eCRcZe!C$aWldsdV+}_@lXzW4d_67s(}G zryWNQmo32qIlo479{(!fl*3UpdT&WghdjRTO1?%sE;uK-A~A_teSm!!4Qe*^8gUF; zgr`9ZYmlq~bv4Du%tupvL5YQ+Vw`@brlDU*=x|KFvdrq+V5zsW$7Ss&#^bSlY^gJtOpz@E#FeFFJU+{|ZS{8Ik|Z>>#VW6`!pS;QH&E`>*1Ez; zeFR}W-+l|!lwLjB0+a6{Cirk=6_14GXY|;|qsX|fa~&TsIfU)X7U@0v2W%~8mJyBz zEMRCDZ;^&k>J-lN>-uj~COGP2oGj2Fgy`Fj&4sd%@fBKh7u%}rC*9Y9W7{THjB287esLoH#Q zV{_%&1Ni|#XaI6bYF9#k4XI>Zr2%OAOx<_vK)w4J{No1rX#}PL@Dox6>HBR+4%zACno%F6LXB|j5g?|wGl5*~ z?Ue3E@6KTt592=%8a>!(lqGhj$sK^E-&+%a3KFFGk0Qk~%bk(QsOE?<9rLPXSAjWGkhulm^8bBuBTjLO&3Uh$ZQi4VoRto9E2wu9p z&^F&5lWn{^IM`GyqD!#8rsJ@9liBeF;VburreTIqebJ@;!fzx^h{E`}8|u)>c=0{UPs% zm&^5Qs|&56RhcCL(auXbb;d(XGiH`Z1q4IW8p#hbr)<(sX|71GvA{`pgQK{`=3`E0f zkq;7RC2wg4YE|E7n{kr0zj8kUr{tao?-NIdBTG;^LwFB93S>1hQ;%gIeP~d|-TZIZ zD3Y(_`;G`McxVXwd{x(UayM6Wti|sa3X=L6J8v39k$MTtciZ4w&{2JO3A&ucu>RDq zn7)x(OCC%CxZD|-uOs&6xQ!cBUdX`|iPF2=(m!H)k_S@{NC1$TLnJfFgQ@4!CM6F* zJ(JChrlh1@{p5qGtq@&P>M8=!0H}=00-(G%3BjI6FdBfJnb>(4k6K_}g&mA^1j$aG z?E=8O%OF4Jhn%F$b_dt-sj|b1#ViT_n5ruy?;;Vb_y8E{yQ8Qtd5&G+>4v02x!|c+ zF>f>oC-p@R1kwIJ+=2ot`?Q zb6!Mfgn`f=C_+nKK@YrIrTL+#*DxV8AYW#@@M zX#n`>^Z`nIYP|*SA3(u{0!VMJ{awxWGVcHB_PVl`KJ4$BW62y#GWB^rD|WlEQ19n| z#-1*D%@v+=PohFXLWQS_3e&rXqGwT}Un=3Lf8n&127yGs@IA$)k01_wq7!pg)*?U6 zWvfx0!o;yI^N3k@$(mg2@=}WKVDtMTbYXB$#L2w<<%p4TQ{??U$t2&u6(fTi^W@%_ z$4V}f7qnx}bvla&1X2APGfIPqQtzWGx^C!#!mS64Po2ZON(C2cGkNJjz}Lxy#bjJz5FbBszpOSo+-DJ|4W`>4+v4~+Ub9ZOOA9we4Ouv zh=Qg*#->e!l%_uR8alS=1ipQwgmI}ZQz=y%)L`d%;W8svSUR8uaX2k9Th z-9;5h4q|nke7~>Mb?`KRCk0z>?$N*CWe~#AB82deDII-AA^9wI3^A-}f&?V+T#-P@ zR$!yZXSTTjf@6ZKZf5#vkp9#sj3SZQ{b_Yl72;+O<^uFZS?Yko>yq*gTkn@*F&P$HnMfcv=?H>|U^+aZz262@eyM5<2 z;ik;yn{lcaGv8+H_Wy=8Te6)8cg%bF*5&!5499V~(X{jMkkw(}h{Q^^^T40Z`SlOq z=QjKBpCTJ1{|_r^@FPH8_Jd=1{u;Pyf$66~jO7}9;N9k57kW=PXv{zG8hr3qtmx!B z?WNn%*9pAyM^6O$P;gHF3*Kh*8`9s895n~zqM7HBB;((HntJjcBZ=k+HqgNvMF+`u zAWW!-yzehE5Oj4C)j)$7x0M?GivU&-y1a1u&%o6iC<@6%w92oJ&V}$rnsy(L&)~}l z%O{#oD(a=2*jHx!A8+=5yxCsc!2=;!#goN$z98RTXwu~(9bAU_bM_vwL$3QOuUTc`IT-|xM)3h@6d(OH<2SCsOsr=ells(?(U@pZ?SH+ojcF3Q zctgXKfH$RxthX3lqY-u&+!bghO1+;g(MWYB;q|6S>=0kZ7z{hOR=ECXk^goxzM($f zTkFcbE_NqVm;M1-)q!r`+eAX*&trw%TMm&-M_54Ke=G8yX56U&R;$)Uu4_WwlX9d% z^t(1F8Jyq9;9Ved0?E*TO#Gq3%2T21B)_^@Aaq|6q5+}kt$UU7X%x`^hOH`>Dmc{G zT;_ZI{(P^!sK+Y1lc`U?j?KmGdz+wBV{@^H`Xo%VKy&#*?ajr9HPVo3k(yAip&)1w zeT~g!goZR1TWrX@j$~*+rpD%CQMEGIcJt<94;eylBq16Qs;{|NP<*pB$j#? z5MQCGq|MIvc9@p3BU69)$7m$`q9_v!==g$ImCyo{l)~8y#p>s7H_t4ah96e|D2NsTIgZfc!(Y2P;aT z*W4t`*S$!ApT_#}Yi*Ojp3uMsXw=*!>?hHPk0!D2zv`N=xk-3mHuK|G*D(1sh`Z({ z;ZZPCBQFu^1tdZPA~iP&kBB!d^2xl2WN1L9-X?($wFUXOE!5y^F@A$qCEe5#&d__? z@J4VwP`JHJUHED=jDzw5e;XANziwJRB_VCk}AGwK_`9jvRDyur9*riQwtL<368wGAT2ZS*C}o8-|TqSAzNoyG0s=9)ANt%$Ejng{nX^_G|OEF>@Rw?V1K zvk-^L>75WkQ+cd3l^Xl+05@+ed3C5C^Clvi4bZ5|Nuj}bbpD%kXh5gNvyjnxDKr|7 z(l1Df29)YM3vrC3;duDxu<3ZJ1&tcdLde6cX2@oy?yMJj&ED?)%?4=Hcove=5PY zdpp~Q(e}pD-pxgI0L8r!>Ml7Ptwa5akw` z!|G;Y3#2C0IqWNG5Pgjuw?%d9tI|+xu_1FF$;0R7WOnD)x{e^aK*30ipVC z8nK`ayJ66;U~9>x3Jz0DKG&f6&T!Yd_y3vSZSLt0Znl=2+wcm5_Hvsy!t08$2j*}9 zFQU)~GWB)d_pt-w1pv>*7K!lUA1x0x_Q}}393NXn))2YM1vZ+ zc7th2bDKc!R+6IuxfgCQxxD#JAowK`qyfRFt-DT8g`66e%@!t;uMzRufV!5A(=~)3 z-C%fbvl2 zDvbMAQhXFcE`W2A>#)BKchN8QL~#9Wcf}lRbWYBRZQ95jy$?Hu%(mts?a%rh@h4Dkr_|!$}t(E|>R7v+DI; zrjCA%Zu_nPskc8Z*Y>R!=3Zcsj(3)A`@UC~4=)teXF_Pov<{0R8S&k}Lt2OZ0jnsz zBV&K!_sHD0ee!XChP)i2$5vBh_VQ+VX1b^YU_5IJFl6ULlAYuijcK-CKyKC3aMn2L z|1v`~sJrwIvru;qN}jL?0DnwC8UV)cPo8G*i~#173oml1P4(Xdr2*)4Eb?aku_87Wx{m$h~z4lL`(%ZMj9JWVB zoR(`g$GwN$3LIWc4 zGw=$Cc&%V!t^5bc(11*IaVVWjL#hD}=Na|7*Mggje2PuQ=+ylPqpHXlgp#K?^R4-% zc5_kg*w8z3i&#QG=xvUH)#geIUrx9jFJ$b?EtxEwlR~`gvcHn4%QIx= zh>>zB^8cQhN`6yfjErC-W8ajFC67fh=aRWX6$qlbmCLd;h$w!|cZ#Mr7F3T+n~R4H z^p^-t1L)+Tspva$l2rVOf&U8OX#k)4j>w|x1`F`Y7_BtE`_rmQeS>1w(kkkxoTzuS z=ke+Jf~cj?h;jhc~N`LWNJ@ri25g0h`QiB7qxdFQ$$pEX17FBTGXCz zrz}s@-eCiMS3=X27PaTwLFePCR-X401OHourztCH&$SV?lvq*gdj4@PYVY^dQSw`R zU4+fyu2pkN>dNMHS*BjbM@tSb7JDV~$0YLT)Dt1+Jtrc-(DSCR=?ZRE=v(A$pCB^) zb)f1woE*_0oC_0A7Yfnfp*g&FrqgZr@j3(6vxKJhLtxQrOn$r7{93<{rG31Ya(;W8 zFaH?IS2ayJUQVgY=TM%hd%O~PJvw&CmHLjD-{e(~F~o!fa(sm3IDJeU6F5&1BG`hf z4q~op5L)!H$!SL8QDi&>qtn3GSL*u4bl6t7I-E(jwQhf)kC$mb3+=_$+Ok~JG259s zlurd8V0ZH^0G*oJm^>f>K=SS+$x9Z8=TkRK%UB1XE@YBuK>LCUXln==RYIUA5r_sr zXC$_K(i!UzF@gosZT5hu^DMm&cK&cjouvh$%qAm!T(9XkOPwCjPMK~Nfi z#%~>)VgQWC7*VYUd^Uk;0G#?I+5p$ns|WL7iq#0m6H0lduC`k;)(Q!Tk|mis=f*&( zy3iw__bXAVB_NPc>KRoj)p`zLaCuayg!dmP?Fny_u<{S3sNln?1JykW*48RpN{NjCh9(FAy0f zFXHAdMSmW5^(!tR(J&R|Icor;I3MP=?3-u+lipM0^{-Ds>A9gLC? zRLE^Xe8K8OU)oREd0_fGLt$cBP2%F+{iw0K$E`2=~RM zg}XkcbpF$E#P@H&PaRD0(x6(NUsk-68G7>demG9Rn%$KYu+zX4nN2>2-qso}wPmqc zHZ%1+t}pLz_S^>QDS5(~gNS#i<62Qi@`N*Ysgv(>SGVK%M+45u6V3vFOgICWBM3tS znB)m(0VW^W1E`}3MFXhR38y%01b(lf&TOjTJ9#Nsyf(Y?$eZlVb@9;KC2xk94$2Gc zHh#*kH~G%!08n6{s#l7tN+#Wg!2!|X2!{F=GeHCL$mVzfAl^5Lc;ioHPO+dju|~9( z$5fdxP`79DX%K1jsr3>Z8X$+68gG@Cgz^3|+ybIgX7Jxgbucw!>py+8fYZ*fEq63A z`P{)Lv3R-VK)0_q_3xPMOfdvx`B=;SX+~j-Ae5W$v85BWKhjBhb1Lmpsm{|-- zR$fKw?aU18$yHAB1wA^!N5`8BofTQ;LIJ-LKgR-mX_z-{9~zYDUH3Q4%voicp${&2 z$j%2PJLw&IF)G{KESeyx|6voOK@`dNMT}G-!OQ^S@i36TA|wqUljr|YNN*S!g}p8H zNCVi%C(f^ZRM8}=6Z2-L6!ifLlX404k$f$Wj{5DzHtquG^I|RT2N-mA$Q2nJ!{q{V z3|r<{rr!Q1knHWp9o9!;PATN{dCGXALI|4vlxVtFrm?ty3zcEz9XT%e>ZOz&4Z=*l zS9wf2L<$a?*E)k_s83QA%*eQUPaa2>S_3=;)RmqKJ9q}Di(cz!{jCGHzxzP@yHewb zbs}fg#6VVWm8>R@Bfe8Tj@SZ;LcN@Mqe0%1Pim~s!t~Y_8>kxyMFXhhE49|AgUWj) zd&t1Oif}Z5OC2Gt%LXXiDenT{yJh7bwqBT732f{$@VCHEMY4k+_Q%r2fK{U*P zd|sPZtj>x0I;CL~6RrK^nSdp=(4Oz-?*=fXSX?xvnR?*$5XX_D2V5Bz4DF9mNy+_V zl#swf2R{%UB+o*k-U9*TQRtA>*LdlX20_I?b1_5eopaaM$fRq8mISQ+gWxm(FWnoA zg6AFGI0D}!0U8i^a^f6p#CI-uN6EzdeG1)*EEH5}h2xW45rwgHqXev;+^PMZ)6&bi+1q#oP0zLWE(KfKP)rHp3-27z*c`3@&>$zrinEBzHDRl)+ zQvedlm+D7J2r49fxJWvA`Ek^Bpl3fubtewgG>D~i8xqe>OkrOg!2Tv-X#ksiseVkH zqZ$sN??z}EK&M`+50P{A20(`)jWNj#Qcn*p>W)^w)7rX>ua>%rkJPylu{)k$sn664 z_`Z}o85j71sd3@`#2v-ABS!#uT9tfqvJP<}2jTyw2!Cg76@*or30#DS`ZEfI1|hGO z9K$0unXAPe^e(a+4tJq;Y_`VbBR<0kUYxwr>ULJwmhn~2UU%JBVEI4Zyf7Hzi43hP z+04|J{st1--|V>!)Y25MiSvD@5)lT_$$dm8@w1!iiyyGVxybfRlel~zn6z&?R(#>x};wKfmLf!m{W^N`I< zz4F6s9%j#NfJm*)BPSvZ&^#Wp0nH#?`>y5`kwEWs5gDaq8g zK7qz^yRcC9-JfyFQEM9>At|)bg3go{^o;041XbAXclcgNeC0a5Lmffa4JjxUKI+X> z4Gk*fxf@SOnpKS0TS$xs#HM(IW7Tz)H?kPH8%d4^PvFH;=Ui-8>xjz%>t1W&BEHRU=q$*)$GpWa@w3 zi>9&PBDc+dsDLTH!c$^;YzPQ88pT!8DC+GLY}C3*xX9JV*(=f@>Ut-4J^|AlavC?2 z1`TM`+b(??UQ@`ae3DdXsDnDsL;#7$2CW9wv)Kqlh;`>;somPq8Fb8puWm0>_vabM zL3x3{4N|qXONT1+DN;e(c&W6FS~U?M>nW8hkt$LDPEF9D5^A09J7B$5nV)^Qazp4F zBt!#3&#LqM!vQ-&d82X145@FE6b(pqYiv0Vx8b%7gX`FaJpF=5t-b2fU=^P$(N!ax znL7R^PPNRQ+W?VTr&>7?VStwNT4_18o{8kJ(rk2f2m^HpCloY@z24@VC&6nlK9$2r zg$7h=ooW^8!)q!&og+zy26XD2Y6+W${AaTA8nzHCPvFp(q&oh1!oueo^yBxLI4r$arPRA@k@=H?Ml z@tcQNGtVU*8qle?c@PxM!^6JOG!I<_{C1sVYv=wlsNO$Q!}p_E+_rQ7Od9}itshuW z(G+fyrcmqb&c@1nI!wIki%c{P;;nUc-2)f-I|^SW1sYJO_4LQ1kjviD_$q18fJXFv zofVz?cJAMBm>;6lDY?2s*RQdj?_44G?zz28ZT&dUHu3_08>DL0qeEpA6e?&5e=jYe z*8Vs^*5iUJ5gw|^`2h_oq1Lkv2ka*I(mY(bA+(i*Xh5jevkeFA2<45%9W$ibBt-*K zb)IcF+=kmS3~pfy^7IQLwa&IzdOO-JycJ7Vj@`-BrSC*DI?(NVn;^7Q=Qv_9r45k> z+R#^|4aL7oQc*wV14|P!RU@^bwzEH_K@HS8qZuJ$8c;~5OFA^5Q|ny{BXqpx6H>a2 zlxRR{xyEyK%cx;DOoqP9wv&q%ENZ=^z1osBU;Lk`cYGQRW?ycK1$g{s>Wb8Azy%mB zVuj3tD}feI^Y;uC=Q&A!~SP5;=+QkpvA$)Y?noa*2viO(m}~VWWP^o{|Q&an(lFM$mXhX#JeDXh19eI>E|%k{mlS zE%U3<)YvacjRw@#YHe3JGc+*0gAYIHODYtS`Z=4LRk)LM{B3p>*A{N(8sLLE!(J1g zGzl7?9GM&T=5Qoa_j@~9;jxDOTzJrxHv@NUmo;~sQn3N5O!7z<4fNoD*V%pXMzn_! z7C}o5j!Jc^b0|O>RMho*j-nm-B9&=~o=2iIAbP`|BkB*1LWkW`iHGEgMFw#m9IPwPS!)z-zrLF+)FVwvjDz>{3D#(cn zGc@Sqq(Rquc5jD@96o5trV?~rsaJDuMuR%pkm0RBDr~y}wLc*>8c^Giv7|t4w6zBG z-avXZptoxSnyG;2?K2>A2R2Kqdr#&YQg7%TH~>qB5sbk&!U0&0;F8cS{umq{%sZ99 z-G+_90ji9_q>Cnd!Um4PBP@cJ8yuDDRR2I3(m;kAG6n}Ebhh)W!M5iKeq)G!jznod zbVJ7AfP^DD+Ny)!8M3#MEDgwR#26fK$lExIWdQbDkh*s;1_yu2=2Gt%yvDa8_PX1e zZiRGpjqkWb(Hx61^_=(UF*qzm=M?-UiPk#?2XNA$$qWtpg}BH z(V$N19fJdO*Cfms92_*%-bHFOpjPi#5}-S3UTY10VCcP@^k_iuiaN*O0K5Sy^Btm) zJpOZ`-;n^1@f2rY>j@c&%sfAq8njK9SFo2n~qTx&|2%$(xN&=JO;&12T&>wib=q@R3hv z%P^V*c&*EOgWlq>Ib7~y#3&V;3NercwDlP_*Ka`b?d1uoc%YhA~Wk`{_+ zOczLFs&#CLGSCfc%Ahw)^@pfg&Uc=`Q2!r`{`}-9|+X? z#E2yz*l2hQ((r1%dDDXGww6b(-o)OT22s~~%Tz!>T9ilQ&q#v?G-|zHC!mqH8;{Cg zkO~cTP-9aeWW&RqXL}GK0=d>33y4}gzhYT%g7x^D(J&4#7E6iu#~ie3oqt8hW{Tv{ zat6|JY8~k#_^uK8^`JSatJ%@gpjxi2b2J!7D{oq(&SUQee*x*J9zK{fI zK=5fbw>=MCH^aiY78R!YY?HbTc)zawWNX-4ZOYrfur;?mQ|J8^Pqt)7|KHqB61ARe zIT8Yo#`bJ!Z1pyF7dn^wGzY;~FJre%gTQM&*>ZvFR&JUTX&E9fClMMDsr6(lB;qw4 zkIW4uLjy9~>TEE?Y=F@gR}ar(+n^{#jP>RO@BC?A(eC%;Zpk5b=k#u-9?2(u5B5rA zM}Ey#qH67h17gAkP31aiD)q`EfR-W26$umde#(Oe^-%AO!XX#VnwS`q3!N(UAyT3N zrFzG0hwLbMZO9!oHTBn|MFU!w)!C37aD!E|C8(R1ut{kx=kl%ftiZb#X)pA>{BO~o z_BVTO1GQ4?BV9R>OpyWF&}*a()w&>(!|L|q*MYi{a}gTEUh64IfrN}W0hMQx3Js{# zdINNUO5R=qI#-bn4d~SQNSA;%0_<0_iCB38|G9Pc?rYu7Wozvws$qa{t_|VfvhhZ zVMkdEqM*Peycf1KI|)l5djeUQq|97EUQ?dPreKf%zK-0Zsb!$cb?2 z5lH!4N})-g9yuvtdIWObOF1;j(}Sc)kAVB1Y97pzn5Q~u)8&y zTWWG!l0tT8xH~pS^LEjZ!4bP7zvj4ZHl-BhM_PPV(;{NcM}=~8td_Y#xy>thp-h9a zMqHa!q}Mc<5b;M8K?4yH6HgUIWC<`K2ma|j%z@yD-SJXt&Vjs?u^~Tl;2TMDAWtS8LUu^G&7;`#(bS&< z8CT(oBs*b6JeDG8>d%3U%ZtczAUkP=oI)WqwdX)a)sRh>0}KH3b;*J3Cv1EphDlq= z!A=jIPH(QArGYzQGvTXz-0PV9!EE2>L$lsK!SQ)ncvrnX$n_IViJIHx2|me++)-6v zE?{#=gSv>gn5bA6=$^EHD3fwArO-f1#KlB)DOrY;$+?7bXdtIkYe$h|!v~HuWL>H- zFwBpcDn3koSk^px=@mLZUkXzjzBm}24mg%u`7#pshaMtFh5RxpX5h)43dKXlOjI? zc+C&0Kz`gUO@0*UG(UoaV?%y(4kLjkL4E{m#rz0PSs~|B2u*_g2-v)kAU}fBR?Gzy zLsNf#1Z0iwu3Uadh1^y1BlsDEvF;Y5KZn;_U`6!`@3%;IFL&&g zoU%vrK$IJ?TxLs+O1WID5`i?N(ET)pBA%0~fmJhUQjw}LUuNjgzzu7)jy|LY^1g1! zu~~o64Mpe|b6-Z1)|>xGqMOAD9?0`fnWT!T`!Os|s5mP(^d~~kAyy-lr{_KR^?Ln`<+U<74 zA%1Uc=HG?f*pVFww;|+`&4=j~geX0d;&GZ35zRscHpz*sq*8Qq8&*9H3L9}XU6tNW zbGq742be=Bf(9ZYva+g(EEkI2IGjRgAY}7bYfY)6QDl8Ab0CPpG;ud-+1MYo#%ARM z2>U~Jx3O*ifb_!pgI!6L4{?6B#(66hkqvQILUSYQlLn_E5;A+@*No{5R1^oZ$ZqP9E7CV}mbD7X1d)-eqVTYKB>$@~yP+iri{ig+MJ&_G1( zZMP@$BC=rj=d6$uDTD?>>TbI|SHo{v)=Q=B&W?gSViJ67`L@_vUe?B2wy>gxUn4kF zcidkPUsQLq>WP&S!QRtgpG(FhfgTjota3h?1_g|GTyk2^W^H&#zK`TIAdk4^QiVJV z>`=fnDS!q7F0Q#57oJAQw#;C*aRtKKYk8&L84mmUxmdeBHlO8}XAXC}*%kymqwX*Z z1Sl~=`brJy+J^@Lmjtydp%mEMnXMH~ipVNbYs;M%a5oB|fq>dOkD`Dqxbq_JP7yQ^ zacRxrZJ8Q*#%D3aeYAl#qR$$(TZ6eJy!v3%t4;q)Ed3p{*4o`>r#Ii;C%uiAJ~5g#Ws;sqNi>iY@n}zdlCnH1lXV(p(LmPbkM>kng$2+Oe!A&56=XL$ENoY2IL&9R)`ykn>26pu~-vBi(6yg*Ma;#DXT=&v+^UT~{8ko`c3PsEAl2DY^{aM9J9 zx3zV8sL>f>XtB0`)>b;+TQL~4_N&v(Uo!eOs?6&XJFyVoAHx@Ap_J%!85VSCiXEBW>|7gl?7&Ao%x3P!xm(V&G@yvu$2 zjcobZ41YGmpUv2x&B)JY__MKj?ROBHzZ&sN`=bN0GG@z{Hr7@sRgBpDkjCcKrLkEX zoxLvI%-yQW{96<8NCQ8VK8{+8E?jv*4?+$Vi!XvvOcYI;`HPqR-;nOz~2(Eb@|X+V4Kl<^tDHe?5*G>p`GEgLE3 zi;PYUmmof#Fm-$^w^pPEVV;~}zb|DZ6BtqQKV2)gfU&`sS8QJ7wsFxb3e z^Z(d0&`|BPt_NHr!2BK^t*!v-dF4JBwB|eQ-l+7E&_#Fhgw}j(xj7uQRXg`)xQ82m zKY_bqtri(z8mVZj1hGkO3nP9~bBEH2z&2(bkpX4qL& zhJ`bqm_v=x)Dk8|x-2qtq@N-w4M^KH`cKMOh|V1GXGlx~;`6G;ry|=3&Cwi%>YE6Z z@*Db*N!Z@U7bUfudpo10rvE?E@Y_=}JT>D_VPgGX(URU}gR}lb0g-L&)2r0T#zIvQ zg8S|o+~s$HeE|;K3T{jzF;IS56`0?-6hT0PvYHA(P)^dYhjEF73YpC+%d-D6W5ZQT ziT5`c3B=_*y(dAzjj=h0&DSBaZU3Oir&g(6N1)iK%=>C(o>2#=R9&Xre3aQrL)8^3 zija8F*?GkLI;%k40_5_UeEvLQ9OHi0oNo{3Fzm4%gRcWZ%-C}?u8nx){~|N*>i%o- zbatiy%G|8f)j7rjF2#-wMWH@-YJHYZPdk8326ygfB|N^0>6pTK)nMMqF$4{YTfQ2= z;a8NQS4$48T+F*Eh6ZA;tQzAbWtKqUbz;_Q9azwND2N7vO20_%{`+*!ku;%BT>fiB z&$_XWM2LA1bH~T7`;q$%L_MjBmrP5)0*k+6^CPCo!Q4~}@Kb64S73ztV>Q$(4d9$$ zR-qSd{+^XY1IdrC&~O2Zmm4EnrJ)6C6`6b4LyUXyC_6mqr1!Ph@RXf-{!%E+nM^X{9l50PRV$ z)+0D;iGPX2G$5`r<_(Y=+|C*XR-kzbqf^2r2$YIZIvD1obTIT$dIaYPL6;rUy@0%8 zl;+6ChJ=XHi))F}9JY;8e@wZ|E7^$9RF6^*?E}U|sXt>$Uqw=y>QU;UJ!u%F{;VZ_ z4T)(gN2y0flnyXa=tfMofOYcy{_|54J@fWFdL zzldKF*TtV$5BxJF&_Kc^6~+Ta_=Z1_g*hwQEHTWpXbVECQujLKR|(tzQ;N?ce$ruV z&igo`{FwYf-S_{E30LWAaYBUBBDnWyaBpx=CGLW50$l&(?_sWh#B>Co-J!;O<@>Jf<~k*{)%&s(W+ZEWfnlbrlyJaJhA>djfY` z*jbbH*ZR?tV1I1>?gtzehKJUVdR+D&SZxn0t+vgH6dd*QVy&O@dw`qcNJT8RyQ>Ol z?oId8K-&|h)Fzlqt-<_oZ)dnwt@GlmFe=T>dRo=R0u&etpL&?tioSc}Q#~ zdMx%*iigJM&$RJ*#8fEKOkfS3XnQwT2+%;(Bd3R3=~%q?5RV3UkD4A&)^&)$zat<` zHNZ}9!7BU*0@48RaTOG{_v&ZEMdd#dlm?)U$WZlF+wfafVoAW150=Y=Z#3w4n+shm z)9kNktb%|CXLxW12gl~nAMr|b;`sV;r|3_Q=TDF4Pf?<+1jYopav^AM(V&g)Dy+DC zNm$}JtoQ5KGMEK65;V~Hlr2=}gic8dh3@r{YV?rl5S<3-<@e-bt3ZC&A2hrDJ{GtL zc$eTb054z2wiWQsLbKf+BCiFzPiz`smrsFh1$#8u-)!%jYp*!J3qng8PN5hN zj*iU$TrrV5pVZuW%rqbp*e$#!U=hJVjpj_=Ql){eM^}K92O|XW93s*HF?zt}JmoJs zTSK|twJOgiCJiv72UioAbN!Y5?imh|dI4c+DiyxHyfVU5A%b`@5osz36~tz@!_Q_5 z>?MSy0c?B=97Kvk<*hk!HyeEif=zknCIg|*ZrDh*KMhZDtG>f+7PaH*@RK0#@! zf%X?e&;dbdDuFJyhf9kCUaCkftrC<5pwZW@6G3Gka|yG5AAxBAJbjDO@3ost?9D~& zGl@w9%;`f4m>7Hr;Ij!x1HkD+ihyBAT}4!yN~oiLK24ubRGLbK$7eNNK3z*dnyP@9 z0}*fj4gqNZIDITZ;VNGN(3$hqbUlG-06cwvXFrK6QeQ+w8X!*JHwj``^DiMR4PfKP z$;HM5;WTQ`58L=q96qmLo%?%)rUCTBV~120x#1GlVts-`sNCo#dSHSTwyox9|B5cN z<=zbU#^xhjsJJ6Lu)gC|oIGAmLUQy4bB;h^F@C!Je@ellC%|$jI)KurRp&Fc<_6A! z(?DPJ#X%{uZT~{>F~Mm79^L+xfd_(bA|?$mqpy`FF?SF8t@*juaHQiZG={7^^D?5- z0KI~vGxSm4BEN#jG(e7SW+!#ewR%m;wy1wZR2ra0H#a4yOYONmyhv?1;8zov2EftR z?Ipn7{t%hm#Eg1pz8S{G>qtNYg0o^rGLr=J?S zictNV2~AVYJx;xNKBxUHB%lF7^tJEC+B;mM7-Z2~2~Pv~)2n-bwTOQ+@o9iRWxL9e zZz%cggrosv^w7V=BlJRZcW2~M{;!EkQ%&juX6Ib4zl)GGfGmHwsAS?|QmVUM)Eus^ ztl;e>ZJR+(`7NZO0ZsW6j9a6@gPG+-?;{aSH5YXP7rmd5G=Qwoz5o&HRa_c{;qpNe z(14&q^5YFQ6HV8L2u)KFdf43E$1G>4`Xhv<0d$4l4G*N2HHaT4It|dHC+jBT66li+ z)+dQg1MCV77O{~`$uNGc4% zLXu*b{tqc=KvBLLFshRZDJD|kC*+_3M}^KrMg}fuWgf>R#Lr1U1A+=Yt-kr-KtXj7 z@4?YjD@mRx46B1lKm&pb$&n|R46MUQLj#%$El8fG7+O0>LIaX>r*Ee6Boo1PG+AiC zQlXui97f!Zz%&4^5Vba(Y!emM^&Ln+1A+>DrX>iG?@VMGAXjMnEV6`82!A)i(*V9g zmu%q?HX-=k2~Gp>3PUUl&Tt9Q??rSPpvT@s_am$Zw{*Hlrz4KTluuz2>E!4@Z?9qc zQ0`03%jVcT>z^?{b(q~-KkQUJ45hoa4ytIFmbyZxrK0cdD81;yOV3)%?GbO6h_oHq zf%P3{`;!nDeODqtXTQ?2GhXdAr7$P3C8q&s{8eP;N(<_SdLDNtacO{CzMQhGo6FOS{5_Boqm2{5g z6w=UuCVn`Sr&+|vw1qo(h$uUInU9nwl7j{u@fRHhjuqU17&cpLtxlI0W7bQj5t;_j z@m+2ndI<|@adpQ9cs39*JvitDET@x&1}xJiX>WD8Ifp{b^>Kw@)t^ON8sJVFo5WpQ z;krQyn{x?C1IYM^w7f$Ixlvs{jrcUcpSE4W`|b3J?qONGav>RLz%XrCP-i;2HV$CO7s398EP;`S+3OUzzn4cmh4KSmxEH=W# zLn=P09RG~SG(e7? z4?hs{ptHD?7yk=V(14%+l z8emq6)5SRlc_JZc09h&d7r9oH*9H=+y9i4I*yt&Xvf8q+%`jabLU5X@uI((h7Omii z6O#s*(brvNf;&U3X6lSwd-Vw7(g3$od)2|{&NVKNCMZpHPdl zA!z_vDW>q?{mutjubxLxnmRyTm-Tdl(g3ttRrMELmvs>_X@D7hFQ+V1QTo#hk!k7@ zosHx75Sj+imHIQhjH0u=>e`$hVQDJEqI1Y#FDEPwU@P@H%UH+NS?S`5M5($FacO{C zDU{JYG%@9jyDS!YFOg}gD((>#J2AGusY|x(TU|t!G znpL|_WEvn>3WPy>xy8>OyCLZd2}}dvO1?>E;H2qV8(o_ezSkt~d&D^nMfZaldKqE8>vSZv&Mqx(addiG!kGvm0=eGNWHp zWIsP8?y%cqv+p3>c01hdt{?s+{ZJuqx1AJQ{s343QS`1BJ^DHD0OLNvJx7tZ@#4Ga z_soUxoq0^93Gl((EUf375)v094susbkSAr3C)EV`;0*G?H9^TrADmV%&!xZ z2AI)3PEqz;x3kh*ZsElP`A5Fp2CR5Sj+i(Q9)ipjQV2e%oU=UK7*Cdsc@d48sNfzX?wR_~=1X5#FwFv5-F| zBuy1Zw>v$&?F{d?|#RkzRr+On~BsziAV#)=!?A~;zECQ&_Sr-l@zi%P>_!xG7XR~nW8h7^)4GP zPnK89$`b~zC`XZy287MZge6OrCn=95B~6w3z+A}^uVlq*wMEJ^+UHo2v@@158T^$6d)m1CFUXNpj%+ifd(mnV2-djJ~)l)6JE{ z^POcEDfc8U4RELK(5Q9L#$(olHoi50xsKJrP^OT?9mkV`riwf8#4o>s>SW)Cm^8qg zx*Bc2>lVoS_4u|L?@JCEa75qSE4tiq%(wA!8D0ii@ZTgjO&#E!ULO2`1g8P`)Ge7) z?mj6Yb$KF@X@DI42*gG{aZCD#ZYb1tS-OifG@zL}gZOL$zsYDl{t#l)0CVaL;=|$Y zkqV3ZaN^Pccj~c~#pSykWvF7YA3Pd&T>ynWOu^!DQj zO#|rY=e{NaMW*&7@J=Nj4e%;N#1J#EE!V+3iI_B%FwsU2@ktb0V^1L_4KSyUG7Pfk zmYRF^wg!u?!8?PvG{Bv@s`T~=rlE27w$sDJxw!UhLel^``uUV%Rk2&ypgTN|_%y(e zetM*cpFKXZ0n5|LLQ}=@2#*m~ci`O>ew=v`acO`XJy%;)?{NJvWR|EjK%KgU<^v<* zjix?{BDL8hG7XTY?iq=!FT%yA2%4M>ZigJZ$w32-shd12oD+rr}E0DDAinySL_YQI&ycLejt{Z%(|+DmX6fKT0A(JOd`3|{jz zkw8}vp9c6BPJ8X7_;@uruiBb>aYq4@$die5CAnz8HT5hNxkh+b_e~+;WFmP_H8@4N#|^e8F4}*5kVV zcb$+lfSkTr)hB-ajGz5fmE(9JIcUH!bu)!!3>=|`wfAD;(o}H=aJ!f+u>o--A!z_P z^>BnME@W{;PVGwxO#|quI{;nGvEs)5FDE7qFsGhM0A_CZ_)3D(0Cei4kXO#*efF63 z?742`RRpF1@YGGSKG-+Wy1jXAul5YJkiB3~pd|Ai- z4#Lv_KKiMka_4W*wZD@LG+?-R+OA!_KU~_hbALD4Xuvjg`=D(3?)^OkrUCHO{e*tN zOfKHtU827uE)8&}zGh!rZegXVbi@BZJR0Cl-RepU7K||b|Lz{LUK?fcl*P&>H7U3YUe0rT&=i67KpjU2yluHVP;-?kf@cYTfT zq0SDh?|72?>6Sj+=%-R1|;#95fifIqwWIuVgk|tutFsUALq78 zZzM2HRp9JX$?Afa5|{?S@dKF&7x+)tx{uQ;`pbz<1N8V&^aOhD^P<)xuOu`LpyS7o z6VTdA_z!`q>{k(+2H3GLFmsVMZ1^p!^dz(uh1Mtf1!mpWe%x`AMngBp=6esoI;z9$ z-uhvu%P-iZ?TYR2Gf+iCdv>0-XVELXG6+dCOzYznT~uaX!S55$Kv8r~mB8&pOCW%M zL_itb&@>gb?s8gRM?jj2T6fJ)XniB0X)0BjoLbrU7(xPg&4DKj^Q>bfI|TuZc(l#Ay=_pDn_A8SCD65s(Ie(Nk6hiQVC7 z*>?pZ^A@7g0Cn1!klQ=WrFLt+$=et`en;4fejnj!03ZDVzk=u<7Y&Hm_Y;igT$l(X7ruq0w$+t_y&AD8-s@}unGzHM+%Pk5NT*Y6Zw{$JwKe~SG>GHGV-OsjElk#6f zQe{Ec_H6Ci;=7IsDDC2w`gkUE4<_8G-ux$*q0>NR^d)MEYj`OzH|X;LR>A!macO`X zpM2$#=i8Xg6x44Ll?JHM*OVKmo$v5rYk~a^VQBzc)xU)0SHUgx_X$l?gCE)*C-{d% zrK!OWK*f_8;)fp*mZktneSY#hbbQ++? z_j~0DZPzB_K9H}+V+c=EpLh(C@kvM#e;mDL&%jV;UFH-D?p@uh;M}mm->9=X5R&)I|>k%0c@*ETFWozd=|Uz(!vkZv>0A zLwL+;h4(+`W%B@n(*QiW!zu;G0uW7 z%dO?Ey@yX><`nkdG!PX%xu3%;9|r)MviLtf1LSt>&QTFftWvRcgLML>eGQFK);o&adLj6c~!Q<=uQi(!S>05}vI> zlP0piP7)fBL@%ewktiq+S;%h@k_M2`3)l*f@@4>hDFsVo0gT%h^mconW%w=`XuuG? zSS5x5pL%kR`2jg-z!5!I&2h*IFmdvK6N?5|(K9zitWr<>n8-9hjvfFW2s!Y;&xlO} z?C5SZkInbgY0ZU!{R;xq0C>8XBMUOH)x)Knc=)z#tY`okJx0rEb&!L_y?FK-owMK` zN?e+%QnO$umtvBp zn8mjzHVv?&XT(bM2G~LL-ihcmK%Xw>+#^Fp-FGE2&D1_AAP1^{nbdyM1XYw>V-kq`IC=aMm=y^}po;N-?y(ErN z-(Qwtif)e0oBkUfJIwB_ zA9k+%fe57~S0tvC?O52~S5$fcw3%`T0i><2$kg z>pRYKKV_sxkMTW%PU;aB!G6&eTZkNr4$udSc$u&2G{3k6Zlr;-=vJp3ldt-xNON0$ z2#W@o(Mef~X$KmDdMHt8fEs-XH;IbJr+Bq)r5-_0nrp|azY#ywnuHCN9z{?ZD2-kA z>Jb}$%SybE0h$k?==c1g8@17ihUkc|ATAHaq4D~`=fOhViLpJE1yT@1VOOItx^Z+u z*h`_I!4wz2@ThR+BKA@=TdP?uT7Wo*7t!)1O)RLHB`6I*w-AIApz=K;u5=aDCQ)fB zN|oi(PU>!g(g5^?$X*%_MWonTHG3E%u2Q3$YutSu`Swe<$L7$lB1#Uor^f4tpJz`% zTYT7MzzT?nxl$u0zIn|sT&qP84YAbFV+mp%dlAv0J{XF0bq0oT?EwB321jrWVY~pIcq#(oYp^-p6HJG>{kHT4co% zKUmlyUk*>D=KVyasfvmh=4GfKBq|M1K$3}~RY{BF@!;pLHY z2|!QsERxWGS6d~4xAj$jd7|f#hz3NDpE_uE&P&*M`G3#AaTN^YXH+Rd_Uv5{ zL^Hv{<>q}cRySNl6;JLqPLTX21L_0fxEN`^r&C*O&|^dxk3{dK7Q<*z+Lk}Q)h0=*K0_~ z=8n5V`6#Z?1Qw-?g&D#2UzMA{BDC*$!xPG9);N5mfnzH)fg!RumXRKYV&FF^sM$|q z8W2}#0!xXD;WuYKD! zf!Na~5F4PV&;%-lVk0UK{<=7;!YI&cc1@tuZ9dMrpn={BO<(|@#hoYlBuQvMQlSY9 zNb)h}i9Sst8W2t21fHZ#phvweydTzUg(fh3tATFVWW*Z6|K*?C@u9+G*JBV136T-s6Qu zE_)>$?4cPwG&b`m@%0RaqyB*XpRD}d>BXrU1jGY1AXd{;N+Xzeld3RB%p*K#Q1)kT zlMwBtOXVCzIW&;-oNbbmHJGK6j-@0TNLnsSpfDsWMQ+3L&$@V&ur&{0Ho4e!ry%B% z+Wj+Huxk{sF*esf4moqkklXeTNXy@@UBv~KRQZqM$L9A>M?fF$cC)QW@7E;RZV7rjV=uwbKR{YOZ%ZRaUF`Ifw=2$9dTI# zmI>@qAPodQGjST`_#1X_)`qnNn7NQS=@K9d_~q2DgOmI`AZ7vk58_CT2QgBUKXA{| zc8O4aB-@fETk>@GrDu*wam54X-+6nB2BlBlspdrZc}H6r=07NfhH<)G72&43vU}7{ z&VN!44dWtl+R!na9&p@?%n=`zF&Dd)`U1XmkDmgQ{>tr)%?)QEMUL?M!6sbNOomk@DkREfEYLmL`+BKerYaZB~cU{pqc?y!~gd`hB$q~v|KYFJ}BWq}MOF;|Y&QmSvWiSGxy^Lh2;xkMLBFjY@MhQ$s=%)XB2~Z#9(`Lte%Dr;lJ(a8oS= zB+m*fU~EW^WVmsglED?6$>0lb_OjY(Q1s-<5K7Qw$b?)$Av6$@JQ+eESu$i|uA~?m zh)JCcU~Oc~V@U??gZk>!4J3G$aHA3TVf2;9E;E*}z{VdOo4BwOY~CD+0@FpRF#m79tx(ii`uQkhfyL8B);TUlbB1# zGEX)rlLj)cO59NuJ;g*_;*z04a+p^$Z6!l;Cm}KUoH-=%^|CH?^;NTP*oBNe+@8WS zh;9plwxfr2g2skIkd|-Lv`l_^A3DQkW9AU^zr3ENfg6&~nHQz_4lfXN8^$sXV|g1= z&ecm{%E3j4)RsAfqG%v0^_;n7W?ltuc`LIijM?NZru)2$yqMm7(Lz$nEl!a$Gxl2- zWAno&Ai?fje$pSuYl-lldk4qPG5N@5!-A+}q~d!t6_dB{8!D0DD?O_k&B450r-8$M zKXq1=3Xz&;`=Lo&`Wq|uFp8yt*jL=TVzaLEK!SHrFbxE+C+b-0f>&T4wh`uvcj zGPf}KU1m*Y&j?d`vvAO6mXa??BcFG;i0kH{4 z-Un__02PY{;G^0AByUqU&>`txa!&P`H?sGkfvax3wdy)c{f&jbnL=qGG) zS=yKU%6j!J6iWlKznwVgOH?%U81BL`t7dIlS#2L-!rL60$d+qUhd`&-8R5NEoh#bS z(dyiu_CWpWkIv}Pu{q)4NcG!iKX)g>V-|vGo_sPTQxXVQnMm?~*CbEgT9&Gi6rVVw z+RT#~iZpQ24YyM5`ks9wkx!*a8i-8Z3QdS8N$rW>SZ|(5p)?Tsyu^t;p`no-!9}rT zkCpX#=5&xO?krR$9|G@LYT*LCIcW98kGea9-Ld)dlaa$m21ncuf6c7zr4GovI8}sn z{f?$<@{7_uz2s?jNY$7JaDYeyf2<}Bsf@g#o3m0AQc>pH3?f@wu7Z-U(bzMvADrOE z*!-U-B4Q4aZTkmaNxnwIiBNvT$4@jqlCRNl#2Oji1LhdU1Pw}`d;pshp;us10a6*} zI7*>`l;mqPa#FH^Rv_n<aU~NS!UHkVe4$Vs_&eqi1 zrmzYn1o`IZI7Q zs6(PQw<%F4B}l;K534G(mvad;+mWbw1%B2;6E%O*%DaN{XtpC!^9sDYEK&16uoADN zL>frEGI65j1vKn#c1M(HU@nzB&Ht2rRPqjD*zc}kZNs3`>Mi1f>bkx`4stQSJvcUh zbp~?vxQXNTQ1JgLI{6y^GSR9L8Qas0O}@szOoZfY@q{Wf9mX6DJd}E6dQk#CO@eBc zrRljUHOq`Ut=B>&CZB-dyg$FoE;-Aoe*H-MlTJgV9pU$7Q+~HC6A+=Ov7r`3)P9Yq z$agb108?<*(*$68?ifd_K?nX_}1g z2=8o<%}*YJY&^#QOb!P7{BO+1D4;AW!}D6B=0Oxl1A(buw3KsR!|%x*Xe;OUn3!1t zxPVXJo{gIJe%z?v)D}bYb2OvJXGZ-QJw7%EKLuHO$5F{C9-RPU#wNedP{PXss95Cf z>ojkZ&ysDRL$kNUH{wilG6!cga8>fv(+84hGkHUykEBo<2u;2s=0HM&zIH>gkD*u^ zh`la#mpiGVF&g2)4SQ>Q)JG32Ls1P$^IB&5M(L8igUg=WaLdqtiF1#K**(7j*O}z) zwih!tRDpE8S<^N76}J}G_Z6Wp%re7=20loBL$Dyk=AnH;fKD+hltTkK=|^h5N~Glq zvMrP}q$CZVRGA#UVq=r5QOLnqA(dX~n1lq{{m=Rbp*GZg9b8UMjBORWa%&=8p1oPu_mEt-pgFjc=RFIsyhVtbn$@$ z{q*IYE8PanvxSnfnyXmDG$`Yq#Kao! zIr`_5o(A;&#PnI5=OkQ92{e#!NzE~?M2$UNerv;qm-(2q^Hu{$=jtwZcW2hfcX!$r z{!qRF@Nl=wEuUD=NGJf`N(V85`->XfG4EH~QZo`3maV!gm++d;uySeO=i2*}BDKbM zUcl!lfCd6$#=(`!o<(?G#1|-n1|qPMXR`-TrqR&o?sN?}E8Kj6K^_KK%;0xx#QnwQ zO20E4;?WX6rs?(DMTU29jcCC+m?E;XJ2)x{u9FNPU8<`xO9<;sH@egKiHE~=Ih5tWEZ$;jag!MQ!)P$6}SEAmkj8v1VphlILJ1}Ty zlEiU=(?_yRtiow4>CTiy14*?H2{-gl)>{>SVrAWpvS=Wy?jd23607_cCNDT@ZOHecvhhpI+vh&2ov)fzbFfy}N#_(m*ZtDf=3%M4-=#bn$ctFzkw9LUlcf@GphOx--24%X`V=BRy&fd0PXzM_ z=>vnaKJ?S}funA_H5@f}+CETsXLe!%;G?+!@W@tn#P8tO>HEN(Fja$WeCl@efjMf; zLw`t>nBy5gG>D(HeV}J93^Z-Uur8#k%zY?{29nbDfs>MgeDf!*tou?H4P+(l13huW zx@I=>%~P}w^gl^IwzO2c@_Drjm38H*VP4@#mRHz;m(q?cbHY>&^6KJk%q!~?&gr`# zc78G6VYJX}S6+o;v`_O6QsJu<&~Fo zHYL$)S6&5@CiBY6I*+nwwkfYp3i8T}Sjy!U4ns`RYqs5kertY?Bf;TPYo)Dg?EJwQ zJvcV^;y34xn>ZdEvj3lglU}oV4S`_QhpgMDS(o&htxSN76^kcSm04kXO#{y)y(lX3 z`*C9y^u?c8i9<@Hfy9&-MMe6CKY&Xj2|p`nFVi3kH+K^9BJPMzf6<07(9iAR^_P3% zTn=#B0td$Cvz&oHI(N+O+W*7gk9ZkbeF9Yz0{?0a{D>zx>m!$-4_&5e%sm)QH1Nje zFR-gePeXLbg|)9L^L$2;)>lwL5eurSXzKTe`mWfyC2o$*)A){p!|a~lfNvHyU$#?+ z5LJK}d6C9Q#EsxOXl-<4J}_-|urw(9<}aPDssRxZaKDhD;3@(9X`7LLcXhdk+1S?H z9%+Q<k5AqS-kdz=4(G90 zfQT2!)L#JAirjpY=H~TDdkt|&zT{!-O}JRqnN!%b)4)p+?-H-yOVWtAoSlpWEAxqz zNduWT-I{(J;WYsGXp_cY-rZK}X_QI>sn=|}__yfp+#gUq(+WR<;<$!$}o zARSthj;`j1E8UKM*iJXc=FWVD>0x%yZ$L=W(N!iy6(Bv|q3M})bd}LcyoWw8Z{w(& z24#dBgg%ACW{MC@SnGN ztHWu$1-zq!>sngf6S#{PytfA(e$){Mx~=`~fzH$D=Gc7ZLMDOTTR-e{`2~Bd)9a*D z9)$WoXsAa#cCdxA$n52OYlYw1Xtvh4O1$6YJuVi`>{vh@(x6b=z{`1V;XRtXG--L4 zTl=KEp7(a-r2%im6NFp!^Pt_rM@mQS!Ac(ssBn=gg}nnwX+RqBbk$Z#i*1dMDaVA%sd3Vy$fbRS{(@>lKIb5^}&%MY)lZI!(@!Xp{G~kJNtaOXPF+b?9 z^jAkd-+zs4G%4A9Xxxu%G%4A9WZa)@G)dUn%e&k2^PS$JjgJ|!(SWV~I9%}Y@gVZh zfahto$2)j-*#ezJA{r1yylh~Lfv6vU9<`h8PH(un+{D;dR+w7yhmxEI9a;SF!d1=5~e{0Pm+H|;>L^L3ZcpJ+W8_Yp_ zes!+h+}pt;LVGRaC1j*YQnW$Vd|gH&8W7dre38gCUvp%l0aN{b_@L)_7RW;bo@VXg zKkRlmF3HzchmK)Mt{;24{Oox5vzh{DLXPrdPTtM?M-w!OGpA~mMfwVNBP1iXryU&wpTk>R*(j={8{S=pe zIFVh%Q^`sL);gwM%A4%`2f%FQo=Iw&q|}Aa?5MBLAvF!C({)tE53|^EpHFfckf)0- z|0xPB@dYHM0cpfb1*dF5^gY1th5V9B7n7I<#OcPA{*~kU`gmc!gv>NxPS-V-yvo_u z^JV0x0e>CWedVc@>ksEhNdwADt6z@g7#n&uqqqROg6{n z-=8hFWOWa>WOW0Dt>c!gr&AtWex0kAUv*3XdT_Y}3SX|uGMUqsP;oRUOC3|Gc{=xw zOQAZQR5YNvu!alEJe7ahpm3c^lqL!3#9N@0^l2oe0cjn{ zo-b+fWj^BE3rR_nq@2a~jc8JsXONTzq%}Ak@h4! zFgEuXpjA0KcWnLWGlCbPaM8!P)l(&8pbTY3JJZp2riKhDQb=nPzDR>*HNVYnf(GTP zVbHe$sedwGpS>41n-`FprkKd-aOKUd&T#S_XWu&D6Z4KAr8_?=Q4?_3~64InBXSm2)-TOzR zr2%ck%egljz?YY^WTCPRtXGqsCZU_%8b5LK>qtnGlu(z~3*j3{NRyBdQw%LmK?~uV zNk{|28tzh-*62b9FKf*vN`?0=`4L1+Vc`@mYi$Pn`w~~=2p=D2?G@z?tuDg_Osoh%Z4DmiU>(h6UlO~~0mt-lr zCA@`%G)W1A7T|p(qygbY^$+)CEY^9DE#3P`Mw74#Wnyy(W|}rAVd(JxfljNrXe+`p+2jpMv1qJ^!iD|Z>;3zIj?LIXo(e+vK)1)l;>Ih2( z`dDHSg!Si1OatN??&Owwe9#}A>{^R2l8**_ONp8$x#Ax!VQteALR;3lij%)gZW?f> z>f1)GJ+6`ZD(PrISHpyHscT6$S*hP3Gfl!u9rah5cv@K;`)%^kfG^dxKkkz+H?L?9 z`mRC#9!Y6Hn(BHf*GBvo328uB!@ZW$`dsaG@NjAq>pO<+xm7;wVqN?{B&SJO+O=@d z@)Hu$Bqa<6Ek7qA4G1r;JmnvHw-N4Ge=c!yZenh1t%eqw#H`1RhS|^RCm@7J(H*D zrKi?Nr6h3E$J9+VjFz)vFr8%GU6aR@%5*uGPs668#*)Z|&f=iIx)QSW$wmXV8akeQ z+3;A&sD+mkgoFbU(txmrF>zJ27Q0bdOlJB9M~@p`5v z#)2#CQ$x2tle9ERim4$Jy7k%QqXFOPm0MsbWkam3wvVz)%Tl_A8`lHO@%5Lb8P?6Q z89j|RuI=9XVdu&(*n-q><2s{L9yB3etE~yiz$L5k(b!&pwcG6|mH8B3s6d0F)bPZ^ z1RFbf`p$fYL^L3(p{*(q&36W!xutF!eW9>@j%+kwtKlJp0^4G1dD)fg3uK}JQw?|H z3rzNAwJp_`$VCIL>i2Gys-b@@!&jM0L3GzJi#Ehk{kbJvjY>ZGy|LMM8B%ITc3^$S zdG4o7th1_jXdYW{){+pp^)t<_8ZOv!_>x|$y+LcO&6U3M?R{EAa}^)4ph2O|uiXB5 z&W7KzJU?aK<$W0OYM#x;>BIJx#-sT8*!<{9B>cnC;;$ck9`;f0)9R>95u)g*#>2iX z9({5R9v#7#rLt>i5r=(D`?=uP?XfY>Md%-HPmR|PKhK_kr_QLsQyHaF!CSXeZ`E*{ zDl8C#r_)<&4@OPAieq_oWFHD<`OI$i`!pz39qmX~DoM3&dmp7}2~C@1G$1>>dPpc2 zKG7qUXE~0A4|8=@!xa1wv(Xry>FZ*!q~tz&U`7s%&8K!FP>#+WTR-|d`9H_&Pf*?( zR<;ynC^O>b9vU|_JQ+}=kV@#@bRlU&cWf$4wwt@Nm6^!# z8ZNkTfj#OBM;%-j>QF4(ADgQd(a;DC7T{i{VY=ds>G2R?K2!K}VMV$*Mg z>d){7go(E!N^QF1Gk9y_jC;GxiSwx0JC>cwj)t#Ugl8hw*ViI=jEf8z3^g?tp0iz! zV)N`g5|&-`n7?3<(7+WD9}ua<6%x35NxZSJzoIZ22)k}OeU-gWbz^b=m*Qw3Zr`R& zV`Zl`oRV2q;H-a1C?m>T$`tf5AJ#C$rB6rq$v2y(J{|d-#cNhd(-Egi1mh?Kr%y)} ztm4o#_qHn?gYTTV>hzW6oMkR&pGyN*q)*3Cl76+S*w}huBMPH|u=ME|2s=PJdU1Ox zjt1hArz5`%XWbN}qt~)ro{l&Vap}_0y|T`F&MBP1ap@hY@9kJdk|kbvDm#i#lKYqP zLU6it%y@LFfZ~vjSEf$KJg;^|F6y&$>MZk*ydy^gSENhFjMiW87kbC+7gpGZDU1ff z(xqcY>xGr1WA-a6?xPe(198dHF=GwV5eKz*bm4BEl~2d)e=!|bYadq>UNNmBRUDkj zy^Qc*pM^v`4sR*UAJ;><_ZC8A#66uY4lqhYjtw;-|JF7C_HT=4WN2DYqe{&EdBcYW z9@zXly44)eU`@>C{4VY=FJSOUJ>^b9Qm1zR`1gcs%mf!TuWut-jtnkyWXBBxAtquv zV2cjQi5VLzKy2Kku@P~*rV5=l$zFl7n}6Vln+D|_CU(At<)DS@rlO30qzoF!i1^+_ zWj_SXZBfdHDTM}7+I3%pc(O+Bf`frzevetfcnm@?Sw6V&jLiqO>ldCI<^zsoVz84k zA5@GgKt8-KaXtj2VCQXDe)C55u{0_3Arzq32e#6^j5kvTP0D--WK8CRm+}@$p-Gqz z9Q(Tqa8LZ&Tt4711SHD``&D14kYPPvEb#iLhxvdbSw3I~Vv_X_Dn=C`A8t;Z55X6W zT|T(-o3FC=X;9u|{X-}qmk(aXHznri%ei_`yL( zjsxK~grrIU6{7S=fbXSEfZ$@QP;~P%cE>a*Y^nqZ=yM6+{BM3i5i}5yDggo!6A9pj z+?MS<4TL0009)^X#0zeDMQzd}C%&-bLyuSyRtGfiifp8l_QYC;2QFh?qzKFXUwuLIWX*5&+ki#X9&! zm;lfM^4b%?e@#&OLBBUPH}7WxWCy}+2&p{*Jd+NANRI@#U7`fYvB?m~AJL+l+pyE8 zL1Al808i#eADRIExD{~-MbJP*?Frz?yof9T{5dP+a0;P;kh&AVb2a>yWjz+PUx>Tf zFIe#vE-Al!_UqUAt)+vxsTQTJ{esmJjt$8W;`h=JuYGpK6^vtBUpR9V*N@PkXtiIk zhLjr68S$|srU7y77px(17Q`9(?MY4p^13fr!P3Z>?#Ymq2m)2@jU;$>xoE}bQZK&( z;d%%Uj_n_iMm)N`wd*xUs(gsp8I9P8$Bw5XlJ;0iB_%XRvGJin>1yu)UFn3>2kox$ zjgL6!HV5&aYB-h}Xz1aZuK_86A!KXRJdiP@)e5$&>z)JM=nJ?KSnlMEejaxw`#f&r z90c3lHawr5n)tFV3K8)t!mY)M(@`X2A;yMU5vUCf)a$m@gKTd%Qm4wy%Xwi(1JC?c z&B3%0b;F&QwJyV7|LJ4;%bd)x^A%ilEJvSL)$hpMw@dB!kZmB2!j(ib?o-L{|#vWcpF;U*o4-4v}s92c)%kqmFcJ z$cNxKTZ5zaZqyM;C}brxk7UKupmeo&qd8LTMg!`{keUY6wNGZ`sI$>uK>v8s)39D^ z4tdfv03_iH>1Cb^fav3x!>}kQX+nP8ov>*s+*F@2e2)s`50#qX;8r0 zFMoXjg*FReNB#+t(}2A8C9Qe#d=NVUpP~R72-y6+6I1wH!q~AbGmdRsfw2A#wui4p zuV^I8CT>{qr4xtgm}~4eSlZg#Vo$EDh~_Ibn%n89G@OI7n$NOEX;8-5y4xioYFKZI zZ_TqrqCt^spOFsev<@J_wq}_#)Dgx|2n~eP{s>2zkf3Fo5VK4%G!V0p zBpak&Y)S+{X|82n6l1aW4#qu8v~ynS1-t$^^p9{s;*r4-*$LLm*S;h-FJ^400C{nf z=0)xOTb@o@!t9W;o4?_N4h`zR_9eL)TOld36IRCGQU(oV)V?G)WAieyl*mq6Det8e z8c3;oNp41l_rlw!;CAAkJp;k~9utD`7=&Q5e6Xu0z~-Mky%!&N^ZCG~GhU3YVMvw_ zDrRh`0QvB`#Q6}c9C6;}f)TQt<9WeNlQJIy0oqAS$hZ$>(4@?VK*nS~c#qtdQfLz9 z1J=;M1=&-fQWdYw<%5P`vV5?MDO^5q{lvx1FduLv%LiT3kSrfmj4D7r+?+Tcf`ue5 z5MBAr3P;N{Df1x^kk1D%V@Me^Df1zaF_{lu${MB6B+Lgasqy*XiT@&(4>$|~NyZGT zJ$+S=A2GQDV{;|G6~eFl?wj$)WVh*eAu8fydRx0tW>h)?ic%fOjQ43~)V|84Na)8- zPK7EkH*l;#lPWA7pC7nn`Qc7kDPu~Zft1?cU{UIie2x_4+(bDvkkhI8x*}Agc~T&M zFEfQv>Z69aQoC1rcvX6Pn7j8Q^<r;M(VlHxR7ikWL@h zbb3zR7w8-CN>-JeQ$6NtHncQw#on4jsDu^Y!jbCC-S4wfKE{A@l~=5$+V7OG^_4*4 z#@IZCZ^Ao7w(TD{r1m={j#T*&44>0rsC^F75lQW5B{bKux@lOtnyZ^MjezUlSfA=r zu+=^xHE7ST;xjsX@fPR)Ua3hvGNVT@nSTMQ^qBlXw{QO&8-UtNtP4YlRr6IQj15?K21;sg`UbeurU}D)dFGM$h{gILJcygb@&}}~H+_y& z`H&1hO4Rf@BFzC`LURHyv1w4c+B^LmsSY2-lj2;nlhibftJ(wI)n@)FwSfM?q^DuM z)*aShZv3kuucZJQ2&nrevG7Y6 zJGR46yFonF{#?PJXT!J$#=G#c7U`{4=rP_caXir)^AZj=Xb9V#Ca z8JmB8B`Wji+%et7C5`?BK8Sdgo#UHcm})^?-&^ZC;)ZN>Qfak97pV&KD+UojgVIM_ z`_?2RYf4Ha{VFBVK+^K2{bDsm4f6AX-{e;~B;ehd z8GB|%zt3^Z?;`>3Tz)b;o`Yk@oFs0XiX0ooj}2uaVIHLkbM5xJjzLtaO?8?7*Fh-J zz%kcvzcfv-0}1>X1=2v^4cjj;>wXR-@)HzE1Ch^7kdUR^4R>_b1>LNqjIG&6GG%>s zxS!}RAoHs2@nvVD4CdEoUj1?;@SR*Svh2pW>~N+Whao)TNwcjt`%XhhrrAr4$llX6 zd#~PBuazgS^PKq}qmBk%dBL^|+bDIty#Jy+8pwO$w#z$E;(CeyLy0tyxcQ?}^@LSv z+ImG#W!CzX2*Z)FzdcDiT-6VXyQJ`mi4$XU<4vVW%X1~dc^JaCCuyy4)rh2h#&#yH zC6^(q^PI0gx(Z%IS%O5~v#Lc3uw=8S@!ESt!Hn?}DNBq6BPrL$YdQASH+YfF{v{N+96XM2( za*&ZmGcscBY8@_N|C!UGI?U~P{X~P>Nz$a|NaYeHe=(OkZ$;gSqG%whpI{7`<80_& zcKeF;V>*mu8#6(SMBMnbUu)aj8MZf_?FxQ-LaW=I>-LBGM26cLn-B2H?g+mhY{EGa zU!Dsnrk0~B5VLzVW+T$L4qE9ye96TV=F@EPXi)lyd%pF_&=*77I#P$2&r%Ex#6;Zl ztxZhUHx#_{c?zO|AhT)WRMpccu&*&^vQUMFh$*qDMPRX(G$$==jLk2xjXy-T?H|xb zd~CWZy)q*;uF=$pxFcGXQq#hh+8oZ-k_IJ?n1`!}Ueh5HaU@01Kt#mUd@Uk^G{}S; zLm@P*|8yw;!bTQ(=4yt%h97v7hP|CeXf5+X>FSqh*khaY_`_mvK9HH-|4OgS2>Tni zA?$65Ic~^GZT^F89SusHH0(oq8}`oi=07Qd1|pJ%eIOzXdoSc`6hg!LPZ;){9>U(U zj&0a$+$F4q-JM=*(7B>LkS5>njm;Ndiv-w_9SFDKiiDZyIdyW3LXZ!y(R@f43prlt z3;Ypvhxr{gfi!SH#1iId+X7GPNA-G1?T=eI*HaD+L$w; z&)V=?)+MiI-ULybHd5gSBXz`$v3bdFvCoig`v>$1`wT~~%*c_qCGRsFrKCqzYV$lU z9-~2t6Sh`4dQFNz#5EK_0}%<^iJS=Rj9Q%@+Rs49breFw`cIYxBy0q%Z7Z^=Pna(- z2xw6HgcsBkGF)2Z#C(ZjXdoux1@(j&M59lSoS?5z5Df&SyP$S@kS00yTbL?YsHU!= zRV*~<^?Mj)^=)^7BQy5M*!<3mkvPZ9^}~a9-~BgUeI&dB7H-F-c|=jjqmODHC5@S) zdvqQ%II1o(eGbKG;EagXA=8d`CY+)30&<0tJ7;ALD2oQNB3541D=SQ}Nsp~k8V#ha zChUj;W~3VSW?e8@AAN)gry=goKvTl2h$1$7YURnUP5U zu8EW|i5;bcYgTG=J)2q@lsMtoEJv@MP$1$(6hXsCOgD{^6OrXcAmk+!Lc{t`mJ%dv z1gxKD{A>7uH)3_zw5`N^XR)=s+_I4`+hg=zupG9x4YH+jF{C?y@T zQk!>hu7(CBPMDB6dhHhi5$~i38i+{PFXTjI{X!t*-4sH@`cD@BBy0q%KbL+%4uCgd zW4zGOn|k;=Hm`jHg8pD`ss(k#^Uc#XhL&1s5%I@-Pn;a_Y+6M|33y*%^A^@H4T_s^ zcElD}$Ti$E32&tY8c0YuH4#e4f<2RQGiA^~#%0N39ej<9^Jvt%kG6!FzR>NrMtE)8 zUVBSJ_VHph?2pYo--N(FDm-NO^gr+_J7rkrrKubw#62`25>65oox*`Ya7>k$_cAPK z;D&_v69QuCh_eAwaK=jddrG2#q=c9J0kM}9Bu-XuR@Mh7iw3eTPnSR$Z$lLFt!zGy z&E1(%8q8VvCLB2};MTl&hZ|$_^cQjDB-{26oRM(k zr&VZJ{pl{Ca`d(<$wZt_5i}5yvORURp1*jIdY2e57f=Wd>pxvGKu05By+5O0!ws9$u$W4Lv_dfg@lL)GN&HTI0;IQ*l%d;C!9!-^7+OvD7twEuM}xe z=#+yPSLkpgmDPZGCuPt;M#4+^ydQ#2A&~NJN}++2`E(gT#zt5ZCo>0ZB!W8OpmuT4 zn(yFwNeKwIGd3T-0jY3=-w!q+C*dtW$4EJ<0y%M-=0w7f3~41Q-2v5L+H47FQ2KBh&dNEmwxKmcp9txs?pmewV9BIRCSoS9~SF%urhJ<~_ z(*Bjc=89~M&8KO=`-{Qs1uGLI>YR-3%iZSP_9KH9PW0r zEl5c?`xQu02}p-UO^1Zz_kdLr!j)Q_U_Qh_15MgkEQ-*i$V>SMrO-f1!dnqVDOqCV z<$RoSXdoxutq9B6$a60+J$!sZK*C<4JMXS6WNU1`_Imaby5s&rLc(6cOHgv8#ai-S z!gESe1VuNmWt&KYLMQAc@&Ys=LK$zM3>wHt*h}PPWXTXp`4dW^fs}N;gfKQj-c{)( z^a!XE&MI}?SFpH&hkn>U93tEH59kxlDmi*(M*Lr`@t<&3$x&+f`%;_tve~0Si4*op zIeHuXnTWrq2pWh;IIENs5rlpwpxlJOTtFL`bX0E z$^q~uYg7^#=HiJvBRGphue^puygX9Iy|8eWXQWULlQQRIbKbYygSSq#|AWTK*ITwNg*~> z3Uc;S4h`faT(>bPCrFrrq-RkQ4J4&|4%92c2V-pbYQUOzF>`{bg^YwVoqQN>cSk4u z?KWoJe-DXsxZBOPASK~UXCOr-AZ0$RDU-1E2v{XyT&cwg=Kt`<4-JZ*a6Y9dLX#yg zD0w-5ML9H(lWwNdayIhZA7YC5_=JFjP5H3X(?!?Z7@Kom%Igf- zwtqmM@H)fMD>E|U-!vl<4ly02O$S$M^LMOq8k9I`LRyDsSGSq#%|B2C4MZgDNOL|2 zQ^0%UA1Q=}^`GoIgE|oWp7pbgd<{SFCcHO3Txku4orV3)QJe3bmZ6n9HlxSJ<_=s# zal7K-?1=r(T$`G*3!9Xx(vU6R)NF}(i`}%-Ag=VGqZqk`5hV;n}6ZOEe#5t z@RnO%fR4;U8UIQdG?0;Sh?tj=WlJdK-zbF!QqtXW6UIi!`xB;vjYLo<9F1Mk9_a(3 z+!&izzK)|Y*|vW`pKvth=#?4qf8_VY*$GEuj#9!uD>dHPgSw_ci4%^-a`YPffry(Z zf(9ZIj>d8#vd|BNyo^F##B2gn>5+Jpk_bg zg9gQ%O%fmAYGi!7SkdBL5GJb5HKWyuzhl$<16C(D)uyXXORJQq&POM$PFF}a1iql= zr>stzWYr0-M#lFjsZQ?4`ITy2XVB`Nz+Eg)Z4Wy9P8trh(2=akM=)h=duoIP@ap@uw`V=BN+|I zE=xnU)EdkWmj<2Q9$Ua`$VmgvOVe?VTD>L9cpVvO!1#_~E8(0>&+HKElCe{C^vAG4qOY;l(V136a4vGVjvuc*6 zOc;h-uEUV?EBo6Qg0FX0A8cHl3u-8i{kpl#61b0Ijm_L2Vo-O4-(NrC6#F}R@yvQ@ zl?_h3LY){f|Ga4^gr(w-cXwNJdzM>0_t_~ap!rQs2+^QWH8g$BUE)i!w)eN2-Oir2 zme4$qbTpu=p}U-*Tf*xfJH5qx8BZiB4M=Mk)|HU<3SQksMj9~I&_Pcy`cI@YNXk_QM5igF|OA;^6Rq9~W5D99y> zC}ZmI=u6E#VFbju z2s?FGWT>W(-#M@W3u4>owGZuYv|VbR3mYJ|Z9IS2aW3{7-4)FVFKfodYgc{4kf zLkv=K9oPa!C@YO&qdq*eVUHHw<_IPIPow14+Cne6z>HANQBXG{sDef)DGU8j%cRcr zpACrA z_W{u+wy~|*KQp4RjR#*_RZ78XO*2{vu1CpV@h<48;jP1`-n-r8VE`xa7Br(Dgl~-s zt&;KsHYp3}T#hlA?tFHwq+uC9BhEt7G#&~@F2r@B8-3-x3OGlr=^hJj~z2( zXitF_SX{E&11k*MHDCk8wt%XJNTz217{Y5o2rMpocHecwb{*INu@&$jZ(6Z1TVETp z>q7>Jtbi$>sbtw!!LD4K4k@s>^t8LNnke2FHb86zOrlMVqTO)Q(A^X|Ky(W#^nS65 zOU|3a2rMpwZkIL_!COHGh;Bi}FWvXb5S{@cu(+ zt$-PpY3}qpco@Dj;RBvJ+B{=X@zZcaTXq<}JHQ7lE`I*Kbi;Qi_yF-Os8bQV&}%4b zPy(V{P=QEak2HjLgAfqmf*fjJNi%HsfDI7aHWr!9)2Hxn;rJJAtaZ+Y7!dJ-DsK0Z zgNf&TpaT|{s&;9)VLJ~tKy2|(L4#sn3qHFt_CmDjgq^)Q^q{LZ!Y{_5uG=^%QOd( zrH~na!=N3d@1DC5FVqFzo`AVND5>zN?HR6+# zNO?fgXAHe}V%&_vTgnri3K1Zp=;|?yOK2!hb{b@W$nF#EC+y@yz63YaM$b zinn`S`W9PH>9g5vX&plqP)}JB8@?RXEUcb#>Yb%r43ayL`he6IP)`LUsi{2GouC3l zRX{xzP~~jp>1xmcOq5M5U} z5*xm(H7v?nE@0aPBG<$qc`_LQNPWDuLK0`KjOuAn0iuexR!9|CE2Db`bO8AhYb^y^ zGns5tZD6ehnL>~6pIpA#=-ZV=1M_i|?0u{3b%MJ}KZxvp@fP!BmPICek~LX;bCt!z z)L=nelHVjdfMRmr$HDm7TaBAGQpr7`14K9D@z4&M;e5P8y9JczKnaNQ{Aj}wuq+pZ z|3pmZEg_Eh?AqKn?CV`B+hDqjQF4Q~$$BRZ{B`h=h(+5kAhldF;B&13Mi-HuYE*gXBS!Y(VOxdu%z9)Ko69l1rchL>1j* z%TeWQ<>?*<9YDTBHlVO!EFbopaF)${g&tqr`;Cn&Y)!?dQS!Xk%Us8+In{;#E28L$ zR}&&cmO}pefc01O#A_O|HCPsndh7W>#A6WwNW|t*5|Oz-5b^|s0ObEv z*B6x-wSe^-*x%Yuyv@ZWfOoywPUqeW5As8@@Kv!fm*(8}>YwvKNtKC&1- zjc{@R$L}TeGO57L}@RR<-u*UjY{c)+&0{(bnezVqpf8h zT|S*Gw~Tvsfi)TY>70$f7$wKEPWPnrI{2uB*~SKQ^LCv)qb)$FPyssK7N7-IrXg)w zeC)gu8j{;nnF5Oap~ZSN&5Ud!#jCT~lKeVi0Et;}NzRGM7n>k;?u;Nnf|7+68c0o% z3D|Eyfyt~Y4GZjbm#13{;wp=cm`BNS1Xk;N+4JHIK!5Y&f<)j za+<;sL_K*o6(*oaFR*~-1=toPl<_`f0Ftr5hBhxFD-fZS4X|TXbJL5H3leHn)7f#TN5Cllj0=r)sZz?EPY`jm5bCQ=L3XrJ9b-yxA z6rj929}ZqwkKvcZId!?U+qttiGO=>_;~wQ5*FB=q!LEYyZtd&JBEJ=DpYjt zv+#x`B{vO=jjmx&u1BW=Q0y1ju;c~Uh9#7717rY_vA`-MFC!}yT}40>+*#S*#q91{j7s|&1xNt zlPpuFoS9Sm&Ug-6#K@U*Hf)hHQ`VRMh04-#=I{;oM~Sh($AX@Il)$WFGqA;GfsX|} zr7bUMtdpxzivnc-0$u47JR66Y`PNW>y-ABqTUp9#4!LICoAakdws-q%X=;0f0D+z{^qJGI%#L)QGk zK}3&#uZqAa*$+m!3&~pGELFyetWkm%6^iHBLb1T!b)MK3jj=RIUV|k7rNIJcsisJA z#bjL2>k$M<&;n*OWmdzRh{tUZaWJ=DzPdv-ZWp7|ka&)`n(LMgJq+B0LdUO+B0B=;jClBxr%PXU3Zf%4*N-ODF19hyo;PakXbgYu*p> z=kwv0Nkt*kKVq^?Ye#YDkVm%BAuUWyX4*|pov zyh@%VKc^g-@Wev8((ZI#n>RYedbz1H1g_5(=_mSwd$UhUj2Zi}g$p@$o;!gEOD;{p4FC3{l+ zk~^tBt-0Rt=Q75PkN6w^^^C*r6|rF%5gR3Fm#=PQef7LDL>RLjDGRL1wakK!jR$ou4mlrU%B+3s9OE9lf) zIbk{T0-yS4Dp=RBKl7!{U;9`nWt$5$LndyNAV+283|m$fGVqy95*~Tw?phtmUt%pl z39yiPlpJZ=OPR2Lm{-YPBMOkH-s1djIa7n@B>W0~cAg15vXGgtPP1J<&}^-(59^)A zu-`gpl1X=$?A;}Mca+@agEI29C%-WF@rny}p9$QF0U3z?~Z2%3mqH7BaL9 z81a`CqQZ8LEo=*ERL3|?F$?Zl4aqC83ZSTO{TlnuZ5%Mxg3pfqY|N3%56M`_Ku%*f z(c602eI6y3Gt+RQzsx>K#6kvgfe1@33tVU|u#kaVz~{2xB!cBmo=w&RitZu?a*kcu z9Vypx?aLqb!A&qa2(ReVuWBHTg$b3MNURyxdB;~8wPkTvV zllsXj4scoEl6@gVHz#4E(Qm9amd^^E;O~u+Q+Ofen)atl>1}_fp57su7U&JnV|yit zl0*8|AqyEPO-md`wqy5g0wq6>TL2})BA$AWv8JB!$>L;Oj&odQ<+5gxb;!^i&1q_s zrD1=Re8DW8be_?T)Xe(4;5x*Lu@dBv$1J`ManTRF;gcZg;0j=|b;z)v`XQx$bXbSj zWM8NU>;Wb|%QbNL0TT$m9U1C?CSRfH^P)Xq#8?UPz|)R`2W<3154a>q{tpiT3--V; z^MI#*YR&^D*%vZ^bCuI@bNMoVOs}g8%$-s43EqpphBt@3>96bdzu}36%!*EkvvTB% z-?P40WYZcXN$8CrS(2+*4gx3v7BK;ti+|>kP{MQZiOZfKJ03B;Ip6-7HTzn_1Fb=` zez0d-2zR}t>rwKWe~~9n4R57a{0IDSVZj0{sdE0sHs@yyo#&4rc^pLA@+D8~D2IXB z7LTKJ>jbmZcEnGH7!dJ{3EDW~Y~VB*>!(2ui2R{b`_FT6*BsMcV-n+{`q`H(PDfCFa8@`Px6oui7VCpWPot?7l^j*zje|H(F~xu&98|*d~iX@@3xd0mzm@ zNvsP4s;@u=h$^}+AzYIil(Ecr0o~W21IU+1!x5}D3HSM)ya9*V%vb35k50GVz&fj^ zMH=t=f{bBeCJjQ6Dd=o^k=(dJ4HF2FVL4&4AR$*Ha-$YAR3l5~u)C#n)3IRnAtP?&Z({ zyB%1b3Bw5LxuWycyXjfkpoNy7gal!HPy(WiJ($-r*6bgbf?vaT z-V)-7?&>sk?62){nopzT!C#i?j<*;7uZYfztt?U^OCiVo&^j)<`c6YOh6|#Ryp7xd z6oKfDRG!A#EhKvOJ`h24o7e2Gnm)Du zj*?gWqfB-zA1#U?dNAM!Y~ZrjiC3AFi7z2eI4xW%KKUly8$i;d>r5xz_}3ZBr&985 zhyW4AdpL+oV5*etyO04QiyaIoQnf6-PEc;7c^z-2gZ6>04ni3v8=o|0(nk>p3o(-= zuz|}=*DuOUPPj3X7oU8BWCsc{Q$XR&loEXsBA^g61w?_FQnF7$1{7hYgB!IpvyQ>fK(fvjruxtvubmpaaO4$lg6{7|Vx!OPpmhU!ljh9S1i$XWC|u zPov~fpEA8GbD`GN{1s7r@5&Qd3i;~})?e|xD<85qn2$zs73CXH1mat!98GGmlnUB2ozv66K*XG{a(gs z_D*3jatG*|ip>O_p56SuugZ2;&)svE!J)g+XE&Sh0}-PHUU~6B){D^-P2&WaC4Dpu zWAYuEB0x#I7CS%%B{=tt@JaZ`^J%pZ|Nclu zQXk#%%aJ%QW>m{i0iufT_~obq?`3qW&;jI2WXBJ-8esD!c@!2)bG-m-_3ZP6)lP3k zN6YgtL80rj`%{dyEQt+Y*4ik{T24K~)GP+cam=d&#aJsK@z(N*m7E9_P>i(#s?b^~ z-6_xkg;=Y%B5S2#_nftKL!n2{eXK28XX)=K`R6amSjY0wq6nfV(j0*eT&{YYbyaj9 z)eFZ|srcljG$eqeM^B`M6xLE1(H}zuh$wov5)x&G%E(>?86dLQi8O^;%R+uEZZbKp zprc23YyGBP%(Ls(+-JSi|8<$_M1Prm5@Ec1GeS!wgFVX{EV{7@BV$Zvxhzj|1By7H zXhe@7$Elpza)dX65D;N>k93?cFkO!HCXfOmjeYd#IBV{&OUGwoz|8$lpw_?SG?cjqXxS2pJ_%%c3u`7M<}j>h_;tPcWF?TkfvqO#YV| z1W?4HS2gAcOqZAPku$AJMib%W{~!lM-iaMtOedc(a8AH6*cgz2M?`k@a{S)RdvkOz z#M9njnW3V)fvrws%_g@#jFP|kce;VxR5#H4QS_om7@ow2FSEYEnl-vO_<)T^ja(Ch zEv zGG{#(K}UHdlz=Fs>;4JKz=C<&$3hE;_M%uDx}a;G-bL*_*fBGTn4&xQtwF16AM%?| zqvXb)mKl$?7yhq^qMvr8M3zDx{FwD%bbmMv+17bP$Z{mdkSBm5P=M9bluFy-AkC6v zAp=Af-B-=WDKuRcyAvP;L>T+D!|=&&S?C|dYt9EED8OjlhMl=<4fJW0obwfHG%g_G zuZRjTnj^9lGTP?~Gnxz884blI8p%JC6@Vg8fYCx4U&m!+{|Xr(vI2}2l7&Xg2)_&= zAi{W~DO?#X3;nasXxtG&d=F@#!IgU&Xv3>hG@*eO1RTFXMd3O|_~SJ2U8&~|fR-)7>& zD7hIk#>bh@?vF^K$Dp3XhA&5*@B@=D(KWCS*wkBD43gg`^#Q4m9)spcoT<{pO8yWk zKvdBcWR5DZRYvzh=m7F1vhxpHEl9QFl`C1U#}^R=Z)Zzvb)`!`W%stfm(5Or+TF1i z+1$zlVw+3C&d5gzj56N!tns2dGx^|C`?&}hw&X)JEP%2qdU!a6FtcKg_QTKuqK#g4 zFoia6%N+H`paw*JNde}xfg6jaGje2Pa$THi{NwmV7~ih;>}*`Sr^&d-f5Nn@`lz~A zD1!KQ)e_jiWyV`tGsd^8PPl1Tz4+u+WClQHL>H%k!uc*GdM!kNh~g`afGBWUO7;fG z0FgzvtG%^an%T)M@RZN%BJ$+S+u3@rw|3_3M#=hr$xz3OP8a^K;t)LuH6cP|DP*hL zTU$lXcBCQO>Me^#a&zY2fr4_}rBwFR!6uVQv*cEg0V0d9w~2+x7RYi2^O=;K0U;p5 z*g>d?2qsHIKMR{VABdn3quJLTV9^T?$FRuG5a^W$_g6%P7|jq_3K{KQ1scsp!PQ_s z8p&7b?Es2E5mn2X8BJP?rDR`+3=ml%M$5?ZMst~zd=o-Ighd!_!x+tne$Uis=B1bT zkwS0Hz6c?oX+iuwJ};XcXFj_>ibecL!I9YT<*^4^kHwD^yn1Ib7lY(J{Pj^0a0QnNz850}k@?l?uw`}GYlx~d`?e}X7jCkzTD7iZC zIG>!|2tSLs2v29kmQJ2~l=WN@d6b3j8__Uo$r8Im>WKnsXAekeOh zJH@J=dIM@e)DJGotELXkr)(FuhV~I(5fx8sxzVm`142Ip;d)8eI$Q7WWY|+>*z{I< z#eZO=TSTWc6kti^*~ePXM$ha!^=Sm1X+5XqOWsT#0*X=*6`c=$vVQg7IO4ZL42ZZ@ zKn?4IPlrwI( zx}BbKiCgJaovR|<>jYR*x%Zg`yVr&9dj=*SiGzt`auKa1P^5c9%CyoQBfc17ph)+I z#FOsLV*L=vfdbvD&@=aDREKl!<-RzJ=qi}>bT3?b^RnCLXIbzJn0P~1wmNrdqx%m^)!O!(2FOqhjjP3Ux+2qiZmdjLfv-h^XR z&V)I_UxE-2VY~^)2m=%5NN))#Akt_P+K_8L|7|*c#G25tiYEFAZD+GRY;Cl4Hp^gm z3x6?6R{m8sJSn{nK8iGY#lH_1Qp+VLe%3lMx+fh5ZmsB|Xql43`tAlm4mP!@Vho7pt`(ougFYCzNviJUdf0V#jY4A@Jw_a z+HI~ihB|E9+SOf*lG~ZLru>(q!zZO570u{6)CUHs<&sUWDyR+(1Ggs4#VYBNVSr*1 zU58GPIfLdYFNYEkWpo`nK^d4cPdkJb5N&K7>RD_4gUz?(`=$;}Z;B~;OrU8gyTr|U zvN!ZgC_lw>r<3)yUqQ*|Y&Bf;qtP@p>r3e5%j17&5-@t!As4zeW~x4cD;Y901(b@> z9luFBXU#Fv1CRnDjh+RVBn`|tMtlXtfQT=StvG$yH7Q8fO`1eKPT6NnlNlwt(%k3` zT4|-}FGk6)aa7Dn>2>f?QH-uMeYn<~aLJt4wdRcOw}gQkZ~7ZHR>^0{EI=`dt~7nv zrhGFuWu577JIXIW35YVf()3}cl$kI6SB~~ypan!5TWR{Bb<(RfjN`Ztp3ICQrs(nU zM(==$oBocHYw=qBv3#^Bg6NgJj=%;k=iS0OFZ#Ku7mg27@yYvXx&TQppt#z!39aT* zDfu8ofQSkxMHx|OFi-X&$N-VWuH;o($yPq(o8u^x;|e-@c1LG_oTcL(jG^4;QF8v@ z$W$l#%j}Z~qum=2S|S?hs9MZ!CS0(Y{zX{AbzkIP=;45lQso zOHVRN2w$$dr*&QQ;!7W}wVZjm6ozDlDgcoBcx$Kc;--ygmRQLeRDh_Wd#}0p1UAcJ zmOuxPFOmH@*lIyk?t!~(<}38U)b%ARjbWocJhaigE%p5BW_Nkm>UH(9GMDL>dp5g+ z=CHofTy1E=sji(i8@l4ZncB{LyX3xIGT$zlZ%4^5{f`WI`s^RL@1_Mk`zd>>D?+rD zChuNky?bDB$wN}kOhBt6c>(Vd0LrP$r}-c@&NZVzJEGb=+-oyY*W{uTaUq7WndN^M z<~148D=wK@-Ps<}cius_{DvI#3wZ}+U%PKoxoMz?onBSUm6B<=7=Dx>O5S;d^-h6B zE5~E1!Mtdkutf1Me#QP#^1UA_zfKA6aN&PVsXb?UVcHp`{HK6N*d9kA3IgT17Ma>l1sawYjPmPXU(1hzxeHIF;OoUwOo<~-^D zDRZu&%n5FCUC;g-Su}k%W#{yx1VZJ~Q*ACypMltUxTYZGRU4+{O7aR&B&NQPvNJA| zT{dZ4juD^aDdgB>s!d<(wI$a1mmACL&6Rqm*{S!sY4(}#mh5*+`fjP$wHbNr z_mq*pFzajg&19ft?)0%=jLcDj9A)!!Z8mr2E8#~<2ukLR?=5@sOtKzO6xXLVlUvm= zGs3T#`+Hqt?j?)%Dvz8YhYI3rD`dq@6**+=3aw@l9WOI8)3pq#J$mBeq1jXo`dq`T*QepcGLEK{@Cq`)4lTbi>56_dL~1#5#;HoV4W!@Z+IGc_u@ zjL_sc6ed72XY{VNPH`K1)28ZH$^aGc4I43`f0QJU~^-m z*B`3IRj8@~?2cLf>!tK-T3f!>yvs4i9&`AHNBBkdVv|P` z6-PEs@Po`cKfao*b7LQcrD?y(zODyfhteMsX`d;G=JKt!x&4AcEKO2Po zeSN#6Z_Q}hew+39f2LOA^w~c!-%Sr1=g&DnKB8Rpyd_HB`KgJsB^*%>frH+gMiv)&ri z8~Yorc4J@LKE~0_rPg36y*WxA`E#mbt~GJr+{*obyfA&|THDf1eNba^aL+U;mRT0~ zcWZ&^i)ZEv+UERN^etaOG!^Z-yDR#70wzhB~e*M=VH=lGMQ4Q; zP1l!Y$mL$&^;~slNq3gaol)}XAIK%w$lo;A*?+?cbI$Wk&|5;~{f}(k&pFRG5w6MY z++E9*e4P9R6p8uf`EsGwbfpO%YJeaClOK|Wq+&kR<{bSIj%pD*($K{c7kbk4-;Dm! zYxB|kjtrV}^cPZD2Ib9hKQhTR=jbmCGR>AO2FWGl2!O5TDsi5{W=0V7u@at7mgx(5 zw`^r#P$TZz@UY*dZ>IIRzQT0*^`?Jm?oS3su0oZe{Mwors&wY2BXEts=(BY2-ZVKRuo2OoxqTf4Qk84V#0>33vD165r(} z+~4^lS>YFEeVu+Y9w>I0bHe=yGDit=WQZGDL(DlAIRb+z;xoRt?8(1j3P4euZ^C^> z_%(N5Q$Wgv@ddl+S4z5=}N>2Tj9P{&2zA-m7IIyeuY$*6+`db!THhj}1 zS$^5#cGect-$Ix(aN~waUdx%BP2B+~PJ8ESP$q+}=@z~5u_rsEadKPon}qh?yMY&J z8WHVq2-oSY*ulA2a$`5X7$sliIo)-qerImyh6v`rNZRyQX1A3i)1+Ay%J93`44<)n zYOC@`GENKr78{Lzqtn#!vM#zOXEzR?d{O$PA~yXc*102=nr&Q`6_Q+=ItLJSV{W^R z2W}0=-E0t;Wp+}-bL99$V&S^^9%D`mt(K*-aanQ?i1X<^=j4;2+i176khrltbo*cF z=F)(hOZKLwWPT!VUu)vNxm7nmb^o7;&pG)tO^RifpD(a}j;OFhmFaWEaZbyZ{EW&A zP;BO#d>RkfIf+Eoa$l3wj_Z8#lBAtT$2li-CnB29$__2k)pPgUrPrlM-)Fu@5#!XO z1U6;g!)*4=xkzF>SX&tcuC+YLxnvul7+g4CB@hH!GqhQ55tZbj8^t;30jf0r;fb*+i} z=GMeRt2z5$3OyH;%~P0_r%#K^(rVa7-Bx`vK1(p?uyK~OQGyC(^Y7Vgo^$Xv zD|nOD)4sI4$@j=^K#BgSxr*?#z$e~%@zpYMO`c1(+hm`TzEKG%v??eS(?`iC_&v*4#(fYRX?pQurRK%t~aSuY67QNtWPhbOA4!zCh z(1lZrWAGoh8Lr8nRD7~bo&b_Q{n^C46lO(uMzjhMAfoBTX-=Z7U!Re+AOl1eyHANi ztz{v<6=RtkSJ2aki#v(Oa?iO*A4bXPEb2I}!DshJB-3B(n1jTIFGu~Qb=35c;v4~6 zOQkVLK1k{VQa^p9I5&wkRYvt8r~pw-?}E=u71%1H`!I9>`7*76+96xbeC$3AAt1uoGX_mWjLm%LpTuX*2O@}X z5LfJhMLHvClzf=(?6G{bD1!I~(Gu9eWv_p;_KGhdPPoZ+FFv`P#0MljzCjErY~7U- z4Iu(V6z}1HC@@t@b^tO!WYG=c%1SNG?Bq+>$>g|#j?a_snp*+g;M3@NPd?^q$M7#X z_q(S0GIwQP^H+@V)t6@+84CI9J4IDrK4e>c8O4Spc@nt+6q5CM8tbxv>?x1|B8#uS za%6$i0>Y<52#7Gc`Xbz#&25`@-?r74;S)i87i`e#+GbK8G!Eq@jN=-7c7H??-vx6d zHhg*PXVzo!T`;fSRAOlil3!v<8<6_=E?ADl8Z4u_B~*Z@;=5oWRba1-?pL4#$d}kI zn1a;~06yQ7pW-c>`3gP0GE>N|3&y8W@&O*B9}nTWj(N6!MHF9$c_K?8f1UQfCV}F+ zU_NA9hh@=7jwK%eMIgTU%G0D4b7_{G02v^%_&O{{mN%IvJQ+ejgwb^ve8y%z^lK=0 zg8YxK!-fr4hv|bJYO&GVaoSDJ)M5NlEaK}hM`FX5$9~azEWQqN0b7e9*Tf)s3GE0V z_3?FBj>H-)qk1`1fT-f@u#hUSS4Q_r=m7F1whmLUHIvsi)ozTpZ00NU_&Q9%+XHmr z&`GP`;%$cG?S=m(`2^!+gl8!CW+wOUVa75s0tD@-(T%JlS5z0FlMl zVL7tA$vj~lLO_Jkbr^icWk`}=LjE$$-UPCYZX?o+fBVgKUira-yLc|)UjulXDOT+I3?PTZ@qtnP0X*IgJ@2m8` z<0X~rcn61HrFZK=Kve3{GekZ~f^coEju@HyDc0PDwd`X&IhP0DjS~2i`%{Ynit6;Y zd*|?7Kr^G;9{j=yc>qEH2{}|$%^uLCLMBT>@GB?gfrtSlX1$=gJz&YohPj#6?j}c` zOeygm9e3k?n=)o!@8x!5FleeV)~L4bFHHMsmTZN$)71w$oK4$2_quj19b zg*^wv1v2^TQS!0pX^*w@4oTXn_tg0zE))ugd$TyCn_rS8QmGi(Qt{+Mk|34B&X zQcwan+HBlqk}yFbAcgjo{`eMD>+#0htf@_QTrWZ$D9sTLw%LmaemzS5dR@JU`|YO} zads9;d@mv(v3+ZZ)Qfma5xt19z)gob%q!Pj3V&vM5#~7Z=7IXY#`0xN=5I~(FHrOo zKpF3*Fv8Gw(02+MHBYoHVS1xfy&xy$BBTJ4az#`rnNx~AA;YP;7&U;@JgyWq6M6Lz zBmt6i<enEZ*^n=l2vSFH)9A9`ahRt z`%nT%i5u1)z0xivx!h_Z1}MWnh?&T!brbJ1TCg=jB>#3#cTJCMQT~D2~UqTvCy0m6z zV|b|EZe6B5(oAmN5@~>>J+0JKTkZEc^_BL9`h8B@ub>T(wsOnB>ZZ;R2vY6VC|TmkheZ8lLsV33xj4nXB$}O4FH3&=QT~P)|*%M05 z&S9U^rc83(9Z^6PL}^~xh`JY|0EsHMy}Y8?@8vS_-be!^?E>>8DXbNDGT3)DXU$i$ zF7A`P$$peqjJ)*N_ak>~)8CGg@BctO+hZTEp6$u!=y}x5%#q`Yv)eRi&Pb;Oc2)-x z^=+@RecQM>f?UwErcSaSWxZSO5j#!fnMj|YNGE_|8&~UQY)6>Q$$m6NQrN>a;!Z{! zAaQZETgE%LxW>R9L~oQ`9c6%&#XV>#K-s>2ud%W$eKt*f)?O2hfHWR1uvE<$N@Wq5 zmbID2Vb59b=g|j9UtEtjqnlfTzP8z60Q{mKHgtpvuq0m6VP2wQD+ zSAA~Y2w^}KgtY=;H$fO6VR4V63dl+wX|=D{YrBKUt=E1Dfq(?YJ?$w*;A*?q(1ziG z>28TaKnhE*NtA>fRuJm@74!iW$>Pm%fwx8=Ac4;)yDHY%Nt^9qJ;>iBPg=@_f4OfMWRgqEdNQvp-!)*q1Y!E<_U` zO>s}_=1v`ZOtMk)Ak+XQrjQ;f*r<$bu3dsAK$`4^yE!N3F1BGyP7^j~e47Z58$ZsV z!K%t_l)&KEqvRXcS1hmdL>{8wJKJ9_{vmomVhbchDv-DSu}RRlPTW}Fvr1+7v#e+a zcU|Lvby_26Dbi(AxNSe@tJTruw+n>4H;5|GGIRJXWrk^c2jqw{X)1f=u%)zX>0;^%yM53~Z( z8aEMIc$)I&mPyaE(FjQ6A66?pgV$=D*!v(Bkl2cqq=RXSo`*<4A}i7XTW<1{&*b;{ zr~{;~B7N7acX%Paw1B;do)2S{HMByRtS$RiV}Lk7;wsXtt+678BV$dou^)ke1pZz%9Owkr!{*}Hw*WdyraK-=HD(mQBrhQ>F*PedM2C3)R+iss4410=5^ zeZST~#n^YQo`ya^`YKWdwwF7ua6AKXfW%d#|I%&_v{uQ~f6qc4Aaxa)MnGMz@_P;% zfeK}B&)0n;!~qglk(#C5TRZc1E`R?3c|f(~`Of_xArFwesuYgin(y4d2z7weRpfD@ z@>YjkXaM5!_oYY#B(W;x*Gu%t_{V4jq_HA1Yf8qJPGGkCW15QaRfq(tC$h_12S(&; z5eZZ(w@pf>W4bq>5vX25X7i|TLL?xO6&aUk7m8MA)At(Qf@-7qtQdp6yQC(`YyF;4I??od}omA{L*Yt++em`=0KMDaUtVkQE z`Y_i&{2&s6>LlVuZ_o-7@k1yCq_83bl#Sj2S57{RI6&emQWy3cD`)BPgA@2M1OgIR zkxpVT`21Vc0a90yYNp>@Zf*2?>fpE({ChM4(pZr~+;4Uot?o)X5%-Ts1SGK{`@VPZ74!kpSCL-eU~}KFuN}=?!TlNv0V%9V(a6@meFJeobTfaF!=+2*h>dHH9XKR_iQl~Fq>1y62j z!Dp8k*Ac_Sdj|*Op0^#`X!cv3W_Q?VZ|7Zz;OC>{&;L&EB;E2c5_R=^hhHcaE+|x$ zrPAvVAG5DRyrj_3XTA>+#A#2kyQAJV;24~-eTp@kn5Lvlnp-Pr5?PTH?Q|wU2U;s68+av4@muM zc7uA`KpX9MMmr$wudKRurrgyjGs5qRa9}rBM#9r=jE(xcqaN4|$-ZGXh&ICSg>Yau z2uJs?JHOl;;edp{zUoFFXx^o{QV+`MeUT4He&rjaK~}ThAKk#N(B0y|0ORuqpc|0x z%C|@ZZSXw^Tcih~9@q`)ad}StgHaDiedT+O!*%V+u-@ddXHxO1 zY=TPu;lu$@97-5%1iR=4qmAJ1l+nhckPMXLnLymuk|#zR%ZLXgKJq1}U>tVDm&(K6 z`F-6&h)d8d(s<9lwzh8V=o#+;J=x&-nyFNJ zhzBJ80LQ4>jF3l16nO)qqr&(B;~$>Q1v=KhQLXxOE!Za8l>U82OvX2PD6Y zT5y|=VT(-PYdMHyK$727U7u`r2fhAKZO)*%#_U_Y(`2ErN%bp<0-z}T$!>}QZ&R2U zJeC*$yDSC+mXw$nJb@Shiop|0%!7?y`_O)#KpR!RjVeH@UU2kPnLT{icq^#F(|c3e z$=^XPAh{*XtfbPmk~`5-J`>@9gg>u@be_H`)sz(eJ%j=hT0#Zw_Oi<6!|jbw=tSE7 zK9YfQBnMAb0$T)kL-DTIy%5QOB$qH63&d?Lc_O`Ef_OmUOPHG7nfOM#z1;2%^kCf7 zcP~dfAnheg`Rq`;IRVY+ekHnr-Jv^ew_k&9U^f_jU#r{bx3uZEGt27{5A23S*JwF$ zy8i^-fOJ>BfN~~@T{2~i{-#|Y2OZ>MH0bnYjipdC;dH02X;e}YkLPRMKMYKXXpl`yM$Svoq2sV9mD@Q zvH{61VG3f0vd!krT2-Ca>VJuRU^lpBHR}TWHM)V_p}XfN?>~xeK)Op9v+d9>ef8E| z@%$Tv0}@{OW^_$!^IMwsaoYb5?Z9qG^z}m;4#D73IAmNp7hFXJgZ1HKN1G^#3 z+xBHuljfgAI3VGb9~8BleP2MofNns#Usd%kOFQhb{0qu~-H_s)-iq%e{u{c1-H_sX zt1p{={STA_QeOEPmu~amu(4`(!!ZT)KM@Z|eB~=e26NhL)Ya$zg>+yyI9)Ht_`dnK z&<#j;2~T}?)@#vuhC0E0^-z7-xuQAr z1dOhEqxseq)utfEpUCZ2zWXh5Q0TvgHi=E^3g zo*F0r++(E}km3>^ulYg2AoPSAC=8~!;w0n(l3PNJv2D2%&Nvm}fP_bG7Z)z#InoIT z;qTaUEqsJ&uBW8$wUG%(=8KNLfwz=7k*?Q8Fd)GtJhp5%4mJCsdF_oUDSJbN0uoxn zW6Ny_ok-hXL^2@BCG<$QBe}8C*kHSadSm}ueM9H8o#`iaZiaYZ7l}X1i@ycpfn6Y8 z^M5AgQ}MryctGM`di3j%ZP{krEx(Fpp!%BAbpACo1J&1jdvEO9q8X6p64tzK#~UlW z0dD$6XCW4-u-H{E_Kt`Jo;un*qpB@Tv$LlJ+-I3shHaD=TXEL@iKZwV4ynK`kJ)B@CLjQ;X@b`Oq&-Jr}uv|1<`T8=QyXkM|K1PLfJ9fc7vXz8X`k}~Gy~Pwoc1CvLNic(&1o;oxEp7en9%)vMcoOYYdmy z^^#R@GkZEaBo=^TQN~2x&T~O)h5eMl0mK6mU&4CZISRo_tFgAKuB`LW6+{3~1WH(? zHBSW6#ZHewJFsiC>y=KI?vF=1AnkA86=j##QR{lM69e_S=__zgA|ikyvO6kKMMQ7# z>8KDh74a1G1JeJVU6B#)v2?xF)dTCgcEr^aQ(v5)PHX_h=3ToYHtVvLqS5PX)7*Ne z$Gf*KXATn=Kyi7;u80d~GqoCRy#rGpZZ2Pzu9Z#sf(9Er#GB>8oguNS~ zfP|K@dTMK-6H{OBLoy)AWjw&zhUE3leHsyH^8r6n`v95&X?|e|wd6K5U)E+Ha#tb# z1$qJLEn&GLDYu1x_q5Lp6Zo$X3`lSZF9dB%aF3OAt-(M&`@k9>K{-%e9TdCA>YQiTMno0f{c5DG$|cL-a&*^LgY0l3&6k;ZEf@2K50molV~>{37}R=`W#g zyL0`6-g3*FcURZG&Ax~JC1L^Wl3Wu6uf%Qu_d^wp?u z6B9r&DdD-@PGhn%*l4FOwSE`vz;4kVIOzLm2X=>cbtM|>ll#zV~(<+5u@V zVO+ao(_}mMpNMim%6CDxf4$k*-x{dj>T-J(5cq^^Z_K-x=~ zRM@HETeow5xemI4-C=h#?Y^w1{Z9V%kq=0I2?w<7G}$}7{msU~mY-fd9rb|Jm+A2n3412d02GZ~(19Lm{g-Q!?|^bZ%1c;TvC|Ad z`D6jO6OjORM*$f2HtK%Dt%h_!(s#kczb5@Vb#|lnoua#;ACUfCFwK^0#_oZ3K-%9{ z{a(dpx1|}*x?ZjrG?zEoH^r6Vvxx_=JMv(EIEuUv+JW7oJs3rvhju{POV|~v+v|72 zkqJm<3Ck?DlsWM*^g##)B)Eiq*tQmI-qOApXF=@JwJRaLy!?`>{` ziXVnzK#EIv$iHRrN=p;=tm$LkmwQ?Wo<25OF;OMdBed~&cB6bpt73Jn$X-p zGf-L0*2`f!ub>%_<`Nb|_VpC0*9n$>*c(%-;{>6AgqE-vavMS?D&!85f$B=uQpj#^ zv)yjFVz+^0K$1(?_h37zyf53?b%0u+x(U3}>bI8H+fD!S*?uGgl3c=84ckfJa7Xk* z$OR;~gig?QFm4B60!AEn#vzm9~}KiMs8{ z2nQs*ga_u^7rxo;H}>n;Tb(i7^vB&k4e@})Kl|v9UPn+N%!tB_xWWS}I;LoHVw3|q^&9oRKS@^^C{vDWxwBmhK(Hz$2yz*MK1G_={at<4H{x$WIj~!lr*E{r9p!+OSH6B(SMAx;5deP9?p=rnc0;n~ z&ZB%U%7NXWywlVQRlmUV{U`^dyo4v!J1e9*->K6~rGF6Vz;5umkshS`hY%0!2FD;i ztztfma$uJ@hTVo-C*Wg92PD1n9hl2E8{J{6?H?)rE!qKTFJU00r<-~k;!x1>a(BWW zqf6$0L@FSuC5(TzC3T{6`%j1lB)Wvh{@WAX)8QO!WL95m4(sm3Fqi0`Lq8z>m#p-b z2e(~m3>)?3c7u1S^B0YNzj5fct^J4ggumHiZtn>*v=&}CqFd@Xro&gicW@fcNR-{E zxekAj702&r!7k+m zzQvIv78J02R9~T}CV*o3q|(HM#m3~otC0niE32XRZuGVpTl^VWuR|6fSx+u6wM>c1 z340^L0110eiNaJV^oRAq=EjERQwEyC+-Ns=Q_rN{n-K{}E%hqkW_9 zt*8SkpiT=|hrPagB5u^Z19gDZJ)yj`TWPK~HrtvhGos#&D4^UVYqq+*jX}MyCmDMD zvgYmfKGXqH_tf%|ELCTZ^D_ze0i*#Hk+#uf8(bspFOUXE+T%-1HNB28)Y?O%>95cP zNYm5G)3n;#?6;p*9b7nm&#uK$=Qy)UBpEZ{3<~`~9JZR$f`!aDEqEfOM7Elhv&HzP7e6ZtXWO zwwuiSKGJ}algvun=pAq-`ysjj>3VL7SvfWmuG?n7x9~qkB_Ne0j_UN@s}YF6fyv$v!IKT(ZCCBK;OcIsp{h$exf7*(Cj}$?fz< zwzqhoHC)$&|CN@G&ftZqearP$XG4>>CP&_mIG_sRbRxQTG8;Cv@wpNAF2n&67dh5T z69CiBm2yU$AFvpC??oOUd2x>kv;3J`o)1DJ(!sK_+BK>!CEt%!pb9D3ZglqL<$Vx& zKsDs`2YGoPLLMM_zgu#pvWMrA9qlU9&ujcJ8Ubm1X4x9G)@Y;d9qBCiF$4k!Jyernp|!{BE*GGC4E-0)hYuikn=F5HuKe(qWFNs&0rXK&s-V1m;&| z56jbTwkvhBe>3YuU84OW@&L(;+Z1PhdCYq1&@vsU=udy0ka;s?0+M-NOpn>Btl2*< z4aPgHkB;kD<`3ZBM&~*AA4bU~9d)9gzh9l`)6O?v-OL?YPiOkVg0)#Xb*iubQv4!XT z3cG6R%uhkl46Qsum?yD`!~GX4L)_YJtiot!Cu3udWgM z5yS!#8@Gq#qLMb4KQxLzj$%NHD^^=+ekFCmCy)t9X2p6Y8(DSrNmK$-8TY)h@a(_b zm#0sm5s=2X9SaNBIB56Qvd-vd5DHY!nS)-NZIDd?`aCiL$*fq%-W;E9M1B#GKm{{> z|B9Ao`C-zR5DG|W#fHfC40p}$xQzdIqymy!u{PgI4PE+G!~zmqv1(o|5-(*MpMD*g zfMiyzzqemot)|Vciom5&v%9&OsG4nP)9F)NRA$YrMlO}G2aj)Kw%7b{l>FC0 z&GJ6-fLSVGZz=MTOC?ebHh9hI?zOYJkxM1gaA(dy+Ft}Sk2Xp+mXA^_6F@PHe9AYk zl5n2Zr2I0P0BMSREHk$z?Lyb+AF7+#PQ8vg)T2>N&Kh~E$O9xV?j4r)-14UBYM~1# zG1&$>ag0aXOcIYJTN`e^;rT~h0-0(IG zJW^X&*_fQVE-C@3jC;UVq)K+saLM=!2m~ZBZe!v?1@<^D+)2D45&=n!8-5ooQSZ}f z@wz#_(PZ{7A{3C&xUP7SLbX?u`r+tTfvcv}Pl z68Nk_o7q|Y>Re(^ZwU9eZgKO^!khy*0EI(-VeC#4bin+OCd<;6|Tsan=!C!_J6 zXap*ii2GYjy#Q|no`XQ3QdZU-j&KI4xtE;qNsPcjG$VW`eXKro0xP*8EtKF z`@>OkgICJo54eJf$p@KJ(&FFY$~4&EYv*h zHEs`)T+p*B)$B)Ey_(*0k^Tvf^Z>;+ZV!<(WYZ{8=IYm(0fK}W6ldWw#MFcv#-WWTt(M9V4jJE;B>cCMI z5Z0t7g&&9%KvLqKhx)voS%;3L#UAx;G_P3K=Kd~O9*h=1TCP00$>Ow_GvzcvXOiZj z$N?lL?v28ElSb=nwFQSNNu%fC=mAPg9NkaQ49 zfFwosgJUGwegnFi+Tg?F;FTx?q%3Z}FDeIvw0bOx04a*v^U?{bxxce2jkqOy;n8{9 zsK2r^UPs9%nBjhmI);Z&y*Rk9XrCWfk7a?`x(p)KWk0obS!CxpANb5-5&SHu)3UoR z`j4k`3@FxdPxQw#Vpc_)Nl6l0{;+}^%pgKtxl-lQ`4yaDj4TkC!n526F;(!W?OY4&tBMzvJ zxc%%UZc^@Lhyx_<;;7M9R+rR*hQrZJ?KZ@X!u;8nTlZqzFGtCLzeqipPaR?uc8NWi zl=+{yQCJ|u5~$~Llb@ONj2ndo0ncjK{7mPCWwrnFCqviSx{GRc^E-oLJ%N9QDX|1KsEPwRuR~UYN-$O z8yk9OduPl`Wc3Fsi$BuIvxiT5sQdpE#`6kOVkuM__t?@HHw)>7n>fzs2&ccP z^QpeN*8s+o!*2tgK|`E$PHg)y>`IW?gUFt@lc-or(Ff*gKT*8nZ!!&v1aQfArhEjOHdBtULME6boAEV?~Uo8_}t_RJB zPrYXr52b3Bw zSww0?3k@3R=wWnuMD(*tafHH3H}(Q z1CsulYD;f783xwy~{cMB-68@@+r?`Y~v^Uj}GD-eilmk+} zv4Eg-cOZQ{pUoaZAMkmQ$E(;5>k%?r>BNb}1os(GS?c`>4a z>N+`SSzd-(pt@><7UdPF1*G;x)igxDC3!W1feH)GwIHuUFd)HOZW~xmJxqr#XgS`9 zVnB)?vBeO4r-Eyfqr0ht-eDnL+}9W!`J|~-{vLihO4jeIQTWY=8igNsFK#FWE+|xq zrO>!LvE%M77lEY;kJK`!@tl|rO8>iw;GXm{i0-Wv-2_l%w_KT;22i}5J#`I5hpl0= zQ?I+6I0I>bq;2^E#bTwkx~*ZV>o({D%1<&aE6XL>9;5-1w&i+-g(g{cD5fb@XCe%c zuwq)8`CPxp%r@!thWceqZEUoz^VM|>e0O7WSZ@rpWx}!+Lm9z$KrkS|FD$eYI8x8q zL@Lb}b9F?)gXZN<@14*KNN+KdH&F?!12ft>cT_W?+DXk!@z$B$(<$i9gDp09nvkS5L|svrUqCRaZRqwUWh(G`idE#M^%U${mpK3t48NRXa=OYn0b%|Y0lc6OOOmy!v=$P zOAi&*w)^t)F!TY^SAp75tLJhqeFXA=(&f>p=yesnutJa074qLg9w2#JuA*CH?Pw|= z`V_0$QQ9{x4b%Zrx8)+(qoOYBRJsIQK_VcDrS=@s1RVA^efq5-4ycB>L49AZ$A00a zVNMVSNL(>9Cv(6fW60keFv3Ukkf$B*euMwYx zR6tTo9m2W{XAg6e-OoW7AYtV*c>V&-tVSt2f`P%Zr%j`-p8~a+60a8}Xx}ca* z)yn3E=4+_+%p0Zj73?D!myT~hEg-d9o^7=7bX;v|fAVPqzc(QhsFuv}cK9vG1SGTk z?%}FVgwSbLS^v=G`P)$mR3kCRRr+zjyO0S~BQdp$UhbKuOU(D85~zmCzV;$qX$>yp zS?l`B>K&cR_oEW1p2}pPLrZLL@q?%Yq_UV7CSt12)i5nLTFaNU*_y(1Yd?fgKtju( z7BxaC?Dckw%>a$W4UHEI=bZhTeJbv zR{j)@(`HvwIE8n3}Cd_zJoJ>H7WB9};Ab0sTWFy_M`z@M|aqDq%s|bqRJ%L|DX$yuJU^d z(v=RNeWmvU6arFMeosMfHs)qF{}**YHPmgkhb^5<>vQ-2PzOj|`L&+elpl5KNe7z_ z7#|+9DW!mvmS3-QwF<|~IC&Eui#$N`%I^^Nv@7a?zLw$S)+xIZeF9PeNqv6lE!}jf zK3PvjD}(AEIO^)?1EjC~XDee%1YLe#6ODj0mj94yOry`}pGPDh zk>yV-XClqyL)IH}NqRlh0#aLkWt6J*iFpI$0g_k#f|pEQeR^u%2)Tgdmj67z-(1;T z_M?@XAPtbT^6Scev!m+LOnA4O-8H=p(Qb8GeoE|@&){VZ-v&qT4B{BiY zEPr{EJD*buFY|f+D+mN6u>3Yh0>{>e-5Py>^p)S$2=rx7Vthrkgj7IM%O7nG8vA`7 z-wt7bgq7bW>Lt8s9ktsd5|GI9XYR&D`aJ%1R02|2esRfEdVP0BA0U0@KS~eZ9J(vY z04XcK-OEiH-yLayq*b8cuJ?3Ws2K*{3t@nSmEXt>BrKhe(6a8PUs!T)WCD^|{&e=B zbw#t@>#yiIp_Tlw^}gr?q_g~v?8Lh__eUNedF4+&S$X?gjo?Ar15gM^VFhYG9WYSe zcPP;JK=c99SN;IicV!xFJ;hHKJ3SbUfHao>pmf*^-{O8K+JH)=pV2n4`r+Yd1gfSn zSo`ouGy>9Ce!U%}V}9ksqmT(mX8D5?$sAwzu#7-J0?V&&Bv6x#{l>888@^Ta0n%4~ z$2!nQo#?xSEkpuUF{4k!x<5b4^mW?E1getPl;?)_UT}S}9{K?3EB|S;^17?BvU)hd zGNC>a0ZA;si!F)$hVRL4A`OtV@?Y#6_FJ8x+i(zZKsC~>uP)89bKR9l10=2d@m#pc z$74|jNLl&4)lD|YUcSt%AMh356Ho|LL!nt0g23zrs^3N-Acf^mZkZitR+_5~JvOCu zNNYQ7>Yj>JKvK(pc50;RrJsJQIbd}xm7ve|-$5xLrR6uuMyVFw)c47r&8}Yn@k~Sl z)k#ire9A=o@1hit((>o!Omf<3cD-JZz4rBcs06B$>5~rwejky5M3(=2B}mG)CUfe8 zjmC1e?&=TG3P@|Ib0sT>x{Z#u#mbkT7a|Xkyi!Ne>vycLwzL|WStr+KzXWYS*-1B8 z-(1xWVs)p{$$L5S0Ld%0mpIVdOm>e5Uv<9{X@I0%ada1J)LVo4SdafTr~#yAaFo^b zn;U+R`FdmklCjkxAKP9lT;pX5XNa3?MO3zhXE6tSNC;;Yw|d>}9`F(Tk5O`RTU(1h zQHOILKK1M@q~Z?v2*~W&l@My9(SyevPcj$tzRDQMkv1|6f9lu3YEhH601Uoy$?{|l zE(IjCm|d>|j_K#*=m)%7-|Vv|YMQSzg@y-wn4EkXk^xD6MIj|A)G_rqogGVdyDu_{ z!lrFT_cPE9NcXENue+=5BYEa)q(2MkfTS0*A!p%9o=fWIpckmFtC@2NlX!$=K#~jD z`Z-A9TJZTu)!~*0(Wm9$NE?8fy%bbeZ}TiB|MOAu_=f7~PpEA=eA3zM$DlB%q#syJ zS#crS8X79q(1&deUCeB-kI0s_o>wwf<@qSvboe9{O_h`{2sq&Z)0HAM?1ZrM=v0~1+~y# zM?reoNy9!Hcapz|WI&ROS&>?_Biuq{V~8)I7N~3j8?|nooss78FFd)Ij9FJ7AC2Vg!*UtSI(SSr(vn$clRP1_B%iK*O{}jD|^j5Q4lU_~V8L?Mm zKm{HW+U=mey*n1|g(>6{o1T_34H<)luG zD^5o$AgR?FS4{TNZ;V!;a>kl-GO1SGOr)s<3mJloGkEFiJf>a7MN0ozx(4^jb1y`+dEXuUye{)6ij zO+M&*Y#}qP+AytAXV>LzK7UMqKT5vwIz52=Qyss1_~dgG%FWE)%}R#{6)((^=@I0A z*hi4XyabTOWvge9*$?yc%-ko|8p@i)cpC>21BI2cjCqR=VfMor62k|PM(jHg3rK7+ zO<1NOUaWr>Ij}o|8^!NIF(AdSDc)p9deD$XZD#U1#ryi&YHhipz3Tk7O-B2lp&gL+ zVwT}#k_t=hO#86sEdA%`2Bf=~Zo>j}FY7=>lH6(jOEd%0{Kl&K#4q;O*)tnDX}0dR zzBgw1Ya#$B0PzL{AsCS0 zKdq`kRyVuLtV+_p1sfZBUtBNDnMC)kI3VGbZT}^FT9y7UXa}VIRTWP3$=dwiP!33WWqU44b+-Qs zEA{_CH&Ah#Z;lK9PlN*!{>N3digx4TRmGsy|1V?%l3mQ?U4gB>I)~<*chkN47D@pr ztz4fr>x1XU58pvEAkD=ro+vPNGtKF^;d|%>q_>!7V+HCR8!udiRzO;dd5lw_*04(Z z5ki3~3Jv?GKS3x^MWJC|=w}E8B(!ovm1%vTpSx0m0ST^L-8G}{b3B>>X|CK%lQd8E zc}_wxAjOrdZKw2gPDL+JQ5#S6aZW=pAi>4F1yNv?JK49nHgW;UeP|KW{HfX+pX}86 z%n9{_#dHFj`}JsTyVLyU$D`!M2Qf92l`n-p&K8qQ`jFBAa;aK?7d_@|3NvVUBi#fn~LEx1vADXIaf zE@tX$p{jMLypg>Z*}yJv$co+}GNS8<26ll%2Auk4RPRGIunQa_)!rdZWCOb(v4{Vk zyYCE;q$<}&k-P-SNNQY=IJ1#7iU_-eg=Il@R}jVCo}QYSuI(^%nB7@HP!I#HfVP4t zf})rZ6ctesP*7Bi7e2G%2iL5augW!i&vR0ps_yEpo~ix1%Kh=~^joLi^E@Y?_k_yn z#GWK-iWDR^P%l}c5R z*sFz!Nq+`hLJ|}pk&+s`(d58o1Wy6*2_G@$9UjaS<>qptrU2@M56-<|?v(^hk%FYI z)O7#!I-;fk>Uj2zY_=*o=1eTE@{6~kj5GI1Y1Wl2G0tvC}893GFD^qE~2LZ`h>UM6FdaVV0o)1i?Th)6D%y7uGzCB>e6CY;YT7&gDWawT>V(hliQ3l;-b3sZ zDJUkD2~|w)BWMbMPIwDgtV}Fgs9=Aduqo03TaRYHK-d(3o%Bjsnb6MWFA+5bP{(sm z^=9keQAToOV~&|VJWS{mfSz!76`&XL_?V;TaQ-^MQ=|ucnODn+G3~bqo&w;L-jb`7 zH`Aa;iJc-n3GX>MzeDg80H5$#P${>uP-^HA%l8SKA_c%PiSU5`h`=cTJmK@75>B)f zri%CifvBWEA##f3BQHA>>UMmA{0Snb0P=+QNoW&&c|3c^#fS&LfQMJ-AyA%FK*c5=B@ToV$VSC?QjuR1diuVN;|5Hg0H9u=gZv z3cybI;%2=H*#5=MeTbd{=;OKGFm@+g&TP%!k6ZE(vA}{viZQk>Io~PZV{xeHh_VB)H&u1JNUimLkE4Yn>1nCR~aHC$2Z7 zSVXiG2~J$=M8HzQrARhh-H07axD;wpGxo)0H5%h=`DJ#AZQAJ zPUwKs+R?v~Xeod;p<{V(bbL0!QY1KOy&e4L5-kPL#&g?I?9GLL=l)s(rU2l0?%|0a zu)WFleBz}5-h@t;?7gWkAzTW;O=wl~cIdy1U?~y|)@-fG5iAA3CbY@LJ|Mk^X^dzo z5?pMp^8*uvOOaf-_PGIT|uO?gyz)k4b*LM))wZuySya{cBy#pXu5iAA3CUkse9sGDB z(NX|yLft%V2R^PPW{LzC2XoM)MX(eAo6wfbKHza3;Zh_Uu0Ggt1L0BtZc;0occ9}& zqNM=Zgx*jWJjih~AyWWyQric8_C(J)Zy{z1U{0tfwf)e^tprVxe9+!ulMfIyMWRcG zINoCx32q~1isUD>=V!lzpeX=4q4PTbp^`fZm?FV|eTPXtLBJFMoX|N^;1J2(L`(t1 z32mA&<;ddl-m*Ds^ciBNNNy?z4!qn;#1ufB&^|kO(B*T4Op)9~4jgcKkccUOIH40f z?_kSA1WN(132lr02U@;Dz!U(S&_S|w>%-TGmI7!K+N`x5yZI(DQvh>98;Rg?n@0$l z0+16rFSU=^e4B77l3RwY<2BzSS_+^|XnW@EX8a++QY1NP&EEaTh?XM3XuV@Jj}t8g z&?eN=>N`I3Q{trn-h?hF>ig)e-NU~iY6_rE=!9RPwpPY}P0$pH2W>5eK1t9N0G-gz zS*5hMCi(|rrbv83TT6C-CTI$PPUt~imC(jxsNHXWC3K3!LvNd&K1Jvhi7zVFfcc*U zO##pe^;`swI&SeQAf^D~gbt6q^9WlKECs+OboOK&ZQPn@DS$Si!+QHj<938gkz}~u zQO0?MO98kE9UgT!!niY0Qvmf#;`m&awfkel`dgj%?D%=AE8@A;cH@*&E${&Sh{{f%i=kVYOjbLE|4Llx#1lMV&w zd^)9cJT@;S8w#-bTuRwY=Bi`0$!ejzUS(01q$oh@z7&&^!wgZ0MoEbRls=zQN;O=Y zbi!tBluum1#XmQKXm@i=2;CnWQK{>i(2gr}`v5 zZarBkVk^36A}%5)3UK;Z$~am5Yn?PGK;zDo(eV1!4P-$97N1HPi?;rB6Uk73%qLSw z#_Dk{Ar%Tx`FP5xa1R?UuM(C0GV-8EVfg|NEZvnV1>JI8PBIiJ%#^9BSLv@L4~i7> zAdO>G;d&i;P=H6;ra0|`%qH1TfKA%^#hO>Rt|kqNG}7?K$ZsMI3eZSf$JjPDehbM^ zfK1xvFWzdB=~S*K9SYD%+o;&1#%y`J?XG|a~By<48DMQID_j?-V>Wa+v?4y z$b|x2V!GnXULUL0>XFyd^8A)0@*=R1rqwnLRXgq@cnW|Y@X%kQi~znZ4?a&C6reF+ z|4Uyqbe~f7hW}q66$(%pa7WS)mC<4@zrKXSH5>2+1%7cuIAOj-G87;)U{_^7WSki% zTP&={Rj`7^!(>4L76a}M`(ZJeE8)(V34e}!om?oug_={%j^dM%PBDvbjTENQx%(>3qhv+_W+`gS6f+-{?~n=ws0?`e-%lo$kTn~e z!o*}fTgug|g^j8q_&(`SfX+wLQ+cK;#hGb-kVmv;KOzYVkQlHJqn|ucU1jHf<|pJt z0Zu9EG!>^nck=|vP=L&UXDqYGppL!H&q#>^lz`$Fon zs+}3H))d74MPd~H8N_P5=0XsA+7yUUfLQt(^yx}h0j-}X5@`mB2Si)3kA3g z*qzjWh0j+S@VJyKWt6ds%A8Y4h$4-JY^*Rou6V2<4+`)Y@Swf_j2SCTU|Btl&F*fJy57L}h1VJvUxA1C?o#p#YiGHC>!C;v3ki zJDDLBiZs>~+@P#S^cRx{1$Yd2L9YLrQk%-*Ov(66w(f8fg36jpNr@trl;l~sfK&2S zq(lKqshhB^qfOpEyq7KOd7xYwKMNSkc&LYcU`9{*A z0G;$Tb25tpe#>h~i2{@!9PC2ytV>-d_hpN`C{kSVEHCDDq(cEZ1KvumBnGjAXx ziWFy%<8bSOY)z$fQtok5;!^JcQ40Gk1CU!FaiHV@}5WJQtUB4;@|ZzUayRMRp3 z&JU0d1?UX;)W+<~oaOesjeID;C#{2pfcNtbQldz47THeFJIRLveA3#h`hB6FAR~$t z=aB6Zy_Y^qfDdlXdf?O9hx#=#qX4tC4(T@Hdej-^6aFUo zP^7rvZF1^*KhYzkLjgLe+hJhm%eP5{0z^``aB5}9_sD|+JYxFj*=$b(OgLqyijU0r zKa!%f9d@EWM(7lPKH$qLB13Q6f&Ms2P=LgM7kv95p$0NlXRMLe`_F$$CKO;Y;7i-0 zGx0I_1sPC)!GKRF=~-~_$~L3#P#>NodzyZNYzXv*}-np91(loC5r98SoSdP=LUIkBAj>Gq`>+P>iI~ zmjyEAx3~zvDFA%HN5momZ%g|vNr3_s2HdMfrl7im@o~M$WNVV30Eq#Q!uusrD;CDu zE|uGkd?>(Yz?+$(^2v?mrtsl8C!3p|z^3a;agpBTJC9^2QcPyCCbKiiP^6Fy_LYd7 zF=Tcn848g3$Y48;$i*yJy7nLkiu7?X`LH)RP^6E;5?wL&B?k&{81SvVQOnX;UiTjd z5IjYSz?;tRAcCg=_>>GnoYJT>#%@n}oem}iiu9zvH~2V|;3)w9gXw5R3trJbg6Jty zgx*X0A)==M`TV=W|n3cydv;JZ-9Hg()Hm#b?>%o38I0Ev{0BJ@be zj8Tsv2a5D@Fr$d$$$=t$9Ly-jU+K|j&1j#YSIC6|T+-E@>ye3>s8>maBDGXZcitcsiquju-T6jR zp#YVXtXHZk-(mLta+09{nRN9e)+GKFBtZcZ>1u@Sx%?~1f&whkHB79QwLjtta-c|E zajMnLIPo-pe@n~7-Ur+QDKtE`gP@(MPs@Ys|!WpgRg8PibL-nk~cB5;^g91DT ze9oabD;{mTkKRm16ks&yjXSerlpAv^7;&kE%(s#c1^5j3RPiixXf#*PPvRprm4$L`LBwxRoltf152;_;oQ=2yZ7h3UC|n$-7w=!a})FFXW22 z96nob`dgi8CVs< zPm&!4*bVreh*=gw`PJeq#^j39r%8zdl+rnhz#(@h>-D^!B_RqBO6T07)F{>q7Nh&g zhysirNN1fAi~ zZ_fB#QlbE*uco=V2$?$mfcz-HFP(j|Duw<0<^x7=4=a}Nd8|^qyWXQrI}*b zeDc3ZkOBl#-I-a_%Ab=H1vq^x&6(D1cKIukqyWiux;Rvu(l*KbEtye(S*ph(fho-I z$%_KK(&-u1ITo05{)xmWKrEeZ93Qbjw*3#;QKX$+#|h})$&MoJm5olg@nS)Hs{TP< z6yTLk@3tzF^4k?ykI0!13jCYgD8Mb%v+H`bQO@H?-56b{%EkEfD#%fQT&f3^^?Fuy zZS{)(3nW{SA_XX>bGclXO?zcxTe6}6t91H?15L;dBt!v1pG)O1vP0Xk6G>5|w(NCk zG@eOT6kwIk);_$o*qz)cz-_=cCC}0|=Uc$si*zVJXVAA^RcbY-?ba)y?63`Oe*&if z@H+huhN8Q~H|Z=Mp~!@DKQA(Wp(bzgj$>1SmjY(C1qt79w26-l+*biA*Tc z!z85XT}~zxV3LyYO2;PmH1eQGPmY8%wP%nC1(*!@#9Jv>E=)DBxxG*+2TsS>k2=gs z&LIg3kQngn&_)`OMB5ByHR(`*&O?LkI%Y*jjf}?&7>E{zW8h{pVM3aC&`NGo5+j;%m(aypAECI+ElTi&(~c-E);3yVwJed$b}-E zTrelhnN!}ElM4m740yZyY|2=tY15UYL;*?zKJYjzN|@AR8D6z+uOk_Xbe1*luPRm* zmnOMTq?b!WkFu{O7YcA0u)}m#g{)H4Ox{E$6kw7LNB6=5a}YqVq1&p#Ysvr_X&_ zs!ThUSMfb$Ljg7e-WoBRLN=Atjq>|QgaSlTI8DH=7VHJ0Y)kG(`!b0gJdN; z?c`M*`Y@?cfZBjhM9r?$$z$e?vXxyQAt#D-XBRRl8{AC&F;b&QX?As5PPvPmD8OmJ zH`mUl2v#fg<8=r7DN>;Tl>r}poedSSbX=dTI<-kOe%`0M?jbFTl+se4tO%|)+(%jz z>82HQ&VQb?DE=d886W)@NQ>e>f|haBe~GjxKx@Fqn`YHy$hsBcv45E4C_rw&hd}2* zu7l(L>m)`2Vgo)YKPO_L{`+r{AO#4f(6_2~ruf|WkCGBa$|+fniSLjSMXD+JociA< zB??eV;e;!Kl~@8M3H(*#x4E?DN%sZfRA*}p-s2u!9OD*3J^-+ zE&x@Pf==>Zk`+a&OPM z0ILC?`JO|I7x1J1jie|*DusI@Rmt<*>HkYU6yTHIIh6K6Tiw&YNQ?r+zMj728o7 z;+~{Lk!niQ_9mWvNQolll&p!#exyVJN-5m@W*yo(kW47RB!#2*&Mn=uNs0obQn(mw zH*trM3I(X7a3X?(S^mRxhmj8j_@r=4zpt%6l3XajC4~nbLk|QFlNUug^T^lvEFu?* zv~sa}ou%YL0WLQsXs+Ak1kbUAOaaKZ3>I>^QY{5S3~egsA@^=DO^Sd6lq~FQLQwlYzC*20Rg{V-*{1K<` zY!WL-f&wH4e7RCI61dif0mXOVR8d+<4iu^3u(*xG+2lZx8V<59*!gfSIZ%MZfH$W{ zD@)3q($+SuB@v305ov3p&L~hdxO8Z+UPdYuX`|BK zZskaYB5hRKo3Alap#YTuU&C9)`Q=I}aATBIb{NgN1Wp0q1HOhgBJj5HY>5;o(nA54 z@0Kf#VzHn`AycG40SX@+?2tTaE{r<$oI+nCdW!U9z*wPL$WIm>eFMWZDNumIhtiP& z6S-1J=fDi%Qvm*e=cG}~kGj`U6`_ksfC2;t>@<%`Ko0-|Rryjfp#YNs&+PhUVrulO zNP;4D*%7SRuO<@;Fu5}w6-bP|Q~v{S8Tr<`i3!BdJA zeJ|A=WJ3Wq1D;ezXH#@GGO%h*?<55ZP#EyukLVOs?+}_VpCBm;kQ(qTqi<6F?75pv zC=yV@SoCZ4LOxdv_7mQd4(-;xq(A`*gYK_ApwTF_wO^kj848dY@Lpa~3Hr$o^8uoK z10DrEoO+OqDALZzeCP8aGNMQ`qjIiXGK{`LMigK);3b;=OWkOpoUb&>y2JSzxlp8$ zOTJRA<}1#)>O8+mE)?MMu>p@J`)=Cu75y!>M@WMLGzQ&W_D{oZ%)U(~6lrB*s{HrJ zgaS-b*K1B7xV<$9s0 zFFXAMxln-1fDcUdU-88o`D|cJ`Daq1NHL|r(DJXOL;*^Jc9iu!CR4fOjWC}g8w#)) z^g6_B*#rkQ|0E|0a2oI}FSD*kzOl^~br7ORF(Ka&XG;>I0HM@5Yg8Tbk94*sBZ?H) zqu_vNJ945(cP?3@g?VH|0Y+)g~@IUWC=oElH z;B~Xe(A)gZdy@nONDTN0Xmk>lDXx{}irERLo^^^&$uVBQeaVLcdbM;)I>{J&Nre}ujaKq-&uw9-<>>tVlxw7(% zEt>OA*@(5t0+TmaY$57RvG^h<9Du`OPqkK`U#g5Xiq23Mq$+gFJ?zpg;eOu$T-%%` zEfCTr}g89A42HGHh5_|$KYfFB`X3IL90yNq2gXIn}{wu zrlzndpoX1RQ^g!Vz9$ODw+WsC;NP9R)Xw9>T3K-y-9~j@QK0@FQBx!sH7<&(jdXL!zcgCTgcpu1wXkRcxok*3b!ELLMV(3ZRZ>16!=c+n^q6m_q$HAyXtA@|2Uq zqNym+KP6-eK)ybC_0Yj5&FlEMs=)dSVx<7qo0Eriywa!^oN5-I7_IPoX#(@FiJ2mq z={u3DPdfO3puqYhu~GnQ0y}JpHOp^n3b=nDTnfN_XYz^zrzYh_DLYmu=>q&`BBlW1 z8E74K_Z9KPY#M%I>@kDma$ye0`P!x-&2%93=u(5Z=2m7CdO##>m zY}|BeH>NP3)Q#H~8-bZ3ndP}q%W_CDquPrtiIxIr6WCq=EymnF#9I?F1rWb0dF=%d zm$7qm8n;1O$-EswQzSE)Yxo>^9li88K7XJJ#yldX0OEHfFPSxB)A8+0ycEEjz>zWL z*P}%T{ob_rY^-RMcO_(sgeI|sJXP7Cio_noO98y`9H)-8?+Z?s3AWo2TGw3ZmlrSj(^DW7#VxlAVc?pjoPznG|&={h-cW{WH zDF8Y_Z9<4wa3RrBBoJ-8H*g8jQX~tl@u&H{fX5Im1<+oXoO))^THe3o36&zDP%W?D z^9Yp!P_Ic)s@mSZ6N!-m7!%}~?C9k?nOG^3m7YHD-YLXL0gMUiSc6`@(+QITFyES- zqS?WlcP5ci0O^~OgEZj9TSb%~ApT#97E4SMa?5H1DaCa96psq6FB zoky$`$tte_FWm)1Ndc4zs{b9la~BdR1&}6amfhJaw~k;b0QQZ^X{-u0o=X!GzdR9A zB&>MWol>o^NxQtqiIO5&#Z&tTEw5&QNGX7{m7E;cNR2nMNSqYFnV=DVCog7&P$?3Y zq(Sdxl{hJYGeOP?weiZT^9=%}0MGa>Te`i3V=;eU$4N{@G+DzM|*%@POKEb zdToL#zYpXq2$BLI6SN1chjaavL`{*br1d-1uOLVYfK1TbB;ZVc4N+16WrC)pK_~j_ z36laa6Er04;5>f=kx~HZ>Ns|Zt5vHJ^}iabwe7)vMLbPRH8)nkR`Xiajo~_c%gw$W zTf^T!gRSA)oo2L1gmdEuCL_c4@IAK{+rzJpKZ>p!#5KL(7ICdtiSZ#MhD(7|h^cGU zF^KHxwm;Ye%$oBC8w&MF+}oh?H=7&HXA7mNV(Tr7w|LqX{3o;UcA};L>UeHJ_afzK zgSnwLT`j&6sqL!d{wRS{Br&;jW4ThcR(GZp*pCw|1;EDS6Eayl=TsJ8wc|q6>rWCc z1>nYWL`-L%Y-#3HD6}c;L#yS{c&Vj$mC~Okbc!UVbTL;N^~3!v;Zh_MZnfrzdq3e) z0B%fs=He^IJj_*so+6-mVLNP7I7+2pKVqjrAoDlIk_^S%j8ly|z?Fep?oZx{ zviRSqg3Ya0iuYL<&yE?7j0UCg`LZ-#8MFOv#Zje-zdZWb|D3H51(?UPVy)urF<$9{ z%r286hkiwj6u=md+bsr+YRrm(`1B&2oDe{NOP~}08qWsOxPfNtI0{yqs?^|j7m$BX z$P@`p+r>I<|3sh^2~FF@V{K{sKZHz?(6n8m)AsKKN|DgCUDBSm{~%@p$B8M{3&Kt%#K(xmZmJ z*p^r+l8e=}2|Exg1+XTq(=Fl>4sOL3g>@$ar2x=)_O!-VSc|oK$xKrP+Gi3i1<=NG z_%A-RrADz{$WA)Bu`JK>;0i*1H$lMOov`{bDkszocBi99lN&%?x zY;v1>ZTF8@7ZV``5GKWqp%9vp>e0kVkvxp1Ejo@EDUyfL)bZyMBLy%frE~O+NS{xD z6aW~{CXu;Um-dn9NkmBjl<_Q9&K+f!5$JNlr2yP`wq4F0Zl{swX~anZoJkqrM;LLQ zLD&?4{lYl>{xWq( zwQ}Ik?k<4sg#?km*AY4epx?fk^0e!6Odrto`od(T=+xHZn7m+c0~t_&K}_>nKc*NH zUo)syYFLOC@NXo13c!!&YQ@c0b`<gs)LT*B#zlG>2(o^>F zjg<-BMywdzN(L0^Nq?s>F{#jhfaodGlm0-Dy|6XS;5IU#0E3jYJ%utZL{=Ga2jNoy zeoERNd@faizmwo80RFag^jx^*6~lRj{}aSd0sQe?>Au<9PTwuHq64^_Bq%`Q&eUW= zwXiXZ3z$qj_zYQ4q%JG4bz!|KPxq1p1xVbLs;sa!V2DEXIWnODla#coSSU87=|RG$ z0Q{5;il)3~^&z6C0Q&c*qZnPJ`?IeQI|ZNd<41shgy1PsRCuPxI2u(1zD)uYAaF-IN8S(0o8Lqs`UOc)fW#Nl(H1EZJdwNJ*^sTxlu8cHkmuF6IaKZVHHlGx*saMXmiPNf zpCob$AdhJkW^?&T^Ok?~4}?tt*zsH{x!I=4-Z<{h1Wf_Z@mx2s`9ORA(7zHjMe@sb zzz_Nqky9i;y)FOeKZ%+m`RN_-dv3vf+Y~_lv1GS`>N){@6AFG$y}M8~=39~m1!yF^ zNwnRzTN5?~U?;pu^!y6j5i|urzbDy6#^>dP90q_Z5SXW6Obi?jV1{7eB@Yd0GzwS%e6o8%Zv6tm`J%FewfI6Q0 z1vcA=(YRX=B4!F;j^_rI&4$_UW<8j|DUx5ZZO77~giQh1pH6lcs&HWXl! z@KKECBpxDYiWC%ipL2L2fl~l@!nddeox)29odVDkJ_2iZ1|LK46ab&_PSkb+A5Yj6 zfSvHsy3hIhJmRKE0dCvrdm?dDB)^QeJ9|$icnX03Y_j{MXinZ!NQeT2au_XAI12l%4P#APs2g#?M|G8ltLMuQ#S+ixQ- zIgIHt7-PTd?qeA$uwhzKmF$;-y-NY+F`c5CD>8czx5%MmiID;rW9nn(j!}&OM+@a# zbtWr3`uJRN9hWL#>6ZDOpb?PKpF2YnM{6f^aDSH=e^xB2`C<;=hot;)+-X z1EpNKFx9{}RB`u0#G_31D=qh|2hok?E=D&t?<~s}k1?&?EC^+k=+d4oyR>*NjIl}e zI>O`&>+jy|M=EW`kTxy_QY0RinH@u~y+S`t;1sDSIa5xxge~26%FmDh1qdX+)>a+)4MtIDE+%ve zK#yln_vS40Ri`$Yo5FTPf&Efqr$|MCuU3jU-y?v(iohuVJf59mn={dCQ^kUA$yD6?+D~q5jh2r$K&SStmS1xZYsBt9|02J-$?Kj z0H6G^SiMlx<>guer$|LvZ=daeF}R+-VhzNuBX|mckLQwy%~9O>8E#d? zZy;a_0FLJ-^Ab{b&orOd||tl z3;(G4UV^3o=;V%(tkLx62$&+#W!XQ9evp_c5?wL^qvwYRngXCNjAMs_T|!6fA8Pd5 zdHE!sPbQTs)l$^02_kIEy|j)con1FzNoT87d^^5RCK)g?5-j4Bo#c}TA@$7f2 zFe;S4#z>`N|7_+r1@b$deLQnUX4e{#Lx&I}1u(|**@hS}s^v>@4Q;tnD)8<(f%Y(> zr2yJ^zTFZZT3RZU;m;OGk0eqGAdP3EQM^biCDAgOlpQ8s3gC@r*cUtAM!7I98dH(L ziwKw^fkmM<*%%+EyH_AxN~9D(8qYn{b5Gj#s&y<;QUGN<-RIm<(t=l|Mu?CC2;FaXb-7G&J_rj0$}5D2YMKK_hdpVI(Bo(QtYp)) zYUlqeiIoCak2}p0MvMfi7`U8)ATh2N&%qf#o@LxI7iH1s=etj=&8mu zBB@6nhhb23*d-W&y%*!o=9a7R;QrV4l_twS`BB_ z_z5#9>;c4wYv7s^7;h&=3SfNmfRoRUF<)tv>)13WV1AS^DF8E`NpxIEiEEo2oF`K_ zKTez!iAzr0e%s(4M3J1IBuomxjOQ~-vrf*o68ULjqX4$623sN(HeX5nEa6cAUNaH! z{3Y;y;-g4R^7%^M1B6EbcxT4bE7#E<>)ycE`E80Pdn(m>AN~*-y5+w5E9i?K#7t3^(I zi!dnwGbUF}EHFL42X6mHDHmWLC0Gi8jmcFLCs;W=CSC_;$pqr>5HST1$27r>6|tAL z-zQQEAiXv*m1!80aH|0Ph#)BdGA7?=9LZU-ApV39DUy}r9m?htL`ngq@hl-R8FZJ? zZK$q-b!9E$cXFj!VBSq`xFm3Lsq_OZP6*XhbDxSikzJcxoyM)xarN zj5_W1-e|dhy$)S|8F%3{cUW!dkrZn-2Rs=ey8b`Qu0JMkjEB7E8iN%yP=>uHDp@Y# zJwX&mjhMX1UL3IiwTA>EC+mbv0m$(j2@##SRld5l4Hmo5v^CTEe4{i~t)R0Nz&8*$ z1%StMBxG{}uQjmIOyJ%`+!Vka&&K1;hPy;JvjBYwK~n&9JQqT2HqcfPxs0eOlAqLG z`M8{*DUuI*I)@K!iSltJK~n&9OlwhA)6i=UWCaaxMf|PD>j;`P*q-+67< zh}ATx&a>lWDjv6P181=c^_htCJQcd-e&&;y<6VVS<>oePr3Egt#^cttAjya@x65oR zZu*SJt!qWl&8@40`9};&tCHZ2TwSLC`*_^CI@TUNm=4wvoIQsVIdv^zQUGQ=^J5+V z++d2Lo|o&e0%(gsDG~~_jH^fm(CY}40zl(AP!&sxiWO}E@CE{;NEkqqf;SQ%1pvn4 zBU1@DqW%wSq%Mxd3ALe`o5II9qV5mY!CP+jMzow?LD$jT_B>^SP3H?^M zo$*|)sfqORHJNZ({*@hXl=HleQ}O>A`%elmk7rYwiLXb4WWwdf#~@_l4%D zoOiPLisNKu44VW*UVW2TDS<9DTipFrxnmEfhT$*2i=CdZk*}#_Kf}i zg`6ABXA7k%Y}FD4@MpwKk>F%5RmN}=BtKFuApeq(DFC_Wh1vs3W_i+C!2J#3QY5%k z;G?^~%J(~BrU2%i{^tQDF)%mEAad?4eYI{_bYa1!GRBQd>}Ua$_ZDxHL9j{BF4yEk&=imHg4%YB>Y3d)g%!UWP=E z@?zPe3l&uH-!f$)lgq49CNeOQAuOWW zRp3-4M#K+k**zbqEcl1}0_s>{RwEN;8A!eVGQQt4{zZy3_srI73l=UyRYLokt2@Jm zshRTV{CZ^w_fQq_h4+!6dZEsHc8x{TIkqz)7h z>=A`Dhd^kcfZAUaxuVgfqjD^LWB-PH5FI15`8*`xL)Ur5;niUamrnV*S(1RLLxsQ zH1Y+xqO-B=)CFCYn;0w%DYYua7c2(bT~QXOM8Kue)3`^@#{Y2JsX&b~} zE{PxC&&%`02)roo?U$CC^Hy+Fu62Q*K-XVVaI^T(6v|Vsib~Guh)jy*)SqMNo4Zhz zu~mrd%>LL|>0T(0<0u&>7ej^e5QgmeNfq@0b}slrtr4M`3}Eua1jrQ185sbuPU;Jm z>^8@Xl?}k6P$@9GuW`!QVREYfS<_M@Ui}Ip9_cG$H@C4Z#vRW%>3mDssZ8TYk}B|^QBUF!nf#Col+Kh3=gVU;|YMoq>P zTKtzpqFL0XJi}7%6+c~Yg2hjAX)(%Kl-w>&_^4C$^)&N`fMR00i-`Vtk%7-g#$X?xFpn8x149!P^R6q}pEQ+H z#HoWLzAlY!kS=Sfzq=DWMc)>oyTf)pWLK?I1q#N*d^h!VXhWesIaG6S#ELzhIGj}& z$96*5k5pgBDTG^&9XnJWf0ozu!1)O1cJ z5dfINJ2q4HM&@Svq!O^{I%!q6S zeAQZ7|0J!4)cWwg#>3v;DU0;@49#{N&z=x;|^{sS$y6E;3@! z$^osc4(ueJ}Z3zA{ZKTFPLoJ5p0OTTJDh}=;SjiXl`hATR5~mLu)a`Y^fk< zxII&{DMyfu2!d+=g1G{gcrZHn1(K+H+ZH(m*lVM!7DTs^U3IP1G=Cu$EZ>E7l@ViU z@2f?0QTyt(a|V!a)asRz7%o&Rc?TVEc|vjCeVKg5>9F^#snlYY?5U9&**SwLR&rxv zoFt2%8p03#{-(Fy^SisRRz-xR`|d9SfW2FfC(zH|D@5RLSxR^2p}i3txIIoafSuVvJ085Je+<@`C5RdubhOd?nZKyJC*YyS3l_p>DOiKe`o9wh5##OkHhr+s!Nv<|C14S>h9+dlV~$NpMq>`+^22Fm^yUr zb4XjeqtsPVOg-%Su@xhZ&~L-R7UDtbT|2B%gP7;DddkY`b=VozVe8&gX25ntH|y^A zg|o-3>Ox!hDPiqMSlznV{On^!-x{&|lUSZfEd6zwD`$_+>n%<9Ct>VC7$Lpm3A2yS zbc^mjj6nB_h1pv)-JxuDy7f|4H?lutpG^<<;_&{vgfp&k%$dc85-?R0^;|yh6dkT> zV#MbKlB2Df9Ic9UIp$Ez*AG3(4t~~I7?7^v7}ytF3@LmeGhRsPQLM=t$&eU!=$!=} zmRvkUKG-dna4=n8iKK#sb3?PJ&A^DwIO9F`0W*x}_7emsyVIpt(0{I;rCJ+#g%^D$QF9ujopN7b{<9xWi_G!t|o_-DAt5!R< zWN8H7#*6yl*yb=$3l1|KJO+Z*5p5oW@Hd(a>>o4fz#V-CF_ht>7j`ehcpg@U@hI*x zY|!|M=TL_-OkBP|oyxF87)KdCdg0v4uznw{b(n81tPCH$FhUt#&`%jIj4e``z9s+c zx739%D9VONj6p`k=tE4Bq*li0uHlfU<9K6H=rGGRs}@78!Ge1MP5MU+D3?b?GiQ$t z+?Uak86dz&G^*{c4c2^jR8ZxhAh>Do`H`@xuD?U?Ek-i#IPG`usF&+PuyGk% z1lPsVNKu-eTYD))9A(Dgb>He4@*#ZQWtR=nOM4CpY|^#+MYl@pUHjwHB4M{XV!t;c z5aBcXxM@|2rj&81A} ze#U)Omog!Hk9f+2iSWuuWkNCn@w%-JYeQWYn#K6k zH@Ti~&ya_vX5S)Un;BTmcQkJ=OcOd z_a*Q7r=3hAGLT4D-}8)m?(?m5NzisoEtjz(LBA*ybZPjIrTt~KPZ6_T0p0Y`zTSFq zUl!|5jXNlWy{*=WA5HZ?dz`*(u?MBIMQq|khp)`;veMFXAb{gPN+o)Ap+aO6eMOe9 zlrZCGbV#S{coi4SW36u(KU6bYaH`@U2{eAKf;F+qAl=HFiv0W_ulCDplY$ayCxpuuq12Ae8@86@k6Z z3VGZVPp~aTzo>VpF!S<#C9lKl#ij38^gyD56iUv}bZvO3+$dp}Al+Fa)A_85&kFE} zyU6EbPVwFrUSNh;qu*X--WH7(pPeh;Zdxy9^otq3m_f7|`63-*`o)ZT5%jujyy=j@ z?VQG|IQxzxJT=ndq(E_*uW@(;PPK!|mcfMb(3(&LtQ(7y`^p5>Skx+Ig2FWd)k0pU z@gAxwtA}T)hfPb*h_xOm6h5D@6Ug5QswcAJ5WOEW*!==~zusMp*tOqrzqc<&xq(#? zb04N{(?Ig*Z?v()d5gO~*^iPHksC{--HkKzc z>(=2xNUOhYooIMP5P!?RZk;TP?ste}j%|4OOx=eWd2O06QK{V@F!ErVeO$B@@EYrY z(Z^`iYO&2@@ecw?0jTU?=&^ws&M;jC}XoUQ8u+ zlep!(Bep?zUxcuYz0_w+oQuY%Mr%{JA+0=-&0%VVbDLQ)CDI3_z2`VDuE!f91olA= zjW!C!u_5#Z^~zMs{qb`^;z)E)+9Y1lW0B6U_(J2@w{N<|J#Hd`OohkerkEW1qjIx#{+TFDz0*gq73cw)E>zW_n_8xkQ9AbF?fotNmHq<^4d`b^|8jaF;Tr zZR)-01S|29KvvYpyX1q{?}cT?hfYRj4Er-H@qlXwDg?Qp5#xm2$2)gwPu*)%8PWZ%E5s zeJqO4QOk|p9`9gX7K8?n08u`p`dqp$1?==x9`nlKS*|ISgsXJoQPRw+)eF@5a5wovLD(+`n66s)* z7P;fTlr}o1$gcL=c4D~e_>MIMJirdAG1}LuFb&)>z7=wviuSAukXdA6R_2T-U2Qq& zesvh-Dr(N|tFoz+?UpcwV$}dRl!8MglVH#hq3|UhA-MI>#Cv{7q#So`s21vuIONA` zD^w#Ulw$W9l`VJeNuapXc?>Gf?hCC_h#en70muvbj7gdXero6%bE(_Y@l{5ZiJ zs@1EFe7%7cQx)mX^r#K3_S8+G$ygdhrrm9kBO^=XMXPjteHVIfjwK6y$QP^)4iMqebq8LLa#m&rp#3LH3DIK9aR3p z2nbE(v#ef4tL-)Jd682S0JR?slPy`*-m=9OPuqh3L_6hP%{aoUm~zTRfX}*>3Dzz5 z%{1PrIw_w`1jD4@)uW85NA7jB9a3+O?<<9Lg|UpkoyI#>k?3X4o13$4xHr+HZ&B9&Jne@FCDr;}Qv`zwo>1Jh+r|)t!LN)>;aa7vY1z&M~!Innr#+ zCi5e_KkWRzl_vsYSe}ITHbJw-VWIPeX5Ak%Nj?6CZfM)oX4cCiVer4(@<^{|x7V|y zv&Gz|ne22e>)^m@RgKfB!;0>Z(6!w2mmr6BT&a|&Fknmm#`=!9C6rCC|r&J^!f z)A}2hkL@qftTHKbC9F)UMY5h5KEkYKE?QabKFI;O|T@zu)1%Fv8FCOcW# zzzuWQLJ41AzJkMZm1<4ZH9X@Q4xS-x^s|;b%F}auoZj)F(9_4xJ(<=^C{E#{kgh0X ze5i}NgBQ$%HyB;b=sGFDx7W$pT2*C1T9w7Xs+-}{s_s~=(jhEc1tU;M!sn*lV-RIV ztXYW&!s_ZNVP!DH`Ur|lhujxM#@&qtljWvE2xM$%yAT$aYGp~l-G{cly4<%dD<9qc zg)Nzxz!f^i55pD6J@+8mv$7C2L+3kTHoZD7=pI6o5$pJ|)>tQ3p2-#qqt#q>M%8fx z7CzINA@!`~Udff(J&*=!LgsI{$FPeLD|ZEMmAhDz)-?ft0-?H&Bx3Re z^43Zi_jD$`mpcA*2z9u0WMIt`iQQdg<*G!jHv_iAK3+Mjb8^)dT{WDfbYH8Sm7eRI zT6ncq+J1Tpa(6H3!uCI20e_Nug0(8a*}r}kKB(-0rsXnLSe;cznn_>TX_D& zZxp6IJ6n_QgXXBDsju!0Mhe_RIjqVJVFOah;ZmrISvY6K6KuLvPo$G6R|79k2@FSc z#?aZnEqL|k-+oSr{WdqYupP~f-7P^pFPrpM3$y)rtMvkCr_|OyHp_HWr?g&A44R$5 z=es6{&{5{OfFRJ$J5A`&a#GinKe_*xKYL`E$aPqgJ*&1TvP?XJ75zy1OGSyWw6Grr zmEE*XUJdmmTi2Y2pT^HgsLu|`eVWoeyCl5>EooJgzwE9*)5VTzRYlTmM=Mg%G?%ej8CcmY!z;8wE z(lmZ;kr?iJnhA4f9~flP=Cx*0xE0#yS}#D!4D_+iew~V@iqy50-rQQW_8`*`c7fA;{UqS7ycK z0s)JXP9m13eS>+xH+AWiFTRE^2Fvk2o!+wwuzMBX@|Rp)hc0Rq^6QbpReg1=r)asi zEkuvA{R>TymhT4;@1<&x_mb?oVhC2ZErRpr4d(Qk@~ z_c*QX;R=odsL$w^~^tXCU_{hhq>Cs!IRg)We~Yi_fs3#Dwdg}r&J zeXEG(XHQ!!oLohgUUX>-ji;w;&Qm{)J5zho+i)TIWcO_sT4A!k<~o!(%B0m^ORy-& zp02&U)=hsKSlTk>TbSzJU>_7x+~(7eD)7Qgc#Eyu{5C9}dqG$Tn~148>b*YV{V7Ym z`w`YQyVkH|$|~xG9YM(t6k=2I-MeTZyqK%D+A`*qZ`nwag8OM&=}@Lsr)9ma3$yj| zy?nW?2)Dng%C1@-5%GRryc#UA2e+jF_{#n+SXA9F(n47K+KvIa@3o_%(Q>~cFrZv| z50DG0X||a2RbL5ozs@&0oyos_%sBiNfpG!phuQwE? z7A(w)9mSkEjTS3tq@h_T7eCefVBzq>5!~a6rOuXnJU{idz0fG{z4(!lKfqn@mx^Rs z+C%&OcR<9;N2`h#>1AuyD^P`1CFL#dVRM9>aEqZ~>Hdw$7GO6lGpLs>F9V3o{a0HC z=*yMD3@yUiX9;Hu^d78*!;41HZVMIe@8Ac?<_X<0rISB1`X|y-FYH8&LRv*uY&TD2 zMXw?fMCi3^0$o^Us7on&f-(ef7b}t6jyDz#^$oW~lV7q%E)-rzo+uTt&7f^-8VOsPSU92{$hY?>Uxr=GW&L685^)M93821>OvT_HR zt(IgXq?}hH1-lX2@-?0M{=5#h7U77j^5fyY>!KqLW~-6KB6e%$F|K@9k6Z4`jzsO; zTRb-&KYTz$KbMa@XCUt3){j7}OHJ#7Mn;PIx(f7Q#qOg6iQUDDuC;VqR83uK}D5*oDf z5hm4kr^pDs8ZY=}Y0+2X^&J=;EH2LG@L64N(}bz)7#0aXuG#(2a^Ef1*%oocbP`ts zmh0UVt>$jjW=^8h-_wGMJ$4EtPv@9rEU4Huuz&%*6dN77nidGK?R8o&2}QSO@?Tgq zS??Huv?c5J2$cW9n_26?AzsO zOC1Y0>`RiZbrR@5VD-yENBU(~}sEPB~*%%TXaTc_%y`(7r> ze?*D4JCem}s~$ejykIeWKI<#hav`V2nTzS{k(!o!8J8A!5UMjppqBiVQNK`C^qvXU zm2QTmG4x7zAx-g~y4N`TwGl>}v5~l+V0H*N765xZx0W6FCoRiJxgxG>5K8YizRrh0$VJ=j*)s-tr#NiA{c;t-Jb9R!_MyXN+A|$S- z*6WliQ0ACv^o$SRwKbb4zySv6oQsYpuQg*Ny4uM+;xf5XM@#}9?I1gVI z`Guwm>v>>m?6qJV>zoj{-;2gGG!E4IX5uKxTCU)76r>S`uGkh>MaqppB z4)gAf?^lqYvnpEXCIaF@6bE01t7L@Pj4&&%Jj)2PC<8DHu=1Xi5v1*xcK#Fics?VfELCX1;+WzLnsM2YV)p)4yP&idPztJ^8Z*EcW^oY5i zMh)`|)?T$KK(sIOmP_4PsBuL!YVv1B{_N9yzUtua0>AlXQm4(!pPqSpdfuyqDf5*n z+>BV*#9gC;!7eI_vyHx~ROqC1P%!ByszP}R&4!rn=Bn5RqoZ13^lPLZJN&2;^CzW3 zRQ+^i#Y(N_?M#xCc3erN-uuO)m-uZim|%J9Ck9L;@wEd?=!+Fz7bp^K$2D5HlFFv} zoe{qggEeLe&6pAKB;ySv)SKO=}f`c!qr!kukPmEP7Sb9IV zNpRHy{14*`@4X_`R@rUoy=-j1+^1-^t+R?`O?D$bYyT3~f_;R-~Snbr~L~2FZ)p(l?WeMD#Cfoa$NcMEclJPngcPC*__b#S4 zu}5-pRYc58vz2kI_Q}-M8${Iv-U`L(MowOUXZ4id;WZKmE)(0lgfSWHWHEL1`c69p zrxrO3qcFMk^``c+pcQX8x|Yk>F?U@Cy6AN5vKe&K1)p* zI)!Meho+g~oLRpPIQp}x(Nk5uEbhS6F)ARtFOz#b{m<}Wc&QdQ8=6-TdH=OEKk4Mx z^9z_*Aj6GwvX(CMDVsZr-~5P|2!wdn_MPUEB**Brg2>{s)2LcEz5f2D_vsRSuw>UG zY|{&tktQ+yr%C)LE{{byhe?3#zZ9whqGpk@Nl`^YPxItYZ<^PCB(h)Cb4eMA?4Xsd zIZyT1631Ma`0A5lB6VhnVd|4T(U-Xvts`^vt-Y!g?W_u^Q8%?l=MXbTp9_y(UBqW0 zMRLi{LbjJqYe?CH0Pfvm+br8f(RGTR+SF}H#XXr_ew1$3+DK$s?$pbU1SWhW`HzC5`GHk&VA_9Xg1ZIhj!oRolsU}{w&APA|>=yd4sc>5TfxFShX?g)`THLFo z>XM`ST~((prrAy{{@K>pVa#!+O1LrGTg=TCDr$Pf0^pq=;b=gIKD6eo^A>O?!!u9C zJn69IB0T10;=~2RFNgKBU>)Jjg71p6TPmnIfx(jF1@#tX5fmMiKF-QIqycn*D^Xy+ zbSHS@HQRmJ<+b^8iB_yO>Fb#VooBA$8Z9S$-aXAy$0?rCAtrmfVz-z?)-zeK3ZX|G zBC1`N(?RZk(lkoZAea$I)X2mO7*%7zlGhnyiB@IPu4h%?hW9^dN+nu#_h6O?Yu zY88B~ZPF=XG1ttVF_snN_E_EVAsjZ)XXHz!k*zVqqs9u~fGKIgBsKT?1X9)3`xDk) zJ`!RpQoW0|rTZ;2*Ysf}r zZ5w`qlRum0uRfr8yZr^*ZO`S`0NX$LbGq00bwq}5Mxbr^-FOf_0=emRCe`z}{QDSN2HAg7(P7MGgnr*IK--0d5kl2WejsG7z41gqXAP+2pg8#Vu^hl*c4C5 zG>Ora0C>1gLyJeq3r!tXI1aeC8}F#FSkA>ZZx|PN#i+|ZmDt{HnX*)E$ZrL)>JJZN zAFqJ5^SJ?alNu3$4u~|dw?}k|0%rN4DtQdR__k$4dvt!-)OyU)@u5T81s<`2!>)?e z`y!flq|2!H?G~hIo@Tr~&o+$i<93t08U=Pq2bk~H=}}W_GkC#{uFs^FXD|GGb&{%s z8Tz4@)bf;o)+2w#sHnCetj)k<*@)T$B({O35p}mgyVkR?4jW^^bxg1PW3O2}-`N+cL(or9zRWqormTM96U zNEyp)l`5yI>UJ+22T>H2$KL-)`|+Vwmof1L#6B?_3izyF9d0-IIaZD$Ok#_^H8Zos1mdb^i+hJ%l6hG=b`<=5^tysNAY}xj`qd%*N!!zeO8APG())m3UR%`^%APO{5 zI9X?cBadD@DJNo!vaJ?aB!RnD z^tN(SQCkbWuD@7B)7+)4^qOWfq?aIGOb|=aJ_~=L{DOM)#`c2#P;RiBK+(#!H-Y|E z*1eGU`ffYV?GKk}Gz}cKaH`SNEu2iR9PvbM60MEcQA(_C3q|oq@idz%WZVwp?%L}0 z%Uf3qHg{odlZ?9{dFvN?G-hY^m;SmH^Qt}TgRd2HO9arnsj^n%qog?7C@)rSg7?}e z_aa8wr9HCmADSG`dUXsp!4&khzmtuL39uQ*HOck>i6L6<(|CQ}zNgC|r!t5&5?byQ z*1*kYJ+(iTE}o)M)OWygAQ=WiMufrVwP1vI>@iZ=47EnCi1RCB zVvI0WsNt@F8UCsbP1bp030F7LH91>a)27~yovZU}lt?xhe?(y6jxP*LyhB@I(gJ!@KOrkGMAT6>>e&uDR57#ma! zc|?|Nx5g-NBaitTR!_ACqP?sx8a8*Y;MA?Ub)LsQTklr!?290VmN^`zf;92eEM7Wh zb9)Ut+F+nhEQ@U{^6FvCc7f&1H)t#f;$c}SzI|kZH1}O>V=+&G1qOg+Ss&@L#Kt1J z6ar~pqk!y<=N=F-zE#hgcx0uBd;|!16%ee>Ei`9F@I+R$x+!UJUIgo`dox=Tv6nq? z)qY#8w0yAPv0}qCKl2u>9HOwfw=%9S^~Y+YyTst5V^V1Wy)dY57iC?p5$3#f1Xv#brvoEU+@JyF^?)3by*RGY1gi z>4ReF#U)F$ES55&Pcx#fW%ppK`e4_2*{Nq29jCe(`Fm*5aV_^iUUjkExgr1+`tJ<> zMh$pYxE1*>dW1)T1wr@svdhFbBLAW>5tI7}ajWQL6piNgxpJjk%#Aw5TI-V5Vea<# zW0{v?@~$ge?r!|GyZ*Hge^H2M2k;k#_;nC}tyzVSUOyXu;nhR5LOecH|8hTgrg(g~ zQG8e`jx>soNX3v*D2ofJc=T*Uu?T-5iltg1qButXa_^A_jx!1s{<%~ioal>p%ucw2K~!DQW}^sieagExlt^Vic5?_ zS-gyjTQ5Wuuf$)7;tH)0QCz8ix#QBnYmGvMzlw^xUI+tC`~?G7YlSdyt^Vcym(1EX z8-)u0Rx0wVVcrGzt}dcPfUnFt7*yf`PrYLKt|K{^d?f1p66<3V$FK*U&%)f5E_ftq=wd(ZAeH z(!ilcafwtMZWNbE#gRs#EDlpqWv8(Ke<6y+S|OrXs(-n6OOnSJg$jQ>6*sMgff4)# z11D&OFmR&&0j=AY2X~A zP~lfo@yByuU=99)f%CLN7mIL@;g? zYo%h+D9)D(*C>?55*1&48KNlTFGO*XR){ES`WH&1c-$}w6@DWXYuJF#;4c`sSSy5q zSLk2v*Colzj6#LKoQh+ZN>|`77ZMQKavLC zXB0n?iVqmY6H@UZqfi!ar{X3SzdP_3qPSBlL=+#_zuZG*&fH}bD*UIYc$5vvr|}mI zd{!%jf&26?_j-xob4KxYsd&IB-YFGdFbZYyOH}N_YW!vVg($wN6(WkS>tF82rGal6 zg$n-&6;H9beH4Gez<0Dl82Fz4=5#g$U=m{BN;k5jQ1yM!n37ozx? zR){Emp?|r1$#ndcQK<00rQ#a)YER-X82E!$2m^o8zub3A1b;CK75;BjRM{o`9e=^V zKeR#^_?Q0Wo-Pq=@p&EoOsROfQLK`RXBdUDxD6F9tMRt@3sLN#6(Wiq^)I(94eV?b zD*Ucgypn_P-S8I-?5P#Pz~1_o`xi;_Sw^A4?@z_;7r?*)_zMOO(h6Zq-L)jY5TALdESIFE7PkFmS9^2m{CKU+!zAf#({9 z3jcg64rCgfh`(UqWUUYemg`^cA7mPwY7{E`3My7I4bH${FmRSu2m@#9U+(iHf)^Tv z3crSm8J5+x_zMQk*9u|a0{zR~R~mS!QK;})DlV(F2;$IF@=LYfWDCKY!W z#Yd##V@C0DsraN(+$|NKF^YSn;y$CeUn(9jiU+0QA*1+`R6J}HUzLh)7{xcG;t`{G zR4Tq>6yKGK9~i|CrQ$K8P|5YUQK$s^sZpo|`h`)b1p2j6s04b_C{zOd!6;M${n;o~ z0{zt}R02I^6e@xKX%s4fws=72v`U~YjY1{R)<&TcXgi}&2{g|rR08d66e@vsrDFOr zl&9VB7s}I~S|Q5Q-ujojk9@qJQS2`j8KXEzDh@V^L!{y`qc~hDjxvfNsaR+f3d9nl zP|+S^6e`-|jY38HJfl$2o@f**+LMh!MSBVr-@O>zPsLy0zCtSm_cQe`ccpxMwo#lT z6|0S6jZ~ax6w2ZSMxkt6XcWrEI-^iF@>CQjfocqY0o8<72vi0A%XQ`Bl2MeU;v%D{ zN=3scrln%WC^kvOB}VZIsd%MPyhG!f~xpC>$-LP&lqL z3Wehaqfj_*q~fJhNS$}$FQm@9v_hoLE&7*!d@B|AY()6?$?zZ43K9M`{mcEZeEbok z_^4ET+$cUF6?YrOr=;Q@qfk-YXB5il=Z!)c{en>_qhB%#W%OYx8WrIFD*gh`Z)kRQ${+el8WiG71&NZ;e73 z{k>5rqkl3AW%PfHLK*!#6=QkeehPnq=RdVV;QqJ%bcAr)Vx^X_H%3pt(B3X#)!{mUJbk0*>`QYzLPMNuj$MxiWLjY8RI z7=^O2(I}LSms4?P4X7^0UqE%KRtQwD)W6(U$;YoYiYuk!bw=@esd$4?D2vw^g|hKx zqfj>9Y81-G+o;%g6HwiNzkupStq`bg(!boB<>On7;yqIFKBIWQRD8%NZj*{TjN&6w z@iC+LxKw=7DDIYu<r$QgNSA+%FXm7{!B9@sLq`Nh%&Timyt=H;m$&Qt^mUDDK}j z3dQz&MxogL&?pq!$BaU;ecUJ%+n*YRV*3lDP;7r~6pHPWMxogL!6+2lKO2Q&`&Xk- zY@ad;#rB_6ytROw{ulm2PCxAnN+EK3Oa04z2L8h1ZH!`Dso23N=1IlQMzM=j>}C|Z zOT}JBvA0z0YZUuQ#eqhlP(9ly6pllTLg6^fC=`w(jY8oVHVTDfkx?idON~O|IF^cQ z*n1y`zd--FTJit5xa+X3s%~rGNC|?plpsh+mvonulyrA4xrjJ5ZD^E~K#t}ncu!nWDvVjem)mHUh1{!#|v{?fMD z<#HZIwUhhHeAq(=yP(&Gd@=_!Jq z^sI+3dddquCzE^t7YxD+y=0rajLTOE*8n#O{{ik0?gAbV9s-^ao&sJFUIN|_e#iTJ zN6=$_u+z@12a8P5gMCQQgMCEMgMCcUgT*1}!QvD2UBp;HJNI-Q`QGd)!4CdZs5lN@u7K{)0-+uX0XypXU6u!OJ_u!8VA zU^QV4U_D_2U=!g_z*fRvfbE1GfZc>Wfc=C6fWw3%fa8P{fYXFCfb)cZ0G9}t0appv z05=K$0qzj)0v-?^0-g}`l|LuwOMXSrm;9EXFFC?4``Gj)Mg`h3f2-;GUpe=Pg z?DT)@tSgf|NCSiLAdPHujd8gdp*f%xp*5f_p&g(jK`XitG_*TGLwgZ4w2z0z{(m~? zE0Y|vzd<>`V&Dzrx7&tXAdnq%Q0ulB**;4 zARKe9ZEhYeFCZ)g{6<&;SWeKyl?2ULL(q)%9xnSsY>-I~vB@ADVzX^-3odUX{0-Pi z*ag^2*atXB(264j4LwfK&{G5rJ?r60dpYJgndF!k48k!l+2$_e@>Rk$z)iw`fIEb{ zfCq$!fG32ffER?9fH#DeU>x?eU>i>`Yag<`Yc&Iyz~F!lT{{p+8hSqL;2D+mkXEk67m5G z5()u|5{dyz5=sHe5Xu6+Cg>q55w!Ljg4R|iXl*Tm*48CxZ37R7SIDDouN)q=u|as$ zrnb3VxZIqu7toS$0MMFn7~lxU0PP4T0UZcu0G$Zu0bK|e0o@2!06hrT0KEt|0pAjC z1Nsu~0lp(V1PmZN0SqEM2Mi&+0t_R(1&km>s1n}rC_*H_XhKxL7(#TwID&pkKYFM> zL_W666+`G`gYdCUvCU<}AfMtX#fE9#lfR%)rfYpRLfVG7Bfb|4@T^l|8HecRf7JN#Z4Z{1|YMaZB%i9QF z0=5(K0Cp1c19lS%0rnD#0`?P101gtq0vslk1so-O4LDAy1UO0f25_2C9dMSQ&;E~x zoQvdT)W#i`48qH}Vw@QBbA@PyC< z@QlzK@Pg16@QTnM@P;r5@QyGP5Mj^%yq!oMCXAEUbp_w9s0QJ6MYGLa!{v_%HvusT zw*j#T_W*GS4*~HAPXGxB&jASuuKV%YOt=L2hVU<-8sR#i2H`(I zEy5i@9m0J;J;EbE1Hw~4Bf<+n6T)jiGr~JS3&IEZqtl8I8PJCCA)qbcBS3q?$AFH6 zIDpQC_<*j2gn;gZB!Hd-{XTu`Vf85ag7uL}zF^-OgfG|t+uT_E(HTUT02o4;1Q@kQH#0 zkOOd>kPC28Pyle2P#AEYPz-Q^P!e#7P#SQBP!4dFPyukAP#JKOpzrUthb+_N zh4#iB_YA@dePEmGi_4D){Q*x1g8PodN3+c?$M6t;iQFF(_s2E}_s6x(jl_?Z_=M4bPY7cHi3pmQ)I-fNQt_!w za-`1;LPbj3+)jLNQxWz6(h&9o(h)Qpouj-oE;$*wPcctx(1=5zHP1>-gHAkPe5bBw}7SuO>E)ekpD)t zlu0Vu7=((pwz(hi8rl;k13D6>0y+~kv73jc!=<9TOj6OyAXI#7n`?|S_9Zj}d`D;r z7(md(!5$`$l!_rTNyTu3P%+Xr_ZxR7|nW zjX=OOg5LkLhka8eV5Urx_=`aZm}{Hsj&H-S1igQuhce3~V3AA`u*4t)EVIomzz4B{ zp!cuxuxz>ntd>av))|C=4Ys*)IKf7O-oM$y*Z#-V7MUbqn?VTJZkziYC)i2Q`}cUr zHAn*X$|L~?3_`#m+uX-^iAM-}|8Woh&69u=GD*N`gAj1mHkTYHI8V^~FM8NNLjo?z zBmw^#gn(b`xB;Y+^G~k1M|C1QmLjwPw&7#O8710br#YeWeKk$}f68;3lB5Vc3A!uTJ z4~zVlF@a1{k;ouaB(cr?hJa5AdjDr0Ci|~K3YjDzl|cwdW1EYMuR=OP0zi5~B0xrh zCT8)_&;K^gDw9;?FbEZ2+UBAmAU8qp&*veA|7&7?nIxc)K?o>fn_G^DEJj!fC_z{Q zC`Hi3G9Hro|I|}fCaL(^AXHSe&80&?WkQAk-P5~oNE%VyL%gw)SwkkttZfi7>)PfH z7ykzJRR=KLOehrUBX#G_iw+tp2xWN13Fei$SR9 zW}BOXfF6Wj0lf$d0pAidv7d*N{xy6jlT-{e2o-~EbEokdh7!&Jh7&FTMiMk}w1?dO zZ!$l~Bo*TfLd68zTs53=BB3T=GNBG&3PBU6d-%-%9bkq`QZdUQRQzI_b2#H%LVLik zgie431WjD*Vd)g9_)R9MSY{9^R@mlR;fyN@4zQZg9FkgH z(0$4vbe^%z4Z`JfgrR_c2qOR&3Eu-Q6UG4kC5#7LBTNL`Ap8XQk1!2zoA5K>E@3v{ zK4C84Az?n?F<}wlDPalVIbk{AC1EAtHDL|lEnz+2Jz*o@gZ=i(Hv=LO{sKfH=!X)` z!=97!DMiQU7{efZN*~+iV&ZaaLTo@>f(9h;5bYmHOo%%Y8HB_nwz(v@{3#(BAUPog zAO#^6;B!J+Kx#sIKw3g3z!!w9fDD8jfJ}s3fGmW(fNX>UfEG#R~JMm4bZV>LTX`9=F%e4vn0d)z70QCt+0SyT!0F4Q!0Zj?#0L=*(04)iZ0j&vF z0gj*#(%!=#8|2B-;f_uQ;mNw#<}%=NH$rAW4?;FTFG5bhw}jk)zJz>$?+66}0|-R` zg9ya|LkOh+!w6*nBM9XIqX-oNqX|_2V+hp%;|MhY69{zx6AAkMe)16Eu)NU!aK|)* z@Iq(U=I-F~Ou~J@Y{DbJ9Kut;Ji-gWe8OwMLc%-1VuGG(sfV`ycj7Gk8ChWvj=9n{ zHwTwj6MhA(C1}6~56$mO;wId&$siW` z+yEpb+yW#f+yx{hJOCskJO+G5cm_yGcnL^Fcmqg7cn?TNh*&lJs!C6Y0?0^+2FOf^ z0mw>-1;|d&&+$tS32w*-`y*=e7=#ZtpKWe3E*Bt71r#D^Kv54<)=A>0_%f9+2#KX^ zbD!aIX~O4#vIGtI+C!@Ak~kQhl?*~+72Dh}T&_wO38+pO4X8;N3#d)dih3T}`oAc| z!>Jk?gwDpcxrDgfl%V&w@Nnsl1hkY%{-)8!AOy6v&9%ejj)YEtu7qxYo`hb2K7_u2 z{)7R5!Gs}z;e-)@?+K#;V+rE`KN2Paej-c(Oeg50&Lrr={X)=(n@7-xTR_lkD4+<(X*+<(M2cNCXT5KaQl5Y7VrAzT1lCR_nrBWUMMg0|cyXv;lL9=3HmIh2>L8#2>LAL3HmG*3HmHm2>LA52>L8F3HmH`2>LAb3HmIJJQO$}pHgF) zcEtE8IlT zSGa|suW%bdU*QgdKHP4CzQTP3ecFQreT7E|`U;N|^c9{W=nFba&=>R%L0`}%4-L=A zH}0}b@{PM{5WaEOZF4tp`4-_e;2z;V;1S_5;2GgL;1%ID;2q&TAmSlARV10@R8a{Z z0zM+d0K_812E-%82P7mU0wg8qvnMC$)21Zo)21fq)21Wn(`F#((`F{<(`F;+)8-`T z)8;1V)8-@S(-tJ?(-tA<(-tS_)0Xn^jsFevl}z$Z%Nm4Fy1Z?6xuS;`{{Bk1{~LpF ze>K}&bzH7Rs12w`s1ImFXbfmZXbxya&`w9tmi7c~=|s?$t^{rALC}`o9>yJ$C;L_= zc@zB%!jtv4%?-fi!Gs}z;e-)@?+K#;V+mR@fuNz22pT$tprO+V8amTMl4o-6Su)AF z=NN=@&$G?_ipvWLivUXq8nB$8|Hw*${v&HV)cjjI*UBWF8w^6{M%&ybT;4+13iz9_ z9k7eA8?cYCA8?3p7;ubm9B_(o8gPzq9&nLx3GgrBD&Pj;Cg3*V4&XlF0pKw~U&b?n zKK@IBKK>hmKK^@xK7Pc*_J;NGqY(7*qY?D+V-WQ5V-fW6;}Z1o6A<+A6A|?BlM?jt zlN0puQ+i0@|E=qDndG~W#vptb(%I&|z~zjDOn|I}Y=E4EF9CT7T9Kcip@j$|c2JjP#8W9=;nh}}uaa4JDx z;S7Sl!dV1;g>wk{3V$W&D_ls>SNI!2U*R%>zQW%L`U+PQ^cAin=qvn#ps(;xg1*A7 z1bu~n6Z94CB&lYA!+8-(xVQQO=xTs}!S1vpDM2e?4E2)IJ{ z7jT_$18|FQ8*q>e%M$;&KB*LqHQkQ$PzsOF$cf z1GFb}0CXmF0dyzmsd^Fg9DN9Sj_(M1j)4R{#}I;^V>m(2F^Zt)_`$;$>*ei?kxAap zc!ThEezeU^#O0p|QvlNmGXS#)vjKAn^8gD73jx0omH?I$RsdEJRs+@%)&n*Y^g%Wg z^yq&P^yu3Odh}fcJ^EgP9{m78kA9e-M?Xf;qn{+`(a#X{=;u8g^#6O=KQhT@aLFKi z23Krz|Kjp>!VSPJ!fn7k!hOIa!ehWQ!gIhY!fU`g!h1l(V|L6)GRZNc5HM zn4m|GL(rqgC+N`=67=Xv2zvBn1U-5Rf*w5;L64r6phr(n(4%MaFyxwi2AO4&hs$OV zK7$;#xtzG1n~(>PpHKi$n4pQp2%1rnpc$nJno-U}_j7Wp@-oS(DjI}SRkqDl!R2a% z>VR5=+JJh5`hZ4+#(-vo=73g&)_}Hzc7TqAPJph2Zh)QyeUNVndh~t-J^BEG9(^!D zk3Ni`M;}ShqmL%&(Z>?>=o1Kf^hpFg`Vi~ZcHUc&iwg9#f{s!zM>;mj1=#w2F=(8Lq=(8Ln=(C(8 z=(C(5=(C(B=(AiT=(AiQ=(AiS=(F4;=(F4==(F7O(Dj24BDni9$*1(lAbd(sY;#kq zhRe?gGXO6LvjDFMn)uek*w|9>P9~}N;J8Alh-90qSS?(RLZ|}xkWdW}ouG*^J^b@R zzH1-LBo%QCLPb2=TsE9B0U;+KAt5&)F+meQ^-%3&d5UB*Nks~SQ1Q8KE(gw-nve^S zmXH_l1wj)tddL=0Dl*9=6jWBSJ4g6G9(AGlC|z^zit-RJ4*wDx5*6XlI)nj(`q?QGiZ_ z9{^nln%Lb#wkYzVddMUdy$wP|AKTn61oR{91@tEz01PB(;t&rDqDsY3nWSQbL8usI zn>&Yq(S!?tF@(#2aRg2L(Zg;36cc5Vik}QZ#Z=qe5d=&p90&YNI0cwR(8M_&y1tgr zVy;Y5G2b9mEVRvigMh^Zy??2PhcV@h%Vd&(-wi^*D%)HZe5cnC^#1i8;`*PG8)TAz zO$H%gvu$n?POz1r_y6so#w&S*?J`NgE`t!T$2M0I0s9Dg|3ME8o=dlLWp0jE4o0wC04xeecLpIK!U?-v2LTZYdVdrT zS^RIJs4_`Fbb}BO!!}nAkMJ=;?~mhQc?1cFE0Y8yFbDw&ZFA#sg2V*9|5Fd=qDeq9 znIs^EK?wNVHun+%sR??2IuC6lOTZU0NkB$}5Rln6w*>)N33`7H4>jJ(OUx;g1mrdd z0eNk6tq_o(p!XN@kj;OLg=La}Vg@0ggl(=r0!k6|{xTk3`~SVRtV|N{wLu7|Xq!ud zfXW2Dzp94={vA}4Ndjsbgn-(%xxW!mm!S7I@DSVo7HlY!1T--S0nKc41@S#-LD2hK zd)VUtG`5jR0@@jbfDX2~&vAlI1iinjhl&0jbdyN}dK!d)-nO|<5YUI9_kZW%g#Ve? zUnU6{WDo*|*yd^=U>HH~AL*fRba@A(WRid%3_`$I+uU0Oj3?;*6Fq$H|IRf@CJC5g z5CW#z=F%cy1|dCQCLt4GHbE2TddTg6ZqJiRDi#=oibb}$)cBl!BcuZ?C1e0BCurhI z59|C7=2bFD#ae?Dw5mg+9DtYp#$J^LT5l~f+nW(F!iNWd?AxmWHbmBnQe3V z5s;No2#}pn6p)jkiMc%_@_${(Ba>9*HwYC4ZF8UC!z@fl3@A$Y6i}R?iKRSjh$j_a z$s`qJ4MIhE+gu+6R3Ll@s6-eDs6x=hY93<7m5S;zNkuJ#P*KM=*AxNu2rU2&2(1B) z2%6Z`L#2#T(M%?(XlW2CTHEFxRu7jQ;R&D};W?lKK@&TB*iu_6y2vCI-3>xTPutv~ zTH$hU!cjmU!U;e>f+h~|a4No343tSKh8Tp3VYa!^cnu>6V*#TG69A(LnmE?ON13Ez zoJ>;jqd};cWSe`9*YFeJ9bhWqgBl@VIzba>diXJcRLqh|D&`o3ig~uV$vESD!c@RQ z!VJJ-f+jBY@M}$}SSFKH{BGbYwVVnwZc--nvqeNG7RBY7i=t+2;PO6)t~9xDH53 z_z#eZpowWc?8z$?>12|M3CPk5d8T0=S|KJW>$;MlE19A{FI+uq| zxuq+&OwyIlAaoV5&CNhSA;K&`5yBimF@h$R^bo76RFslQD#{pyigLEOHnqa#uLyl?j?y)x(RlQc+DNsiLNmYyLQB9#LL0!Jgm!=}gpPo}2webw6S@O- z5PAW25&8i35WWNKBMbx_APfN6E1kdkm0kc#jCkcRLW zkdE*Ske=`okdg2PkeTovkd+V-uO>So3LqyT8Xy-T1|Sb179bxXE}#G*0iX~e5ugYm zDWDi3IiLg~C7=``HJ~&h9iS{B1E4%1GoS)NKgY@*UR03}wkGbVY7joy>bAK$xLlJ^ zA5fdn2vC>M6i}bg0??44olQI>C?!C1e6@BV+|^C*%O^B;*3@Cg>sdd8qt}oN6}S_d$bjs>8Oq zxww3kFduN7un2IHumo_LupDrfuo7^dum*5}upV%Uun};Duo-Zb@E71ZVLRX^VHe;Q zVK3kg;Q-(s;V|F<;TYf%;UwS*;SAsz;XL34;UeG_;R@gl;Tqr_;U*x$8T;6710oXc z0U{F~0-_S00HP6|13n_W0>mWfmm{`^y6NTHavXm-if0hMEeULMr*JtT;Vd9A;U7R! z!X-d5!oPse2-g8A3I7375$*ue5cHT|c!=cx>qUB*7IrG(ty8GkOnG6?sVvCWm0Nsjw9p#q>X zp&J6eA@l@PBYX>}LFfmlMHm36Ll_LGM;HcZKo|*VL>LWdLKq8ZMwkF-L6`(+MVJC; zLzoU|OPC30PxuAUkuVR?nXmxRm9QAlov;+plduBNo3IMdhp-mVkFWvIpRfrqkgx?X zn6M2nl&}LZoUj`(lCTf(J>ekW2f`7+Si*6@c)}^bkA$;;NrZm@KN0jxI*p*;!k;~? zPA6aE_4tD~+aP?6=h)^p;_^JgX25*HUx0;#?SRFEU4SKoy?|we1ArBT!+@0pJ?0t@ z-Ti-qABrDz>kY!W|FF%Cz~xN@y?={`BL2T8L`20lgAlOYHWvk#cM_rjb`xR%_7Y+N z_7ma)4iXXo4igdqjuMgrjuVmtP7+cAP7_iC&JxlA&J!{KE)X&UE)lW;t`Kqpt`c$s zt`qVBZW0OtZV`$A?huLt?h#4>9uUd^9udj|o)Gk7d+uSU|6fX?;J+NbG6+NOsE3LN~i|N zPN)gUNvH$JMW_$RLudrZM`#KtKxhFdL}(2tLTC#pM(6-2LFf!9Md$`7P3Q?IOZXO0 zp3o0afiM72i7*&Yg)j_Il`s-eoiG|ulQ0%gn=k=TmoN!XpD+c`kf49Qns{hZOa8!Z zz`rInHwb^=TH59|;c{!j7Jwsc1GFRT0CXVi26Q6q19TziA-a1go?lLN66fw^5Ki^2 zZSD*%_a&SMd`Gwl7(loJ7(}=R7(%!S7)H1a7(uuP7)5vp7)^Kr7(;jt7)N*om_T?7 zm`I3#U;C2@kpNQ&Q32Bk(E&3EF#$6Pu>rFQ@c?rOp8)0&5(DNFJ_Rf!dkcn7#d_@GV*xI)mxYaW{WH+@|usrb(zRNS`B-9X}9!Y#mk!d<{af+jxkFt4Fh zJe5f*UKoUmSGKv-2zWzC2Y5%w0Elqze-a~kXxvCDBFiKd9~y*;=(f2m2#7(@`(t@% z=OiGuOcD^!AOs|^&HaUdgao}miH9j2B_OFx5|G>=1f;OdMZpL0IUyP#H6aEdEkP60 zdpPLNm_a6~$ZQZQvfAc$;EdS`y8$@~`vAEJnwZx^glt2+vbYnj715h z0L2Mq03`{USlUCJ&QeiECaEZI5GpFz=8_7*oRO7(2r0V(4U}*gFLjYFBOAjl8Rvlp<;w>E(!uh5uyP` z6Jh|y5HxYTht|EMVuDOkG07lQ{A8Q!hu1KbFaR)}Fc|PNK@(?txYS!JevwHk<{5;F z`L?<72v|s%2v|(`39y8qiOW4C=qnW~WRi+i2BBh&ZEiUN))7_$HW1bTHWD;(vxjZ| zN7xpbq+**vsMv0s%Yiq&lc4wS@sQI0ve+w=1RO930f%gJ4-s&L@C0y-@EmZ0poynF zTxu*8XJnF!^9G^ff^DuS0xl6s0Im?e0$e3%;tdZs8%V`XnWW;jL8!QEn@fU#`-EhG zhlCV>#{^A$=HWpPsdz4vRJ<|>6>n^FZSYaOBeVlVIBx+R0TBtB7{xmWe_UL*ydUxpd7&gz9zH>R3vC(6%Tz|NyRrZNkw&o zP*Kx1Hx&W32{Qn739|t837Xi*LuUWyqOnX;(aa!Jw6M*^MnEem=E}sun4e#poxn;jOZd2zsV#O%M3!r3fo*3oN*-~J76{8OTb!!CT{SM z#{b&fWHYp0Co^Gakq!EEu>6sR z6Of$n3m^qS6H|F8-A*b}%On-)3_?YE+uRwv>5PQ)fXsx8fUE>f%;8~lbE(KFlT_q3 z2o-s4bDa^8pU@3ZkkAuQn4pQpJgjIV6~$$eic$ulqO@&p9RkV{{s5FG{0XQ)(8S6f zijI_uDl$n$HG@!5!!}o;Zn#{FP#I8%P!&**potAV92_hajbxIFrUs#+xos{60$LJc z0a_E{0vtgT+j|%_L@GMSBo&jQ4dBms8~Lco37+$aP*B>Vt)Oc)1vO3=g?9+LEzikC7;#T$cA z@y<4P9B(PY1-t(gAR^%`ATmJ{KlISf|D=c}lT^eo2o)dO=3?P;T*8MqbbNvaBqZoR zlEg!U;Zl)QCaFkn5GqpG=2GHvYC;}Vq$OxTdV>BVnLH#JDixV!l8S5wp(2NEE*TQP zB~Kq1@Qe!Ryb1iinwhjl)ngiI3fl|cw7W1BmSfN})Azk-K< z{3BG9Ndl@Egn+8Hxiol$>IA*NmWRBfC7`xU5>U?|1T?VCHN@p6gf2*IM$mwk1pPBw9Q?|dmK#A z`-geR=6^H|mq`Lf8H9k*wz(g0c^qLA&NzXf0h0*&k4*9Kx&J*gRVJyJVGt^2+U92A z@*F}DRLmo2zygB)Ba1zZ_rD8&lSwL;8H9=zwz=(i4J!$H{~8Ys21>wMnIvF?K?vAr zo4bdAKM4;3TL>Dk&BIjx{rX!bN!)1=5_j9?df*}V5_$vn6Z!%U5;XCMhoZxz;;2kg zal#-}oU+ZON5C0ECcrsDR=__5O}yk`#UQD;ER$4RH3${gZF6t&8g3FIAn_I<65tL& z6YqP7>wkeikVz^Y8-$9dwz*{pcux2o@RG0^@S32B?>toUPw`$Rsfc({Ayh=R&Ar4^ zL?!6`(LL1oK>|LKNdi7L2m!Hea|3XKxP-xg_=I7APY9Zr*u!}L8#;+hQjyFcRD5Qe zn}L9o1ie4Chd$p+KpL4O;0uEgkijUk; z1XQ)nT|q!~g5F=t!xsPhx3)|YP|qL)G_cJTz#}vw=>1JS-0?q4n#m*qEe%3IYunsY zoWK$E{`MXo`=7}jWRif+1|guUZEibG(4C<7_wulOoCNfiNdo#Bgn;jCbBhr$fS~se z_E6(T2^b=i1PnI_0V8d5yAkj`LGK^q;kEylwy`ovzyyO3Fwr(w69JP6djC`pN&L5Y znoJV#vq1=$Wt(e`fL{oD|2z+`{SU`qWs-n}1|eXvZ7wGQmJsy*C`lv=NyZ2%7%+e z0VWX60wxkP@h1;==SjsBnWSR6L8$oIHn$7`vk1Qfej%&|%q3{zd=G>DQ!J24Di#}r ziY2zW!w6VL(EES)5P!A=tdvOt))<68rb?g9di5iSEx5Uv7F5j63vhv+M$;+#xU zals%|T(Zp-!B3AX1ik;7hh7sU;JQo_@Si~lxNVy|g|GZw!dbw5!asnA1WkP6q3cqq zcq)@ryf6qAuWWP4aK<-;6o7YxRDcMV|0gk$hadfKq{uQ!#fJu=BD!sE2;O51g5Dp? zLz*cP5L+e*h-VN264>UVBOoC`?@!_(rvJ^JR3-^XZV&=e*yd^>;B!Jpr1P+D zi6nj@lO$#|2#J|(bMf#}vJyT4WG5sBTgD~U4}CX@yg zC6ogcCum|R4;7b7#aA*(MOlMTQQkI}3umlA$P1`MC;+HJ(8OvUTK^;!)n$^3S_Yw_ zj&1HezM%C85pn1SgeZVU1Wjz};gtVr(@Z9*XlW2CTHEHnMSvsp1GFOy0CXT|VrLK8 z{NEJ1$Rrir4MIgv+gv)lhTa6dzpsbK{_p7hWRidZ1|eXOZSErk3?b` zpYRah|GUmfnIzzhK?pc!o12V)e+W|n7YQ=}mkFA9)kAmxXXctrQgPEDRNS)7^+3QK zg5H1ML#{~@@IWRBcx(^?p4#RvGa&wn3d$s`qV4MIhH+uWyk4WAG`10*7R4oE`K#AF`6_kUkY zE|XNGGzb-`Y;%hdkcOc5f8pWmP6BUDsVFUzRFpFa6<^!t79pS_VF{oz zVL9L%f+kk?aA%WL)R0LkY8!-#y0*Ey_=8)Y@Bq+|@EFjTpoz^q%v&iH&1I5`RtBM> zjcu+80@@Oq1KJZ>0Xh;iu}gq`Qqff=spw%4Dtg)GR^c^#OIQo&OV|MTj-ZJHJ-pc< z6@z4wilGLfVz_N?2hKQ>up96_VISZJf+mjhkllY4<7JYHi3Xu!vTg2P1WX}Z2TUXU z2be+7#91CvZjp-FGD*c;gHZ9SZ7v30!vaDqz#>9iz;6UiT;}2QYN=Q*lT@rU2oYG$LqXQxCh> zNkuc6q@txksAz4QTYxh!css7f+lwMP<6LdbdgCax*LRwp0>H+IAd?ZC_o>= z4}g9IO&s8%%37%yD3eqSF$fjIY;!;2j3Wq>0iy_00iy|;IMzck|66aIOj7ZqL8zEy zo7;$hp9q@)Qwe_orV})AriaP9q+*s#QZdIMRLrx@^}}nJPZ$7LNEi%QOwh!o9!C5v z70YCjir)=F#VXre83e2$ln1OMR0M1wXyPUh$^4)0KV_1Ntp=fDn{93v0=5(O0(KG( z0Cp2Jai53A`=w&POj2>kAXFT&&HaghV}z}M6NJA3rwE#O)Sp6D|Pa z5-tPc6ErcQhf>?6B9Tl|k<=hmB(u$ZgMiNn)d499wE(FInwZu@75~?RbTUar27^$M z$u@Tl0a*xoe|8UX{D+xCCJD%85CZbp=DtKgK0+Qq0YZL2A%Z3r_0W8?R1}j*DoPrJ zimz;QA0VI%Au^yG;X}aJ1Wl~uq0=6zs4SCIR5b_{)opW=5Kxma1yGwX9Z;8`i48nd z|4S+w$|My{3_?XS+gt_&v>;>#v?62!v>|9>I}geH-@Dt(Bo&okdgyRiDyGRK6+atOKfu^ainF0(SQ|%v4E8XOK?pc+o7>wsT)sfi`!9Rg{zd|>$Rq*R3_`#S+uT9~{73i=aGS6UaF?Ko4?GON zClwE6l8Pq=q2ifs?hqdG1wrqB?IGDK33wxu1iUv00Uunm%Y$)(NQ7a4D1?!K4+)z1 zk%v{;B1UjAWRi+l2B9L3ZSF*~a5)~~G#~-t93UY<6O(x8a8{losZ3Il+#pn>u+5EX z7%qQK(EHPP_{N_xtxOV--XH{Iw9OsC2{IG({%jr!y^|AUmq`M?GzbB?ZF8IOmhuv| z0P+*I0SXc{v51EkzM`m1Qc=PnRFtyK?LmmmII*J3>mp077cOAc7_i z^>Et%xf>>vRE#tT72n(De!v-jAn5($JnVQZ0pn$ofQbenV6tuQa|BEwqybDLd;yq2 z$OxE8$O4#6$PSo8_!2OWkOwfIkRPy+PzbP?pbxUtL+88lWSj6qYlT60vX!>EEx5dz zunn-5umiB3up96PVIN=P7CEyOB4d5Q39pC|>Bj6FC3*ZT%JK!0i7vKe<58xHyJHQ*lK)^e~ z5I}_M_J)T8A`(UcA`^Z9L?w&^L?iqN_=qqW5R;&vV{8wH{V%XMGRX%U-ynRjpV;Qc zz&;&4_&>XOk&&czJpii-y#Z?peF5tU{Q-Xv1_3q^^vkh@pkIe=9{!FkzjyzZNxnWi4Z_!F zw{7l3lW=)2;WS`B;T+%~;R4_=;WFST;VR%b;RfI&;TGUD;V$4T;Q`=0;W6L>;Thl( z;U(Y-;SJy_;XU9wA!5_;_%{hr0JjLy0Cxy60QU&701pUp0gng?08a>s0M7_X0WS#2 z0j~%t0dEMY0q+Ru01nUD<-m5>tq zWTYPe1v|00)zp8LWIG9B7|XpVuX=^5`@u!QiQR9 z(u4_svV=*1@`NdX3WVu^N`#q!DuiDERSEL|)d>p#H3^FWwFyfBbqOl~^$Dv04GH>_ zv5AM+{x@w?ndC=h3xn{ZvXyOi*?H&{L4LHh#r+)&!u_3WbDeRy8=*U(7oj(xFQFe` z0AV0t2w^B-1mPV1&1)3l0$?=ZGGGkhDqtMp24Di=7GNUbE?_d@0bmN@F<=_u8DIwC zC157u4PZ9mJzx$YB7R=aBSZnrCqx4*B*XwLCd2|PA;bkNBP0N zm;i`Om;{JQm;#7Km=5@eFcT1y@CzUoVICk3VF4f>VKE>9VJRRXVFe&DVHF@LVJ#pT zVFTbZ!X`jU!WKX(!Ztt}!VW+>!frr%!ahJo!a+c0g8tagM$n(hIX!ItPkxbnDUh_DFIgs=qAjIbQg zg0K?Mim(RIhOi#cmaq}fp0F9vk??~&{N@W!5mR+{F ziTDfE9>Pz6eS~R%0|ZSx?BUeEQgK8ksW@&BDo)zw(&9(NX+nCySwbejc|ume1wszM zB|KTMnHL%US$N%X{BSJ*{2gxRcD1c^!XaVH^D})xL7`UeuL0g@NXgA~-ZDo>UbTA0V z=wzF#gSXp-P#@5Z&QM7b%QePxo){sy6Qplz-V0tOS>0frJf0)`X1 z07eqDVzh^$pUE%#A7qlwaR#Atf^BZQ{*oo^0!$|C1xz6v08Aqs2FxHF1I#3x1k5I! z0n8zs2h1Z}1k5MsgDmpU&HwpWER#IhQiJeh%WZSZ@oIi2tOTqgtO2YctOu+kXvH5M za{K=yk&QA*=VpV@xz#oo8(+I^1igQUhsG}@V5dwHu*V<-?6b}F#vh*pguZ}7g#Lgd z1Wi2dp;0>d#81d16{ihC#aY{2as0+VPbdYrKqv#aM9{>4Jq&m&PjOWyskmVfD*m(0 zt;88`6V?Fk64nFm6EyLWhlu`Pa30Gf70(Pp#S7b94}4Uw2)zMs2z>$X2%7l8Evfj= z|DT6Nlu0V07=(%sZF9#E5S?%m5QA_A@G(IX<9OJUTt17qGD$@OgHVysHn$F6^2CHc z07(gd0+JClF@=Yi{(l@#DU(#BHV74IZF9r$mHdLB_hV#9AJj7LbbCGD$@}gHX}HHrEnoY(!`SXhLWQ zXhzV)mL580mx@+0Nrf{A742+um+&XE1L0plC&G0=7lI~s_b|S)RP>NZDta4)iaxfv zfp`u52txq<3Bv&c37R;>!(Sz(VyH|~F~T5JjIzyL!)q8#xCt0TxD6Ob(8M1-EG;M% z6J?T$pA169RNGun1WYG<3;3DP4={_MiE})x%_9|aWs-{d2BBi1Z7vrA78CLUmJkX6 zmJu}ZcMl75O2tZBF`1;I zq(P|o$~N~W0?H7!0?HBo27FD>#7Z9K=a-7gGD$^MgHTc3Hdh}3H3^LXwFylDbqSi- zz{813QqfQ*sc2#lDw^5mdg8-uLHHKXiqH?xhM=4Fb9m z^!}b6%9N9UUNT8QAA=Ck&o-A00sRR%0RsuS0fPyeILt%#98xh{CaD-@5GqF7=5FD~ z>=?pbz&OGKzyyLOPV(?7w^U4)Nh+oqgo^35xs3RzekNoA%pzn5{6f&gc^)E_mx^Cy zl8S`}p<=OZE z0Pxr#R6MoKeU3N%oR9|alJEuKH9-^KdHA`ARJ@l-IwRgu2o;fSbF*;9sDwFyXoOz@ z9}zV1V-H>ON<}Q0q#~|CsEBWyD}sPe2*m-32&Di?2%4D8L&{uIkz6LJNNEr%QrYI> zAs`Lm6F@pbVnBL=CT8+*%m4KwvrJNv%^+0du+3FPz?Xy?fZT-IfV>1vEZ`xn|D9G) zCaEZ55GsoOA8Yp=rsLJF4SbY{9t6>%MG!4ov}i%}-Xj>p3}%^TW-xjeWx|kAqD6}! zf{5N*5G^_pErN(nv}pORwa#^&$@{*?{*G_&Z|^_mUDt1|=e*Xvp8F{ylC6~)hkzP{ z@qk){iGbP!pIFaARr?-QUq;fRk%DW{L@SdQ0nG?+0a_3W0$LG#Vp|IXYe|cbWF#%x zE4UUNwK8`Q(1~y#(3$WM5KQoi-7NHPAT7GfNLutza4o{MGL3N8M-rL>dJ9kX#s}`uK|t{G69YgvH(sJ zvH?yLasti}as$p1@&V2h3IHw=3IQ$=iU2MXiUY0^N&>DC$^fnt$^mW?Dgtg3Dg*8k zssZj3Y5*P(J_I}>)CD{tGyps$GzL5;Gy}XOv;+j)(kHeJASt08AUUA}AO)clASIy- zAT^;YAT1#jke(0*$UyKn*y|R4F>=RcmXX|XZz#AsF1uDHTQ@hIlaLeeCLuQ<4s+G@ByJEpeCUW;6p+?KpjE{Ks`byKm$S-KqG>GVw+mHI7pu9W-^jz zx}}19rdw-e>UDS1Z3ztl?FdZ(?Fr2R9SN-fod|6Koe3WUf(d?C-7MsamTh*Ik!-Vv zg4<@eR%SG=Gm`~?FoCcUFp;nY@EKt{U@~DBU@Bn`;B&%0zzo7cz%0UH zz!!vLfVqT|fcb=<0ACW$0=^<#04ye40(?!l0{Dh-4X~VW1Mn^3HsCwLJ-}+h1Hf9s zW59aCQ@}>T3&3WAzm2z9Xw+2h>v(*>*s0*|>+iMF>Ae=>Tgv)9SifJvtv{%hP9L_A zYN)I~A|rX-99MAbPiket@WMMyhyr<_!h6&0AWT)41w8gr5QT2d3{Z#g5>Stj z1h3}?gyeumgjWGg2>#leTUZ(-htWbtau}@@++noU$|Rs?JAz-|!NR-263|gb5)h=| z0=j5rRv{pSuolpbumKQC@QGm-7DP#la2ZL9C41@tEL0mKn}Vt)(k z>>Jqt8A*%53a-Uat;~MBT89%30Y(yz06ro3#IY9643HM%WF#%dE4UU3TA3nvHBBP; z^^+}p6(RvsWF!HfE4Y9eTA95#$618^fG-G#0CNdGae;-l&85YcGLjaH6kLlXTA9VT z$fbm(fMtZ`fE5Iv_??BXT1$&nGLjZ+6w zNLuVxa4q&~WxhkeKEfKn0m6E~A%aglV&R6p>yOGvTAWaDElz1=w&0|HB5VizOxOiD zNAQUkEd=zJ7Qe_yT3l9eEv{;1GU0x?M#uuVPRIthN$`nxEab7j$={WcwD?28wRotN zd5&XvO!y1%Cm|`W;u*mwzO<0begym_BWaQJjtAEwxmG3-0VxPm0VxU70jUW-F`b3g zeWgWu8A*$b3a-WLTA3s`hAf2SfHw%Q0R&a?` zwK6mCWL78m^))SQvUgxD8A(7L1s70HE0YU5Xh87m8(Sz~f17I}BME4(-~w7|Whx_} zHK7`yEujXW9l8woLh&4k{7tpuOA!@@xOOVmyoNsHYIuEk!h%tRc+K0+ek0AVWN5Wy!Nv2e}) zZg5ma(&B`IYjH{|GZK6JiQw0twNT%F?K>wU3Am`>0xoG~#vtG_!LR?#LYFoYa7{)M za6`cb+|tV2$0gh$JOtb$JOTVc@QIHsRJOmrJeHBPc&gx9JlD#Uz;peQPzn%mR|Cod zk`jF4D;8$jx5yMSk`}2HT#GbXnJ=)%bcA_;*9cz%G7@}ZW(!&EQdPxC)p>_#N;C!6(kMaOq2FF<(Z~VxfX-u}CX37JFPm_!O{|kN{Xl z@QL4A_-vT8SScfEv0A~kSgVy8jyI_Fgi(NvgfW241fRIgLZdO#V!Mo_#V!TcVz*Z2 z7X<7jTn6kT{02Bc@QFWK7&}Q?9F~!^IHurQoY2Zd;-pUzq5(eM z7i1(YE-APcm$fpVVvkn|34m*a&j8m6KJk`?DdjKJgt3 ztrMh05gAE~;tHu}Ukm906+xD*@{Ws{tDbK5?@J zvp`yGk&(36uHahi)XMb6F?>(x3)n*#0QiC66AxJUX^ONsC?jccSi!Y8s+IW`ucPCH zRe+O(wSdzEpZK$dX49m_Ss6)-3kt5qFIt)J5%4QvFW?GcKj1flPrPm+lYPIqAtPyV zTfw!stCjf}0rv?V0S^d4fJX$M_@{-5qou`D8A*#53a-UpTA5RLGLzib^=AOd22-5+X2|n=+3kB^rvurYw7C9AMi#N40 zLlBUMFdUGNFbeP%!6z29@PYm9p^%KEMG*zpqL^0Z7EZbZ!LKi6q4sAIP+CS3@ScJT zD6f_2i-3v*zrM1Cz?l+IMMe@(UBLy^(8@eRKrMn_U&q2CyMwwil7I#ZE})TCW(WeB z5QYPq5k>)85XJyn5#j-D2onGw5hejXCQJr&AWQ=U5@rB`2(tlQ2y+1;gav?Zgs%Xh zge8C;gl_=h1bIPia^3?J-1Af8YaFrM%MAc0T|Fo{qHkVvQxm_ld-m_}#{m`-Q` zm`P|2m`(TyFo)0{Fpm%jSU~6uSV#x~EFyFVEFt(O{rW1cve>^xMyjlRyw`f z!Yz9jBtzml1-E{KRyw`e!uR$wdy9 zfP;ir0Y4H_1C9{V0ge$e08S8I2b>~g1^h(F4)~dn3viB*2XKLqAMgv|ZNRUD!hkD; zqJZBBB>=w@N;#1KTEPucS**E5C=a+ps06r2r~>$dP#y4)P!sT&P#f?kp&sBF!9V#g zEd<*?ocl{gayKOX!-KmUl51sh;^s<0@at1q$Y6gfO)Vn{NT=WeUen6Vz|E48FdOhX zVJ;vG!6#<3uzk0*$SxykkxRj~$gP#B66U7!5~>686KVnq5PV`G3vpYdMPV69i=qmy zMRBdnp&oAfUBVGSDZ+6;8G=tNXQ9ekX;EHA(xQ@rYf)J%(-Q$z39*3cgg$^81fTe! zh0EVci`p`h7WEWdiw0VmA_!MM5J~Wf(H2&(lNK>Dk`}!c zT#GoZ%t!?EBa8+NAdCYHBKX9i7TSL&Er!WRT8vb1Ek4o8R7JoT!UuqHgj#@42|h8w zLbg@XVxo+sMWTXhF-0p=7Xi}<4FJ;#jR7+WKJg0+^}d%Db7Ukf<}0`sUutFE!3*mv zLNUN%!n=U42|jU|h2!=rmdi+5tWV}M@#cc)G;;vSv zKLYL(1_2%rh5{ZDeBz%L2JVp-Ph})6UMRR0e`#gv;24rT(Dn5J$q0=AuMm7y94`n1R>MFPv^|dlta10Fz*#M0RIRQ-xKCy*` z8GEHgOBqRvHVUrAM_QRy2>6)L7SMt4F(8oO6FXbT^o_LWA|q+hRl&9Bu9dlow+BPG z0|+DB2SgBjVowVn?T{AHGLja(6kLlwTA3u+V_!mYK!3ukfPn;`IK)EO3TZJ^M$%%0 zf@?8KE0YyZ=4e88z*s^qKs>=GPOva!qqInnk+k?s!L^vIm05&r&^hn*yD4;YQRf^ z4@mM*5|6Ey#H2Ek#8(tt;;UMj&k&G`Fa?l?-~-ZI$ZCK6cuhu;B?!9# zB?&&DjD`2NOJZ3WNn&{gmsn9N^9KUnCp-dFA^ZubM(~L>EabLtKQ(0}Eov*c7In2U z3lLDB;MX^@(9=G(jb$VO%@kZf3$4rq1hgXf^=&OAtd@X}WF!IY6RoGQVk{GJs5_@Q6k|Q9T;MYf4NNwNtd&)=xVijCKZ>>xw1jG^i`u-Mv zw(n*GWF!HD6n5va|gg1fD34Z-d3yaQ6z$_U_z#Ih^Fi$HpEZj{mAdCboB#Z_uBKX9wEnGV) zEtbkiS}a#^Exy&tT=JhHge(42gm4Y8mf#aNSXlS7wAd&kX|YAYwb-VWX@@=TAanri zB6I@mCiui3EbKZcE%wPsS{zhxEq>I>%)}m#5WWB$Bg_MwAo#@77Vch?7C*^ITAWpI zEzWCY(nq-Ii-e4TON7jT%LJeJn}xlnrNuQFNsAi_uEi~_Olcg$9m0EndxQ#rKL|eY zk%g9*q{U+yNsFfnuEle$%qj%DB&-DlJko#-fTRSU_=<%E$D~CH8A*#&3a&*Ot;|iF zbUMNvz-xs2fQ$s6nAt+q5owV{M$#gif@_gOD{}||xd=x9xe3Psc?mx8Eej)lk`@JI zBrOUlxEAkdWh&zsiV~^;iW6!8-X-|N(iS=$mlkDYBrVD*xE2+(GLNvwN`yZFl?l%Q zRS7=v0}BcJr9}-HNsA8^T#GtdnL!AsM;HodKo|jNMDU4CEo{0fEt<(lTC`MfEm~`3 z?&28Q68-?RBRm4MC-}rb3vGUo7M)}yExIVU79m=hPS|5NLKi?Np(~&V!6!yoC~IHc zkus7N(F(3btX3vDUc0>suL9x-sR8{6K5?LhvlpesAQ?%Ep$e|WaIMT79K%S$e84A! zg@7>xpBQgp>F?6wQyEE%1O?Y(l2#@g_LxY>37A624VXsoi8Cz3{U$AD%1By#q2OA~ z)yh1@9_JHY0KOyypv6}NpSZ-rfnTM?*D{h8%M@IT600%0jIx(&Ds?q{Yt)uEja6%vl6nAY1_aLbwF@mEaSvT1aU>Sbvj|w79O| zTHMsiOu`H6HeoX0E@2wrKEWqGv@q=#Y4J!#(&A4A*W#I0W(oHAg76LCFTx5ylE?p+ znA}2M`_g+wM$#gsf@_glD>DTFX$hYL(i3I^G7x;?>lRiWmKK?1BrV=ha4oWHWp?2h zauW6c-X!b;ekve5myv?whj zY4M(dYf)Y+lOM0$iiEcT?-L3Gst|l)bqfLZ^Wp;;NsC$vu0?IF%vGFpUBd5x`h=T+ zh6JD3#6tBm(xR!1q(ut_*P@kHrZxiF5b6OwA~XbiOz?>vEu^(y)dFQCEjlZ>7QtGX z!U*U}C<^FKC;>18pBQc-+dgR#AtPzgQ^B=}(aIP+nY{?%fIfsMKwpAS9AKgHkJ4hG zjHJa71=nJjR%QhPMi9OOj3TT7j3)TRaTcE2=OSK4(qe*wYcWwP(-g<>8KDJWGNCnK zD#0gCw{Y6N)6S5Qw3w~nTFlYPq(;CzLOQ?#LI%J>f=^s*;fXz{B{Gs0-zc~i%e68a za17rPHUqvRYy+$&_{4P<5>HBt^)iwcn-pA&En1n(*yA?B8-N{z9DrQ}pSZ_D(^Jx7 zuZ*O{eg)U!pjIX~0)8aq0~{d~030Lu#FG|+FG!11GLjZ&6kLn5TA6qRoF_~GTqH~a zTq5|yD;7pymKIlKBrSeda4l|VWsV}?7U2Zo4&gN59>FI*uu#%|J$NW1Y4JqCwRozP zi9o<}LQlX;LM$NQ$-gBgvvAzLx|7RDTD+>@TBOp-#NvKQL+ArYN9YH5jo=eAStw?I zwSQek(ju#ZYmrSWa~c6T2tNaI5zYg06MSMm3mNQJwfr)Y7H=!K7KOAjTW}2T5Viw~ z5_SQK6MSMx3k?rQi&8R@7G)J&i*j0-(b!`J!Z<)B!gxSsf={ewA@;1as4gREQB%RS z_)seoj6K#NbOY2Q7(fGpPi$-<-vepUL`Kr0xq@raQY$k9ADgWSe*H%l3fz!@b~2KH z4hk+HP%Bd$0YL=6KG?!I8xSHR3Fxli0*qFs6avBseto2cXU`-cN=6b8qu>I1X=R=v zpbx>X?`PqUClb(KMiMYc!37M_%KU_YVFbT^q=n)4Bw&<`Bw&n!3mB)B>5qU<34VQo zg=Bw7z(g5IK%#;Rn4*>W6amu+e*Fv!{a;AHOc_bQ7YZ(5u2v>pq??{k@aq>^2(df( zN=6c}M8O3t)yho74wexT0V@bo0V@eUakYhK52eK#8A*%v3a-UQt;}}_*i7*2w^_&+ zkWBvel8hu^mx2q}t(7T?i`+}_>-SrDmP7&$$VdWyRB!=Dv@$gjaE##BpR|zdFS&$M zGLnEZ3NGNRR_09voG1A8zgXyyRCaJlMiOvE!3F%Lm8pY(-wA&GO$(pfoBfuIB;c-s z3%IY9d5lARK=A7yTR8Dp0-nf70-h)*04_oW0BkdXuwQg8w9Xl1hFStv^I>q}Tjb4vo=m5~ILR&W7jwK6ragK`AFzM_S5 z_VrpxMiNj(!39*)%2da6O+rR&=|h4Ks7vq zGLnEO1s4#lm3bEdv4qlq-h}r6aRi^(-@=Kfvc~~3k`{v%T#KPvnLD`1;RL^al!aFI zX8c4(5-?W51;lG*&LLnt!LOfap}c)XPm+-YOjd9KQ?)XGAmDR?Uq91A$XyATB_j!# zqu>JOX=TC@uz=v#e`R6uO$k^eBMJCg!3BJym8ph+nh{wRoVF8IFKQgi(MegfW1p1fTfALWunod?_Pok>sfd*CLr# zCLdmOuMi3VUL_O)q$2plv=+A7H?MRuk`@^hT#HOvnPdpaOh^I9N=OCBM(~L_EeyBc zd~?Z2TI5l1E%Iq)zQ8fOMVJS8oA4!|5Wy!Fv2e?NR2G$yv?!tAT9nkve1w3~g!X{4 zgg`(!f={eyA-jG5sw5+6QANSEsHT;}sLI zBWcl1M$*D4xE5hrnY9RrAZ!3c5jF#&2|lrxg=+TeWp5cti@pl3MSrbKMck4D36%kZ z3Dp2Y2|jUzg&*x_@<lCstpIZfZ2|KL9|IN;Isz6Ff&hyM!GI-%Zh)l(16W4zSN5%i z-QDF<>-Tn-x=O)a>Kd&~BTTO&GzDxRv;b@(v<7S;d<57=Xb;#y2n6gRbO!7ugaGyu zx&!tR{DmB}@WTqZvMl}Gl^s@aS9Vk@lMU0y2{{2L3Aq8M3HbnL2n7IV355XX2}J-G z3B>`I2qgiR31t9R3FQFS2o(X>36%ji3Dp3%2{izB2_FLP6Z~;KwD9n;oL{mb?);u8 zxbu6el}Ul==Y&*%mxQ!{fM=Tc8Xzel6CgPu3m^p{8z3biCm=N;Hy|w`A0R!U03ZXQ z5Fitw2p}_|I3O#*A4YZyr@pgq5&hlie}ntpEiHzQsEh zZe*1ouMcxQiz&FCCA2bGFd2tsc_6rnF5nlJzmOBf93 zO&A7D!aBfA!bZSs!WO_B!gjzs!Y;r9!XCgv!al$v!a=|i z!ePKt!ZE-y!b!ji!cTyegtLHEgbRQ*giC;Rge!mzglm9Jgd2b@gxi2^gnNJ;ga?3K zgvWs01pij~gN1EB%KLSJf$qKYfP#DPJfxK=g6YGA;(()sl7QocGJunWa)8r>ihwhO z%7C+kYJl^E8i0$04*{15bpe+N4FFdOjRDsP%>dU4Ede(PZ2-3k?ErTPodEXuXV zp@2t(Fu)T+B;Y9_8t|OZ3-FQ<2MBns&trc;Qo7tR3c?6LO2Sw`YQm?0w1m$9 z=?PN+83;20nFwD1G85(jvJ$=oWFssB`@0 zP?)d{P=v4(P>iq}P=fFSpd{e{pfuq}Kv}|3Ksmw*Kn22SKqbP@fXamPfU1OF0M!YX z0W}D}0csJh18Ng)0qPR&0_qd~05l{#0yHK(2Q(%81!zu4I>@~NwIrkjv?inhv?XK& zv?F8&v?t^MbR@h9=tRg1=uCJE5KJft=t_78(49~WU~^eQ}g@yr1C zePz%tHPzNx8P#-Xe&Ap`@DX4% zp*>(MArKHx=nNQ72mvGzdH^O7A^?emo`5NYSim$wAHZ}%Kfp}FK)`Im5WpP5aKJpm zD8K^37{Ee8JYW%F0$>SY5@0D|GGG~D8ej!s24E#&HeeNDE?^B|0bm{BE5HWA62KjAq6n*h5BTLF6sI{^C#-vbU1_5uzO_5%(R4gro5jsT7mP6195 z&Hzpm&H>I4E&|RHeg&K-Tm@Vt{0_K8xCyvSxC6LKxDU8ScnG*ocmlXdcm}vlcnP>m zNHW;HlinvJ2RtCW3V1|F4R}IG2Y5=z0C-M#9q^Kn6%g=3zlvlBBqihmBq!tnq#)!6 zq$IozNKGgVNJ}URNKYsM$UrCs$V4a$$V?~?$V#XL$VR9F$U&$M$VI3L$W5pX$V;dP z$WLejC_rcqC`f1pC`@PzC_?xcP>j$KP=XKyC`kwglqMKJSwc9V93cu&fe-_zMCc8u zOy~=!N*DmBP8bHLK^O_BMHmgJO&AZTOPC0#PnZg5NSF?2Oqc~|N|+C5PFM(NNmvYM zO;`$OOIQwQM_37HPgo7;NLUBxMA!)EOxOYlCTs_ECF}xpC+q!g@eFVH03HVJjekumdoO@I4@ruop0eupcmua0oD+a0D=ua2zn3a0)Po za0W1sa1OA5a1pSO@GD>u;VNJW;dj7N!cD+3!X3a0!hOI>!b89+!V|z6!ZW}+!b`vg zLXrXQZrMag4%k9?6|jwv8nA=l@3`+Rd=n_Q;PPHBbgzQD1@~!XR$}@9VKv|oVIANw zVI$xuVGH0mVLRX?VHe;uVGrO8VISZu!SDNmg&$VQg?xnLx}@MP0VxTY0jUXZ0MZh20MZlQ1Y{uO1!N-l^UGqPRk$4JH2lN0 zYzpo`b7*B|U^*9JHXt`)E+8*q0U$r&D?kCl5j5PR zn*gN=TLEPWI{@Vf-vcTT_5vyq_5&&t4gsnXjsU6?jst2CP628W&H!o?&H?HYE&}Qk zeg!lnTm>{H{0?YJxCv-ZxC3ZOxDRMecnD}q@OR6{7Ouz1?bD%;dnt5OaJNq#k6Zvlo73Ic`^-T{mt6a$PRybBmjC=D1(cn=Uyr~nvGcps2Js0x@w_yCYd zs0Elpr~{Zr@FzUOLaKgpaVU%*0wPh4yv+n3U!aX)u! zEmd$WmT6_0VR{9jC153?4PX_a9bgTi17IDY6JP_O3t$t$?`o@s6fv^RKk*vbq2RW; zODppn)4K_O0rnD-;w1JFUI82+qy!uyqyZczqz4=&_+6c_kYuN9vjLvc(+X~zXS6bn zF@2WM3~-*%5^#~w25^bc4se;!0dSSzH}SiL%|><=hQqk2;C6LeD-((7yM$=KeL^q5 z1410&5urce31JZ6DZy{zg@r@*<{pUC4EW1~+f`Dn%n(c`CkzLqAdCW}B#Z&1Cd32M z5+(rB6D9#N5GDgM5vBn$6J`Li5@rLk5#|DN5d5XSY2o%Px%T7uYeab!+_mS|%ACS< z0m2zTLBcseVZuc~5rS_~+(K9T*H8W&>|W_56$dODq48wD@p8$ zmu+PQmsnLR6N~BUgg$^8gnocpgn@wCgdu>sgyDetgi(NogfW1|gm^$x!URBb!X!XT z!el^e!Zbiz!VEw=!fZf$!dyT{!U8}i!dHOKge8Dr!Z(1f1b^hA7P{A!=OBNqdsf2~ z+;b42m3bS}QG~*PXhKmyETIITH=z_Dj!+iRk5C>kfKUlAh)@MEgiswYj8GFWf>0YU zick+Qn$Qq1me2$cPiPJpPiO^5AhZQcB76);Byi|ay8v(}& zTL32s+X1Huy8vehdjMw%`vB(&2LTrehXI!e#{icJCjnOpKLM^0&H}CzE&y&4E&*;6 zt^n>5t^w{7ZU7z-ZUY_>?g5?<9sr&a9s`~eo&sJHUH}3DUh(gH0r+E)q=aOER9}B6%f@D{RuW1P zO}Gk}L--vqk8l&PfN%$}kZ>Qci0}}wgzyBgl<*9&jPMe$f{+9Ux{{C_u!`_1U=1NP zU>zYHU;`loU=!hWz!pMQz&1j5zz#w#z%D`_z-~f*z+S@JfPI9*fCGf0fJ1~5fWw4R zfTM)6fa8SnfRltufYXF3fHQ>ZfU|^}fb)dffQtlw8~|FASK~4AT{APKw83eKzhP0KnB8HKqkT;fXswPfUJZ+0oe%80XYbN z0df(N;vf6uCcFa3OGpXGPe=nOKu8ZLNXQ5%Oz^i)Q46#C$o*6Ye;86i!QD?KwKDZF zU7FAcP?pdXP>#?7P=U}IP>JvnpfbU4qMC&!&t+GQ@b9D4P;k4drIl%l>Dq)AfVza% zfck`w01XN40gVZPfTo1bfaZh{Kubb*Kx;w|KwCltpdFznpgkcL(2>vw(239w(3vn0 z5KI^X=t>w4=uQ{~FoZFHFhV>af-nIPMVJJLCQJsz5~cxq6J`M72(tnG2y+1g2nzs% z2wwq)5S9Rj5xxP8Agln4B76rJO;`gMOIQzxCu{OLwE*QM|cU?Ku9vw{Q=r0LUO32y_A6AA-P5{d#&6G{Ni5J~~g63PP36UqZF5-I^M5vl+# z6RHEQ5^4gj5o!aj6Y2qO5*h+-6Pf_-5}E_<6IuZt5ZVGB5k3YyA#?;hB?JMU6M_LR z3EcnzN%h0U0Fn~I0m%tbfE0unKuSVyKx#r?Kw828KzhPpKnB7vKqkUSKxV>dKvu#y zKsLg7Kn}u0KrTWeAU9zuATMD$AU|Oipa5YGpdevBpfF(}pa@|xpcr8(pafw#pd?`> zpfq7Mpe$h>pd4W%paNkFpb}v_pfX_>pekVxpgLh6pa$U}pcdgUpf=$cpf2Ggpg!Rz zKtsY=Kx4uMKvTjcKy$(sKuf|kKx@JcKwH9XKs&-cKzqUiKu5x3KqtaeKxe`WKrkTy z|2kS%LNY*iLJEK(qymHy(gGp~uK}V6{!3wug{}6#tkn?z?S$S6?ptD(qX^vrqX|6#V+j#}ctTIWctR{7fzSsqiO>&_NEis1 zLKp&=Mi>s5P8bE4Nf-l|O^64~Axr?wBTND;AWQ}fv_I1iLe#0g|Gv#jqp8S2VpN@7hykOH{lRqFX0Ga zAK^IQ0O1ti5aA5qFyS2FDB&XDIN?{oNy1gYX~OS-GlZLfvxGZ<^Mw0=i-d=OON1wY z%YKv}{7Ksmx-Kn21uKqbORKxM*cKvlvxKy|`+Kn=n~KrKQdpf+JDpe|uL zpgv(1pdn!npfO=SpebP?pgCbNpe11`pfzDRpekn{WvbN4Ns$N4N$UK)4MU zM7ReSLU;@qMtBMsK?vyS-YrKFk^x2&QUJyhQUT%#X#wL2uK^MWnE;arSpbQIY=9|* zoPcSB+<@tXe1MsR0)W|sLV!7hB7k{>;(!H&l7NMTGJr*da)2d-ih!kr%7A5rYJe4l z8i19A4*{zPbpdM#4FKy1jR6}7%>bJSEdg5yZ2;Q{?EpIn9RRxsodCNDT>yItT><+D zp@0K~Fu)-~B;YV18gP`*3viqe2RKRS4>(O21UN$&3OGv`0XR?i1aOfs7I2A>0Ju!} z3~-e&1#pe-Ue%fTVKsiEsKm|fZKqW$EKxM)kfU1Ny0o4h40W}D30csHn0%{Z90n{ZF z1JozH3us6v4QNbw573lQ0nnWAKA9$^h&0bxC0Az>3>5n(G}31J6dDdBs-GQwWK z3c`NCO2Q$)D#8)K8p3hFI>ITy2ErM@Cc-(u7Q#iqHo~uf9fYfZU4-8Oy9qY|dkJ>{ z`v~^|2M7-VhX_vqhY8OBM+q+h#|cSd+?()8LUO=q!mEHYgw%kugmi%OgbaX-gx3L= z2w4G_3E2Tx3Aq5*2zdb43Hbpx32y^#6AAk(itpI5WZ2{>C9|JNFIs!5gf&iHb z!GNp;1IR`Q2jn0`0df&y0J#ah0eK010r?3700jtx0R;)e0EG!70YwO-0mTU803`?$ z0VN5EfYOAifU<EnooQ zHNYT37QhffHo!1KPQVC4Zonvl|K~zuEEFCr|Db3O{=!kbg8K(WD1WY6R1ei`Z3z$i`0GLg<1eim(0+>g*23SD20a!@54Om3D2UtRQ09Zj~_7d^|_7MsI4iE|f4iSm~4ikz4juJ`&juXlNP7=xiP7^8u&JZdC&JwBt&J$_? zE)qTjTq4v3TqZOCTqQIHTq86CTqm>y+$6LC+$OXG+$D4X+$VGbJRo!dJR)=jJRyVv zo)W?U&k2!$mxO3QKni`G_W~p(!~v2M`U6rB1_4qMh5}L(MgYJ9Js#v%VX!t^;ZlZUO2N?gHu){s1&2JOVT({0V4Ecn)Yz_zTdIkQ7(en(zvsEg>bK z9U%>%Js~}yBOxQ86CpF8GvN(DFd+w^E8$H*cS2r(A-n|$BNPNg5Z(bq5sCq#3GV`8 z38ewO3GV^o2o(VR2=4<15UK(O5k3G6A=Cm4Bh&$mAk+tpBKR9@jD>)4a>q@?>o;Bj z-xstpiI`3xOa)9LOa~+qW&x%U<^ZM<<^!e^76N7x76WDzmICGwmILMyRst3fRs$9i z)&Uj~HUgFqwg8qAwgZ+Cb^%rp_5fBA_5oHA4g%H?4g=N^jsZ3hP69R&egbSEoCRzn zTmbAKTmtMOTmkGRTm$SS+yLw&+y)#V+yfjUJOCUfJO&&kJOvylya1de1mNA|G$9$_ z3?T*JEFl%(JRvRMBH=Z_B|;{^WkMFfRYEqvH9}6nbwX~yO+r4vZ9)OST|yzieL@ky z1441YBSJ~Q6G9olQ$jhwb3#SHOG0Hpz^nQ?uLej;r~yb$_z;kS;NKcjSy=p3-YZJs zZ!D)(aPJlAwK8QfoqDvF<}m%DPcaKIbk87C1Ek3 zHDM{BEnzvJ9bqM)Jz+JVBViq&6JaBuGhquLn6Mqtm9PuYov;UB2>u2Ow=g(X?zl|& zEiy{M-Eq-cnJk!&C1eBiCgcRf5qx5Q3$=Pli#%8{NWrxjqLs;y>0yMo0V4>70iy^- z0iy{e0AmTI0P%#ffboR#fCNG%z$8KyKq8?!U<#ooU>d<+>I@4(tL56e;NSI{t>CVG zj#j2Crsokt0SgFWfQ5uez#>94U(6< z>P8EN2g>?}!>?V8**h^Ri*hg3kI6&9{I7HYCI84|E zI7-+FI8N{va>~NUeR5^{@v=Ij;I8bfR^||<&l8RSE)tFdE)h-vE)&iGt`g1xt`RN* zt`mL*+$3BD+$Q`ExJ&RC@`r`TQ{~Dc@X`86!Cl!CtxQi$KPAKho)h{2UK08N0#a&= zfq}In=U6x^;VXk`v!x)R|qpfbS+RI{+{p(LIg?EW;ehJs71rIope>Dq)}0d)yi z0rd&L0~!);0vZ$U0Gbl+1DX>a0$LLMHrrU}SyuiFQEg>p|6gD#xP5of%5=nZ5W%kx zCioTIEKICy|C>{INDl><7_OC0M_Ks6?w}{u$11q>y|vQmz82b*mi7IxexQO|KUga> z1k=L_BLJTeMgztX;sFx~34qTCiGZmDzlrGt-*y(kx1B@qZRZnw+l2(*b}_-XU238A zyK?Q{$Vi^86$6}re!wAu-_;R<-^X!+ z-^VF}-^Uq(-^V$E-^WFQ-^Z^6zmKaHidK@-`AtT0I@cB4>D<)H+`{x-!acwP!b89l z!k>WWgcpE-RN6C%jHG9B!YhE3gj9gEgmi!mgp7d9ge-t;gzSJ^gf{_s3I5vOBKWH< zNbpzt4#8h-F@nF^cM1M#OB4LnzDMv^TY=!O_I-lC+NuP9wI2}t)z%{TtF1%uS6kmg zxkBdSeCmOgGg^r(0Oa{+_IFiS=z1-1?8SGVL(kfzS~UMCc3%A#??V5)2@m z5CP~(hz9f`^ak`L^aBhe3<3-#3Yo*h>EbOc*>%YhPy$WvqKCR4tOdlfr2slbO1~^GL1vo?a8E~F(0dR@%E8r^O zH^6nm4Zv-}9l(9UAAm;$e`S9X{IxtM_-px#;IAcVYCRo)Ew2##wWK8YYe_@!*OH## zuO%bFUrT0!zm_)${#tTaNLEvxrJOR7XEnEidzSKQrPFU&IA2iK7r^>L3U2*7TA3o4 zE>7_4OA`EwG8XE;Es16Ekn##Hv7%NwUD?9dHDrAitgo)%*4NO=)Wmdcf?r>c;8!%X z(4xE~Ho`-iD!9bvTIqBv3!hh)^{uh~BL%nqW35bkOa~G=0lE-^0o@2b(GYw_IKgK` z5qw6Bg##sISFtjZXR?oi+f`q!bb5e=Rv*avfmlC8!L1*rl^KrdQG`zbV+rE`;|UW0 zlL(&yrVyqArW0lWW)r>u%p>@1eo62fTSV|1` zY_o+Qi^=(Ik&&GDb_I8SJGC;qFujN1*Y6|v6$dT!v5AN9kRu8%@t9WTIHpe#{Q5Hl zzv7&Q!S>ERkB9uC;1Yk;%3Q|uZv?;oI>E2FWua{uNxY4R+*5Fge`sYMVEQrP3E&yw zIp8lsKpJe|jr9}#Y4^2hzp=k*|^fiJH&19jo{i5@_jO5wMs^IpWO)HZf)42$5 z0`d~_0SXY_1{5av7DWj@v;@J2mLmAjvIHMm-ohyRep^9CvhVj5+`g-5WvXKO1A<>) zi{Mw(u~6T>su21iZ&Lmd?<-+@sN)dTw({Ubh?v;Ld9i$ z5Y`7Pxbt{}Fc>h5FdQ(7@CjfnVH{vQ!C%Nk zg5P=~!Eb#k!Eb#!!Eb#Q!Eb#I!Eb#&!Eb#b!Eb#r!Eb#j!Eb%Jg{39sIanbhxv#!c zaL>VNt;`xsuP1B(Y$j|0Y$xmhd{5X7_<^twaFB2aaD;FaaDs3W@DsuB`z*ol^a8=} z^b*1E^a{c6^cunM^ajE2^ftlo^d7REUuL)f$36& z(t!5}k);zD0F{53Nb?p|uGw5SHnh;OsO-CujO1*aD!6?&*UGfObZbHz zKs&<6fR2PfKxcw)5kl~x-3dOl2f>F%5PWD)3-jz-ezc5a-@O#vzWZop;xOHxFaR)^ zFa$81Faq!i!M7Mo@S&d)d}so}hki!zp;IipRao{tRYtP!=?ZS&Gqp0aFg=Gb7qEcv zC14T3Cw@)v8OsPh<6DBySY=^|ed}B;BiYqD1-GjWTIuv=3q|aoHEzNB?Fw%FPOWr$ zw}l4wYv3NN->2Z#AJ9stf3%SL9a(=E>yIh8^(VA4Co%mK;SAs$;XL3M!X>~J!d1ZU zgzJD?gxi37g!_Ppghzls2~Pnp2rmIi(&?2Ym64qED})q)RD{%kbcFPPj0Ar=nF;

v|A5d3+>6a0BhAo%l` zMDXV^nc&Z38o{5(41zz8*#y7SxdeY63kd!^z9RVZSVHjU@eRSB#|jG>Ys<~?t&HU6 zSf$`@jx}1DwV2*O*a+A{*b3M|*a_H8*aO%{*bg{F_z`fFa13yga0+mS@H5~%;R4_i z!C%=Gg1?q)1b;0z2>x1b6a2N@Blv51K=9Y{nBcGFDZyXM3xdCvfb{wt_-jc<@Yj;U zLYG?dEWIitd6rTuxMwM?Rwf;$GY~QYG83`@vJtWaauMDHfI< zP?F&HU54OyT8`j%T9M#)TAAQ?T8-d$T7%$s`XRyZv@XH#v;o2Iw6TTF_Pcu%8OaGZ zS8ylXQY+I6(`^YK0ooHf06GzZ0KtS1KzBkYAdCFtOZ-wRvk=pZ2}=Oq5S9VHC9DLjCaeLhCu{(0CiqQkBlxyE3BK)af^Yi+ z!M8m?@NIu2__jwa*xv`uF&W8eo>Xwxep)L(-OCI~5)jZJApVuukm&H3#DR&0<5Nb3 zMumihMua4qgt!3t|25mt{@sfBw4uHG=ItERrAJ6aaEzb&5mV{xRM+Uph}eJ3oyJ_M zuF*l^A$=mFd-%s}gQvHTiH#15h=~df3yJoVzx*Sxi{u5#HgxU;=G;EIM27$KVMl#t zx9Fg#?s@-h@&`<&_6@r*@H{3mx!w1Q=n@+m84(ngHz+F9@8)ML$jD2`+dU{E`0w5B z#QbaiRQ_#tH)eAL^@@!Q4~h-#A{z@1kslGgL!x7(m!9Gp-zF+LG(0F;PSWp1=kH?v z4SQXYF`<5&|GsL2-%NODTuAVLWL(B<=9pNyf}pU-h>-tS@&}e=iU^TKox}cf!F4Ri z;;tYfG$f+Sf3De#HEAQ{f_sPL4T_Eq>g!MQH%z6n$Nf(~0M8NAt8;i{a4%`xJtQnD zB>F!#_{c5n)vH&03OT55Au);ZX=0+fhepJe=oK3pmKdL*w%ke)a=W#P2<=%bv`cK_ zXNm6&O)P9iWeo_JApdLs21`PG@!*i~$e6&8xS;T;u#lKQIgvn6P*_M@L`bZw0xJZT zEMcO$CCZCvu>|B!)LiDZ43ur_A?{xBoCZA^yL+J#7rOkv_sDX8_nhJ% zX}`@T#FzW~I^|c8(8d5$7tqay?V(KOCK z+J5^hm&Cn78|DA;~@#o!YwK2v0LXtz-LHWG+WgkI61^4%;xRcuJO+^|8hLAFX09nv+> zeoG38i?wxT`QQkO?joNS5y2sGfw7^nHc%$s_}2;B-F`~Cxh(%W7akN9CC{#XRL*~$ zadCnFn9ugF^Fd)@|7iJd55|t=)nHk$|k5!P2SQ+DebuH%eyX!5m4zBkxg*nNMSAZfv&F^*&U$|rVQ zqA8U;ARs=IJq`H|-NSy(kgwMAOxhjxiVh2m>C!y}XJ6RJAFTy6HWl2@iteX;KL}{t z3r}sZd~FQ@1`2_&ja0aP#3 z7IPmJ&1w#JMO+!qa~)qmsnG56jX89u1)I&%C;{TVF^Bv_!;OkK(`D5H_1~9gRo3zEr|rvs%@06v6($ED zvjF!s1svcZ&Ma3eg}uNU|FUAaKWcG>dEdXM`^RoU>`?-+oQ2pxcnI8br8%G8A3m+t zQJiiMO<*uJhdyva6W#E%RAEz@8*|XCVK^x?xXzY1sB3fBeGKC~swyboa=~@UIpdt- zi@AP>A8xYg->rF=sq-wyAGNIC@oV$F0;Df$*sRsyW{#7YcdE*LL#W5ALB(u~ws~S* zQ@}avDws^+5&=Z9wqv!vD(0<)sh#@^c2R0DM5)5U{^TyG?PGzKIIJP#2}I2cw~#$k zdJNBIWmN;ud}c*~w(^Wpe5Cm{yAg=GlA zWEOU-nZT{ur+!N|x!79NC3Ab;=M2sRZsigl7`b98ufx6` zbLRGM_jP^`Gk6`SQB$SZ)L54hj=K_OBHD505kM=J=(*a>&LxCL27|RsLZ!0*$#GV1MpfRT2qP%jlF+dcDZ1AN%!@!rx zejVVoyg7BRyoYNV`hpKoO3rwz3t1?y#)k{tnsMfEs#hIhjB0uIYbkb;&hj)|K2sh?+W zo+g8tnstdrz$4uqth9_}dLxF&v3JOBgp~=6`LSQqZayO;nZpcsX*7iq2HV8*xEJlS zmTo{}4m_xE`NKc$@&f>i;0k(22lpuyMBJ{;7^KGqlUaNKcsE(@`aY=|BwXvgb$EUG~nfrSLX((AoMjC5k-6eQH=Rs)E&z&XHvTmSwsPl z#i$O#C=J5E3&J1@!l($sPzS>J1;T&?!Vm+(VBweY`Bf0f=w(q1ACSsW0791zLgx)a zFAYM^3qoHCLf;5NX9q&R1wuarLZ<>kZvjF#07AnCp}B(4{QUCoUM`X4(jYziCrc($ zgb;3;sOSFDLWBsT(RyKbD@F(_t=O}ERzX4}(5$_L+lvw%OJnYNLw~E1b0i5!_MW=` zk8#zjLq8yD-XSGy&GR7Bt28K^0v9F$uUi6m9Q&8(xC(644vz7;E>lDf5zsdC6e)@dVsC)Gi#>MiEeZ&ztTX{@j9^S9)<`%h_Vi+lNle$6 zUe%a<(=Dl{Xf&o8%lmw0?jru)d;hSXd#1NDXU?26tl!Xj{f5>RH@luzg)UdOeMK(y z$p|S~s_Iwgszlj$lNBm^e(=V~*4Zkox`oxv$}UO^cJ)q{v`ROW2)-F`-CGa~{S5%x`U(#<> zz1;KiGjj44%8J%jjO=f0x0Lb(J4_mmRxRb|43*74O(o)W)m`#`RDtqmx~ebha#a_T zMcNYxXy4Wjl!=J*z_Gfu@$}hPAgM$H-e%j1(7HE#z{c6(}oK zt5`{U&+6sMmIHfLbJ_JA%DKE4tl}}NyYznpNVmDMWre!>$*a3nUssu&n~q8yxNP-BrAEn~Zq^{V@}UZrk^#1< zRQ^p?knFxo#Y^%~E5uaqz!=rmF3T#ME9;x1WPVC$kqVN%i_}<|HQ5?0fm0DVH5Y}Z z|EAhog&3Q2d1{htq%Nb{Wd*rPWd16ZareV$^vc%g!Ga_!K_;fyQLZYPKfsQbturx> zeIG%-7?^3&6^l0VE2mVxWpbAPLrR!PZ=})2;-wi~o2L7X>dG_qH~~?NoXy1K*nivNt2#-grt6oj^VPc-l+oQ zU=yV8cq7JQ>t@x)Kkhua2@=Tx|g<6?OBAb6gW=BtBNnc(5*>j7E zN^@oBLDf;>PpKx-DHoCSWE>Tap?Gbty57}T5)XoU_&BOH@C}tF;axC`vSP7-cPp#C zB;2NAT|U`!%9<`ae#Znk@q+3p!#sAVyt)@P*2`@MxDw}fv_xc}YRQ`eqNHRyDjyMI zx0O}FXrAF-8`W^>v<7QHuaMHbIfZ6C4zIG3(U^{A%7*=bRj(`4umEi4V0TQOCqGxM zq~knPHM6(f&d$rmf=P`)uWnsr^^n*J&O-7O^JsT%5XI7Y^Gc6db9s*obg^M!f2i;`z&&94&IIctU-IBf-@=DT{i zljW&P$Vcxpxr>WYZAn~!3GnErDpLMffKEy$6D-IpohvEx)PR7j!a4c5Qt>}@N5^-; zK7M{nb+&v9iw);Z7-)B}i%W`f%tSeRMGdxQ=Pi~!ix6M)x!>wpadKCI)zdqBL4JNl ze%?Gui2w=vN_%N?Q7_R(GWMmwXgNH}_K?#LceR&ahFa~>g*`d5dIEIe%xEGhqcM1C zhm@Oq5c`h{JZ8l^-oBD>lNHQ8$*e^={G#$oe{rYCpbT!SA7P7o`9<9cC$G1LN<}uN z>dLRsT)mQ4<$#6t0K-jv3yec|{NbCy9GCmhD-$XZZFfs6*(5l791AH)Sw8NM^)+|! zV#(&`md;zksXdOI3;X6#tB;<*uGw-Z*_tRVKC>h3fTq&%sEU$xJ5-dbk8IoS?IQ=8 zphGvUS0S!^v*O=9haH-$#|GQ;$>A`okAIfDl8PX`HHX<TF>{m%s)Feq*f$jR;VsKCFl0D^cDAQa#qQSZ;%IjxB64nNdlIs1UcNzYOcWTz{7{hy~#E?_5g7m3LGGH|HhzD zjM~)|Ri1TB&7cJ23})eR46t7QdX~NP2X?vEvg31X96d*(w;*Gg?yWv+C|M4S^LUJKgkEVaQH{}Y5tGy)E%xa3SRHG7rQ%N2P$Dj=IJ2Y=`* z#R{#+#I)NQVK>0!Y-6&Bi-4FrtEW}S%`MHXXBB2yGrOB7r=+MDOUf`v&QA2XEuRlS z`?&5XIChsI&tVn3iyfYa1&J7Bw`0e!d=67XkFr(% zZWS4kySQpqa87PPQE75sVNUL1$?S<$eR!uDDH|53EO~GT#swQ@FDnn#&-w(bkQA@?j|0a?*Y1Of6xhf1m<9JWb_6u+)bO ze{~>DOajBwJJ6PCIDb)Om%K}808+MdT?TNay#-HG#!=Dof-ZRWVt;*sWREn94&!B(p)y(W`%LW4|gTW z{7HdHn2HPa<|zG!+sX3lFgp}Y@{17NC3F|cI{v9zB6l?e(@5X1+R0N-sL9fz6XpUo z#2&KsRm+yG+f<2k-io3#8)CR3E?^u>EbDqsMHKKC(cgua5&>Jw0N!6sro-<%lXSl@Ie;{HIL+Q#yS%yI3nB(EF_KW1rJ}#>mZpo<0K0U4NttN^4;z6v zY&cs6cy9`KA+vm*+ztsBA{hjI_RpUU?RbnxC)v}>-BPyna)&CMg-_1Hp=--BG=|$; zV1CvToIt8pwU&z`t+?ueIABEm%^c2x4`g4!sdr#2Yno*2M4wV(lFReCcJv{*ztzUI z=<0Zf7A^q4F3Fgin_rB*X>Ah>-2o4V&M(~!kh}izBI~y?;#$r*5sUrfm7WkJF$;Rj zx=Y?L>FxH0Nb^ouHYsmFTG8W3HG#Vz7YxU+qZ)SThOAh%N=qEQ?FChHYH+i|!poAuJWVjV?W#kp<4N=k{Y0JevIKqHW3{ndUC2I=!iaxBY4Z#2=-iIZx zmvLY$R!hBG(Yab$+1$knakVt!!MhLO$i(TRTekmR)Hm^Ml_3e=u^~L!b3{GR&tyPy zmy}!_F0pv6+4*_0trboSdcf1->?r396pvjy;dwNXY8K5~_wNO-*CG)s6HuC0IJZhx zyo{q*+X>6%rg_Yv9^m8GwZs0z6Q@;-1=w#JM6ERo!6^HEiv}IG zpbFXhiW|#lZeW0JE{@^Nap1vZ?2}|u#!tNwBiZn#teoDSaH ztdi`x6hQRR4KsIy9Ga>^jKCOy**oA@PZW>eIJqs>N9q_k@er2D*}3Q?ti>sE_*Zb8 zSrb$rw^?g)WCm+a%~z(fDP?QfP497+9#IW+BEV@+eFoh_Gldj!o{Ok}~#FB4>YEn$_IS&nqpH z`2*ci5_6ezexTjfoeLpsL4jdq*g;xIpGUFdWA?=BGd{&pcXmN>Mjo__+rV_S0%G^C zR&P%+4&PO)8gunE_IFvudl36-n66ZeR$;DWbL@|(hheNyU&!tNEM;sJ*ifDfXs1TYvPR3+lYah9h?ZU>&fmXu(e_-1j>hpyb-ed1GR{YH%Weds+QiPg;d00 zlZ8Om-{wlCY7+fScA4^*H(16U!W7c#l1KmM2`&j;=|2hgaCMg>lT{Zf->U*#`C9QO zFC0~4JlVN<`BkfW)H=1MU%=7fs=$+#^+{KufiJ3T~P&k&u$(HRJW)!)Hr&|GXxgTZ@&I`@W z(mh*-@xr-csHe2{>d=z=jqAZ4wVcg`VJ*xmVd^;PH`b1%NI6s1eFuRpVj#HdO7@i& zix0n#Lo;R|^(UdfVv5&n1m45hhIQE zY_iRb693U}tq3fF&SbQyU;&Owg@fXOimjk154xGR)l6A?9@(tejjsA&8uUUZD^wd9 z(85Z0=gpp72Ib=JU#uCSv-6-`;W448Fe~4%(Bir3I(g|bHd-*pbhG1h$}w8C9HhO< z4f~ljsD;mUZ=$W|x1uyQ&dx3=DwVUBQE9!u2S;MXX~l`rg>o~NuZw?YEBM8ZD z6YNmTt3HM^om~lbtXWzDH5Q}(20Qf2#$6PqgWlXZ3>GVVRfV?Y6!Jfkg}Iiw6as0F z-_VkXHC7j7-P$NPz{PE8(gTa$Xv|XW4px3%F}r)BOgIFwm$SfIQdHI>h4tBU8C&YN zOOQ|cEyySk4pJ2}`-|_aA4rjoC^(n04Db+cqo?&&1@`{s7 za!U(y%Q8~CSFP$US{3CD&)v!z9JuBxzwI8Q+Bcz6Fgt~zz< zNMv6d!VCr9`Orn`-F?#}@S4q&FlgIPt5hSnVu#MIrI}c_4ddlpKqX2-Gc+Dsk!FvR z%_2*gV?+cj!;9V?dh!+ww^~zSGD`QYta}`s!>4LIpSStTc)1k2W1 zo3s<&HnR469GE6Q3Ep_1E(W`2JzUQfTh=U5&*LM!!*OvSN&C;~HnSwgc0^LZB@fCRs%o*IgR|D(;b%=$OU z_T~_H!#~(eAb3rYnEP>k#M@V`PPX&Patn;qP(B-Tx6xFLBQ7B8Q}F6%m|o^VHAH2D zoj``yyf%Cv`k;KD6@XEUH}_x1N87wSjFNL>19`1B+O+ssCPW-u?zWNb+aN`S97C_x zTziG*7iSa}l@w&<=TT4AfXpn)ox9N7P4xhi%#O9@8g}*fnO0S&?1jLhr2s9UwWHEcUpeEL6{lBR)vCyv3z|8+!^tXHLJ=1F zv6sCaBz$Q=sB}$$aHc0*@sD1ruJo;v-YUoB7zPF5?Kjmy%2$FlWAb%{*c5py*cLU% zvZbHhGN`bqaA|Hy5s%S{t+5GS3bj!>mwSJZDgMZ=Hp1&MCLz3 zjU)<_jBbz`wP?g!1KGUU3RG3A#I==5i*m@jXMa&Vujx5@c9XZ2oiP{H#$GTYGQw;F z^B3f0&nqpdAn_8l7Ty+*s!?=vpJM^^>v<$bc8p_MDO|NCa%g?pM(NTC~LVW(U?c3OZEG+= zPL$h{aN~l7HiinUeuk%D^GRiu9B~@DgnE*g6wp@=ltHxBi`JY(PlHEYRXqOlDME`2 zpnu{8sXh*;cec5}^hqsBipGO8M3e+fcO;Lx;0lLA(8sGop%K(qW8gQfZEcp}S8PC9 zZEbazlq5S8nrkSEF_W-FhQXR;PEKx_(XvFWx7r0bdRE#K%){*cuqV_7gZ@KJcv*60 z9u^uJ0ePX)>S`uwNznpaS?XPjnva=@kQ{bL1dQTsbAOc${&XKiU2yCn+(q{ksgW*i z{xP_E3N9jep@@r;o>H;_J*8RS|Jqwks<(oBzw*47tR$WhsLL}K58iATE|kG)z|1kU zwT&c{;V6}vk7J)-pWoh#dp1nP!ZLHAtOe=9#@G#OI77F6;0$_S;AQ09U2rp_r$3fC zMXHuYUlKA5bTHx}((x6{HeO`t1C28t@vc%M4r#lHHI1Dc~GmZr~=S-|+1=8?+$T&asggWs1ds+BY)!Nlc>nbIGBqRb} z$Qcu!orM<9?+uOgapE)VVw$yAT*NV_qyW9y?=j^@jEOb;xUH6c43DRBI4D1Nc3DR0 z+`QS2wF)G>W>T~RY(*;%^c~KXBiI}CsR6o#Hg4V?<0}2t+1S4iya7h2O^@{DZsvQ= z2BO(;_!CHXcnKPzue8Arldz_ggz@|alIyJ3c1{r{+5B}uw#*pE} z%g9KxIbOpAKte`W8lJQSLU+PZFYb(!tR?|kwR?45u4#&Ssjp?%EJvpv?FcCsB54e7 z8XO~=mu|rV(i4c?p)Z?iF=gnSG&9h;t6$cF2mFzTS+TqvS1&L&m{)5Wq%_gDrtQrP zS{8$-lo`B zALaoat5$_UV8Hdu!X+JOl~KxC&BkVv)fqeahtps_yO4X) z+}sij88iV}SZo(GE2}JfuHJtotCuy>HBhT3EF9Wp*Hbuq<2uklwjjB{@3URl(*^CAwQ1@zA=ix)f6YtFf=lzYoIh*xw=AX)7fzZFB5}?M=8G z3Bk6gRqg2~z1=bQn~5vUiVn^#DJg=Y9@1_;TiAe>ckOW8*ZMmnd#Bt1!R9KDUfmMn z%8DD%8JBjWCZ7zln#B%`t5au{b7f*wJsk>is(c3}a1vMS%7 zwNmNBfFWOwLG%V@zLXEP+zFpCUiAOnRy*VsFDaZ=<=Yh}4-K}OxxSWTL#)Q~{#`00 z$RBn`oLn9Z`>9dVeuy>1{S|XgsktJJtcmwcjO-XS|~5g6&vNv zq0mM?z*;2B*!`+?m_Pr9v7jMxm}((k4~5EnNu2yR)av2BfhBd&ZP<`8te%Xy&hof> zH2|@VX&7!v!=&Om%j^D?Q5`BwEyHRu{~@|24@r4P)vXCQ!kRb>3M@I!{Tm5gOvYij zIIoHMCi8XzmJhQMRr^@kHVpNPXH~kH6wrbvxfV+U+-9g&vC@6Gm8?$0NZxRm(@l$$ zt;4OhYErCxFx+aRHpj}p!;$_IX53U7ol@~No!BczW{$9uU9)A)2rEIgiId$UtW@_X zMs06yHv&dlk?!l+X~{L#5cSl~7#TCt>g>M6W^^_z{iV~YexSdb$H{?_R#(+0R{j}j zb$2~1siUm+>UW4TqpWu7zc^Vl%Ieg_$K>^E7y_18SuU)4%%ob56V@mzRwXr%3!|*o z?gfn8LK=@&O+!qK)9mirDp45nc!Kpry^&3T2wP+018r$=pbmNgjgg8Qz@+?Ful1zK z7%RXX$X2G+N`oU#m`A56i<4K!z_I`)fRUTVEjJHD6sc6|f$sZ5uln^c%u!k2K7TkNJ-`XJV)UB3t>j5SSx{Ok>4Vi$YSbW!zem@qvn5woEI>@Kg&w%W;-HOgyR{BoSE zm<`=wgl=hf*C2T{0#_|sQPdk(JnBwp7#@S@lR3xgsiwzC>J9kN!MFj6P;bS`xjEJZ z*F&|^RnA4aV%T0&H;1UnP9-}ukdrI?saxe)q3WmDS`?W1*|IzjmTq@R;={OT(WQXu zb*AS-vghtvWIKdPEHmMXOz7QkZ=2quFIxx{az5^>H_p7UD3D3(6|UPc*-`b0Y5vt7D+@TGNAoJxHhQE%FZ=a{qSlC zZw|s#BxZXgveC8vBfh%`gSjjbA5Nq@vf+0aS6nkkq~=ItTC?orgu&} z;_ZMK516ju;Z2s8g88`{$o!3*gim^Vs1i)VWl&%=DzoaVQ%)PGO^_#dd2v|xeI(mD zpa9(MrAqPl(Cr>BL(je=uRelmf!f3MnJ%E_{O%0V_i|zdc7NDbhP$hLFOlP&-G>bq z7rpi5?2BI8uJY}Pl@)E+_~R;B&b;i61g$n;_GP@UT)vLz}Bd-i^6jPB#%YJZ%pzXNqFe%ISo&C$eulJdSc1k+-x3njq(sFgH1 z;`QpQX-5dy32q=+$H@1b-~?BJoLGdWG&zdOM1mEV%5>NqP*2t_N9luP#X^Lq&BCc` z`BD(p;`$Um7Q4Uj;&RdVwdp~vOT1LBLY)pefI|`LOx=SlzX1#CjMFR}UHYot&LBZi z)eTL4MGw;iSEk9i@JF5VJ^V_Ol%I9ax#GA?uUDU=tt&93xVQ;N(pKmfHdo)KpE&D{ zM3v$tq9e-Iq(*;u0}*YgUgWUZFUPKlOLr#S>x_?%msW0ttEO>W^wV7{Wkt?TSVH6x`>o608#1jvE&UblM6se``$3UT8?sr;bVZC}UEjw}fn!7DM`m-!ly zQ((3`cD)g5pKeRKUC#M)as_S#cv6PnP=pJnr`uq`<@k8jQ{P7GS)mC~0mnGqyg{#b zO@&Edm?YzrZHKU6njvcXlPjV4+-KI6Cg8pfCwOwfsje_dF9$o&H{hW==rVl#I0wdLZ4%48v{j{71wjUqL;6ZFyvMgx>1ia z?%SCme6|{@e`_@h`YV64el;AIt%t`=BJ8d;JNKI@M!BNQ^zvJsgje5=DRyrx*90tZ zZ?~dd(+vy5&1HMpj8NBYQdEfE_g`gtogR9eqc=%IJe!|JEu3#?B^9OarsuL#NnI($_&NJ%2tYVV3IP z^k1sk#z0Ayv+K~zKge%Usr6QO72bdw0XQ7gyRv3Ic>e#KrlF_W$}vz}-{}F64tHVh zUw^e{+sZOfTz{L6($U|&3!UE-JEGIoZ6$64vOHNk%RExv1G^|Q!_iir-+&v+X|=L} z2|7^?~J;0w4qMMwOf5GlG36*+V@ zJ)(!IW-$~uYo)K5f5$c3)eEbw%)K8@ojc9+(qr=i2_8xSn38W`LWOQbZr3^Dtl#2% zmby(#yXY2PP z|5a7E>k00DkU?;F6_HzzMctaSe40B`GvWc5?VBF`(hM8xAAD8Pz0M3SF0@UopsVv0 zu?puJYR*+^2u+g>wTqUvOdo~9;y;tI{GU;_|hPHz*;sOVf_LysG( zt2rXxoBmVYc^*sP1U3^oj{^@`0j?M2%1W*wW_MsJE(Uni!`eW!ao|T27D3MX zEeGeoKcWqvBRQDfi>B++x%--&Lf{@U#)@Fw-2F(;c;uuT|h*Qbz}uo})jFkqLhd%$E~)E%Y2 zVI>x&g0bs7VKvtTcsoH3eF|k9Wx~X-oP;o@40XK^166COtDe02n$F#t84`WjnOQ_8$&P)c`>c}8G%v59drTtA%L;Tq%@ zu6~D~`?J<;)gF5wVtbuYO}Sb%zfnf8x+PAIyzR8_+kM!9-<4P1bg~@%9Jc+5a-0(i z-m#-p7JM0>v*xSsqxm~G7^Wqr9(TZ?dY?6!UhV$fHabQUU$Ew>zoI#LXUH!vU~ino z;m2I+VA&3LN{BUs=y&!ES2y92048Yr5;pyNbS|*vyj*iWZiYSNGYq>Fz6kv&4R9h@Pjuv6!%jj?(pO=0k~^sBs|be4(##?`N< z^fus_IgP|~2B9j_>G?ZfNAcrv+T)^QGF*K7=hkVbN$@=xsD_y;hR`v=)TKC9vi?LW zxUF?{M)+Ke^ncS@rrwE_{cl>ca2bvXHcghj1qtq1XY~DU3bCr}|4<@=IyzGHOSMDx zy^TwY@w&x%stq>QcdY4wsZPwJvhA=nL7UFXMS5(^HW7k4IT6k}^0fBne&tB1hH?BIFAu*Dapf)Pa3k0~^9_PEsOggv zvVwv(iNQ1xHPpH?_D2ln0Xo#Z^#N@5|C9aS`U!XlAX?Ht#I#OB?|p>qpZE~V=XaBn z_JjyNgi79`H520{?+{dZ1Y)p>5qug@n5Lne8e*Qvh-X6}F{Hr@;Jbl?C z)J<1EymIL<T zrr;O}|IEsvH+HC67b6*;SPRv2diTnfp8o^8p8o^-R2yO8g4i!!b&-?L_{s5~LR8$M z`KXQ;1akqCH>}l;A#YgQM6363Q2NX&cK^pd#OLgf3;tcFmbxIVXTRAH#^=hjl& z?QA|-lJNz)cA2h9fy#hy!WUMFJD1vKCpo+X>N`55SDaK}kL4J*zF(nAL!|%n{yM^F z&#xW4K`+Z}Y4SCcEBD4p%GcH+)i{>F*)*Apa#gb0OI?vy)5DvZw*V>MAwT$G4wv%d zm|0hJcV!D~D*QYBa>9f_phCfRgATl`P(Ga2oE~KvsN%>F^RfBb*7k4~p?`tUUFz=Ga%= zsiIUK#92m$A%3*_5z_RxR*{++E2-aE3)I*8J5ws&hJ{!7_gMNf;uu3y{EY8*C(?nR zm7kOY(e^tl1Fm*fgfk}Ja?)q@#72ah{Sc>GX*egJw=yEkYagaXJ!&GRoK_)Dx4p|j z!0tfDR(NJbIph-AdLEU5m3D|~gp(ukqU(+Sytds0FZl_TgK0O#SxHh}+9#6$Wp&;sp+m8|>c>kUkjh=BBc*>YXivz7gTBlcu;Ee}$jj zCWC(_e$@zRtb9;jib*&_CoFW~oq*F;p<3tPuGqjWXRJWGQ%yI}EihzuO_39@Nqo*p z#i-h45N1rFPA~sM1)vtzYJ#iJq6)L6{BwW*Ax*sHtPsan_{GaA%<0nKxS2XVJ@Xs{ zmL!?^2?*=XSz}$|?3gGzgl?{;EzM$O^zT-g>aV31Q?n55_F%&Qk>vAMvFm4cNxmAP z7n#5Qe_-Dk=8PQPtMG5K6}Y*;aDHK$=v3P8+!Uvt*8JOv81)Zk z%AL4Q;yR{pkieQZTrJn^*P$H$2RwL--i|e;j~b)*5ffZnw0K)~{%d8aE}FgPs}`D_ zH5a_WkixfiV&P3jX_16(&UoyRvHw|1+|Q8-z~0As9;l~$Eh^f7olYj|_$t9DXS}-y zuglidMAmN!#XC!`xfZBUHTnZSdkIoiTmwp$*c;%Sh-mmLzUw7GnpI=+$6Ra5BFt$}xAsJc1Uv<8$kr^#J3&uUIT^g&Kl zLV2SAoj4ug@N7n)vwU`N(NW87LhwA5f1ilJ;gvUIIt47n!_`7Zf2Jw$?)6_gr^}7D zJ=I=VlNFr$QeEqfdf5L~L4DWhT7)})sX1$Oij#AVp{3S7TeCl@p-*uX34Ra3x=uqL z;Z@Tx*B9oFQG2gnaibghINA$P{2G`6M$h5*aQB}WnmG4apf{7BJ$A4<8Y_F^>|WB* zYe&H*A19`ZQyaCO4` z9d6ghO@zKM)bn!seJaX{cpO}|k$-049ghTc(#g{Q9Dyg8?^&2u{l&Y9k*cLL6*6yv z#sTg>K~83!O?Ugv+Wq_Sqvlq!;v$S+xAwAvo%XcmJ&kS;LfQ&$l-;V1qdkTXNf*~) zqx|vvlSI0*9MvMt=2z9T>+wxHecwp}Jf-ToTGYhoENM};+qKR#8=jVZTq)clFlimH z%LHg%^)0Th?@oAfIWs7a_tQhwo6cg{UEl7i^7S2TZ&_VYBhD<+H!!`VI2zNSsZo>Z zPQ&v+jnrnR8+C`ntJW{G?B>$!9bQ%hi(S7CtQxvFE^jz2x8Q3i{vP_lKNU2C!CNU| z>W$hQ2k*#*<5ovs59xC7_>BJ^^F6~!K&H!hqGuy+F*^FnFxs5`k*7RHU3t(II z_>OU9nEOZ_Jg|XXU%lq=8%=@9Xg$@@xke!+s`h&mrhsHe%cv9J;g(P{DnC0H!z>r? zXZYpOM7_sqcB0rI=Z&0*zYp&^VKCGu=9rdoJ;4R81^(!n1v4r7c*W4ME zp|W)dI06VYhwTK-lt`joe_izz8ZksCYUw0eD+!5qU-=86t{d4IeQOTlg)j+eYL8L% z%vkAM@Ge4x{MHmb_c2!pv^_~+PWjBFC%q`5U9Zbnm@pu6qI?E#1=sifT4`sp5H&GQ z?|nMLoMv{UYrMI~V1nmcTmHrWmwedF9;n(n*Od$%*&G{XM}1|@X6v^So5BSKy5!*$ z`t^HZX8u$<6HXg5U*7`T&>s%3CM5_S6DA&9e|ghGB6L&!Tc=-`ow3(paot1pb6SS}jJ~9vrW!PmuiMxe>RhzG71GrT z(a(~ZcpI;_T)u9L*L>!hO`o+4n(tI`jB_bKVpyqhH8IIQF+7$5@^w2q*tPd+Yl7k3 zYhuCGPMdbwk`b#W-+ywm|Ba2~eu zv%@cIA|?tvvi#fM!&pbWlEpKJ9fEMKGtEsj+X~-4lpU#fJ7k*SS0MCrz0K={IRD!o z{tb5_SQj$V+^A z?1y7yPiK2bFrS?;Rr^2>5AzInp0hIaGdgCvYlG(Kx=cK&JNvl5GmK*}T;t;LW7Sp9|;J;BLSu-PMJ+z$JFn}tm|QW)f{I}@RQ@z+sLw)-Gxt; zM#E5zEVt&p1y2xOHZj>%nlph;hnE=i%LRT7*Y~w*kFW^U4c*Yo9-%&RI!~v9+XsAg z*@_m#kMs$2U8dT3UnOC5r)vFM~``QCt+iMc~hkgLG zA~d6e<4PMz?q>(8^4gSTpt#POyIe%+qJm)T42v4=ZW->lTbi;rnQcRdglZQULvM+` zNyA1Fit7~4J3O=OFZ{e?3J6kD+4L-wPJQtvmAb>}WKG5^RUxj<#=_3;ALWt5j2GbK z2yzFQC!wXdopzqVtBW&|9(hf8d;mK3oVoOd*I);^NCKR&cy9?pH}#goFSJAZ#(^jk z#$JQ%L2`N^df;P|IsAjWsKw4fkWX|3`A@+=Il>E*2lH)E)AkF@V{lNJ^V!Wws$6fuwW`opLz1(_B`VdU0SR6iv*u6sXi?W<7gS5Ob*nJUf8!sa2XO!_K zZICn`YP;RTxsK8d74NY6nPYa06b`iqxbJ0fCld@$^-wh`PEHTC2f3FqpqB~26RY*z zzFGvlrWx+2BJQh|0iMM1IOJ{AP&mcn0oexbnYEJpA9;>c^J7E1Wh3k;_du4?h7U3}+#nAzN957+U0~bNgdBn{v z?ZAWZ6%QF{hq~WqW!jo_I~&$0CmTSmHPUXY>NenSf}|%|0kU-@=Gikkq)A=#&XXCQ zMJ&9T$)xy!Kw9*zh!xi;J6WyQzfJf$WEjXFz<+QwW@eLT^yg#rE3sR+evs3nA)Or> z1=)W|j2s^Y`Sw_>gpIb_xzpI*cJ%g!gZ*cLG~Ikh=h9mJ=H!-sDln+}ln%laMvid; zzwl7kt<1KSdp>h$YW&4h#$XHYiwlJ@7};+bpdCW>%b8x|Z*mY_QhgvWRStCXMoC1v z9pHY9y#)1q8r-r|($Nd;;-q`J9q%q-Kt1U{*d3*OBE{);jC&qwVDNBAuO5R}iK~3K zv7GvHXk1`@d{y%cny6Erdd?K_8p?`O%1`M;Ef!e!R65zs3v|0*W0bbqp^VSg#JIm= zpSLoElChWpeV9bYXz678KQk_0fj+uDy**>L-rqs{kA6_E&@Npiy#s1hgfd=Yo7?I zD`Uo^-x6@QKLKeA5zqCZl#j=IpsV7lN%B7f5GaQj^Cl-I$o_-(?~ItNK7fLL0+`%c z7THSu6RnfuvDLcH6t6;KB=smfJNW{ud^rIE_46@I6pOc`qTP?PehH?2cy%&dUDSP4npD}4q#ss#( zw0+m(?wW8W~Jt^dx%gH+OF)Zo%gS{oYfXI7Tf=iIZLZ1H)k1 z>|=$q@^QW_?hqJ=910kxGsLOD&iML?d339Jk}yP$PsRl3$(lFg86wTm7z89Z}uQ+DdNH8`1=B4+^+9_C6y%?>LWX%n11l!qp^7Rxv1pPF7KD{6i zK7Pf4G17M`id(@P(0@np;AJrhwkiMQvcLpqz-FSJa-u?E{@fB68f=(K1fxk-B{DlR z6>Kwswd{$TKQ|t9{W745lXe4(JXwxdcq=0!EUP%rF)<29dKt4JFx3&63*@C~c1QIq zth@1Bz8b*`Rz+mMnXNFZAU6Z5isG!Yxm7n-wer!|(l-d@`3@qMZ!i%(EPX?W=u_z% zN<=qG-*rUvpY#nQ+C?;+=xc_KAi9IJkwl}I-zcDRA3Y^~qe=XRXbe#Y2B#CXBW)~^ zn`j&n-6MVDiRcvRn?SULw24IYhxAP%q7$TVGXK!=(Km&No{qk$M09QRO)Dp)Q=@M> z5xp3F*Aum8)-#Cc!04OFKZ{ArAZkUFNpylKvWTWJmsv!U7@AGAnJ9;dZj8QMqFzL^ ziDt*tDX-(3L)eCi=MvG0(U(U=??s=FXeVj&i0HWJ%O@H~R6x{+@d}9^CMqKOo$V|p z`j7GE6VYqYS3q|cap$Wd`iAIkBD&l8s)?RpJRu5V ze)ka3zs`3rQ6t*a`|cxrk?4LRI@b9%63t^an~1(4Z8H)5=zLptjT8i1R&8L>D;U6GXe1 z;gdwIiFOdt_06}Fi0*E_UHmhYwB1DXZ}aUTqGOxyDWY3gTKQf=Iae=d>sG7-Jfe6JAE4b8Wos9P-O z-vPom8Szyj7ylgOpJy5IHKOiBuM@q@Y~CP>AbOK%5YbyicQTi^iKdhG4$)hry-V~E zY3~sgGr#wN%6%R9{Q>{{#E2gf-9>bW=pjZtOjOLoM~Loc=to5Th>j9{%FvIAUSNt( zh(0Ine?;qvJ|!w*iqD9m81Hkv76&u<3lgU@_)DUWL|+lbGUC@nmpLnrX~Y!Ai7t?K zg6Mk2J4v*N=o_LBiM}O@WQy;I!il~o+NSy64}?2N{E?^`(J7*(tin%3{fT}ix|KmYI#ouYjI5(&`-qT89`KcX>27m4;W^b*k=(k>HqVt!XN|D(H;uTDe! zDIjtYMKX>e8pI?P(OPC>6Man-Ky-j9+(c(c^APoBS})Nnqy-XX5(N?6LljKp0xI`~ z5Pr@=LWx>2IE*NsS%(u1C5j;0OB6}el=12ktt6^PL{B7N6wx7~`b19=MHA7{$QMJ@ zfV5bmeVYHp5o*+cD1en|Nc1fyS3J=MCTT=Ow;^9+qJ2b7h~gNUKorKdClUn`HPwju zB@x|9)QrexislW;|6U=n1&JF;Y)SMl3vNa9D`~BXS~Ff7q9_*Jmgruhc0|(|+Meh( zq7FncOq)#9kCjOw8bVqs(PxZT-jOho!JUY{U~p%m#~Iv(s4h`gqNzmPi2i20?nJ?? zLJy+(4DCrYjHnmUQw;4*l*bf(h#n{EOSC7B{I4Hj6B5&i?quTrL>8+xfT%gM8A$Xm z;|(H;Vd!9@=NUSLD3zf@iT)tEjwqb*h7tXbwBbbGv5XNw<-Y4l97*Ee%w`l(QzjWr zbdsTCh~8spI?*(uu|$`N#t}s`-gu$~q)i~|$3i9&^<;jNi24#uCOXR@o>H!fOfr>d z8?%{4)Rc**6CES%dZL!3%^>Q^6f=oNl9oaAJmX~&RS;znwP)xoq9mehq8Ut^Lo_0m z^Dme15QAqEH6xlsbew1|(N1QVN8};$5nV?#kLX{<%O|>xSr-uPCasWYKT#1;U#2J~ z8bR88qVfj_O9-D}a4Au9qB5c{i53uD$9M~gf>_8Rq8y^dL|urM5cOufr9@t$8;FiD zbQzI{v>S<%ne+07oPSdotOvqFRKegs8F2;C&y08z(GLt=N%SK_Zzj5rp|=oCAi9;P zF5}%sbe`yTq8EwoAgUm$B>Ee6=^{DYHW6;V2~UQHBCw1(&rX1$i^7ov4UH!z#^ zL}8@eMRYf58;BM&Z52@+qPvNb7+Ou#mPm+(Xs&k;;RR-MFHvXC(ff#8jCem$F0WCB+4e*LG&kkbtlmTrr1UF8bfyzbtfv{LwGZ@ zev0UKM%+u(o^^eiD1{N9A-aX}o+Wyh@%9l-Wax85S)@Hr^gRoHf#?p>UL=YpdWq;S zhQ3TROY^^12ospiexjQg@c_|1M6VJxV`UB!{lvtt5uIa-*NM)M_6E^jrg)QR0nuAT zxs3NV(Q4A(A?iT%E>O9zkZpR8#56{HpXfoN4~QBOeMmHpNe&UEFvVe_jSM|P^dv(+ zBJ#4TM~Nay`p?E<=AI`j4T%5~UHHCiqO(Nhe=y=X!hcEpo#-Z_ z^F%K(>pzHSuE>R?D^@w&c=P05p zMD>Y6*pO(VZkqqa5Uye3SRxub`{Iab+3agT)RjpZ676HWc%q*f+K4ER#Wg1Sk*EpL zOriv$uZa?gW-x72qT5MJis$^xA+Z^Wv`_XmCrV>+Er@!M){^L5#%o1X!o;nK8j;q9 zXgg_bi3*vb9nl%m+7tcFs&*ji#T3azgBe<$Lij3^q!OJZu_MtYqE0%LNjekFV7x9w z`9xib)-hf;qE4iBCz?Q752AmVwkOeSqFzLbp}mQI)92qlgh>qUOC-#uA5k+#Oe5+~ zT7RN{NE<-(Gtoez5llOXXc*C8q6(%MLi8isK9r~xd-Xb^;fyy7sNDAiBMv9=A|s9< z8c5nmqNiEND55)=WHixoqA^5U7@AHrhG;C&+eG7tx-ggVL@h|0K$J|{M4~-JlgbI7 zBb-b$mJz2A^}trV}k;yz7a+W2I*hS&TQ6s5dK^K~zMPN%RpzvxtT> z?JT0-H2=#cT+ZMeqLECJOLQ|M&L-+Y+8m-#(&iHFV2V7V2qGWRLdKg%l+Jkhn#Rxq zqV+_DM5l?0h{`)LNipFR66X^=!o(#+Ul5fN^Lh8mGDLqS1`$PqAjH9!FiI2D@gl}p(}_6GxR2+#~8Yj z=q}Q3CYnmxEkrwrZY8>#X>TKH%R#)IXggAr`|cpTpNT7p<}=BiM2AURMU=tBtBGDF zZ4HslY}OLBX6QPi<3#I;PBPwIM1K)&AZp2+tB5)?-rYoxmJ?PJwq}MxREOvuqQeZm zmne(qKB9g^_Y<`s+DNpHXcJKi({3g@#NxIP<*^D|iQZ(qZAAG*+cp1NMEC%SO_}6D zqRmY55YcYZ9ww?LdW7f)hCWL42GL_giA0YRy+`x}(E#TBBvBUA?jYJqw38@xc%Dg}n zPuhz_&uRJZCBhaYzD%^0=oO-dtjvBQ7ikBGqDgy|D3%!>B>I&+;5DM5jQ2WG0?`{p zUoqaBL~B{Cw}@^edK(DxAK^PB)??Q15`D}h?-AuQ^nIe&N&A54duIJ1(L~Y?5sfG9 zFwtM69U*E<^bt`x682UBQgG_sjD23=aQ4^*(LDY^ZP7*z%^?%s3yNGO}TNxTa)Q-L2Ci;am z4^eZ_%6(qKu1pe0bezFKM1K(l6InzdM7tR;l;~zwCXDD5L&J&Y5JeEZ&3KVS9T~4K zQ6)p`5q(b-Mbu5}pX(ETL}D~i3)VG;=n@mh5_uUKNAv=-Za_4ep$&;j85&Pi#n47X znG9`AG?}4Ih+ZX1AllA&iH#`#4Ir^8iRDB|L}wY?j3|heX->3>v=&4yNoz?IO4N$z zJg04IqC1#N8=}rcZHWRHuboDuwI}+56)f*Sc#c^o6P1yeLi84CsYLfMNk^iOi8>K2 zW@u-kpO~Tx(FKNfCF;h|ZbVCox)XiL&>lovN$W`ztM$*l2!lxMO>~i{57BUD-Ipkv zs2|b2L}^5$7_UFkGSUVR`G^J*-A6QtXd4S2Of-|UAw>0vh60uQVik!$ssBsEtg1Gh1o>&NSi}+8{^F-swT=K@)G%oI`eZzMX)43`uA!zHE%tctV>(w-+;LG(CN z+(dMdw3S4kl6Esuf98A((SFiyCAtDyx$ic@XBd1t(Yp-3gXm*sQ%N+5p?4B(CR#ar*pQMR*^HcN6s@swSF8Bt%a$ z>wAb+5Zy~;GxR>9nJn&pq6pG95+$&>O+*`*Vlz=VL$?qWFvZqJbwaT>lDLh;)%$)~ z2A_%YRtT*0eA(5Sd}pXz-)L2OTo?bC#4q0LRC?~cJ3xoE*I$qBKd-}h=~n4!yYNT- z^^p#{eDo*%^#Dq#^vwF`d;Qf(e?9W$zxvCiV|Lx|(s`CpCa(0{_L<3sH(`~Y3n%{5 zQF-}R>G?as6nHmUR_Pfx{aYPYpff%8+6DbJM~8*{`j7tlTIV?_=aT+XY7dP-+HQfCuC^gI1ENVk6dl#BYSz7Ct*+;sk0ovz1=ChUyKoz1z`rlwPM*viqS6YtSq`$m~D%+z07c9}*T(CJ?7ep%&Z&b zbsJ29@93D@Gk()yFR|L?o=57NPULc{^gM8XxbBNM-KHPDjniLTsFj|&>qGPx=X0fJ z{GJ^%qxHrRO1KzPNZRJ@Fl5bQl+FrKh}5qV*>iPNiq# zS55R6ms_Q0@480%i|n`3v-6-y$dzB|*>qEc4kPEN^mM;qsz%;Y>1nqoScj1@S9i-nii7TpoIfXuaT8idJ1QR>6qLvDn0jSn-W&*n4aSDL>)-JQ0b|6(iF&Tq|#Fv z+dzkr;Z%BFh%&{KIiaGK=@~MpO3&dz=8H@gOEk`_({cL(XL;NdPnK8d`LSO^9mcJ> z(j#@6m+MdN&y}9fCUnqW+@dQzx&N6jZqt>XJ>RG3FmBbT=;T!Wg-sP-jazrsU))zK zJukKFuD`gqR(gV)_RwG4*ik}$Fa5>Mz0z}WTd&FGm!)IY?K((*amTOpytveSao5L)zBE{eap%V{{bIfb>aZoh4Q1GZRrs$Z z#kqJs4gc0_{>^qTxVSH`wpV&?N1C-&FmPRs|4&<5X;1W!17Axa7rurPNKOn2{z2XP z+w8{Drwae?VN9jnPj;-cL#%apP?nji2jF#cpIz?iBztZ_S>(gl=L1*TfAZGyeZAGjN?YZn!3ehb;OU3jVW#ZZ!GxH358amo@c#{{KqynW;ND^EF94 zEB|jM9&+ew;slaQgYy5|Pv4vRkYQhw&_kwu4F#`=>Z+4rUlYJLa3k-t3q54l*MtO; zWrOnnT{?Pv|D<( z)}63Ma_>gF2`21g60r?7;JjfWxeCwLu2X{LdL!HP}HaSQxA zS6#=C0n%u*Jx=c4442S~P4+Y?+H5yRX$NDN%S52Z;HR+-StV?N>Fzqn`||b{dyG6Y9}iE7b=}s-c~ypanj=C-mUn@yzj_8TkRGK#>!i_;{RP8-)e^;6!!SYuo<34 z(3M`Z%?^`~H`_fz@z0_7vVZZCs&&3wWeW=RkVCMP(Cv1-Yk;nO7(C#M@o!9X8PPPN zzs%c?7QtYD(RMq@HBj!~4%=PIX=|&rfQBE#7qn3lz6=M@mQMJh^o1XaUHCEUTw6xr zivkvY%!1YiR`{YUg&(s*wY?F(%(B$hSor#!vMYWmA>qd?Ky3|#FSFFN2^YR7{@}+f zBW+HEFGxBhngye6r0``Hi8k)SmstSXzzbhyzH37#e2t-;hF>$awY3ty%p}%EPWUo2 zR~t#;%S=xnB@TRB3 z{7@>u55)oeP!7Nk1pxeT=f@AXeEe{)|9?1p@9-#Y=MOlyzTMTj+u#B=*ap)v*qCOj zu>pe(*p!40HekxpOi$<#+J#<~LJfovI-wk)1xO)uNazV*l8{CyP9O;o;QfrW*U0zz zz3=nhA2-_3Xfzs)q>;2M0niu^K!ZB~jp_h2oCAC&0S(}IqLCYbhHL;Ds~Z5)APqpH zGXM?C05l#0&_E18BQO9By#O@k0;F^G1M5^_K@+3}0gwd&&~O4k76kCMd?E|N6Il=d zSr7mX4*+CA0AxV`G!6ie1p$x+0g(RbC*Nf&i$81|SOp zAPWMZ-WPx@2!JdIfSh9hvLFEJTLH*|0LTFbAPWK@mlr@-5Fl9)0QHCfWI+Jr&jOGI z0Z@krKo$f*76d>R1h7&*kpi^MXD2cBS$LYdf3+Z`q2z@WmZC9y>Q! z>nUeVlIpv00e0z+fJwmj;b%Z&T*5~mvk9Y>BsTaseiwK>A+yyGQH$tC}KS3>wBFrx)#)wg)aU`}-U@Mv1N$8Y!+Kt?r%A(I*p~mtvK=58W zk@=Uq@G)^zoUD}jX8v8HPW?z?j>tgEFC1uDyiOU zs6|=wBnpC3fqy$@4YUjqC_d#gl%nNVIB#g2q`4qz&hFMqqEjK}%5GB!*9z6*Xs04W z#?PHa%7DW_y)Rkq+5yDV6v(-a5IKC(0c$MkLGYLb{WBQ<4>IMixPy2Xq%MD4jlgGjg4<`NM4e7pBP`Ek(r}sd#;4Yjif>uI<^Xz_ z*G#&4hftsUzeMdVGci5qX~lT?W2n8klrEXSL*d^k9LZ-M!H2B>0HGw~p1QNhymTzS zvCNWOEj?t}Z}iiO^RK=_vRzVV_m86;<(ouPByL3wt&B3<6z7GR`Gn7{$;u>?kW0Bw zAH^adTw0Rb@-E>#Ez0kZ7VWpZ>?^N~=#|%B#pj$wJ&ka+e|?*m;k;AU!`2`Gb=(8K z*Mj*6C#@B65|%&&9a6*iV?vykB32I2!+7gcKzt+%Hun_HDfx*PP{%Z`rXIroK&0}6 z5I&q|)d6|NX^1UjV3O>S2M)tbeQrC2OjZJe z*?eOs;h%gnTSP4W$UU>g zQ;0k?TM~uHNwYPg5cz4gEDF)Q+t!IfsEsa9t;@Pq(6fHLSx>1lkJ=*{Zk+WwTO(F94Y;RJC zTt3?Z3X#`mTR|am{A?R3M82QRK_PPgY@btzJV4uJ3Xv0N`;kKA2il4#B$of5$6?kW zm-YS104bLG%TkD(LR&ow!7qe*C?po{J5We0_2*GYZ2JtM5V?r9aTFpi(Kd@hVjp8E zg~(U5y-y*rQ?ZRgVoPAs0SbyeqvI43djgjzB=!z|pb)u_wg(g<57PFGLSoax7wukd zheS|_TuECzg~*$qMblG;6cvQ&4PV45twJm-rG9f8=7? z=1_>dOxrtxjzZfhw2(pvDMU*Iwi6Wkh|*rBkl3;NkwQNZu82ZnTkW}^qZEGeue{P- zZs;X>nI^hj!3a>qM4U z4qpfNvd!YR#^Y*fa_N;Z<@m66$h)$4QwoBz;1{{JEb{Gifzql zI-y)OrMVdaX>j3D6dzhvjZ!X|f_!5N5<3FdOwIb5G*{1Rk->=MpXxcwvQ(71s*#4W~*<8CaKZ@Yww3~rCdg}0&e#LL#cJnJXxLf*3j zbX?<#wS>~Cyr>_Z{WDgfUj5mc;4EUT@|0x?fBlZNhQLAFa0-k1sJ)aG<)x;#@5C@E zt`57Luf{6x;wnK>GB3~9G|}_;lD=w$a=5%Sjf2PtrlD*u&#U%Rt1A0s#uf+9`5FGx zuJY0@YV}u3DR<2@zq!+V(_gKj{A{NA(L2re18^(+w7bwDm`}5*wRzop&>^w3s;)YN zRHQ@PGK~ytIIHYysX{TAyK)~YJWyTj&L=;xuHbtTafMgyBB-lN5?a9RBI|XYT|>pe zF@FFTI~OW^QG=SspNM#v3^#k(Lqxn^Q!T@@A6XBMRLT7KTHx0aK{r+*=* ztj%f{zV&bGa#bIjKYS?9`^UPH|F{LMtKwtpA!j`VVTB!H^9oO_$xc?ul9iZVe)$Bf zhI{}c!|i1%Z_o@Akikz;+oJ70Y^H|txPKuQZw}XR36Fb*^JH=qh#30}HGXl1+P)a> z!s$D-Vx=Y1mrTLe^)T;a6-Axl>@`6?d54NKNB@P>cWx#Mo!UYT!Lh+EPFP?@xG{hA zBef$>X{m-N56$#N-swYmn~iEPUzx`=|55PEj-h8lZudM`-I1*Ft!e_)H}9ESeHK|! zRX&E%CRZZ+`w*v@t+A-paN0J`k4V7DlB3lU#?n{J<5&5xXtf33-CixByoTKdbWgmK zkJ?O0tHiTAsMYxeA9c1RQ*v1Cuv(o82P0u8mEBQJy$?6r_aYd<7*%b?=Ppuv^D>&c zoX=Sd+%-)#4Wq#l7{(l3B_qgU>Ii2G!W@4}XSEflIX$s;&>FHgSP!3f(bBkyKHNR+%Rr(ZZ>&A~3Oc zrGnpwuvtxKXQ2*9%EZIG6X)60B+Psy!xm~;nQBkCsF8bq?y_KM0%aLu*-305*(G?= zHM^*TaE}iX*Wj_!(ebnmK^O6$3&<|X+`jS1?Pz6wv#VMMCv3W`XRgryBsm5vuPYP2fDe+bKw#Hbr zxD%$%R;pH!-Ok6U=&JIoNVD%n>8ta}8`N-16`t8dt%@Tkfy%LTlbk0r)z6i*eHyy; zMIvd6SHdHUv@mW>#{_haOl^NDwMXX!F@@3jOA@k2r_l|TjU6jI6_xX5F)^qN$LTEY zVxB}XX9nit`2~|trY&;PmgxMxCdS`|gJy4=oWA$w6w(QtLW-*~mYW`&zI&Nd4i5-ZMPEj^PD438_L-U1(=7_AE8v0mvSgzGRrEP*aa@Uq# zNgx;3Fn;nH6xN2=;sm-IR$a*g-B>k`59_GLC?icVhk1yZo4`@lTIeXG=+se=RCKN% zxHvmg@DcXYLSUU@HIXJw%ZgawIAqLXi26o`Z4h-D=WaIK?+rW>n)zyRbx4b}njf3E`^a zRADs^s~9ppbyM@I$sR6ho*Kh1)jc{8QMOO&Iq9JNmer*r) z=hfy>?_p+F|n5l;$lEkx1+bZ=yYsX4*b*X&TLoGnp zF{Kf89o1#sgTUaWdcq@ot-7=S0D;+mP=AJT?)!C0Nq(m%`mY>HZMKotd{{axA(K!p zYXo0WHI)U{Su1bykhWSIeqbMt&RS|pb7z}67(IxPWOw32Ce}h2f{| zdRtD5@Ji=IvqyMt?O}P15~e8a;aHK;ZF+&eeY`2a8&ZJ&h(nWH+DQ$wjP}TXgv>uD z2!nn|8?`OZw5ZX_M`q&nuEcOJ!uc}`M&lDcsxP)q+(lUZGK=R5W)+uA7T>s72nFo+ zK_`38BQ@GSDS!lk9eH~GD2`A-j-YT>`)%1b(!K-TiQGL$sWs6_;3ClsH=({`(sad4-=<$Q>45TO*MYLaYrE%(4X$Tw5=@=hrngeM?? zdm)q47}(95!55Tf6z}As5pUS5mWF@fPHuN6_h^hLh){t)#k%^yow6O$P7AId z6e>U;i0P_%%da2L91ZEth(vN=I0=o6R;MWs%_70YcPXPViMq!KesBzm0k57SM7IpD z9y)=4L76+v5}brcUkR+URx(JWHe#;_yJ!nLf<8Z%tvBPeEa)1Yjm4fTs_vQ-VX%Et6Vo7n z#L#++0Z8jDNbcDbAhjs+93h0W$aqdg>Sl7Y!QZZ)b&2;`cLgAWO!w2)}0B)ImIB%v)k zWoNSNnJ`1@rffI!--7%}?furPp}bvxsO)Gmf3jY!z|{fhhfnZ@1JL(8{}9tJADfJI z&W1E>`l8#}XLHk4Yl+cs^GBGnCf1aiO{gg~3$Ey?VtJ2^h^!1GDYXJ1DfI**JsKBe z5@p%wT^6|0R2JH7REE}+WjUat!^dsvL1al$%AlH3s{?9EtqzKXdG#3zxhK}7{NV=1 zVNzJC0ERF_WbRTRl88+EO0-jftz?s??M&sond#*$wKJbKT+QK=Td6&GixHSp4s8wQ z+DL@NDqgQPaMI&y$queGPkP<#;P|l-(6etg_DiEAR@g8Oczhjg;1>u1R@PVJ$^ld?cu9i_S!I+{u+jrL-dxwXuJipES_uU-w8UxBA| zSaCab!C18yf4maC<#tn&EpACH%lWWzSXtS&3Zn)bL6m<6MK1jMD6Ydiq@mWorV?63 z%1pGA`?a|kM%z^e=I5DcCx6$LMwwYfjpK#0B+c(tuqwF7E~C%K=xvuJsPUHW{MIaJ ztP5{4-&sB2claT^%Ka4IQAUXB=|JHWTs2GDbr$EEM{zED6(?I-u50@r28g`S0BDuu zlQrr9%R9u-)bg@AQp+I6Krjz7Z>mEBK~2jiZV`Cue3jmgpkz)JWF@Yyvkxd*9fiN-|kyCn;*1p{NaGqK!cK9(Scub6V4Z5}EY(CWS|~?NaiAg_E}s_S z8~~2|a7P_zNa|T`#WzcW^i3G;TI7?G2e-Nq$F2G*eMBk3Q0Z@Sf?a7y_;4t zHeI)tP~uZ$d(8O-ja-ZpaVc_?D2>)m*6({0+xHnMa=>buA_uJG6xj~<-vo~)K+=HK zD1}=xV6`dKBno)sDp(c>g#+FH7MzYVtI#Csi)gVX5y)5cWxjm;_qYdOjhVwrcMi^# ziL%OjW)5$=bMWZPAt{woi2~KnR=GrhHjV?|soSBqR+K_f%yfFErXB9|FU=fho$}9+lq^E z(&|b3t9;uEhxa-Q7W*@FmCr_Jt87qD>bpWb*7n0UKzD8H@h{>L{rLu{tutOVq0#R` zId~rjKa$ba!?AX=s65sehi-(Q(U~9F>h3NY&=b`L5^a3Xt$e5w|FNF<&DF2jn7!17U!|Mn9c|PhI=J8N=_eoa5C5R=YOoa zwnYw5N7;sNe}bvz{ra*_uoc-0qpFZVEXDjO^ZG49;l>NGDp`Pm-7C8pKN355fVOvQR6>OCC`7@y?61IDY2g#4yrr(y2V;)9)AcCC6;KV z_~JwASbpgsHqd@uqJ=BhJ-NNM6feqLYrx}9p^02>K<}f}<>wA!YbD@Qbt8MFq1f8Q zJ`-(i(wkRGctf7ITubL?r)a+X+y$+=1y@gBQ)?`{tLm0uzVLH3o7*pHm6h5Jh15#9 zhWyDztuCBy7a4AZrWBtdMFKznh1!VUzNA%DI=fS#c@^XRE^9QiawTi;N~R<<=V?++HiV1Oj&4({j?#(9<*GE;T>*RL;1OXAj3R&7PDmm z;;(5XlpUrxs~hrZ*YL8}?qljm%LXZL?{Bpz<${~wi*L1Rn76t_J>wEprfAGR{7wr| z{&uH$@tsxWf+2F0?*;2>+voGNkn}#u%)~kkD z-X>P*{L8jlE6h`gkFux{KhhE7$nthtAbRZzP|luWDs*Z!u-WuYRM}Q?@noG6!T% z=D?M6YO*j9^lf+#5L-lLcy4JeRjJ)r8u9JYS_37yu{8h0#=`uS1ObzrWgJLWl*x1M zT0LGDESBHce7VaOh8I6xezU7rV;(Y1OXJx=T5YAL$-f&q^dPObGP|*C7-Jjrfx%h@ zWtJH~y|L_Bs)eAHZpFg^YmyO8+@oxp1jBR%X}$_{mYMktlZTTyWj0>?(|O4EFg|3ubT-89PPWWGn zPL+y2gBviEo@S2SaM5{?mdzJW)k;`qo5H2?Kc{L{m02du^i-+r{cqyM$*n|FZP``T z>e9F13w?tu5RpU3)ZRt%d)829U?8I~Vi z(v+W})lhDk(%gW=)LN>~(gOJX8Co&L+Qc-HRNiu?maJg=RP@o$&1|2h@+RH2Mm%wr z7Nb<~A}-Ba_c46=p;?-r5^pApYa*)*$%HM8w`--9On0(db}dQCFo~PGi9Kr!LOP2k zc#w%GZ@75~8yRi#7-9053O&F^l;v(ZPa}E9Bwywx_skMCDUC!b+1Vs*vSX*0Y?TX5 zWK+H#fsXwR9Tysj)HvY6Z+a ziw40&(N2oIUA;{`Dq3q!FAFQf(`3=M>{B!Nxhfj7;LQwE24zs1ELhN&suq|(!u`g? zB2$tnY5dWCtftO)rNQE?ki-s(O(^EY1K7{n?Iy2r5X;9OyUDk?$VGkAo2beaH~GLr zYDLRMLCzO!(3p$bvzQQ*ifI`j=$sX}SUMEq{pVnQ{s{&T$G2*GjNe7ipeo;VS+*tL zVPzkCxKGdt#ia8G-yy>UL4rO9lyU^Dz(by)8ctqU1F-<>B#ym--KQK$-1=qWAfJr% zbhpYzyHd5hiBuzGsshhc3l*(~kRF|}FQ+HrzUYF+SuCrpJn;@UHkPPZPa10J7F@4P z#oAyN>sTX=E;JF69!%$@8*3FTCuN>rx%2!&7VDqJATDwdXQzVro+Q5WAL2?)v``r8 z5v$fz0q3O4@Pd~$(IPA%e3+k>5*^r-{JFgTRp{o5Q+VUD`;w)a^CguXr_~CUFGSg# zCEegI=?5Y+XGsUj3KXxVx1#*g`P$|1Pg;t6l;%xk1-`Zd(hidHbZyE%U!m25C6FkV zz6694mEKreqXBBiN-YxRDx?Q>@G86=KSxsAy{OShd%{qigdJCFwcsZRwwt{Og_)58$3^|!`*7?YN$NlTOMP%Hy5Fc~vZsK|W!Irs zk8CFU>ab?A({+}QeE{M{ZsH*yfVjR%T=ym7_UjRu=O#Y29(CHoB<|`a7NfxDAA<8V zH*w_+7&4}q#1q}bw;rLPgnXoxQ$BPPPxwenQP!EnYdnalP6lk$qLmYF;!_*7>dG;b z_;WWgG~GeD>!$PHj48lxCf(0&I-%oVH^UPNZtl`r>K1q+0nMe>e47icS$gxt0Ii18 znSn)#ek5Jgf$~a2zPT0Vo%AV$(xSQSC#!DLT5zSbmP~UIC9S!%!ROnwl1hIwvyRPq z&+S@*l5b|#OJ=6@Y%Wc(@eT|rv)#mNcW8;qER%TpOT;ri#vr=YO?>BL45FJ%;tekm zpWTTW!+AF`w#%z2XH4RgZeq{Q6GaeXL}L-{8Y3>q#wWh{z*22#ttqdz2mSfd7+G|@ zfPX6%FZ>i-$EP-b?a|89RmY{ZbRSz}2Jh`a<15dL;sMG^I!x5-@SuH~$}8^GLY0;o z{OmrgJGR@aMJhQNe9&GL)APfH*p?a8jr0$n;~Seda^&ysq1EG$Zeh(`<87-@wLHq;9pQi~J}qPu zc%_BxIG$xltE~G2#=%O0Sg}3Ak~1_^-lQ$-rWFonPOxg_wjZ$q-pVsU7{BqO8lbc^ zQ#EfP8^@^ISX&1bu(SzRpE=g5$rc)s?SJ+OyuYn|{N->OXGUa(C3` z$|IBZ4{zGizvI1}C_bzfdQYf%!S8BAC9HERwC{az?O~F3^(KAo0p4Mp<{~}wKuuMqn4}XWsnQ!;QXZ=rs2tJkoz-9K z54AcL+nr_D^oN?JY;VaIW}#J?9Gs-9|AgKz2~vz&FqAM};vwq&8#BjqFVSCp2(>?U zv2O4PTK~(W{nLZ?k=k2{&XgTC)HwSuxWD)wC>0Hw)_uY$n4&-m&vF!+&E&dQGhwos z_#cKh*&$Q*+ceGmE z$2K&R7o}qoHX@Tg^Q&CUHkPv9Pk-a^*L_LFHguC(G9OW28yf$nMA^G;olfuC(gCZCsJL?qZ|0cE$@@juJbgi)Lmanvf-E-VCf{2 zyy{A#_+x+8!|WlWsJ!2W*v?*crZks1K3Ei4oF&cWXCKVR76^XI+$>qLN7wWiUM5Rx zro5lUTYalnVdgr-c0tFFXJIJ9Ixv;%cNJ@KmrNl+-c-}#E#FA_&bj1sQb*~S4L){L zzo~0AEq_VsKVPB_>d3WWzr+@ZKC&y%mrj%f>W9<41B$)%j2` zMFF{|;D@E)mV<(?(|$0$qzN^BqN+4$E$v6F73^=0Sp!xnO{Ply)?`T8d|U>6puE=H zvQ%q|w}3BXz<=uDBC~Xrd3S0pMcvW@qE2&BTU%;nEmH(FUvL9+Vj-xL_*zS>B7Nv0 zu9b;mt#h+pN$Hs!;9WQU(rUEe(_1{ z+Bb94{&^Cg)1QZt$iZcMk7wo_EvUJf|iqXH43Y-n2*0V{zo6n>OZawUSa~ z(%$o?efqUpPKn5NsjS~O*efi~*9~yWL0Q+j za~OOD?#*g9`3e`g=vFeX;suN^-Q=6D;)4vdd8hn`UF4pY3HyR&V#5&)&S{sQNxP)) z!j>4-N9FC!F|OAeWCS=4ozn^}lbmC78KR1(zw-1~ zk^U;vUsd|6Mt_O)SA+g)(qC=-d5__^Qq;d){-C^(`F&zL4jn!aN5Y6v`~Miu{oUhv zN)E5|jh3N=<&e|qS}#WFM0+hN-rIqI#C#2W0F z9BFxdbGT9h%bX)kqG2K{d>WV|TkG`_*g1IDO`KH{i{{)UUh)!g-6;4>2i?TWqcHK` zXA(Qy#2A)(D1~mipQ5#z%5{_Onw!qk6d*knT4^JqUGrMJ@=JU2`1-#zoI%k^E&E4p zqJ*`Tg$`{i3q7@*5$WgpLac6ES^5fX`SHhUO{JDeU8Ak^?yK`D)8Phhf2dZ%)-K+! z=;}@o@f4r(butsY`acr<`xGCJPIM>e`!D7^aVOaK3<*}63Eul3 z3D!PWlaco{N*4(h7Uxv~eWPvKVgWng?W6tep;Z z(P4^DxhezN%bq|~z*0B4Pc=Byi`?Y%y~zu{z{dYxH+fohIH}mjm1Sby#KP11)=fM< z5u#ji66=`cdx=7e<;rt6`GF)XxMFYDsjq)r2hmojg%&!yM&pmn@o&n&NiaFU9H*u%BXp9?8;t$=#)H#Z3$L>Naz5v4{CibKPr!6G&b1_;k z%Wa;!9IJg}V$m0WZ?d`B;r|>TA9lcC=9;xm`bCN6{o=Id?VKZ{@hal|=q~_&FOPU_ z{@=$q8sbLvZ%z89$Z9yHwfk!g zvA4740~l+CSEX$~>yJ&1))e1VY49q4Z2;^EGj)*Qo6{m%yl(ocH0zo+EyPmbqMTzx z+a4?_ZQhjq2ZD03i}LV5P%e;^bG<2-4+7;L7v;l2pxh}bw|i5b8;tFXt1imwL$D2a zNm62N=_zN4p(xS6F3RCUQKH9^67xz=%A5jdGv+mE?kN061t5*)!#10}2~L07?4f{} z!_d2>xyf%1gS6Q3car1PA5ZfA!?CiP?kve@hExW)e}ZLE|t(?BY)H**N6V(UpXcJSfLA%40_d3}`FIYk|rH zcY;61v5ZzTd14j3 z8!_TE*5#u*$x86WA`#vZQX)Ia4m}Ld^rlIufUf=o41^?q2w9!o$rLGxIKruYCn-r2 zuC-KhOm3|^i4G;i+N#xSt=+o_Bh1WunVA=u9|6#i6o^57#;StTWCOE;4By%p0LpafH zupa`fv)#N)#qxZ?jZQBsRsd1No|0S8QPvJi@-;CE?0(N@@bZGXx+ISK9KEDJ-*F92he1I0@mg1D`uNC8D<0cBuXleOUF_~z zYPcD|Auq-!d;t%ky5v&zzg${;2{payPP6VysHvSK&-Nl0mOc3x#-i8VL{b{$`Nt2ut4ax+%!&&%q`~(E@BX6sIjY^oD@v56hpNjoyxSlgKUKo2`#Cn> z!?HP2A1Mn_wgp0z#K)SS>3Ycs-x?_P^+s9KxzE>5F9!s%5eAD%j{BLXlqHR z?WOdH-B0xxi*6oQ!;5~>qj=6ebg>J0++x&`P0@!E>5CvemcO`l`n04z zR-p5$0o^}Z&k*PxrSy?*bcYzdJ;`x@q+W_2*kgq7*irbVX<`}J&BIu|8O7b|;fyO7 z#ljtkOCxmfV=cmQrL4@`kx@>cA^1ZG8R%G1pDZv}D?wThJ{26RtAI0=k0j=I%QHVm zOoE;&s3EPOK2jICe&;aCb5Q#^Y9#74MG|mJa4b#IyA#WX_4HDX;AB18!s8>9ct+tEZDvg%FnE$w?bIxeODdb9}y1ZjoSIa z0rnpd{Gq=75y80)^$!WwYOLP^f_eo8x)PWe{@p4_{dJn&n9!`P zM2GWL3C!Qoxv9R8(5nukjN>!(I7g-CdM#iaJu{#^oOCI^SHMY^p}bj3l;)^3sCQcG zhDA9V;aHbR7JZbjoCOAhju^rGTy+*H^X$_~pHD>m-Bo%tzfo6b{BS$`WhXLxE|(3d z(%R@Lg3W|%{VfqN+Cm^o)4dAPtWMLJ18MqD7WXGRvnco+<{=mi=|IvR<$1s01F{Jt zbe*66(kRBa)?mzW{Z+k#;F;V}N7n+L$fYV@P?K5t=470QAvpMV*6WMN)rXPcsV@yQ zsG8_gMC76_FGZGd1ayP>BFCVakVcSqJ!S++^3~nRbUcOUt0|+)#~_nnnAr0rhQ;}d zS}f49DHo=Ul#cs(sBmI|t^fxk*ta+5utFvfJhBfw0C1-l(1) z&kxsO6&zdo>N$jRyy&NI6@hI7^v^|L)If>hxfzlgpZ3&eL5@L#_0EFe*bx1F5g1sY z*RkL%Q;{LgGHr>l$gtyZWQYgSxC0s=W>MaVa6A~PCs-^uaBm#FdS>ALR~F9NgLgVWFD^ zxWa`Zgl;y?)(2XY;}MR?xn$c2teZ#u5CY{FP$eH11{v*u^m&vD_FbMAq+_r=){F%> zdM+lpK_prN%45jL)aI<1=SuT1`Fd6Z|iq) zysW6wcJH7ozc0n!|BfDFQE-g}nm|SVd=9!+|M&C;gmPpq*S`~S&gv`9@6Cn5=C0H+ z&VvAL`>F_xT7&K!EYTB`<_8b!0l0BO59WcH%-2zUt^Tgyf*dOI@8)65Gd_?xaO6OzQH;$t0t%6+O4QwX39 z$K;**dx9LJXgF{6DaPJ&3o&A}+pQs!4iu#QdNQNHO8>kS=Qq&xg? zqOSuCE7SuBmc6Bqu+VYLm{&*hUEk}!0lDf2>Ll=%_mBFNmmGr9KzF&VFZ>_qxS#Y- z{s%hvXZ`fc=zw%OKel*Zn#0oTRlh6Yyw)%J;+N?l%ky6#%YX5_&TslMPxO>KdLh%~Wq9iE`dM-2be2^dIGv@4)20FFsA&K?XBu&I$TR?*FbyOfFO4TUTN+Pv zurvUjDh(tZDUByOPa02jmNcH|AZY+PMH)ytLK;tWel&o%=L3+Ajz%P%8;z$oB@LYz zjVC%T8gX=1GyokG4I~{B4L~PE14+k2{R|p9_Zd%g=rhvOiO+bVhUIZG3#I%gT;NN2?1Jm*QohE8(^prf1t=p5&)KyipOn9>Q( zK+^HeSs~)=W^ki}n*r$5X2j8n%~?zw*Np7xtY)O6gPOtRGXfTIL^F_d&j%>!aAqLs zWadc_iq2)u@)L(L14}0|XB8Lse4uD_6f?4*bC{8k4q*lfoxq&sD{f2$Q#yM&D?%K+ zjO^*uWjxW5%b@&$fS)*QIV)6LUCIC$Nf$=S{+*;R>Is*v?S(!qLR=P zy^Dz(+Pt3VtxI4Khm3rc!-)crKY>&cjejW3F%t+EATFUByWsf^cClGjtR*HfC;Q&X>}=3Y-N@HEMt zeWq7rXRoLJUQeUFo~C&{P4{}5;rTRbPC&mwLwofcIkfl4;raM(ZvK)vj;(*{-&;Z| zN+Yc}M;n1vyg~U(_zsPoR%S);(0|~!p5^mY*2kX)1Ty7U#^da|)sOUsbS+O=EBl%* z<9YmC-$xe)j`Cx5l;lY6XJNbO!kw`S%b;s^!VT7pF4vi?1CK*%BYjv$Wog9Hu57C^ z7&p89tM^v=MJ#)&H=zr2rajev45U%QnctjpbP8q|ulyW7#$O7Hr7Qo^pX!YR>FNO& z6}}Ys9qvNk$9i4mN+hq%*bTf8QQ*UJEpPHIeyoeKBa+{Iq_25&oPvPCV zM=Wd*udT2&rD+6@@MSm{!UtzC{A*(06+r|z(CFdSQCS;6ChQ^^IZX~@g%xa0FfAg2+;TgK;sXk zkWX}p0G??40if{*K=!$27c0geAZh#opz8tvX#4@7@drS5x?=pn6OBIr%U~Rj0$3Mp z(&hxRhQ4VNUU{X>NJ!V1^FWs3`Ft&q#d$ufK`hDhIW>qScs`E_VpTk!HwSsAzZ}FW zc*e6}@8^_YR>?Dd&`Zy&f?2X>{CB~utmm^4;+=n^5O4WLg?Q(;K7=JFyUPzn%wahL z3i1aH7?QtaPQb|g;e!)g&o(z9_Yd_}L`Ep96X1>qBOY`U&hds&RyNbb=Zhg96+k0C zfE>}ph>s__*$aS1d;l8p0p!>wMtosD%ZjmdTHDSm#!idX&%`jcpD9?bM4*f#s5Db8 zSnn8|!D9KG7|hQa$FNxjUCemAB5OhSvm8!iF+89SV?4My=1R>fv3!+QQ#My)sf?CF z?$u_$S!to-T78xvmLrUY>?mga)x%gxel-n?#ffdKR>$Lp>V7qXG?ZOMT3n$nvd|`?U+_*DictyKsH& z;@T9u@O$mT?X}z9oCG=T;+_<{aC+^+=d}x$*DgF>yKs2z!r!$Ech@ewUAu60?ZVfE z5U5?d@O16M(Y3?RB@B7FcH!jOg^z0&F0Ng8xOOrs$F=h zb~t*gJF$*h|3tWc^LX1XtT+$p%%UY?Ay4kiYRK>sKCm;Zs2xoJVSyyv(wT*5@l}Ax zAw-#=K}&3Q)DXIGLbm7GeK6YjcVXd@>NQ@m3oFY94SC6IyMmgyVYl8l`i$36` zm{a^-S8zH7>9psyKzcz6@C586;xaGWmBsUzeqfykT5WTAkVQ(eMO|4biHPF6yRu{% zE=^3UaJ4UzBzHrRCz23HWs(8iuvySOA5qJ?;TW-H`B*nO){T|o=PC3rg&y>$gxy(L zJ*_?xhE3qzyR*9TA#wu0-xaIU{Ta^Z`m{UKwHehw^SWeS*qy~l#5le@pT#XRyr?Gf z)E=yY7N3L^Z_5-@dax*6Al@6#*Y;qE@?qt8eys=mp)3$z=iB(PSX@O0vTPK(;oQ6_eQge10z$M~7r;fhJQyeP}!{ z%7sOxRYg*~aYnrA=0OuaJt34}(kBm0W>iFcvSfm5Ap#_#Hs6uQ>S}4#5jj=n>(dL| z3d!=Y5!#ED=Oyx-j7IkYBaKwhj2Kmu;THU}UNG6h13S#mxx6Mi*j0JE}7ddi9g*RoxnP> zgBcRxI{=k)o_If!h^7Nz7{8Dq2TQ~ZqR6G53}4t%i-72n`t&Y9%r&+3#{d?tkHrx; zw#v?$w6RcqEKV1)l{YbMY%Gd)$Oqb3LxLM^m_z^;*;svo)dmVjgpU}=#3uNrfvk=u zu7O(5#|~!Zezw@`jva)$6j9hZEkL(K+vBv=9ZDO=1%p@<8M}>79tL?&4r1jg;?F^> zDZ!M%$PsY#V3sZk_e(a|w+`0@-$N7lg2m{PN)2JBppj5y|!&pm#sl!<^?W~R(&Qb_&AI@6pw31_c zY*xq2;pmkUM=)QCZZLwiBe-A$Ypw}0g%2AI)jb%&5+y>FhR$O^~O`BTM|+tQ zSQ~;{Ca_FR+;BEfO4oB1q>G-&k|;KNB8o3!v9M3dJv|e#Rco*~!#RfFBGZYeTS0`E z+lVN85=)bav3$n_R$Xq+{{Dp#U=|jfZ%$&ZD2If}td*pFldqWte}CmC`1U8^5gTSpc#qe^G%7TuZ3Gc7rm{f<2fxW)mjv%if){VHMikL_8nej=yrfGRem0G2mRN0)h*Hzh z6XELjdead>j-c&h8L?zKj8q_YOT>@USsZPj>NC)S>5_Qc0U6P2239Sw-8pRrN+&Lq z`%Fea^Jqrn^qk{iTHpj^9f9WiuemiZoWzLzww?sOdNcP&--e55pi!e z>ntOl$cRdBA?@TjESh3h&SAA^&+OtHR61a(x$HGfT*asJxFxJ2&t9pAI$N;7`|`NC z@Wd|8MYo3pLGxIKOb{$1hRtL3C}PVzs9dB7r--T?dz{D@@A6P=+xf735gRR&ZJiH? zKp=qFr3t>xwLp2#OXd!xFM66i| z(-9FhWyG_EtR_VyFJf(EL_HaS4yOr4+(ZPy>Wi_&1vq=L#GhHrTGMl>B^V_H$5xZ1 z6FYthD}`C|yGvLqz_&|SQ-Ii|EE&6i9hS02V!~|eZc=Yv$`T|d*TkSf`0?jUSupnW zf|jv5y14ML-z2`x24#=wz~Y(Nj|}7Uma#ODonOW>Bv}DYw(o_ZsupJvw9(gwqf!B< zbJif1=4G};Si9)2_1EkpaUGiN*U3QDf0HIY7{G3Em;wf@7X;C}mU(M^ER*8mhM<|ir57d6@rY>aks#Fr-^2qy)&oDz1K-pG-^>F)!~;LniAVmn2_6v>oe{u~ z^uUkuz-M^iTX^7ydEke8;9v8=cl5wdM%ZxH{S=3?oaI@R{)s$)1?xxf%nH`WPp&Co zH69BK4Oe1?ULY0{V&Ql`x?Zj{AoNLZeT zufj*IVV&rLx3gSF2$v3Y>W`No{WF}TQzNCcoCo?M;?vucGtz#j6 zat(xHk5i64f(7CfA?VM{hrjUw^CONkK41gsqJTd?UZ z_=-Go1BwJVY6I)$A5W9=s+6wkcz%5YTq?v=`H1zW>ou2tgn9$CY-D}? zKulBxb!noeKWJvy`##~4?}|+rzmfOHo7f0tT_s*&GaF9uz0GV;@H(2kHllR&hjd93 zd>Zm<`xJkkyM=`i-H0u099^vOz=VUhvf+MmWr)%pB5k`3{#*YF z{L^jNCIO7w&T{?wR{(VxN>YZ;0U}T!$`OM8`06XDr?cC!P~36{3k?#n6)BefX7cU9 zI1did8t#u`266pl2OFcL)#o)nW)lrsaYB99n8v640&#FP7*=(5vWP&j6cvirX`?@G z`5U=7V^uzPCyVqqSF1pRC954f*_a@KiKImIHVh;I>uc(|4hq$oaip z>8N6K}eY4fUfXHLJZnFjN*8qbA7C^6Xq663Y{W!V6|VUz#vkm*l;f`htb~ZSy+z`@#r;2n zxFUY&K^93Y><8IAjn?(%ge^M+cP04{8)48hSdN-TRhz~Ox?opw^&zY!1pfi9L7%b+ zKe-f0Tyadxr)-!+jD!$#!uT2${*nK4)`XIZD}oJP{4jcg%<{baVK$23ioc1j<9f|d;JKTrr=_T=SNUhT401=vt4Dy9TQ0cYr9Ka?otT{ z6ZyE$*bHSxIqvg0n_|%VBa$tfCe20&g)5r_x!M=ek9LaoniEF?%SnNs>5_?yX_ z`~#VDzrv(I5cWIC0*TX@ljyl;ROB~KLT12*ry#RfPEDk=iKfiB6WHMM>0;o&Pq6?= zkW2*0LfkaEG}t7_JeC$0!a`@}BRX*NqqtIj)~Vec5UM2n(a zghduXL#5Ay*_pGrOW}j_cx~{`Iwd5;CYN!Edn1Y+B6?x2gG-1$JBZkk< zVkfMSuR13{>UlOhNG|wN(k_&g-@FW6I8&D7H_l>+Y4kM;8U`&tLqAVk4FmTU72`3NSZNVuJ4c+( z$@VXzR$M~+M{36yKIj@7 z9xM?32|<6z_ZAJU;-=NQ-(nRL`Ly~L^5S-kQzmTn9UJLyE|w!5R?J10CGOcMeVvt) zalSMzVeLHoI_ql)>eACuhqt~(k9XlZMqJ#+Q~L%=1i1YMEAW@=>mn__++r36lnKECy`9kX2W<;SM%+GE_BJ^(HF)jYaAfYM@SP@1 z{D}?sH#Y>34!Z(de`0-zqWI5{5I4Ro_?eAjwE7Qg%;l4>!Uzg}Mmz2O3k&s=8wZr* zW3rDS67eq~{v``AX|sQ2(ZPcD1x3-H(-y>CHDCM+TR>h{e?^U@RpRY`gAD?n_zkuz zHy0>fJ(*4nDFt^~&0_Tmh7TP)bYwnU0Blu^SYkt(5ALwJmTEltceX^A-pE*f>k*Xs zpq(1POW$P)fns-p7>*={d^I^X;MWbwPTz$!ei6@G-@~X5c<3Ipg^KM8g%Z%8a6{MZ zXSho29`tZ+J6gno`z*ju?rIR3O3Fx=@lWr=!bB9KC`Jx-H)1{M0h@<2KLU%`y8s^* zq0!5&4-28oLR1GxPOrWV0( ztG@m=xk*FJckwy@!1{BOmpuj#+>E;9F6>9%AuGc9eG~!I3KQ3^N=Nb%OL#j30TS z7vtH_Q1QQ%<7c0-RRjy3v$sO!?hr8uCK;B@8O6`{RO<5u&oE)>^#aSzg5n~HasL^H zk1a1CMsC8=62?qF+DU>kZc(Ig1Eqd`(qH|=4HF62gQH^c{e^ZSNgBaKzk@Qu3km>CbSO>kY7>p0qjA){o zs~O!1{;nCF31;Xf0PdqSpmiZg4Y9# zcO^kQZyRWoG#0SyEgNziS&JHpL6Fd}T*a%h*HgHaD1|J@5 zWDwkMKKq0iuhMgu5TggdeIZ6CgP7VH&w#cdEnbETHIgW$P&;SURSKJVX-hNoz7(+C%VMZTG)01d~tZT!JniO|6%;+rR`cd4CAR~@< z3pdi}=9$&uMo)s42$%_As|d&dxGTcQBN!10{R0k)G;G@HhR}0KKJTU$#s7w(QAFnw zPypZ;C5%o4V@jgHfTK$qZ3uo@QZf#Sg1O*%Xq3^*AV#*mqA(?l2woIr)T1M%6QYgw zevwcPn!?uyTfQw8asURz894-d#u;xAycP$00er2DF@@mOGR7i;gUcGr z2&(Z04)w_+~|;9KnqhjZ7uC0spHagavF-$;i@j8$bwb z3az!^gSJZlPg&<3*yHv6aWis1#HdY;R<&mA+7g?H7_n+a5{cxIL_~}#KK2Zu!lU+R z?V`47?Oj``Rf^i1YVoaafA4e8y+{4N{loh?uX~a1u5r^YxW1NRTyRb{aYqwQ8%9E#BT<=A&xIn_S>cK3EU)j0>%U}Gb6 z!b&)k;V(F~eLi%P%B#F^7+)R(#>>|4lviy?Yx^TP=wyGDNcxYz8tBup36jk1hF8EL zIkf_>@T7w3Ne&$ zRKcc&9+MP00q3s94SlPrWOBG&4civ#e2Se}JLYjK z)xm}C@u%n+4Q;A(4?kAN_JLid2HP`h;G78iSq)4tv{g;^|E?z6*=u16zGv{$UphR2@kN1R@^vbfD^x0UtLhQy+1mk`bMt$raS;nVJH*-J!V3ODnr*n<`fZPuveTuukHB|MPFMrx-`PZEbOMPz{5(1n&HffhFs0DyF$a8b4LrCt5ReiX|C#!`Uc@l3~e2R zq$z+?g_6$EL=|zj1mS9gwzEMv1fV%v;A#U6ZGqzxI=cl-6Ooga*o z81!y1PE^p6EpePe+qZ;`mjF*|iCmy3jphi!{KM`Qg5wvuAw>1@S=>So=7BE;)2J0@ z0S!}HskYpZ&kf0nr$FDdLXT(&Zp{(CZjEV%eXq3&AT8Sl8AB7=aQlHaDwym%Z7~99 zm$ukrpsU+rv$UaC)ZrQc{UlVCCT$z4YSXK?Q$vwC^rui&p7eDn;xrC$o3&FdNN2Re zY(mep!)C(ECrh_y^|r@#1NPqbsuyXw4r(~*nhrSlp~XAmx(H3}h;cx#bi`(d*6M^k z9y-4hHaGO|PPqLjS=Vj-8S;eA_)G=+l;rD6wsW|?Wax}T1q~6Mv8zLmbjB_YEzt#s zBs8@PcIiLbx!1a2AkZRRF%W2QSIjJ4cQLc83eHOPI5>@cGyyw6SS&8Jc$JCA&Dl+5 zBbTDxuxmp5c0(7?3*A&4Y18h^XLrX|hkdg<_B`m+SXGT9#D^&lks(odkT5MwRnk47 z@&|j{WcOqkZn4nn>49wmZPNqW5bE~8SswbJ2U3UD3&*yEjtIwGLw6c|W3+YzhJvqD zjfqgfIjE2bL+OQ~;EY_!Z4;qNxF;f&uO}+0e0XAPngh?gkt*DWJX7+xJ?O(!(;`)S z26&B2q{`=J=&3qbP`@WYa!+hnta_v;PBBmnvX~njh5Z`_#uxG)#X|{``A2ttEdmGA zt0v@)nqn^nE!aNk-b!P^55PI7d7oa z+)W>W=hBPCU|&T;Pz>(*@PV=vqsL=tg#b58Eans1G8Xd(Mas=d_0|ZBQ6+Nw_fLq8 z{v1;hfUG~J)IWC1IjS;w^>9=@(uEGT67-^@YWir$b<}++RAs8nezl?og~unx(eFg~ zg!abK=hxaz>y3<{=X&Fg4XWa>7kfIn-QqBG=-N0OUC;+{s=A-26K#j2fq0#4zw&se zJTAR$;&C*heOx^D1nA{>73UK{e)vDz3Aon@bTP4`5>&Mecw^P~3D|$2>HA=Up&>@+ z^ikFP^jbx2^tUU&mx!GP&Rr963WIJ*#OV>uI9DGTj;yc{?0 zaBK?LVZ%B8rs0?^*cnFf#55Vf>!*(3e$I}-Y@_;lZh@-dEL~pI5Bkn3g@<8$Eqq>iQ?3AYa))^decB3ewL}A+iINh$&jgq z+i@JO$IxZtkO=g}I8}wT%y?WGpsUB@3IO$;!0jC-AQ9M$Ca5I(^4D5dwQze(#6byT z;Y4gh=wB1DiJ+Y)Vd&&E2?rMR!6dcXr&vQA&{^EnxvI2#Fa>jm2EWOwU3T4&YZAtg zu~RTU$+if&p172`xNogqk&$T*+}2OVRRnLH51gg&2ly$fa*ngXdT?d17EW#W;9MX4 zAXz(I<#d-$!Oa4E_f5e~7qmhua)8FAsv)HJQgKOxhD^mJ7rJ07_Gf$vbH^-I*R4Md z=PDS3r(qjI_fEs;p}D@qz60&?rTWxoSv{m$+)YeHmj$L_G?%|*uQJndm4w&$={R_y zC#Q3if@#4l$v#7=>|~p}b2fI9YKt%wG$b#=-VEKhhy%X27&8t#dNB?!==#NUr;Vromf*Gn z+H?taQ0Uwx_#F*>vjjtjhJK9%pzFWJRR;RtYn&TU+7tYZYNV)C76;U;N$%BUs=04? z&+zy(s{6V34fZH#$Wj%VP1n<|rfb*gq3)wK3Qw{xQ)NB={gUyPa_ydH8ICNtCoaPv zp=X!jd;zVvoWrCoXZ~tAas%(Yg4;K(;P!$mxqaA5Zoj&ca|~F8dpr0qU!`KQ>NL(# z8t2@3%Ts4~S>h4$p*Kyyf9Mn4NTMqp4TkN5* z>#RY?sBc=d1{)cAdyVRv^%#}gJ)pJmk&somxyiX!Rr2!>3yV#NO%4l7!y_#2+O-J4 zE9Q4S>#!rNz=>!b&K=Oyb=XwU8|yF}Xru42*Fooer(&|{df9&{`aeV6C!19h7cYa# zN)K|ok?U3WthzljN}}-hSnme>1d8h0KOEH_Xn%hL#t0p-0h=CrVgr86L91=VG(qQY z#I!4BgBzZf(X4=p0Iu zZ)u$amE&fiNb|O+XpU5YS}Xi3QgTv%>_ zZs^o)I5$K0Z&P2OkgWdqstaV^_sR2kWP|rR!h;;NmUhmaDHID3& z``Q0L`|+z5_J9MdPY>WvIVmIN)I{Jc5%Ww9-#%4(aiq)HkI4kE-uTOC96(ZO7CSvb!Hw(@38l$4_}Ef`w&3 zUG3wOxE()r0zZ;rygY$j3EJi)jzs9DlQ>JTQx7VwZF36eedt%GaNs~+ox*{_ys+E( zG*0>`&im#xAoTue^aO2x2Kyy+`xzWv(BePinB-bo+H^Z4%f0(E zc2j86v-rgZ-Fz0mf}lmuv5q~5+br16&*7MZR{sS%*x~%{@?S7p(AU2pcWC$XDk(eH z%2GFX@Q)k5OBKTZMpgOUT^DhdPi*9yDk<0m zBDOHJ&n4U&KyO^a*%*pGi@TwhalE4lan@xV@6hv?F|*K`zamlS(qC1#Y`O&0LxpV~ zue<9kt``-5!+X-&UQq?fC;kerbNmVtfnDP&1_7OWm1C&ia7u+8^&938dgM25_rJ#N zbFSg^4*v8SPVdmx*KuxuuDp)x3)Jrh&IQnz8@%4p8<*7>H& zpD7KmgmC?CVv3=|ZgP|hH#th(Tin~+TR67Se({#-j55q>w^ab7|7{#%8Ql}NH7s*S z)rA#v2Y<{P>t4N!z3$8%^%0g|-cju!E$_m8th?;4s?HAWP`O(5o~jK=yr)7SJMXD( zkRtb0`|P@qGoF&Bf7~`luw}E}Q-1EU`|4vj9lx(?LVO=!k49N%_yeQ}UGM<+InYNB zaGhkH&kcO2@)W0c5yZGDKB2gd_3xL4n=Vg<*o2-@gZz{FC8yzO!sLglB%W2B{ZLhd zoP3D*4PDP8RS(kqk+w!XQk7wCexxcv?y&57O4sqnstQonXR4|@@3AU`<*kpk*S*K8 zJgfpwbo6>pFeeS&$S0~I1f3Ldzk8zcV;McY@7{c(ie#Zoopzbr$E`t1K2`6bwZ>B& zCHko<2WvVDdJckxPMbs8Khtd^pQ%!?Ry|Way}E4iTa*)`;Bg(qArRvOYrVCcDfmA+ z02>8RnIphv0aV)vuvLJGxSfDhEW%@_1-gsfqiE|%(IeXT+IELZ903jx&_#&{862@d zM>uLNUE&D;;{rlCr;`Gxpb;LY1t6lA$XOz~An_cQ04`Xd`?zE+UD=4{Uj-cIkXHpz zF(W*#2`~|VC!p&UZ(<1^cNk#&x{rI({xe5-Ab<)OvBDz(Cc;w!x>WHQmf-Qi0v+)$ zYw1cxG`|vH{Qm~5#G0!vxieCD!}-EK!7V2v4j96 zEkFQon)8V@bwwlEOADZ4Mu4&cN--!e;6p6Iqap!aX;_ItRSR^IpIS>7F2cWt1zyxC z>Ik(g(PfHosUyII3?QIO2?MbNkA@cLJ{nug8N^986+pF#@NX_)7=sq0vH!mlGK5@o zonR|0VV$-X=swz6OIIPHxr2Z?9I}&u`3yP>FcG^E(4~akvE)UNa7%O_k=D{xhG>ow zKq~;m5YW#6$1;esKnF;$mM$)Yf1&{6-;aPU6ilZ54=w{O(GfnkmJ`f__(A{`62gBN z0bL|$0*tgk2N-QFT|Nl^u>y?$1OliU#QaahB3vdL!pB~!wRHU;nx_dc{%HhsUEmBX z!DE&MI)&NRav_Ah+gdI#ai;D@ljesr*{2oi_<3|g0A3Lq3iv`iVTY&N3 zM?lvF?#B{54p~3}yv`A8qGV9F9~D4#f>`0W0ICZFI4Qt{JVQX2`TdL~c>H34PV$1a zbO9imFA4CP6|NAGB0jiWw?Ieu-CDX15Y4v)T*VT=T>`pr?;eAP7U%$vt%ce@?f;Yk z&3|Ji&&8z~gBJo!$d?541Ld!k^)>KPiJw`a5fNQ{*BDE1X=Z_r5M(W9C8rQ9 z;9CYE0;q5g0a^<%5km>+I=yySf`_-GCAyE#tc4Oj-QGojS)n@tU4s{fB}9m@KnLh) zE$0=d5G{bp`QRTTfa>??`r`;OA>#??dc6cJ!K1GQx{rR=(v^H@?k~Xj4w!a11-|OrkB4v1p zu*U)&VV|{h{T`YR2-t}wfWri&5D(y(1vhZXJ-(WP?t89cH;M|ff_=P5V; zA%IHj5a6YNR}B6Z@P9K@WGC{mdGBfcN7sVi(0Fzb@0Va|61eiqf3NVQj z5MUB1EFk?@?0?9ls1TFL2LenY9}&>SaV4>YRZ3Z)=ckOdoU+{PFQ5X0$`;J{7^PwK zpHl_MP0Zl&_3FUY*|C;&bZRrGCxGhm&~*a=4H+~M(3C-tfEElw1hit%Rsah3^iJ48 zNJn<*ET9X6?gFTg4~awwh-45gfXeyc;RrC(7B9d|R3d9bI-fA8qJn5xEf1yVeqGIbU=0G6BmOtP-%A!CC?97;F%*k--)LRO(0En{q7TB`aLMX^m{~r>Gzlb>KEOfB;ciLN#_)kpNVj#CECwf%lU5pN1GG42T97+&YT5EJAP0bMHj7)waxnFV^I{9!HU1vkGG@QT6T0;tv! z0n(vhkt3$Z5;R__XU_lig|^YL_QQ? z5-BObBvOii{;X7KEMYX|EYS1gZ!O0(S0d1(4*sdk{?#miKW@USTT@qqB3^9)b$EpU z0f7t}3TVWjsQ}YQkN_$%MbMT4OwiUEcquOvHB?+o)D8rw=+x0^)p6ZH!LCg?B$Cg=zO zNwobju+c=Q_S6}}V7vu7^NH4SCUNr=0jUhW6fm8^OaU%~*#hP;m`}i~J6*tJvA8T@ zuvEY@1}g=uVz5TQS_bO{Y+$fiz!nDI3)oKckJ0ZCVn)APfEn*T0cN}h1(@+35n#r9 zOn@2hNdacKX8^oB>t?*?#KnyFf&eq#%L2@JuL>~Zy)M9v_oe`hmxg|J{3^i%cPc&+6?Lm2w>1aKtl#i1T3j5vIr1kx6H9>B6A905ke<0cN~C1(@;n5@5#b2&j%FOhCK0?c>^ z2r%RQT!0zx5CLYqG`T!FGv1K`%y7rNbur@|PcBpx?M%QDa!s*7Z|y18a#FeZO99gv z%oN}_%TfW$7_1av()w0_No1V>lgI`ECXvkoOd{LH)AdIW zb^+Ru$PeOT64@!hB(jHqenZV(UgdxVdVUUB%Q4MA5ujJ%J4f07gaz8)d&-)&{bvG= z1MtsTUg5k2dWDPDvdzB|h;EI4uCV_#3$*_YYdODj^KAilutfL2_k}!Qm&XF0FnBJ& z^zo+v6ZMq-|smU&N1k_~^D4;%rMgkf$XeNN_-7%R#0!-p91(;M@19*9CCf87L zF}ZdSfLtl+X97&BT?Lp_!vvUABLtXKqX-NR#6QvWA~-~iwM5TpZ)-VmSVD6j0f`Ly z37}$jcnlOkmFxgt2pGb^D_}T-Q5twDjnPcTi3`=$Bgg~+(d>~Tz+{#xz-0EN0F&7a z0VcCq0w^;&{^kfVsm&K)GFzkpof8&g39Ec#fu68s)^e6}^C|(W8LSnsj==^4aQ@rK zWQ({^X+HYcCct$1g8)^Z+j^J4)| z7(5s72ZO%^ykzhn0j7)pGQj?CqozkCH)mm@W)fhcW+CunL;T~5C2XRs7U(?vtmS0q z=3D~aV~|%sJ_ZH7LJBb{BEa-fT!4vMLV$_-u>cdbGy$sZcgkQ1d6u_8=UKs8PQ{6Q z{8tfDl~<@Ppaz550_rdb5D>_qp@2pVnhI#fpoM^72CXL2^BEZb^ zQUPY3R|qikyjp;n=d}Xju!Lz|FThOmrni%3=6S2Qn0ek#pmj_9^8*LjX@TCEcU#NZ z!_E5z9AI!*z!3(=1ROW}|0yA-+2yPN)9HBurkhIwOgC2qm~O5KIF2QZ{&xcO*obqJ z!5zK-^MfR4zbEbYx&4uV#|)kcc+TKY0e>-gEx`2gMt}*L4$pLO78I1Oe;I|Cs6GVv zc@iwa!()M-@@&>}{J1%%0D8;>{&@uCWl%ssK?d&|fa5<4lVajxqJAjAL@g=6L@h;t z9#wHlV+sA1vq0zRZ!M<+H&+%=g~6wj==jqSsxzr2E+%AM0VYVG028Dk0eWb~X@n(Y z(bNK+MRRL8LEPL@K*%J%{! z7UI=JC)!)u;1w{O!6*Tv3E=Oq#_Mx?$nS2-gSin~d zo(h=D;JJVW3|DE4rQH6HfE5hVr`QPe>=9PUC}1sv z%mUUk$Rc1910`T9gRB5v&TBgpKXKW?Acuh63~~wB#~`20Ko2`%m68IkGx$WnO$Mb?=>G5D8>Sq&=x3hp zvP%UE^xjd)TKbVF^if5?WA?8mzyzp4KtDtDoIPq=pd)(gTGRQH+XDo=Vo+be-wYZG zphu^WMPmUO@SF!gQvvkw6hLzUz6@FzfbnN#(o$TqGiW6s7lSqe@-PS$ke@+&0fiWJ z6i|f0X9DQ)D?0wV2r0oX-2{BhAWQ%~hK13D3n<4RQUE=Q1&=5Jl^OIBP>n$>1G@g2 z4HHL%KIZ7eV+lbLEznyk$y&C#KLPy^R$UG`$O7#@*ji2?HxCiekijqjFGpy?WVpCA zXE0I#J?Mp;Mhj@gV61?)48{v+&tRf}P7G26bQ#9KzorN=LzzZEUS^Jd(=5)#q7W7%b$fC&uN3rJzGQ9vq#%>uq;uvGxP4j#R1Cm?Tt2iQTtOGMAbyIPtEOOk9!vAoE})q*~`t3 z1RP-SM8IJN&lu40f0W4|;&Ot)p8`%Zcq!m4gVzGiGx%G;B?kW$aD_p-$?uE=_n#Sw z=tuRgvx|=fdThSda&B_7M*uz5hwYP1zSK69KgtG!sA%EnGR3xx3dL$<94-{6Uxoq1$1E0Lx2eo3EE5u5K~zkZ<8jBTrJcg)zf3ov8bA;64nw*WJ?eFDtT4hk?sJ0hTJ0B3$oh#A{S0cLDx z1emd%)4;u6&Qsb)|Nr1YZm#m4ytVW)e;y^p5AT;Q9-Y)DAvr3cC*Ccf+xQbHDJnWC zJU)uvLu5GKw^H7dzq9t?&!X`9kyt$(pX5z4e*9&Wlx!3`vQK3Vo#e4beX+QgTG#dmBi(cuaUg&$r>*xXt}N zCHVU+{MnO~T!~4s@!?4rW&ec81RB z`8E@n#Di2cf&bv{|ny=U>p?q4!#=5xMBTw@cH_T>oj-=pK8FkT0_qi6T7tg&%G>}-RBKG zRa8O{&M<|Y($n2scYTVwEgN}yzw33Uk*5mfR;00K>bot!Hh#N)tGDad-!iC)r(nka E190&Zwg3PC delta 96360 zcmZ^MbzoJ;6K?OGlPmE+97}Lba1HJhNpKG#36M*SBtVf8s5hlZNi!8FQl+Ixjg|^f zr$T|cA%%LeIu&@|w|nk|_kMl<+HKMkMzYT4@tASh`VKtD=(^P`Ym~FMP%km57%R@e^wY*Z->T4IzF3gwB zr&K~sH>JcO41t~$xOyHs!KkgJBtn8T)7X|nt^6)L}+wc})CZ@Z;kR8U+kSr@EE zvg#VuP5K{H4JC7%)m08Xj^@{{WhKi$gRJnHxvG~eZ(>D;$r6Ag8&}R+#j^ zh24>1x3&v%^UEdWX*E-_KeIw*^8q~)jqLKA1-f<(CGvjN*fmjhZBt|InK|Wpw0cYJ zZ6VIkA6l(q%&6~+wc2>f^2_JspocaeRE>2{dgtVn-Gja(_tku5xn+M{tG}IFQa(r8y^WNYJXSA!7U#*@yD-9iimm1{V~Uz8 z(OJqTPmWdNWZed|OJ|vVQH8r2vacH&hS>R)w}Wh18mPfD&mrc#advFY?aJp}Se8>- zT2MS&c8w+Poc8vTb|F?jm6IoZce6@luKRqp8+?!;`)*e4WJU{greW)ys+FusM}<3t zV9<894ry!njqyTC=2zsG$-IlIrJT7_d1UiD$l=h(-j4FbJwSS@mA(aDi`f=}qOVom zWz1YPTE3bJE*N#K3YUHz(a>{AR+v@2vX%7Bvzp1FQ_7a?ubobj248|FvJSKA*Q$=L zeA$(cN~43CNZV3Okm&jWc6sYoD_WL6gc(sWk1W8dzmSC)@zg!|WQASxBz>=Ha%Wqs zby#8h?BbHLqMX8l#o}W2;Gj^{qDl^rR;jW&N6mE=O3YF3L2#x-}Lp+)B`Z_PP$+=(XO;$B0nXk?zECy12Z?+b~l zUKyU3UsO__K6`#a9vHPxN2{eohoV#3hgf|raFwK%s)@2L3f!oNW}($ps;zvNr()&)Qz{N3r@5?qLiLf2e_~`X_b1DlZ!i>N=BuXC@Fg`?`m9I5 zvfY*&ld3^qcL(Wt69|)()x}d@QdU8hS#iLNVMIr|%X0GC=jF@s?r83z8?00*t+L|L zqBeTaY9=9P4pPlsR+{X)#|n|&yH$u>f53}@fM`UHvnq;mu93`6(y-ZLYm)q3^i;hS>qu)R==z&M9oE$w7B(5 zQgv#^f`6hh6E07GyPzm%w)u=6fYq_>Ue%a0NRIw)h0FP~=ubTxH{OA%rbYYlhrKNW zf?D%R^$k{C3WpJ5xzS70qfoi7t2m{9SIs;XMWxw!1!dCrpqfe<=oeRC%E%7-MBb7J_GT%Cd6` zXXno>%P|53D|c733Pxo@P?zjO_x^HDWlQEzcY-|SwPv|eWdBhWA6inHUz}Z$Q$Dx6 z<^g9uH#lWcJajNZ>Ub>Lt{LTc3p+zjEQbh;mmb7u}pYQMd=l}Cf;si zrqj8`R+?RrlRH;R?r^u30lP6rw;WMfTpN3O=2sLH7E~-U{k^Y;)lTlXmqQ$Dw~*tp zcCwb;ZY&(tE6a?e!rI^pr_5mzsy;;p zSjsT<5^CmJon#}r$5mer53}mC1I@ztSpft$)Rs6(@_O<~2KZNhPVZ|smsNWZPqPnd z($p#{t&mkOgRi+VO2LDeG8ih&|3l>P4Qi~bo}^Cl)swZS)ex(oc!8XM1Q}4hahG#N zu9g)qT2mxxFH{2XQ=y(nHGg9MZHdLiO?gB04x3+0Inge!dS$xgyo%Z_ABst+2eZ_N zUfXg&#Y2!bvI|SFTB4*8a_W0kz-f${U@5nY^UEvDJku<-^(5+v9*&pjRaX1(vVz%j zDzeMx6wIn{6fp?tZkYBtE(n(BMqrR$g_s71IzUO9(hq8;s^RBKtF@YmwPh~GYfUKR z+!-GfD6HBEa&Ch+&FCKxI9?_VGrV6++Lt-X_ zJ)rEw)YP)V!NuL>{6omQ-&B;Q*Z*S_3x@gE6=jFURIiN8E6FWSFIccBjVxJC?WvDc zzp5JQ)h*>$D6Nf3Ri<5D0bYu!g|$oT)6g$En&n=v{(UxJdScSYnMEUFB9=GA>nFV) zgI+U+8aU#mNrQhdOqfsO-n;qu+TtL?=EMzdO05( zQ-n6wx*erwlaTfp&4#l7h_4~1TQAx4ksTo_2}53b(8>rYhQ?BAI#3rGfS~#ueU-WUi*$ln?@%4YRma^PE5HpSB1DbQZB^Gp_8hi$$G5(Gu`r` zvxbln282-4t(Ke*twupjMb@{)3ZYf`d@ybG%CSbcL|?#q-sW>i1$6o#BRsX1yWt1) z+YeL04&OsH$2y-Oy>^F0$g5j1q8T>GlG~D6Dbfa?Uy_E=t2daRsy z*E?3)pT@{X+D&C?B)5QlF|^B{wFanyVsW{x40m=;Sy|2^M?0+taoXW+WCV%TFDQ+A zsDcVc?p`;iY<6}*@vM^Sl`$m?^2-(!PV_-cdv3Og-#UIH@H2O;txy zZn2umtM6h55|}60xGn@M8O@w(JA?zLa|_eL$8N=B(|S5Jf|_37-Te`$%h|ipJ+&69 zbc#?txq1dWFFmMg52bGIjLhQBSg^I?iRG=UU6xZkSEj$JI=jZoir>70<@h;ogi)_H zEyRMZ)pM$O@(+~~%=dm|L+ z=2Ya)(OU&(JjwHYzj4vVj&VzrL5 zl3ZOSb*$=SVWBpgJq%V$X}=f4zUGkSRUPuUqw2tc94Kqc+$}}*y>h0e??FZNyj=1p z6b`6kTFGrCkL*%)W!7`Z=iqV-q2 z*s8AGI4q}demImK)Yy2=a%cGQ__EoxOgn=ONe z(nzZ;^7i9c|FEygFblxB3MhV+PkG(4vB;MsX}9@OE-P1O=4wr}wfr+2vQO{1b*3|Z zhOleSrLVq}_VcFiwfGi~yq$|3J4+p8BRPFGdXmRoM4$;*ZqY#i?2;w)4iC?5qy^NTKb zp%*(qQnV2#LF-6T&;jfekW1ZN&?#G5gXM)uC{u6KGPihJu=H6nIu~2oRk0Q~U$AOr zNv{jolwG!Pb(E-&An4QsMo01GR21gtlviZ8mj+L(5;>QQMgC+H2q|q3(CS3^ddnN& zFukm`JcM!397aov*V&plWpL>UsVFPJYJBD)wM0&R>nt0-;{0nWa%RyO0u{Kio}Kp0 z{E8g2GuJk^$?eci=<<`f-RvyKZozsB6?~ZHBX>pF{Nh}v7*wQNKqu%m0|M>e_t~S= zvS(8hfT?M!oP7p-et%1dh<7G{_qi7e%P-8QFkM&xLsrU5(3@)24;f&6m#2WD&ZWHnI!Nd;qT?HsylYnQVNT0S1D z5%iR)b|JMY%?R3{x;h+L_j>`=hEA3inpaSmQ;`qF%rVyWZtSb2C8%ETcYLHq$?`%d zc1NDIjC#4|6jo)e@$@6c(B_ zUF#qBKBf1X4Q1YFJ5gTZqMS9{t}CV6eN@e&&jr@0^hZ09Oprmb7-(bYr_4S$1JguXPHBX3m*tn{ zbDbHhMys-7Ie#}6kmzDq1p<0uE4la)7*VIt3Qg3_7#BU!wcfG!7f2Xb=Vr*ZFTi`+ z>Z^BtpN~?tT>ZrLp0A(Ts0B3KC|9zPx^-$pq-jkKBW!f0ptZ~@hN`1&p3pA`%h{h) zJy&~La$3|WFVBZ9uA~@ZI_e6JEiagj`X5mf^mt3_PteW*FQB8fg?Qg~Ox)n=gYMi{jW`%W5C)H9BL>-yTV{{d~bwJy*!m&sa3}i9#xbFk4MtXke#C#c;kYK!P(5N zFMJJ5IHW;yJ9`eg__B?FM>U;c_x#QiFYWfi`U2f6RIB)UPt>Y06xF(tT7VusHWF)h z=6TiILv2039AbJnOuA1hD*?7X+N@ou$g`MLu-9O7u8)Ius@AYdIOhV#pHe-nlEOTi z;4)>>uQVcl3;iJS0kDJ?$S_8>)M|@o7S>4an&yr7HFA2VuHB4^%uplB!IpZ5-OFfV z`zD5X^mgB!JHH4kuF3BlOezpWCunHjFdl0fR@KpFdxF)dAG$I{iy_~vG8kC%i}PS@ zpb=b~^=XIAcfQ+N9jt3gu&%*)7&K08--hK_D{vG=zMR6s?EHE2a|-3~dm$ZzrF4~u z9a>WvqD^vgU<_8k59`2)(WeXg3CC7lrB5A9aBV}xcD25wbcgn=Euq+VbhL`*7hYlN z-uo`*-i3J(d#^>&pl}jLL?w-2?9lcFZNECcUwK_laf7B~4veNXL9guJufft$YinQ= zz9||y5YCqRy9Vgm1&>K^3Nl9CibgWXsBWs@8lw(qnfuRHXjsGaCR*xG!8VmgDl`pv zjcK6RIU(DJUQ_5at-u5Xfh`*okc9g?PeER8MfFN&!yA6oio}34r#_b?g~K7hj{OXo zq~&(>U&=Oe`!MH$Hq;hBq+(qGi`5$N9nU7D?0%JO_SK6=Ki;Bn_nGGzobH?1#f9dCLVSmu|Omf0uL5FcW;x>`o*o$}E(Rt&T?y@KzZ zjA;TrVU*-HfXcjYFOA~wkjsm3*b1e>?XA9Z+*PituDVJ_U9g&PL^_3ZfWT=eseN$_ z5ZGGxx40mnSI4MX6_A3Vo*ZY|AiE^l(bpI17)-b+ zJvQ4IOn&mjX;mk9fZ>*VdqC09C#L(pROyf!sVyKi^eHQJ@DAG6_TF?TL{>SrwL z+D!EEN;KHmA9xlr?RspG+JB-J$-ckw^8u};TECPn;6a>m;kY&`um|jUvsDM(u62Jc z3|l>A#bEr~7)@naq)Kpy6yPxF8f{=EdwB|GW#<<{tJAs;*CjXPe^E(+w0#?<4y|8q zpAIDi%S$E|N=LrTILp<_4U^Wn`c`Y_G=}Hjnd1;ZYpq$AOI9LnI|?s-maN$~rcn+0g2%Qw7&D8{$G+mvUsl7BGUNT(PFZ!_{|qBKahI%}zfVeSbgXdoxP^)&!+H07!U@J7;!_)csd76oEymT`J=|AaEL^XS)^taRO(y|g5to7jEPILUYJ~HGv ze83>UlR(U3n)0@ewxhI1!O<7IwPkZ8jJvSmHmunNK4C#V*1fQ-dSzV`KYbj!RSQar zSa<$41?A{Wy~nAX0Hwwp=LZ|H$*gi`7-G^g0Pg{|!dIlCsy$8Zntw0V1xmb;G z)>ua#x<^GuN0}bPAw_O_NnUxb%=iq)-20AV0`$(ZIs3X@p}NeNjAgm+D^NmHeqgNw z+Xk9uv~h_-Sq{3b7;{3{=TEDLyfX{EtB+ZzO#5IM$jb-!IjcqX6Ihs%xLru1THQpV zGgX_2IrC@cmt|9{a1K(N%c!St*8-uIo+~pbE88- z?Q*Cr*aQXj%vm|}j5b?Z0^tzU5ai2m(cfADfTKw>@4`9xWf07c`-jnzOuG8X5Rct! zupZ$=!mLL%7ci>WR1Gmc9}zzVcKRrz1%=XR8^=@7eyObLqti?6G0sLNQ@_g&K@0To z=(TE@%cgC6ESI8&QaTNCBHad8|9Us1@R|p~e^GBhRoBL%KKH3s-jWJO3~|-b+TQX3 zkl$DZ94j66=AIB7MPmieO0{NjpEOxk=b_13f1osQmzFHdhnOoJY`5f5bgbmuj^oNh zQ(zd<6B~y+De`$bL~pZ=P<=-=afi{yH&NDn1Kw%)G&&<7jC}G%DR>9$n<8x|t0u7b z4PDWpn()|HO-JUxj3iq_>9w&?oz7s|M#&* zoVdor9Yk;LAQoH6(eJsrqv38=VF`v;`=w}U2jgBuP<3x*&w>w=*$GF!fGKz*4mu=Z z8_z`@r?HM;xw?||0ygF_7Yz+su)3+-QqHA8=t9Wf0n(-oOiV@!1kPr;Ys9fh4=ZPG zzVY(;`w$rbTAUklgZ6waN^uTv%S*q4eX!;=m$t=-v>bi|MyuWVw$(*$+JQ-ey>n~h z^U`*M)d9K%?c`wW;jVb<6!DVR&T0bF{k&zc=F!nhUK|$^MjxH-qD9$DJq`a4kanBh z@kZdBuEa)P?`1H>)6rVv=>bQO;=Ga~BS9#N6jQ3@QDC>!YH>{> zY>+(pMVCUzwvm5_S#8Wdf}U>{Jx%n!ihEl*+6x;vY@qsum|Y6ppDavZXZOe`OX4v6 z)Ct@Rw6f=DTJZ9bh`Uv!tA$a{j}F&vJdMo8u>KJr759eRM%R|xbD+3u(;);|Q`xR9 zC?CQKr@a%lPt+D8-HFX*p9g$6`YHyIP)g8^2P#Nwo@u3G7=R>laGR+Lxm ze@S8nT8%pWl8DggE4_x&%E~LM{eu!Nr_x%2A>YHyk_`(~4z%1Ub&^4dH|giiFUXyX zww6_-6_hS2o>}c5ohT0uv>Lnqk)wmG`qBnR#i4<)PZQ+gK*)t>q|G2}kb52rY-?5(r6x)05Y*%L2o)X7ZY_&&G;!Dr6Wq^}(8*-Ce2q#7#vIIS0|7&=25KLa zyP;M$cM$`+Fh#pyQLQC;m{nIjnIv6@S?S7?CZt^IcbL^u?M#ph z!;nRLHmadapQGvqN8sN?nSQmE?#h%^S6eA6K3R5NZMAd1Wh$&sI75b8G42==(t`(r zVZjURDRP@27pvCu|JKApP0%w88W;>}DD_8KZg*`CcAp@X?hO%cUCLqEHwwC2X|4+M zn!5cSFZ)MXS?=4I#@GmA1A9mlV+zX{YK#?q#w%aAAzK`cLB_4fc-I*EABoJckMz&7 zV$}VKvU5D7?pSbCO_o*5?u5)_#?2~Klh!E9<7DSy`A#X_Mq5$p)&%)-4DzWOZH2jQ zhB}2ABd#gz5Db+Qo&1}O0bAdGIif6qWyKXEJH|twVFh4mspV=TUyQMayRRibm<(n0 zc?g@*vFNyq90aElIPVNJwHG7z*G-Lp7GjF_p`>6-A|2O26Ew#3^8Mqi7<<>14X*9@ zF_~x^Sy!ja1Ma9Mq#L_@3*%Pes?#EceER*2U z1S`tbNTMcMXt-#cak+mHA`kc4-qKr=&H%+suvh_yeV_>4joV- zK3%t4*;VInQ!Qk5KFWAX7uZT3?`eBOnX(ai)U>c>7Fc(`M9;E1*|nKWHvvx6UQ^jN z39@1qnmIT@_RfMZ9xBnjuyxc&5*aXOsZH=Y-U_n`DBV^4Bx$$Ad}wP|w3?nI=Vx1E zVI{nru4)dV?UbROEN31Bt+=1BuQ4Zv~}c2 z$HrxHEs+%~bev9tScJZXd|an;gugsk~c+o_abMv8f!L1|2u07zZ z<1nSz8mW4M*?XY|TJO79j3$00#~4fRXfsQY?1;1*Xb2tETS*cV<5XDSH5=&36%rj| zvevHck*+RR5H_9-#(Pj=ZVWUG7TsFvYK+xFj2_Q9a0m+S2*Wzu8Ab3M)M@u~;)+A= zptQHD{qM@=jmQK3{Ao^iwn{KbaNgbq5pH!_PzIG_gDJ4I46|(KL*8(^+TSg~bQfHG z(-8YQ(^qu-m1X6Sd?y`d+2-x0rYB0frB-jLS7F7eZxc=9aq8AWw(anGky(ReSy5q) zbImub1j8$KQRpP}X~3((>(sJ1k!;ypF7EM0Atn4)wpZd4wx$GpKJ2j5pDJC>yy%5p z$A3)PEymi4gG8^a+2;*YFC~~HFsLLTe80?l0F1^I$6xVAfO1?Sx1wv{*wkC4p}2+C zFjasx+%-|}`=4{Bm>Y5NYc%S(`B*P;g4sr%&Md){cLyW?d01)Xm*2BoTR^ceM) zRcTFeJ;;8Tq*9Y*#|5+=2gO5Nx0}Av zd)0csdVR>`A8Z@g(UiNvdTcTaEGI1t<8$H&oYahIAAG5$w+!Tr z3sI>qoaJ%q>YPhg1#5cdiUL8lW!Oy+Vtu6TQt${$YfMke7$GDXjiZW1`63$ROjN7NyGLphF^ za`!D*89&END&|-_^q39XM?YhZ;DKvkH!)zM17_5qR6kEA2d5dYk1_k&xc3k*4gu z4Lyeo3mdHg61ftg%>sGT*>u`U2-wr{M&u)Yy6jwuE@*x^htBFvBfSJS`Z~GJOGz=> zrf>J%ce~|Lk;zW;dEf60D6WZeZZ@Lu+#(G26;sJ;k|c_fh_2*v*D9#^x9F8qM~f-U zpXIogo7gu=+a*pGGIBL+PQ5u1(b22nu=+*<)d9?O7J%~^lcbqbOKkufwFZs;&MXp| zaNioR@fOojnt*Fywwzl78Pk$-0To*d&BQO8IC69+lvQgnxMQ4-z+rf6Ikpy^)yWwG zO-a8)+r#u?q|eJM??CUxI#mHBT@I46$?0<)r|vp9MrJz{U73P)C@MrR98iMj>Vfl$ zT58LcO@hB?s0$`8tvNADHVDe&)J7-TUX4a#d0=xiflhu7!_765BtWjM+|D{rN*Hg& zm~LFgwQc~fngv#=?pM?_q5x*GSte#Zhwqs|ctJVbG7LT6^r0>Z9xHA+Q-fYUr3VA% z*w((>A`|hVZVXAGI88IO$2b>~NRy8RGiSM0HSpb0)i#U69a^h%WSzUpn7u1=G+Tq^hT_>S{Wr}4=Ao1s465&+q&3eM63tl4#WPs3*jK2 z3ya-~1%W~JY(T$!N>P?<{6+V!3XWBh!wxW=wvnA1Fg-iNF(6plKO2zw*ehniNF0W_ zzS4beI0mO<(dz!oy{5fU1N*v}&ScOdPUm!IZbt>VvUMmtc}y2S8Jv9}I)?t6W??Ed>r6+Ln67*G$lJ_QCA+9Opw$Uye#WV|)14n$bQFNs` z9nXs6Ub*e`(aCt(T;^mI#%n^Ri(YeNjdKd`Hub<6_`}v{6_sqnG+LrBa|dDBKDU zRQ@lVggxWX;a2MG690zM|5+e5{8@{f}95&~>GsSxs5a z5Y-qqlgF%S;rhVFM03f$$E@iQ+9}IW!r_yAI#3q8qhnM#u4e`7+G9H;`JY$RKD->B z1SaVUYzTwZgbPx%YHdoCr8}@_Jbz^?;588{=XOBa&XW^Qn;Lc%cnJ7p`cBwes%Y3K z5?4EGlA*q{6a9UPaVN^BQ&m)`DRV3L@GI8gs9hg(;2uJx>gsfhrr@4Yq|@o&>pp2> zVpcqXrZrEN?N8y>EBxCdpw#^Igtb^H*kD*c&=4_=_Z{Lfs^X0(aCH zwI6$-r>r~}ogRM*mBSU8z$iz+Z|E6odT4H`scZz+vA;}i+BG~W#qHy)jJdAI6EEwizC#}aM*j+nx_)<-#KA$ z>Mr%`l1j1Y@dG;VMvsM7{{kBHEM`o`;hqllv(6!R$umbwu2_ z4|H4ulYKa^5}25Ix`TAgZlML&7-A2HSCPD%B<}^oz2GFIGoOi*?2MO=vnDS%)4tTr zpT?`pkt)aG3|)@{`>>Dh#1Swph=lV3j@BK)4rBdefu?QTj{*3=v?`3A*rv$sa_CJb z3eMc!j{JO&T|37WdO0xC_~DvFUt)hw-e47?gKq66OfFYO8oUary2lx_+g`OwsKPLic>KqtT5si=1D`|J(et2u$gOr$e}k5z4_!M_{U(d1{|w31X~&CUfX ziQYKYl+bq0n%p{>-?^?wWb+|wtgJp@d3_z6u#-la#;wsF^3q!5_+~&k<{EIGrF2 z;r%2|C+#(tCJ`G|q8xh{e0&SsBTfd$-49xIUAuHjdF&u&Ltkw{)0ZA4>^&%84P@kn zK=%~9XNB2qV2(7tuLs`4=Hffb4X68X4I;+1j{Pt-*q%tZo1k0ZCyN^i_;G!#!@~nz zG=zI=Edq5{Bc2@aG&M5;E>gIDy~Z?P%KPA_p$S1> z!8Cewgvj3aA*Vlfy6k-`Bed9&4&P`#bUFw(69bYK%P+DY6V5xTrV5|n*2yPUuE6gp zLTyTt><_I4t|z!S)nU>a@AMRT-r^ zB}m&Zt%WKqk$-aqo~N;{ev*3BT8xw3VAJ8v9jUH@LUzh&sOXm`7U8Cw>XOJl%atFF zS+$WA4ak$5XRF#yi|GVSp41%%N3n3%17w?K+TSVmvcHq*wwJhS!uuLGW-?U=CyR6O zGz2vfJY3L8BJoy=Du6NkEBK%kd}YO}YxGBf`pFq{?S0?-Buo>looKj(9T_G;Cd(>`+^sz$<{~q0(XA0n} z5pJpc9-VL-OuAfP=}RszeGM(w6nn{tH+ZTIR=b^4Z~lNR9(C$yd<9M9dy~vc&P>AK zkZ!2)di}~4xMD@A!%iNT4hENuD%tdlHA8l!!hUn^C(OYwD8+S~LJQiOJg(CkN-@`! z(^j!sWQ4wM_Qo^d%#MaLHGxl~gwF~VKO7_ZsnsMH#Jk85&SB{#&YU7iJ!|FSF_myv zf2qXU5QthggeNLGc&hwx4h}0WWjE8I)6Zi~yh%^+CbH(dm8E(cEryOaVQ{=L)s9J) zkw04%>Vj5Gnjo;Z)33Iq|6-M5H;uLzs?&PrG?9Im)NrZ9F(+l$YYY29sH? zCPf+#5<}_=_lw`G9Mv1$^P81*=Tvx7HuxRGIZ114`Y9T@=6B4c&nZot1|HU^rIzc} z$wcV?2Xw9sqon8<%RdaxxL$hIGVyRx6aL+QqITourPm?I0@p;N)CesK;djUj-N*jK z0&!O`N>3Pyu{LD8Tr^texb_&9g1=KhPWx~=Lgov+F;mOo+2ML+*7Pn;zr870e_M;( z`IJw%weGy7qi@#Nb^XA=8FC;;)piE>ASLIjV7vk+7hJ>KgZgU+zi0l1AU+r*=vP(( zHkv{i^^A$vEwp5T>GSU#CP(4{>ha4T8E^?UF;Yweb?yf*f$2wHj@9+f3_DzA$k8%&p12Siq2@U| z1Wm!c%1GA=3Zkac_yIM*>EgHbX#=*Tbb-AEYbva7sZn-Dbl^U@DZlQO(ePAQl==n! z4m5n~gt#ph=5+15a;9==u8C z3YTt!UtGO;K^yI}#*V3@uRN@3IYss{)?Hl_yfhI|uipoY*S32Ey^{m<`vPXNE4_XL zThs0TPhemlk>MP9=|aBuU<|h<$*v@1KmIutDSf=Q+jTd&1-oFcJyPw~x;DD!$_I4< zcI)}hVVKU0Z(}(PX>QIG1LP?6qhl{%O#?4=B-`&mYQa8ibd&DvOIMHjt z-2sCES4KYaarB6)?QAFS3ue$Q3|w(mE?tj$>#LP3!|ZrhJF}hF1Uz2nlXGFVTb+V0 zI1i9O?yf?UP3w<^;p7YVF~il4M12rzvN;}ZC)vMKWkWqPq+0|oBqJqErM&HN*NrqjWe6Sz2&}K|oqRQa;Yxj+>K`yIvFnE7@{al$+*2>WgSgI< zqPjR%vA|uz7<3$tREN8c%FZMd0AI&|W_UeMV_@B)`{|h&1X3%AzVuD{F#LO}uj=2vHw zblDwZ(Pt+EZHu*gsy`CAQh+a=7k^S*o6Ug_<3~Cdl1&9~l2LK?V0EoCBXB3av&zxu zs~IvQ)N+Tx$I-;RM<3VrkkWWaoy26_cHK+iH>$vy*0W|5;u7pyt^vUb+cXTXoH^@T zUtA->ttk!)958K(yj#J&O!rl{KwlvsQniHzl?T$8C#@YZ=Dj>^8}nXqKz(`CNF42l zjCbt^S!yGo4#1mx0ZA3_*c&w+ewMYd zG1}Y^Y@-SLwg)Tnrx9J6JP5baRJuNXfo}4s>gJT5i&`B(yFk*FLuqI(TWy4ANvCm!ai+zY*^^1UGd`3@ z$bzqpBY`I1woZTtZkBnecCXODM)KJt$!drZU2iIY*lF@zLon{nM48tDy$av@3|u|a zUJwXPOgMlXaa0k+cdA;|1=3+38K^G>=ayPHk$3ska@m zz}uCf@K`p((TQwD)kK$y^T~ah-Zb3+NYkZXpc~+S3ASMmz0Mkr~d1 zB1|4NPB-utM1;NtVdzJ7%*l2uaxM0B@e;T-6{S{RQJ--AXrxKg`f_vR%T{)%>x^+5 zVO@OloW-Jtnb^El6KQVMn8eRJnIfRG!;VP-Uk2X5S>Wt$Ub&oJZfRqO+aI!qm)nfJ zZIt>~*M6wk=;DdRFg45(9J&wnjaXA`Q!qvgd#L=FW`|<~jIO#mg0I{J1{JcrC4%ox zw_{v$WX5SsIAozOXw_Hi9r2~F#o%T}fa!iR?m?RTXj=%MgO?+AavE2IjTsLVaCwsYf5PG}LnG;NXi3U5#fCgA>rj90WZ;w^&Up%Nv#X(bW z+oqQ51Cy;LOzZ$g_&UHkxHKe>b%2P2BOcw5OqveJWnZG~>SzxNzq}!u?Ihwofk=I2 z$=PAh{A>To4xDJg$C-WiC~Ni}p1 zc=6FJ%DG@_`s_MqO<+ibz7=KY@1Svg?EbDQv!VnZO9^*9Y zTF1it?0~EMhx%f>vCV|yE`FLy4d|xMQ-8J8Th7|4AOCx_AG#2Ost=xdgH!$?WrH*4 zLFt0sxt?(PBGdZ*xDxk`;5-{|a<-N;{lPoGIYofd3Cyg$gcus!_G0%>rGy#a@U6s= zk642AK9OX&sXEkgW>^d{aD21(GBFI#KbqcpJb^Q8fI1V;zZsG_2z42u8`mS84=0*v zFKfy`cP&nb&iZW&i5qN3xqpQ?h7Ug;yU1|n?BXOT9&Gn>Ur!rC2Xhk`51K}(g$Z(c zusy(ign9HZ0ogUTJWTRRIZ?@J_JCbDNaJ!Xi3LDjMB)xYymZf(!u|X~K z#f!!(f~zXG8;5-iZ*Y5ln-5qCQ5rYbC1&X9~( zHX@ZfNsf(x#?&KOB1hV--QO_x*1>0`!pu4TVx3b96^gmSq?zCOLTkSB*>GIEOKu+l zroyus5w2)CJ<@LO{)b(KyZ!~LzB9(hV2>Jwp&Z4K?z~8sF8fA%yvCDy38*#ue7K_9 z#f$f7Gwl%fX?82DibqwPw9SMtE=`cGnReZ}FEXHZ@X9KlQVu#){3fNDc7po=%YfhA zP1eh zvd90c87e*%%lpF#?xz_aPj8Wc7X>3_c@`vpZRXpG)MgHEq%#-i<-rfL>}dBoGjvRd zcQ?a~|M~})iM#LIKRqwOwgDQu2o z5g*qGqutjsPv`xwz`ep+GHMJuG8Q&U#>2JtXq>=Qj57sW zV{>jt!Z(wi#*@o#H&ZkSKBDBs0KU#r^n)gK zosRy>q&kt{YYC40OL~t(y$?3<1-6BYS$kamZtROk`dv(qOMNYTP24k?vZ;QS!pUm_ zDa}aHFH1zatNqhJ;+xqmq%_UvLk>-uLq{kzzK-}B%_??bie^}+eBp9z0@z^y^J&b7 zUGTK?1iO}d3Zpe6p&1g@VQ?xgarjd4^&G?Wjcyz?PWQRdic7M3BIeSoj8~5@w$%f1 znS41B_x;~T`I1@W!_iuz$vJ9LfF`UNcPL?vSED|g2_(yR!X%cym}cFuPzq?5Ki zpvIl6_QgT=tjE>$$#(n7tC4#C%IIv|3M47xWhr z)gme)>dv2H{#?U&B}6|mw3MhWf9COrcLn`rMA-~2C#w9AHLM`y?Lhy0BHjt~FCgL- zK>tD_-uUxhL&RHt{zXKGi53(6&J;_Cc%RR|l!*8D{MQok%AS82fBs+vb)Vl)v^=>I zzr360U%_Br#`9lCbSu&IM7)CMzk%owliWze+jjn&h+>%bW}-Gkw-E7;o&Q!M-mCLh z5%DUW|287tpYyLI8Us}6znze`<@~FNcsb6$nuwR-{A-9B60IfTML7Q*L@SBb5%CV3 zznZ8K)LxpZRwXW$bB#*vJVksjYB$~+J_lUk{l0!s4Gu~mM zpBQ?Cs25YbPb5Si5S0*pNVJe?KO)+}6dx0HWauYETS@y=&&5XxKO@o0pU?U8G-+QD zDQ5E}QGL>m67}TIG5&nS(Bni$nDq&ww}`$XTEP@2iMkM-B6^VMYoe=@$ba7uhB3*v zM9(q9?}*-I#P5k(5&b}PD?@)I+CbV*MBRu^6J1AihUg^GS)%DoagOL)qVq%z`13P= zD(92<3t=v+@GDUxO3BzlSH0?~ek{zY`0DgGu(Bl?G^faqVM z2Z=5cMXlwqc(&`fp zBCP?@ZlV;TmPDyU*E5%fL`#Vp5nWBxm?(^>NgeXv8765;VjpJRjL1h?bE2_CEr{ka zv?b9XqEGys5i1B6+{mytf zMCTZ9Ceb*eT%xUvmq#=~>wo!#=SiGJ^aCT#CR#=`hv-Iz77*P)IzSHxaF1=w_nUL|cfSXXyPz z^GJI@%Rf5R`yV9n6wyOOTZtYf>dLGiA^M()w-PmH6&@v;!O+KuET-5-^Z;p(6BUxS zooGL4JBW@mmz_irq*dnu%W_8pY68 zi5d{SMwG|U*NJ*C#T!H~F!W8LWYP{0eM$5dP^CYI!Eck;iHYAKs>S|zm*@l14iarA zdXMNmCO$+IO4?zfFNuy23DNsRdx$eXOV5M#4`>yoX6XCAy#0 z`i$rTx%G3R+Zp-=(FulrN%T9@9wll_+A*ReqT@uZS?~#>N0|02qLWNf)y!LtR8K5-Flf91@G@2gb9B-eYJ8 z(W^vmjTq`78qJ)&L|WtW5yc>0r9YG~nGwT?S`dX3&1RAaqSd5D68%UNMbwFfL=%OP z7DLpJDQXct!_eA9SCJM=)P?clbUdPXBBg7SK==S7CKA0wltgrn?Mx;rV1{*wt|6*R z^b@nGN3@!>`b4i2H6W@cN+EiR@luIS5H%!PMbxM+^}i4n*Ogq9x3_1<}VuEs63N+KT8lqSi#0h}sbCCQ2iElqj9(UZTpjgz<#!hz=9AC#qr% zI}m+AT1TSmNb5ut%7Qx+En;XFqK*vhN;I6P8_^}k>rT|4s0Wc^Gc$BNE&qBF-o$Kr z5%p%o-b68s*oWu>L;Dih%(@@Za-#l3rip z{ht#KBXK#ixtb`0XgE&|Se#D4*M2DDlKG8fzoJF*PXg1N?M01E*GDQJVUDEtSzi__H zC3=^%LZWKMDFM16?Lh~8&q%8Bk{yb7Z2MDvLTO@o#-Z_M53FCGMURQMAMN=rTiYK~_=oLm> zNkj)p|LsIKvfx!j?MYir)SqY#(a#KBOVovF?;tu$+B%}6j8{!`J<**+`IQW=A*|2( z3(-I(zKiHM9B=T+(8&mxRaUE&^L%~W`1u1Rr;SLJV4@lMtqBCC(+wPWlZu8(IZ6f z68*+5JV(1EM#X;zK>f-e$y)NNmUM|CmTI z;wMD)8Szu1$)tTobQNiz6O}RT7esSN`;ur6;~gbxL3E6$9pfD*sv+$J(NS&x`--p? z6Q3kn&4{OnS~KF;L}!S;A?iW&Ez$Fg_Z?9Z(|%9%3PXP&`jE6AiT-80pNNJr^fXaZ z(#{Z7_9O8uVLK){M>L1D^F-?z@n@o+h<+hDNc1aF4bg8zhlqYBI>221AUa3%Cs8r; zyFm0Whwd+;518U_E&sk|#D7RkV8nlk_K|jxXg1L$qL-QEs(Sdjm+@RgjX7Y7D1tPL zsDj8QdV?uKh?0ohL~#uD5X}Or^m_>_S%{CQCs8QTUqoR<=b0p&s54OnQCp%&qJM~@ zh{m#zXrc~8F*+VmEuxPYuQt(X(qf4Ub-{6jIV8ptJ;8_xL~d3gktl;GiRgRAOD2kD zygEeRv0LjBbzy(hBO1&U^@$o2H6U8R6e&c1la^YK>u*OUX-HxRqDDl2GQ-A14M}T4 zbR7$BO7spM{hlMHP|w2idZM5#>MhUhJZR;Cf!B&HK>AZknG zVsJa6&P?2%=r@LTAkynbN1`SS?L=g=s-20(k=BK1FHu*b$C+O@qBCqAZo~LMiT8{icv&O*$bIO?~;~9 zWHH`oqJczXh(<7UY$f3<%z7Nr8lv$;Va#R%k(&`G67?W$645uzW-`%YrkFw$%6LsFp7(A2cG=p=AN?AxA(Tk+z6a7Xsi|7DT%qCjP zcyoyAF|>dvf}wt*6jpjJ(XWhGNc1#Ai-;;~Gf6RFIwO`4tz*Peq7R7X5$$7=GNPB6 zqMYbO(kh4^BAQRMl%WfVu4USVM6t~I8lp9fw}|L0<1Ma7{)=M7B_#GFT1s>`BVJ21 zm$YR>nM|SwtOL<<(maf}f~X1OT}Sj7Y1b2#lXim+CGAEcH)%H!y^dTe{WlYS#o$|r z{$lX0M2m^4h<35K+lXc|-b$hgM7I-7BU(k&l<`&*jb_?4L<1PQmS_rTcM#PfZ5`2b zdLCC3USi@qiC$%J4bd{vgy?;uyNIR|-A&|YhW8MK5Zz1Eie0^)Xd!diK(v4K1;zZ&UWx=wvve>K%#Ju}|aUm-eX1>91RLLih1U z^jDtF^wfKM_16ad_0Zw1`s*|ORsNRgHJ*u8d4^szc^=bYA1Tw@aoiJDdH(8eTCq|W zIOjf7x05>RqEOQco_kh#COrM9F5-3_^WYwn=>%Q1&QncA_v^5N)@ES7)#>gZdO)X3 z(_y`j?$=+r_^Pb(d^G$S{W)D{6H#Ic12fqGTf05&>Jfp(D)nA<4Ri62ANAwpbbCqZH!4LEoWoMOV=KiDl zi}S6@Q(1odN&U%rTIKmY>$v{n{H^jFzQYtxv0CMcZFNG2U9A)T`^b0ti!-Xq(>2a~ zQBqWS3MPG|!#HWHJdf@?rN1c7t2|ZpKGa{Fyj7kbD_5E}akf@@P7gD!Xk{vMi}|AL zs`5NC>!40Z5me=Q`=se7N`op->pmtIN|P$jt#PJFTp_AF8!}8ID9+HMv8HO2ELEPI znU$t)Twtm^4U0|JP_|WhBHX5fDI2Ri-Dbb9i>K(S^4yU1mHwirs`6Z&YI5PCQ|0M< z$rS&b{@U=H=~2qsD$mpZnt|ccjB3yLsZwXd^|{Kk@s{897nkTNPjQDo^cR=uDo;J{ z1^vaPy2_J2-+WSnWWn5dUJo`qv^cNR)#C*uoUtHX)Jk?)V zHIgJMq8~&5!nku`i zG`ZVu;#;HT@&5+cYjCnJSu5@9)O_>TLvj3{5gXys5F&aglm9mYilBJ@-vAWxZi2jc zvprCH-Uf&FPStRO{_-X}94S`)|FWX^{?DxN!Y#6@RCr2NSBBF2e1){|vwa@!tVlD*iVGYIpKKYlQ$j8;l`nDV?j~la7ImkeBYXTX?vV z{BK4W2`(!C8Nl`Be*;j$x29w8x~}V9`+8Td{^Q}Q^1snh02i454B%Sxp8;HU{xg6p z(EkRYN(G5hzRoUI*BSovZ~^+yh{et{qFiEx0qb#BF=D;l1)0E+-@o2&=Al?(*i-8< z6%bYzVQ}M**^GbT^V53xWy6>M;(EKIjM|8MknJ|ujl$MY?PsEu6J*5(yNevU5Ba{b z!M;;|z7M|M_>T*kyyiaK6koo`1w9liiSa2T@$9tHMb(nA*{+8yqGjV|{DW}HG-lAxlvH;M_~yW7`~xtwp`Xm%f{QY^ zPOxx`-N;oe_illYu@PmC;L;9AtE>ImhOn)$CiqVUy#K5qDHrn`1#!WVTn{Grl@Kh)On$4pc0vxF}*1^s5i zX|E~}se<7TbuaueQ^lDW+6xRs>R0$f#R`9NX=B7+!}Jb|Yv(Eu4f|?WF?>-^!XGL~ z_+uDTJEP%?su2EA2f`mJKlnqf2Y;yU;1Bg2{Goz_Kh$jS2P#b^|5BI1A1X2UL+u5B zsJ7tG|Do)?1EVUs{&DxR_ujeb2_>O~B$SX)6GBTM5IQ7uP&y=ZmO$u8FCwtgLd%Fs zlP1zdSfqmpiXfmOARQDDL_iRv2*1ynxx06l=Y7A=``bVE%$+%N=FH5QGv}U}J45yg z02wL(WT60%X#zkt2>{t5^dwQp`oI&J9ROr+0Fa>pKo$l7nHB(KQ`7<^V*-Gz2mmr4 z0LX3tAcFybECm2E5dg?G02sv8)%Gbug2vN{;%~eGum%|bNP+-pngbvS0w4(jpcxE+ z-Yft}f&geP0w4(jAPE8>2?C&527u-i0Foep?ea-T5FSZ_0BCvuAPE8>2?8Jq0w4(j zAhixa5(GdJ1V9QJfFuZjBnW^c2!K>804Y)ck{|$*AOImjfFwZxq$B}IB?6EH0g$=_ zAPE8>2?8Jq0wALrfFuZjBnW^c2!JFAfFuZjBnW^c2!JFAKu8cENe}=@5CBOK07(!4 zNe}=@5CBOK07(!4Ne}=@5Isp0k{~>h1Obo)0gwa%kOTpc1OW&M0wf6nAPE8>2?8Jq z0w4(jAPE8>2?8Jq0vN>iueH~-?c=tMPo zi9H1;b7m2m{}=cSBYqtsM#zW*yI_Sapopt7V%{hA;`|v!l$4a;-3H2CK1D>VjJRA$ zEp6Mww|rtxwy82x_jq078+NFn_%4{@dCYMXoY6=vz-O#S&N(KNAFIXqUlg%g=DSZk zwcUV-auOqHv%Mfcf(SC7Y}@eADF(+c$8H45OwvZ$c-xJq;?B6uihsCHbAID%i@ zYHwisSt8`Dw--il5D^83%}@RkgvZ3GQT(gVK;?==Dj%$t;8nJP%AM`t8-UB~wFiSY+MpXr-P!@hc>UY_W&q19cJAO%gtj zD)Q4Vv@Q;xfPdPRL!VkfR9-9-^8l5*~7RpaH}MqiiyLX;=a=FWx? zSDc0Khvrjkf0=o2A2lRz7oMj`HaC8XFUpok7FJ7gTi#Ud{NWaRwCz(FKS*Y+`56qD z2D_2BfkgayKPLFiyD@G8`Q)!rpVV4f0p)BA&-%(etrXuMWjM$D5`^uzely0na%KsfpN z#0qKvpYW4f3=MsMFV1MFT!LpEQxkdS9=nbcZXt@{yyi%)uq|EY>nut2*o%&6FQWKF zlHaq-wSo{!QGSLjf9ygn5=YRAsE=f};Q5G}AfwuwZBhqOGi8)RVr}?WEsD`3GX5=T zbv=d=vsy$c<;;G*eApg=a}EiOk30w-1|7CX+4jqPFk_Y~^y`b%(j5&NBy&4Xm zvQaNBoT26C%a5R!dJu_l-eMQDhy5rbx=4)l1Gp)AC`EiDS*dss-?`W3D~_NaVxVB#Koq-~{)YACV#U)MtT>Thv3dvht&WgbHl zKc$E-WocytaY=RaV8+*a7;kn85iexK=Hn<~DMeh7)GnRESuMDuo78l| zX?wabtQ`HK;QS@q$}yHgWL`ODP>3un$07=mk>&W9LS$z-HdBa9Eyo@Tk+tRchC*a; zIewxL*<6kr6e6?Bai2nDc{%>2kobbZFM1+^WPmxsqwz;Jn4=Vh$P9BNQiv=uM{Np` zG3LmikobI~1BJ*UbMzK*L}e(2$S!kCq!5{Aj#(5U>&&s3LS&#h)=-FSw26*w6eK&% zaezW(syR+jh^#fo&lDnq&G8$B$Yygqq7a#F4qFWV$Z~T8QHYE;M^Orq{pN_H5Seg} zsuUv6s-qr-$c}Tgq|h7mYU1cZK{DqY{V7Bions`0$f$F?Lm{&39Jv%C)6TJkLS)@J zKBW*Dcn%kZ$i{OVrVyEVjHftN9OHIPdm{v{A8mN_CQBvzD4 zQwYW%)*dND=AR>-LSiAKJ%z{!bo8PS*@2EB6cWn`6DUO1pkpS5#7f2c6e63@v6@0; z7CI(=MnN(S9s5NjWjRhEG7uf-DJ0fcZc>QMM8`u4k)`N(qa^;sl2L%K_N079UUn2N__s%n}T9}WgLabh;%q9M0TVjk3wWhI#yDMoB@t4 z6lzYz?WK@dK0HPtv3z)zLgbTl{6Zmm+jl&m5cwh$!oVs)_@g~aM&M+%A6#Xb}gtBb=ZL_S8xBnp|sy!RPS$&wO8Vq#nc$S=$ySV|LH8Or2}Vi{8-LK`*^08#@EC>9BX;2d-mp*ZLLI><}p9n z>+_bmC{bKR{$w&{N?aIn9*1j$T*qhV;idVC?Rq97Vw3f$6*%bOXJuX z6&EKrP@`Z8Ax`pOt8Nmo;{x5J3y595$!<4@i+)8Npg8#=h!l`Wl;mb`4L|r443e3z zOf-2zYou~q!xX^#)d6qgOwz>LXz*57&*Hm3Qi~`bo4hR}ga*o-()_I@Y9-r8^k}lR z*vt#Il)TbBw3OP3XD?L?DJRXm$31yPy$UZwy}t1xaKx8D-8=SHyx?;5;OgsenWD&O zT`$B>EmuqOo;U0>sSs2((Oq-!D{4MclJTxN?lz#Bi}#s)zd{HWu0fX^7@jYLM{a?& zzu{LDwfsI%&TLU5d5@d+dA!aac8xo?;%y=9H#|1HV{gW%e5RIEW@4U4Hz_k>`L*jf zrYk*`&zp#Ts8D*!Lal4hVQX$mn>E~*! z@|l@&v&^Wpi4~Qz>HPF>_F?WWyeca~?_tUlkh^4GuRMz72cLnT2gpgX^vPvdN3gjb zz|LBH*WOUU2>^|+*pqmnKkYMZLA>>Sdu4Z@(OpbQ8ad6mc)Qzl5A9W; z3fe2Di&}=ax^G{?le(&f^B$m85+0(FZgj=V#JUIeOZ;3nysIqxi&}3EO!l1W_*>W= zsVyEN_3i`+?7~buHhBb;;>l_VZ=Qw6=a20BP|;m~TNOo{R#J!Y1&{3wc#{M*hgW`L z|B$yyRB`(76MHUC(D70kSQ)}G;~)E8cXfi}M0NPIr}iXwT~yg*p0`kC6qXl$vQOl- zU1}`f{|r4(gFbJk8lij;C%Tq@^4#8@uiFVxDD(oHu6}5*;4WfF9It!Tp1i1+TG?H~ z3E5idjnsn5c~EGiuCV>Y4?M$5+z)Yb3@vMnaqvP?SDwa^;54ws@!ac>n`TXr?=cWb zZXN}o@P;bXNA@1?3A@k=WaS6EZ$@%L6iUw*Br``k@87l(&K*!WRh z_4Lka**o;EuRMvD`Z9eS?q|#Vnw95mi>uLjhAMlA2S?#uZ?gf?t|%1J-VY%yO!ail z1C#!$Ad7xE$tk%Gl#aN8xsf`azZ{a!;Frro-Mz(aVQ8JJHndLLvU2z=s(`K<2UJqU zqY1%m@qT5gzruO_ifRG8*NKGOCQwF#Ms7OZMkyqu0=>|dCkB}bfodPzFP9aC4i;uY)$+0p z{v8CYZslb!b|!=dN_u(zL5`XT{}dk0srXGZFQ#J5K!T39jR10jlgd_-yEWdItwByP zWl4G7dX4(2?E{k<83i1ikSxBxR*h5+n4Ih-ga*on^1RX?=!RyWz(28z;!Jj2CIPYx zJ})n&3NxZVZ?z8fxoc9nZBZ$NSux+I@N2pXAqx9DNfKx4{tV85qa35G14?NQF zp8X!uR+<@?TN%CU4c@8VN=cC{n*$?^)_U*RyDGQL`aYzGU(Nbn2QKyC-TOG>(I3~= zlb&OIYa)8^3Ftk*i!&5KWuXWV3lXG#du3L3+F$VBjZB0#0CMz07_teKF>lD^*1Y^9 zdoiWANwtTEs*sB-NV9d9q`Od(McTVkU{F-*if^TGIVURBjDN5b$1Ja^D0@t7wYU-wG!m!SN>ZE(R^mlF zsYyynAdw_R1Ck^~3Mi*nOdW6VgLTzp+rR(GgHuW~d6t!am1G;V%CB}*dYi@f043_( zMg`PRWu{sD472!Am3YNrYT@AQg(EC$;a!uLDJCxyfjms@WXtB&($KNU^UZL~4cYu& zn#vWVib-KyI7Z8_CjILceT+Ns9Z7WUX*lk8Xzj=nI3wGDk|MYqQ|c2CAAOv z$(2$GJd3Fl>55yG|H{z2F+8-HdsZl(AnV!XInG~h3{;Zh283YFiAf1O^B;^q^#weU zb!CE>7;95FS*e*IEAsG#Jwh375*Xr3;DkTSj8Far0UTFKlm&qSz6A1KLgH7L1eW>| z7#;}WyYdvKYR6X)$q&7#yzimnE&Hez$v$24hN`+HZ;5D@P_bUH@ZE)zaZVMa);m8Kv+(sj6N)ju~k$i2kWzam?TR)&yTcsKPv>QI^TKC9>f=4 z$ML%Fm~2jx+=#b~oXY%FFRZ0W;+k@(K$awWV^I>HaT_NCuk0gn_-bHGlJW`Kv5xe6-OxJp?W?QY$J zQaWj+)wW0!F7zE#j6<1kGB6ieNU^**4@f&D1KYs>98tDaJYfvpPXp$wQOak)BL+5$ zB5EibWKr%HA&?Oq%#zV=4t|sUOG~@9Cl&|2ezJGsY4Ivk9+_-BKt2-G(Py!yhqI3- zqK-I>dxH5^sa50Q=g_zXD5{k$lz?gM1yz$XM%;OLsT#|in76%h9zBl*Kg`&a6O;9S z%@K#I>wr!&_ zd23TUKVR%y%4e*1-%%N&L!A~uNcRj(!2`@g5nGI0IAD*vq z(;(|WhNV$~SD21*=uSQx0NbP744Di&B9UL8A(Opp0XC=>SjZNvc`RAzx}G?aq$2s$#6puP&9{TtYCF-Gu6Lz#guuM&NoTksvgl zlfuc$wCa3bYmC}m)u1i+O9K4XY_*|+oRix?L&E`BocEjqzJV(Y1>pnyc?aAa$E)Ej z{tvU*-+hb4(2wR7lTqwVuVQbAVr|p-gZY*==uc0{I7yu<=9c4bav0NI18g2?y~ylE z;l&IN$QQ&jRMa`Hh8)zTYltzGr>TW)EeJbV$*3VMrIZ@73ASj^SxtaPW2zw_89(&| z^hgxQ2#G4;6^(wtHV0uj&^8C`w(v01uBV!dL1zc+7SPwORTquVOIifr2P~s*HBG1YY{c^G#bSa1)KEa7?^|l|RhFe>V#+y9iTr zSh7^w!O2poyyT}AskM}VWLb9ukm{}p=&3tMh|+KRmYyOtnrHup(i*#eJWC?A2jCp# zO7Sq)Fv*bzI|D?i6@VYjr!0l+XC{-GRF&6Q1{vxn%M?{ZjWhU=)#$1wUa@HIin79< z%^}J*v&i>msr{8L*#8m&aWM-5R+RFSS>qpMjg>>mQg|EAfmojcYZ+*CQAiEtm{(z7 zVWVW>Q?FRC(4San!T0sSOIpDc`4$uXHZG4ma?M^;2}_Zc4Nj56&%d7QYrG~<@0`ci>nMo61z$%ymdkFj!iM-8UDCG^vCwKXe3~ZHHwQ_?9^M;*v(Y;n)dQE8a> z|Jnj#SQOCs`84csTD=vIBe$zGMPJ@-P0@p72h(O9Wl>EspE~6IgWF^_mCNVHe{GI2 zJf9EQ4kg#Bgvwx$iFxY77Vxp}tSNQec1o|vGrOzdNKb63mbHB*ql9+bOyOjloS*m^ zlv|Bf^rCC#yzY}zc!qAbg8W|b%6`!&`?c0^Hbm@153H(5VpWA7*@+I?fCsN0m@6J@ zK*bIg9skC@sj++2Z9Mid8ex|={`|*~p#%HWF?`Sg^;6?gEwPXph%?3y zV&)LLogUWWr;BOzd0s88lI=b}xDP|_F0Nrn)dndFwydOTivo(JV&%0s{Y9tpu-e+Y zN^B}$Tw801?Hjg3u!o5-h70l?e4y6A6?`C5nVH3nlGPOZs4`MzX;(8v&=Du1X<$^^rpdU^$Z~Q%4+l_InpH`Y1KS)CD`fD}#&>y^#>o~Lm zt>a;At3R4&!~m^0xrodRKM&9c}xO_;+k|?E6$Lpr~n5 z;vUuEhn}i&w8---S%OT{l~*R0FX~9CTk=c|QsQKWQjhB3@O51Bf_r9%(qZWfXW2`> zot-6Ih&|-EE^X1mZGxbS-K!?4BhNu9!z#Pz3pf&*c;Pqn;Cl}-@K3c?E(*>P-DB*! zR28&&Qh6s$s*0MWwHmfb7DZ)znymY?(pqt4rCId+G~PW{t7uzpA>xHtu=)Y6h9rfN zRz@qR9I@~%1@om>rURZ#tv}am=AGB=d}tg7>F=*)6siW+tEZ7~m~4%S$3Qc1H8!-i z0=90&YtkJmFA`mf=}CSaKC zv~b@~&{CD{CgIOsL!ObSRZ%Wj$oVR3jg@mI@|o9=|E-Kc_0mEflmyDpP2_(ppz$%p4m>b5H>RZV<)N{y znpO{6B?XOii-w6_o3E>m4Y9*K=p;2kRlG;XV3~KIZ(gCXuh-Cu+Te9G*=>-Fk{3wy zTwiq27qKZ?tnCXA`hpa6!48SO%|gd|9qJ?JCDd-bs2z4zk|-*dYVk_-)V3U(jU#Oj zh*W*Pc06kMr=X+U!F6IZ*$$on4If%xO6eQ*`GpBu73>|E_sY~6*t?8yvcl@i!E

    m8NQq&?Xiu+!sIYT`fX6VBt@HS1V`R>xI9|7r*y3(7$2fUzw&g3c6aK zOsA|xZ;0I(JhX&Xp0_Hi8Su$dWoUuzg{9Qd$}y+#3Plp>)@}2o{Xm<(m7)!#Zfn(4 zOTd+=4-73?DcC^v%yK`?&i&J&+iEtD-BY#!ADoWnt|1WNYXZJ0=d4_nw+dMwCCwbb(Cn*&kIKCfbS%bKLN0&Blnc~-ZA zT>c`_ul*6w^;--)MA!n2W^j43hif*PWnvKVTAK`m)J zA#%vpJ0^%ICOWTh5ib}IE&P+e!_dGxgQvCc`r?0jTg`7P#7`H|8YrmmzDw{w8uaB2A7k+6z0OsY*9 zdF&#U_ZkIJ8zhVG+KBHP1>qfFBK9+j@7+l1x5aO3Wzc4VRp9EQwG?HJi97Q(+()CK zTR->Ub{K={b*qWH={4Mxu^3fnJ-8o_#iaP7iF?|@^=X1evXdH$WRGpsne<0V9(`Re z%X{v{mm|Tr=v8aLQ_qn5rm<{Qqp@gJ-X>B@a=-3H7m=@f=a$2ut|>Dmt^m(9%uH2r zKVGU&m(eEKW=9HkLz;V6TDry~ykGaT_ETo(Ts*e)#|%BS)zAHz6kBbb*J zhQwFpF{LncD|^Ml`GSE(4lnUB%R90%quzsjO)@JpzOj^m{g-u>H=YT-xU#Wni#6uU zX2Kp{ZelKxZKZtBSiT-knuV93BNp=6Sz5gErHOpN2e}U4K3fY`ez%bQ=K%SpMCQXv zYv!vbXp5Qsw>eOS0ZlxN)SC-Sz~Huu7@`^hsn3ZQfnO?D!|lKlAO4Qhaauw7E?i#b ziMR4#>O(tunFFHL#`w0{M{@F^?|qcMP2}V=WWH9PzFY$jN>&ruYWH8*Ri3s0uWr*# zW=A&ROBP_loGJ^RY!$3bfSpf&gKX)bm?f(IvzE@K6HvNrSKV;@~kOIN=sh8t`^R_r@@weVo_BdHT}P<4I^Eujly-cPfEGfMsbRaroR&S z^Hm#sP6Z>p!hhEsq<|b1p++2~d3-(XO(is)G@xfb0h6MV4+P`xN;>3l5Q0)aT@HtU zmufvFEnVnQY|+ocy@CAPOH7bG)1@S}N#~VbVVifR#8JA6l4>ZO(#0@XWI%mP^WZMZ z#B1O?Ch8<#RGwnf!jyF$T)x1D7ppZAng3PKtvx{5yTek&V+|!mR?%IVzokZ`Px6#& zW@W0M2Eof_WiC)<3jUwe`+c*YY~O3+ySn>H%|P?&^k?ADx1ZoU&>D#A5EuUc>8yYZ ze&KtquJVs>Z(T5Jc+M*tIv-ycilweAhq2UEHiJ*@piQxr;gg$U5SPl3nk%ZSrt-NR zq3_dyK=0nk8T_}7c%g!l1|mE|0H)cD``H_kL#-3KY@mf6-dQVYb4c{Q|A~ILGn9C) zh2EqKY=+qq{k{K0FVPiW8^)(=4T+O+UA0*Lak@5Ksf!uR%isb3LO^2#0e7Dclmbd$ zP%3vaq=06(!+XvxQJnItS?lCCVGjE9)^B14e3rrao0wLxP5CXiro-2hZ=sQtW>Qm+ zehVJZiXQY+Z=nMC_}YUW=Rx;o5rqjBululAjy(P?_@8^Q?A3=z*5}`!RGZ<`U=KYd zvzhFi?@q((zy1_pYobzlWP?jaR;v zo_s?Np=Y0euLj{eQ_(IctJM#%h`;edKjK06t|-_Q740f8-FF%Y z0$(ni2EwQN(yZi@BU&L`EewPPO8(}&-BB%8i7|1CH<#9K(dL}oO1#|HFbiR+n79kR zh9{?iiCee1Y_yDT&^vuSIA44NKT@9mhNH4wJw(i+O?D^t$dJm@~-gmy4c!?_bx8 z@r3WRAmzN7`KQ-1Kllzt`72L`jFV`k7bfmglhdMtQ};^?+E?_-bDv)6D(5NsR9LCr zf>c6tUbe0l!Z+77{CLb=>?g#Ym0spRP!e0nM*Z?G=I-{uCk@f41+V(2O3n!nBCcCT zI2rG9lY2mpir>R#k1-bd^m}Rod=nNrUf;aX9rx9EWr>CU^L@2C>@y1;Z*f3ZTHsaD zO9y~CQNxM?(=B(Z)B(a;I)m39TBT{eN~>l2-b0XqPvOo9Sq?S)pem5h@k)+%->vuyyk6{hMq_dPS zaX&rHXu@sz{DxW_CtA#dO-RHte^D!A!N@inDle*y)Ks|~97q0&U9k;4c&Bb+8_|WH z(A(>Og^f^8a<-c->i$*J8h_fqdjmc$NBjXHMeN=fP$c4!<7%nQO;y;A*BP zL(yAmBG+cQGrVhMP-?aD(aYf3T}LtTk^c)HzPPI=++Qxq?B`xo&?Ev~xWC{ZHd}+- zUvv-*S_2*-Pu-{my(a^7ttj*Z+1~EiAd;+*lDySbtt?+O18S{cTRA2CF#`iDj8D#U zE1zHrC))x`3$n%>xhFJz|597?OUJYz4W$;lRJ_?3w#6Th>v)O!pupE=df-3nc#DMzP#C`vooep?S{ zO`%_`W_V#X!f;FxQUl$umR#N z!0Fq}LOx_@6_utYaw7{__+M7}VKF7gLN@%dGa%bU?(c)#MVW8mwSxy*nQP+Bvhc*< zP7Xxkb_@BlKBOyte4A+HO<>e)F9IRv-XD`!mP?_WcH91N5AxrN*_1S97k6Zvlo zS*$R&3PnQ{f6LRvpM~NL5KE!k&?ONBOo?>2^1?8*a$O7muQ07Flz_m;Ua9}UKbapA z*~`L@Er3_#EQ#OE7vEbVAz?xyxsVF?@WY4fO5+|H#o5YYpo?d^irhteu&;&@wHM=aVR{ zn7V|}`PPz{RfGwEa{QyU6uxzrdw%3zm0O5IqVCvJ_}|ee_IpumW#xQ(UM~i(pK=wf z==Y#FqDQ|%v()IULA|_8Gl^e_e;b40c&9zT6N7a_nW>~FlV5b75rcXT@1HYhn5A|p z^))6xEupouofM4$)5mIlaOmCqXeZJ9!v%`_jS_7vV%v#Wcc;7}>GZbE=iGwjkFazrlnmE$M787lw%NBBppQ*5$Q1&7Jeil0~p%{>FRQO^!i(%N+3cg{c) zXG+Ab9i(}-`6sQIG7X>jdad}qBTEq7f^5ysVgO8%abksUJcUjBXp9KE>j$b-Kc!O# zX`5|7hZf&saZuzuWcLfolC10i2P8=+&%IbRs=yWgTBxrWfI`O$Pm0-TmhRvK&4X{3aT##12=}2;r&ga~* z8@%&AjIMho50^W7nHqlxY(C^92B+BQf(=MuNtA~bvv2r=Z_%7btVlRdA4y$9=ZPt0 z@Oc=y5#|knvMa^s{eV^%JH%q3eg3aYfYmy|6I>+Kl{HlJS0=ih#2FOZoc>zUUu*hn zOMh?DUwiuNNPnH_uPgm^$KQWAlLOlH&dwU%yH|AkoS_5$4=&{ZYXP7~C;ntOww2Zv z^>U8|)J*hDaS`k8nJ;9c(1~iwB(qVD9>hM5@m`HGrjr~R(+{awHS8oscWx*C{1AG2 ziG>Ick7!Bi5ryLmIT{}~zr^teUs{>oJgg?#4tQnS>zm12nozLd8Jl3xLvEg*@zYMd zg*fs}d2aHIMGHUPtc~4|wk6eK_9lQ!VsQ(G@ zddwpC?FqFKe|lA7c(*NDM6~T+K5dJ4Q92L@XXiCi8iu>JUdMcf0H^bNTz76@moGi- zFM_9*ziL~>6Tae);#XE08oyhB8LouiU~mxD$yl6j;P0m!UWvK4Aec&XbK|u*kuT*o zw)!CkWfkLdZfmdT0W{0=yka5d$3M8G`MWCK#lA?& z(@n*W0LsI=WHWzW*slA#HvEYtM&v$N61g`AftQ4*8qQ-N%0c(FT#@ngA~oFQdZ0D% zA)~s=Kh)+^lndN+^5wx1!GdJ*-5+}we|sPcmL*?$@>Z;>gxQ0 zn%7+sL}~oxAZAE%cmI8zT-qybB{8)nQV-w$T#vGa^(#j^7AkaIxX5OnmBT}S#ca`> z-^!ID1hT!#I1fAio@{S3`uzS2;{qZ3@m?hwN2!_0128cyfJSKp!mvh@K+S zm(9?NxlV@b1Bq7FEiBRgTON!LD6F>;h>+GX0x_$iUcuF`m<|a9p{T7MbmU1B>9rl{iQVvJg=hgK9q__^&pq^^!N=?yM6TDGVUq^6us>tc8T1UTTqg?m0 zV6qP$%L=+$*F`6TXqR$&q-%LSeTYamTFdl8d|3q+;Of{wpC{s%A3#0FHP&NX@s0GV zM7n!pYRa*aDV($!#v3-(t0`km&K5V-4I7?ZtI{FWz*{;)kL1}0jSzmS5{uv$m!Y|O zHPh!(8rUz*546!4Z<)Xf@h@5;tzHW~Sr8cCQh!ebz}q~+CXP8cW-esuMKKsYChft8 zAs8b6pmxOPSkg<8{P+>00N+%ZG1sLx^>%_}Fre7~pu%!aLO^sb8YP1_+XMrNDddXSB- zDuCSK1+6+OYGGhbASD?2#gpYV|Zp`iCut4*JQ!2?16emfpBz? z{;>!Q7_3*fVH=P*UJ&P}HdS!{0m-nd{ZN#M6w%lLBXmF4>|uJA4e2h7*9tZ|V^w^7 zIAEmSk{(2^b0c*ol05Zty&R?c+3=-`nB{O1YXl!O8d7yLT;@15S}$m$C+HNMf;A2j zllFrV=87Ck?SGTUEYL9$e=s6kE63@LC}vzs^vM2sy5S0$pm!E|p>K-ufXR9gAN->c z;#xb=D{n#z>?>-X#`3!=OxEiN^w6hxWz{C5v+aUvcnOVrPhiD`{cn>!2j zmLic<5wUG0YWzea=!5BbdQ*Xc@)LNg#;hO@e_y{#7gLCju-Y!x)9FF<-0sDCsEwX5 zKH~VxSx~qEAL_Lz%9Z|+eo>^kd$j=nb2h{|bE#g#hSetw_DFtzH<};O5q!=X4EEoa z>9a)U5i6kdfdp+)obNrL2jbQXJ%k6PGe1|QmHG$nLd)`tb1*j=t7V}ag~qvZ*63RW zl@g!m4x)nLXi}Lp7tQoR25b^h-nn&9JSP8TdGJO(ziZ8U%#RdBr1;eg)PHa@H-7bv z`ecy^Q>2jV)F!=&c%mA*Fdny2VVLJ5`JMx)SK2&qTlg~_mW?0jCX)w58?H&)^baW- z29Jq-Y98}}IP|?q1u@~GnK+us-&JRq zmBod|?&FKSyd?|gSNA{)azD}oT$}ciF1MJ9a5?tVM26l(2mk1)E9st4-m*0dRPm;K<}AN{E?n z>(?}wg$R7tg>UpsdH|6~{@(9KQ9k@zX&ST zT#e6B#RlNt5DK=+mvfD}K>dy<`fSX#|DxUim@fNeT^F%O4ujscB zS@5bJNQot{>B9)}>p%irc7wFYAinY!ee(ZmM?AQx7Y9zKU-fza4JYQN{>6X83HePw z@!xRr-_p1L7aZ5iTj2e_Ao1$A^}PQTXYw6Ao(JC1yZ*m0rv1MXOYpQm^poN&?hHj7 z#0{_p2l-~$#Sz>9bpAFX>F{kl(aGC*qGPuK=*(?I(t+D}qSLkk=%{S~I%gYcbjCKG z=zwhiI$axpj@Hh|C(hLdin!zikdD+wB3*IkOMX`WjDk?sZ0xIP@A%bje9Zs5tF9 zgE{D^YXEV{Nrom)xz13<5!c91=UW5N;nql_ldUuS#j)0iq%*BSjSjTN6P;#_d~}jE z>PwfLAngdHF>!!3p6K-Ii~{25>I_4iTaA2lXf^WDiPaNB#AfBI3Mh;Lu^y0CdtcN}^+?snz+udwTte)ZDbY z-TUij@>o&({ZG5z>11$oD+C*qi%XqRrTgLdRvPqa1HdZM(B4?!aL|#ejiJF$4sHt;B8(UA**w$0PSouVgSFR&ythk^m&LJO* z`y@vDJeBZyO7wY3@_DM~^VGoSsgci96Ff~M-emFVK8YQDp8EMbjr4h%>htuj&(k#T zrxCLP`)23#=srBB=kTGudkXcTsSN!K?sQUpW!JXfr#m z%)!MSek?;-9l<|-q1RP#>0@#7v*MQp87)XsZ=2o zTjFa1&LSuUA-0#Tmh8Ki4-Yy~25or~2n~0b&i6 zWfxo&ZMv7@9B+)n#^*?Jzfa<0y(o`<0gLF8$_(Y_aQ^30y)j+y^XaQD3O!;yz~AM3%q|8u6yx`!o0peipR}{IZyQO6XZV|ltGrb|*!*eko zYmY5wTN%q#QVR21Dr#FXg8MPnTEW$URqgC^1y={Y`UfwftNF`UdM9NNUW;sO4KJ^- z=wzCJu+LslI>!;xH@FAZYJ-p|*9Sd8~`Krl=6er_DhDtJFn2xjHHpSK13=D!@w%6O*- zhxk6Hg|K+<^kJ_(uL)sE-sv|&SV`~akWk<98;1JwH!jq-yp5s0^lpc;C~tcC!+h)8 zB8*k{PM;gb>Q^<}ueX@k(b_bz1JJwk=ESP{Oe4SQsJ;ac35 zeJx&MdcMh)<5j@^7HcVtUZ=2mox1^ux_2gxOEEK)+tO| zr?70D!mxD;yVfbpTBopTox-Sf3Y!*1qPI}IAWiqZIE6Xu6xOU$7_&}c%K}G~+n+8V zaSBTowGkP}j&%w%)+v;TQ|J(*R(i=@#+-1!zomUQ)mvS zP#j=X&?mFiDYOP!t_Y@Hr%)Pr5Xq!6oI+!u!38Sm3#TwwokFOcLZ+QUq|r43p9I<| z0ARHu+)rx0SNkYT4VQJum)p=4!R#}Eq_<)Wq zPU}||h>axT#*Qph8&wGr?@&aEkZj!Yh#rb_h{$Q17$PI` zy0F4BVmRO4g;kQ_QT#T-d}DW%p463<)YD^;C43z3+LhJN#6uBTh0nU83KOa$^`<0v zwJVE~5x?_~db1chwl0wG@5*!;`v*_!#>!}`Y9b4q$h}eP$=z5{T|^Wf&sTP13G$)X zc>Z%Y7S9`Ifs4rQELtm%D_tC#ET?^URzl0Ej0k+?LTwk^6Gp=O-Qh25-4_{-QifGk zk^Y@bw`H>8npOr8#XX#=ymlrlq8&;`>>HAqp_wd9E0ux>yNo!{A9Pn{vi!P;)yMPP z9t>ArXR<&U<2Rl^$YgQ6eGh7_EM!k2QNYo5#Foh3D+|poVsrW29%vLg13AzXD-pkd zZ_Pr}o~8 zVxw(}Xt#(IcDN8%QGGBGWb_2D$4KyIGe!eFJV*`m%rbH~! ziUN06SBOH8hFIHWK2l8jVSb~;Ba=cX{Ht3CsWn33D8>Ggc zPa$F0+y&0qO}$x3{tJZ?I9mVD-WV)}2@iZ1(dLjC_<2|kiWt#<(D3fPa943}_b3x6 zfmDf7d`TZvQ$&RD?R{8zZG9s0uaNnl_hF@Zlg{8nbX4uWXi<&Y`Foi@pf5=cMV#St z`?4xBe2#hxp3AXHp>S#Ci#XD-s zh!PIex(`lXaKy`q77kXFmfHt7SSrC!9jqb22M$(~V8sD=V*ngBfQfbX^#jmzfElJaI59=UGh;qh;yA*{rTi-OMKqL6?4;&0;CxVK!?(FnJ(K z1ROb#)t897B^j)W7t#gYeHdj6pk*TmLGDG&K}oCYAXZvN944;H^FIq?5$nJpH$z7y zCHJa$2$d6(<7ViDBr+g}m8Arp1KSAjS`JGmSYa@0D9b-To-gf*^5+g_QIxV}Fsn!K z(O_AHlp!pQp2rPg*wP=tcML(J0{%UOH6@rflqJ#n>xiK&nc$Y8tf?k0274-dWBO1Q z$rFY#KT54NjI|+{JB&4wSPCC95-oRs7)Ff9rpkzv;VfQ8Fc~p^I4dh7{5=@O_@&`2 zP{szySo;W!WGSplbA6`Q~kDYfMUR9~bHk*O!9Bei^G7Gszy9!U2lpl=1zD2dc^BC97O z#_+Ar@$3EeKJO_S96PGCiOtI1H7 z=dhq_QHY%E&WW=WO_B2Fb0%XHiR^PtjwiE9RM5-GtP!o)Hk!iPYT|;r#S&rL6bun0 zyqdzY2@ZURy)6+wmI$xjVYMlt&Qv%QMb1xT!k1Igvm#=>jEH;}iU=#VDeoeIe2)&C zHc6~4d>2A0B5)!lMf~zEi=kCoeHsQZ-EEJf%tb zqu#)kC_fp60;Gfr{0kC4ZyK0cQjZn!VrH%r&4k6#lTM5rz|i;5(Bgu>Ta+n^cWHnL zY14bqXCn5FBz5vVmMA0sBw>l--~No91j#d5ej?IhCd-hik0koGnUH5B{5g|#lnKvd zLi~HkJ82dxMyX3@v8uGvcxDzl9WZh>drK2n4B~sdg_wIg3zv!?*l@+)&zuJ z?C?H|>>~6;_X*xaqNaF=h>@M=lUmzK6{C5xPij*u6+`UQ!*Y}EV;1xg6D}InW9_2g6c_oZ@ zCm?>9SNw3V_(opwjlJRrd&Lj&iht89{w=Tgi3l6+zMte$K4RFnax0GaUc&kk{B8;B zR!{8M7ASiliu}Pcmcg43&8HhB;V6gK z0ap!;Siw5bl|v_2uuehJDM8fU!5`0gi0P%($E>!$>6k#mG=6FoYrtC$&8PC~AG3nN zBFRa4=x;htRP%*Xrg$U8Q%K8|th0hUa5k(&VSw5y6eisnl#zQ18$2{$1^)Re7V2+0 zIFR}QmDnvx+7%KI`k!= z?Nin#KssKi#O>qwyzMBGvhfMSaB1SqrO@2RKV<=70&6E>(ckoiv$D8tIZNU9)?u&7 zv!yJ!s3@j;cK-o*Nfp?;37h_=^VS1QZupY*n9@=7XY1K81*h$o*}#Sp{BQ%y4w0@M z%64BA!V|~mOXWDgKY(X$WTAvNY$F>>SK!?@;lNF7Xn^zpQNAwY_@&>v~aC_PQ%~66{iTzL@(kg#5D_FIhEoLn@#W{xZzs3FDcp1`3kw#h zqbQaBrt=lYQKOJSYCQjRD=d9b{bDN{MR&ti{)|m9$c2RduRN7czQyX%&9iXeY-8a; z!nag_=+GaxJwYk%RF%)(#v%etUldT_klMP9jS7|yDauqt6khi`6n=krzC=Fpb5?{3 z{qS=(nr>kzw4DuQpo$;|d!PniLEF{46j{yZvGU%gvbilhn@Z(*- zVEH9NF`@y-S@bei#C-}p3rgvkHKVq>8LMgH&w%TcDq@dmqCj{h|HNYNPGr@G61 zxr@b!SVscY372Z!M`5@e)}N2s&4MZ8jNNPsUB?`-hfVh*w2Q@h~X%8RzX@NEW`s}k|w!iXFT@+TCKnVsDrOc@z?`w1i>W-*r4FAa3ick zAu9AYo#%e2grl9R@ZJY8et`A%K{i!cRh7Ryh^mqM5FE|)RPEFuR82Y+iN<$SHS}gx zKK4sCjqVlBcbH8!$jOLoc~hmhfTd7=^)M?IEWMAEv$!Zdv$H6@62JN-81D2HD?~Jg zeg#^%bm7@oUD` zzJ-PZfl=Q=P2*O&%in@kz|`YlReDY--|TUcRa|#x@VRv7-IL=i&|f-H2?2ZRzrpae z(lbwBVv^2ON?*Xoe}k&hb$Na%efkgTgYk!APMlyf=*Fz}-?7C8xm&^i8Hn5i;956t ztv-#tg?_1OXsAQFWQpQN{GlpYXYv&iW6O@d`=Vfm3h}kN+M`O_$(&kCp)}{{vb^I)91SMYCnDGF9cL zM(49fmZa}ivxW}M8eOr!tf+Jf6ZRF^Ode#O{v#{oFVe45`gPe%lnunBaB>v0n{yU2zING~|$%M_DOJsxsi3E{;rvC=ZFC#AtF-trRb zV+icx@1kR`U4WYV@e(FjT%lU+GHL|4=j8D44iUx@^2c^-U zRIlz-HSa1b5+X1L5(fRD9$TMcpru`fV-p3uca=?6l9G7fH3@UCv5~>j15a7DQWj2H zh_|}NYVcmyp@D!t?m8Qz^ee;vxent4F#86}_U}haCnYEwzT)12k#{m0cE=f50MyuC z9(aLRnh;By6%v^1eqk{oA}x;6=nw1)3r3`u{1x4e!m9lW3uaY3-)6#un`|i8Vczg< zH(7T|DexQEn^T(S{>DZya_mDkGx?amRVmA8es6CtX|`_&2FAy1TLXT~;BK)+@^s zJ^F(YIglT`!`kpocUf`dJaHESsa506|HS+axbIKq2$PEyl;?YyCyTGx&1&)GKiU07 z@9^Av(3^4zgV4@UbJUmVkMFT)nRJel&e2@og-B1l&*tD-$Djx71Aui8pakSP2ciAL zYyQQ?Ab!VRY_@_sTpK=wcmaO>5aK15KL~Fk{-k&bb(uR6@`AfzRsPWd~rY7|n?E2k||<)70pw9F81%&WafVXFrYk z%}??ElKvd?C9c}t@tjR3Smy;B<1bfvsJyXKYlF>fXPYRyMu@ zCxMk06*i{((^?W*`HW7K@NYh27{Q@- zqc_3xcB3W1vZ|3uaF%LxA$VIg8XH8w@i*~YE*}d0wJ?03_Y{Ni9L*?3ShF>wE5ScB zqa(q_y3w3qo^GTOJf|Dtj)_QS)TR3nGEKOW8ExtL9|kGrZGIZqhGVT9 zeAWqm##=HXKOf?U;+Ok@Utm7)GsX}c=x;0|7!+W6_|OoeF~QyDbG}gH zO?vJWYIGyGE7a&<5YLV})6i02urRL@W+YNt-!P*O!INRe2!f6B8zTws%WsU3dD>DQ z@K~B>6)?n|5o-$=qX;LupwUa>bSIpbL7=;)prm`gpwUsL^`*4S!A1=4Qpl)B-ySb7 zWOOHJ3x|jRHVX$2fS-pOSp>r)(Ds1Y5r#wa>x{N80((y_%AZ6)1d!0NFd6{xtHMSH zf>A|KVZf0^3^-~#^CLwh;n1QG6+Gt@HF_9C$gxvYrm%rU&Z0(&g0ng*6f@fTXSWx^ z|2?J7DPctL@1pRL+-Jp%5*j7VD#|+-*NXAS#f*NGCo|GmD-){mlaWSs-k>;I4GDXS zL)rj~Mj1m0&WSP>5iA{T%usMg#O7!)1Q-}&v?AC&#u!cT=NQNe;9Dh($=VzBg>+q> z0_l2O0^NdyfhCPRf@&#atVD?852k7Hd~+$IKP40?jlKpPQyOguc&W6}(;!NYf2mS| zleMC}SFC}(jP?2YSo9xYsWQd@g7ZxHvJBe&emZX(XH+EkPMlGi;HPm$I-N=NI1XF` zHigb<2SZlnf?gc4W`U8Ex*9Z|ZVNJkJ6iJ~CAT7U;1zw6AI zIm-9?2iKn8oIO)^c6RT0b{DHzefQ0lK5x0HHC1sqq}N1;@z$A}HC0#Arv7Lg^nHJo zLi)GA8s)R0CmQ*h8y$f2a&`dk@Gw9PB8Q%}FlnG4*JAElTMZ<8SZz!)==s_zhCZ9r zs1A-P)UAVxpttLwlhB@Zag3o~)m1}Do7BUxg)XdzIM5gMu#Q28)mLexzt&gpkva`9 ztDgpW5vf1(ql1$QFnPJ=a3@q!)u$Yl*nf^p5#n%x2G7xcFdIC9X=VYoO!mxf{eg5CsWT2ObXI3v zQJ~k19oB_+{HO~?7yNb?)tt0?S2Prw+?C6Zc2!|y7wd+GL;H5a)PQd6hNDpludwT; z>XH5@Tva9Q7OtAox9>8;(O~G;;i@L-^Kir|AL6#_t~!v;?~Xx)p6`x!;-e8&d$4+Y z;7S4ea1R^=XpNp~0_monIJuz}df`e4&FqB%gI?{0sRwP+8&ey)v^Nee^hIy<7w;SC z(g*E?&hMkbd@>_2KxJIt!?>d4j=QNL5=`=}f2F z>%%NZeVW)Dwk+1MM1xg9&w`u$)8hMxhVTplBRa=zGx^bm)Gge;I8$5PiZsC#MWl zVMQo$2z?riK4Iyt?RFigD!Qj*Q~^(HYR%}Bge(W1#bZ>oPBFq#78Qe~Y)*{o!Js%f zmvD0r!rc+Y!k^??4gyFUgd>byj}OA40!1g^aKmCTzhR(%onGaXCF)vJeMgPTe;SCB z=~=AO@7MH;!`y-MfH-sux+M;W45|j>WP-*F#+-%j9gM4#4mQEfH4u-qzY&kgiGt90 z+|tFhaWjmbidPNE&YysBgLX{7I6=|0_N02$BjZ)Y*Zlc=F%BnDQ4_1WH5^rkyrLYe zGtlJ@jt2CyqZ)Iz)fTG0iu*8L<@0S4J32ZkC6Rvr!6$qOPPYaTZq^XA2zqe{Zl0hj z5z`j0E$W|$EpC)6TKywYnKtekiT{KkH_tkrqx6%LE`PCFm4mkHq z!BPd?m4amt`nTcjhoQ-MzyFp6s=E8-FdR=9PlwS=40VH2ajAvQPsPsAhpFf{wDxe^ z`9hZs=bfJnrHcLaxpwrV}0hZY@&yC!JAaTsps%5fMB=q;lGWd;_OGn??Re~uRi8v7KVfTID8oWOPMn1BI;o%=l= zo3`(9tjzbg&I|8hz)@aeA|@0xej@kz@I>?x@78a>0JrynlT>vwoJp9C(2bL@SVNyr zLPwx&C!>SV4<=*ALr+e|eF!vQ3eFSgyHjx9KtG>?MnH2-MMt3Rrm6ux5rKLQ$efBb zpx*~r#(tQp>J}u5RpthDFlY|wy*_!dI!;qQ^!?Ia)3887*Gxl0pubO3bxEtG<7xoi zn2uE+T3|Yt_neM~z+N$3rRK(095=hFgBvvi=Ov8gGjJH8f6lLeP4AitPA{Rq7Qj`<9mU%SD>v|Gt`^;2gk(V*^K7y z*7var;rjtC7OJ{#&@5G_$a6d(h`v?BPFO+l0luO5)p1}rKFPX%mMTTQM`q!M3L21! zCO{K2)mYNonYfBUJI%&b7P@RUW;EWxzi*+!S3KunwSw{P92{ck;W_9$)Nd}P5j1M9 zYTz>>3@xqTrevbZQghImD|6Ya+B{qs;gvoQr!Vx(JdRR23zHEadP&N{%`Wsr7KRdv z6{xb?Y(5Ssj0yA6UMNn-ex#T+v7|WXQ+-CZLzQ^llUZ((r~n5blN5t8mJ}VB$d1Kb zI};lE>OD)@C1+Tcs^%X505>?;L1kl9p#zQX&BlC(?Y9UcLwu3yp=f_+EQZ-VcpxwS zro2eC$*I6L4yb1{}hU6StJ&%}yYW(f{43Zj;%INoLUO!t#?l-yoI ze-;R#E(f>+ma1B0%wCE?gkD{WenZ{3W*czN$!aVdM?jd&uwhJ0k?MWU%NrY7u3zTNX@wDE?KKW-T!V- z1>Ka5Dj&Iw+K4MV^z23z&8|7*n&a+U2iIvIt0Gjo@M8}A^kd9c*v&SfVk9!H*o1=& z{dJS-SMYEt?0A>=vd{*m}=bwXNXWELJlaW`*90N$~r>)C>dFuRo7 zc?*^iXyz6iD(KH!&>d*-Cs+)<-xU4taqh#Ns;!GxNfo3guHBfeYCu6< zo)5WCPCnPW4S&9h9X28wX&oqkeH;1+9k~sM9(sBkehWeCZ^tk}mu|DG4ET)O$uVy1#0cm%R3+c4x($?fo1Y>r z*`?w*QUH|({3}vg>Ih5*`1Ie6YbW&7ZrnmbF)Ah9ihEQI$`I?i2eTVGdk>ar=ofp` z7-WpK{8aUYEcsMRU#C#d5jC20@)6$e*%393?1^8n|9`*0pKM@{ zJj(j$DE@QdibnkhbUC;{O;GE>7Svqtl+yUoRh<;B|9z30eSGr=FLPIX#2OD(f1^mu} zmcPh4^&)P%U_ZHta}L_@TTCz{{jL2LqXm8bE!qwpa7m>W=A>Av<|h7eqYvP(#yQ{8 zRrNAf`IO)SetGbY0=Lz7XexB$ceq?ZOJ2rrIq0Oz`0)t+{W6X)bm;fEO@RLVJyv5V z>a5^~U%~l~Y{P|DaK1w?UBSpg8~=cYLRbHw`WMokHKPXRHO#_@8;d6F*}xVb}Xb4du24QriOm-L{D9s$||QJS6A(UdIqa$6x0t z-(BY@fj79e#W!$nqx|v>6@h%q`oF5?kP*M)6kF(?{#C#R`uK^4^$a!?|z`YZa+{pVU>EQqX#|2m?XO~4^=G) zDkiooykvE9U#w`$sK)esEt=4kt;s4wKY!^WJi~u_YP!c1+ZUH9Z zUILPu2#@_1=qe6QqN69-jVM2C%N@#P1UO1SXCEG8aNGhN;e@qxE+hO;37E=lIwOEG z7vXVE03v#cTp*$|4=-X1;5!R+9p76^r!b=U2Lag}GDiSqEyCj`0Vd)v1awm3b!@@o zCIj?e*Ku3Q_j8210uC{_FTg~2L_p^wKE@V8{%(Pe_@}jWrXq@;2{8UI0KA+-_!lcRBKc77(8Lm*dkB|i0!+x}1ay*M z3v9uowFSD4Hr8@(aKsP+lywOI_5vuu5TL_k%>S1{b|M#@BG?&QaOq}&uA{rPbbcX< zdkQFx8(4te0w{$LAVPqN*q;Dp3pxX^<%LVMCAy9nYw5f}6vqmn9RT79=x2Bn7$jPt z10-8Z=MBO?MS$@iPCzFDrqTR^%P329gmp`ZqoKxI{IRcD-76F|JI3HUGu+ReCgluc+96=N> z7GV6B5%B7Sz~$J4%Ss{ybc9vb(y4+dUL(NxuP30h0ykg_9-A!C0k&8R`GUH5s{qOm zg#Y%*wEpV|lphGPQ(R2QJp^OvrKsB;^iuylH{1qoTEtx~H2^SpX&N z!T&!3C}$6#8UdYRSDk^s1zsJpmNk*Pr+26$fD-l)p`HNB&jV;6z=Ui}KXlqbqu$bPS->62m!`_G=WNVje7@M@EB`>4lv$YP7TU! zL-_zfKu|{ktx7LoJ+u~)A8nE6D|vg z5YTljw3hRfBV-FO{!0i*{v86Wus{b`X)T?>hvHQNC|?g??G##nbTZyLCL76xfR3=q zS~^V+J8ThP{I?O%X?NSP1&>`8=m2}H<^0Bd*eihjz0N)&l5B?vhb+($j#x{l>Y@0k zfc@A4_=ZgE|(>e;a?>r~jO~KyFHIPXVtE z+>jlcSVyNRgCGHvh=;0M324ort$+{)p#nNE=p>*sgKh$lsi!AlPa(b7B|<=71_K08 z<{la{P(TcWI02Nu2M5|S_Cf^X@)Jl|Jw3hQN7he|eJ%g(Pau{3_U?N@@ zU}D@9z%jhe9U&&jeF8cY@&UHckjED2gYuiToZq?lseoq;UI?I6N(6WX`G_1b7q$TM z3h?G*Qb34eP)L9;gQ5aVvtAQm8d5@lX-H`SrXjBjFb#RbE5tP9Ediz>l?9lFR3Sib zxOJ*x3%#jffgT@!YuV!31avZI9rmwp0sL_j-q4yl*%R@a3TVbVG#AiYdJHyc$R=n26F|>W3WJg%OG38A_hwdcy*=An0zQMD;ca7u!g~U0UH=> z60n)URsq`>>=dwz!KVWD()gqI`-GU@9~5BvdqjZg?=bF#*| zFORzE??rJj{rygW>F*T*roTA?On9ormjDyvm2_LFiIGPGFEzsi@gbtqc=KZm4fR-{n^nkKjxQG% z6+mgf@GmByID=9GOvJJRObl;%AtuP10!)xf1azWqWo)6EDi-KwRkM~;os0bi1Td&0 zfHHj%pn-sfUM5Y1G-VJZpgDt90$MX@D1(^Ph6kz)MjsVl&u>wqg zX>hrBroR&fnC?#b$HnwFom{E~c_)y47c3CZ84TJRpOtU@~U>dSTfN97!0j4241(=5HNvG?N?(8y@p&_4%i)qMy z0j42`2|;xg~4zEX$(dQ7|mde zfUyj`0wyq+q=A>-_c@u#G;yIsdel2zKpcBy2rwuv`9grHL=5Lk3R-{Knu<0Z$qH zSAePFe+=mU!$i%6q;777iJDh{iJG54H~KwR09%*_1uf9+^tF~#n2Y@cyvm@sfD#N! zdxex?Qci%Wqk;evwW0tM^=$zrYE=R{6Tcd^(9W6`=ynEJ%c(Vk&;PnY>hTT@1vFyN zR6sKZ%>}ez&{{w+gAf7j7<3R2#-Q^Iy8g=}188WtxO8WiUIKbE=qsQfgGd2U3}OTf zVlY@hJcA(u5^4NV?@%Er42BCxV=zjM>10cM=n2{7Zl zQGgle%>oj!g?hINFvGm#pFuO@yjxt%IPWFU7|$j+pK*}=7U;=*&|1zRF8)HmQ3hWL zIL_dtfKz7vpA~YBT`mYPm0l8Hs`*}ksphHxQ_W8TPGJkZ|AhcOLE>Cza8u8Jex?NF zx260Jm){rgfWcz{PZ<0m;7@Ne|dzMs6GVv(GqOI!()LS z@20oXHZH&X$G$wfb%~;lQ+c0M14zuiCS5JiCTpKJ+|Uh#TM$V zVS#R^zqOnIF0Lb>E`tU$>HO0X8Zv1jE+%B4028Ez028D&0eXPN3C0#$5n_REMSE*G zp;_u^pIM-f%RXy4`?>g#fWr)q3OL5#xPY%2oDy)F!8rqP{+(xXQC#*g_)dVS z_lf{hZ;k*{?==CY-s=KPy*CNSJALW?^NuCDv-hm!Ea1D~2Le7|@JPU722TVmWAM8G zdT%hs^CcGR|( zek2NY)D`f6{p$-b0U8m|&k#LfkERyrh~7YJI)89^a{#sR5iA3nDi%t@@ z5G2I{eWX&YWs64;&<|k+a>&sZX#aPu<+R}9u>x8%7!Tm(2yK~65SR80CJLYjz0jt~ z0y;C8Dxe#KbOAjW%n;CVa|p;=%TaHZ1-fqwtmO>kkP8LGGRPJX z&tS2DAqt#=K;R4K)3UvwVbW&e@Va&2A2hF zX7B?6{qc!C41TnLuYcF9>3qiJzX&ip{7OJSHFtnLZd;(+bk|zWVJ^Ne;3$KK0={DK zm;s&tCz$*uE~gp%A>bT?rvff8crM@)gBJq6XYfA(R~fwW{!2Z<{bwE``cb`W?BZjA z?ppzCIoG+^BY>Xj!|^F3;0}Yr0`4;?D&P@=S1s^5zcDFhiSs9e5(1txC?()824w`8 zhLq-R+bWh&0mXnu@E4@$GU%f+qCU1)iJuQg7RT1FJpqhZ93~C5?je);_ z5)5hyD9xabfY-fD>Ir#+K?4DAF=!;9GJ_@psxW9KpgMyf0sahH2&m1V)%#E$fO<@V z#ib#GwgQ?kXeWRkTEq~A3TVL~Oh9V}odmRH&_#f^J(F%i!WeWHV2))k0`#>&rwe;T zSfCGXKWjPRTs%NPPXD zTgw^6#Zv{Ondvv32tR^}co|~RkAqp(a(>UHtD7U>VO|Zg1oUIz3h2%tTfj{QODw?u z|MAg5mRsT!E~LRq0riS%uv$P32I~ZT!C<2R$4~FFS-_VJwptMHqH883Cqm=LML)UDUw6R>M=( zhrfy9`qlIlZ=$#R=o|A4U%XYiLR{+5ZWT?2*=%iSBE0N)$Zd6TA z$q4Pk-#_8~W3YR4LUL@X@r&fxg(!B+(4>@vL@DaWMTG~aMyJI8|Apc1*_xi$xUKQ- z?V6slydCQn^!Jphr0ea-0g4R7hc(dT3h~j&gZ>HM#cl8JsmLE<;qRMd_@$&KBt@s9 zmm`v6(h`Oy+g|c_PBKbT3x^I*prYu+|Kr79J;^ANlrTDW(ElmrZ=Ylo!^<_22Sq0i zO^zj(!Y|b`&VA-@dy?js3GkF}tb4+rJIN@N9G#XhGPZ(#wYM2S{^Ci7q5=Fj$Eyqj zJQaCRChW=%@YE=ryKta;Ajm^c75^US>7Ls+(CrZ98U8PPFUT{HaM$LZxPRdr%^8Qb zcnRmUVBEUpOZZYt#?4y2gwM8OT)(wvmWf@}{rh(QeD0Ihp1R665Gzbsr|LY{@0L$_ pw_~tp$je?ggFSVrZROf{X1`qWLz{p0@BGjHEq9G>>nWY*{{dj5^c4UA diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html index b12fcdd3bb..4c01539610 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html @@ -1389,7 +1389,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  1. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  2. inner_learning_rate (float) – The learning rate of the inner loop.

  3. -
  4. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd6a8a4ae60>) – The function used for the inner loop optimization. +

  5. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f3eb5472e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  6. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  7. @@ -1520,7 +1520,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  8. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  9. inner_learning_rate (float) – The learning rate of the inner loop.

  10. -
  11. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd6a8a4ae60>) – The function used for the inner loop optimization. It takes the learnable +

  12. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f3eb5472e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  13. diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index b9257bc2ed..1856c095ba 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1392,7 +1392,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  14. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  15. inner_learning_rate (float) – The learning rate of the inner loop.

  16. -
  17. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd6a8a4ae60>) – The function used for the inner loop optimization. +

  18. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f3eb5472e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  19. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  20. diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index 76dfcd47e8..3d26627a9c 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1392,7 +1392,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  21. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  22. inner_learning_rate (float) – The learning rate of the inner loop.

  23. -
  24. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd6a8a4ae60>) – The function used for the inner loop optimization. +

  25. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f3eb5472e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  26. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  27. diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index a7622b5c06..090e0cf710 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1389,7 +1389,7 @@

    reptile_stepContainer) – Variables to be optimized.

  28. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  29. inner_learning_rate (float) – The learning rate of the inner loop.

  30. -
  31. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd6a8a4ae60>) – The function used for the inner loop optimization. It takes the learnable +

  32. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f3eb5472e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  33. diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index cd5bc5e85a..12f0ebf016 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1378,7 +1378,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7fd69c0ddd20>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f3ea89e5d10>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index 7671ad3e0a..e956ae83ac 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1505,8 +1505,8 @@
  34. strides – The stride of the sliding window for each dimension of input.

  35. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  36. -
  37. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865b460>) – Initializer for the weights. Default is GlorotUniform.

  38. -
  39. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865b400>) – Initializer for the bias. Default is Zeros.

  40. +
  41. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5043340>) – Initializer for the weights. Default is GlorotUniform.

  42. +
  43. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb50432e0>) – Initializer for the bias. Default is Zeros.

  44. with_bias (default: True) – Whether or not to include a bias term, default is True.

  45. data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  46. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  47. @@ -1543,8 +1543,8 @@
  48. strides – The stride of the sliding window for each dimension of input.

  49. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  50. -
  51. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865b3a0>) – Initializer for the weights. Default is GlorotUniform.

  52. -
  53. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865b340>) – Initializer for the bias. Default is Zeros.

  54. +
  55. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5043280>) – Initializer for the weights. Default is GlorotUniform.

  56. +
  57. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb5043220>) – Initializer for the bias. Default is Zeros.

  58. with_bias (default: True) – Whether or not to include a bias term, default is True.

  59. output_shape (default: None) – Shape of the output (Default value = None)

  60. data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  61. @@ -1582,8 +1582,8 @@
  62. strides – The stride of the sliding window for each dimension of input.

  63. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  64. -
  65. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865b2e0>) – Initializer for the weights. Default is GlorotUniform.

  66. -
  67. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865b280>) – Initializer for the bias. Default is Zeros.

  68. +
  69. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb50431c0>) – Initializer for the weights. Default is GlorotUniform.

  70. +
  71. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb5043160>) – Initializer for the bias. Default is Zeros.

  72. with_bias (default: True) – Whether or not to include a bias term, default is True.

  73. data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  74. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  75. @@ -1620,8 +1620,8 @@
  76. strides – The stride of the sliding window for each dimension of input.

  77. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  78. -
  79. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865b220>) – Initializer for the weights. Default is GlorotUniform.

  80. -
  81. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865b1c0>) – Initializer for the bias. Default is Zeros.

  82. +
  83. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5043100>) – Initializer for the weights. Default is GlorotUniform.

  84. +
  85. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb50430a0>) – Initializer for the bias. Default is Zeros.

  86. with_bias (default: True) – Whether or not to include a bias term, default is True.

  87. output_shape (default: None) – Shape of the output (Default value = None)

  88. data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  89. @@ -1659,8 +1659,8 @@
  90. strides – The stride of the sliding window for each dimension of input.

  91. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  92. -
  93. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865b0a0>) – Initializer for the weights. Default is GlorotUniform.

  94. -
  95. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865b040>) – Initializer for the bias. Default is Zeros.

  96. +
  97. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5042f80>) – Initializer for the weights. Default is GlorotUniform.

  98. +
  99. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb5042f20>) – Initializer for the bias. Default is Zeros.

  100. with_bias (default: True) – Whether or not to include a bias term, default is True.

  101. data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  102. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  103. @@ -1697,8 +1697,8 @@
  104. strides – The stride of the sliding window for each dimension of input.

  105. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  106. -
  107. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865afe0>) – Initializer for the weights. Default is GlorotUniform.

  108. -
  109. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865af80>) – Initializer for the bias. Default is Zeros.

  110. +
  111. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5042ec0>) – Initializer for the weights. Default is GlorotUniform.

  112. +
  113. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb5042e60>) – Initializer for the bias. Default is Zeros.

  114. with_bias (default: True) – Whether or not to include a bias term, default is True.

  115. output_shape (default: None) – Shape of the output (Default value = None)

  116. data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  117. @@ -1761,8 +1761,8 @@
  118. strides – The stride of the sliding window for each dimension of input.

  119. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  120. -
  121. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865b160>) – Initializer for the weights. Default is GlorotUniform.

  122. -
  123. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865b100>) – Initializer for the bias. Default is Zeros.

  124. +
  125. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5043040>) – Initializer for the weights. Default is GlorotUniform.

  126. +
  127. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb5042fe0>) – Initializer for the bias. Default is Zeros.

  128. with_bias (default: True) – Whether or not to include a bias term, default is True.

  129. data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  130. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  131. @@ -1918,7 +1918,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865af20>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5042e00>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -1977,8 +1977,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd6a865b520>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd6a865b4c0>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3eb5043400>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3eb50433a0>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 194f0d7ef3..9705bc4944 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7fd6a8a4ae60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7fd69c0ddd20": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7fd6a865b460": 779, "0x7fd6a865b400": 779, "conv1dtranspos": 779, "0x7fd6a865b3a0": 779, "0x7fd6a865b340": 779, "filter_shap": 779, "0x7fd6a865b2e0": 779, "0x7fd6a865b280": 779, "0x7fd6a865b220": 779, "0x7fd6a865b1c0": 779, "0x7fd6a865b0a0": 779, "0x7fd6a865b040": 779, "conv3dtranspos": 779, "0x7fd6a865afe0": 779, "0x7fd6a865af80": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7fd6a865b160": 779, "0x7fd6a865b100": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7fd6a865af20": 779, "get_initial_st": 779, "0x7fd6a865b520": 779, "0x7fd6a865b4c0": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "thread": [837, 855], "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"default_dtype": [[154, "default-dtype"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "default_int_dtype": [[156, "default-int-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "check_float": [[151, "check-float"]], "ones_like": [[138, "ones-like"]], "is_native_dtype": [[171, "is-native-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "is_bool_dtype": [[166, "is-bool-dtype"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "invalid_dtype": [[165, "invalid-dtype"]], "as_native_dtype": [[146, "as-native-dtype"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "astype": [[147, "astype"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "set_default_dtype": [[177, "set-default-dtype"]], "tril": [[140, "tril"]], "finfo": [[160, "finfo"]], "triu": [[141, "triu"]], "promote_types": [[173, "promote-types"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "zeros_like": [[144, "zeros-like"]], "triu_indices": [[142, "triu-indices"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "result_type": [[175, "result-type"]], "iinfo": [[163, "iinfo"]], "broadcast_to": [[149, "broadcast-to"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "dtype": [[158, "dtype"]], "zeros": [[143, "zeros"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "can_cast": [[150, "can-cast"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "Motivation": [[843, "motivation"]], "ML-Unifying Companies": [[857, "ml-unifying-companies"], [861, "ml-unifying-companies"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "Multi-Vendor Compiler Frameworks": [[858, "multi-vendor-compiler-frameworks"], [861, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "Sharp bits": [[850, "sharp-bits"], [849, "sharp-bits"], [848, "sharp-bits"]], "Examples": [[850, "examples"], [849, "examples"], [848, "examples"], [799, "examples"], [821, "examples"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "ML Explosion": [[844, "ml-explosion"]], "One liners": [[847, "one-liners"]], "Wrapper Frameworks": [[862, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "API Standards": [[861, "api-standards"], [852, "api-standards"]], "Frameworks": [[861, "frameworks"], [855, "frameworks"]], "Graph Tracers": [[861, "graph-tracers"], [856, "graph-tracers"]], "Exchange Formats": [[861, "exchange-formats"], [854, "exchange-formats"]], "Compiler Infrastructure": [[861, "compiler-infrastructure"], [853, "compiler-infrastructure"]], "Vendor-Specific APIs": [[861, "vendor-specific-apis"], [859, "vendor-specific-apis"]], "Vendor-Specific Compilers": [[861, "vendor-specific-compilers"], [860, "vendor-specific-compilers"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "Design": [[833, "design"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [31, "Round-Up"], [23, "Round-Up"], [11, "Round-Up"], [22, "Round-Up"], [32, "Round-Up"], [19, "Round-Up"], [18, "Round-Up"], [27, "Round-Up"], [21, "Round-Up"], [29, "Round-Up"], [20, "Round-Up"], [28, "Round-Up"], [30, "Round-Up"], [17, "Round-Up"], [13, "Round-Up"], [33, "Round-Up"], [40, "Round-Up"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "Glossary": [[842, "glossary"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "Array API Standard": [[852, "id1"]], "Related Work": [[851, "related-work"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "eye": [[127, "eye"]], "Data classes": [[103, "data-classes"]], "try_except": [[119, "try-except"]], "empty_like": [[126, "empty-like"]], "Nested array": [[100, "nested-array"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "softmax": [[112, "softmax"]], "native_array": [[135, "native-array"]], "relu": [[110, "relu"]], "softplus": [[113, "softplus"]], "softsign": [[114, "softsign"]], "Container": [[98, "container"]], "hardswish": [[106, "hardswish"]], "full": [[130, "full"]], "ones": [[137, "ones"]], "logspace": [[133, "logspace"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [69, "module-ivy.data_classes.container.base"], [91, "module-ivy.data_classes.factorized_tensor.base"]], "meshgrid": [[134, "meshgrid"]], "leaky_relu": [[107, "leaky-relu"]], "one_hot": [[136, "one-hot"]], "array": [[122, "array"]], "cmp_is": [[115, "cmp-is"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [74, "module-ivy.data_classes.container.elementwise"], [51, "module-ivy.data_classes.array.elementwise"]], "asarray": [[123, "asarray"]], "for_loop": [[117, "for-loop"]], "full_like": [[131, "full-like"]], "arange": [[121, "arange"]], "linspace": [[132, "linspace"]], "mish": [[109, "mish"]], "Array": [[97, "array"]], "while_loop": [[120, "while-loop"]], "if_else": [[118, "if-else"]], "Functions": [[104, "functions"]], "frombuffer": [[129, "frombuffer"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "gelu": [[105, "gelu"]], "sigmoid": [[111, "sigmoid"]], "log_softmax": [[108, "log-softmax"]], "cmp_isnot": [[116, "cmp-isnot"]], "empty": [[125, "empty"]], "from_dlpack": [[128, "from-dlpack"]], "Factorized tensor": [[99, "factorized-tensor"]], "copy_array": [[124, "copy-array"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "Backend": [[786, "backend"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "Logging": [[796, "module-ivy.utils.logging"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Exception Handling": [[823, "exception-handling"], [818, "exception-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Continuous Integration": [[813, "continuous-integration"], [820, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Array API Tests": [[813, "array-api-tests"], [808, "array-api-tests"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Setting Up": [[805, "setting-up"], [819, "setting-up"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "PyCharm": [[805, "pycharm"], [820, "pycharm"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Lint Formatting": [[820, "lint-formatting"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Arguments in other Functions": [[815, "arguments-in-other-functions"], [814, "arguments-in-other-functions"]], "Device handling": [[815, "device-handling"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Deep Dive": [[807, "deep-dive"]], "Error Handling": [[802, "error-handling"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Ivy Frontends": [[826, "ivy-frontends"]], "Introduction": [[826, "introduction"], [827, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Helpful Resources": [[803, "helpful-resources"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Contributing": [[800, "contributing"], [799, "contributing"]], "Docstrings": [[817, "docstrings"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [83, "module-ivy.data_classes.container.norms"], [60, "module-ivy.data_classes.array.norms"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Nestable Functions": [[822, "nestable-functions"], [812, "nestable-functions"], [821, "nestable-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "nested_map": [[717, "nested-map"]], "copy_nest": [[706, "copy-nest"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "layer_norm": [[724, "layer-norm"]], "repeat": [[692, "repeat"]], "nonzero": [[734, "nonzero"]], "all_nested_indices": [[705, "all-nested-indices"]], "randint": [[726, "randint"]], "fomaml_step": [[702, "fomaml-step"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "argmin": [[732, "argmin"]], "nested_any": [[715, "nested-any"]], "argwhere": [[733, "argwhere"]], "stack": [[697, "stack"]], "nested_argwhere": [[716, "nested-argwhere"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "swapaxes": [[698, "swapaxes"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "reptile_step": [[704, "reptile-step"]], "flip": [[690, "flip"]], "roll": [[694, "roll"]], "squeeze": [[696, "squeeze"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "seed": [[729, "seed"]], "multi_index_nest": [[714, "multi-index-nest"]], "nested_multi_map": [[718, "nested-multi-map"]], "tile": [[699, "tile"]], "zero_pad": [[701, "zero-pad"]], "unstack": [[700, "unstack"]], "random_normal": [[727, "random-normal"]], "argmax": [[731, "argmax"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "random_uniform": [[728, "random-uniform"]], "shuffle": [[730, "shuffle"]], "where": [[735, "where"]], "index_nest": [[708, "index-nest"]], "multinomial": [[725, "multinomial"]], "maml_step": [[703, "maml-step"]], "reshape": [[693, "reshape"]], "prune_empty": [[719, "prune-empty"]], "split": [[695, "split"]], "map": [[711, "map"]], "permute_dims": [[691, "permute-dims"]], "einsum": [[746, "einsum"]], "unique_counts": [[737, "unique-counts"]], "Data-dependent output shape": [[737, null], [736, null], [738, null], [739, null], [632, null], [632, null], [632, null], [632, null]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "load": [[756, "load"]], "unique_all": [[736, "unique-all"]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "argsort": [[740, "argsort"]], "searchsorted": [[742, "searchsorted"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "Testing": [[774, "testing"], [40, "Testing"]], "all": [[754, "all"]], "Converters": [[776, "module-ivy.stateful.converters"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Utils": [[773, "utils"]], "unique_inverse": [[738, "unique-inverse"]], "msort": [[741, "msort"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "sum": [[752, "sum"]], "std": [[751, "std"]], "cumsum": [[745, "cumsum"]], "Module": [[781, "module-ivy.stateful.module"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "Framework classes": [[772, "framework-classes"]], "max": [[747, "max"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [46, "module-ivy.data_classes.array.activations"], [68, "module-ivy.data_classes.container.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [566, "parameter"], [573, "parameter"], [567, "parameter"], [576, "parameter"], [572, "parameter"], [575, "parameter"], [618, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [205, "parameter"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "min": [[749, "min"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "var": [[753, "var"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "cumprod": [[744, "cumprod"]], "save": [[757, "save"]], "sort": [[743, "sort"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "unique_values": [[739, "unique-values"]], "mean": [[748, "mean"]], "prod": [[750, "prod"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "any": [[755, "any"]], "eigh": [[659, "eigh"]], "svd": [[674, "svd"]], "matrix_power": [[666, "matrix-power"]], "multi_head_attention": [[649, "multi-head-attention"]], "nms": [[650, "nms"]], "lu_factor": [[663, "lu-factor"]], "outer": [[669, "outer"]], "matrix_norm": [[665, "matrix-norm"]], "eig": [[658, "eig"], [421, "eig"]], "dropout": [[646, "dropout"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "slogdet": [[672, "slogdet"]], "constant_pad": [[688, "constant-pad"]], "vector_norm": [[681, "vector-norm"]], "matrix_transpose": [[668, "matrix-transpose"]], "diag": [[656, "diag"]], "solve": [[673, "solve"]], "trace": [[678, "trace"]], "qr": [[671, "qr"]], "expand_dims": [[689, "expand-dims"]], "roi_align": [[651, "roi-align"]], "cholesky": [[653, "cholesky"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "concat": [[687, "concat"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "lstm_update": [[648, "lstm-update"]], "matmul": [[664, "matmul"]], "linear": [[647, "linear"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "diagonal": [[657, "diagonal"]], "det": [[655, "det"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "vander": [[679, "vander"]], "tensordot": [[676, "tensordot"]], "cross": [[654, "cross"]], "pinv": [[670, "pinv"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "cross_entropy": [[684, "cross-entropy"]], "matrix_rank": [[667, "matrix-rank"]], "svdvals": [[675, "svdvals"]], "eigvalsh": [[660, "eigvalsh"]], "vecdot": [[680, "vecdot"]], "inner": [[661, "inner"]], "clip": [[686, "clip"]], "tensorsolve": [[677, "tensorsolve"]], "inv": [[662, "inv"]], "itemsize": [[559, "itemsize"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "set_item": [[569, "set-item"]], "set_min_base": [[570, "set-min-base"]], "scatter_nd": [[565, "scatter-nd"]], "try_else_none": [[588, "try-else-none"]], "unset_array_mode": [[589, "unset-array-mode"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "multiprocessing": [[561, "multiprocessing"]], "shape": [[578, "shape"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "strides": [[581, "strides"]], "set_array_mode": [[566, "set-array-mode"]], "is_ivy_array": [[553, "is-ivy-array"]], "is_ivy_container": [[554, "is-ivy-container"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "set_precise_mode": [[573, "set-precise-mode"]], "set_min_denominator": [[571, "set-min-denominator"]], "stable_pow": [[580, "stable-pow"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "is_native_array": [[556, "is-native-array"]], "is_array": [[552, "is-array"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "isin": [[557, "isin"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "to_numpy": [[586, "to-numpy"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "stable_divide": [[579, "stable-divide"]], "to_list": [[584, "to-list"]], "scatter_flat": [[564, "scatter-flat"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "to_native_shape": [[585, "to-native-shape"]], "to_scalar": [[587, "to-scalar"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "isscalar": [[558, "isscalar"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "match_kwargs": [[560, "match-kwargs"]], "unset_min_base": [[592, "unset-min-base"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "nanprod": [[519, "nanprod"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "inplace_decrement": [[548, "inplace-decrement"]], "inplace_increment": [[549, "inplace-increment"]], "nanmedian": [[517, "nanmedian"]], "exists": [[536, "exists"]], "current_backend_str": [[531, "current-backend-str"]], "gather": [[540, "gather"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "inplace_update": [[550, "inplace-update"]], "bincount": [[508, "bincount"]], "nanmin": [[518, "nanmin"]], "cummax": [[511, "cummax"]], "einops_reduce": [[534, "einops-reduce"]], "quantile": [[520, "quantile"]], "default": [[532, "default"]], "cov": [[510, "cov"]], "histogram": [[513, "histogram"]], "arg_names": [[524, "arg-names"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "fourier_encode": [[537, "fourier-encode"]], "container_types": [[530, "container-types"]], "cummin": [[512, "cummin"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "has_nans": [[546, "has-nans"]], "corrcoef": [[509, "corrcoef"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "all_equal": [[522, "all-equal"]], "igamma": [[514, "igamma"]], "nanmean": [[516, "nanmean"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "arg_info": [[523, "arg-info"]], "optional_get_element": [[521, "optional-get-element"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "gather_nd": [[541, "gather-nd"]], "array_equal": [[525, "array-equal"]], "get_num_dims": [[544, "get-num-dims"]], "native_sparse_array": [[506, "native-sparse-array"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "get_item": [[543, "get-item"]], "einops_rearrange": [[533, "einops-rearrange"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "median": [[515, "median"]], "einops_repeat": [[535, "einops-repeat"]], "cache_fn": [[527, "cache-fn"]], "unravel_index": [[501, "unravel-index"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "instance_norm": [[491, "instance-norm"]], "fliplr": [[464, "fliplr"]], "moveaxis": [[472, "moveaxis"]], "gamma": [[499, "gamma"]], "hstack": [[469, "hstack"]], "lexsort": [[503, "lexsort"]], "top_k": [[483, "top-k"]], "batch_norm": [[489, "batch-norm"]], "take": [[481, "take"]], "put_along_axis": [[478, "put-along-axis"]], "trim_zeros": [[484, "trim-zeros"]], "fold": [[466, "fold"]], "rot90": [[479, "rot90"]], "i0": [[470, "i0"]], "heaviside": [[467, "heaviside"]], "flatten": [[463, "flatten"]], "partial_fold": [[474, "partial-fold"]], "bernoulli": [[496, "bernoulli"]], "hsplit": [[468, "hsplit"]], "poisson": [[500, "poisson"]], "expand": [[461, "expand"]], "dirichlet": [[498, "dirichlet"]], "lp_normalize": [[495, "lp-normalize"]], "group_norm": [[490, "group-norm"]], "unique_consecutive": [[486, "unique-consecutive"]], "l2_normalize": [[493, "l2-normalize"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "matricize": [[471, "matricize"]], "soft_thresholding": [[480, "soft-thresholding"]], "dstack": [[460, "dstack"]], "unfold": [[485, "unfold"]], "take_along_axis": [[482, "take-along-axis"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "beta": [[497, "beta"]], "partial_unfold": [[476, "partial-unfold"]], "fill_diagonal": [[462, "fill-diagonal"]], "flipud": [[465, "flipud"]], "vstack": [[488, "vstack"]], "vsplit": [[487, "vsplit"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "l1_normalize": [[492, "l1-normalize"]], "local_response_norm": [[494, "local-response-norm"]], "pad": [[473, "pad"]], "invert_permutation": [[502, "invert-permutation"]], "Searching": [[631, "searching"], [376, "searching"], [62, "module-ivy.data_classes.array.searching"], [85, "module-ivy.data_classes.container.searching"]], "conv": [[636, "conv"]], "lamb_update": [[608, "lamb-update"]], "stop_gradient": [[611, "stop-gradient"]], "Experimental": [[620, "experimental"], [75, "module-ivy.data_classes.container.experimental"], [52, "module-ivy.data_classes.array.experimental"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [73, "module-ivy.data_classes.container.device"], [50, "module-ivy.data_classes.array.device"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [86, "module-ivy.data_classes.container.set"], [63, "module-ivy.data_classes.array.set"]], "Sorting": [[633, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "Utility": [[635, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "vmap": [[601, "vmap"]], "conv3d": [[641, "conv3d"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "Random": [[630, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "Control flow ops": [[615, "control-flow-ops"]], "conv1d": [[637, "conv1d"]], "adam_step": [[602, "adam-step"]], "value_and_grad": [[612, "value-and-grad"]], "lars_update": [[609, "lars-update"]], "value_is_nan": [[600, "value-is-nan"]], "conv2d": [[639, "conv2d"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "jac": [[607, "jac"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "optimizer_update": [[610, "optimizer-update"]], "General": [[621, "general"], [366, "general"], [76, "module-ivy.data_classes.container.general"], [53, "module-ivy.data_classes.array.general"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "Statistical": [[634, "statistical"], [380, "statistical"], [65, "module-ivy.data_classes.array.statistical"], [88, "module-ivy.data_classes.container.statistical"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [57, "module-ivy.data_classes.array.linear_algebra"], [80, "module-ivy.data_classes.container.linear_algebra"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "Creation": [[616, "creation"], [362, "creation"], [71, "module-ivy.data_classes.container.creation"], [48, "module-ivy.data_classes.array.creation"]], "grad": [[605, "grad"]], "adam_update": [[603, "adam-update"]], "cond": [[418, "cond"]], "tensor_train": [[438, "tensor-train"]], "column_stack": [[457, "column-stack"]], "eigvals": [[423, "eigvals"]], "sliding_window": [[414, "sliding-window"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "check_scalar": [[455, "check-scalar"]], "atleast_1d": [[451, "atleast-1d"]], "truncated_svd": [[439, "truncated-svd"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "initialize_tucker": [[426, "initialize-tucker"]], "as_strided": [[449, "as-strided"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "batched_outer": [[417, "batched-outer"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "kl_div": [[443, "kl-div"]], "associative_scan": [[450, "associative-scan"]], "mode_dot": [[432, "mode-dot"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "higher_order_moment": [[425, "higher-order-moment"]], "dsplit": [[459, "dsplit"]], "multi_dot": [[433, "multi-dot"]], "stft": [[415, "stft"]], "huber_loss": [[442, "huber-loss"]], "l1_loss": [[444, "l1-loss"]], "dot": [[420, "dot"]], "atleast_2d": [[452, "atleast-2d"]], "matrix_exp": [[431, "matrix-exp"]], "general_inner_product": [[424, "general-inner-product"]], "kron": [[428, "kron"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "khatri_rao": [[427, "khatri-rao"]], "svd_flip": [[437, "svd-flip"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "atleast_3d": [[453, "atleast-3d"]], "kronecker": [[429, "kronecker"]], "adjoint": [[416, "adjoint"]], "choose": [[456, "choose"]], "solve_triangular": [[436, "solve-triangular"]], "tucker": [[441, "tucker"]], "partial_tucker": [[435, "partial-tucker"]], "diagflat": [[419, "diagflat"]], "max_unpool1d": [[407, "max-unpool1d"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "rfftn": [[412, "rfftn"]], "avg_pool2d": [[387, "avg-pool2d"]], "dct": [[389, "dct"]], "max_pool1d": [[404, "max-pool1d"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "avg_pool3d": [[388, "avg-pool3d"]], "reduce_window": [[410, "reduce-window"]], "dropout2d": [[392, "dropout2d"]], "max_pool3d": [[406, "max-pool3d"]], "rnn": [[413, "rnn"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "pool": [[409, "pool"]], "dropout3d": [[393, "dropout3d"]], "Sparse array": [[379, "sparse-array"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "dft": [[390, "dft"]], "avg_pool1d": [[386, "avg-pool1d"]], "ifftn": [[401, "ifftn"]], "interp": [[402, "interp"]], "fft": [[395, "fft"]], "interpolate": [[403, "interpolate"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "ifft": [[400, "ifft"]], "embedding": [[394, "embedding"]], "fft2": [[396, "fft2"]], "dropout1d": [[391, "dropout1d"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "max_pool2d": [[405, "max-pool2d"]], "area_interpolate": [[385, "area-interpolate"]], "rfft": [[411, "rfft"]], "idct": [[399, "idct"]], "conj": [[332, "conj"]], "diff": [[335, "diff"]], "digamma": [[336, "digamma"]], "nansum": [[349, "nansum"]], "frexp": [[341, "frexp"]], "lerp": [[346, "lerp"]], "isclose": [[344, "isclose"]], "xlogy": [[354, "xlogy"]], "copysign": [[333, "copysign"]], "modf": [[348, "modf"]], "fmax": [[340, "fmax"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "gradient": [[342, "gradient"]], "count_nonzero": [[334, "count-nonzero"]], "jvp": [[358, "jvp"]], "signbit": [[351, "signbit"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "sinc": [[352, "sinc"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "allclose": [[328, "allclose"]], "amin": [[330, "amin"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "vjp": [[359, "vjp"]], "amax": [[329, "amax"]], "vorbis_window": [[327, "vorbis-window"]], "tril_indices": [[322, "tril-indices"]], "trilu": [[323, "trilu"]], "nextafter": [[350, "nextafter"]], "reduce": [[356, "reduce"]], "binarizer": [[331, "binarizer"]], "zeta": [[355, "zeta"]], "lgamma": [[347, "lgamma"]], "ldexp": [[345, "ldexp"]], "fix": [[338, "fix"]], "erfc": [[337, "erfc"]], "float_power": [[339, "float-power"]], "hypot": [[343, "hypot"]], "trapz": [[287, "trapz"]], "eye_like": [[307, "eye-like"]], "scaled_tanh": [[298, "scaled-tanh"]], "random_tucker": [[321, "random-tucker"]], "blackman_window": [[306, "blackman-window"]], "random_cp": [[317, "random-cp"]], "sin": [[280, "sin"]], "random_parafac2": [[318, "random-parafac2"]], "silu": [[300, "silu"]], "thresholded_relu": [[305, "thresholded-relu"]], "sign": [[279, "sign"]], "sinh": [[281, "sinh"]], "square": [[283, "square"]], "subtract": [[284, "subtract"]], "tanh": [[286, "tanh"]], "polyval": [[316, "polyval"]], "threshold": [[304, "threshold"]], "random_tr": [[319, "random-tr"]], "round": [[278, "round"]], "celu": [[290, "celu"]], "sqrt": [[282, "sqrt"]], "ndindex": [[315, "ndindex"]], "hann_window": [[309, "hann-window"]], "logsigmoid": [[295, "logsigmoid"]], "ndenumerate": [[314, "ndenumerate"]], "softshrink": [[301, "softshrink"]], "hamming_window": [[308, "hamming-window"]], "logit": [[294, "logit"]], "kaiser_window": [[312, "kaiser-window"]], "indices": [[310, "indices"]], "remainder": [[277, "remainder"]], "trunc_divide": [[289, "trunc-divide"]], "hardshrink": [[292, "hardshrink"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "random_tt": [[320, "random-tt"]], "selu": [[299, "selu"]], "trunc": [[288, "trunc"]], "prelu": [[296, "prelu"]], "tanhshrink": [[303, "tanhshrink"]], "tan": [[285, "tan"]], "hardtanh": [[293, "hardtanh"]], "reciprocal": [[276, "reciprocal"]], "elu": [[291, "elu"]], "stanh": [[302, "stanh"]], "relu6": [[297, "relu6"]], "fmin": [[243, "fmin"]], "logaddexp2": [[261, "logaddexp2"]], "not_equal": [[271, "not-equal"]], "floor": [[241, "floor"]], "rad2deg": [[274, "rad2deg"]], "isreal": [[252, "isreal"]], "cosh": [[233, "cosh"]], "log": [[256, "log"]], "logical_and": [[262, "logical-and"]], "logical_xor": [[265, "logical-xor"]], "less_equal": [[255, "less-equal"]], "exp": [[238, "exp"]], "positive": [[272, "positive"]], "ceil": [[231, "ceil"]], "erf": [[237, "erf"]], "expm1": [[240, "expm1"]], "isinf": [[250, "isinf"]], "logical_or": [[264, "logical-or"]], "maximum": [[266, "maximum"]], "minimum": [[267, "minimum"]], "logaddexp": [[260, "logaddexp"]], "divide": [[235, "divide"]], "exp2": [[239, "exp2"]], "log2": [[259, "log2"]], "logical_not": [[263, "logical-not"]], "cos": [[232, "cos"]], "real": [[275, "real"]], "negative": [[270, "negative"]], "isfinite": [[249, "isfinite"]], "bitwise_xor": [[230, "bitwise-xor"]], "multiply": [[268, "multiply"]], "less": [[254, "less"]], "gcd": [[245, "gcd"]], "lcm": [[253, "lcm"]], "equal": [[236, "equal"]], "pow": [[273, "pow"]], "imag": [[248, "imag"]], "nan_to_num": [[269, "nan-to-num"]], "isnan": [[251, "isnan"]], "log1p": [[258, "log1p"]], "floor_divide": [[242, "floor-divide"]], "greater_equal": [[247, "greater-equal"]], "fmod": [[244, "fmod"]], "deg2rad": [[234, "deg2rad"]], "greater": [[246, "greater"]], "log10": [[257, "log10"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "bitwise_and": [[225, "bitwise-and"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "set_default_device": [[204, "set-default-device"]], "split_factor": [[207, "split-factor"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "num_gpus": [[200, "num-gpus"]], "atan2": [[223, "atan2"]], "abs": [[215, "abs"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "add": [[218, "add"]], "as_native_dev": [[189, "as-native-dev"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "angle": [[219, "angle"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "dev": [[192, "dev"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "atan": [[222, "atan"]], "bitwise_invert": [[226, "bitwise-invert"]], "dev_util": [[193, "dev-util"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "acos": [[216, "acos"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "acosh": [[217, "acosh"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "tpu_is_available": [[211, "tpu-is-available"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "atanh": [[224, "atanh"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "unset_default_device": [[212, "unset-default-device"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "valid_dtype": [[187, "valid-dtype"]], "set_split_factor": [[206, "set-split-factor"]], "asinh": [[221, "asinh"]], "default_device": [[191, "default-device"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "split_func_call": [[208, "split-func-call"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "asin": [[220, "asin"]], "function_supported_devices": [[194, "function-supported-devices"]], "to_device": [[209, "to-device"]], "bitwise_or": [[228, "bitwise-or"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "gpu_is_available": [[197, "gpu-is-available"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "Wrapping": [[90, "module-ivy.data_classes.container.wrapping"], [67, "module-ivy.data_classes.array.wrapping"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Unify": [[31, "Unify"], [22, "Unify"], [32, "Unify"], [21, "Unify"], [33, "Unify"]], "Compile": [[31, "Compile"], [32, "Compile"], [33, "Compile"]], "Transpile": [[31, "Transpile"], [22, "Transpile"], [32, "Transpile"], [21, "Transpile"], [33, "Transpile"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Transpile any library": [[23, "Transpile-any-library"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Trace": [[22, "Trace"], [21, "Trace"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Resnet 18": [[45, "Resnet-18"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Trace code": [[19, "Trace-code"]], "Unify code": [[18, "Unify-code"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Learn the basics": [[16, "learn-the-basics"], [15, "learn-the-basics"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Data Preparation": [[4, "Data-Preparation"], [3, "Data-Preparation"], [7, "Data-Preparation"], [5, "Data-Preparation"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Installation": [[3, "Installation"], [7, "Installation"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Imports": [[7, "Imports"], [5, "Imports"], [9, "Imports"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Transpile code": [[20, "Transpile-code"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "0.0: Unify": [[28, "0.0:-Unify"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Guides": [[15, "guides"], [10, "guides"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7f3eb5472e60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7f3ea89e5d10": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7f3eb5043340": 779, "0x7f3eb50432e0": 779, "conv1dtranspos": 779, "0x7f3eb5043280": 779, "0x7f3eb5043220": 779, "filter_shap": 779, "0x7f3eb50431c0": 779, "0x7f3eb5043160": 779, "0x7f3eb5043100": 779, "0x7f3eb50430a0": 779, "0x7f3eb5042f80": 779, "0x7f3eb5042f20": 779, "conv3dtranspos": 779, "0x7f3eb5042ec0": 779, "0x7f3eb5042e60": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7f3eb5043040": 779, "0x7f3eb5042fe0": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7f3eb5042e00": 779, "get_initial_st": 779, "0x7f3eb5043400": 779, "0x7f3eb50433a0": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "thread": [837, 855], "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"result_type": [[175, "result-type"]], "default_int_dtype": [[156, "default-int-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "default_dtype": [[154, "default-dtype"]], "zeros_like": [[144, "zeros-like"]], "astype": [[147, "astype"]], "zeros": [[143, "zeros"]], "finfo": [[160, "finfo"]], "promote_types": [[173, "promote-types"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "iinfo": [[163, "iinfo"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "tril": [[140, "tril"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "dtype_bits": [[159, "dtype-bits"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "broadcast_to": [[149, "broadcast-to"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "ones_like": [[138, "ones-like"]], "can_cast": [[150, "can-cast"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "set_default_dtype": [[177, "set-default-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "dtype": [[158, "dtype"]], "as_native_dtype": [[146, "as-native-dtype"]], "triu": [[141, "triu"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "triu_indices": [[142, "triu-indices"]], "invalid_dtype": [[165, "invalid-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "is_native_dtype": [[171, "is-native-dtype"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "check_float": [[151, "check-float"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "Vendor-Specific Compilers": [[860, "vendor-specific-compilers"], [861, "vendor-specific-compilers"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "ML Explosion": [[844, "ml-explosion"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "Sharp bits": [[850, "sharp-bits"], [849, "sharp-bits"], [848, "sharp-bits"]], "Examples": [[850, "examples"], [849, "examples"], [848, "examples"], [821, "examples"], [799, "examples"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "Multi-Vendor Compiler Frameworks": [[858, "multi-vendor-compiler-frameworks"], [861, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "Exchange Formats": [[854, "exchange-formats"], [861, "exchange-formats"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Motivation": [[843, "motivation"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "ML-Unifying Companies": [[857, "ml-unifying-companies"], [861, "ml-unifying-companies"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "Vendor-Specific APIs": [[859, "vendor-specific-apis"], [861, "vendor-specific-apis"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "Graph Tracers": [[856, "graph-tracers"], [861, "graph-tracers"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "Related Work": [[851, "related-work"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "Glossary": [[842, "glossary"]], "Wrapper Frameworks": [[862, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "API Standards": [[861, "api-standards"], [852, "api-standards"]], "Frameworks": [[861, "frameworks"], [855, "frameworks"]], "Compiler Infrastructure": [[861, "compiler-infrastructure"], [853, "compiler-infrastructure"]], "One liners": [[847, "one-liners"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "Array API Standard": [[852, "id1"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [29, "Round-Up"], [11, "Round-Up"], [19, "Round-Up"], [23, "Round-Up"], [20, "Round-Up"], [22, "Round-Up"], [13, "Round-Up"], [27, "Round-Up"], [33, "Round-Up"], [32, "Round-Up"], [21, "Round-Up"], [28, "Round-Up"], [30, "Round-Up"], [18, "Round-Up"], [40, "Round-Up"], [17, "Round-Up"], [31, "Round-Up"]], "Design": [[833, "design"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "leaky_relu": [[107, "leaky-relu"]], "cmp_is": [[115, "cmp-is"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "empty_like": [[126, "empty-like"]], "copy_array": [[124, "copy-array"]], "log_softmax": [[108, "log-softmax"]], "empty": [[125, "empty"]], "softsign": [[114, "softsign"]], "Data classes": [[103, "data-classes"]], "Nested array": [[100, "nested-array"]], "one_hot": [[136, "one-hot"]], "linspace": [[132, "linspace"]], "for_loop": [[117, "for-loop"]], "try_except": [[119, "try-except"]], "cmp_isnot": [[116, "cmp-isnot"]], "arange": [[121, "arange"]], "asarray": [[123, "asarray"]], "mish": [[109, "mish"]], "Functions": [[104, "functions"]], "frombuffer": [[129, "frombuffer"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "Factorized tensor": [[99, "factorized-tensor"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "eye": [[127, "eye"]], "native_array": [[135, "native-array"]], "meshgrid": [[134, "meshgrid"]], "logspace": [[133, "logspace"]], "softplus": [[113, "softplus"]], "while_loop": [[120, "while-loop"]], "full_like": [[131, "full-like"]], "Container": [[98, "container"]], "gelu": [[105, "gelu"]], "relu": [[110, "relu"]], "sigmoid": [[111, "sigmoid"]], "Array": [[97, "array"]], "hardswish": [[106, "hardswish"]], "softmax": [[112, "softmax"]], "from_dlpack": [[128, "from-dlpack"]], "array": [[122, "array"]], "if_else": [[118, "if-else"]], "ones": [[137, "ones"]], "full": [[130, "full"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "Setting Up": [[819, "setting-up"], [805, "setting-up"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Contributing": [[800, "contributing"], [799, "contributing"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Arguments in other Functions": [[814, "arguments-in-other-functions"], [815, "arguments-in-other-functions"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "Nestable Functions": [[812, "nestable-functions"], [821, "nestable-functions"], [822, "nestable-functions"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Exception Handling": [[818, "exception-handling"], [823, "exception-handling"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [77, "module-ivy.data_classes.container.gradients"], [54, "module-ivy.data_classes.array.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "PyCharm": [[805, "pycharm"], [820, "pycharm"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Ivy Frontends": [[826, "ivy-frontends"]], "Introduction": [[826, "introduction"], [827, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Continuous Integration": [[820, "continuous-integration"], [813, "continuous-integration"]], "Lint Formatting": [[820, "lint-formatting"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Array API Tests": [[808, "array-api-tests"], [813, "array-api-tests"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Helpful Resources": [[803, "helpful-resources"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Deep Dive": [[807, "deep-dive"]], "Logging": [[796, "module-ivy.utils.logging"]], "Backend": [[786, "backend"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Device handling": [[815, "device-handling"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [83, "module-ivy.data_classes.container.norms"], [60, "module-ivy.data_classes.array.norms"]], "Docstrings": [[817, "docstrings"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Error Handling": [[802, "error-handling"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "tile": [[699, "tile"]], "split": [[695, "split"]], "seed": [[729, "seed"]], "flip": [[690, "flip"]], "argwhere": [[733, "argwhere"]], "randint": [[726, "randint"]], "all_nested_indices": [[705, "all-nested-indices"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "index_nest": [[708, "index-nest"]], "multi_index_nest": [[714, "multi-index-nest"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "layer_norm": [[724, "layer-norm"]], "nested_multi_map": [[718, "nested-multi-map"]], "reshape": [[693, "reshape"]], "shuffle": [[730, "shuffle"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "repeat": [[692, "repeat"]], "argmax": [[731, "argmax"]], "swapaxes": [[698, "swapaxes"]], "prune_empty": [[719, "prune-empty"]], "reptile_step": [[704, "reptile-step"]], "copy_nest": [[706, "copy-nest"]], "zero_pad": [[701, "zero-pad"]], "argmin": [[732, "argmin"]], "roll": [[694, "roll"]], "where": [[735, "where"]], "nested_argwhere": [[716, "nested-argwhere"]], "unstack": [[700, "unstack"]], "multinomial": [[725, "multinomial"]], "fomaml_step": [[702, "fomaml-step"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "map": [[711, "map"]], "nested_any": [[715, "nested-any"]], "maml_step": [[703, "maml-step"]], "permute_dims": [[691, "permute-dims"]], "stack": [[697, "stack"]], "nested_map": [[717, "nested-map"]], "squeeze": [[696, "squeeze"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "random_normal": [[727, "random-normal"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "random_uniform": [[728, "random-uniform"]], "nonzero": [[734, "nonzero"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "prod": [[750, "prod"]], "all": [[754, "all"]], "argsort": [[740, "argsort"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [46, "module-ivy.data_classes.array.activations"], [68, "module-ivy.data_classes.container.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [573, "parameter"], [567, "parameter"], [566, "parameter"], [572, "parameter"], [576, "parameter"], [575, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [618, "parameter"], [205, "parameter"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "unique_all": [[736, "unique-all"]], "Data-dependent output shape": [[736, null], [739, null], [737, null], [738, null], [632, null], [632, null], [632, null], [632, null]], "unique_values": [[739, "unique-values"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "std": [[751, "std"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Testing": [[774, "testing"], [40, "Testing"]], "unique_counts": [[737, "unique-counts"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "mean": [[748, "mean"]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "any": [[755, "any"]], "Converters": [[776, "module-ivy.stateful.converters"]], "sum": [[752, "sum"]], "msort": [[741, "msort"]], "max": [[747, "max"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "Module": [[781, "module-ivy.stateful.module"]], "searchsorted": [[742, "searchsorted"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "var": [[753, "var"]], "load": [[756, "load"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "Framework classes": [[772, "framework-classes"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "Utils": [[773, "utils"]], "cumprod": [[744, "cumprod"]], "sort": [[743, "sort"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "unique_inverse": [[738, "unique-inverse"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "cumsum": [[745, "cumsum"]], "min": [[749, "min"]], "save": [[757, "save"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "einsum": [[746, "einsum"]], "nms": [[650, "nms"]], "matrix_norm": [[665, "matrix-norm"]], "cholesky": [[653, "cholesky"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "slogdet": [[672, "slogdet"]], "constant_pad": [[688, "constant-pad"]], "trace": [[678, "trace"]], "eigh": [[659, "eigh"]], "roi_align": [[651, "roi-align"]], "matrix_transpose": [[668, "matrix-transpose"]], "svdvals": [[675, "svdvals"]], "pinv": [[670, "pinv"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "det": [[655, "det"]], "lu_factor": [[663, "lu-factor"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "matrix_rank": [[667, "matrix-rank"]], "solve": [[673, "solve"]], "expand_dims": [[689, "expand-dims"]], "diagonal": [[657, "diagonal"]], "inner": [[661, "inner"]], "svd": [[674, "svd"]], "outer": [[669, "outer"]], "cross_entropy": [[684, "cross-entropy"]], "matmul": [[664, "matmul"]], "eig": [[658, "eig"], [421, "eig"]], "vander": [[679, "vander"]], "qr": [[671, "qr"]], "vecdot": [[680, "vecdot"]], "inv": [[662, "inv"]], "vector_norm": [[681, "vector-norm"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "dropout": [[646, "dropout"]], "linear": [[647, "linear"]], "tensorsolve": [[677, "tensorsolve"]], "multi_head_attention": [[649, "multi-head-attention"]], "tensordot": [[676, "tensordot"]], "lstm_update": [[648, "lstm-update"]], "diag": [[656, "diag"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "cross": [[654, "cross"]], "eigvalsh": [[660, "eigvalsh"]], "matrix_power": [[666, "matrix-power"]], "clip": [[686, "clip"]], "concat": [[687, "concat"]], "itemsize": [[559, "itemsize"]], "set_precise_mode": [[573, "set-precise-mode"]], "match_kwargs": [[560, "match-kwargs"]], "multiprocessing": [[561, "multiprocessing"]], "scatter_flat": [[564, "scatter-flat"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "set_min_base": [[570, "set-min-base"]], "unset_min_base": [[592, "unset-min-base"]], "stable_divide": [[579, "stable-divide"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "to_numpy": [[586, "to-numpy"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "to_scalar": [[587, "to-scalar"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "try_else_none": [[588, "try-else-none"]], "set_array_mode": [[566, "set-array-mode"]], "stable_pow": [[580, "stable-pow"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "isin": [[557, "isin"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "is_native_array": [[556, "is-native-array"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "unset_array_mode": [[589, "unset-array-mode"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "is_ivy_container": [[554, "is-ivy-container"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "to_native_shape": [[585, "to-native-shape"]], "is_ivy_array": [[553, "is-ivy-array"]], "shape": [[578, "shape"]], "is_array": [[552, "is-array"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "strides": [[581, "strides"]], "isscalar": [[558, "isscalar"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "set_min_denominator": [[571, "set-min-denominator"]], "to_list": [[584, "to-list"]], "set_item": [[569, "set-item"]], "scatter_nd": [[565, "scatter-nd"]], "cov": [[510, "cov"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "histogram": [[513, "histogram"]], "cache_fn": [[527, "cache-fn"]], "nanmean": [[516, "nanmean"]], "inplace_increment": [[549, "inplace-increment"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "quantile": [[520, "quantile"]], "arg_names": [[524, "arg-names"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "current_backend_str": [[531, "current-backend-str"]], "inplace_decrement": [[548, "inplace-decrement"]], "einops_rearrange": [[533, "einops-rearrange"]], "cummin": [[512, "cummin"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "igamma": [[514, "igamma"]], "bincount": [[508, "bincount"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "exists": [[536, "exists"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "gather": [[540, "gather"]], "get_item": [[543, "get-item"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "has_nans": [[546, "has-nans"]], "corrcoef": [[509, "corrcoef"]], "default": [[532, "default"]], "get_num_dims": [[544, "get-num-dims"]], "optional_get_element": [[521, "optional-get-element"]], "nanmin": [[518, "nanmin"]], "median": [[515, "median"]], "cummax": [[511, "cummax"]], "einops_reduce": [[534, "einops-reduce"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "nanprod": [[519, "nanprod"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "array_equal": [[525, "array-equal"]], "einops_repeat": [[535, "einops-repeat"]], "all_equal": [[522, "all-equal"]], "fourier_encode": [[537, "fourier-encode"]], "arg_info": [[523, "arg-info"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "nanmedian": [[517, "nanmedian"]], "native_sparse_array": [[506, "native-sparse-array"]], "gather_nd": [[541, "gather-nd"]], "container_types": [[530, "container-types"]], "inplace_update": [[550, "inplace-update"]], "partial_unfold": [[476, "partial-unfold"]], "gamma": [[499, "gamma"]], "hsplit": [[468, "hsplit"]], "fold": [[466, "fold"]], "beta": [[497, "beta"]], "vstack": [[488, "vstack"]], "dstack": [[460, "dstack"]], "fliplr": [[464, "fliplr"]], "invert_permutation": [[502, "invert-permutation"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "matricize": [[471, "matricize"]], "flatten": [[463, "flatten"]], "soft_thresholding": [[480, "soft-thresholding"]], "pad": [[473, "pad"]], "expand": [[461, "expand"]], "poisson": [[500, "poisson"]], "bernoulli": [[496, "bernoulli"]], "unique_consecutive": [[486, "unique-consecutive"]], "group_norm": [[490, "group-norm"]], "l1_normalize": [[492, "l1-normalize"]], "flipud": [[465, "flipud"]], "unfold": [[485, "unfold"]], "local_response_norm": [[494, "local-response-norm"]], "lp_normalize": [[495, "lp-normalize"]], "take_along_axis": [[482, "take-along-axis"]], "l2_normalize": [[493, "l2-normalize"]], "heaviside": [[467, "heaviside"]], "hstack": [[469, "hstack"]], "batch_norm": [[489, "batch-norm"]], "dirichlet": [[498, "dirichlet"]], "instance_norm": [[491, "instance-norm"]], "trim_zeros": [[484, "trim-zeros"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "moveaxis": [[472, "moveaxis"]], "fill_diagonal": [[462, "fill-diagonal"]], "put_along_axis": [[478, "put-along-axis"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "partial_fold": [[474, "partial-fold"]], "lexsort": [[503, "lexsort"]], "vsplit": [[487, "vsplit"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "top_k": [[483, "top-k"]], "rot90": [[479, "rot90"]], "take": [[481, "take"]], "unravel_index": [[501, "unravel-index"]], "i0": [[470, "i0"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "conv1d": [[637, "conv1d"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "value_is_nan": [[600, "value-is-nan"]], "value_and_grad": [[612, "value-and-grad"]], "adam_step": [[602, "adam-step"]], "Creation": [[616, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "vmap": [[601, "vmap"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "conv3d": [[641, "conv3d"]], "optimizer_update": [[610, "optimizer-update"]], "Experimental": [[620, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "Random": [[630, "random"], [375, "random"], [61, "module-ivy.data_classes.array.random"], [84, "module-ivy.data_classes.container.random"]], "Utility": [[635, "utility"], [381, "utility"], [89, "module-ivy.data_classes.container.utility"], [66, "module-ivy.data_classes.array.utility"]], "lamb_update": [[608, "lamb-update"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [63, "module-ivy.data_classes.array.set"], [86, "module-ivy.data_classes.container.set"]], "grad": [[605, "grad"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "jac": [[607, "jac"]], "Sorting": [[633, "sorting"], [378, "sorting"], [87, "module-ivy.data_classes.container.sorting"], [64, "module-ivy.data_classes.array.sorting"]], "lars_update": [[609, "lars-update"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "Statistical": [[634, "statistical"], [380, "statistical"], [65, "module-ivy.data_classes.array.statistical"], [88, "module-ivy.data_classes.container.statistical"]], "conv": [[636, "conv"]], "adam_update": [[603, "adam-update"]], "stop_gradient": [[611, "stop-gradient"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "conv2d": [[639, "conv2d"]], "General": [[621, "general"], [366, "general"], [76, "module-ivy.data_classes.container.general"], [53, "module-ivy.data_classes.array.general"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "Searching": [[631, "searching"], [376, "searching"], [85, "module-ivy.data_classes.container.searching"], [62, "module-ivy.data_classes.array.searching"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "Control flow ops": [[615, "control-flow-ops"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [73, "module-ivy.data_classes.container.device"], [50, "module-ivy.data_classes.array.device"]], "stft": [[415, "stft"]], "dot": [[420, "dot"]], "eigvals": [[423, "eigvals"]], "sliding_window": [[414, "sliding-window"]], "kronecker": [[429, "kronecker"]], "atleast_3d": [[453, "atleast-3d"]], "kron": [[428, "kron"]], "as_strided": [[449, "as-strided"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "adjoint": [[416, "adjoint"]], "kl_div": [[443, "kl-div"]], "truncated_svd": [[439, "truncated-svd"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "tensor_train": [[438, "tensor-train"]], "huber_loss": [[442, "huber-loss"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "mode_dot": [[432, "mode-dot"]], "initialize_tucker": [[426, "initialize-tucker"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "choose": [[456, "choose"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "cond": [[418, "cond"]], "khatri_rao": [[427, "khatri-rao"]], "matrix_exp": [[431, "matrix-exp"]], "partial_tucker": [[435, "partial-tucker"]], "associative_scan": [[450, "associative-scan"]], "solve_triangular": [[436, "solve-triangular"]], "batched_outer": [[417, "batched-outer"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "tucker": [[441, "tucker"]], "atleast_2d": [[452, "atleast-2d"]], "general_inner_product": [[424, "general-inner-product"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "atleast_1d": [[451, "atleast-1d"]], "higher_order_moment": [[425, "higher-order-moment"]], "diagflat": [[419, "diagflat"]], "multi_dot": [[433, "multi-dot"]], "svd_flip": [[437, "svd-flip"]], "l1_loss": [[444, "l1-loss"]], "dsplit": [[459, "dsplit"]], "column_stack": [[457, "column-stack"]], "check_scalar": [[455, "check-scalar"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "reduce": [[356, "reduce"]], "modf": [[348, "modf"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "fmax": [[340, "fmax"]], "count_nonzero": [[334, "count-nonzero"]], "lgamma": [[347, "lgamma"]], "gradient": [[342, "gradient"]], "nextafter": [[350, "nextafter"]], "isclose": [[344, "isclose"]], "tril_indices": [[322, "tril-indices"]], "digamma": [[336, "digamma"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "float_power": [[339, "float-power"]], "allclose": [[328, "allclose"]], "hypot": [[343, "hypot"]], "frexp": [[341, "frexp"]], "zeta": [[355, "zeta"]], "conj": [[332, "conj"]], "jvp": [[358, "jvp"]], "vjp": [[359, "vjp"]], "copysign": [[333, "copysign"]], "xlogy": [[354, "xlogy"]], "fix": [[338, "fix"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "sinc": [[352, "sinc"]], "ldexp": [[345, "ldexp"]], "nansum": [[349, "nansum"]], "amin": [[330, "amin"]], "lerp": [[346, "lerp"]], "erfc": [[337, "erfc"]], "trilu": [[323, "trilu"]], "signbit": [[351, "signbit"]], "binarizer": [[331, "binarizer"]], "amax": [[329, "amax"]], "diff": [[335, "diff"]], "vorbis_window": [[327, "vorbis-window"]], "area_interpolate": [[385, "area-interpolate"]], "dft": [[390, "dft"]], "interp": [[402, "interp"]], "dropout1d": [[391, "dropout1d"]], "rnn": [[413, "rnn"]], "dropout2d": [[392, "dropout2d"]], "avg_pool1d": [[386, "avg-pool1d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "embedding": [[394, "embedding"]], "avg_pool2d": [[387, "avg-pool2d"]], "max_unpool1d": [[407, "max-unpool1d"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "dct": [[389, "dct"]], "max_pool3d": [[406, "max-pool3d"]], "max_pool2d": [[405, "max-pool2d"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "fft": [[395, "fft"]], "max_pool1d": [[404, "max-pool1d"]], "ifft": [[400, "ifft"]], "fft2": [[396, "fft2"]], "reduce_window": [[410, "reduce-window"]], "Sparse array": [[379, "sparse-array"]], "rfftn": [[412, "rfftn"]], "pool": [[409, "pool"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "dropout3d": [[393, "dropout3d"]], "ifftn": [[401, "ifftn"]], "avg_pool3d": [[388, "avg-pool3d"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "idct": [[399, "idct"]], "rfft": [[411, "rfft"]], "interpolate": [[403, "interpolate"]], "random_parafac2": [[318, "random-parafac2"]], "tanhshrink": [[303, "tanhshrink"]], "celu": [[290, "celu"]], "random_tt": [[320, "random-tt"]], "trapz": [[287, "trapz"]], "indices": [[310, "indices"]], "selu": [[299, "selu"]], "kaiser_window": [[312, "kaiser-window"]], "sinh": [[281, "sinh"]], "sqrt": [[282, "sqrt"]], "reciprocal": [[276, "reciprocal"]], "silu": [[300, "silu"]], "polyval": [[316, "polyval"]], "scaled_tanh": [[298, "scaled-tanh"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "logsigmoid": [[295, "logsigmoid"]], "round": [[278, "round"]], "logit": [[294, "logit"]], "tan": [[285, "tan"]], "hann_window": [[309, "hann-window"]], "relu6": [[297, "relu6"]], "trunc_divide": [[289, "trunc-divide"]], "ndindex": [[315, "ndindex"]], "square": [[283, "square"]], "random_cp": [[317, "random-cp"]], "sin": [[280, "sin"]], "eye_like": [[307, "eye-like"]], "random_tucker": [[321, "random-tucker"]], "hamming_window": [[308, "hamming-window"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "elu": [[291, "elu"]], "sign": [[279, "sign"]], "tanh": [[286, "tanh"]], "prelu": [[296, "prelu"]], "subtract": [[284, "subtract"]], "softshrink": [[301, "softshrink"]], "random_tr": [[319, "random-tr"]], "stanh": [[302, "stanh"]], "hardtanh": [[293, "hardtanh"]], "hardshrink": [[292, "hardshrink"]], "threshold": [[304, "threshold"]], "ndenumerate": [[314, "ndenumerate"]], "blackman_window": [[306, "blackman-window"]], "thresholded_relu": [[305, "thresholded-relu"]], "trunc": [[288, "trunc"]], "remainder": [[277, "remainder"]], "floor_divide": [[242, "floor-divide"]], "positive": [[272, "positive"]], "isnan": [[251, "isnan"]], "logaddexp2": [[261, "logaddexp2"]], "fmin": [[243, "fmin"]], "cos": [[232, "cos"]], "floor": [[241, "floor"]], "isreal": [[252, "isreal"]], "divide": [[235, "divide"]], "deg2rad": [[234, "deg2rad"]], "isfinite": [[249, "isfinite"]], "less_equal": [[255, "less-equal"]], "logaddexp": [[260, "logaddexp"]], "logical_or": [[264, "logical-or"]], "nan_to_num": [[269, "nan-to-num"]], "less": [[254, "less"]], "logical_not": [[263, "logical-not"]], "maximum": [[266, "maximum"]], "isinf": [[250, "isinf"]], "log2": [[259, "log2"]], "pow": [[273, "pow"]], "bitwise_xor": [[230, "bitwise-xor"]], "lcm": [[253, "lcm"]], "gcd": [[245, "gcd"]], "minimum": [[267, "minimum"]], "expm1": [[240, "expm1"]], "multiply": [[268, "multiply"]], "log1p": [[258, "log1p"]], "log10": [[257, "log10"]], "logical_xor": [[265, "logical-xor"]], "greater": [[246, "greater"]], "exp2": [[239, "exp2"]], "logical_and": [[262, "logical-and"]], "equal": [[236, "equal"]], "real": [[275, "real"]], "negative": [[270, "negative"]], "fmod": [[244, "fmod"]], "cosh": [[233, "cosh"]], "ceil": [[231, "ceil"]], "log": [[256, "log"]], "rad2deg": [[274, "rad2deg"]], "erf": [[237, "erf"]], "not_equal": [[271, "not-equal"]], "greater_equal": [[247, "greater-equal"]], "exp": [[238, "exp"]], "imag": [[248, "imag"]], "as_native_dev": [[189, "as-native-dev"]], "gpu_is_available": [[197, "gpu-is-available"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "split_factor": [[207, "split-factor"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "atan": [[222, "atan"]], "bitwise_or": [[228, "bitwise-or"]], "bitwise_invert": [[226, "bitwise-invert"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "function_supported_devices": [[194, "function-supported-devices"]], "atan2": [[223, "atan2"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "atanh": [[224, "atanh"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "angle": [[219, "angle"]], "tpu_is_available": [[211, "tpu-is-available"]], "add": [[218, "add"]], "asinh": [[221, "asinh"]], "default_device": [[191, "default-device"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "unset_default_device": [[212, "unset-default-device"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "dev": [[192, "dev"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "set_default_device": [[204, "set-default-device"]], "asin": [[220, "asin"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "split_func_call": [[208, "split-func-call"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "dev_util": [[193, "dev-util"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "acosh": [[217, "acosh"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "bitwise_and": [[225, "bitwise-and"]], "valid_dtype": [[187, "valid-dtype"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "num_gpus": [[200, "num-gpus"]], "abs": [[215, "abs"]], "acos": [[216, "acos"]], "to_device": [[209, "to-device"]], "set_split_factor": [[206, "set-split-factor"]], "Image": [[55, "module-ivy.data_classes.array.image"], [78, "module-ivy.data_classes.container.image"]], "Conversions": [[70, "module-ivy.data_classes.container.conversions"], [47, "module-ivy.data_classes.array.conversions"]], "Wrapping": [[67, "module-ivy.data_classes.array.wrapping"], [90, "module-ivy.data_classes.container.wrapping"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Resnet 18": [[45, "Resnet-18"]], "0.1: Compile": [[29, "0.1:-Compile"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Installation": [[7, "Installation"], [3, "Installation"]], "Imports": [[7, "Imports"], [5, "Imports"], [9, "Imports"]], "Data Preparation": [[7, "Data-Preparation"], [5, "Data-Preparation"], [3, "Data-Preparation"], [4, "Data-Preparation"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Trace code": [[19, "Trace-code"]], "Transpile any library": [[23, "Transpile-any-library"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Transpile code": [[20, "Transpile-code"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Unify": [[22, "Unify"], [33, "Unify"], [32, "Unify"], [21, "Unify"], [31, "Unify"]], "Trace": [[22, "Trace"], [21, "Trace"]], "Transpile": [[22, "Transpile"], [33, "Transpile"], [32, "Transpile"], [21, "Transpile"], [31, "Transpile"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Learn the basics": [[16, "learn-the-basics"], [15, "learn-the-basics"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Guides": [[15, "guides"], [10, "guides"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "Compile": [[33, "Compile"], [32, "Compile"], [31, "Compile"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Unify code": [[18, "Unify-code"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  132. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  133. inner_learning_rate (float) – The learning rate of the inner loop.

  134. -
  135. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd6a8a4ae60>) – The function used for the inner loop optimization. +

  136. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f3eb5472e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  137. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  138. @@ -1443,7 +1443,7 @@

iVK$87HV3E;_Sz{C!fr6^ zKP+k-(jd&DVK{56DQVD(OjuA}&}cpktmA|Q;k7=7yF%Pn<((VmtXH#Mwsp>W$!qRoo0!B#RQLfA!dG=3P2Z4wrQ*F2sE zaC~!Rv&-&NXvsLSUVwMjkd8u#u;qK1`9y8AY}Gw*O_F9u@HsC+n!8tMejZvS+~9aG z-PWefN@rx7o}9iCWRL&Ci0XRl0cv*XG3e{?t~c##O%7 zd*dpXvT356mv8g)#O z>|CXrpKezSgqyF$`qV#fp_^X;P}w%$ z9ck+UoNV*U0_~I4776$v);87(RJslBg<@HC4J!wHl1I$Cx7#B%KglDAkuHh1(XFg1 zs0H188*N%+;Ptrqr3RI6^Np6a@W9VzE7SGuD!297?8*kFLXW68?~^ZrC-2R6i8tRT zBPl|ctM`N9yx|Ry?W=dfiI5$%P^jY6V}rY4^kRga@lBVXAlBfn3c1Aa3|s1q)Np}y z&f@%PI1XpY<)-QBH|s-={6qQJ(m8r;X)jBAPrbWE(~RJ_(lOiF?DP}msFDE=(e~8} z$CRvdBFB@g-I`e^pK~l}#=V!$!v3Ncx-`$$S!>Qqt@or@XCYjdG8&}Rz%f8`)I=S& zzS7p76XjCvkTRbKfh&St4=HD#$~9Oyq`a43QeU?Y^K@JeDGP*ZJ?4qYpomUXIi&2A z8>!9K9hXxUdW}XENzWSFH}KIYScQ|RFM=`XVi;OC@9Z;KHO|t;eSea!TmluYjmAts zB@Wv*?D&DA4jK@m3cU)Ax>YVj1zJYq-k&;C9XTa5$cMAh!^H`76LDh)7D zdgOjMS`Pb3U)+SDA$WKF!DP|M+ggoBfN4$BhHj5TXVZk8!`5Hcx=m1qp-xWHL-Fn5|4w9GN%;(Y`m0Vj+? zZp1WfNqg@MGu&oASDUfI`KZPU55L-sl?*p2pVcIMF>Yb(W__oWW##P1$O)(J?5b;@ z6U2nW14+nL);=R-!Xl!R2aTFw)+>~@`bDu5UVJBzVfvs6j_NA9^-dsbs_CIceLBaE zb~BCp6{D@R`C4i7w)9~_JEKENJ7)54cy3QEWb4!9uDWfWOi@X;Q>0CkR1{bx*^KSd zc1bGJF2ht^8ya7#?7SP$8GKR;1+8X=oUPGP?3-CiSIl#?(QjIB>TqmZ1PM}dqm*J( zGahQuc^{)n_|3!`GP7GFrW)O2&bTStTV>{bOe7N^WyUYolI9)SsBzY=&m3!^k zf}aqBy+_S3603vWm)2wsxHI&XY=@`)&d^~r4ue@Y7_NrPvtaA;D;&3oD&Nc71tYpw z^bqE>i)B=I*C0U+y9ezjFUgncF2X#BL{H`wc9T*u*=9@j7FwU=tCm;JR>Si_e=q@S z(aG4YB;#zc(0(gkrHo+H8d4&KdSN-3_twIGcd~HwY*|g*8Cz>lC)G0Q5MqS$7>)zE zZ5gU0?~JOw*;FYbxQ1a&w-U|zQLwrKtJ`g=ul3pLiUrC!k+K~1-8@!T%R4Jd`+;e- zq69jWUl_UVK&q5&d;EY7;rAc}taaf=)TDGL<6zjP##-O%TTN>^DmTLXJp8&544v-p zu7)Ek-KKk(loH|j+BGQQaMqp7`tTf0k_+S7EaaK>zOG7Dr(>W;_`fEXyOpYLiCdqKua;3qBS*N8*Jl&AL13ja$P~Qko;Kk_7`}cKtcTrrqn}*r)E$Sb zL2|C4P5p-aHamC)Xm1$AaTq7&z&rp!&N`uV`nXfEgpCA=4CbQ%8t{u<$gNG{)}FR1 z6X&c5+Zl`$!*0uFN7J?y=R}ysqs4F@wN16@@tz<>xL#zzTn=sO@u=wvjHSq#QP$u( zKIxmTK*!WHYs!qUetkOY+};phowID3JS9lTe^&Y%86LNw?y3mlhPB>AlL&(E&T45g zK;>`07q5~@)JgekQv=*FHy=%3fugr|%w4hLPN{Q-q|~`{(02N7wa}Y3SvYfL5`mM3 z;n@`^?v_XcIa1P>Qei-N+Y=0Gv2V1~)~QU1IC!TAky@H{P^HjPr;Ih@}4OJ_ep1>1@Z=CGl)*>H0UIBGz$y($Li3YrpOQ*$&5LE%1UZhYd z5&?WR`IXD)3TQ#ovz$hrMp4j-g@>;wC{H2^-YO*1-YdhXjagr{Ry0}(~Xv! zK*4ss;W2{Di!i=Gnt?V8xM_VR#0clt8tQtR%$x4$4D<;9X=`nm&~NMO9IAC19ma^W z#4XhB9#$vGZi5OQR@ry*mTA?)D#ob0R~i#>^010usGF2EEL>{nlC+YCRl9u1E@*p4 zVRnhqD2`$CRa?qxzd^;7 zsY1p~nbRE)hgUykl?gpsB7 z5pDT9#q!NV$0duS%<~nF-d4zyj5w{QASz^(Gx~fJH|tj-Fm9`y2&;fa8;qW>qJWmA zDn>PgAt~!Ob0JI@aN>G6f!jcWi;>eX+=mpbC*3M!CZs?q5-|vCcn$|_TpGy=cr+ET z9^zHVOps5A5z24iB@bIMM%@R)*`)PSw_aAQMO@G$^e=Jxi*a;*5q4qgavb&+uIH&L zAk)gJIQ2Qdf)4#tK~i>eh6Wyj~NhrJbY>12Ee&kJy9ZPJVI+*~*A z1x`!p6>wy1tyfeks8LNOJW7}-m3O;6@Zm!0*KTpN!m?%#- zZ)4k^r{XL1!t!hq^m~cs#%sYeY`lLGBkM-%s>+J!aNL^=7o%~~IrY|?Hbey9MlBGT z5#jo3=yPE!Pj_WD8Fk|jdf~C##ksXK+Ip*NgG~kFdQX2XNR-a2sTzUk2>IqCp z*-h8ra>Xcyv1e=Q+30kmphH-W)*ePZKI5YDd-(MDYiNHHeo=HoYwBseMpUK#MK=&$ zQ`|+~1BX$q(QCB!2|9%3WHi|b+nCuFV=CC`W#=iWN*QuCgyUcuwAV#g@4%`;4~P(E zF+U#EYA@L6s90u1xW0z}!gqyFx*K7ywYu5pdX$kGVZY!}7UNdS+WI(jHFaiwj~FMy zSClrCaktVzo(h1nVPz|&O{fv}3%VrNnvyqL+GHh_@Ey)3^IO|9Bdl-ysGvg~q(azT z#QhrcwOJUifsOBYn{@>YnI2nv`>2phN25hpzdk*hl`S|mt;Q_Fw#cWKE{f$rGkLKh z^ROf@*cFm*e%a}Ylzd8FS%ea5pZ?tZTGW*!udGb*!^rAVPTR_FeHgh?v&U+_%8^t7 z?y^E&<7rz6)-Ee*2tnpY1i;-InHGH77KF81qgsL}S=i#<-`ZKqZAIseY%_NHfRFx}8-dm314n+OVc1 zlWu-#=}M7S7MeD>7PPS5q*Au_Dp8{YOJ5^rG%Ox5s4w>oFE2wgtz=Bp)btd*#|+ZcDt{D=TPR|qD(QX(A3 zlUcHY(!yeyDv66tF7*}>B_er~60@BZG*uRjt|%E95+SI1LDrtyZVlVi3qq8Ld@#Kx=f5v=8j~wm7BITz}k^)js8$0Nkk#shbA|NJxmXHrh1SZag-<$G4M(- zpG>=rpR2eMl>mtm%6y=6W%_|OMt6q&6rA)%E1NCVf^LH}V`ePr4ZzdT9ccsv%JJH6P|xzl(u8-aJ=7dd)$VxP(GoX%2rPDhe-_ed8TSMcM6 znSiVg+sX<*P<;GoKu87cRdCs4l?!pwWbH%GD(M`zOg+3S6fU@)ja=GRt1PoUlV`n_ zMJK~di)D2-Sxm1oE*WORWhEMeRfH*BcUdI&a;toH)|~XH*o6U-1?Z7o$hH2j0Ce5 z3c=AX{cC2|{rser={LP}x}zyq(!8Edwt*QPY}GN0nVuWhY3GvP&i%=25TP zSgWDZJLkLckO>fK)AW}Hn-Z0rwLct3%~To|v?gzLoqCSLVAflM)9zcBZ*iP{&OViG z$_MBa^a-ARO|w#D29~9DS0g@Bj7uXZq9*GVrlg&6BUYyMJcm;jIkqN01hyE@f{k$4 zjmG`(qDvd*1VZx{ZhZ*MDVt7OtqCboqGR$?b9}`znYEWhH==|FXNYzGX7{>3-@1I0 zbFH8ATyZ3JQmyav+BJRdvNRWmbFFq02n21nQoSz8fz;&_wq02%aJ~LwF~8Kgm?yBy zJZa$5YfG(fje$Ms_@UgqpHqsPMX6ilEEOpBW7g7RpQuHz!y&~F_k%3=y3uGlyl$uW zoQN7&o1>|a%Zcdffc0+@jW@#CygLnNqeWu2O`IITT4$e)BdmSHS*H!lTq*}rZ2e&f z?s;ZTLvicOGh)`$Bi3nmQs9IQKjx&9cIuUED}dGmTW^!Ir%L zv`DEE%8^^2b+u5A#%9XnU_5#lQf9OW<DEmpK#4uQ!>^ zdXsR)sq5aB{5TWBZ>=|Ry7JvwteN$7pS3~mDn8h;xj|U1x6#ZBowT<=+=*d#p>u1x zacPU2(twWFz}lIt&H|^+l{Iv-K|?@Lp`{l&&$-v2*Pv!H9+cZCgnLRG?&;gmOvZz7 z8zy~U*cv(O-A2yJ(MgFAc4G`|vG5wKcY+FGxSj+*99m7rgK$f9b2^(idDnN=o2(yi zRyPwOgx%=;A{fu3q0j^$kuMFG4yw#+9tPH*RvPg={~e>ujKAln7P61}Ti7b_>{k4YDd>L5$Gm?g`s4^3+1M zc29^OvPnhDS)R0z4JIEa+=k`XK4F6$$USwSmC>|0s4{MFA}=lClonBHUYGH==50ik zbn|st5F@mul5XC(Qc1T`(weEoO%ZOVwA*MmZ;EhUyqv2ow=cjLjpm!~%kBI_c_l|# zZa>A+mX}H@9O+Fna#?OqKT$da0~{_pT$`@4+-{u{S+TKRZnsW8XQk%+WST6o2gB}a zIPZqTa1^>tZd(J$jBsmb7}jZbOe{#z@f$Ks5nbxNH6(3W%KBCu>n!+?!^DY^4+mfN zm>oOr+uFHvfR+DQxqEGb*(`t?^1_X%7j9jCX5PXri6&R+KT<u18BL#`^U~fZS6Lq^ZK}uU}CFys9NkYDPGC z-lJtx_1U>*12d*lD|zd3YSZewz-c_$V7M(aDNnHxXpyx*(g9Q92CXzm49Q+i6DKNs zSCNrWk`OTuUgioT$1u1(7@7@%GBBe2U*wDgvLr&eJs58qJIN+7j5isEaPa+lN#c1cna*X#H|!7+!zbR5mu31#nE@lv*v|!jx-A$i^4&ZlJ7yjzPxa}`PX+*z5D=r2@~t7&&=-wPtWp&6 z2ZRK=7@ahxJ4K@tH|*L%gOGbuTH{adxhk^}%#1y>V+GTytUu_0kf_WFpDm3rcJ|e- zpr)qfI0X7q4gqzq52&g_91p=p@YMKuM9NT+@;_RB^2DlMXA2iagGH;PIsl1aT(a0? zX_ayYvS_eql~gCeL{J{})nAAL_aI57gIMy`F$j?LC8_lUN8@?fzD27t%8I+bBmojF zZSU3F14hM?IqIuB5`|qKqv(Ia!6!Uc9#E#M8iqrZY|n zFk8**5iC;8YTRvFw`%cuhviO0g@|%CX3%PWCOvnQDLcoI|IEM8%S>qs&R2VYB;Thpcc+{Om|wQgPhjN*od z#gZGDmu8L35tx0C%NrO>113IRkRx>bU1|a_St8^+%G(lSBBTw`S9Y1o7{APEJMI_; zo8c_q*Lp#USuK63iyS&xj!Y!s;1O8PgGXJP^euxIv;Xa8|9cJlb1e(}DV)z7Jcj-6 z0{inFEXvp6blTw8Sd`bZ-`>mqd>@N)oc;L&7W2{U&m|W4bQbe=7Wg*y=NJooD*NBR zvY0=_{`bS|&yTS`%j~zev;RGx{qL9ApJ%gF{*)p6FpKhR_UAWQl#}d#H?#kJ4*TCP zus`o)fiGmKyfuY{9r55@_}gM}`H_Qo>$O`u2lpJjX2)x{E?>)PK@v8219X80cPuVn z1DE-($&sG87R22UHq#~ZwCwXoKza`i0?7EG!MEZ2WAOQ>`20?Mz6KCHG6F@?ME*H_{D4`cY};qwzP{QEKd`|$m9@Och@{ak!MfzO}Bkjwaf9X`Jt zL;f4zzXIQX2A|KukWa=mKY-6Q4F4s3?!=HOzW*z}--Pey@p&sgzYC|{V94L%^Jg*StMU0y81h1VpWt%^Q}_jZJ^_)x6vICsW8Q<$cVoyDUzh)iFEA+N)jABFGx@%ub{pl#ZFTr1b8K1lGt8c;QtMPd&#{5h6j&YuZ@2|q}cVWmM$2eb#AwPoeXEFS*@%-+KjiTM8a`2Nip=gIi~a(q96@4t?v|FQUf44=F4*AL?RpJECp@cq3Q{@oZd z!}l1UOBnJ4`2I=w{)71ZOMHF-KF{Fu*_h7%;PWuX|5bed2mJM)G2}Dw`7iif#_&`4 z{`DC1XYu{_*;k1CJjS^OLmrLqJ&f}o`0ML2{B8LB1`PileEuzjTpD~7hW{$YJcRGN zFoiw%d<4dP96le9&ws%o;Ne6Y+fspU=SOw`2Gn z_&k7L{V0Zi8@_)czR&U3hcM&gCSpsA!B?#4nsZ)pZ|q% z{u`gS;IBW2?=Qpm3Fh*L_`U<*-+?S%iy`~)Il%b8jN$9}{savFXnY>U=l|iaZ@?5j z6Q57V@TcMP5Amz-#OH@FS z3=IEc%>5HF{8R9GABG>r_vhmKf8hIP6hT#^)LQ>eCq`eEvSh z{}fE~nHci<_}<6&Pr$D}37(Al)@8GWyzW)+Fe;J?8!{_z* z{9KHGH$J}@pTC3Q|AWu}#gLES^CkHFN_@TxfBjcP`=9vyGsx@G;JY!$HH>o`#`y*O z_4hF3voOv_Fytxt>l^X;WPJVue)~iC+>0UqgzqoM=O5wolkxdse0~h3`Nb?80Ab#<>H3eK&^h!skH@ zISIdB8vH4SJQ<%)!RHs@SO133QyBA8@!7+WAIA5;!~X>tN3exAs@n!pT_rp zhxbc^f5rDN$LC8h=3gVik47DvVaO%?>PZ;#Zy59cVfe>m$T#8puVS19{<@6sKZ)sl zBZmAYhOFT8XEFS7_|;x~{y9Eh%TmTTzl3pKhVQS$@ZZ9akH`0GF?>J1pNIELgF_hd zg&6X`nA)e~`w+HEZopqd4B5ixb20p{FrBwx$cORyi}?H%e7*pm|AR4q4d2K3d?AMXF24U7 zzJD0gxduZXhtJ1ij^B*$e~8bQ`2N56{9R0K2R^?IpPz&AKMrF)20|_kJ`O|v8J|Cb z&m;KjpW*YzG33+Wd1-JrzJCe6|0t&R41E4KhCdVIzXL;FgU<&r{s2Dz7{9#(pZ|v;eSH1}hWs@?--ORU z!EYalzy1J*d@4Ra7oWe2xg5Y>zYm{(h0o8!uil66pN8-Mh4J5u@xKT|egQ-N5#xM1 zK8G0c&-m+KV9YmR_=hm$U-0?cEMI*72Zo%*IA4U%1&04UetQ#!JOiciB7EP0zy1sS zdTH=)80St5`5OH7XE5a5nC92u^EM3sR(yX7#(WySKMKRI!RL42^UWB38smHqhP(|! z-i{&PkMHlp=TBqEyD_gVjQJjX{}X&Z7k_;oKF?wNx8nQT@%4(OM}gYQE;$1%*h&JW@H599O4@VSiPZ^!rNge(y?9KO#=d;bNFNLYhgYSRDj=>wc z*X+3bSiYHb>!JD98@DchY?90wjO;c>OzspPU36PJ`b1RvH_zy~%{_u}MB~arux${cKazkIrbwAAHdgF!&Xi z$5j|Sg)-1S`E~sh4rW2XJX8)wd~oO<0CT%8799-z;N998P64M7yO%i7csDJj1LxAXu^}=`t zC6n{vmi{3M4yNki`)+@}ISsksUh@&CA;0lJUJZdy#xS?P5gNYwZPQnePY?#Nmc{Rx zA|om$1NzB36aH`2X`s-u8ff_FYjZwYo=t*&4?gJPdXy+pY`C9hbd3|^uzk6Pe^j? z1>&6`#J6wI_P;QF`SD3!{ct6KbE9xl0PY$HFB-mmpXu9=k-ydJpA7bOF)B3O}E*2S64)R6kZqSSy^&-a3 zJJSsPn-}TdU;~XYyUWp>*8hJufkFasm-q^;e*a~PD-j@HeCRL`_;$VWCg2_4owxWOQ&u0JmSo4C6?nG6lJ=Lx275Fu0S z$n@otkApPcqci)&q^vRp&;Rzl`nT9e!Wa3?(UVM2l|Cykfp>HP@f-B&h3z|hl-DRd z#gr$SGeSIuPwzbkxt-N>`y@?1c^}`ae~e8bK!vRfYr*o+WZFEBW)q1T(OCqcBd0)Ox{}THJxL``Of%z5xdAWGy@AWqHdee6(SNS_b z6~q?!2GiHbSN_^ut8O-Zi`7H^R#za*_$8)~QEiiw>~ft5l34(%NVl54#10htO)F8q z+>`?5O;gZ?eY@#PRKxi!fYYbo5`DVH4ek%V9@ObkhYg)In{zVYOiz7mpKIRaTf zhV3j%XH{ODwB`L^9&~%dAO;(}Q;=9^_tHsBpQIWksXiJ%PZQNQN82RY=|Z~@&AVNa z`jBA`VUDSvCVzV+%+dzRbb0_~GD*^ZTrh{(nB~PhOtaAU2wO1#vG*oZQHGeoOedf_ z#js6%Wf)DnakM%nGFs?a?5-vwATW&Q@%cp0`y`KxdLFwf=K(4R9sfj(4pC6A)^pHL zCff>X+?@t+djX;FIz5Bx<(zENC8@trPrZ6MC#i#Z{Gez$P(p9^nFUOVvc`h2_#8b8 z{rrh-AwU)j7{Lwu|DU((4v?%U-XKWM83aKPR{ z>+0(2>V6&at}mU$O4{txCeD>JL;0LjiBnmAn;}Vc)H7Ion|`Eu>Dfm5A~HP6JA-n$ zWw2nrO?zF9ob+6#-lpYs4?Ta>KvAm-WrKbt z_k5Tznwiy`mGLW6$wsRsh!;O&b$kUzQ+2^yJu7LybU4XsqR%K$a}}%Mv&b#0QG(O8 ztY~Z#<})LKs2}UayWjpmQlf(;d+R&)xCQ46`dKs1$H?p2Efd>}pWs4YKkJ)3a(!Oxho%9e$&dXrN3JXKsCv|{MtKF)R=I*RMp3B* z!fMgn-fB1E5bGSxiiSF)nI$SZJkOQ7Q42~BXQg|Ou66w+3u?d5YWEynwN}~%jmNOY zQHVj(l8RA}XI*?vO3MLAbg8yHk+n55!bROKsDK|`MVoKJlUdRJBX6{5^!5lj9r83* z-ONfut>QJ$kI$B2bx|3qtzos9Rfb4V$IR*OPzs4ln6cj(N}EaPStt#kkiIl$7R}_v zn)vYD^U%1EznqazLuNCx21SK8azMd~Mu9(av{?n}anP^|o2Z#=N#U>bGHCc3YiK6* z)-_l?3&Ow7!kbxL(1gozTX%H<3ckS#nwkIW3iKxUCaY*>a-OKdk9DZWw^&KLek7s6 z32~6W0n2Y@QleBM3TyKJ>`4jKY|Lt!3E2(QxFZo1ZOV$8iktF9!&yr$pDS^53lY|8 z+zbVE%$(`QO-S6@&}%(zl2D49kiIQfzA0x>#QSj*^1o~3Q`~GS?kFm1HNWRV$&Or! zrg|=GkbQBo1!ZtR7Sy9`7b+&Oil%};tMEb(q)#%^{ovoGkp{Bz5uxVvC+OIfYtUv( zQ*49$-C2H{jSvkl<`&fYlmjZJv5Ka~7j6VMtU>q;7Tzv@(dXy9P_Z|wXe#_G{Gq}R z|4_0YD`~f#p~M=8A^$*@-&FYLO2pw`an}s1X)64ut5G6$Co9^tiHyBAn42X#XIz1k zj*%f?CCS6BA)u)+VGHY+iQn9z0FqZV8NM?VG-dfj;WQ*b%j!Ij;OqW)X66{gsROS< zLC=~-4-E|?tdYOo4^3-xjran#mTKe$acEiBXz_#i2rWl(1e(_8`ZTkimC`~{$c;br zK+}e-si}yS>~e18g^~_dGScb<`t47-(6kwAYG%i2vlQ0YoQnUCXI;}rR=Id&4cyb7 zT%q|UvdU%_Z&Rx0t5gQY$*i>X@F?4ltHC#gOr4 z)p!FA>T|Ra=6+dfQk2}`AMNFVsN-1Fn5J0e5A`IS(5|GOyeH|Twk26Rl~B7=S<;40 z)z01Z1X*XWtmZ5w8){vfpWU`3zkcVoE2-pjI-eyq=TZaZ*S(F~E0t<*q1(6Dr7Uja=EP~ze#X+8tY~$x(=*ytEUP*Dv#4uXRC6|~RR;52g&~jG z4J@uXW^>9FPt?uriRzR?qWMy^UkSbO79+}!r{8L#EjzREmsUu+y4Ff@6;qU z6C;9W7#&&nXtLICqJGZ)Syb?TO%!j^um;ci!MU#CQntU4%V_q0P!rmW{R{osXbA}P zeyvGrrXLk*`TnZ49}m)gqe)x03A^>XqSi%CtJDb$a(Zr*m)-WO!B?8 zM2xjw!_hB-b;Li74~06S)-jBn1)43%nPM67PmwfPk#Q0@5M0klbrZNY#M+}J#ExOH z{FyiA82@CmwG%r?-DotV+DRUyZZaxTtpOfV$FkI|T5c~l`GedoSZ?cNy8SZUo5k`_CD*E$W5hu| zWd9Nl4C|aKW6UpQNx~Xqn4OL6aDJHz1v}cy6cBm0S>x05xKfViKV?@mtpZA)>Xp+sssh`yCSY4LZ`CS?0x^dbBX zBb+|l@NuQa^5gq5ka9+T0X27V9XPr*)?rV(AopG)*PjYQ% zO~|&-%0l!*nrPlY*I0C+RFcn@PL2-+k7x?ovA8{@f#k3n|gal&F4U7_K( zMuVFmw_}>R@$AKNh<{qE0DsnPZ2L;Kr$@$${_KE5|MyJ4o$eG$m$TLd((xSY;4Syf z*C5m(2R@^BW}P~{!20-;YZLnN14VOcS0bZ#^AK9*CDzhTcjMmhvJpHQQDU&vDIX{t z)4ax{dD+J?O}?1#&zEYm<;zDX>4>9cL|Q}!HETrT?T|@Q?5?$Qg778Gi0O<^yQYs% z7Rv17E$t}zQl==f zF$eJGRni^@al*KqDIU)fY#o3c!Vnxi@6A@as?y-mQFSo-iN*+bRs@U)bowM~ zvP(xtzL?L>8qQRFb6uj5!*wbFIfmVMys(?W&EehCmH^zFfjH-1EcaxpP!tX#~hKNnVSv3#GEf_jHhOTboAcAz*IrOhzbFEmWs zP~T<3YjM`Fk{cjQf3kG}wiLr6V)hjWAaLQN?p<4fQ^wU{JGRE6DT0$c<|3tr4?E7KZ)kB;j^3Yw<>w1mL9%gn{$@ z19G6hKBj=#ei}1W1!eg%(*retRTYN4_(Q46In2nbN&@ga1}6y@fhrIoi5I6|FxxzJgaEAAz5I&O8wAt)B*)@Qj(+4X>uM$H;I ze9)_>3A5+ey}Xe_g}uPAfLOVQi5=RAmU52Ai^c zAL@;VZ1kMNG=A1#<6+h{-u48$jW^h6sHYf(&Mal4tOJye&?un?n3-f=`dEkA3>$$a z{8czj+EY>$_e!p>8*{mkj-9f#T<=stkDUDSC^X%VH8+ zBoJe|xKo|;jR?O*Qmiq3h6BH_6>ChNpWOIb{cHH;Xt#?Lfsd?U#} z_Xs0}H^^!<{ZkKDhLK`;Zl3<)0SXQEqV_NdnH=0x;2HebIf;&FLvBPrz z8Iz(>0N7i|FxbYV8AhPGNp5HTiQUf#(LLo(mXg@WkV1}fkCEVa8+RzE%9F>ko?VD{ ztlj-<844bs<_ra{hsKzW89Mw)fxAPg>k_I2vL%>2V??wc`BMa~W9XZ^rpN*#xfF5r2`Rg6)8;4F7kdc**Y-u>t9bF{}QQy}@rE)1n zQ(6c(Mia1E3K!XrDwk$fDsn0#Bg-xF#&yj)xC@!bYck=T3H6h0k#e@4Onjmy2MJSx z9P>@We4{EB;#U^H=wwaOS}CL}re#h_WBZI8&36Mx#4xEl)wj zTulV_sVC6rkw?ho6ELoD4&G}BgEZv*NRx*XvFY+kU5O$u&_tqpCyA8ZthIPL4_+5( zLON1fOe%+Op}vFOwJ9L@weM$Xdvx0?y>tvPe_nXn2O)MU7l{c-|>Cb#sCX{if<=S<8^! z1*k>Xo=~v_tN2co6M0{XF^7hy$rw1% zIXMbhU#I$R(U4v&s>7T`%~S{C%ZwrP8%z)j-Y&u3Y^kdln}7b>q%STlJ>TlZRzeus zzK+5UgZ!M@?%7hd#}l%=2_H@yTFG3x9BM?cTFD4>d!G^|LT0(%vb+psuA`CX2K~c9 zkhiK9->@S_wNOWHP;yNPn04-<<3rZ!nk>b|LU!JvCCOt;Lz3HjCR|gKs`P|V>Odtw zWEf_1^2VOLx>(Lh!XIVXAiB0D60>2w(ne&VJSeZ=xX0TdY+X&5H8%ULY^Hviob@$1 z*c+*nvgDW>Z;a;`y5$I%n9$_zPRnel$xdlyBfBpzS$sNAKl5k=d%qZ8VV$tS7Hi&Y_N@GNBI?m9$-cTf2xnGzT8?`0zz`Z_>vvU7K(Uy$tvRNI9SuM8~dOo zAl6Zm$B!g)$4A(DM~-`TckqA1o{bu1HEsKhqBh%@j^-{+vod09^)wyD`nw~yN0U3b zxf*$L)8Znm*Qe>)sySUjUrMS)za|-_}?OszaUSGm8 z8*5~1D@&+pYOVE%5QL6W8XS;CtgcLVUOtcM@@8xD@EJd-MmU7KN&IWCOJ#O&D`UkH z7t|48z3dVq#%tQKni*)%%aXugzqw6R)&xT*dgw_}{(?jy%aT^oDX;)$dk z5<7-uhd9<|9BD6UG0n;sbeZBB)m)`85U)Cc+RK_SYberOAS~x{?)? z6eM2NwVoz|gee+>v2m1D<;a7y@}Lyf=Q5r0@N*#-?el}sJv5=#!k;D-ok@&k9wRfK z5JEda;B-x(HS1Fa7R%<%s=<=WZ7)rf*2QC!cl1>9`7ZN(LoM2M4qE$avb2tA$->93 ztXbsrgdLy>vl3dZj)<Tf zQEUR=E={QQeJR*dYJdDV?cdT19(G4FD`SrV9g~Aa@4aw??atVnYIzytJZgrtMI%go zckSj@X9!`{1aY)30J)DFx$e4vHR4A4MCj1)j^T4{J69^@C;&mslPW!Hg&|Fn&g>ax zX7?(qxO6F^_I#iu~R{S&f^{CVSTA|dz9|_@2OnuQNXQC_?yn>zs$!@&O$I^#bk3QHyh_8 zl~AGw#8PxdpE9Gwm@_$e`Z_gKe4)~_M0DgI<;JrFA%{QzkHY8 zwhJ10G$JH&O%SPbU6{Ehw)EcF;-C`L7E|dZwsb5-XS5_U(z{f!CR9J+LBsJfMvT9Z zV~yfwk9BZSWtiiQc~D02`(*I9a#`&238s=Upu=2khb_HWd5N+I2zWrt9xRhuVq~=@ zmg2B@SQD~r9MR=OTaUGgqh!7*ZYCaWF}GCKOJhq>{bw_mj=qorzPafTzP+sKheCoy zjYKh9X=1EZ4S92{TMpSoIYsUsq2B8n9s9BZqld*iWN={IEMq3;+le)^C1}S$#XQ4o zc5OvX2K6N)h7Pz|-sCz4G#2v8j7V8L$nsmRiL4n0W*@Ec*Joa^7nv?EnJ8Pt@9rPOTfW_vYuWzXtWMgj! zeIj&OhAw7ER`LU~BgV1WE*d@5D6p9e*?m4Cb_SaO0V}qe0y>*PiwBgPof$CMZW-?$&|~n(mom|+e$WK<;8{3DlFT#5@Ei^7@YN~&dv^G=fvyc zFw_1TCHO_X;XKg8^9!rXxgET-KE5u%u4EW|TQ;9YLn=req>-|G+Xl@2K%8k6mhAa9 zLB7Ti_>v6Mwnf3`5RH%JOCILqg~Ud0vV6~%G}J#Bg|?I9C1ta*&T*%lM$2kDA9Upc z!s|}f;I*9!yN6+L-0pIJw!bL3LA-1H^QT44mj}sM;b%oSK&Y4h%E3x`M12X}rtw(C zS2YOgBD)eY^(#VT=Zf5B6b*ovyd~Uj(9T1F8_vxdWN2rUzga7ft$kgCawAvHY_-ao zGs^OP!#uMj>*JEFIwEe-M8Km12y5|S>xnC;@XP1&G93Rwh_y*Kc+~AX7)Zb_@v_jomWZ$`C z#V0fX0&obZ^vsq`$5Hr#J)Y7~wi@4nztaGyPF+n`yOhNNo2aB(>IGG%WnXd{j=>`KpEkTMtJX|EeL;0!4FDFk_B8h7JAYCX%SX zsD)CrKrjq4?ETMV-09}1h%dNt5|aQdFc1xghAx%+?IR@bOUPRJ5G6dqgaJPVck9A} zdzbZihtiXf?=vz;kL9zrH6yy)uv<-IXN`|$lbnV5*T-VI2`t|mA2rk@MnO+~8=h&` z_%s8!t)X#)69tx2ku#Q*T5ZmG6eiel<0fObVk`#cI%2R?Fx!el7X;C@G@|e(ho}cV zbSYuF6KlhHK4PkYcV;lMvZ{PEa|o`Z5e)M0Ub&?p&f!p<^|aEKPgGsZZ_SkHNN!!v zCp6U2jKbV9Tj{Z`O1k}<(#_Y=y16yCbRmnHT=xQ&?#(R~&_xW2C>5e_qoA~26O>{| zZb6~+5KC7md7wuagv?UdJ0loKjnPP1nWYcf#PsNGSc8{Ys<7=C2B#{OOC}QyT@buB z(s)@;KOAPV=$gckCw@A z#yWWS^arA1lGgjI@r+^jt|hR8XVMCfH=ZQ`vkXMD)QjUgev}b|;jS7(D=w?ZA8afn z*W8OpdT}`!yEbFt)^$X|Y*~u0NdnQ`HKJBr)}iC}5vF(TLrlH6oC3a=!L~`|v&vvR zuL09(8dEl@i#+TbLbR8gPdBN8oyA!6U+L`TBv9CYum4Q+{8VFT^WKT>(A8AW#an2RW2_8c=c}Hy$9AK40t{C6<9eQ3-DBb-dKnQgiC68wWYb1W z;_{bmDom!at$ijQVg@77eTs6_Gz_?)GESosjH$9A-YL4JR@7_>mUB;Xy+Viicg8Hg z)^`#s*L6HK&D197+QEU+AJ*m`J@=F?o03u&Xyy``Tu}};hV&qIh7s#8=(i>qC+F=K z03dj8O|UsO+_>H$<47>hTsR+9p<+Kxg}F(;2^GP`Ci1OjaKIc1mu>m(J9SWSpr&A# zktsl3oOkS?Dx;~|u5DG+9G#l{?VFPi7qv|l-E>>OTNE|OYZ^9fP6Os2Xf?+;oK%tbA14-GM9Ji9wxq~I=_z;xcr71JV_nVG%J)tr)LOI>;UQPC- zwq)A_AI5FBga1m?WZuJRx)wpyFz$;WQqsc6Lzw2}gEx*53H>plp)04kn>4Piy+7x390K zBFEyoGBQTV!L%f$zt@zuUdgEEgck}V>3dGo*Lo!*eN9#J1x@KzEn8Oczn3)0yR|8~ zp@+PzX`9xrwx&$?nx?X)gvK28G-tZIWzaZuuuzFV7sKn{&=j;3S!Y*d`%n}lq8LJ{ z)892sW*dJ}WbG-IJLSH?a3J_%f+Xr^$TEkO@Nd%?-Z6f!>C<bpDt3z|S}L?=ha8f3V-xsZr3y|MrsA4y3!Ys1u%Ur85P(Z(SY<;s4>Q9E#R;NOX1Tv!_V+cEfZ_xxd))6$!eZzMLE@|~LOjZ^H~J3L?xbyvmPyju$1F<-GCki``%GNy$ZmJ~eR z0UoRLko7fnX%o+eZCY1{6Be@BtrG3g zNA)(;^zAtkgOWaTQ<39D9h%NjsAFJG4se@k`X-O0j`h1^ln%1FrfWoT9Ltu4ihRDT zmWxB?K1g#Zn%t*fDMZ^r(3D$gs?*jG8oG|JT2Z=J@OGN+86#;| z(yi2Z2TkjUhD-AqCR6Tqu6##}j@ML~TOpIC<_%la`Qif|6Ez(pYCt(REsr9|?O)O0 z72Hc{PV2e@*knz2+Dd4{`q{fxnS_ z7Fh{O#%K#PE#};=s+_szUG6ooZZw9bjWkUyCQON%ymSHzHyL$>rU#qq!R5du9D1N| ztfp{cYdy-Xp;3sxxQ(`jrYP;xq2k(-gXJr7Tbk#2CruX5`@Kw4EzfH)A@L-4L>EXo z7wSOKb7nqFD`qWb2)@4Tz<|VuYE~}zl&5Os&b#=wFDQLMn}oOMh`!D!8hNQS6uvYM z6z2Oo^TAslZk_;zFKY_T2Bj84yI(`^_v9%q7`&!2Xt67J8aqs9u;-Uh^oFLW#Zaj! z>NMYRqFx78f7eu{eZ_6u>rf}N7gdf>N4wLY>|dI)7UQy3FJ}i9H2t5ZX@uP&$ZX_^ zZF4h?^{fjN{##Qx!WdJ(uS4s7|IyT?ZB%HY*~}%k`S`{iRO>@c&)y^JbhX*#)IHwev4VJOTR;o&qgMKjxJ5d$Z8U(46_Yr>Cv=okm7GRPAoaBc_6}CTw1~G zvmGxPg=O}%@3fwnj_~WVksK0)%!yi-vUT$WJEC=T5jjr7fd0u1Lo|@>+wY>{C@)D^{~4 zk2jmw=0snnV6`vEYH6vDUlSHi-&>(&eiH!PmQULx;Hxp|RMf*{MWnmX<21>FT6{_S zbYGQSFS$4rR@RihwX>W+wBkzI7uGtwV`63txu*_ zbh1Pj-I}M6HPdEw%`4F@c{~c4^Bc&8pC?cMaDk?Gt#@%98ANJ?l$LfmD5Iw!4XJmo^V;M!asfUvNFrGRLMA zCE4sY)|EDERdvl&N8n$QwOSsSBEgBn-`z|vz|vaJ!vy6wRKX= z^|+>><*_E1hhT=NWc5#KI?~oC)k-AV=ow9X+Uk=LFDq{Tg6DGk%M9c%@(tOVfi$v& zC8nePSb*24;XDM=U)8=)H;S)mI!sj@4S&@%q^Slbc(H%)Zf&fx^n#QC3^ z;6_evTSb;*WsjcRS}*5`;YzfTT{@ew>D7VEnPy-yYoVi(h~1$dKyieXT1GRSui7CX#qWkWc!70nVSts*_QPA>>6P#9ej!dZLs`J5TaB{DnAtD;=$~c$HbKks`+<@mC^&*GM$WcT5s1 z>Ky*Y9L(~d+JGIq$d>!+>_Rnq<_*UDClT4Ou>_sX+pVyflF!Z>o}Ty2@@@-kA_+R1 z_nFN)i8Y&2?wL{O=`RiybU@`RW+l++$;rJ4Xr0AZjTpBtC-r6IjiHQ=p#QNb)vv>;g?nV2=Gi9Te+qG!pbO*wfQTp?D!l>w}CEZTg{YJs)9 zVIsR2G}+xOyG4u09!zttfN2+4w3$3MM_aDjNVG?h1-se4(IQT*WvmD$_i|c^8ckhA?DN+9bd{Lv-NpDtlRGQTfd4`}MmvBeG;&jnl zlv!1xUK`aRol1IXDN3sVFPll3qt{KxRS6UtAgW?Sxt+)yPmbGFmsLNoB^MnQ%)UXl zc7rU_9a0>b6V0)fDdtUy8FB$abkG^>=1@h=+5ZG`o*=!x-(zlW`r&Y!R4iA@wY}V@ z2Egn{VrH&iOJL@R(Rm%syxeZ!@R}SuRv56s>NsL$mSGZDSwcEe+w%nGmSVHrvW0$G zQkd$zBLQ|N5xW$dIbw91oyxr2nB>^Z6_{G#Ggz>j;W~o%kYj^RE1XUBOfi>1>(x7# zS-6A0!(zJZZ7cUHRzIKEm<6E(pRlFqtS)3$W*1^J@=|SnG0R;uSuTf)OR1V}y5blM zaJ_y%V;*kq=m^q6!&St@%^fuXI+tsiOG^B!b4l;ZH?YVQGw(02N4UOyGgU6d%z*1v zyM=iy?=&}F{fTsMxwed&Wl3YLQPYi&LHUjyyR!1u*-(DRp`K}SID4~bsRj}%lumaj zN?8ci0n!FJt!{?XSeMhBwm6OL(m8#PIl0q~&`x#xOb8yk4y$SIW+qOXxdhH20`9V8y&(dmZh^B|dy0&i z@~l!-K9xlK65$W$5)F50)1eWG(D|Itd=jnUxx|G;Be5n){%|pCPmvK-#pxZF5{*P_ zjGYjP(5>+^=96d*&pEFm8i_SY^2}>ldy0&xDvmX7AR39*7}v-eH!~l1fuinc6LQf+ z2>y8sad6kZVwm0vx3gZ=4in@7&0hH`f;A4$IqxJ6svSHLI-h%(&)2kwF`-f(C=a@} zxSx373Gir*C$vQX)%8Ef`qj~6=kQdc;}O3m2I}Y$fpreQVGgP|ZotXD;@^>CH(|7Jy5?tDv-`0$l+Y!Yy;?7@qYFGw+SMFnaviHPc##>X zb)Pb0=I)Ns|3cc;x*MFX`Bm2JX3O=uLxMR9QO};ufknAzuD-GcOZ=5ZsUdZWoG*%> zfB^JwR1Gx@1W3Ii|77iI*V#Qg2Z^aW-oH%*)UFeObq?>g#=#3@@3+JuX`ua}H4fg` z_Hj!bl7_d>n1gOk^V01u`E1vY=GJff(ph-Lmqf;$IoDltcaoyF&R2M))0^^?tJQcZ zVYl%zl!HEu~VUxtqhNsnOb${Qcc49@D%wm>>3brxH%)_EEu|reDYL< zXiktswSma*^Qk6pya{Bc@;ZiinM?NKwS+n^Uxv=;cxL1-=+>plhvsSJLbX~hk)2K? zKJLP*DnVy+GP7}8+g)Ve{yWmziwMSQZ8v%anE{(i(Qx_zx zXC%0v2-5KO13tiyVZ0lSUH!pt8Mz|SwdY1!Mcjbs3aaFL3RQEQEbuhPOEzInZsbW2 z6`fIYq>W{1X%?zl?-s#ATQJ^TF?QJ)d}emO(9;{A;)I;7Sx%boS9{B|Gjdz_K=jQS zQnqbTib=${xxQ3NY$33M7?8s!&oTp|k)K=;=fyJbCBM}q7_6DO&VgYFZ z5(4Bah~p-^Y9?_reb*#I4t#eF?tYhW;JfE*Sx3M$Bf!Z5Fv6G*tmdjmTr(uZ-F2W% zK9Yf{sy(cQ&#PVG%-B4!GZZgv0yd<Tr$JGBGI^ zGG9$NOz2ND4?1qV9ua$-j_8arHMH=6mbBHSlF1i)E}kj;Cj5q zbxBjQQZC4?y@j6W(>ThXsFe?5n&fxpjkR(uBbii}ob^vI&&iqyMAyJP)g}b(da#&j zEq<#M19NPqrbVs8qLwg5$n}}$)DJb)h z_!t5R{YfD-xc(_ti}|ouO!u10KH;^P3i}bm(BlgwNj@Ay{aN94iq+#CM6FLKJ;2rW zdOTwuW(+*2P>S+ISm_mwjpadB`DG3jE~|4rJrD8`Ycc}zi-X=hj^OjU#s^uCTt6q{ zr(?=DwZc}`<3hUnh5tXh8mxXJUP*Q@IlTU%@v^cW1^2rHh1?RX$IE(> zkV`WXcBq#hD9`r1@GXrZ96gBi8t}rygyT=RIgzBtVKxzZ2}5l&%4A}eW5#zhj%-F7 zcU+H9ynv0Nn~{(gF%sTUuM*97;Ii*&G_8qC5_pB2a6N=IdJ~sac#h!+JMz8HYw-VS zEUmEPAl{lK)ShG6Uf5yG3yi^VF5EnnMEJPMzFGg33JAemRoB^0zR*U5xD?Nf)zRlS>ctKt>2{&eilL zml|p-M!|D%gSyiV=g%oghUGa9VuxN~bUDlRJclt?G6n-ybtqc0g@qQ>*jNLWRen?B z#ZRzYZ@}^qPcb5Buc0oJWjMB3SYuSq*cE#IQ5WqJ9?P2?BT zc%cmfpC;7iX4c)wo{F#Ov1{wNJmcUWL20M0(S}QE?5x19;O;g{7E@V|7ub`KdomK< zE)hK!E#`yUG8#9_+a1I2w2D@ z4jZs$&&Ul$Y|J8%@8ybx=;89$*OirrEj1^%@;w`{@ArhDJcrnKG-B4gOamTyh|v2kw}dw@ zON8#oP=wk1oB{JnT2~=neTMP2*Em{XR>6H{(!v{9j~8Z>kT)|D3A)@xpS9mgzj|qL zwRN=|+FJJUL93o7+)mz~R>r(#9~E{Q!_dA`Si-JCZheiM)xH|=$y0>jVXVn(-$dvU z429>`0pb_IH?q(XVZ{wKqSmZ73B2mbLbiuBB97KU^{3Og={hu}NTvi?l51n+TQ;LM z(@^lNAZ{mM_c}qCZp%!u6K{NI6!RvmrWxq(G8*BpAa}7l*4$j9XoWu;u+a0i|f{0>vpBMMRpQA2RIIvxMNo?6+u!xC0%wQviovc5 z0p;i9WQT%W|CPavjp5TZIBIBg%2SX7Uz^F9q4Y%T&+_BENW!kO8!xkxKV}l?PIF@{xa11f5k+g#d!B#z97_Q0I@PmjBT$_Qx zYM)HkyW$PjXwbtoZuV-Qi~00)A$AGNhr3(RO+j7Gs31xW4h)nlH8ZXRu_oAa6D>-D z=Jz$4nAz3ia04Nq{!n=D#|*IB!{XhHm;+f1B3b=*4#%xQ{uqrsT0|h`F-pfsXmA9$3ga8X+wE7TTclOfu~E~Mj@U>usXRvFIZi!!Q| z$|W~?o~iLe&=@S4=!|5H2cx+f40&7tYnTuGND~0_2Li%gN~7lm8W2q#0M$YMA`OIj zP7F#K=6|YT(Ha3Zd7!^cLt1rA9O|#ofR@VS!TxFuiKI0kn>yTIr-7k1?5DxH7rjGbb++MiFiC zxk6${D{ch=A9Tn?($l6K&}j8Sh3&yG5X+S-m0UUB9a;y(h8qy`LC;?z#ExSPUUX7n zCol{j19RnQ_X;>2u5q$H23qBBKU?TLoe){#h~y)F&xl}6aj@UIN)u$huaUuE7X-a6j6$o9YE=rCMd;_AN*J-ZO+maN*-t{2B8&tWxOuSp@C?A z16IdttgO+5P=A^$#Qwr9;f*Fb?p4OYT!o&jG@;|-Cu+p37IYz(Uns10;+lKrQb0R1 z2$cHsvKug3ID)NCZa~R}?DI3B^b3~mQBpv+F$hUlDO)m6nL1`VP2*%GT^{D6bA;4e z+zMXOrJ>$o6#NQh$yR4-yez*WRP}mcw&sBpJ3YVBaceUUjc7{8-2;s{S0iTml?(at z<-+P}ZV#^!70`7I3LDXE?sgjSM;a%$5pB%dR|=_TSw1%+p`K?HMwvqg<*K?uG0Nm% zstYt)*6`d)5*&Cgkf*EMw9eB3qA z;<9opIa7BzG$yD$sZk56BE`+?ckb-=8Ld24N`fq(EB^-#0mlsnW(AkOTB`pKuD;gIS-MlEAlLCj?hyKf~-Tu4XEH6^6%zl^q`- z{7N%~74X21gz$W9QH^jCd;x}|59h*LW@z*yu^`8hIiaKrw8HG)C6 zNI$yEgO!4O9mva^-CI}xNTY^KB4}eBdj7RSabXTYSm%u+SPFPC24mY;c*ZRpXUzG& z{18?uu%Cm2#HU&fHZ&_Akt|tx2}Z5P(!S87pQbjMKOQ z$^W>xm{uJ2HpR`SZ+pKFnrKN4f&@G8ZwMDV#>I$A`VgM_;ncXaF#_- zh4bo7awhaG=L+W!c-L?Qw%aCjf3~oz7vS$Q z7*!4RMYpaeIMv!3Zv^Wu`KFtTPGlW%tW12*>Q$zZRldhE~q*VfML0xZTWl@YaAd)GdrcgLcc@uoz7{ zKo1_g^~waib2>;*jh&T2sQtMLTg8^ zu$M6DxCx9y+x1oliiK!m17g=`#4LAmA%DMFSnba>_u5VY9mJqIC5ocgH>6}k?lFei zjVnx)2sD*JIR9AK)QJK&X>^b-)zgEh_>NBtmG@aH%o)2*p^l+$)2LaAq7Pcv#PSok_Fkf>!cJls zzJOZi1z@gUYMfx+pz*BoPyJHpJj@kFz>izcM?A_1w6}akH}BPC?7#s^cWaca>4FBl z>oMVWHP_jjE+j&)VxRr3~&{;PLQ;UI(odbJ0rhZsste9Gr z@bYa!{36z!VCrNUKV=z#sRzwuyDTp{Q^$W)BW{~ogIb)8GY_?jiI%D)Iluyq!4?SWh2VQUdx#08H3!fDv#P_YQ2@bToPF9vTm{iwbT0!`K&vna1My&~AiM9(EsRxJL91B{Xt3NX8a;%qz;em(`|cL1Z*!N! zU30Mo8whxp1;CO+oZi2#QMD}TLdHEI^zLD!c$QQ^_cN$Y$xgdry*C?DvLUORMUpvO zVWLE!?=cA7p%dq%?8EV^9wloxJ7~0^C1_NJ4L>B*_Tq|r-5~+EF9SiZr&1mqa6SZs z-uMRe81}t;gx-g21dm<<@Dm0i5ia0huAJf_15VT!TI)F~^4|{&$pV|gThB?x78wio zE^Y>fcrY@|vS7%`8ci$x)__}?C5!o4lb3!cLKkFcKyqvX$tjIUD!`o|5RzN5CZA*y zbQ^}E^@?TL@GhScud%sj~9p>m)FA2IHLopBR z%vVa~!D6uxddauWlW1_Ow$I9%W)o@w6WL$qPUB6pb=;ebLlV|$-8u|fcWAV%B+LdJ z@(W>9V#!_-Mvy}p0z=91twOH17+;AAMt5n9EJG1$3)AB>+!&srbX+Inka9VDRl)0C zjhB^jIf#wSveq=Nx0iA;W(H%hnmiD^iQu@@uQW#1YO;r!beC{?f#rLv$r|b{G5>6uBVE-FRpR3Vz-Js{wZPj4{i}Jb|+)sVl0AyT!v=0fyrUR{z17A zT@IXvWRJXB$lk4OFZ42~WD(QMMEP8{5ZbMnpCh+LMJuFGcb}%tYBvuv`*D%~3$B^h zZW`(~MxhPr*8ssp}F2;xR6Txq4U>s!&50f-`0Q5%fOIh9Tl8%7> zT*F}Oz?qQ@_(!de4~e&G5NqtvfQSB7+GL9ieKqpNjzs9z3`Kk%>d!{kxPaUp8aYJI zY*)5lwvgqc@*BP;oR%?y{Y#gv=t-#4-w@PzrsG9V9XFA2!NyR-&HZ)?cFSw*;KxBq z3@tA1v&E!?o?te(xQ|@;8$($mkS8$`ZIqv5=3(+sL!s7dUL@!$$j-cI^%-PW(#WEf zO!+W?py;YvQADj!v}_2f=FH|lw{}3UuA!|Bs10O%<6qK(7aAF^g}e=@%}BYJrC<@f zFB`4lg7KOfW3+rR+uy0xacvD@wY-8`;RC7HcIFmzw_aY$Cn0xWWSybxV^LaR-G&Sa zcg^R*@Fvzn40Yr$7>Vhj*^1t8o~74luCLLAO9x#j34Hc@!gW#B=Z3*FfUZ7KM^p^t`Kdj9?dhRJ$!13T_1*j&+Fd}gG7t$`bi(&gJ=Px*4 z0Q{;^6fKsb#GS_U3wCAY(U71FJ}eGIa|{%^$1jA=EBmj)HbJTT)lzayz$x{hUkd3= zDL>m@tcSc``z7&(fa@){*2%}Kq744B*ErO*!Wgk#kKAu%RUhr_<7IEMowx1wrkHJ4 zX*3ImHl8XMXym(Q$e{$;I2zdy#m_Nq?7XnDfxY9h-oSVVT{6Uu29o;Dmi9U^v7t>< zVRv{~)5E_M#*c}uEXG(H4zi;9c5P#zY%Sxw6!nb{#YXp)guFkn!%{BZT!-VJ`#%%( zry3gm>7oY-p8rzd-zY1}5ly8_6=b)o+2I;ibOD1{LqnkBPYCw1k1zKRNXk0FM#4l> zO-FKCX;Y<@BJ*}MBd_oJsI8C-)-kMnPg3q|@U6QDDc1${-4bcVNLSZ7(X=olW|C^e z8?PUb>J({xcSZV<0oL_TE-BjgA?+JAWA#K?eGf#sF{agZ?)+KXYgq>Xbicepi;0U9Q$vP@I6feoX6}0&xvw5pC6wn+T$(3d|ShyeGEnj zN9KLRgx+i`M`dJMP^TgM*CF*~}nCJVN z1kAO61GJmPz8d6h)2Lf$Q1}9%W`mpeaK=GjSzx}tNt&54y5OUk z2f5iaDBt#Z)GMCbilmL-$w>3|kKB9(uLu_wQ>c zbieulHNgp_7#f~2x34-0$+yIbqk}qOP5@w-jUKI;`o3L^!g68a`as+`zdhu2S8&z3vm!U*@^?h zurQL%#aja2Fh$2{MX|tcibf9_J!Qs~FSWJ_2y{iuEtCE$C9l*<22x8samXHH{PTRR zY(Un!GxQM?L;kE44a7>(i0lGpbiG+C8;F(ZU1-v$-j<@fX+;CEQgm!s_7O9#9hzD; zqOiD$)hBCZk(759YNlb${WziYNnZ$Jd95{&M}&xAl{*5xBcP0?1|c~F74xzisoGoU zj+VKXH}&3810t~sf#ql;`pN$%fW0&T<_saAVqR5sRh|5~AQ#mt=9pqmtn1O|1u?c? znbDyAa``ylnec`beMu_{zqGu4k>5(mvxn;@x<#=^ihp8?Aw!z`sNOQl9Cg(l5mI~v-A;<5nV4! z=~J}Q7{}_R-76{H{kve6N^F-xfBY6;??0vJ+FDVJScPi0d0adiG;VoXia(?o1kGsf zOpg3$?sHOh1&w*VthG}0hsUIBO_K|^FI2@SQJQqrlT!E!tuRbo%thBB9ruEi{EkKe zO)ZaDMnl~pe~_XdXhIRgOi|a!1J4NHNevLNC`V5T&iAI2d{biqL&!5ln?<`#-}VBJ=vL&r-P`h$Z)cvOYQHp+DD~ilgC}g|jn{Fg}qu)vS=e5cO)(Fc-3eI?3 z07q(oU=_aHQ!u+gtRd8X_bG9dU5@yQ#%%4M|yp#Z`Y1 z#4(x*^i8>vtk6Fgx!3cC&|=A@rR!LwKQsM)npPTJEx1d&7(Mh+dr69SX~j`n={#l| zxXkgwuzC6K1@M+u+hFpTm&4K4PQ+zQz`9qH50?yj zD+<$DdF=IfNy%%ql69eR8oT{XQgr#`qKC%27Ctpa*U*Y07+2-?qe?U)oPMVizDO$! zud5Drn!CQERPmf&N%4=h;;5UIO!wU`C2Lwq)J;l8`SBX}OVKy9qG$&pFmPDd#?M_Z zW&fjX$*7l=NqJcIblVZ@u&NyN>|E@}Bt96RA2 z@5{Vw8TZ2hX2~A5{z!bt725|Mm6cU%ItQ=Ccf#HMJ2mby8x5RU?l+ZLZe2(4g0m{4 z@0cHlQ(T1YX~D(hRQ6udhbsC{t@zk5dmJHB8q>3%xWR*8$*VY%`k zG$)?*-q&pf_?>*wi`IuPSWFuGD6^XFf2l!7F-13v(!Pbwe0w$RO(Cqh1clAz=q1@G z8Bf!{_HTi`r+u!Bbc~I3yuFkVx>q9<=@{F^I!^yobewL!>m}A>T%_ZVhR|mkp-9I# zMMvgcf&E>BVfDyVU+#mG$9yGA=#sTq`KlMT#cy5}=%N}FyCyszDi%s+i9K8F$#+(w z`zP@d*aPB(R`*c7K%U%+*JJEZA>Pvo2nu5nsR$#+wJ#DswOmKB+VbE;1vou}*nZPb` zVcLS2e3h>isx^}^h8mAuL`WX&Mo>+o`9e~tMS0rF{}qiJxEe7$1RFGzAh3oB0`4Xk zbe-|xHDetLXe|bToUMg>HloLWP1kYt!6d%E1o%e`_v+^bpkJ8)!S72ph*Ccf^cB|P)h{t>{)_b~^-F~RAH%T-Sd~xt(sN`_ zob>VNk%*@*l3viG)z=AH zfbyn7>vglr?)oH*VA1j+Z!!cEl5AIBS-xwBVPoht5x=^&2^I@90Ur-@+m?daiYx2w z@zqe&k>%zyu*l5Yvmlzx7Ptm{*dTVR+ ztftJB<4M#;+Y76!S+duZ1i6kOn4Oq=Wz2OdPFt?45rT%mUOwoNU4_(yJoy&}xY$%G zY!bsT53*i_g^||RIK}CGhgE*l&4kX|?7Q$1i%z_*0>rzFKv2ue8oUe)5-PGiwt{%L;2r;4}9Sj>mD`y|9)FKY`)so&u6xN>Qc*o||brt?ubz-ZCcqkPYH>PYv}6 zqmWmHscoSoDQ?Ex;XD{miotPnjU$rH!0l2cT(+|?{(`;SJH6jn#{6tmgo<8q10gOi zVavb!%k~{;V84~d9y>Gw_9^(qP5;@3^&+{C9k!8#?N|cZ%dB6^JsPsXHd7mvn^>cd zP~g3d#v4H{;GKv*_dCM+1hzO@EM}dKKZ)^(e6xD9(&aLhY;=_~$Zn^RMO2+tiO;y8 z=nh&@E2`RnV>Xwntjbips7jF48G?{x3g*eu<26R;8~x^VzPu7IM*~apBAUBQiP}um zuvXtlm2mbhQoZ%qJG{QpSjHHZ0gK}5n>q5jU9@}-(vvmPh^c{VF>Kczgz4>URb*bV zPbC2FWMHtcENed*Yk&Z`DH=IzkTct6Y|x*!6>3MY25*p4VMj3xeu5QmTM3x$p)s?L zv=Hjp-GtgyZX3ic%W86?a>3RH+@6es6#^}ObwF^sM$k%*b?Db73CrbJo0lA?fLCNN zsD^jRDA8@N22^$ELOTl8UvZ;(R8znYF&K_tEf;0Cq=YuPby}87+)%u)MmAVPme^o! zm~+y!1GM6n2b+LmgSMX{wc3|$=y|XTJAh%q3UIz8>knq$9KT2bA30bf2TeiW4{tlN zfmeK62xi!F$fsgIPK0(c6e$jtsm*$tiLs6evl>flW}qTFwicSZu`X|Bkc^$mSm>(R(s%L*=J!wJIgpDf*5 zR!~51GYDf+@1UF%&lF`fGi>oEju0JdXb0!5F^OTF+X$?{TD&nS0a#=pEH=w5@*c4XbVr|~=nF8LI!LTiM$o9)CFY-h&*>)3+ ztmOV@288jU-+!RJtoDry*vjtu**ae#H$EM62! z0ItVCXp=`;%DDn|MVR+BqkWtpS<^^b_DljlV6vyjS)*sqRQQt&5A0c!<0I8tCjP1j zs|sYm#0J`a3KrT{+Xdc;qq~xIywLjil#NNdhh$FLYmLtr%S8 zAX09Y_qr@J9;;~#zB%`ntq;^F`~$6UAirE3>@P_e@b5bRp$4&1P7s(om7-A7&nnPTDL(9cn&ls#{$#E9> zC~f9j`5v=SDo1eQu?1$Bq4BfUvr;8=9w>abVOx0XS&e0E$1>0x7#YuQL4R+JzSSGj z1pHvSu)m)D#_J6YMcl+9bn?}Bha|}F*D85Sz+-y~`O8>yBl5n8D_8_(6+`7pr<_J~ zzsQ31ff{RX%B`aBpCgoCGHBPkv9Ka%&vKGTMw|K0>XyO}8@KTLsI{=-gZ^}ofTpr9 zc?&BlY)^(^Jv(bX{tHr%YNRl#*HcCdu*+;A^e9&ub%;B(tpkw98B!+``#;D$-jGZT zc=J#p^F5YKWIV``48fwQJTxr_P35+bFyMjFlNuvy(Uef93<<4!S%*XU7Bpe!ckCx#YZByHhG2E3%YEh(e3Fyrr?R@>d5jJtK5FxuRbF%9uQ35IMsw)J|-A zN26p#P9OC8zQSs8*5E}>6}A+^V5r{Vfq2&n4E3JI$}*ILIQL+ov@gr{48@oO7=xfx zsB-r7UyYF!lswD<`wOQvS-uyPG}PLRf|ZK)K`vP7BaM?~B?nO&5Jo*5V>~M{rjIe` zYjWT{`f>+4pK5fhzGee1tq7arS+dvH2y!ArFj+1-cd&xa7aARFvg|@;8oyqUO^>R| z_hNU*oZry!b7`xpHee|;xj3I=gjZF9T*weq)jY%)&wWtU1vNTWRb9viCUrfO4e6~5 zD4-gHFz}S}b86Xc>vStvEv&J!l2<}qyq^$Tk=wvaUUl3mj6-KOxuP6AcY@wx8Z)ai zdzh!qO2RE%cds*RsM{F@kCMY)Zica>M#=Ih8}M9S_}s{fjeLe-NWAF zGibzRG+r2`gRwmUdt{eTyn^-NyKX$br=hQAG~(bK`F<7c(g(-oHI7ysbPx-foaii; z?ZrXHoWmG26L(x!! zl0Qu>In?Ktyi6;(p>ih9KC`D?4|(|vVff3Sj`sDC@PS-DUPHX&Iw|<3wvioGu}c2z zUMcyEcBl~E(wnVxReLLiQuJudsSgQYP3_kKaBsF>ZVmB|(wuOQfF9I9@KCu!&S$lr@#!NqL@?hd zb=hB3&N5E=h1S-%U2j%aE(NM&I_2gHxwBvPZOh^RF3$`rnaJ{(rVv?9U4*+HebbGC zSwh1g&*>Lsv(3)^a64D%YKPq-xG5SA=8%K+a+!gg|BP=N`KoE8aatq69AXXoA%cy~ zN%ZqI`6xY5E)L7VfRN25CKzn1l}1Mi4nE2aePQ|C?vnCXYUSZ(_42YOGTWWaMb~1S zW4hz>S`*n?YSCiulBT~esnysiA4TJuInDmACLirrXXWl2Ti3YdeOgT#_TA_@($Fe9 znaScIZnx78b~}TndpF#{W*O`hS46{cSGms&Db)jR82MJCFj7Ad5mpCz(9N!lhDHf< zmFP<+GLH+~8Z|VEd;A=S+!i$Lx{%EG;yb1>!;x$A<;rl`NShrpo5RY*css~SCyO!v zseS#`k@3!nD=ru0kmgA)QWnmjGe(|!r67NzAu)u=T@hJ%F+?VP(gUr|y~nV?UKJ}* z&WWLo>vqH80$5zDn*)f6U3Rnp_HGD>w`ct63IWX3YJ!ZcD?YLFJ7eenXrhCX@o~l5 zOf}!os)-)mRVfe1k-fMD|8SU;f4@=rxRUREPs-1)F|p;xb?p3^ls`(VBg*IdJM&%k z6O#vhU&@cus=L znSHeWYsU(_PveBG1m;dy%i%I|=BJd80{;vQuYH)Ec#ic6qP)~^!U#;kLYML-062?V0ZnhqPlOZpN0u|gy z3pwxv)-PRiHuQ|d$EIF!$zZ}U6&rYGNa|h9W34gl-FVyT9YMGk9euZ94InDGPQ0VB z^uCv**90#^AS5R-d5@TE-4c^DxqYuk92(}%%GD=}&y|L*y0&fD(B3^L)6HOcmD|wP z>6}JM>)R$^yE{L;(>aYKyvq{O^vA;)Qr}@=-lBd_!r?4I(;tq%F&YW)5dUHX7Afld)hWjZ zj6tGh)k4L6%sAE+w>#<8xrEiu(OmfKR-<>7w7I7^p4P1=(AdAfAm zw;5;ogOyNXigk$@M^gR4M_kSbWcGnSNNIOs_Pf;LG(q|~Tgv+?MUYz=Vi7WvrEm<# zyy{UVf~Nd1;P2tapeZ5!%gA#E8IYg3qPejPnI%>h17M#=gW@tGm&R_1ElYUUwtN zZx~{AH=gKz%#6J5#+c6-V|hlxZN3|rb#6CUdY+L0+?at@{MWAn-q$SLyUM)yuj3A2 zoNYb2MmU$iEe=+E^>8<1EFUmiQo@jn>xcis#XTP&$g2#oMlt`^;v2ZMm(}=)n;GHM zApUBKyN*}l;#30{6#k&7{(5N2@wQyeY+rPEV6B9ImzvnOM$u`Kbj>a*AY-dL6hJ%^!I>(E}8e~=kY z@mhxX+)SoK+a&^-C4@ zHHKOKCYyA;4L$vA2hZOaGr$8b}jA9C~wk`gxrOZRv(p}A<>yu?0Nbs7x(%oK^9?%t-;?awK*5} zHTaON7-D%^!Vas2xC?lmmH=FoftEHifGAt8UgkjMX-fdU#z6Q`FjhzVuflN@`?WS= zhF+ej<2GR&LcOO;+v_!fq2BESkxC6diQ(4X;Iutj+c47G8=QvTj?q@cRd;#a!OrGI zTorZ~!@LV$QZ|YGn!#T8PTDMXG$S`KUlro~u<31JzhzP03^RE<*wP8uz_Ze~gzdpt z?-I>){B*`6qQ)lBwtjs#0TnO~U!b#|2EsdXTbS2m+!>zNP)W$G8EHjHdWG&~F78E1 zg1p8MD_8O#uRDi(hL*T8@B?pdbe*T9E7&k%45+C+OP?;hslwY`SApHbE< zOfDvq8;in#i#PUu!2k>iv5P67+ZbeJ6Z|;e^;~-|n_$dMjIr9>f7I`DF736skC@NA z_vHG!EkC~T6i)$ujZ6FTJ;c`;VfmDNmyTAZ@qpm@TmjFg2y!7q>{g(62M^-%ek%~> z5XM+K_`Sl5*)u#HjJcFC*6a@Dy{Cxq&S8#W-s~3E(+kk1%m&EXOr^L&Ou-W)Cg_y-2s_VQi={Rh|Hx0i=_ixHM*$%2XZe(3kOyysbr zIg&A+j_4=^-W@%Z%PTruOpP&iyZi5zeuInq?e0Uq$q=v#B8t>ndFJ#*Zar@{t>gZ} zINQfUT~P*uCsL1QkndwU@Hhrq>qf#*eP8u5wud)gNkU%1NJU>MzK;Q~vo64>1bseo zAx65^)ZTV|gN?%0)PR3ypi(<)_J@aIk7tevweyiDG7^10@JsnvY(Er>XJwaUgqJ61 zsAU*s>ro!0oxuoSkAm8pQRtfW`k1Ts2fU|jdl=%4+_?MRhxIYc@(URswO4T8;pX-H zA_4dw1Fd@bZ&Tn2-Cr?5uU;zbA%^*L zHsaD=U3|nQjIdfGYb{j0VH9l1#l6-b$hR3{Wk05PbR_$!&!j!R!sWf}hcRDejBTZ^ z=*0Y_|B8ldxcz)9d5G&7Vb`J5Q;Zh1#{5S#T*&49IuPb!#@H=kZP|F_V^Q%67x!Dj zhrG@ZyB1PBYKa9t5EZv@dA}Bfxt%d~E#ym0*!iA%TU1Qt;(jfB$es+bYazv>wD6I4 zMMaIv`?Vm?!=dH` z0h3sOmEnZoawRnJ$^R!>_hpcm;UoYLV4!tMAp})$e&4C=$)AhbCAfXOQwohFEX@*d zdoGTa=ZbPIe!kj~tyHqZ+T|)wXC%JgG>Bo!J{P^U`R0`_q9cRm+^10M-7!}y4B<1c~(U9-G6y_DmE$1Sa9k1CU{|1nxCENl-p_tu3#tDY>g_Ur0(vkNUP2SjMiqI&GqC#SaPI)HagPt{R6dO=e8_x|B|KS zFATb5$k+qYqpAP6bmxGc+WryI%B!JYJw!V=b1B*|5^<@u%AGK-4{c zdbY&=Z;Ajb`ajtrEn1VEyKu})Fp+XRGA$AA$4aJwt$(&v4$k4OV=Q;^kvK&X<=7^ z^etI>Qs_vR-bD@Y?a>n5T_|p z{E%EA8up##R+CUW`4}hOCQZtMuSIsSWl>W^lpAT2=F17vIL3nF9!4(3*rZuOl5F|A zQ}O9Ws+(K4N>?U9fi_3*UMx6i*+IF+@{8SM5Inf%G)fXL3vRW{&c(cWbxzjpqLzlx ztO#|RC&|?t%H@WFhAyLl8Y(H(YOKZj4hZ=@M!wr*Nux*;!mZDSklx4AlQMToWtcO3^ zLD$KwD=GbHzE1HsKIk}&bxav?eUvYIPQN%7d5G1t-vstC zB1nIPr6(;DGAink68LHyG!zWvzm9v6cA-?RMoyMT38 z2*RIZ;qAMQeNG6{UtsC&r*V8b2s&P39V0MLd^8BcUuNO$d#0QPiBA$i{A;5vJ~|Kt z@o%vB5j3uK7zon;&eGdo@t`w6Q1LHTF#`XglRwb$f2^bZ%v?F{110~S7fP%%K2Y)> zRx%=Mc_(|I<3rXla%=hXm`_+q`{S~Ajt8~)d{h;<2Y8@hKC?-~T}o?z%=8cLK*Iv8 zq5a0@<2ul>5bJ2a7XC3EXjqgrv>!w0bPiN3!7AFXgnudr8kS}a?ThbXtP~TuwrCZm9Li)xmz5UGHy(kp&H)Z+lhaUfe zP-qy(8rpAKf9-us7T$i-ig0&r{M#(O{VwHP3JS}7XLQ9|w}C?Z_AI{rwH56KP-xkS zwXBo0eqgR8Uk6Ty0Z3cQI_=;)jA`xa}x72%vly^ zYtaFtu8=>qqM~OT)%2-#@6lIpU&#v1=Nip!=D64BtF_LxKNv!^xjD>fPjQW;6Y)S>68C$58q_D{X4{ zYF26D^}o>mB5QB1FD4(DvR$gf9L$JLP(b5fSYviHjXYQ~Z)i#ktLA%5N6Pf);~Oc! z;8kXD$h>7xh_1u{fxrH*3CJ_hP7wJU6G%ELqDG_+?@nmc>Yqlae=s-cEUhCp+PUqJ zd|TvML&WaQG*KkUia!(NU<>wr+m7jIde<;_hKHsS=BAY;M7#HmS{fRXjxxIzbM}wJ z{2#dHO57u84-5&ry%P=fF&V0&;_W`#dmpw;wk*`X8x{ zZq=zJ@P@mAX5-W^%ksp9#pw^cpyH;4^wZ=dgnp( zC{#HW*p@ZVgBlmR{6_vR>zxN(shF?0zO^H(-FNiEbdjU<1Xer`>f2xLa)+f!tacvM zSN1UZv)El(@jOVnO8GgpYztEZn*#~ZkBeJZel*ui~vF5vz0?CPU-A=>USw@*LYKju(xOtFPi^olxZ{Vt z+%Qe8a)sGIbbAPzW|rGDO|5c8lI+H*=Ni?-<|$G0G}V2YR+i92hpJ7Kbb*_U;qeC$ zb51^XyNPvuRhgP)z#J2$s1b~*H#;q=2~Jy4|3GZoK0JAl3(CpnKelSqfPQl9L;JpZ6nZ5 zt%`kwNuponu$f7;)7AQluXC`d^VZ0C2Tr_oO6_8)HtCGFX*S>+KvEgO+lh>jQzLv) zaI^;#8R<Ye9zdR;y%aC2UY5;{GQPpN;KTS;e43*L<{8ahq@iA!&x+<$A2-1V3Kt zmZxCRQWNgAplPoka3<`=AH&N4=6GqS`Xi2QHPM>D1}fFkWKL!W&{IWNqleOOHngnaZ#W-$wLaiux>TddjAuD~EhjPfIa4_1 z6mqA390C&$jqIO?U+y$bJB%3O$a?$Nn4P&HRmC(&`oUbg)9K9IG?8B({`MR zygH38taJBV101Vtm^|H)vtqTVDS?YJ^b|XDbh{~zCSGVqJl$?UN*M^*O>qb^>QF>H zh#dLsf$Wlzk6j{jFigZyXDUrRLJns&wT67dt%mXf!lmMYs=d+LfxLRJ;CNQ+QmpXcQoL5P+UY<@z~nlbBX9uP zz>9Zug&xR(?GgnR67JNS&F)muBCpah5!atpCp|oTr&+FwxV;GbxT($;b0+eUK^Jc8>~xD-?taM}!)tl`rE?6g<@8VG z@K)o7VJ)ECto7;*Fhb=bG|?$7;|y30riW*sQHEPu#C>cXIHB2T$eTn2BP%&0R;jLG z8L4zyHEl)VS#t)>#DDG_LBn`iIagl@d=-bb8nh29@QEsP)yDi=;>fc zKzg1E$IivvaBx_oX`{(GgznJ}$K}vgk;>2#Z`LSqodf66(@#02X*eOdLZ_r#96c9h zPjTPUnKNkSTc$a*RWv-Tva1J>mNmm+b5XSz?w27oOVBUo=vD``3|r}XbJ{7btI`4G zWgOgUiRrN5trBfrS9083qKF{pHla7~H*f~3!wy6&#tx$a13}uWS)6w0GW|DmPOOfK z8D0fm`mqQ1@@c;At(=8ig#jYKORfz`uWL9b`3R%eg-QD+tUO>%;#$sv)jpA7_0ev2 z52Jo)mLpqb#D_%|BlPg>AbpA6dpH-l^tfG^q#=&*1`ceMgdVo~2ppySn>Y`-D8Jim z6<3qm-^`J78Pvj{zFriU*%J5V4uki(g+ou|;fi~WDvaWauwsE$Fgl!JCz1Qiq%6fKi#Is{M^sgkrCh|9CF>_fDdp$s~qa!8p2)ha4=ul z;h3N2m{t=fgE1l3jW3Dy52SHFlpo|l5s+WW57N^kujRuW(rVJK4VjiEHN;1Ol+v25 zCha^jN^@Q&=tj2Z$BUjQ|wQCZ0;q@=W~ z&r`W9v672NM`hi65-Fb-n0%}v5})CCpa?n5Yn$xW%5&Pm)|_?tBC*yD5tMFI-QP;0 zU6>c`bn!AMLT_WBr+61T?jkU2Zz`+?H)QwAI$8;c8uO(p5k^a8#>=(2%G-IKqs&^PT1l zSX+v?D+kWOxTl~IH{q-X8hG!{v2&2N;l#K-=LER!z{Dz@*xZ`~Tjkt_voAP}h#f1u zFGtQn&jOj%dOwbxgPsvvGwu-%oR7G1QwH&z2XN#ZJm;ETsnM<0Xmamh4s8_$L7EWO zUeMEp4h33DKWh~Q`E-;%XQf9uvVT1cIVSz9RTN|e6w$99j*u*Rx5`4>!8YO84&1X; zoOHTH|ClLaAxCmG?H&;lX@@4Qcpu!X^n)3qnW&Y8{-=sE{Bx25UIeip0Wqq8v3OQE zJuYWK`6o!3$$5C{aEfn{Tpcf{{|u?qu=4Ps885Zlr5OY9UvlCn3{M zMkI7M;&g}iHXhxg+;1#IvI!@B#Lyza?x4}D!r*hlb(Rn?5;Z_<$03F{$e@&4RS|Le|Y&p)n$#W~;i#c46A&8S8h0+By*R+D5&+2H zU)bb6oa*pmhXwhtI<*bk2sOXEkW+u{&^!m!HAnLbPJ8$s35Ja0HP{PVomLiH3c-wW z@(Eb?$SXHS3)%;A+EIgsXkVj8OGU4_Qm=LhM;bojfR$OW0-8F4S7$`H27M~=17n=< z@E!&@hVG*k4%39xkKmMt@AQB&UL#nd{pnGh^zf|+PEUZ~oTTCjUAQfI@V zWC(CHWF7X5IN|nYfv^e@=#VJVSxaV*#xc;D)$Y{s;WI&=_LBmj!~vq_cw?nL8k9mv z(JA9qSO%~P2TN9)TB$y60+`GWpxrS6xEvsAxlkYwbvLQh2PPEic)f}VrOr_zL%dMK za?h$nfi!Ka7%)N_MvFu27SUA6$+!y+gJ$~D4r!*ZjQdb&PU0}!fD1vW0EB4sJaiaZ zJWC;{EZP zItsccBVAUZ%RQGt0pRXix6(P=4nH3|C5IsGJD%dLfi>KUAB z60Q%bL~wmJr=Nstxg$|Q=A)Y&poo!vRoiK(lD z=i-t3^aRwN94ebiK_ngSxe`cwbEK%_l!g-@3)%(Tz8o&4VUx3G1;&0HBc&T?>6Sgh zA)@jRmQq_2rq@Ir4&VS$=>bcC4qOqXcPPyEDR7SDI4PUHhr=~<3`a_-eQ5J?mRr>3IF6CB3z&ut zHF6?KfSiy$h*Q?}auNqgsTaeV2~nL>IMVs)`WYVyGx@8XwZ+a%z3#v!*s{Mcg!HGU zbM(lBmpFkf`1*cK=xns77VgY;bTX7OBP= z2tiFGs%x~O-^A0p2*TMMA*$1|M1bjIn37S>G7-W$kK;rQi)?Tlaqtyc3nO5P943uI z)H8qu{c%n|jkw@az&hNF!0X{~oHUAWJL>W;QIjc-5ETR4D5ULlrb?}FK3qVo<`8L= z(Qeklft{e=;Pj(nY?~^OBL@V)8V-;~Mjbd=!I1|W35YI-NL2^*>;eI>mIFj}1Xe;? zTWXco$-|2U#)TXsjiS|s>4N?xoPHWT^l;OCIUMB*h|4)dnkr0Jo$%@-LI3rfei}94 z*(A)zzL8@@O|*(r0)md~AZgmkM#Zz<4(UK{YrYNv%nxb4Ju05{zElLaj2tH* zNd1^4*rVdv2x?q*g6>a^8TF`8D~h(5D`_L!IBAuz;#DrX4CdmGYlPyGq+u=U( zpw`Fl1+Du#VCc$PgQz7>;m3-#E)O=-6N2BvmP1w?L@h{)rOC}!u=_)#&YFDGg2Q+O zIB8qiI4Q{g7|GLSpPaT_K`Lnfl+%u~uYr88g@x*2TqUUgoKuf#8u8TO<`?Wph)#dS ziAQ;gc;cMz-*VEsL>h27OnLU*;APK)O$CbSE{y(+7%e4I#GMJmT%)e9W5)<^6BTTY zBSmJS2itNt>Yug+dz1nl2(k{}LJ{RaIH%zWUcH9gnIXtdak5bzXe3$4bHnZ2p*;$^ zt2y1F*%b>t!*#lXY=e{CJxa3PX$gT4_jwph=1br%6_bhD=N5T10U`EP^u5G%A{&Lr zifV?z6MbQ)VDsxpnVC>j#~;b~o?=_fe#sC6j#H5|WTkTv7^yPWD?QN|>XKL~8#uEk(b8+D06MXE@Ct}-T{ z5~7;`QEFIGBb$Lcxw(%LY;TST%)p`snS)Wvu!ua|wEV7-c^k~b{}#FeY)b^AooduD z$_lB|3pf4?`dep7AGY4<^ta>mBfD0qQL~;$m54(yzau9e*=`0CcjO5Hg8I&!dJ5KM zKqH9n#)&6qU7C+?HG6RC$yx7o!wvO<^}RABuG!;0SrVU?J17L_3pw$q4$$9P9=MiO zF9lb11%z7`9bn|HbVBSZjNPm{z({)BKM6M9gp`?oiW;0mQ&)m0LHBANZ6+Yv2oJlTEiMW+72^Jqqa%plgi#_fOupo1Nc!ARMKx|lBxb1m ze7d30L{C_T^B!tFBDW9n0GJ;EniOrS)UI@3wRO0xOw{of4#`i{ND2uT1+AWez4Tf& zZ{wIN?5r%>L`LyW960?8E)$z9;!)m8Uo0wmI|t29lXYFJcjSr21bP=o;Nh?py&4+Pjwn@{`;W*AM_(wI20h_j5$PglJeq*5V)FDCxbKxut)eL-CdE z!&WGwg+Iix_|Ctfu_9XbS2$RDO|cgJa2_bEB|pkh_(?Lu3eMDmAIk;E&~hK=KzxzZ z&^0o(*e5v>57i{ncu8ipesU*7EjwOBq85IlE&Xbn;-ex?n1y31 zA;|+d0H27lkR%?EQ*pu#27>k>oHox}*wXIK$OSHf`l~afPL|II>SLTbAKqE=E~rzz z9>K{E+ZKgIffW*aIST1+3OOEF+ysXLMvY4?7{{Y14fe8#GaffAiZsYpyVr2+8v9}n z85eIRfYjUj5{{Ti`JGx7hWFsnsPdO`@`>67Ltlh&fpTwL^i1URC{dYGet>XmbFbX($$51FSmA(tjh2P(y&A&d zNpQrfa{jo$nB*97d4~Z~3^AZfH`U1HXnZ=xqDD$gL~Oav=?@tjcs8NXr$*P}0DR)r zwgQxNCmYh`W*t`g(`Go$N%Q6BgSiIM^=3oqp@{5fILMGux{y8mOjN@pwXo5Pk+R-{ z$BojWtkkb!TqD1X*CI8Nxh-7Dk%o+Se0j-j970-e;B=FC4LG?F4i+p{CyJ%<4tNft z>o;=@K27XP+i8zR>Z8|fP5=PL$#B*Nfp{y2NK}mwVhXoL(`sD9F_QG$6~}2opP}jD zT26e(!LZP;K7yDkGO1J6xamZgA)^Kd@y4avj@6`qa^7T z@I*=2u_^lnBCy*yNFsshAhh$moueeG3f@B(+4)tJYbs!Y6!$m^~g zK-^9(b78BGbK*(boB42Q zf$$_pND|fPNxJVNSv{(Wn_7zMSY?tU7{x0~UPKL^;x$O30Q5vfw<*`93F1$4;zQ=K z(87e9!>qX66eg%Y!>K0;&T7pPb<@A#bdxBxUJ7>$3wD3a$tH1cKsF4OXp{XN2S}ny zSc_p8fcyc8>n53qJlq6Pg@X&IaQ@7BPh#)hiE${RYJ;uI5?XkU10^v@JnCNr##9CW z;M9|J0!>)OzqSpjRWjd2x|`=YQrudEC#jGi?JDy5A%Mv`%t#1LVgbl{{yn{lutRvd!Ss?6uqlVm|9^GG%Q?y`n`}*0!8-k~RXDRzNcm1G<{in1t!r8l2cnb0<4+s3hY$AF9=c{gwul zoj6L8gt31b0069}nbBQ2{Uj|N=o|ChyL0kMyrV*1j62q>wW+d*29n_?!qvxI@m-zk=aZ& z!{Y^nBRZ6eBZ+tD0NpV5<1=!Hag-!OwhkOdUu?GFkS;hE*AU|z&S8@DJrPsiM{?>( zqGXTybhX5?499SQM3xVm+lu2NFG@Vbah!aTXeMx=aM2)39-qJ=lB8hZG%>bp>LgA& z3HO3@L`LtF%pq7l?{p54q`4`zFlF;raFisSF`$@pd1rF^NemU}!$6{4g6sW=p`OFZ zC+W%*^4Qd9H*h}3NT`UQ3PrjTS$NkAI7&i6p(Ww%N<>g)PCiK%2?W)ExCneI%i2zG zgd|-WAhb)gor`}$kw~dg zgYRVoAg-}P`ugPmIu4K|gcgfR{cAbB7`j>0{KG{YDM>~~AmRCnRR`|S>j>kgGP{%m zC2>Ro2okBqamW)o^5!++BCg;Vi7SIc^2l-ERU9Zu@GdIjjRIk6R9|oKCJvHVVo^iQ zt2suJv9nSUJmfeFX^%296@zT_*#C38-42_AW zx-K>A{!v0jAA(SSH>W@;lA zh~)hyI&nK%fk8a(MBUMP*NLz<cq z$NKMlu6a)0Nu-@1q4NEGh-V-|!4UQK?Vmh7%rAB5*#>} zecDesL>k*N_c1@`AZa=@e{2-dT7JdB(geam>Y!ci!4f-|Kh!$w-*ULPNwGoghV`4j z&zwH(FaN~pr?F+=-z=xUa-1}-GNPOOJ4e|&CJ|97bxTEcOVPzwLMCF~I+BTqTk{zb z(1zE?0^t>KJVO{V2*MizVVaAG>y!r4=Gh2=vN58tY((5Z#sVqGM|7C9HbXdi=*vnQ zkw-}^%t(y4VV!ch1k0@Hnha6N`5ZOw1O)pUO4M$65V=6yiX+Cwd-jNBI8_3x86-ml z+O{0+oJ^z|%z?pX-WHs(QY1U-1oRFZ`m9W$Ctv|OZ24rCv=ax88_L;Bm_zNF7Zhyl zo1k{HJBM18i8zD#2UsB0YKe2JJ(*IUvnPkYAX|8t9FAjPZ_YqATCFls@5`a$lKJ)q z1QS7c0ENM3_v4V+ct3!QZlWU`HSSoTvWDQ^_Y@A1&e2DE-P1W#I*X3=wktSV zx@a2EqP*;x94lSxiS(}LaHQ1gitwuEbEvqS?BFI8%$mM@<}|moXkMSEy0VS%Ex(XoN>O zV1!#vlLSN@j|vIR5|4`@zBLf1<`~!Pt>|;Z6xG-ck(gn|W&SMDf@H*aIMfk%J0c!6 z(YRh=NU*Y;{}E_AbF{cTpovG>s#eOx%jvMhOtFv4XFX}tSG0)4qzHK~} z%~0VZIC%D!wN9(?Q5-Zo*HCukk_aK+MI0?Vm#%kLi#b?^Rcp$7TSV2CaJ0BQ%5dgd zaV8IH%Ogw#;8G44x9n(0!0I#{>qC6dsT?mmx9+Uz$xDqz^_FqC>`cXJhiCN(u$8%j ztqadV5nyL=unYycu2nyf=MK&zw`zUm!Y{dC+V>5%^WRms%tn;2C{@}79FkQ zeJh8|F2DvzJZhc|-L9Dn(1u*MEll-V4w_+G^lPeh{IeW0d+F-Km-lec?D~B;C9hhS z*Ubva-jFLGbiX>_O&l=09$%cL*Q$kQw2CU;oF`(#nS>o{^2jBD_(6`CoiBj4Vdyz- z;gH#hwbkrYStW1dh}rd3EqNM|km&6kEW36ABhiCkL`wRqJ2+r=9;fY;t8kr>a+8Os z_O!g;y&NvPE*Wkiq>0=6Ia+oWs;9so;9yx+ zP0N6PK3B9gZJN4#h@)jUs^~zfL|&UC8p2mNUUtq5t_SM2;bLjh4j$%+*_nzyq3|dN z%g$5)j3)RW<7nA6agb!|LL$k>^M!+Z%L&|*94@=`44eqrD4WtV-{+`tdoJvPeYmBC zRP8Aa61OaZPN1>93+FfG$!TgTEad3n!{wE7`;RJ z9Y@KaGHfpO4;&_g%IGfd&m1L#%CNc9=kkJ~#{3TslfJiznk#*tgQf3$12DrJ=?fe$ zedHV9Ma+%P3sIoX=6x zdvv{b+KPi@P!)Zyb6buQw=&Mo{7iG4J8+=5t$LO~eEMi7j+5Tq^4XhRIZS#J(C0FD z&jmzFrS8c=(%Tv2YiW*nZ;q0ITG$NfzInj#nbG|?O!{F=_r;3l{Na>p^ zpCUdc9~gaV_&5%ezV9(i37^1m(l;S}D)=N0lHSzV6!0k=C4E>LG4*>o$I3u#+LZ4K z4wBxY`9$xTdBM;L-g7ui21cMy?4Hk2(l56+Pv~C2p)#Bv4Fkiu;(pSnjv3wOrO5YRe6UuMmAnDtZX(IV* z4wSx=V(akU#!=Fncf>UHJ2+N)qccxWU&o=+$18kV`rRBRy^h#)^m{oeaPUWv5eD4a|C0_lmFph z>79^YGd+j$agLRl6j{pQlN>Dl!W_S1;Yfgn=by?EG9qmGG>6Pgq^!gGEC)*;P8gSV ze2ycfcf0!h<`+3gdbi7#a(tPir0)*-5{|Fs1EVk9c!a~Gce{~GHonQx_Kn-%vaaR8 z4N|bTU+#ElJOMlVyO)ri{Rdmp7=;x_)oF3LLAc68&|6FC#hudz-aX_=rKcSmaCC@t zobo|1LJ^=B0w_H}U_3!RtZ@0s0)m4}kOOwIfRi5=zPl|uwea*z!N}#v2t9J3k~hZwp`8P(m``#5+xx2i|DuMcn@O1bjDJjI7N2XV)Rrs~y4G2=gyj(SsGAtHGA2!c(erBp5xwJQI1l;73o@6WIfDl|7y0#zk_(eh_yT7ocY$!%@TK*@1@{nN zdsBDVe`=fQe}Hw+KXj6?32 z65xN~;Px%aw=WB`8=WfEVQKE9ss4ZCEa08MqvFira;?9TU35(N?oIGp)@EY{apxsU%0K1VwkuQp2UDqLMmL{Q;8=OGiIi%XDUW0~d+F6Lb1sDcUI zA73`d@J+h>?Me=B9U3OkLEDihxd;n<1IN$N8BW5MzbfP@NE>`JXCX%sOwF|9Y1u*q zZ{_$odZB8Eha}f<4sw)0O+6W1NZ?wIpJNlOIqmRZ0s%ier||V=h4w=4;qca(m*JZr z>?YF3*f($na*W9u&bn@CqN{n~n>Y_SHUbQY;0!q825#mYt7`r@J^S`KyHuqweNhI+dMR zD5fFS=Q$(!i-V1{9^zbBFCk4V4t>D&70!h9tZi~8BF0@0b7u0_3mbktx_-FOMq!U} zF07Y5Bv%X@j6KfT$ls+J$7D}(PVyHBADVrivys0OGmX%m;*8`k4?a+PnzNCAn`Ps* zXVwQ7Y}ob-&P9$nR6jU1jNX3D`N%&oG!No_$63k0xtPXsf8dPdZ>MZX_h-(9^S%390Fp zjlol71dg)Zcv@o*UD;T&5BVyz3a3J#w`Xsy;q&LQ-{RO!cXXzOjK zwgRunyBS4na@<^CYQE+Kj+wcWb?W0z1-%TJEIWxKXD(sgv!22+W3R+gJAGTNR&}+W zJ{O>RO;>PG>j2TZrT`jVL@O-#Opcm)uUT!t3^?p0Ds^cvcMiwS+(ic7S?i_FpF?QP zMP4w6(3*=Zb7<@R*|sKz0`D~pfx!d^&%7nK^+r|YpqV!+1f`9t#!;=)9kz0g2?LuP z-a1Qa4eu{y7!VD%*CQ)hyX&n7Rs!#%v9gY{V!Z%pSOu9w#Ea&h15E~(&OHa3H@t## zka_pxj~Dd-)-P`66TkneA!Lc*%e1m$k z9_cy`ZoTw)NUcXjd++8f{>^N^P-V3FZ}bL_mDBM%Ti%)#^OdfE*dn|_o-=Oyz_SL=KJ zhht|x1Yn>a=b(pLC*t6orc%3Ds!clMZ91j;Ng%7t<=DsfgruHc7llWAaFJQ|PhpM7 zq>lBr(QLC`tttI zac1m2YciR@f?=8r{UYbVdcjUYfmEuc$qC5u5XF3%^I;!%B$Gu&+j8`^xn}{+0V7g) zgtK6MFib*i;8A2nIQ|2*(rjq!7rx2)$-C78KX5P^otgYLX9G@>vpX&?p;)FsEO2sN zvkiyV73)nr$A@U@JDer!WlRZKg1aZX)lv<1ZWp_~@@j3b(Dyh)c{`KU?IsNwe#m)% z8NgiiR4=V|ik;~S?xZg2_e+Wh`p29p>-D<{HRT=bS9G*(oj>KAW`9o^44 zA9=?G;yzQx$gemf^}Ow+SL;@xK^w&K+qvfkHk@ITHnr#9&pkK(D9jW${fTqa$yrlA zH__qKUpY_q+3RE>gU=I-qW;cVvEJ;I(8u_!7=x+*>i;+= z({p3Nu@TmPT+S8*O%uQ_r;Ec$ve zXXT=~QQqJnY#Yv7-r=%u<`J>j_MD+P^4P}M<0YJ(ya#@Pd_+K`hlsmye)5jw2|q?5 zy>z`X6%(fwI8$?ENI2@5s8#8)9Sb-+c@LF+#d(J&Kq>*wtS3X|mvNTnD0UPVslsBS z3XTv7PcP>@%~40!h4X;Lx$nhp({#|pD>-L*XD9;&@}$E4oSD2wtVXLoi1T56Wn{wM zKhm6E#d*nFLD6>n8qQ4K&3%vozm~IPy^$@cuDIpCj&otZH=>F6ZxDZRG>}s!aqRa- z2vYjwjd&P2YjZ5JPG)WFm+jiYMNHEikHBo2#y$;i3-0@ysopr`R^cd6D(Vxt=IrOp zhGbziTuM@%CYnB(!&~o!!n(l4EyYE_%`InEyHiWWLsi?OMPCB719|mN0$XCG7>P+sMR}=blN#zd5wO;~fSzXu&9^D3~=753N zwzrxykhwFCX>$z@pSc2J+u9n=z#+B<4|ktcTRoWQhWqG97t;lzN-$x)szxQKbuuR_ zSZY^8aMxmGNMKJ z7uF0l;gY!0x+)EWF6S&+cQcWI7v6|O&MywMYsTgTj>qR^qo66;loE_^tej0Xq zjp~}7Q-rCXj#KVIGK@;;Eu1auASDS~r49sU4|RYTkFQCpNTw4DVV`Y-r1Qujg#!Y9Zt8W~ov}wREOREp1qR zBWEU8Cs%IPdi4elzsjqLlY1X$#Cm=rNxK0zQZ99i6YXXlF0}^7($Eew`2c6gdLW*J zp-QJ!)6V|=(44ct)N<<_vj8i0O4O=hBlXB05O<80W-#g;yd@AasQ+C}}5m zavpLuOPt@R(UX`zu^w3H(O&i*&Vu!@B#|bXHOjz!oPk_J`6;I~UF|@$L5$%uoQqtI zVT${x2j`px=A*vAS+E`=CozWV0YnL3;_$hef|$H2!y;6|#aB5O)+hNU5kkE=?XV%! z*Eti`soNw>v`Vy9euLxZ8qEZ=(i6IS_!eg**8z6GNHAyCEKWQ0Apa*gN7l<^lBvd9 zSlMeZ;e3~~GAF_Tkwi@S{(y6ouW+KX4nN|oSns_|qNjGVdl>a+Kj9o$FNjORfk^*# zr`k?u3Yw9AlFiTNnj8PL1oPz5mCc>V19}4~945tjvX>7{LPu0yf-`vk?sbU2LE2iOZaW4VrMHO36% z>{oD(=2BGA!|hSdSgvUrUsQakdmv}TdXq(p_8vdtJ%lrr>rx0`I=Jj0YAM94IZJb) zux_(eq_c!$oRPWc#|@3^i1owCG|#{vwZ1rE5yc|TNv^XpY^BU%&OomHcU+rU!gfJxRhfRB5gX+Ym~)G(6@AFubAzR*kU!B?K)inR|0y<^3jurqNJ^vJO!yoE*PyK z=VZaC^|EWh_8_o`C8CoE%a({*-{oTmEzXsIQ)Ak7GLh*bHcc;O3_RIx_F5dc&Vj8L z2HVxR+JIOK)){f^7RR>UQDBD+tLyPaae5JvcPD@7gCd}(^N05I%xgWvp{-}C?F8rG<&sL zmH6xTaD}a~4M1$GJ+9wMc>@Q{yte!dwGg(|oh;Ss^vKwoIjVKw zWsB->`y$HyAjh>HLEGX69h1?zZs81A2SGzKpj~}>8^_M8@@8ARoikv4(Daa%=O%Xt z2e)3uI3&2q^6ujB2im%o4xGGPp3+zD+zk|!uE4t0hSap)V0nNN*&*DEbs!yrbxb!D zXhgSgKf<$a!Fq0dI2Qa?+-tN;(@w2eZB(3f#Fae26>7a$eK=O4dH6i%;T85qMLU9r zfRHuVdv3GqYr&RdeV1CD50zeX0AU$UO}6DH%y)0Pe2%E~b^+8r_Gu6KBDCh0gG{=tm63?rGQc!HKb#+MRP^KSUY2pYUa(cUF6H zChSuaNtrNv?7cZF)=ShA+law&@4G(uF!=BNI3GDix4wOt-1rD*B!3$*d-DT0D{~?f z=2H*mjO6dojIQ-i&WUxF2+m7_(?w=T@O&81Q%1JdSt6g77BsK)5F$skha>l7L~ETT zvIdM8$sUQ&Y$R*F7S0~N*}}{aTqiT>bc;^SVV71N!&PX#x7MBwzl9Iv<~YvHUNNJm zNvGkoWp?BTV;jzM$2!D@UNiV}&1{Z05Iq8jQd2o5DP3+6g6*Rafmy_f$x(cfm*9Lm zI7~!mGI!c5*(`w>CaBD)q(_M2c{cZwURtA zNyu~w2aaJecEc5$0_R+g6Sp+Q&Ne5S zy>=B2(1xSK;5IX2nX5Qn`g%>4x^N>R!6|W^^iIsfDavEGga|7fDsJJcod~g?Z1n1I zCa7FuE6^r6THK7E9oiI}*$B}lH4T>|ElX{JzJDxMoN}8)0itsCJRu=dYk+KV$n*^$ zsAaEJfjd5kVRkrPdi_;9MRbv26f1-|&5_dEB_M$f7|>=o+G**n1-z$a;)?{8^mGbHMnrII<1_QChX)594>>Zd2p@f zT4Mcg=2&s_hIZad559_Cv!mYZtsMD;)Cz>%t~KaVNfoc*K6A>7X)j!UeH$dSPV9OdZ5D8>=N=Q%?14kw6_ z%_D(_@_;gr0KUSZk{fbRD?{Y}Fvm%*A7jM-C`U+cXOWTqV;m)UBqe(PhzS324s=9f zgN8GLX^`z6Z0pw?BzY4FKujj~I}ViGclkixV11yFS}@cWs7n!*&cLOsT&YrmdqcWTc=xk_IhDi2I>doB6EHN$5E+5^OH+Nh$}g0y4uxB^>Gu>S=j@%J0_rWIZ$lAClnXGU{s0` zr`+ohAhk_st2kQhxMCn0tcH!S_Y#LH#5js-y(Fg{SG*g%%(5BcWeyqivE~JqFoG+A zAoVV;MZEEmvWLzfF!MTT<7cY zWTeXLEm&TP^jW>*x~^CZ-;ct9I@9tBF9CEa0#OGVH-BW0g4fkII<00WoIetH%Q#*Z zwUS4c3zU@{C5u`eREen7SsX8mTFIl&MXk=|C|T6%;HX-y${w%cw7OGks~vIO-?XN+ z632_{%x!G3(r&hzy>Ny@h_S+9;<~#bV6?V1nH!KMI5#&S%>wHjD6O4)7t;svh)__A zqr~;6HVUeBx^=DV7Em1y6}Kb-PjF`yy_jRiCBWja4L#RooO)dD zU@-Lv-+m>>NmC20>ArzePg9G?9_q~;CrvFhzwlO0Jxwhld!%c!!-?&QuH`s!QEi-U znR=jEPCjY)=#$rap7&%9pqcFrnFDARbrT0jYOjVK=4MVkF7p(p->9DDgB&7mSxOwl zz#iomjun>_j>C%XNp9mHNxMqx9^`h8`SQ5YTeSgeZQ-!%NoTwr9{hCnD2xFe7&t3? zB4VQ!LPa07iNd1|2vayTC;K2`gL7*TK0*`~T8(gQgm{LvbmHn2E)Orm&0S7sb+~Rv zAUAjpBGwRwsA(`xg{#TKA-up`!!hIX>t2%&48f|Z6?s0HKpK+oat@oZGtg$ zI-g2IDlNP(K~(yk969b#x#X2*Sv&#%E)Jh@LxQA@ChY4uX2x!+rMILTIb_@d$OKYe zL!HI@IAGlIdIwO$FW4#&{G7A}hh9lRr9c}o?xRPVFv$oiosn;D?Yg6|3i4yyMkaH8a z$z+IjWgPQ-fy2d)=IzHkWj5CN632>L1wTa9bjSZyjue|{x33irG>E>w&Y?2WmvKz< z4Gx!4&DdDxTO2B*niZbjfNrBMjS1pOuKm~wF$?|$eTqCp*H7;85t@c zI&I0ZGV1*dL#D0s1LH%b?KoIQdW#w&?Z^?GY#RMAL!+HJ7qJT_VXnmqlNMulz+~C; z7m~@cL*wcozSd`0ILQ})B%K|Lo$-#Q%BRBw%kwTWO^3xM9^x>3Cky9KmfAB#F-C*q zV7joHESw7yup1&QT|ODxdMq%b!8Yb#X)D-)`?zs29u7i{72J$t#=4@I3Jw(Je2x`6 zjU9s(U7@WwNYV-o6yCNRYu}i*q~1IojJwXc8rtI<*OB%Zw^Tu;p|#4BOO0x)2PcCl zmmCQ4ZvpbOZN}NKB?51!0;`W$Y}z`m|F*^pCXeA{F(SRUBP4C3as9y1c+Cc!xH+COZp>3x#RceJ3GXnBM95PE~wwtwZ;#lC_ z%JJgn*oLhlxmH~OeuM*NDbvoHp5t6dW%@A=nQ0x>E0{$c@8p1Sk;2eIU0Z6E*2$nz zV19yQW@$L;f#d@39*&o#9(#DFZ#kTG7m)XH$SlPQ+sm5Fr+VN2ntV7b*!^Fm&W5vb2Yf{%h-LX?eWQT*e+WT`uW{)- zm>N^=?%rru5a-!&9K5pjJuaQ+eXS)9mT{8j;R*9(v3p!PFNP|Yt6;f^^qE}aT1YI0 zpBfMwDH_dsRjz;*Xyg36{J4#$Hcpt;muRttY1W0&Xmy(6U~zLYLxA-f z)d}Uqc2Tv}94)N`J5#-h33&;TfN5};xMWydrJ`(M4Tp$x7;z9-rrSW5laI@B4kB;X z{aOwZx8cPC#H8~JIZ9GVnRI;#Cm(mHPI$F(;Qe27J#;5+dfY|ap*kS}&HF76uBRr1 zd+gYYIC~#Ro4Y~5{yO9F7jeC}1(NR!OYKSJHckO|5yH`~COa&7ex1O&lw-yDr=jY# z7LL;oGcW?}3XT@%dhO8~%?1WS#5S(tU~xT{Js7Xon>bY5k#mEg3|4V<9vGT6yp3bT zc`U1XaB01Rqr^Gi!6+u}U&le>`l!JmydLl75WC0BE5QZkfqm}tRd9+QyqLs;2gHBM z+#w})3lO7`;MlPAxbqWi-iDM}3>a_ThAZL2&5Y28L2ec{1%?S|0dqUTP^TB~$}KR& zox0(ix`4TZ!^90NjhD{rRT0;A%L8@<&RrZQb#=tSceFZpbC}l-t@j9x+{&@^G(HwGl4HKIhHg04gv_R|bS}mwUxt z-yV1sL39#_{$xlP>-IdhbmtO0Esd9p)p{#zsRF@81m+Opa!#?_hph?vJbaPVrp^-? zvEfO;_@ZW`TY~kF?K7+0spY{_KjiX!Jz_a>;uaOs;%KqmUqCk=4c;Pk>Tr~}QG2}b zOhTLH0I`-ITa7x?$qXl-TuPC;xR|5FojegQC02*aIQ0~D!0TIKdkjOllB2vV&PT{= zU;~4BdUtRUH^LB1@e{GeB1!0NT9y#v@5AvO@fWc{vZNACp9d168XrI;<~QPIU`2cF zfNV>(I5fXm!v*f@?VU4VUrgT*?> zp}?3ZKgQ9rtC}vyJM#pamegT%UOI}k@+79>!=&iq>Gi#6i+mg*DW#a+LH{>2$+TNyzK# zxqxWi^c#7A=&k=-93(D~_pb>K`q1af5I6n<&PP%@=(s>W_LgBn^m#mViFC|yfqX1o z-XRONUqA%bA;;Ou02IHUQik>dXWlg6(4l<>AdPSdxB%IZgT$qo<7=YVVB<`QYn*S! zi7$wW64$m%E!Zj+4kb^+5b;_tV#NXvviN?qh?I&Gy+&DGiY&;@Vw>1BEP6|K_KMkl zT>c_pYP3|T6al;l%YeKA80=#OvuMDvn6Qg{s#yv17Xs)#CZK&8_Y)<&FBlH~hBI=V z2E^H;<0YAJnZE?u;49(qe?WoGFH3iP5K3oA>5gv+abI`_N?%JT?<`Ay`V^FINJ@{D zr5oG>rCSloZX85z0MT`tmPA>4W6k%VlW;WpyC=_N}tC{8=cSBHzAGmhS%( zDBYKQyXD(LuD*HN2J_t0&Qvvcpe+6OE1~oyE7j6NWa(kAg3@bA=|^ShzmJ8|cbuVq z`%78+$1|by3k3H!vh-C;p>zXMdfGK1&&P~H>B|W2q%6I936wrgaQ{n|t~nY?SCP_> z%hK%+fYL>T@@Hh}o5rB@SyKA6EN$-rrN^yM>-)Scy=q%1UAtT@?Y%v$(YEJ6>5oZ$ zua~9A?*ygaA>Y2@9pSgd1EKUx!qq9V^e3-?(v3;!N?BT42BkHEd#@}#bT24vk{Vrh zZHRl)A}F09lDt8d9(g#FZc0kmyf^%|JO4lCx!0G7G-T<-zv0_YU7(isW$E@Whi@m# zYU$f$=}EtYZ%-_$rSFxc7yloWK1?WoQwb&!nn%Sy|VPX z--2&9BRt*g~#CAf1R&V{=6*xz_U>LQNr^>vh@G<2g=_gl)oZN zKZCN`p48}JS^BBH;oAcF_EA~-*x%vXW68IV$)yt?PC)4w2<`#0bOO2hI4M0?mM-o>=?#SPp|bRwH$mw}uFCVLW$E-a zP`YzfE&Z%4edH1--DOHG{hTblV6Af;cFrKfxdO9}3mW$A@j+9su6lchUf4y8vB z%8$s>eXoboy9m$Ul%*%W4N5m9rQepNPhSV6O;Y+DS$gShPU*;EoExF^C*<4T z$kHulp|nFvpOvM{J`ANFCX^riP-r=i6=9TkXHS*$A7$waB`Ez4Dc$A2!*AdD4k-N- z%;v}l`FvS=^L0?V_l#P4y)4~!7a+3)#<}v_kIK@2p9J5og1B9l{`i&<_w0?K^y;Qs z`ctj+ZKQPJt@PV3lG1~<(nm;03z3Y&98_dK1 zWX1pE!<6~e@R}^$QY-C}(w(%@OGxSKwbE~p(%)*OyRA`ix4DgSHAYJB)JpFnrH^Z+ zkCM{AXr;d(r5k*N;{KVG&euwxC#Ab;r5nQ;G*Xi1Xr+ge(yA<7@jfuW9}vU-r!2kk z+fcgl5|#2E9}Rh4a2S-n6wbhqxckY{`#uDv$HQS1vUH6s{p}-A`W!5T0*66lRhm^&gp?Gnu^jA;F((uAZS^Bgr71u-I)rhjxyoQW$8y{X}I!DmOd#<#oQvUcaf!gJ`nO8PPWO?!)0kW5h6>Em!;t(L0H;zFNX-^ zqA@?)5jWmBt-7 zeH_hZQ#c(E?t*jH&AOX^4sE)>Wv4Y&ZLAxuHSzYg+5R@g6|n86_I%=FCX=*VH}kmH-oc?rsHt^yhoo z{(?$iV{g^nth=+|%J9_|%f)t^!fAMMt%pjW+}*wUYfl! z0*n3QGlKMhK$Z)jia>W|Ms&rTZdf@F#oY+3M*INKxmg00+U?Sel%)^13ButIz!kHE z3#WS-7h1V6i_jEOSRYK?Rcb9baYR^Ow>jedHS3Np zN9&Uh@ZbKcDXlN0gODB&Sl>aZt&h+Z))zkUP~2ZacPD;Q=_aH))@_~_h(yTCJy7T- zd?Br%+SQt;7Wl`k`;OBGD7K?O&6DmW=UNl*GA*Y1~5 z@c089r!iKaV?o|)@j@IzH15|B1b+Y|g%b|kINFY< zUZ9)8y93Q$U^cy3cj-C4+4MZK>7iAoGaEtPqYP%VGz+uwIL3|<+4pF>hodjWAK*Bh z*+}xC*#sa*A_)EfNIJ8TAjE6}pkojSe^CBu%%+EC6Hq-VFdL!QGgGzQ9xU0ZRLf2$ zG@lXw!K~|^3uZJQfx~CspTRe1Rwrf$?;(PDo$Hxbif93u4!9IG3(PEd=wZ1hqJr=T zYT{&96YfYtZhYXA5g2~}czG(z2x=rO8|qU3$KppH}W zE{6*O#2+v0v=oHDx$?ySBMcKy$O?AWMJ&)o$J0d$uOrx%^}&`YA9*=8>&EXakZI z)3C->)uQ(-P~>mV21RZKiX@NmNm2b6)p=@4b*l8xq-I?N2aUeX(`Y$k`ko)q>LD=Q z*I>7dKTxgn(&<&Ll~AqsAk;3_(e0ylO)@q2b=C@2^y=Bt6WCL1TdNM(B{E-*PoYVSci3)Bzv&0U;jb;jGxQl$*^i(+Kug@fV45%1xw`#%?e z$!*P^E06r|(TALt#tcIYg&_|goXD-7L7JocG&M%k)R8?@_s!@=@CRzPI_sJ#VN3-4 zTM-_A0KSJd*Zd0}05a@2STWLYQ z$)xH&%cVvU-Lnud{4s)mz+n0eu+>e&zr{brduXHPfuf~*Q~^C4u+J}f_G!+qB_J$p zGeGiC+!v#l!5^qWsvbI^tJ!4m*oWH&;qV9GQbpha-4IUNVo>BmZjX@o1CYkKr6DCb z2K3MKv@Q(7eF*Ijts*pqR8duV$|l2WW@p znF!lTQg9CtOz{cN6w_GQAcfWwq1O7lor&5@O5o64M3U1ufQD_=iclS4F8i787SNxO`u#?IO2K-3>;6DkB z;hvMg7`CJj!@ngHC#MPK7!$KD!h#?8o2T?tT{ELjl=rMMgl=^FA-c zo{6W^1%MvkfbU_uW%T&?16ohx@eK%4_kyLcS!12u|3ec9G@#2m)tD^c1P%~4m;pQu zjNmUPf)Q-vzYbHvK|%No<`{hv=;2e1VT??{un<@P^>5*+KNI^8c@BedhV9|HS7L+5 zAE?{~88rA1St=eLg=)vTx|>5yBjlSZqZQP#7cwELA1D_e2Wo!_w*74lCE>%Oq=JfH zmW6khB$2UM7r6k<@91g1nmq*Z^Ag=dc8l2T@dxTRo`LQqfK)y{3$>5+b$3AR2cp-c zoNA<`bl_f=coe65UgY&T!T+JE$EA{UFp7Yv$eYmF)6-t62_wn6aMY50cNBGmKfrjp z@G@Xr*o2p!^1EZKh)y-?Eg20`gaSn96n-WWXDlc= zPqN?#Bfgs4C1^0AuHTY zKsM0!%n2C;b6V+{(?yw>6R(GG>cpVG7?>12No(6&!WS%mW*N0nKvXdqT8#&o*u6vvy*nn%rR&Ycl_66kX4WkQ$aAuyqShK)C!E>&t?;DE58%Qs}9 zOP#u>OZ6!%I|e-Wd+3Mp2P)*GiB*Vr!sx{BWemVSL}2^@;8a;YGqBR@7{Gsw;P?aJ zXQc><2=-VN)^(#Dg(fT{e3fUygbRR8wK5ZM`Mhnlqfgm>wg`s2HG7Va==W&Osa9s{ z1U-vJe6Z+Q&!W?sm!ZZmpwf}y>ODLr3*2Mh(hZM9VdrA3!(7`pwk6+W@uvA z9R6H{#~*+{C!JX<#D!6dzeAHo&AKrjbD7PBjzCD0)5=SpfUK)3fiirWRCC4SqZ)N=qPh0J!c|sB8Rz%B7hJWpxwk z4j@B~3(PxE<7WA$8akwF93y>D`fj=v|MI0=>}zV_gY}L-WIdKOPz~h-d13`OoW`pU%37=QdHL z_yZM6J6e#$Lpus%Dp}?Ow-FeB066VnR1yz?iGPyiK6nqo@dvr5^BZf1cX1Wp1;<^ zFY~lI(wu-u3Cmyu3vP~kNmOxI;xR9YBC}_v84kuU>oEn||D&hxZ}~cIW69M46d1T6d}uYb?{VF0ux;zS$RqI#R93h(!{XANhvIhdYTu z4E{i+*QD@rkvL;e0<2gq6ietNCbc3FbIXWNZ9s=T^NH_S#cdr`*tk6`X`2ly;B zCRr$+hir!A&{9&Z28v{I) z8vO?TKo!%hJu@JT;j{AsQOa|Pu+Hw0XbVCE!3)aKM5%&vSW&B37+DG+yoM+bdk$^< zvH~}1?;7`tUmBV)0YF1ZHHsd<{H%)%g29~R8O%j#JjnnoVK_1Gc)Yl8M4y5`Q1xC4 zpAv&KCdy()Gbj}IM6@VRb4)_|!X%#DQ z?kAps3a7y~yd!$x4>(R3q6+*6tQG5Zy3IN)8LK!W6L3v^sS7s%K{mH`Dd>40yO;Yf zTLQF}0@1Mo{A=G%VUeI(SOioHizQWHurP>04;p+y$JI?<=tK--}q+t6Xxp7rN1 zQeOe0gH5g7>>=x|z|_LO`Qo1PzUFEND|>1^5@V6|V&rumu)EJMh)v zUVx2#A!%OET>jp;2DWz`c2MT=?@l0f(n#XOIu z$sZC&AIw=8Z7A7-u=X)u0&OH8YuN|JQCI9%*r#ID?lh8)w%~+YY$hM{Hv_vYtiV^%==U5*%p(D= z{YKyfzBp*$7Yh&?J#wqsa-i1&hatGwnmzAtjf}vnh0}sp0b!rP2-V7gKG6;FpZ(2G zm}xb^&2_4xR#p@ak`xY_?QeA~oUL9s-f1|VyF=l;b}%Dr+f`B3nP#s&(p=jZ>2%?H zXL80TzH{^o{hiPBJ}%(L1^BoSehlD|{SivhQ*%IjDy%%w`c9GM{hb16DK}{ouNqwK zz@8w`EH|OTO^iN-lD9Jz^|uR*u5hgU04jO#V5p!H0o?#-8(z@gCa6{bC#>Pb!61rD zz}azM4^_DI4N96K>Jno2E4k46edq?1-mp1QSnk;ekS-u;485e}j~>kF+9^24zd5qj z8EH69Wn{{!wO~72;E)61>@n!Ie&NiinL?#mSnCv!P{AWq2nijD4dA4~{D{Z{_yJRP zMs!0QaV935G9F`J3mU}B?LX+hTm&z`BN8v@rdm*m1G5&w3ms6Y-K~~tBlYS!kYQM7 zU%Pt@dab|5iok7ogbF7kp~7N6#uHX|>|oiAHyb@zxGY<*v##sF4U51M+)&tq*;SvT zy)54B?|lrC8&l-8Z{awfU}14U5Cj!D+z=-2XESRPFuZ7hKLw7uBKC9EwQALJwJUrK z_-voIy*rM@yZybF<7*JS`6NZpdz?>Fv;ZUt+*$eVLws=X{)fy$>IT%|rEH3UGLe*p zcWL(;a5v^8YvJ4Qg8nwkyq9U4Jz}t)+s;TpZlYAJfqr#owrkug{au$iBLVheL4dOG zvWTce=o3TNg7}vwGxr9JC}NBkL{2T zh~+=fZ$a;i-A^LrsIGT3mT16pK-~94?!8FT+|3>rOHk=C3(yV99@gsyb)3&2&QN{l z5wY;lAIA4~o~}QKuvT5;;#fE_fC)M-UGJph@^BwQ+~K;r!($l;+pOO~iJngO?taVr zD#F@yW=F?@iQZ|fAnUnrA?V2pv?p^PLByA_o(hJ?=DsQ(SnGO3pAvLaqK$>!l=~P0 zTX#b7Ee?gNcQ>9MpFotT?kK*+`8@>Y7l?cK9+EV7J+Fz?itJJfUa!MQKZT?RbuLGm z`nN`Dx;hDIp~hqpMqRKWwc=egC7+9I6+WMJ=a(`2Y%1z+cS=Y|4EQnkh&{J)j4LS+ zP!9kGsM~*03{Z^&r-*MClyR`uY*#N7IWC{q7i&-ZFJ44n0}c-#Ml7A)c)eNa)f^Zv zb*ht)+7dF^nmzAty*zjoMoQwC4*d+L~zsV9XtfNm`g5rJkFwBp` zHN+5=Dnz$XAN995#(N*1N7kgIWz8t9!Fh7%fHi7vDR?sZZ9YGAUsTmt^6EXpwPX=e>-xeD_8xhZD z-K%QgjJMJs_qRGV__%N~evDpXUz3*zzbu9z9#L?>#{S@LUP1sbl137`nw)42oz2W2oz3}1b`9a5Zq9K1(Oa=pm~#P@J}2N!jzhr zh=Be}h-|mmclvuAFGz^#fziWZ(jSSut{|xZJF9Hvf}cxvMto{w5RUF#%p!(Qg8^?K zvO^Po-GA+Jr3yf#s8js~hv9%$R( z1Er+D?Q;M1!Z86A^h5iZ+D-611@x$cD{`Qw@ToB;X#RA8H)O%Kj}xt(E(o^NuK4`! z7*X2a(Mz$xXQDG-9()Gi#>hDWeC<>TCigoYv@Zo8dV6D8e}^;SlR~xQ!TO(wtgX@i zM&Oo48W8hTdYIaSxB*Z96ngZrcZw|U?{swG6!`Sm;M2nL;8UpjFf0VsYcwIXh>{QJ zc$TtLWH}^dd=bE>Tnx+Y&1L~~L#0L;b?;@BYW{#=WNo!Og;{J!d^(LXB(a6{F0_8X zzwnrVv_H8NkS-wU!f}!`h|RbTAdm;O^ab@M4Dg(FCAs^}w;f!D`)5DAw=y7oHrF_EraAO6U}bU8Z57f}ce9 zNTW~;E|SY+EO=DVT#Z{nrx)Q`Oi7f0kd!yfp<`Y?Xyep1xGvIr9&vJc>|>4||m$37%-S{N#vqh?pkTZ7 zbQ}#((mwFEhLZk{OJJ-`@d7wY9r%@+EF+d?%y~s+z1bI0m zzOnyTe~T63ap6zzzu{IC&>)qL1(s1z4aU6{jn8Bws+TsgHWp+Uq`WcN;3-UK+x-~Q z9;8@xF3N}lnp2uMVhHhh5FbZ~7(J@~%1Aw^g|9+|^xa50Qgd31)*H~6rzTH39;^2u zJzZ-gH!B!~>K5U?`ciQMlK{BPOE@C5U%1%5G!j0Zb@y%Iz`;<`-*yRRkvfG^VR1kO zZGs8iVd5Snmji$bzB>%3|TKzk9sX#pTT2PLWyn zi>smjVkws>p7kbikH$;Uv9<@YCIR1SvZcg5l2Gp_y?T?;k{x>(unTTR%C%Al{GMQP zEB$eQs}-;YRj^uEBwhrDNqWW(uGgqe%wRz34b8=}BZ0WBp`^dam~lHg_HeP0g?HeIHT~aS{Rg2r28E-X0cWvG&4119;mc2Foc4zkAh+! z?hlcy$t2VWb1?Bh=LO9g+^0nwG;9AT-Ic`(1l_Nvc*roRig$m87*TpwC!+_~BT!|5 zsM!4#A{doQhSzcQaYBIh(OTd-FG9B+TY%XLupf#9B z9(>Ecpccbee#oHc2jDMQD$s*9WVj$)aEuGWXBgi#1z>^5T z&E$jrW*9wtg-|md0!OqJTC-BQ>|j?QsBi55)!+DN?=jFlA(_NFkXQuQ4>9Ek++B?W z1RrBtLkW!d#p@zJy3~Iiu&w(zS|{9DS87)~V0u327V4w^7K@Y@0Oqu0RrIzMR4;@j zV$|{i)LmlU=J;xqSPbmF2#{({$x4+X zb_nr3Ecbcr!g!Zr+dYQl#^7Jl$%}fp^Bw})^B1WFz_)D#AxYDQ<}P){KQPq#TTO&oqhcB`WqokZYCoTMO zVA>wD+au`+cWoPON*K>$D4yEg3F+$&`lO-xm!7vkO~!9n?rw-Pzy}YnTJW|7#r?Vk zM4^6HU3qDzTBBR_w6QnRk94rZy9LmU?pxi3h`}A|@NPjY1g6&XN~Fy^sBP3Q?a23% zp-=Rra{y8|`O77?9X^cay3RzeR)nENnCb`~dW)=nKM8^P))<(R=P(w4*nGMFeX!h$ z%o)XLKcE!=&$@^M5qc5o1fKJ##5I7qd|2BC%|I}|N$_WXlau{|VY)D#%>~s4Y_Yis&YT2i|fel$yH= z4a=xtmYIwQ!ULkH-?2akLM3hmiL2VMZ4QJc5xPfs3JEju+d2tCU6Hd#yN0wiiN}mc zAOqRxv|x9I9P5e%qI^E`>E-yk+ttp$Ca(pAe3I7e==VNg3O*M;)5eCBQd) z7&FkIA1;_^!*Cl{SjyD0KZzjt-6^uX|I)?&r&?OS6Q;>yGL9M-?ItWwg&AH<-9eE^ z!3+Ft4JG}TEQ8l^QVJ71D`;vyCN9=6!P~;(H?iI-2ui_l|37ta0w>o|or}Y>W$o7L zMP9Eh8*HE@Z1#qLWi7UhBnywc5DcT%Opny%p6+q?jHDrg0DnjbTnK~?frKq2@F4I= zAP@+UM_z!C1xN@XD@lL^68?|}c_fc4zl8UFr>bt%y|-@no#`HVq~A|9eebP0-#MpF zo!YDFO_Xzi-c}qTzG`=pII`_m_!}fngfDLLI6mA!u6w7^)fpO~Y@Z0&g};(8?R6cU zs?E8~fWF~SWK=I9N{Ngt^fewHbIN84ULz09h&;8aevC+cGp-DV%MxrHl>UXR<+5tm zLcM}eC35H@SGuNZ4@z~2zdiMt1`6tV{28COZ`ZR}5I5zb>S!o&KL<3#*pZ8|eHw#b z9LeIiftmWKnB|tRF+sVaZ=CpwgN{UG=e5l8U+Gm}okyLVZ`Gz76O}G15(~3F{W4y^ zM@NdrBof&74l=O1;Gsn_-hm5G@N42kec}Nb_7Ki5Df%2=as&ybr9H-k(Qca%FjwXI zJw7vs>r*hN=V-4>y^Gh~cKGfni2^Fu=BY@@#RB)4W_zA}d86Nrx%cr#DW_QAomf3hoUaP@lEW)nN(yVFLRN0f{mKk_a^_A!#X zGEQ)^D@%5pvJBSJ1ykPamt_hoF?jPck4i}@8*88!g+Im@jp;-@KO(7S#PYr4JS;%1 ziG{0XjgSbfJMDTatEl$!eo^AfcR2!)NH->XC+@QjJRf;=Ze9hFJE7$6GNGe>A)Aq!c zX}S!n&oXVU+Fed%Y{-*bOj_n4Q`Bq_kS_%+5NWd+Ndm(Rx|yzlzsl ze*nAg5&?yOTOlc(9Icuk030#BR!tUE<_(*ywXr~xA;dN4TZ7-?t@|;I3M)cntSe*4 zBtY>__{yT-9K8p)9!I3Qz&v3Amwt`3k1do1eRm6og&a7stc!)=6WCHAv@S0AiUlr7 zvWUqdlMGniWMr04880zi7pZk!!`J{`-Y-ggIYw7-vXf~yquSODH(~SSLHytZD+<44%+^Ne8;nO@i^G3bk_0GGQh+?gRPh_zyuBi!{)@#aTM}Fi z=O=ci;n}Hhr_TR0s1zFVB zqMd%E3PXI{Hl^MET_Pr<*gvLAc#s@v=*7~{pBH}aC}RB)?L0XU+$7LcXG zokW7BqpBy9%M@v^^@&@P8YiX8AiTN9p8A6}xLf1BiPs!VVzW?Q>Ns?*#71`OH9ghjh94JExoD+#TQMK3C0l6FUgZi=KM_Bp6>e?Z1oH9Xx>j z12zhn_v*ktlr=F(@=Ps>J7A7Q_W_klV_lP9DXD4ebF-o$Ih+-LB! zH)JzAGopypoZ4wNWHP-oUqPpnFY2=xLqCa%SAeeQ8z;VEw@-o%P`K$wbAXIE zsmk)$l@lus2b=OA;>~;7Y#~WDcIA{x+0EpwS{MMv4w_zz$coeA8pMkWzQz}`Bd1p; zvf{KH&BD9bq3doF``0(Ul_`vE@V5Q6ok{2D>TIK9t#**XsybH(3xvy-w*zinh3nYJXnJzd3z>{ zl5B6aF+RjYJL;7NH+4x7HqA0&>9RgC;;Rp}F${!lD0k(OC*$EyETM-6W@|B| zbxjRoyitqc4V8zYZ`TcHJ((_itnuE&YmVrt5x9F|?{uXiNKALFS$$|CMzoE&_wmNN zrAtj;Wuk(-*Io&duj54J4(sV=?fG1uJB>L^GZrnZZ!3-vZ`;enbn8qk)wE3vWY6sd zk#$`;Q8UZg1#Nx$WxQV3j5ZRe4${3jmQ9xCYu$Tq;x)JF6IRVqd~b|8$RZrQES4}j zUzI$^tH$i75A^(sF{@)^Vi@#OaT38_`dbG*vmXJ9&5WVRR`J!(k2fu%QG%-ra0R@-(14{BFK<}Km`(naM_Nxw6f zUXLburZ0+CZzq*txp0lE94)c<#Hw>eLcNnj``i8_i#gTJ2y4-r&0iwLysh`qmuJ+P z#QQ{FY4djDtvMMJOV+7Bz|<+5?t?AHtL;^%{x!i)n{glP#A0>oj|#SLyWWUinsGfG z<~w}-rl-D9hr5@}1h7i;Qrtg{Tt919@3o$aXlrV4_g@BQCbgXWKx{USb+FW(GuL@U_c4ulAV~y7ubo+_QeOgKBq-eE|c7;?1LhP#~7AQRK%%32wRHa}GfoAXPq*z!= ziYf<9gO!#1O53_7{7n)rE)5Hy>}*|A{>L2Ul+_Q&DWB(*!K;5F-6H#Ty{Djt{i;B6 z>R(7K)1q@D+(%%;I9|SE4jmH;g_X3Ng*{!sG-kZJ&3Sn-65CK-`hj_)^_Ue*wt2beLyXR0u zg1DcH3AZpEF)u?XQ;~Zaq?<(ZTB+(ybSn(tR@|6KFCrgS+GY!?YyHB}gx^m-=E6oz2CNT*NhUERpk zse<5TT&Ip+T77an*|Bb3m{HDo4mGb!y^Gh~rPIjRCVQTjxfXtwTu+e#%E2?h1fn{w z{g_xUAY8~;n@*yhPOfuMUX|<<*a;WUd2BuCDvb}kNybjm1UUHuw(HU_(NgwCN@XpO zXN&#mYl;x;b}g9KN$sC-yWII9?C3i`HtVjb&kB{gwIg@M$iWGTWJV72jsC)uF(8if z<;6@@K_wZ9G@4SkQTuuIxY5&o^tkal#kXc#9VF2LalJivDbl*vRPT&qsH#&-7Gy{k z+i%ze>VNC0&oi?xDf%2=vRg(c&@#Y?pGTBx_hy{R@}coy3ioSMD6&z@Pe>Fo3SnCt z#rX#g+;fopERGoNgt5eMC(QW=5A45d@x&hIh&`?sUvOuuZbqE0GA3#T!x88yb!r|= zEHfm;^B~i)`eujQ5>zHPu)U7MPRQ5{hH#>uL;LHS`AKiP6k4-+5-T66XjLQWB-31T zvJ{=^W&;Z@gic-P*!*&fs!Gv8^@Fl(C^bmQ%PeopL5f)Y^aK{f9(nt>Z6X2U5>v`7Npk_3%@gw(6W}@@lPn8ojoVAmSGzbWPLoTcsTa_yf_YwG z^OlZP1V-swr=v3r&uA5>|Bp0RNN$M-4i~~4A!b2zhM^_&<3dRCN4#B0LR!_)8U5E1 zdnJjjG`T@?UN1PMI=DQ2;Eygk?y;xdB@-Urn|RH>BsOVYUtm5i2`f5H2u0*=;0dX` zx%qyapx`!Z$13`dVP<{$B@TAmb>zUVTO$(*#JxePe#E;IjT!9gV`xaP^)^(;iAM5ZK(_hs(h=fqP|!0Qv(W)2rk-44FiY^wfaK-Z^V#_Nwr zBrb?TTv}a8;xlYccX3b<|5)Pbm+|_;@)d{5NTl*PqUM^7T17&eBmS#+?H!B|=?EbE z%u*!<2OMD<2$Q~8Wc)y78Vf{^p^=<@WdN_we+fm7uiqsUqA?PU4juqev~F`m%ga7d z!)6VfMS;-D?!UqwZ+^mVX+{9qqAD@%CAPz1bD|a7YvivXy&?NL-mqIoz&dvw5fCK} z9^3o6?GD$LS8l@nS?fMKqJTsDyBoiTJCpY_ca`OThn5>`1M0D%;943~rm&-j^2K;yF2=TT(d+&=5 zn8etT;U$I!Hksy_D}08e`QT3a>*7Aoban3*trp}1c3RrTgr=(A%4SH0j9ZmkL`GNV z(HZ?0O&V%ly+fKbrpBi--6F0cLa3K!=A$$6$C7zB$y|Wy3pHjrDpD4rGxEn$`5!_> z8-F<}Qahu?$GY57dB0H6wKu7_b2j=&gqk*zI$H!w>Rn6oL!`ML^114nqz7wV*RYUN zYFbO~*GX=rsf5cB(zR)HM*p>henSYE3b&lfr234`$RA7Qe~HR;^-3zYhnvaH5-~u; z$}W;hHIhm-I+L#eE&WfE{+2+US&n6?_0Sk+9cL+h zj+9o}3Xrr0Ta2r!P;Z@aPnDZ2)i03h`c(Z^PFSg@P)u2?Sz=!jVRb!5DsG;u$fQ{} zK~jX4#-EeM3aPlt>C03L}wUUDqj_Lq)s9UxBQ|=BGfjp z+FC;3>m+bK>mjCJP?p`C%Ceg+OW!0#Kg(_|NgDM5Rw?P4B|78R4wm#k3h7iOLavKO z@?`ngIHuLG&0TjP<&9aTg@*UXI~=-Bzl_)4#^q_|$b!B@*E#x{BD#||e@42KMLoV; z!tJwDc2%74v?_Uy@pFf8L`l6RL#YhT6GRrzVCYMztb=oF2`=IKbyQc(?b zm4()7_afH6ckm-;|Ea?;p5k?c~twKVo6GRnKpEyWIYlgP9gCgE`bAdW|DVai+v9q7TXHm%qVc0be2s*1`W(mt0^Z@~B?XXK1z}guDy)9i92Ok# zY&HTY8vS&`0sqI*X_g6{eBxDOpzh`#E6ZpqC%Yr9K(q zjyxHxM(pQFsAoA)KTI1d&Tx19b_tvZlbjI+tD{m3Qu*bUe3YOkOEZu&n%X3(`MFil zf(qJVwT*n4ZW>Z2Na}(+ldQVGU|?o?t~uKnKZ)~z+8rrZoR@K@qni@ONI1!ak=z84 zYsdA}D^H-XMMA7!yf`{2r0x+?W(6_kf%dun6wJyyMJTPp61-|wP#RwV1%OteJ1IfS z4pYr?{zxQTW7^Yv6R$Ci=OcOwu&B>nO2em{H3M-Tf5zwCcVHJw*ib}|PfS>%{28Bj z+wR>Y`bb-By=;|IBXe@OY&FpOqdznad2Vm-T~X$PvQT8ysVLc1xp@Q3lAz@tEXR2K+ujd$NnNcfjlvotzI4&CTHZ@;b_7D;Ua z9WX-;KVwk4kD4!Aa?-rDPO|0_a_7tM`20inX!fFl@{$lR=}f#_p>gpB=CpF52bw<-T2-h3}_vSZ|EKTf3BH90A} zW{Vd31pzgAl&CL*X;`hd<2+TOf{Ep}7H{dFaJnA;yZ@TMqLy74;}nLGaH)(xYoS%L zIq(HK(a|&QYH#mJ39}eO0m+A-= zMyRCxXpy@t=wIZtiv9CpO!b%a_XWj!@&~F)U!Hi}e$M=zY` zEeuAmIyD|jJ^Xh7)4$c|POBJT37!}72T4Vo6~rkXB=t_~PlM>vlN~S&G)mMrd5qRV znkz-?VGQvMW={anhT92A(1t5)ErdCiP2gC3X#Q$y@rLZ{c*9NjAaqA{)uH-ar+v6RNm@x& zsF}t2jc#F%q%jdHhPdA%DrzRX^H>I$desokp{gA$O$Dv+qKYf0?y51d=#2S+(GAL^ z9#874tRYej1*0W-jaJ2~qBHWx(t9%LU7)RQVbsKkxRM68WT`z(sA(f3wIXMmm)Ba9 z9Uy9Q{g6m}3u&4GB3Kj27R<#4L~hYuW?(Ox)*jKGZ$z)(i31zEJ9(DuxZE3A&pb@k zFptu~$?22hnnzx2y2FpZBNt`I#EgloCn;qQIs3Dv)AiKhHzK#E4pH{qI4V&J9A!VY z^bBioxYOrBU4VSU(nIp{+0x2^dW}A`mKxBKVgO!$e!23xV;q~x8nff$CTp8yngN)8 z`|@SFc5GstXM`E9+vJ)7xPIHR9rqRm|oQiwX_nE`ly$8zR*s@a$s=M5i*@i{Wi z0F1wLIWyku&UPQ<=|J$aqVm(^oB=rh#pTR7=HTlXgT$gF;rmC(Hv{nf3(J}B);P~- z$JDg2{X(+M0BkSoQrW^@MZ@!p$uk4+ysS$ld6qlD4C5~);|!KNZ04-*!pH1-^z%GXT@e z*O#RI-|NUT1MvLjWoy}<^LsrRX0WX7IqUh}NUj+yYp%0y?@i>I0k~eiZIQgsdn@^7 z0KVV4Y>hhQ@ZL_A8Gz;YFI$#%-NLoRX!wmkfJu!`W4u#q8?XHi3c&zEynERSaS}}u z3_{e$QR(1_GVF?!D(78fo&lJD&pE+-swe**vd;kQA79dend(F`sG>C&7;0IXmIfQ{ z7%{qeaU(>T)R^@9F^m&E568G-qpG3ojTW6)5*x@cp$|YHBN#L4=`o{UI$OYHMvk)l z+GlHfqQe@`!({;5`_*%Ydv9Dx#F(TQ3?Rk_&m}S3NR!BMoN_RL9G^aih3C635P}`)+%rs?T09ih84#|>qA0$U+ChR49?XIvhr|dpY`=T1!8ax3zTvM zXDAQ@2=s|_)Z*NjljPBlQX~ct>7(bUNHP{B(!7MyFn~1YQnLUhCuL|aqZ|w%$FH43 zxdJ&d_Vsc~!T^#iO=mf&AG8Mb(*MEptl4Dt*-(Kb&a7TZAs9f2Po6{Bk#wJ}aA_-h zHN|28vARpq56!?vFi_&stXfEb zbq|!_=z)HGDOW9|Aj|YUU4mKM$jcM8jF#4Mtb+m6vox~<4jLyEE{<2PcPUxBflM<1 z(@QfvG7_d;UsAZ!q2~7zNi!r$l(Zh&(e`)|&RJXW{x%a?Jo-FU?^4C^Vg_ zjD_#Z$u|S=y)=XEBjQ`CUSatvvdjQ1FU?wok+9quPuul1WSarlUYdFT5wV>$?d!-m z12Dcc)90gO+%+}DR31sz8G!ZW>$NGqXUm^1h z!2Hro#EhExRO95aWS;@pUy_NKgnQhuW7~;^t;Z#5?#?c*g-O(cJy(C2j8dkfoZCNrKr~Yf+-5C)1)BKs`&;+)bd%Hg}T*mRGO2 zD@;F?Ofvw}OXN5c9)@7rHFt&Ur;}?2;ChJ~VWZ%BcGfiwgzsJCn*sPR*h2@uVFl%D#;}Gg#I}GE>90i&;~#3g35-ZwBCd`4&m9 z@hDs$B-adofc0fuDus3FLJQaTlWPXxdWm`%BT%^OVWb@4IGJYv=9j34 zF=FOZ?ZIPYp8?oknjVJbzB-#U%?lgsZ&{MLi`lseY_?ovFT+pUQ@6bYJ&lVoBY_i< z<%`$bm^wSmYbMa+IRAGg*OsVh>C0Vq$||jB{ba38G`EctIt*ZK|Kseat5k0(C9Kc4 z*Ao!|uAl%6Ai(?14FO!QL?pPH5->PtvcT<(5CN{G01P0&d(Vk1NLu{D|Mldb!8v0> zUIR%axPcNdfCRsCPUJw+qOM~rlgRLB%D@0JEK#+caw=tq6;g>(p2#+?h5a35pTW74 z1zIw_Ay{O%i83&N3`?^XCS4zmAPck%8HeX5ah$>QjX-^?JX3A0Yq7v70OFgMp9mPH>F?zDSrK& z$Pm|Q)n!FbjY%=tM`0L1n2(*4!lb$u`za0sh_h^4=Htg2UA+xqywk?6w<(TdV|{+@Jk8I0Kk(=Eph$91oy{@%iwI_;vR9U=vNSz!CAqTvyUW$ zUqxI7z#TYv)u)ITeDX?x0BXJo3 zcgcOnO#4(~(r+R#0{}0%Y2m;l=RDp@WClQPEVc9Kbh;-RQ!bz1PH+YQAGqhYpx6Yv zseW0~zsJWj*zX`VgR`RY?%c5?v)@Hz20&hNEAxThLtqAHBd=#WbM?u_$wcb+5uCx< zkoq*PhO*Vg`w7fo>4A^cFmuwvn3;I(4-%LGfCnzE8qT_p)wqjNP(Msm21}31<0K90 zM~TV+s7u@inXI3bJ(eQvZxELOa3_}5eNE2J&sZh@CSe%>c6y0n=UcUDTx^uKtxu8x z21}pIjp-VeRfx8Ko2U$cy2RB~W41os#rdTM`FDxT0LVv|R^ijOC-GTgGFW;YwK_r60Z^B?9Cc6Bl5+GV!ZKKTVLfB|Goms8>JnGLU7XT0 zS;q!y(ehssm;r#FI$+2mTp?7YHDky<7Cm`yaNza@my3yZYqr*C)jKlukUaI&o_ApQ zVYPdK(|m1I4nsVBI3!IULlI~6P{hJLXu?@|s@;7K{L<)ZJM)48c1D+nKtAs-AL3O@8WgYdDFd@y)O_>f+b z@NqNwU;sW&p6z_Gr#}lPPar1@9tw@f8!xbQHH4Er;uB=UDxa2U|NHCMg#)V0`c7H`Ubh&Sy^Zpg56dXRJ9 zXgJZhXyCqEH*m)msy@fCS%zD6Z!Ehan|c@385ZWyf`w_-yR*14M30zKqxwa~bUL=b z3d&rUdKa%dBxxcY1uEP%G-^)~2-^FA*51NBW=@V=XDSsV@Zd?TKF*0|29WN>Lra(M zECk?97U(ZJJKRMa)Q117U?QVgZyldKfqt$q_giF+0hoLFL(g1y zrrDUaynULyF#vD-7g{d;tg7kzSio^>BslX?jzo^Imx`QLV(&@#jy18aO ze?3nwc2B+W%`li>#-@e%{98Ft49UlqfF%uta{F7l-2T`SU<@cdq8+UPDK&arT;%@% zcWy9%^gp>gIP<1?g~bn%MFwE;HOqxXw;o=2{0Mnu03Ls4nece5)2>ZU)Vj0dGPa14 zF06ixtTF(ruUsaq>M0Xp?|+g#24L@1%Y{8Nw;~MwFEYpg493faK|Kj0{C$f2F#vx* zwM_VHv@n{g&CpokXUHXkWn_hVxU4$B&~;KV6$Ks{A6EWB?|YiwCz%&NXKn9;<&sRvCcRfrmx;R#UbS z)xTd5YEA6OvWolh#;4|5a#*&}@Sl@y24MS*%f$@pGtJsWeH;?&&V{Wdzf5KsfZ65Z z<;@hKl&QZVe+< zTI=#X3olVmz2L>@V5~x)Dqg$S5o15&hev4s9whnHu;^}lTX#2pZt0)~^g4XTbPh}B z!+UL1w2pmG2GGnqmNC0Ku&~))pecE~fs8W%sTk2iBZV#eFHVPzrWJ%hZ9Lmgp z=rU6xS(VTUmawD#U4}WbOx&cY*~+lilv>z5?x3_XPHU=5R6%e4DK0dyak{;D^}ghz zlgoZDB&i8OuJeCSa{4in(|waw?N`HvIuA)R@CQQ@?Zm)w<0Q3170Kgk!*b3E0p=v!&{ZvX1tpGk+9%J5lRQc2Q@a5c^7=dg{6F zXOVI*{NDf`+NKlAx)LTFZ0-teb3^A*in`Rh$r~-2`WxmE0|-+a)+7?*qD9)dHo@e* z0sR_58343CdQfMKS>Ue|m;r$A8qy*Y+STNj5$|&GeeNy5o;|FT&3f&D`SFhRfbv-3 zV^96^%V45wyf@}SVzb$3rmhz66Vu=t5mx$WZKY=K+o;HknL0#`rVg{^!2t4@C6yxu z)P|aa9V09Qz#boQ9~!t4I0HOa%yUnTy%H9?)_)~WHUVw+&Y_i^W}v?X)nR`Jg_uX(d&- zuDsv=Zkm?-Hh(C>u$f~)dW!U6TKA2}v@BsUEhmARWW$O9xF6cIQXty2JgDP@VgRV2 zO)CZEOv{5)gk!*b8Pc>!w(8NoS4>M@fVx>luy{A!Z5*F&HzuXNHNSi6dA|e$TWKHN zF91GsSTpkgH4rTAxVE&RjliQV#%3iDfmDmR!T@3n-Tur%X_HF>K1e_Y035oXlm&E# zmj<0BCH*OF0^smQ=m2|)Krq6S zqcTEATN|O_TX57jnLP|3#_&d%figyz0{k`s831s2Bg_DLMwkNq4nY|JbZ8^gl&d!X zwI1iR5gJs$+o0JBTF(g!;y{S!D>8Y*;{p%g$s6;zyd)e>$IpEPyH}6jsfHfcHf6U ztODtN>P%Fr-opH&K8+f~wb~GPt@f;xIGts9>Z#gmkcX??3;7Lvex$^s&Pl_921aK7 zlFrQVaL@=um2pMUXdsT`=#EkXV&vb-B0{Q%A4XO(fN0MiSymd1YGdkttvC(#31+0P%n{n`Y-fJF zetM!lqunkZEBdjge!$YX#(N_VCN}fb>|DzXfGjFc(`;yLWb5ziYz@!ki~vYVsl(Q| z>Z>fL3?Sq9$THW#;QG9IWUy%6K>i-Hn7X#F0X@Q8K6Rpj4djUjmPg}*AMuOKW$%r7 zNSww9b2-gMPZ1lr{3j#NqQR9ZXezT8~Uo)t4lfT@)6g@Oa7u zPN(4-n_%0}e8XgYt#w?lTGT&#>XU3MU0|M)AAs2tu1yyPqv<2ZzN&L9Jn6Sk-u1K? zMbY%tH(CA|fbV_5@>ia192w(L{t7d|st45f52KaLp|!7N<(C{@!==k$D$K6R-$`4QXl~cZ>Dn7|_EkdY&q}ek7>jj;fQg)vOk<*pa zP~RmK13(pYz!w9>8d;yHl!p5r;TQleI483Z?N!sX|1Zre$$tQZN5o4Z@V*Ie|2H4) z?(d&@1*=K#jegLvS zF0Af@0emX~833@Ly}n35XMQ=*w-b~BK<`|%b8}>Iu)_@6aN5gDhN%_EuB=fEQNPru zXJ+++Vfocl8#wZ~LOsT)36!~c@Yg={L_S8hG?cm zCiPRy6$Vh<5XCk*vG0L4L?uLsV{=ne z=2%kq*i-9X$4bb1lX?K`5N%LLmE}QW!6^4@qa30;k|vzkq!v-*sQ*S!!2mK0Q6~hT z(&mu@T|rO=Ki-?WA-qzebg9#X#XM3Nx6?TM9D{(jE#7la%{80aUExPhefWd0hx7Te zXa0cvt;3Vol#%=Q=-eM-h$`Wj?m;*euGMOepEDrGi!YiG9Xr{qF4Wyrw^j(~4$)C3 zP1g|QlW7OOoTH`Kv1ecC-$^TQ$h=J;dx}8Fftt>NVQRXRC^j2R%Y`WFV!BBN(Af}! z0co9i)q!O|3#GOZjsf6?sedflK>IIY#Xw#`NCtpBIFz-C-o)f=<4;t0l!hl}k(j~| zW24PRtBaP2ZUEW`tU7-+Y;RTa?EQpT=Ip-gTuhm2)l$@spC~ZA8Etq&RAfF`ar^d# zmPCE=AToskxF4d?W2q))p!*&6wE_DRf-wNt5ZxS0H34(=i~VE(|D1pf0C>luP0kXn z+8>5`oA%~R0T{!WTl=_YZswt<-uHGfH~S1Y`x9`(n41TuQDAOAI=s1gWVN|jc105P zU##vKfcs(0Eem7JEe-Z?IvfT78^+wSV4k_90naBO0{{+TZiXl~?ubd~{82B|=4M|4 zV+eDbu6Iuy$GrejhU`O6{hyzwxh2ouPrwafZkD3jgbBV`o8S-)t}JOWL;t15 zQvW|QivbilMDNO{oLGo9NB@%n{YQc_0BC)5>Ju5ASq6Z=OJD{7)&~+TrcLA%uIh(m zw4WKM-b5QUcH<0Xh=KDqPP9K^7C+*51-~)#$R^)P`zXH{X~?lf4@yJ89N(+Wafm*X zM^$pkJZl8?yKE0J7_KyDLA3p)p*~9}27nr(cx9oS)urM7fN%@|r;pTKjKLY2Rs6kQ zvRLw7y@zH-1F+dXL=O{G^x|m#=&8G9^gw>c=gS`mFvRGAC9f&Nq&}uiYKYMTOVZkt z;aaWW=m7(Ayy(U?sZ-yU>PM;TL=(@@PK!q>)zP1ng*f(M2XB$rx}0_g5vRZ6!1up{ zpSbN=AiClZeK9u+MGd7#5G!W+zUN+naGDlrVG$7*Y(t zjd52t&En{K=lBZ1K>{#v=ClZaW^KOSA>)Sa!=%apREbs(WClVk)xoSyrcqC`jR#! z<3CFAm$E01Y;CfJY!U8WNWC!tSBJ}UB?a2@up>j-%NxOXF)u zkNq9pI?hXG**1c_lpqWM(zjSF2*d;UaRM*^fElMBT8dMK`B#uOgAr=zR5lx4MGyu6 z8HE)!YtzRJ|F0ow1|U5OD!JggAwUSFtS$kdV(+j$SABxgLqc-MglMxStfK) z{Yf!<6G<}|Sth{ExqBM~QTXsgWyqL1b`ptoy`LZq0Afar zh7zZH9E~QS{6SJ?0Lo_QYgo$Jy!bF77yx1vJ`l|3O2$Wt!2lSeFkHd#3dV1cJ_FEy zY@b$Cl6z=>yM~Qcb*R15w^7xtKRAa2d>b`AH5zJ=yC^;N@!v+H>i5xih}VoIDF-&H z90lE|A{8{MR)1Dx?d$5(Nz<(o@0Fv&ISio8zJ=4JOonBwal!%;<#<1xR~Bu2 zfk+GnWSgT^SxrPS<8<8!cRyEdsoZ zNDP2v22h7UYT%IWE)ShG)L%~O3_#tuvc*&98OA)xzS-c?7vcVuq|X5K_m;6WDcHh- zZ{XT&PzZU~v=DwZ2{Qm;Q%McM_-Sx#Rq|R=W-tntr)sjJQ&{eiFar?2YgkwCxr=ADFL02njCwRl}M>s?z6-c7m;KzC?6!tmhusoMN_a>-KdSkvn1y#!(~ zid^W{rt9OA`hFi#&o7fY15h8@0huc$gzyJQm;nfzQ!o~wmZD_v0FdRYanzngSmEU7_iml;bR130Ki8{tF{;qo0Dwg z#-t84UTzFK(PLPRTyN=#ar3*U{_|^`0&O)YaCPQvb9E9G;%u6q4djOb z_<7Mo$q!dJ8y#&XPYl4*@g?TzGA5uq6Xdgd%aXASpK^1uK*bk7zK_0#o< zaot}vxo|nzU;s8ASaLRI&~~1}-AhSMTt#>WfS)^y@H@!Gcz32gVf1hf8DRiM^p^ca zxinOt&g1u~3GQF0tS4%%$)?#-ksENZp3_9?sfYg>s-O+1@#B@Z>x8U+o;n1mrirSj zrK_F=*QLGy`D(|0#M2#Nb+z_g9kz24JDNG_uch>L)3CZDInQFdQ2*fl)FHH%ZoC zOMC{vpISQnMtiPnbzqRMCo%&dn^kY+T~ayabCM&S<2MkL0YDe*j~5I&KHC-_+?av| zAlo@UW~6^K8DRiMmdNHQy{etgXkZ6{831^}&64sOm_FUgDgP!yGgw;a*4#8siAd-B z;|a|G&?lD0%&BgUqTn2-H1?B-%>dX-RK$rri}BZXN6zC+<5!8#U}@Dp+wM%9$cX+! zgk}I}v#)g2WgG(pIYYaJunYiuY-w`)RAV+P>~5km0P55G_2UB_VN&607y@D?_)0ts-k=-1KQx(|)Vc+1$_vB;QLWSND$1;ex^WoR21SFK@rk}NX- z%P%;)EYqub=3p2)PKFqOq1Qg7429b^Qdkt3WB?|A^z1UJYlFPrrpXcmuyoG?eX~c+ z7RoB#<=kKiH~F*zZ8Tc7PQxtz&bwyw6-T9f1Ah2HND;5P)xLy4*AAwt)55R5Py1D~ zz%f@D`;2(*$-dUJr980~H%tr5hN)TVmjT!@i(?i{8@{(SH-ky`$?>T=Rz+tqP7#9v zF!U1OB8X~+yS&N@AHbX!KKBqh_~X)_8L1 zJcXvenLa#buF;Q&)txn%f3sllINga(V}`21m07!u)rrGT$N(y8aqhA8?bwV&0g|?2@TjO)B zxh^LR=ckXgn^s%@KokZ*DVUKjFUWD$%|hPD@GVkj0P1E()8g~uM9nNF7&jbE;O5ir zc)P_x8&TQ+CL9C670eKq7p4(FGdTZ590sGnY1WTpF$u;14Qut&Gu8zDnK%r9Gj!>k zX?MGgW6gOx)W(L23<(&azE3a)0MlzA`({;DvupiMUyn4Xu%pY^ce*vnG#9a_-uN-N z!2RGi-m=%az}XZ2v}?#}Sg;Hxz>9cn*D46bn5eaIAUD=%3D*ax zY6ejC(FHLX^1YrI6YXhuDs+ah@@D+l{P<*J!eZV@Oa{O#n1u*2Uf{PpOz~bEzwhu0 zbq?f-jCT=_0r2h_rHmNKnSl+@wX9@!6Nv$k%zo=a%k}skEZOl+y*@dQYIzn{bBa*+ z5sCqz%<1Cz1?z20{VdWwkBAI_STN?jI1|x`#sSso zfHKBXBQgUZkF-F{%}jEVzAa1lI`!^clkEhNc9NJ3fcdmwOD`a-^Ln1E(e(PdqFV|w zP>#~)>d=B#U-G@DUj0w-cb{f6dd*(<8q8l;hPF-*@AmK7yA^as^x6IiL!MJhAa|JM zeOk3i0>j|%u>H&cj1^T`j#Q=$x({ItZ+=d+@%sd005G$+GFKcO&0?^V^H>1fX&i&= ztamzXRKG(0^CZsz;VWRd3#1~l8O=KUP`1~C{6og)E^ ztU%u+7z2QrUH^+L^u7q+CRGNYI-DyJs#&JLL-GtjzGx7jTvjL6W}MXjA!P=jT+|a? zAmuFc|3U}`fGC*INVw`>2Dk+1w6FGmC20mAJ)FOAq_gb*2Qe4`V>mb7Xvw<&tP?aj z@n6JY0GxvLy`|L@#K{Ww@VfxWU}(W`of-ziu$ctwA?nB?UaKTcd8r4_Ck}(51uMYG z3bvAf3;;Ns!9kC6DWAKBq#1zpa0cf{XW3s*3Ek~qV(kyNg3^h+R*?4rD-HCqMl#(7oe5{Z#l}7Za8zJX9*uMh$oqhaJ2|+=tRNK9 zpC)Mrh1uZZRd3(w>8k+cCy_D(P!8`AFo}3F zAhlPdpn@4FGs}7qaRC~b;luf5ipJ}1@16uD-59{4e z;u(JO+Ws)CJV2vl0455Cb!`f*Nh`4!m8BVn`g>U(S=8q4-@&L=6gwJ}I6#e!_wDUC5PENPqgQnla)pVQ(DZA zO08R|RbE2 zls`3va^;u3jXI7gNs%pEs>yhnGIf!TYsyVhO2l~83=@P(5Ud*A2{wC7;gM3I6U{Qw zg`R!WfWi4?xirr3b;{FBSy(bQ==3@fY3f90m?&Kuw&<8?o7b^l#MpW3M}en2iJ|Mr zFJ@PL)MXBt|_O!K3!FbrK<_&vV#ZUOd^MkXnkxN{Lq)OlP5 zRnnNo{-jE~#XN;jl@oI~3QqKMt!Afh%=lW(n2m%*Lm(HmTSiCG?H~shZ(9(Hsf^JK zCVN?gwafa%h%ZZJn`X!+2P+2`&kD`H!u8--KV$S|bQPr-3dM_~6k9N%Ze&P#_Vkos zna&rPEMMm)`k`Yeljxcu!~G;L${fJsV^`Xd6BC?U6$MHOp{0v0aTsQ!d_eT%^z z3q#7Atd=iIN`U$cVwSYHs6YeNkw%lf>v!x%o9>ma@<%7Ze{E z1J|o&;Z~%|kXIEM^uw#3dh&NsUtE}Z8(+AW6O_^I+z-KMD55u(#?VAjP5c`KK+4C3 z^^#_;Dvx?oL&BK)SE?YuOi?w-^*uO^cpP)^?YRy%+=vXprVjc4+vi380{@XqTQzT@44>-Zpi{uuV+(SnJ%goqv$gI6S_6En z$YW1^1Y@A_8t)B{&qZ_a2xC*&>r2tpgdpWwEoHS-s_j#a)5zY+6gE`w?`&NTXcC^b z2EWBy_eqjypH31TktE>rN#zhvv`}Yi3(-Dz0vq7Unro6MC)`%Yf%gsOnk0!*0+vKXN34Ryne`5jbVGNR z)?~7FYw#PosOY=x^^(xGXtz%-r&8>Qht*1HL^pyM4)UV#$M~YXHjy-T$bkVZYE@=z zCTFE)y0c<)(a3zw;E3@xIcqk=QpS8=Ic?}m4dI$wgeh>Jj~^(FEm)EB zTiSBfb);M5C`;H#$l+;@Zy@DDk2sh#%3b6;LuRXC`Y}S9jwj^$o;Xk)iDMH7Mj%J~ zv7}w>;tIMIUKZvoC+Co~ejZPta_(zvphVXH(3ObiqAP)5a3$JvC9Wjxxzv-%#p8=S z(brz|#=gF&s0oT$S`KE6&&^09+&ot1FctB@@39H$z2RZQ5<9wErX7l!plO<#5SpMh z2mr5mYk`MPr`itte}J_eIyaSxX1ir;zD|9nZFsw)Z=CoF)bS(%O;1LKgqV?#04F7N zg0n%;E}fokV2VuZ#CsF3IgHO7pvPy>tdx^(W}X{Xa153ZTxlQUm51kd%LkC!Q;yWh zMrRf$vsUUY{A#z@9_dzE?PQci5Uv^!D~|5bWFntTREZ9?y)l+2l;cQ`eoZ%84OAPG zH6!GP?CW@g9szR^%jb!vg~7m+Hcz}an68j9Klu!rMMI4li__iuitJcJ4rAY%j967{ z=IFe-dQi0Z>OC^r6Yb~LH%&-}4k9maOPa|k4AQqxp_`)3#6HF=?=>GF-J{E8%5-g_ zZ3(T=5AlkFwTU~&XtqUN=ZuQxj$y0CoMGnz^Auljw|)&eyUQ_S$imG?-;!m!(aI?L z%Knk!E5{ONB)v_R^hV29@}Y9fOt(>jC+oB5xnffJ#QY3*2y`3W3YLj<^L*VRM&8z|#ucA3B(IG;PH^wuC<6Gzz1pxf!-8qJ2z&oGKbA z%D^=ypJ>RR$Db+7D^23bj>MCDzPXg7aH@-gr$xr|_%lB5-mwFep=fL&BZKJ?Okfd` zTnK85!KVC&c#~<*?{<*^baOdN;slS|RxJ##OTCNN9l^AYzc0O@kKiQ0DfPO}wNdJ6sD9Tk+Bs{Rz9L%v-J!-;AI8IlTHw@%B<#$z!H2msu*FXZM z&dXM5t#)KbaG6D_L&~M$E4YH00x$Qq z!0T7W3*{Vt_;ActLue2U9P?KJLrGAXbU1jyifrxouWgzn9$?(;@ai0r!M+ac9y(1@tPxa_4+fakfP2~nx-a%&eGSwSf7d~ooc&X z!N$1>!^^tVyLg>l(snzefbtUys=tJ2KlN0<2HJjMpDV zB+R;*NZ`Au*_t8VoyLMm(~a&{+EW`dRoY_i6$35sL z^;o&-v~d`-28~?eA1-ARnZuJMhTs{mLA8ThS9w+hm4A* zFA9H*FS<)7(lcu4IOs$Gy{Vik#5!z)N1)dFui~|0FIp-Z;;wRJt$TrpmFYJ816Ovm zrz#Du^cR@R`$dT_w+;yeA`*x|AZkxV`}gc!Xn9C#NWs)`&irT|?s!)ptmAbJ)iY)*YNF2jdg>s=g<>OS{#<+|fia>!6(^J!;ix@cY7@ z*lf;+7R)?&LJL{rDlNtTAjQ1b988S95z7F4hpB!b#ByG;pbh46CSFh^roZzXq&n{p zz+aI+Ea(M!ggsZtac0x^kr^G&6{?j)Ddp@6M(sUFTWhP67y-oQK@g`gU(oB+7Ene%nKa}*}0n)*k0IyFIoC`B= z;|q0v{)mkRC3s`)r4YC%fK{&mtTzDWWxQU~rwFEc^=4uElke1VURb?@jUi~BQ(3Yq zXb!8N4Ay0RV#Jr-i(lk@FBRr6DVujEYL>0)m(UOk`2 z<7K)Voy_W~sxvDRrRWS)FJkIkwrwxQMh2w_yp#meS>*;;a~ue?w*;4ZQ!gipK+Y7F z+b;HDC7BY`A-FUG#w1===fM_&Sy+J!>SQiMS_pP2nR(Y!uf=ZGctiGeyx~@T6I(Q< z6Bo7+0w9_wis#!P0u16Ap|TW6x80oNTFG*wnY^Uvb9~7jbE<8C=>uiKEhq<*>@uSY zwo378j7oQIhBvYqbzN5~ZhW0(heJ-u%FcT<$!N@wgn~jfrh%}TXK&bxQW>Y-N+Sv7 zRW(o$vLx-nx#oR_^gBqppJs0>0bxl~16HY#QEHS@s(Lr^N~_G<730dP-KsFoUJ*Jg z-EnNyt+OAiZQtzjO16Y?^RImFscnCOVvydZLjo>FW`_etZo1K7o1A$Vw6pBiv=l=c z73Ji^x}1zHoWyonsEr0En5~HTSU-VD^kXPq_uHO~X4%pm`xXsu+QCKt@U5U$? zj{DI8{6mWXK7sxYHrmK7$Rg(&?@hd}>Yil&WHB0@Y;+-n)Y$O)viVPIH2)#qWZ47Jr*y6zDP)yIiks-oJnFnqY{ zP-UZ0f0L+v>La&SyOe%y-J^+rip2d|$Sss8MU9-piMv`wll>i%4OTgB+i5BK%o!L{ zxT?@tpC#5+rcRM1(cxOay5b5jZ!j)bDli`_y^Hc?z`0B3(Je6M-%6s`0)hh z+oGv_1mXmHX2qTnrNFrIg!*?$J>}tpV@zlP>A7+}9ONE*>hAxE-p(5DO}u7z5}Qn3 z8>-)3d}+xE74%-N{X^;H2b%=xB-@imEbzs7G(1sax{l)sCNU-?JYCi&Mts?B%OhsY zbn@t+Ne-TaV;~7VGxCV3kpk$goHogQi??F$UJx!g84-Zv365;JrUl(XwCtyN3&F;8 z0$;S?v_uB0h4I-`BgE=-bKpz7`H+bo*-fA_@ERHcb2xHVi%ee{+UgqQeb#oK94JU3 z8dwHmGBKqZ^+?hjkk_FR6AyzE3kB34P3nc28k!Nv&^4JBrJ3GIvPIb!8eaFP+Wbkj zWLoV$jzkM`D%kWV(MD^ISK1~6jppo7_X$RB#vplB#IJq}uHfQ=ukppZ6N)lRE#t{Z zhT^uP$VG%1&`59>w?QZ*5B7W=8v*{g*{3oy*F900>ENKT#&O(JjjaQmmyqcxk;Kg9 z_lXx@tM?5>Hyj47ormwbF*;(2$y^zUfkAH(ovU{GFv!NYnRgOSWJW;0(8J7}CXqr` z=qbaR+nyW@Y|e=j@)u^_;v6rY1m}*Eg9yQnZyyn`Z?}yZ@Aj!yg$G0#GAGB!gc{UgO!VkMvu!5Sk=B(Wo@MS`Q?eGF-$;U+V*zgp|RiZ}1x zAK3|w=xcBJ`R{z>Cs~}lWz3~q5S^qkoAc#&d_G+qNd7U6sp9XWM2H1htQCx<1XS0|l+; zeA@sxY!XE`P|Z7MI;iWCb_@#-+c6sR05MB8d)y+?fpVh7V^`WxdFn7>WJWz{>J;?_ z0@9=_CByj@kb(Bn$Z+y5-R0DOK&O0<0q}>sv+Z}3>_+^?F3qUpvhDcf! zu0de5f1@#@6M|f#@empuEy(?(J)l=z*>*!@J-vZ$61r5&AT%&kfNd*(PRqJRftn#! zuo%-#W8r=aK+TeJpw?eVIg}-*?3wGDUAv~!Bpj;a7oZJWjSFGt_0EVkLKS*w z$@f zsiNH~^Aa@NI(%d6F=^%MA>glQUi8v-30NP(wae^oET@Oz&Tf*Gi;buSiIQ* zV;s2WMXyW4Gb5&o(RJ=ypSWn}SQ0YAaknEG?XjjVMenW>hF1o%l3X5X6}NMt$>N=5 zn2vVYTPlVBG6lzu@#7-Jq~N69#p~>V|87Qs0S9+fWOB_ctaEvUY4hV&`il#`#uwje zR&^%%fHQQF44`F7Yhn-;UJHquR@{L_y`<U4eWU0tu(rH zt1psL(EEp`A%gT0$7o3YDM=Rj`9}r16&_XN56PqD@GnU&=h#E*9RhR`-f-5UEc#(q zslOq~e(pQer1YqJZaE4g{4Eg%Ip|RH(nCr7u5+w*v5ql!_4kAs=z-mNcp(Q|h23&p zaeY!erRRJjGLy2qZxOGwYdzRMugl;@S+AMS9ihUg50IPO1jqj6kVvXTHNW7n$3w6Le&aMA)+3r?HOR@O@0S0)o z;0`{0F|D5cHotpn&)=d^ywX0#EBDCFxZ;nm4%W%~yPo!EVzh-H{RL?Yhuh;W{&tO$ zw1NeCeflM?d65KO`!~1(Ri`pD`L^kU>C8&5^&}|6ww}V(dtNkmV!Xg^Fv2CT;|)f< zc57&L8c3FSq_ur1P4kAk98Srn|XQc06~MhHBX1oA3=QpiOZGX4FZP<=e9 z4)lM)lAq=^(TW!L$)p?7Sh%Htg@+jS#95m5Mj#sLb}m4Z*ElcQ-jMaZzlPCo4t$9> z@3GObzScxX7CkCh6l~NKU{8@cO2vL~kEFrf010#|sca>~S{O|tUMcg)c$8l|_yP37 zJva$X}or^l&*2tBDe@jLpv(bvyID zASc{zZ?CZAX+w3QFcDlGB0;LtDlynf3sZ6WQ+JUJm6&L50o)`?Q}-m?7=48ur)9@D z?Bubhp7C`V$Z&7a2z3w0fbc*@5=A?2Qh}Ks2RBF(^dw0NmsfB_OsJ+PLn8N zi?^_dWi;=}{IT5kgF za#7bcgCoY*?DmLBe@jlH93wHTcp))x7u@qwz#YYAE4Xs1g9R1X@iK$qXBlr5rY=9Ii@TGmpQ%3Q?1nyflLi14pNex!sxQ}AlinVSrO!Z=74lD+trTPI}&&X-aehE-7BT%uqhnfok zgv6ec#gWE9euCr+EIYW+0M|8)o4Xpk6I1Xud*RNu51~TZl>dP11sbQ*SMA6~CGR+0 zXB0s+Y+?XyR7bx6=HYCDs}+JNw_|XIXC5^=vcgXjiZ9H(jW=LO+KVRaJwD{o!XRdE zv7AFMTIhEUeQ>}qOc#4dxM&WxZ&yeP^^Ljr@kZ_P?F;1#VQ z3e5WS%XmH4f8zLm=X!&q^=9(4E?5q? ziZ|(7MsS7}0oB{34D1V9WoW1*PdaTtmhQVqH)KntOeuACvhev{(#xEk92#!P^9Kt_ zn}ZhoS4c2uE1`wqd9vCf5`QI3evmZtwh%PQ(fcGX|voDFwdOg?=aPf6NfK=d!{s6ooNpLN9I>~nIk(||+IiZas zOsw@^#cK~BLbUrteL`QA7Iwl3ry>^|4i2MtK<;!#0l2jAdwl5_lX@3d`DZkiQ7J4R zYd!V-5?ZC+8-2fo`3(I8yBv;fk>z9;^f+=Z)K=QZc;!7~SShKeM9a`gjx5u3>|^Q_ z?qDl5!;iLcbAYV5Qz0w!mHi{dSMJuXQf^<;S23dH?%%u-oU6)lVs|B^w;qUqi`jbc zh@c-zn^t4;W|I{-LjUGo&OC!7G#SRlzTG=RZ$tKVyg^KVU%~)OVW?~ENLAfWO;vrK zULsSHZw!pkxr9~nq3=;MB~pEtM6v}jw5G$OB4v!Vl5sfhJ=*~ z8tTg;Db2_gu|M(g(TOE}KBm6~{ITE{b@dK93cESWJ;frfs?o;&rKa@w)wtq7N&RQHX_*=h?$n zOiMoXE?&peg)RH^ihF~eJIwtgXWd1oW6iMUOf;4*&Ah=v^&3Fo#=n z)5oxYKqi_n?8U*RWZcE_a%KNW@s)=(5q6XBG(?io7}0!i#;d@L#XVpEuFGR^v5VGn zu_^x{-n5^-1c%OyC6SR43n}0&EGEzHEY$@(@TF+KVyM5Lm#%7GdATKqtG1x97dem6 zz`iBq8~{eL?1TfkSKCN&)n5A&N(qhb1n9VuEaqiOe2(KQNxxK?4t82{g#u^Cv8?*V zSzSYnTp=z=kA>3~3SEBH^+GROYD0S;0(z0+7%p)-4{s#(0R=O(**}0~iW`d)?iQ3X znT!yb(x57Y8(i>$o$!$Mbur46Idv0J!iB7)&D&Cx6W|FXU9kT*xFtMMlq^_E*Un}Q z)1+K#ZX=rIees3+jKFSPY`Bqa^^ySe6e*%Mz8lP<428$Ea>+2Dh4ZpHdP2b*%_XdD z%72JA9oCW44l_8JV+He8kD-<6O04g=1@Drg&+#Sb{J4Z^?BMd;0QPj_G!|0Y4=_x@ z+>m`8Z#c+^X^gV+*)y=RL^akWMW3+ofFBY4TkQO;G)?c&%W$3eDYQsHVzHj`s6NyI<)EEpN;qh%x6V zA0y>ZSt-G@DF?VFj3v#&8EaKj!gHSz5$r{$tP}geY+=ZeS0rC(`oVr-nzpt29OV`% z7t|4bYc?@3_Bj(<&FZ8>(wxCbV(c?aNrSb&kC2JpWc<>k(=*31Wqi};WR@lOA>L#` zqI)^b%*d!#!jmjkM?P3jku)l#p9K3z+261DDX~<|%#~HpgX48I!sLeRYpzZ*5hEQD zF#Q|UDHzeYK37)W%dT#L+7kK{Z;>pJ1X?Fd0LcDMECtzUO<`h)UMz#SIq)Ukyx&Go z;q|YOQh0th(5=-L8Mg+%#ar+6x{Ch#?C?BODCf7^LXtt;n0p^@JY@PbK2rZaVM@Mm zrJBLLYCx>`s<6NDd0K$<-4iwRmz@O}^WB(xA8#CERPNt5NAc2{`uF@((sLiJTc@K- z$@=umcs&mWNv+#ifVn0U!C91rtP=_kk_QcE8s|pVo6TCQj={HV5xKbFYkcuRKUu1% z^sOzdE?s4B-{>q;ucqS-`@z0dg(ZUpq-p;oS)_U-8}eO!`zZ-gXIYWFOWc-v0|^&- zslJs^LOgLpS=w(R?E;6?x7JTcvo~wIxo%Z8eUW+_i5GgF;1p%neyY~FWJv!aNeA6b z-yUwlwecO9=1KGbEDGF?ef-MDf2unt2yd z&Q=odkfr)TQY~1K6ddKxWoD|VXHD@VB;Tjd2d|;P=?|0WKbQ-8lBb^f`QJeUXtjG0 zufEMjr8^GYO0+YH&91#BfridsgD<2APA;ZWY`3#427OiX9Iv_)na-Rdc5qQ(nvxky ztITzIRt|2Uiy> zr_QvS4J-u3>Z9bF5&e>)&+#R9;u1ieFv1+8O9-6@I}}L_(YbwMdE@n-xVNGNvjXh;Zvg?k6vs=lVG>5iZ$8+QAt?CYAsxl8HuK`e7mSX|=x z3Af4JSj}k6o_kN$&DK_Zs3t&h$i9Cbo|sYz$ChXyA;czi7iX9ADjm5(KzO2=< zeseINMmygjQw#UIp>BlJl=i5J*GN=i%9r{cLHqmGP=m_>Xs2oYqJ8gW`uB-2zz3odjHq}%QfKpD=sP{FNb(CZd#pOFoq z;A~rn_C$Mz7sKh528Q_h^vhVDlP)RA2Nx`c$g_ox;w{=-p&#NE_sC0-3H8S^R5*#u z+=@~;qaH&W2xUg71&}4_cd#{Y>SofD)gOs2z+Y(oBTJ0Ba=H;o)e}iAueH#^vn)AJ zVX8_pPFulsL#T4b?L}3(ZHYI@ePB@inJ>VQ*QZ~`>-S^BhrQuTS{l~}6_+Kh$-#u5 z3D%f_rBd;_z77tOz(wmkqEk4+x*qQxmjrl^pd4((=7nWP$cm3b{Mcxwn6mMZK z$O?`om?QvPaO^D)cM9jpvV)UAdQ%W0)@6NS#FyQxlRE}d{f6KLGI<`lCvX6R;~?8= z)at!zK&<$xF_Lkd?9VqogLB4te&$+pT^`1htX9$-Y|OonH{LB#lLb~{c){Itd6eV; z2zRDR*IR34bKQe@XU%MJXlLsf#_ZD!qu(i4BOsM$%S$MupNN=-?N#o8BCGWHN5Ybf?i9>dpF17gJyR-_%CPi`C7W$Z1g*fV;_ zQOR;_b%5=db2I1$qa9%S!-kv7`oxGYv)buKdu(#7n__pGJcL$vr7}#m+a&-RQQaYR z#{R5d4lR?-5c55!Ul+RiCrvVObM9aj?VFM# zHdu(&Bq2&Uvd~>XX-MOr!~imsU`tSI-$Wz z70-ebSLI%lB)i}^%*i;W1kQ+3%Xpc=25%+Bg@uWS(A`D@HcPMpjwCpLozkecF%<7z zqrjY4I`hBL_S+ozf(a_m(a721;?RRL0tJXYMe=A1{wzd++Y2tFD@dDZ5elD!T7-kE zWKSDb|FVD6j!vV13ev>|U*n7Sb+DzOjvEHer3BX~)?ez=C_#fLQTWi3Mfaa;}U850NYqzb{_at{+h{cKnFGTn=aV za)OK~OYEMHxBw3(ieK777v$DX%+K(!EF3{m;TBby!x!qC17G6Jwr;cM^^Z_AyN9E`0)*i+LLj1F$)$F46}QrVZ5QW0s$*YwI%II)nrV) zku^+#pARj>3=&VZErsk`NjBHE9N5gzC9P_eC7jwxJ>z85FOYN}9~>Nx$@@#H#CTb8 zmg>KgZrb+_Y}^@sNy_+EP3t|Rm2tVD(QZATFMH;X)aE0D(Fka| zeiy=m^wj2?og!|m|J*O+SU7&4FnBx@`YtTxjC_=N;#0PyK00(WK`U|em2zGF!kQxehc%`<( z5!AGXYY~Xf(@G&isRx-y3?Rw~DyA%$HAPR4YL<`;06BshA`9soqYrzEunYiucm&oc zv|)}u#uc>3#7+P-f+i(T#MRa)M+;xQ0{-xPeXOwl1DHETV1x#yr-%Rxe2lihQFwJL zftX(+h5CKw2m?qk3Pbl{jNv)3&l8LRz((P6eK61D9N-rS$bk7XyuE>NRUeMb{85jl zr6u|Qtl{&&i|IpM^U5z=3;%uiycPPv{)H&d93hkjfvr7N+u8`+w-bZL=82-NW_~b$ z5YHK*5MGt*!(B@_27nuZV@=ED49QvROx?SDVUHA4Z z`|gjk_txz>&k4_|s#`ay2OfkTZiC&;w*XneU~BXeQlLP;M+p5Y=z~1%nitj!?UXu> z({zf8IN?Q)Y?nSSguEvqDF9i)U|aOhBch)^b#KB_0Ji*KYf$T# zx`mG1%G8|?1R3|k1LoMV{{yOuUeH1b2xxdob-kd~EhNlcQFmlwDBwgDyk2N#5cRZzoIFElg_f~DTb(TW1zRB%dakUKDHxrZs zpsi{{sD1P(83MnJz!U&}T=}utD6d&73m8s^A2q-(Hjvnj4wQZsVG^-ZuXM zrh*d?3nK`i;tru=1t%a@wN6p)g}Nh?LIDpd82kem=?guuqX|XiRX?nflHCoD16Bd<&2j%mqD2fdcEEE3B)4 z4xV;RJnMyaO8pbFLjhMR7#WLTLcb95CxoN`WCe46uY zHaeaFsDfenvR1d#SZU5`MslZyolL!L9}dfIUpDzWUR0@ISoUEB4XnIQSXsfa?5o$b zv<-r#KFDlQz?%w&Wvjg~EZb%SdILcz09wJYY_&VkoSOEK0sbg~DFA$a=|0jbuXAII z=7gq;%1BSm8B3HQy;rN>j9z0#`{udMQgdmsf$!d!OU!y74*<7trTNm0VC8}G6KS%0 z`VYv>Q{wZT2_OXqbbPbWamWeR1R6C1J;ww={Rh)R0khAEre#bFyzZMp+af{GQBr@! zWSCI7;G8pgaKdbG&*b7an~;l5d4p^_sE3z?!cYYOWZ`YsqEuvj*;8_#} zGH}Mk8F1R_+_KT9+3MYlz7CEH$dEbes1)NW5a%LVg|2ebU^4JecR&UX3fkPRgFSWf zJQQIwMI@x+21&(`x#~ooFdIIOV5sX^5)??txf3VESIA3f44zF3T~L3=wAhHb5XHwE zzIZ3rOR;@(b8)f3jn-_Vy*$gWY3lr-xhBnczDPHt2mUS2B#ww2(TxQy?7_~CW-P%R z!A9ObBYBHYz!DVe{%kM=f~U@94k_Tv#jzYth*$^G789o}Hrxj5(@ZFX8;N7Qvl|J{ zr$eGdLaElsCw>{wY%y@9f5h5&&fCE0U>rXE(k+ogn9oXjgy3yima4 zXlFN`e!SChWtZf`DE=~&po8NA(wUsY?#Tc zj&>CAbZO$k90gE!2e(KVbe*<#ZZY}GuDdgCaN$3lC-p5dCQnu*bj(J4`FUhEgf#q# zri@U8yP5jp@6Zn);I)_?$JxJ}JToDjU?9~$kyOV={E6&GVsi}9uP$O8Qy@fVO`OJD z9iG)k0oh7sc+`)X7m1MzOZ+~wHN4>WBT>Qqj#krXatB~0DLjhu#W&lirq<*Rj^g3| z|3Z$AK|K%ofjt&cO~NDve1xfD5EA-pN$64vLq_P=-L!Zc^GJt7HJEM+IJl6I?jiWd zK98_a`#6hZB2c?}-=#v`LOz&$#4LnK)y2fkqK4#OzFGdWL($LQb<|Jn(E)?C0+<{> zp-W-3H91o>3q<)ZAjxvrVU3eBOk<$>J?oYN<~?}gR6r-r zDy^>lVVmA{7u33{ZMR?@(?vmH|QtKpnwVHK*7(o?8RbxL$0e7Oeicg9e$!;EBbvNdh zL5_tpzDPgXfYrr*8~rCnVy#ino0iyU&U*OQnL2^frNai=O_TTcB-)t?wHh%)P?6H( zC8Y_AC)!}oI++!6d9HvbSn7!^R0?=;!Q_QnP+He0?gS-|q`DWgDB<+1W9$;nM5q_5 zL(OHZbM^ZA-SK?w&hoBIy`1CM0rCUgVt4p!!X=!Egm8j^Bt1ZqlrS+473y-!n?%3b zhgC)anZc65nfe; z!0hPdRHk6)Na5+L>+LNj2s%pY$xMobDi2P=++AR3Nw_Gc+lyyo+jus1WbBY>^{1Oy zKcnN54^Tr)$`s*|Hzj#Xn7a?r?By>AgdnQ(nMVq^Gx^*-f@$+fuwadg4yraYD?uI% zXBAGnQOgF)X_=xC$n~n^I(~P`81>`j)9Q|A zJ9k|@hxw*}Q;mryCsCiG8TTOj%(;X-7TSdQ7(R3EYcfmSXf4+CFPQDa2M_4BPzCEb zVTC1XN~Q>m3_nvcoX~Ye_3G>n91%2iH8V>AMwyx82;>Nb|Kt*5nmx5nK}-O6>91H2Zq zqkqk+jNeqlKOP%UP>{HnN#ce~izZR2GnTt02x^9jqF@omX9p95$bGj1P;-Q$ASWt< z%5Q2MfNK+u0&wvO-?)y|wQlq+_yZHR>qt1^fJ=KkM_s&5xU&=^njDd3t>w;A8}HKL zT97^;lKo8m?FP=l{ibjazQq?ECWRF!5biBPxcF+yq*^uSeCxGC>Q_t+#ZV?B0SWI0 z;cg)u1>oX$IVHj6+#7_vm5>yGj6Q%h38Jh?`jk*_CjSCn04P3gtck=Q;4-f!pV`I; z{Tp<08|-er1(^6r-y|@i9%OsJkS*RrPohy1&04FCSEn!q6fik{PvXP?La-3#biz;o zCfM9x6Hicl1QijRP4P&v8$?5NigjskFJ$NHv;(CUHi z-;!T8{m@^UUhQQ)RUt?lA0e38*U}4n0)!0!m8O>f2?FSKz|A^7rRintmo6puLH#|G zKmpt1eaQq_2tX{oY`D~?2}J>@()9A6LV7v4&k~LTaAoP$Ue@$-x;G&!e%8yTC%^9n z1d}^k)CoNG-{|(eO*#}EUB*w91H|21zyZ;Y5u(M*AB8$@OY3Sj)8|>KvYVP{927%0nWI%*;ZtM-q$z zVDT$jiC{V5Lcm88kOF|w7pqK$R}Zz{i)?dD07U$9_LvxX#TrI`o9_?ZPj>A80Ew@p zPYRMLst3hR7K)XsliYL;pq}~aCKfye3@_Dph7dw7ALttdq5x1S9*00Vv3#&^6O002 zXO@_nX`OXn^Mgn!lXEDKpFiRXVtgLn-;DEpyxp&XhlzEkCA&53X6j?df=&l`Ep~^$ z=G-iPsy;TDAb?S43ZsV2DaW;)RLb2E?dpjaAo3KjcUZ4D34jo30OrYrp#aRVY2PF; zIgJLOnuMYNRP>4Fu@Zon>@e}TGsvb|ok1#@eA^TctMavcndz)9_vHy@0jfz$rk+~^ zs}2qu?S8}j2%g1PDAsl@2No#M>q4PdYW8!DdNefo@ZC{&yAUa%fZ@aXk_jS~uT#Xp z?m;jLfDIcHCj=W{Tj1Rv6OaOc(brRqn-#~oK>Y=zogsurfMKTqYq{25-i|M7$y@CV z%S=?7;jeZYkEY%pQ#X*SzhNt#`1(<+; z0oVe;C;*n)0~Wvr*cSk9BOnC;6MI0>=eQTB@A^HUIYOlPngl+HK5PM34sj8(hfTY{ z#_ddf?r^YfgE^GtTL6k*&EcPo4GitEQCR z%GBRK0EF64cI^KE7}9M`03fPCr56j8lItKhnFFV1wz`~C8VVRZWTG*F!G@Ie~njXA_75K&M8>#xb3#`&wT_>X`hN@jwm_*w58Qf#a4WgAi;6V|{6;}i7d#%hp@0`drb?50;SnwZc@ZHg z02#k`hOu9xYxni)s%Hu1^z#oJPoF?o3cyC+1v?=sE|M2{qF#S9I2n=!XhRmb#&8lp z(azDdOnvEWP;pGIE>M=NWnm*qc1? zQlHDTOujsb8wo)Hh#_av6WZ^Q34bY3QeP$v1tXu>mC@?DXZpKu25BU%!;SCbBcS*& z_>6oRwD=)VyuR8V-aNCqw9@U!eJo}>Q%8_G8|-er1;8Q0SFSO-G?yRt0R;$L`WSqI z?jcJ}`5#Z9TX!nf1MQIdII}?ks38;WbSR-%2>3|?QUI_SpZ=x;=7bADKSNLofJVP% z=VgD)c-BLNkKW8#m~8{hkU7UhzV%k+Za=8SW~Lr|F(|md*>f8Ji@(5sGN%lfpn!j0 zghx<4WLlHthaO-&U(`SFl%E1XLl!lXfgJf<=+x&4M*+AYBXu%dK)oFDMnX~mGJbV) zQbZEZ(@)-6N&urY?OJ#RnW3F*;)(Ppl6Gd#Z2+t^?Q$?d0qwq15$$r-y4Ul4QNLwU zDBweB+7*C=b^+Xf6OICKrD<1y%V`%t-tJ;RQUJ0n?L=`s(En{sJJSS=(j%a~8BO2C zb@@pk9A1RBQ@;pJKmR@Cq;~w`F#wsOa`5aI!m}ZBsfqP!k~!nmRXks#Kx|6)pvH9X zlpqJXhCmbm8gizS=1Wej9PC57oPw+?W?!Ve*hVBzBxIF=m(>ID~u}L1Jh79OV2$}f6nMr!1~g&!T?12ED!20 z2t@&?(j8;~<zLuN_xp}l-RW$vQWw>176=VSYDQzQV& z_frCpDJlo6Hho=(rF=i--Tvo{S6|`KL;=&w_fsB(p%icbqa*5T1fl>?`F_d+@(AU? zZYCH7z)JU1xREiB*T%2wehNrXUAmugCz;&H)VYVTpVHgrKY*0(r!0u*2cwRL4^UjX zpR$VexRiUKF6L4<1wcyoQvryO%7c0$p(p@Vx}OT5a$0$CPbM4%^HQ>(qFTJp!{%Mx znaq;pLwo6ds@FG<;q*bQQ}4@u3Qg#zC;?EqpE3ZV9IU#Ru&Q)FWewNsU)FeaFh>Xq zm|nV{@*#v$42q7DI*dRR04m*2`9L|Las~LzmW#d+L6Q`%qn;Oy-18 zpLXuYi$eQwQzQV&lSu$FMdcvVgQ_BvF4wp$MUXv9+#~`4$0vesRh2+G2aB`2EK2> z0cc;nZT^G3@e9IZu-PgXy|x zlLOpqZkJngxsj>&T*3hBZS!B509)mv7XiM!WPq(g9pKzz^{tB#V2Tm}rng)MbvR~K8gvHl=aUw#ZL z9**oj;1s8a-RsGT_@WY_zY6X^&vK$3Mtls9#d$ug(3n~5^uQ?X(fRO5QLLKLIFc|OxF)s|P$?eVdVsk6LM?2R= zjqm7mx5;BoV|28UKh4ztV7X1*8B?F#N1bASaBQxdov*otb{xO0hJtkhgKqfsU)O<@ zcUdJWtT!!+Z|69Utc=YaOF+#8+?uG*-_{Os@y{~#=MO}9U(E0xcBUcqv7|e6GPDmZ zWs#^ySl=dLeQGIfqsF+RWBQ){2EHulX4A&ij5BEpICt6ln={w#EcaW>m@DhRzns=k zz?!G6r!_di?J+zBdtOC*C}2-_9qs8g7I8NrKG3S8@>*I!vA$M-D%<- ziuKLSOt;nS;{jtlmeAO?gZ~+O{)+Zcz@AIjFE?|G%{~}wjCd=JpnwtUSk1-=JsIKW zLh*GJouhZq9157Tj@4|4(I$%ZP24D;_m$L+(kjRLlfKLsz%ta)o2Cn_dPAEPN0 zFy%Sxm_loce|Dfxmu$EF_cV+GhF!6KhRM*un$si6ayXWJnnqE;sCDcT^m&x4Kg$D? z!Ozkr3fT1Y^$S#J(^9Lyz`F=Ey}v+Ib0pnh< zXN+4Tk3XV?6tHj|PdoeF<_sn{?K#YPE?sSR`A%Qmef*gAP{5vb9K3gQ@h#qg;Ybgd z#;|{(VH7Y-J{~g0noyCyb=%+;R>bS!t1eF-n>F)`ovqEqaaY*Pud&*7I#zvNgezXV zH=HFJxY%=23alu@8qd#Uji-~MWYmd;b#Z33+vSARB@E~5bM1NK%u9I+ z9;4OmuC8FAo_&&mei@-D06qQ+o^@-D(<=M30`%qvCg$yaqhV}#C2gR94NsYt`}BFX z*>4)m*ASBenC)p}79D;)!6^Vf{*t?m=9odZ4sV`YZY*Op+c^FvVpFUacE8)Q*l!^= z1+dlBgWm2n?6|ADjJFe=0_fvk6G)AE@v2zEo>*yH-bq_1)+Gyi4l;-NuEu^hu_=H( zH?1t-^;xS}3s`BJ%RL(Ty+oz}^0w(ByN=fD>)uaz3cydX=9}Hw&W`1x?;j*M1;EF@ zP(CsH40z1_8)yLqEI4`Gi*3e$y7}KwXkhex+}PP%*tOE>FSL57PBR_Rmw)o+nrY6| zzw!-kM?{Y7KH_Yr|PLkQ1_GF+(oIVbEj*Eeaqf3P!#=Y2m9qn{M;^V55`pY|1ox)6_~Ulj1`vwO8)pe1_J z=FXO-=AGyo#a>@{y#_uJ*H}US$-7~s2R(+~QNX*;?X8J(br$GV64V>(L#Xa8|8 zcXk;IPh2=&#u#Dh@K5O;#ok* z&QZX*FaBTSTmuO-4sND{6nlU6gq8k$?0$5P0?vJAZ_S>(X(=2VPNHKJaBQ!gQ0v>9 z+E|Ea^g4^%TewEqpIK-uHT&H*-VLP7?_~N(0YAUAw^X)9`;&# zE;BTh52d3NaP-T2b1DNzgIxY4U8I1Ed+q5TZ*6XL<{G{BWw?r?tMD}XMFGD)y0@mz z+_J45I+G4j?9D~DwAx?Aqj9@p>w@+i=^Q#r0Y^Www`NY>l%o^(Ncuwof36(&ipJm) zYnjDmyn^3f=9UT>vH-r0tNSv6HOq`+K3_8!n9YG2yccIPR`>6TJ4$vRd^#Uy+e54S zfmL))EW_&lV`O!I9edjWTSnatvQ~u6TEEtbn$_XHH}B%10LRyHF~3^Bc$uOx*IvXO zD8{Y((k%+OwT>&?Q*+Br$aT_Apm!8|vv-`vx$8?ha3**6r*{>lk>fMYg)lMMLp%@7IfTb_GS5y5<}VC||=Z3A+zH zOF*3S$in68$E|{8GN{lx3@Te?P+7-bDq_uq!%9(uTQtWlfF1O~I`B91h7bzGdL7Tf zingtBKik?o+T2`O!Nj-MoNM)WHRhT#edppg=^_POT*s>d)w}2t=&pL`6n=;PQS9yh zwU)NFW@mA!$_=F2zwgsO3i$WkJ=z_VEWiRIVpsmP!#|?K6mWPQr?Ca|^cllsx2Y60 zaD0_({@Sk}(=Q76^$&Y@BKwW4d{zhZ2JP9u&@&2nwvHE7i}5bsi!x(;U3NpiJXHJk z3;IR@-_~)(d^*0FTcosO|1TY*fMa|0xF9Qz4ctvBH-Z^b{+j+#z`wnE;?iyDw1uPI zztKAic(;z{#MRTXx4IQKO52{~Kj;<(+*-%WIMut=-_aSe45^FnxAc<&ey-ys;_Cg} zDNn!abq$-u|E6;kaPE2QwkBEdt#0<++0+_mTAx_I5qWtPGrey4bIDLorY=1Nr;<-b z+;<=HC=KC!MCZ5K?MeBM(~fQQqpN3-;Z0v_$fSrP|Lmgeab1$=t$y7fn4jO()NDsptOj{kJb z(&}Qrjq5?UzqmL4d&CNVm8qlnD%{hs^0)iY^Fob$u=Fp+?i&k=rS_>DwVz4t_sb|7 zbqZRy5@xxh&Qr^bH(zNmPOdMp0iJ&5EPat;llfFWm%OUZ)bdSQR9ERIjA zmG(*t_sq7;5T#Fr*M2mn@K>3-st!{95>D@A-@< z8%3((&kd;-aMSc6ujFVS|CQOKKsLvJ{=KMr4O$g{9$K<_bph)Uw*~~ z=*u^pFB&F$Kkv{7@9gP;dRvJ>F_F z&ZQX?Fyoo)Xoh?HuDpXnSYT58DB45;o5r81*@&+(QrMpjCT6pK8-~22LC5B?w1Wb6 zj6ZT&fD(4#J?z?+ASxHo8VXo5{#2v9HRfGKUR*AsB^0n^>?hcbA^0SguKi)vJpLOY z^xG6xntVev?q_M><%jd*_9(GG&D51gpnKVYucz!j>H<70a;(#Rtk%uGX8gBA#~@_V zNEmcHH%iAd{>AlS8b|d)(Z8A9gD4rq0;XQI=S=0uP|WsjnnnTB#(#HW<=GBQD`xtIw2=Zf zzVr_yeCC!FKg%znnG`Vd>OE(sjJm}=}YN!=&E`V)i+jMgh~tUlpv3V9`AOBWQ)1b{x>b6fJI|}ge;c3IvWR;!Nyr98~-vdA@bYJCt1Mr{wh;PJOOKW-@_xQyAQoU zG`hPS5QXvY9f+7C%CTa1*f$fB>{+QVcZ|62r-&`rck>H8Qm4k(AM%-73b;4f5Ky5- zwAk45&$NdE_Kbg5L(%0iR>FMqO@xBL{FH`Jz>x8;t5jo%7muIQ3<{Vr*<{9daKd=t z{vNz)tk>pOHSnOAeE3V3#;<4&1nC=D5d7v{kpzDvCXARluNIX%z*mT3oMK z^;-OrfsV>;#HRrM*w=0g1lCT&u8Bp<)-Ae=glt&YcE3;{bP z2jlm)WjN7WnfmZquzNq**}dO|Jj_cvM@IfcehlO8FUB3^jMIN!_cW^e(VAS{eVsb} z#_h<*qgm4?Tba5~4MuISySq1BAcGeT`;&1ri3V8u5V7=L*3u#9mKXAOs!rp5&~pXU za)3A8=7hi#eeLb~lRd?8I{KSTopm%u<(n`Q*?r(C`QOsHKbrtY^uWi{#K#9t@VCdg zi+G}C_olpI_om0#tA{k{gh|x4XYXee?!(Q3s;YP+m>{Mdd{o4kQXiWqDZf%KZ>(r>HCsT6@un!wExCSspwej-qmk%JM+vMHlW& z6pG67K$HiWdbkUhy@1sNyMc9Zfk0|3(fYn)e!h81g4lO@HV`U3}5%_ z%&sot`6|tc83I!P*nHJ4UJH4S>~)c`5-O2iY0l!&w-9-b$P`m`8Sk{>>#%*7+XSWn z@XR!lj1RC!BE3jh3cx<50$8A+szTQ~#GnAisGcZKW`lAJ*;OaCU2P1$`HLpnHv}TmBy1&j+OY8F|j=+Z6OY_JA-VG;I^3M**wuGol|i ze^n3vdcd)f<2)}T(-jSXwf!J)Jldz^M@FCs7nfJa_*n*g|jZycG3zLe@ID$E?! z=Yf>?y^J^%z!^DzpTLbS-fPfV3JCH_!cYKaOGRbv!xY_m4e=;|H}ZTT(XC+x_j=+| z0C(g<%LKT7&;KUsr-1&E3oVoCF9z@}1fl@Y$ctDL0EIpM+lfE{gpn7qCPyeb^G-rh z0II6-(l|4W2=68&1t6;;0;Yx?+dsUQ`YE8lDk5n8#n`={KokHvX~Z1Z&r;prF&$cb zo@$=Qjn7kM-lNYhWp-W*217ZVsR#WrrokO7-t6B0k$R@Y3Gh8fbuzhP`D;vl|5K*E zBU6?CSvcu6?akTd3hu9HHMh_6bCLJMB|&Xkmy1gjYo%&Z{a&gx&?8+|DG@i)`kqhpX5ZQ7HwKj$Bn(gD0Z2 zNRpRQJ4Geh@lgA65BH2>{Z4lRFQaw}XdgMD8_Ra5z39X%2}4mq+#StdL!}fIL}rlV zucvm3O0>Jkn7F@*+9@iC`~7E~_F~-MLKun);_j;S?NmxpL1YF?^qtgBQHgdJ858$+ zQ#(Zkaeu(@xWAV$6o7eHi6Lor2Fqc(P~T6D6wr89IgLe)8fa-^r zphi2l_N!D$0hJ@~{#}C?R9Q6lChDeu?vWQx*3v!OTJE>|c!7}W` zehUF8sxjP+U$;^(MKy*GPBd>L07W&1yJ^~QsF$J|!v|+-|3v_bvH*Ph^Fj*?B6!ge zx~vW^Txq8No&Xd872)MjPVHv#6c|>PKF&WB^PC z!<7MPFRCxP@f_k%0B7VKT5I6ocJh@@yVvV1dl`8il~X|Z$g7hRDKEP4e4~EfzVPsfYgsie)40*}eaHa-$9m8(A#5V)<(n%XTT2aqS6GZ`1|$ z9LOM1z?PAtbZ$#nfq_z_UH$^pO>#wC6vyY={3aCDF)DSS9*{$uoM?eSUp43cHjb?m7#j@ny z)Jy@*BWI%H*(|?m%(l5yqfNgr0Vn`4a_}7wpxc^n_xQ?NsUrh&0zoJMGIG3{5X8H& zSUYon;!sqRhhB5LrR4*unF5+eUNaug18Q#UXtn1T_+c4s`-6!<0fY+rgWf`CM`OO* zT*2MuTK_|+pQ0lDJahDk^f2nDfc}wFp7A1tJ3fPc;S{Q;fcgpw0ZXkjtsp+96MzB$ z6?F9gXyepChyE<8rhw`ShF7f`w<#IzkDzu6Xdk%*GhX1g8@1b{Ad2QIB}X6!|Xemnu~lXzzK53qu&pZAKA=VkU96_ns38?56!K* z>$w{b)y$!qJCv!jTX-45orWBh1A`iQwcgzRoEuWsM6m_4!0TlexUKRSFjDal3ATFb z#YiCq{F~Khpw+miZ_wUi% zLx4{tFa?0y6=u}Xx{r>z)g1=@0D@Bh{Gudk7rm;xhAoyKno8>L$mX0+_8@@GdCbJ& zHWzL*eeI>8(|df2i@BzgE=I4c)W@Ij*Q5fkPuTEx4C}6U=>|YkZ z@GpR=6NZABPo$lffCAeBsD~1Y0#K)?kxcZ}ZC-UA)aS@3muo0D6PZcFWmenCBfFY^ zyFO^Nzu9vefcVR_P~{MrqHb{L8^R$oc`RYG9_h_h2RGayrfcc3t5KpO&8X0UT zHUPIsI10ceP6c9c9@z#UJA|YF$Hlb_cY0Xg2NvGIB!BrPB zy%g|lDXlw?X)iE2_7h{k#Wa8d23$G?19EPUFye_cf&xZ7C5hxQwXj+7gT2TqE?)PmSs>BZ48cAw8L)Csf zv7~^Rf02{}=&I-X_Jxhk@5ISzx6^Lm;nn$N&1dY@^j@akw-uq?lsD*Y`6>GdvlcUH z9}&O_2!ef>1Uqr^66n;Um}?OPbqNDc0mIKp3cS-;#}=5*h#BRFG7Ah;9-Lkp2Ya}% z)S7L~cKQu`EO-_lYRpSYr$>HJ!w+ia2Yz4wh$kascN_T|dpM54yqb&qlje0T(=$cu zkm|cis&`B&LM*sZwul|-?j!^SJT~8ftJ-5tM49D`VbHNOhyn&(F~!*AW5pOo9Y>=m zVAQ2aWitw-E(f=ei(4$=gF%FpQFmc^8CDOc?U0$NK21Vh&bPL9o6#lH;1`=`7CLw= zeA_NvZFVP9FL)9vYopuuHW3+fb-&1;K=Fjof{1Flk5tQ$iEtSRO;6{M_D~(kd{e-y zA!}l#A*CV;z;_}r1%QXFiIoP8 zQ-941OZ#wBBw&V2R1;wY0u(%3C|FTNStrN|=ZJa+y9x@pQPGIw14-YQ!##^|6o9LU z?LJ)IBj%9LAtVJLA6W_Qpc~f+3>DN_q@3mh0ER4gPt1gNb6yySjZD332Pn7iEVs>n zfEu!-kqRX!VBJN+x*;p-sp@sVpgqvus2)253V34Ptx|TnLG3zdd9UXIZYLlG0Grix z>H(lfJ(n}Ji=Y(DS2f&&^1A2NcohxPxIIfV7XN4J*kumW+!P6ziiT+eBM@Ncs<5-7 zVcI%DVme3EubCYRxKUA&`#?g+9PZx;M*+Bss?LYYNti?a2O%i{SOEX@Y&+GmG z(>r(*CC`*Mx_xgG?o~8QTkSGT6A_ersZg@I4kP!@^oE{?>cyN}QNXK;hH2j`Z+5tG6=M zS0LDoED_Yud`ZZ%bm(<7Etx&+3ii#oxlit&Z{3IbM09nz} zP6(M3(}(>GVJQGx&C-t6j(2x~Dv~$#M)J|H1TYoN8QaU-4Ha=8^6EeQ|Y*4V#Xs`Z%)~2D74B^HQ^q zTS#>OA)A?+T|yT3H+yaaZVq{@VAA!p98$25ynmGBRaD|RfX}gR|!c)eLX<=0@-N^Q)yhg?VSz2_}20h`!()o z>Z`oR=s=j^n(Utb19mqRjZA{!%n)dB_FKZ)>hc*l%NewXEU0P|^GN~shCG9lP>ln? zj>7hcfj@}w6oBtkvjFY+D3h4r%)vWqOgNM#P{4#IRmEuQCTWfBEkYs9G4)N7+YrrB ztDLrphi>NS^v;|B$8b{C(u#@~#%H7Jn=&J;lh&3`5|A98zWSs2?v zGXtL2>eZYUQ6SArl`_qF=*mb7=<^|2nra1yKH89CzQRw z}t+8*7SA<&@ue@>%E zwX%S6mYNF9z6gKdUOx|RfMMie6>A#06)NT&xF^~1PYi?X^&0}$8itv zKl~nDw^tr}_YkR1bJv)uqh`SM!%WYfx7#M~Ayk-VUL90X={q!S5G1ZDB$gCrJb!qa+8ao65L^9$Wv$t1q|6WWkUvPqG-$vjiG=s^Hui#4#-u9 zYcX-yA9RS5v7#;*ZxA(89=(;RUv5K1>?b?+fB0R|0;+=(AQ1jeLimanP@R6wa?d68 zH71b)&Q!Fd6oLt#eaM>$Ndd@;CaNK1&Rie%n}nqRY&8q0T6^8cxFdOKSOS=e7L-=( znjkkawR;v++*fa#{{U6dHBbvBDB$6r3J)t<&9Uk=4RdeQrOXWlJgI0AFn|&gdVqZb zQUI``$zuSRQ_ut5K~M_jtC9|r%IhA&pOAk-4PaE%IbAC2sF&g@!7DnT-W{-|1t82@ zdCHFc0wMZAx|4)-6_t;%pDPyD2elv1Tqxi}MSZLXBXo0M8wo}Mu!`92f#prVRvNHUV3y4dybHbi@qsoBodCmSH!2D_VY0k)zmQy#3qfqSP3_bSSh zhoJjB>y36!-H#mt1zf6VBrF076+_sQ2ulIjiq=hvusJD1=#vRe0q6@VVW!bv4{=T< zM;&(nR?)n$*IC@&(sOmam8rj6;Ji?F?EiqPsOxob0t9+KPUu-tpXKxmIq94rsW&oF z6mX`Zd0_}TQIj0Bkk$Lan{-V?360G%Nv3Ro&Ni zc`Z|KJ6?@=B2Q5E;igEyRCHk-I^|rP5TIaFC|FfR87G(^=ZN||lR^PED!S@s+|W!n zvZvmu%@cp%hXAH+s>xE!QY0j z6`gT7{nBp|6qJ32P`0Ae%>YApYOY1xR1Ka5P*les2chH2N)h6^b_2bY&=i2K=&FH( zaL_q<-7y2-B0L4)FRo;k=@9B}%V0g76!sVe$VxMu&zc0;Oe;RZcaI(DH-&pJqoM)Y z!w@A8fUD?aO6wI069^Q3tx&k4 z*^$#PfNROl*?74)c0BkiUQyR6dr4U5D zhLkic0Zc_p)7$YCb92c@HZ%1dKHs*#*>fB8teQ)2Iiz5Lk?#^lR&>gf187S6eyQIv zQxx#0q5-P_C!`EO|A(Ly0Ig`?D1hd)41jOXZj%DQ)!b+(>gxf@JIPE-7$8+e&DM;a z%5K-2nYv&_Q&aW;DI0*Sikc2mut3cZS4&L?Ak-8Gv|s8_CW`|8R7K4Y&QQ|_J%XSV z0IiCeA*e@9ANY<0rT}n7)YR(hK3CKYLQMg#G_L(l*WG-295AtO?t#6L&w3o_H`zUR zqhdvKRKaj&WQx$>>=%Ty)#WpAmQzI!Sy0t+%qIn+T+z9Y2jb3t9EGh(2L7IervQ9K zbJQ4oK<0u8_ofLHFrk_|raTKsYv9>?V3}z3d6L@@%~9*>iUw&7*TAmhg%tjS` zQ>y6N^$Vz1S;H(8>(sTJQBWW>FI`^)g9=>3%oov23Yhuw^)+*#Qr9r`r8JcSrarHd zGt4!(<|?}1*`kXK(pK3PQ)VXH-(aDeIvQCeLr!`02koM-)ze2d%jXgs`gKZF<`R-j7%MXGejN^z=sJv)nqMR3*S?CUAu z*^nFIOF>JKjWFPuG=KsI47m}$lmU79j421b zSqp}IgDe{|v0BTFLFN}I|Mo>t{@}3D>^u7qgtOv(+{EyiA|TlPAHwb-OEnYg)wB+r z6(sdt_I?y_V#rcW8ki6{2KfU*QUEfs-wM>aDPm6D;JEShp9o6<*vCfu`H38rcLaJQ zW#ZIrB&pEFr$?fjJ$&4**9yt5y_EyS?svt!{t9#myBJG3*&|gK8I?FRnxsDEZu!%=7o(8JzZ}!{<;No`! zPv(z<6C4okPlRys#neRQLOIVLbv@HUQ4tTE9~#Qg&If!S0Vx0&U*#<6oB2+XpEdQj z1f>9I^cM64On#xz@j@L(0$OqaB|eFo6sFg2F5~+KO}XI>fV!cEhD<&EDWKy)L0i7d zzu~YRe<@cfGXxm~eSi=&KB*}MVQK2z7fkgK4rmncEWRLA9@bH|2>vjFQvf_Zrzj7O zZ07VW8gL2?pnw5SEZ>6~GLb2yvPQ$F1uV7H{mE#@FH5Kj#){U?6)KfQvg2to}N_nx?tf;8IDit6jIrc%F*b&=()Q2-fwJv zXbx>|_Zrek=oiiPYI-MA$GiZ{-PpGK+?3yuv!_=9CK#aUV}+*iLYUYCT+VT(YA@9D zo`B>~!1DO~BLzf)R)Bgwp(p?qzxO#@&Yd8*=XK5}b32c&e2t;(>Qh5#Gg5PLjM5?m09; zQahL>3V0EpNTq@~4i+IVBP0bN<1?C6$bgGQ*vkn^0odqO@Ci{hCjsJ!$;_z+i8;WJ z_)tDRVD6ad2!YElWXlW&oz?R}(!&f%^L93AqUKF-K7J0BXpCTkupJ?6d^}H7u1D1Y z7qqu(mg%H`NAdBz3}`^!JbD5>PiP82KOr_dOhC@rR76`QqoRo{TRh9HULW6e6JI@I zNxSU;Pre%5I?`|}IK);>FJBS6!}!|M_)+ooNv}vFK(eO^$;#%tsNd(Ae=JkPRgYr6 zDd1YOT)utndCH~LbtD?}sZ9H@0GAoQm$CS_y%lC%+HA%zyb2jV6d4bi+0yX;n3+De z#K7n4k}MM#S-wiLTxK{b>b4p7+cQNx^FLdYvX&D zCqEa2-B)j$|KL^p6X|2QCCWuF`1ms6<2mK6)pIawvAPd)Kmlt@beT339^D*7jSv)o zh%ePn5D;BNKCv9kiG-nG+>?9A_A)5sbY4f+NK&D-#3>}d=h!swD(}forat&0PzEOu zX5ZTcScy}}9854kpSK8oN}NLGN=-lJd!gRW;8Vczvy+1_Dv^Ld_nVo7JWQn$(QhsF z+Ly`W7;UqIr!BeEztQb`o23%rfe8i@@t(4Y@RUj-0x#4JT>7Sf<>}}0MG!L;4WT|t zC<;KOPX>xmUTuePpCB9s;F2k3RMuUtb?(*mLNN;ngyd6s+zdIh(Ac)4*`1e1h;>6v z8Zve3<)9kh>^QSv+sv-{n^LFpMR36b?LIEFOFoq^D%RBV8wE*yj!B|G2&1=KjM3Hm zYWZ%onT0JjHadLjW6YMs&>kp5LH+S|d^38c)kDuOUw$gIVZ!osSb!_~!pJ9l0jRW~w?6mTc{agcG+7;3H;EHFr)XD$cg3fSan z@bc=CoLJzzaJjM6TIzJ=o5eUFXBSvUTdv80Odb9_B=)H2G2J|%iv=2g{$z}x3^Pvb zK%Q@sJSWe^hXLqh#|{dzI+X)B1-!#^ID;>_O?0jfOfwV5@@ab+x4P<#7})>A^fUU= zFvoAD8N-s5ZW|X;n~RGBYV}!>K3v1$2p>Lp4ft@E5x+18quR-h_*ddf8;z+PECWM+ zAPiYeJrh_XHaue-{u8l6J%wzcfWIq=Y#9zx*N4EG#l<*v7zy=#Qb!UsG#AOEI3}Qd zyc@GIhuf4iWlTej4G029gM)%Lx2ylA)F@sA7d)i?7n1tqQM{;FcM5)^AgQmg`=>y9 zlSdq1Z(%LMKV%@kMo0?wKdIFA^*YFWLg^nius0Ky0v!Q_f$>$llR!0musmTu*xX%!d0&u0t@A);zLz^-6IYLqZ^1Q_EH1{Ltpab{~ z8EAQ7sF2=^v@o=GyUksVrOvE*OI15e!yVa8JP^lEh-ue0#IWR`x)zRb& z1prg0=OJDlyJoD#49(?GZA2_%d3$s!O9OZ6c^GwE)ggon0~){gYD|W-cFwd`c%L!f zeq)h;n>0YDAnP#msb`C>cTXddU(6Otj~G~+IJtuK=^;p03=`5FDet>6C1p* z3Gb6H>&KM4&NXmB5m9X;&nVzg>b3PErtr&vSz2kd`!c7|XeM88(BN3i)KeYo)VSQ4 zsaJA#xY6zF&4xY%N0YBN_+Wy8ls#BdmOjTNxvU4aYskG&A7hFrV0r3|UDj}u8W$pU zGBd(Bx!|PFZ=qxf%TQaJy?myGh8i1iaqpSP$U)4AYty^#Z&*~xH+InjA6)Q|ozo;c zrDlM>VpmMIQIOP+cy>hrFH&!J@|}=O0c48~s6jcE>0%I_vy58$Nu*IU+gk1bs)^Sy zxH`gq&1=upQ(ue(9%&QkAJVPbBEJ=eC0}K=9(wwuo1_uQ>Z2s9$v379(H|t&!xrb& zdsvASa4q`O*_h)WspDz)Qth=G%=4IWMm-ka^m8`o<6SV#t&4@3qHQ%p;!V#%(hq0S z!vnf4R6!<|>c%aCo4RI-@JRP1lJ4Y-d<@@!c7GbE-5fp*ELC8Gz_ybQj)=4Bp5zz> zq8WW1;Fuf>bPL05lO2-jw7Qu5VuHf}F_~q$F^i>h>Cf#n=#vQ=p8J%V+pTn4Gi^La z9Gs+^MnmKm^I{~Y9<`udW+VRJ)ALeuJ71Y}TEqs6w+V}r7tNWZqH>?a+Qs1{E;Xkd zz_lFq4`hlas84e!q(CIg%qe}fbQ4a0CGZCCX-ux}5QD#9Op~wEvT}P1%@uPSXxLBb1HqEw zO?=+wDE3tY$8__6E*h77opzXU7?5BGa{fHYdHkz@V-81A@4Y24?eg%xEBPAnFy|cQ ziiU~T>Lp|y1tObzjW~ua#M7XKHAqH4T}ARS^U)MvSYjcl=%?SQY3OSS9gfMDmsx%5 zEp&D?_!+6jj&5^h1s512>yrFYjX$cH9|h}^J>IWyETVxr81Xy(69jBH9_wSvG@Z#5 zZAGoTN@`_pnqdBzuR}DvZmyWB9d-^dGW0q!>P*%X1u}7YDH;#YvaPMo4qTE1r?yz; z6;?PIGxbW+o!nZJIH`{ytfkwpKyA|N2P-i79%6#`msapdXnsbIeLRYc>pHjc{_O)< zSGGy-**{>loK=Q69Y8hjoc(lno!S54%_+$Vu>hhPsraCzBKh7uZJRb(cL2HB z>I#OR0tTnAhgySmj?I;859CUMPypoA)UJg3>JnrfarFUa)r1|2(|IauDzokFZF|93 zx1jRaf(!3l2R&GpUTmY?2g~%2U_kQI4`xv(H$Whf_fJdS)9))7a82jmZxt-{bDjZG zz>)ORPG7O3o8g0h%z*xipcDX2pQ-zb9jJFdgMZur-$Gyt0H2>qNMCPVa>!06=ZyLk z8ES}Qj{q^f&IEF$vqQQcy<5XBo-yUB-vNfBY_U5H?f^9X-kJbZkU-6^2{qHNJp^iH zaBxk6qVC3ig97%KtpOV}7C^vA7d~|l!chP&eRaS&F`SDzK3WE%zbLNISb&+O(~@aVMU5ikc501)m+Lb&t`6uC~rHtme) zSFd9tC}4I8PUrFQdFBJXkw6pxO25Qa@Wt=#e6TkYi~?Y1Ciin%Be>;j{vmngvJUm> zcfzc$taQ44-VZOA`&Um=VT`OJIsVSfC!ytW&_#9myp)1jF@erV}0VGh@mnG=&1DJauZOc=R7_&K804VQGLa-YMMgg$15<3s0Q4`Dy z*a1jKknH5yE&$BC4Dxe+&`H{Ccd*C{Q->Ct*%JIQSyzVMMME-0V6g8l!oK7=cEL_J zBo*2PPxY8L3b>Q{B8P%zoj-BU^%3+<9m7P%;+TA!1(8>mR^%Z;ri?o{KYA8YxY6x% zQ+~&!CEqP)l}Im63}ow1C0og7t-ey*S$JNk|K!Oy1uRcq#2EmQ>4|NYfT`aRiULrj zO3Y=1JyXzO_@4a_;V1x?dLN+mKq!|dU;PQG7NosQZ;l5v>?UbtgoT6z3r`akrgslT&B8>#RoqiYF<%sLB>IK#F)n=se&7?G zn6om9{4|#hqdJv|V=Qxz8M|aot}gRZitb?Z`yzB>cuxec1s^uhZkoKmr!mR*Z^ewk z9RYG}_fe9|J{*7aNZrI4$z4YL!Wd`j|NcB73(YGfXBiI8D6bYRh$8Z%jgV*x|pnyJPl1n$%3&fdG6*;VTE18V>6x=yaIeVB67quy7dwL zbHpqD(XKK2NC{ZcD6s$?{;cpK`2tj2y~hV1Sy0u#ab`#Xzn)x*2flKff751fx@4r) z4AU;*9*Au6R7hOs&GGIL5=kf@MUaO`UdfB6hZI^(L-0sM^24@+MqpV8s7P%`Qd@GQ z3;g4JFGLhH^%JI)0x3;>>@`$u(+Pb0ND2K?%S@$&G>BmGvlTh4_cVh(tJX*K<3HXJ z+&c9PB=wH*gQh+9@I&$`x%I|cGSTdI@` z=t24iad(jgl7m>RlkfMHSO-r7cvP_M<{tf%dGYT^Awqb_v<^O_kbIUp#4wzt!U#~{ zIYNPwRbaiyXSO*3f@6ZKUd9of0_jhE!YJaIO}>S+eK~zqS2Fby^}+a-9J~En^1Zy9 zX8Vj0>)(vs!4W&c_*yuSz>ZQ?LLzf05+8pZw)-pjXc&mUztMn6d?bsiqN?k=~x{q6YA5;D+8 z3riM!pih!dYmod`S5oi;`n~K2$FPP7T=gy%JOx}USMY&$n}6NtJ>j4+U*#2i@K=m) z@}2h5?da$$-LQ+UBq9MO3Iv2thXE7Vqcl@f4tfM@n(B%2M>f`6;Br1`GS0Vp-Hz3bux9ryE#jU9kQ(rUpe{G z+XKdnq3BrND};Lf9s>mxhLOgu_vj8P zW;YD|_&UdtUnOrZ&$jW()W-Ja;wt{*H@E12E#2PMgn7^sX-_-Co_JZjnUI_x9 zFzKJ!zX-@Z$~Y4Lg@0hd$`qYPQG7&-;!}TM_6;kTk#W{OsXIOq#YBOy|NZ(F(`tbh@>*2YMz`;6A|dhTvBK^xhe$R@tN^_~EA$>`+^GOov(|a8BcaYA9Vy`b zu60TV=QlEV7mRr%jiG=s@rMd4Plb+2es!~8(4%P(1q_Pbx>u<^^#b}ou&Q#Z!iFi9 z%S@-+o$0jZ^jKwgGWCr&vRvH0w+VBmSS}V(&b?>_%H`&%mx~W;s3BpINT@4F2nu*V z#c~-iL(0WA8)L4dF%&RnisfQaH8WVddAZm_#-OWc5CsgHUb$FMe6uyk%}u&oTqA6V zuh3LdvooFTrc$=!>dH$|B>SK#6A9?}f>@Q%0*k8nu~bF;jJ!%jQxL{s^+leAQo!A* zc1#lKeAHl|bs~a0pT>Ibt8GbOPt3pu%$RaX*iWJnA0@HR4|L?GToT@w&3ymW{g`|T_&w#4 z@JujMBQFu^BpN~iL#A93o*~|}$T#L>8bbkNrdtyDP+O3XJAe&77vnc*Rnko@;0(Pp zk2iwrfx_)&>RTBKV^iMXZzCY_>!#J4B!-|uj*tqOB0Zh2Iuz`*U5i+uzRl?Z1p*L% zKCSuy=((GeO3|F}(Hshx^Ni_@;11TsB`+9v%tYviG>HNxElzD1aj12-W$+JY<#?=x z8B-ij+Vf4!u_P>dGgEJV4aXBXfbqm^z>F!5C%GAdk81g&sgEZ)sAi~fRQsG2h~O4`>)=^pL;i+_ zP{5EWmPEmjyd(l+K0sqAV9fMNLLln_@(H>mOcT)KHw08Npf5L!^Ewp8 z2D_VY!IUX3e|e^e38;&QOI=KHmg%AD!mwWJAgG^l(m(;%<8L6SJPY|Ld1%TnX$l2Q znc@tu7>~R-LUaC==1{<#g{e)a3?{B5YMKf!)WcXGj-N1K+Wc_ChPH!yxM%i%@hl{7 z@V8;o6wg8&CZ~5|2ukHqQYusIzXRO7Sn_bFyYa3Lign>*>&!8C{h22Jm#5er(k8wUL{R!dG**f7TAa}}I#_jj#%|DXBY=8pd0W^=JIk5?G9 z7F)a#UI)e=sNn!!M4=C4>id6%@;NGcEN}L8@j|0od*!|=v&BM`)-_UE&t5-hU0yaa zK?roz)N4p43Pj}Ubv8@NZG>^Jr*RZ8?%H)WE-$|k2EK^~Qoz8ct+`H61)b{Fnk`Hw zUnAnxfV!H+=?Wo8H!OT~G=yV3-P2rLY_!l1Eb1D>UQO@eJ#~ML!rPQL=xzBaOYDqF z00jos^Gd0n^DEJ+3&S}k80xpoCk2eZq(T^e>3VY!?7s;{0kGs}-<{IPxZ#c&?{3G_ za|!^azIn*$tYZuGBP)#hSCD)pLr#G6l4IDN$6fSu9U)wI9#4JDb?`!-cX6K7wEKEf z|Bh@sy$UeF0NLIyWP5BCN`-62B|%V!Fc}oEJoT+(2!!^&jtxF_U_+$d##As)E;#A6 z4<*a^aJjrsnxWTwnfe#bSvTbkdRu;4uJ(OEfk8U{rflu|T3tRoSJdGwM~X7lVNoO_ zzWVn`b=V&;MClzF`xC!M=DzKdTkk+#4%B0-X)=3xS)P?n>Hs)X1VeT{CfP}T(U`W@ zbI7fF8k;qa`Ux{cf!L*Yn1$FmD0#vn0Q?yNDF7J1KY5(NGXj`TE(<9=_87Wx{m$h~z2og* z>7AQH4%;IGO3Rhaa6`o)F!_tZGtHTWR%1@?*w8z*IV_>SjF+c3x_z^W-<6u;_+Wwou75|ko;=0zmFgkYHVA_H zF|VRhAWW%K9ILXfH}L&26C(9(CPw09f|EQX%q+H78cR)lIbkPW$k>%zGTB&@M!f8@ zyMzZQIQcwmpk12$zh|bB-;@|LMzE2wpGwA($D){W$y^}>f~bz*B$Wal#jp8}QF=o` z^~kijc-TPSkf5RybwPPfYVUv`s{dxU zL{Xa5o^Ho1kJR2_1ARM=WE7=I?df*V`FN_C=l#UM??ZTsvZVG@8&XS)B{egv{yitP z_j~dv`K`Uq!$yDCia8~9Z8hDNsq?M}r4KDOdoA+EH00dW6CtNPH$;HJ=ly=D1Kg-k zx6s)>L1gULj;fQ`QBlC1ixN*43f|zMIlOnKz1-^Jbq0*HxTf}nW6>}szujtPwcEwg zKHf_?v#rIKfAr<6nx-8ur_}8=v}fvFe7(n!u|uxaSH%1#uX+qIOpHK|50f0HkBLJZ z=P5!2TX5AetX~Sa7JY1ToY8m?84tneH1PG6I^LKL+kmS>nRFX<`vZNvO#RHZ=9;UE za!to6g=34+dEwz|DAOS$~?kdSkCWog}7pApXJD{G=BvHWZ3o9^NL&&HS z0=%(+Vh)F;nETJ7b|O0Usv(ShZ8x$Z5EHP@J_FT9Ggkb!pF zl>dFHSxC$n!3HUg7g8iotz*h{>WT*hQQeE#qd<6*yOE-9Hx&@R6b~Ed`w*G}(8*Kl zqHYK629M3fpBVTW;VA%rNg{8Hs_W9Q#bb&lmAV(HY?$R81a$IZrNf?GohcBSEt&c< zANM|3eg>B7M!OFi^gawo{wl(N0RjmUpDZL!o?i`U4jG)gr#{UjQoxb&HABUYKn3o4 zpr0iu1wiAsj*T$@#(j*i)&u?mfhho-`X$-`*W;@P^B|Jd5XU1*d8V$knljdk5g;X7 zGWAEiew#B@H`;v|p!X|bsx?3$!PGOWVye{~GF4ly-BY(PcNCQ{HGnHH)dRhipcIub zH2{q;)dRkbz!X(5m3lpExnnkr@s!|+~4fE4S<}QI;j#} z>}NzfXn3K}FnJL-S1J7SY*!aC6%11j0}NCcUS~v zgrWe{>8T^PMydyTFCd$2s-Zji){D8$YPa3$Hd=U-o%u?TJH+Wq)ZeskUZo=9l_SsPfB9?c`e|{&c(_=f4{X&zeY{=~+ugB1q3n z(@`otDV66>KcwvN#P{e-J7dFiq~ zGSWiBWH$L6 zdcN6TXvt!;Y-Z{;ujho*?70oZDS5(~gNSyp<7#0?@`N*2sgv*9u3F431#C{9a25b$ z!WqCU5QYLU$rH{3Og^#)P}>Ma0jSgorzorkdY?z0*;GS!@=~y9Z7jhQoPVt9|Wj$99S zA~lv;OP#KKd74kf;Glfbp@+NeYH~1Bb#`t?4?V6AMfK9y3#MVL*aY&vO~@O6Dszkl zy^#^oTpkiKu|PH1$xy)4=u_(@Y^cLH%+z?Ryd;eGm*Ex=oic;}R`_ z{g&L(#N=})Qy0GhWZ3BT^``zElbw7UJw32sf`R0|Pm-H_kD0GjMm&Qe2&%*6QNZ%l zd(13`Br6Y*dM`7>IJw{?U(llxe001q+g_4oE;R5f@ijJN>Nq~Zc2Ll!cirDGGiR46 zLmyo5ke!c8cG5faqF1)uESeyxmoQ5d@FMxXh=C9i%nTr&9R~6`LQ()SdHx@T^oEf^ z*jEsi0!byY^^Jd2s^$`-2bP4#8d@YZPx~;hu?gHrYVlD0m=(V@Y6&W1E zIzu(&6WBMZ$Qp6pqco(ns8251?**4^~C4&46kjrMn? z#u2MT&Z>!ltbSdxnmms9O7%Em8^jB>gL$Js-jYvhtj@yp);1fc%LqjQsN^fPR;Po? zdnJ3wz+Fx_3c#g~kXB_K8<^L+V^Azwj`l5g_Cbq*M z>gGT`ugwFibE1AsYS_d?qn|tzutv?cX1e*i0Zc0v7foxX4&i-8hYucbZCEh0KSq#} z`^Tt30uLViT6mB=3yEqE2#|ZBT~>Ez<|*J*{4*C5q~0laeT_`I2FwzN)v*Mp0C?%% zU=Td-=!O|^91Wm=0Z&YvgAM4;3GYlY{@y~OTatx@D$Q_wk}JY+*P5yKzszTNejqm} zZ>xggP8-P}@L>4uex!q4n&E-=fZ^_lV5(br5r(1)hCAg$819Z6@Y@JZQ3b=DatA)h zaQ7Qyz;9>(MFk9Zx^srRCIk2TfZ_R3peLU?+5%f$nQivX&0l7am!?cz&l~vDwIxMejHRC@Y(lKJ($an6!4{V4T)w)rm(LLU>`zQ3cw~` zsvqL#Acq6!hY^|r(5aW|L*$&j0ni~xV~jGr)YC(Yy1m(LH@7b0tEFz@BQZB5cE|H8 z^_jYX3vYKdD)0qUqr&@%JBn{d4gm19D*5DO4a3Da5dZ%X;_sMRfUs&a!WOYZ^*Dx8 zz~z;aV|XNzIa}O8?;^Xg;qK&)&DOAd#Ai6ci<6g{%k7obMSPXBv%Kaju>2oyp6&JV zM26;-Y~s6d?+1nUH+yaaQ5xelalYBQWQyG=~D_OtU-$6nDCkq{0hzvMvwPH0^NAwQ-#oug9M6ESp!iu?1J0 zq$N{7{2Yqq;IL8l-JfyFG1VF#FjCAy1)U`o^o;041R-p7+k7u1zH*)3p$?$yLJC^N z9`%AJfi)Be$aB`;Bq^(yVK1g(6fkUzH#k-utGvi!#$_~)0>P(iNCVPGaR>iLqRb>_?ef^fa;$=>@@l~7;q3Sl+-Fyqi#LvR2H%5#=jXhp!EPggr zJ+4%j9|-ks_Qn)&f7ev&%F9K5<=Cb{XGOi2#!$eR%h%HwuZn``yq^Y9z@X?7eziHO zhvB%8CF7V16Q(;7;O!`ja!cl%-oyjjf6LjN*>f8(WU8|{!Q-@2EI^&Kq)w)KvXjG_ zGGREx0(CWcKmp&UI-4sPVTK(q9cnjCp@1n?5#`p?PiRrO1K(J91&z7Q?Zl_?q)+OOQS55Yc6!3bwlRMu4 zQx3TqvowPOW=yv(eKWjL$W582DHPWi^d%@Mx9QhC}7m`6f4K!*4>t|;Ki&VkH0Wvs=ew$ zZv~$#(V>w|yoUU}oNAdpw*f<@I@QVz5erZ`ZX}FmD`lg@Ar`2M*pE`c_vw~z zo&>L8d{dr4Qz&4{RHs^nczC7aoAV@^LjiN9In@$t>hhn-${ScAmY%?$a(TF`k_-9* zWu`vL5eE1?fHM)Z0Yj!-9@Y@C0Oj$Xbtw-EYsy1=tz)3hW@kwO-=|z2fe|wG^3$Qt zr709JWy<9dnBtd*7nw)V9155--SQwP%EQCH-js)K0)A_nV{7|F8B|Zq)G1#J}!N0{%{Qb=?CO`a2VDr3n-;VXCJ;o(Vba zof)^$3<{VLeP3rq=f3R|>kji{q&g`#ZP)c{tY_Mn$-R4S4QU7P4jHS;nv-jvEYlWAdkN=WU906rOx(N6K}=R!Ld7;`cqz<-{|(e zO&GK=&2hwHN)6Et)X;aOhT>l(si+_Gfu)2@Xe1iyO7^D|h`>~5Gy{g10t(H!isn$j zoT=WWFkp^XKA}n1&?E|&v^d3cb!$=GZkP;xhqaTF7FJC4lJ-hd)_n0l-hujeD42b? zDH7oEo2e^es{t2aRLC!-LgG*1R*R{N!#S-!$v%?;E>E?qGA?U)DT&;O&(H`87%|me z!Z#u>gxrwN(GUt4vUQ3z0K|HZ`U^5&vk$OSy^&$1+3mOSZCoxg>oLPL)MVB9!(Tud z92B&h{m(mGa5nh44Cx} znneM#;;$2|tS8B_BhxZJj3#35qG=Q`ZFQ=3m0N}a(>wU^lfI-vBB|f9)GWgtrQ>h2 zt2kP?nX88n>hwDee9|N+J~>kBcWOA2srF}4g?BX8*TRFYy%DHmT~4{roE_Rs@wA9F=gY%Sb>91nRmyXQCbWBEd9I*MkMQp<)>d`WPwbsh-{2p(2M5D%k`<$4Z^XxfumwvM$40!Kkoy1Jll= zX%sMRUB;4vX@k`on0F4%qkwt4)}c%VJg?8dn4?*imiHdb*ClS~9XJ3>hY^gyIKlx~ zj%4clAMnTE@L=Al1nSmp3=U9b45qm#+2hx73?8r|sNCSFgj2nWG^79x*JTV2jL_N6 zuLj$mC-{vq^tCjU0*0>37#tYk3>~cM;CIH@H_%uL7`q;0a9~4T<7k!v*smaUuV4%g z{*>i1-7$ETZ$<1Z&o|r(>B=hKafzlHn=~*h15-?pBRjYD?;#8H3r)5*i#pCSgekfj}T1gaiVF zeGmCeAP|;>z!$*au!cP(K;S#)-l}@_o?cH^>%D5vk2`uL^*N`i?yc?Bs}~CSEQQcO zNYXXPypSwxLNWhBF*Fb}pDXJZIO#fmsc4mmV7gd?DQVwOsz3s3;v3av-oY^v4GQP^DVw+n z0ls_CfSdT<3Vas@(m>z~ZyteJAg(9!y%b3Ukxxk&loR|7reJg#M2ao9$1++aF!J9* zVbZ-Kqt;&CyTT7+^AGIE4wKLJKL|+r#E281+z7lm4ZNhAHyx?OT9$M3MYh&7$aT^! zQ#k<|QGtwqrwkg%NV;DqCnJlSK+0Dsg@%5RFjPp{2zX~159)|uPP(yxti|~i({dB6 z=Y9ZzaqD8TrUZY?PAlp7t3>SBP#hv>sF9Pjr!V36K@^sQXfpSt_t2nNo}02aSWi|K zT9e{tD2@i=lJ=$RiOUDvq`*@skOl&ulsNVRb_v76T#FuN28>CGf#BE4CtIWba#K(L z!l#+NWAm7QQcp77aPN~kAwoY*7PxI>b zps%|nN4T7k%dvUmM-dxG1}S=>zh;z}q^)pHn5sdjyih|Wt$XCCwM+6zs>CeQJ!nu4 zX-5>ExiD*D#n`%#sxm`LqJgBe{kCWJl7blWU)qvdr7RlAx+-NLdEy3(W_PY^{(vDR zzMQ#l(pf=pFVfxU`>XdMo({KH{sT%S=_6g45S+vd1&ET*}AXv zI#;c8fJIQh5_KM-*9-&Sg9!>~eVg&^VkAK{f@Nl#?JS4NCz^t$# zrAZ$iIT0>A0xA0`g(iJ?9 z@r@WJZ6*dgJ#;#~*>)BNF2zQ|4?coOI3}N%UHf=w*4rmIJ}+x*C9=baOxz%-t!*q8@m`K9d+>fUgADv6%W%f4=;4ABmln|ax znW{jbZ2y|nM8v(!%{WGpPU0j?RDSbIwwN@?am~Y*kj*#V8YSUZR>&drN*V}>xLH-X zEV39W5px*D&_K+__cEu|(&+Bc*a+Ox907NjbjG^lV`t{;QZ?P3VSGH|gAyNM8YBgO zlOjF>c#RLLKz#gqn)oQtX?z5UV?%y(Dm{TFL3{*k#rO!mvO?}hAv6i%BVhAFg7^r& zwqhC-LsNfz1Z0iw&Rl#*h5VYvNANQ`W8E!Ae-_7EU`O>b@3%;-XqYg4#--bl*WULd zT8{6Qd}UMfK$IJ?U1n2_O1WG-g9~X0q2JXIig-?{23C!vNkyv0+=;G3gJM{%b@U-M zkT2_or0w>JZYaWXF?XjYX}$R$NL90j>TYm#{u&HOmcs`3AL&9zcf&MZW{q@;1~-7$ z2A3+}Ej!aRxCJ_OlOSK>2;Y`&ed1Crn?E9689p@ERPo0ovi3ke$B z;A<=9?i51WHw?p zU6tN0bGq8l0x&mH1Pw$)L}gVGSu7Mw<0cBBfsl=l)|ygBqsV$1V<7OsG=4W~S>GSE z#^wocf!iOpr;X3{KagHhzq2c;^1;t9P(N>_BC;;-a%lFlK53A<1Z|2f((HkKDNrd~ z(<3zvs1w9>KpncX&-qoPr(wNrI1t*bCy!ciV$XFx{a2kSMLExP2A$c(Zd+ei;IGE! zK3tUCo+X5zA*A-U+cPnclpa3aOw@Mg*u=4YigKIX?6zr;+1lG~Pv(aZ+IIVNE22pe zG!RjH+wIA`h|JmjcUH(A3Za3Jy4!Bg)$pGz>y^@WXQ?2MSOni(ye+hrmbCGfPh)d$ zzO3U`dg1;D@uhV)tDaaX;p{zi_Ss}i;^;v(&ADvIXpq5($0esN*{lr@$uA%|4ag&I zxl|#~96J zxV&yR3j`=JT>2Vy>Dq?}0hc(n%b{f0e2x`Mlftu#)Y@|A1^g=o&_F=#okvkX=G=J^ zU!({ch`6$5_qI$8$9VnBEe^Q_|7it0iN5aL4*U_F*Rb6h%r4>#gbk;i{+HMTJZP=9 zyUk8-uDxHnF`F_YDPwc(C*l9cPqRBHs^4MI!lk#p`@{LOj zQ5bCz?;of~u4+TLy|Ud)D>24xZP^h7;nAx%K$;_Hfg3B}Ps z+`bKajq2L4*MOe3JLe?gQ|4v#cI#NVuOThsHq2(Vb=&*-C(@1B&ttRi1`eRyW%daY zBBsC!kkyDC4pqsuL&!^b3nkD%Ld3BmRV8H6 zk(co{%AkRajo-vHrHV$L^L6xn?{^@6_Qu2YA&#`fEl(-QjYlcLk5B3ho0y|DLjYYA z7|tMlM$=~mcx=AMhhC2Flzhe12_UxkF_jnSsYSdBMF72B1L%1-O98SUC@B*uMDt-f z77dE%+Kt=VI!mb08DeO$dSJJ$bevl;7_<&(p_#YQ`_`+>=O-@69)=sM?NVpduL}Nn zDc@Of2l!*zxBQ}6f=I7iy?HV+HdGA9{GdAK3vV77(&VpGIHJ(}8QqfxW%azY?pabp z;-Q*8;iN1;^8q^PL8`a>-13EXuRUmW%bFPb6=s#g_Na*?`SvyES9-I}eS_9AM!e0@ zpoLw$OMUx}Z28#?e>TIP&DfvK$j@f@v$6Tox8a+2jrgVg(Lq`1v*lYGYs-`>hHw6( z`sTHzzF8ZcotJJ@+^WjFx(R=zK{=E@j#`T@%)FonE{BT6n?q2uyPXH%1UkCFZt(#t z>f`i6t>FzT@A1`2bF{SF#A3Kz=YYr=q|6{?Y@T=QEoEXDCUT<4lC^(E?|F1>0+bSt z@-ONr<*SL&6%uBRtHpWcl0Eaz7OI~H8F_43bF^7DSJNQh&4SfDna{IEC(G{QY0GZ4 z)y3og($ebctR&1xht(UKtGh4pCN2RE-*^NNUhhh zo?^aA?^JgQ{NoW*`^QpiSsIj8d>EUDeh1EYn0&VXAv32{1y@`+-4E62rf!BPOeZFE zHm}&cjzv#HwbK?o;2Htu4_MGz6hOVGybK1dxlX$`Dt#n$!F_pBYp%7_9FE$momVrw z8k_6Bj^f^)CFp1Q=|P%nhg&*^abM<1l?pZRzgh$9^hEBDH-Ri&xX+;SnA2DvG$^_9 zWfEUFo2KG4CCi*8Je`CzAS~YiGc{or^Tk{~lB6^sJ-^iJHd&qxGGOH4eZ%~MPACrI zouYcxtt`*AMtXX!xSn2*%`c9`AmXSnNw1pr2gv5xmBSz-S3>yY(O;J$TxSTei89Qv zGp`IYXP(I+1Whe&Ql!f~Ge`PtlG1>*U1Rx49t+-?BmR97(}4J*s{X0S)%S-(hu2lz*)X%pI9rh*fclQe8Hrbwue-C1Q>_TQjy zxN0dW{dGnHaWT)*6Q|$@?6&?X$1d{O{)a4|QKfnvfnuXF@2-`3ZXKXfb(wPW*e9T( zXsEhEMG+DYI=d1vcViW3u>iSzC7(Z!7{|DuHRsyHSqyt@$KdOL5Ht3>8P`VqHkUwt z&HZWd>+G8XC}XoySLYZDxD-1!6ovZSq4in5JnaBB7~Hv^mGJl~X2BG`R}JQ+97E6` zyXCt99DYR^I$LsJkNFY5{(F4d4n4S3gZ% zz0v^A31$^~(dMOWxM(2x;T0M#AT~18hqCCUJOEp%A?UW2_Jl1JuYK!uyZ=J59~CC) zRZz#3imX6BHY7xKoUPSSY0O)|mewXnQ!dkB_0XUkD@~08XdlShss!Iy(g%~22Bek7 zyaBW)&03G(TT6TziD^JwWy~8OH~2Yg7+8VkEPAK7P2eaMy>u|ld+A{4z4Q(Lt6rKV zk=*|Q`^t)5>anzcBq6-?vRb?}hi$#or;QD{%o|y6G}XP-LwkpDUh2QGq;DoEO?5Bz z(4I8(QvaDnAgs$ony}!Qr zhw#_qCeni>ClrD%sM5`OjzG}ZkRR^bQTMIX0F@Dl4;Q~sR&zM3mIgW7TX)WcSiN~2 z`t78r0ez*hei6UKuZusiC2%w)&_Kc!6~+Ta_=Zo&+?*9{7U|}hw*{_Mse2vrtpsj> zDcNU=UvwCocO1o=ZuvyL_J78Jt2A4j5TUei?)~cA>)ca`o6t?5i-YA-mCw9@Ye_W7 zP^EavfqSP?pU!<}iC;)!8W5N7fpb-~!5kn5?uoNjI`_RLACsI0gPpTKjrrTH^z~Q zSZH@w6wth!5k&)SkC;-MU@o=>bHja|;i3ip69Ur!_>onByY1HA12|R0OMVrRX@Fcl z-;XSYZhxW47a1TpHj$q^y@Y zxZK7>n_ynZW~bN`lyCJY!A76RGB(D=Mb8=nVGg(A%a_TY)OcXCil15po}9&Wi~@!mr`8sI&6dOX?J zAp+k|K$>cRo!-1v_#pz)0PtZI6t?&2Yr{q5M+r&;&_<-I`l@aCPgY`y!;}w}%bjmD z=y#j*U2N0rFRQPDfQd6qoIxTMh3x5;99frvZBTJ-OH_kl*zO z&2GPs4K4z{OmG^2mv3a-40vb0+3pSz*MdDHHVv@Lm%uiIJsKQnw)fArmtDE65}u|O z_vq%4C?FH^A+=My95&nAZ zh|}Fy$i}JBz8QckCSvDv8aof221FdYg<}F1;2hLw&gEF22D%;UMQUk8P#SX2V-{09+;)>Mkh)4s(>H8)@3~T;H zgrxy&{5ZMTn82Mz?YUtaFN(wK6>Q;NPiPuI-#>OpWsw^$U@g{XIfTlMZlVV!*kRjh zjt(sAHd|iJ@M>(H^eYUWwr2@z+t0w4C&-tO96e#q5hyIiPq(>AG9JAEmP642ls>IG zm#H=X$Vnd!^hHk&N|9~*7lQv2!D#><-Tsw<2ZH~Zm^8qQo-0ja?iuu3bF;1CNXJ!Z z3|V>Rb3~^BdWC|{&_{iX{I5i&0djORJE?oN)oW6=Mg1aCX@DBt+?1d$wrBTplG<{> z|4v{U07uW;OMtumAtJen74^4r!#UP|5M`9RFgW7)j1dIKO-a!Aj=;vDp|Og zl z`&C>Rh3;}V31~o2A^35E%|z3+ozOHDp@+>qeXMeZs*ff#4WKLZZg?QItUU@w z0{TsY(*V4R7h?NhQTJ~Vnx-1`GS)2mcpit%qH9=wo6t0Xe$4c}Lk_yxpGVOzulRQN zcSu45k_tl?y!C_qf6%x6E`ezPT%q;l6@uM z$%Jz~iYzo>snAYM4kOMcFb#k!c&&9O+eC$ReI5yDKv1F2v;-mYV~9)xQ|1@+mAL zJs{fA+pAbUl>1V1@^NhX_rwkJ!|m1D;b&+vlS|qU237 zv!(QMLel^`zRS%+FJdDtW_R3xXB`pCgM&`M@+V}W0n4;O+FMy_&LR`DeasN7`d1N` z2DsDuCUF;*xo=S1<~4+*0c89_TE0LCxn5nqj`%ddpSE4W`F8q5_pq#8c>@_}z%Xr< zE)O_1JD5+tkt{S|iSN?$_~FPTc<7SY8tI(=Erh25{Iu~z?Zf46 zXVjd>md?KI@yy!@O#|rYdvKa}zvH9?_U{Nw1K9YHU!g!$Ee}b=+cjNV{B9!C06G4a zP9B+ebtT2d(EEr|aHnm)F}A@c4ud{)6kW`OrV( z4)sxC(%Mmv$o_yEWuu=e2~gM;DL5tsAJz#$bPW}7^iK62bg&d_ewSz5&_G&rgHsAQ z+jp4vBqj|oqh}WDVd5bb5jsOq8h}>I`y4hV3FIk+q^Yd4x4=P$AD>5L8X!lnhaU`i&{C$Xh2a*z3%twA4_N&Kv!xiXWN{6ONl(5m^8qw z)T(8z?`4FfsVuY4Cj>?26~v?g=F~kUS7_$i3p?d}ErERkVQByxy=kY+ALcr%9nL2N zb(W|!K&{mMV0T>0Rn$B|X#iTOqS^yIWh6Q~grunqxgU><2xOO#G=Qw+qV4_5uKDc~ zlcsWU?q6QoVTBF|N>ddSi`zaxR|rZ2(CGW`W$q-PIMzCFs{O>Ksamr0OTJrwA~9*I zWAc}@>$3iWpfmujR#p84*Jb@BF=>DqeJ`gh zQjz=C9Nv%V#J-8ZGytyV0}j|p{%a!B0J+k*6_PtxPz>fHZzVKMUC{FEt2792Cp1kB zWbI@P$%RyfwC{5L} z)niX2c>jZ#G{CInS=k!nw+Km7U8Y}R{4OzRDq~(XaH~__CngOrD~&;inB5OtsQ!qk zG(fG?$_`id@I_Zn?SB!M2Dp_fDqCayA41YpEmT0d^_^c3lLnZT93OdKzS@TAuLw$0 z9Tay-E$A)zj3Ny{E6wpo1KxVg&GBzVY#Lz49wrow8XLi9tM)^@(Nw$x6yId+$JT-l z?>6B?Gu#3?5d%@5FgEA^2sfLK&ZVs#{fO`<$jAL-cN~Q{dcTSIxZgDUA5tKt?*=N_ zbQR*@6$eGZW)I*dWkw%UWM4le#bG~>&FgQCjd$DJ<=VD0^+koe-L@+>{{gT9BI{kv zdh~PP0mg~JJx7tZ{^q;rJAxs6XAVng0(>Yx7WVT^35m&wgWOpYFI6pEu?a{2!ZVQByxefMVqb~wZ<&)p+?eB5ZcD~Do;^3Rik zrb-dZ4$;iZ@45~0em}mg#ygOM1{~2h_liaCIOf_oT!zyi3w}p})6@ap z>E*%iL~t5_Pu-F^{Ru-3MIm%GQV&99{G{ByEkYcg*xTIW>oJ4pU zz)wBA0=#|HDJ<^mAVmjv`BY;&`VLj|O-ZJYt9y*p};H?ng|TN|!^O9R}gt4eR5U>O>BZ#z9KoJ-N3Mray9M?arZ ztSWXZ>vV^w6Q2h7(NB*Q@w3NA)?s-hS!k*hJltc1-5of)!jCf_O!!q>&N{SH*#7a zI1Rw3Zmw7=I6?-;JWT|UAwCW8FPV1kr1&_RoU^v(KHO2jBJyM)Es=``TvM-7k!ysr z!sj}!V_POH4Pd8Q_~n|o6pwZEApvOsIQ8;?^+9*LLR@^6z%&4!zI9dSmOIRXdVr`j zK%IK=1#3CjkL&v1ClQhckkdD-`oyna@w2b0avV<~2Msu;Zl%q5mJ}6th zd;c2((*SttenMYhCX;t}m*{VaO9R}g=j^LXE$lRvZulLD! z)I%og+yU%+2}=Xm`$j&QYkjX_|F^l`%gq7d?fckcs2yD4uDiLGfcdj-;s-T@)*Rn( zuJ6b3@3tG8dwrGXP-h8i+s|}A-PDVlJc91GAS^Z=ocfJT){oum$9*j{sGs;?Du;C|ngV=0foT97Kd_qsZtuscH_k}h*BLGPH#lNoCmeSm2Msvl z?^R83u&gcO9f?Q-#OU*Ga&;y5lw1mWs-d3$v5fPjFb)yfcOnT5NaCjv6SC!{?gDrh z0@47mLL~+-=eA1kN?@9*z}c&kwFvG;U>X3&4`e2az`wfIy_{Cje~;)iK#w0qPoU>s zFKSEVUWBFrbo>}{0$O_s{~}P8eG;*0fE{~)ne((^!+)|$ccHB)v_8=Xm~~qRaK}j+ z4gEMaC;vAZw!`h!+TrKOFW98*jP39*I(nDl?b!KxP^! zijJugxE*K-1n^1%(f}~phe`ptJb~A<;52p%-6AwiMXfuX);R*wRMfh2ZbIt(#t@CLXa&cpAV*Pht)RU-XM131})5 z%^Y5`wkU@VFgU!2tP+|A(9u0*LHpdGzbwmzQW^({NCU)a0}ih(!hRWByiXz^4FIE; ztO^pl!_kuO3Pk2ph)M(0X?;R&?=%JNSD+Og-z&rWbZ z+f+@;pN6E$g0Ah!+O@@Z9TQO6#Vz*nOz2)LxKX|N2&YptP#HZ%Eh!pK1!f0*KENut zA0sXeaN~ooT=HBStC@m&15s&!8a=06N9|mP4_gcDCkRUe*sA4ASiTk9LVt?TG&Ph% zyW<3ZhNv_(lmk%lWQLT(=Lt(wLpcBzV^SXKA<$nSG!3Au`dO!kJ)#!(OT?wAp?q=l zjYa)3QE7l0Jt$wt&$=uAm_R9s8;MN=?C81GI@s8MfWE|vzKOsz0FIsltq+{-9v0c( zBsvYy@b*w-K2J$W+aA4gmo;8tx;SFwKL1MheO)6@anp3Tbn4g{vD zp`3G1VuNi%uAhw(X*md>ot4e@Yge^a|4g{Q%+di%uR?(J(UqkdDmbdqoc+ zBl11iON95C%jg-8Bj6q3yd6%Z=4d|EO2eX!uFO1q8Sbr#O9R|#W#d)81KbWTgTF1| zX#gKRcN5hOykih`X0!i6ox5ogu%hF8snzQ&uVAeO6Kk2dg$ZMG<-C>o2mycD5RW1(4Pc|2iPA#G`TE>!XDjb);?h(u;6b0Kj*Hmy z2ucIc=pk3BSUD`+qCSSGG?j}0M>VwD+$Jt+A4^=C>S{;wih4nPJW*+YI(?%ioB#H; zmRtMTVhZqO1f~ISwUEFoJ6suDK~S2?Ws6M`K`A_exHOeZfiJEO8l71J(*QX3D1p$! z8sUX4*-x=An&>2=UjvPSldd81!`S@qKVckln0#J4>|7>6>M5~3yaQ7l^fW)$o+f&U z*8xZmGv8loEp_cZdv3b>ZSe^2D?XdHhw3+I3V2Xq4Jo1~8r|6|f z2O!nSlK_~2^>zQ&dFnH7;@x1H&D3fRdKM#7!B(Z_uZc(l#OTcpImEdYyqN++5x2dY z2PExp&MxBFDl};#`>iCQ0ZH_BnjDFOGRZ=|oscwujNZUjfRvK~@TL@OjRi1nU$C^> z`z^ye$v^{!=*=oI40zR(E136?g9aSYgVh{|>;RKOem}8jfEB%RQ^YDQi4PH(2FTF^ zz=I(NCGb&V(*QfV8_i?$oI0(!(6Rr4z%&4!&gaO22yFE*m6HHJGENmGpCe9^Mg~&8hmq`IRQ2jMx z(*QfR(`Eh}G}dRgqkqf#$>{Tgc$SGS=g6nA`PIpo$KOgX)^2qkzh=j~BX%6+0Tl{8 z?*p{wjdxBjiDMMG@obMpp*Hhx9Ej3D)y~Kfiim1xrX+{v{w%I6d(rD(xB)WPUy@;p zejJ;3^BAwg?bX`h7s@YKX3^_k8K|P6(9Y08i=ND75HetqR)UYz@un#SnqT9+e;Npj z9)A{4d5P}XBK`&uX@D5r`j#N}m!x{V(mNBE2Ds5ZP&w{OuQM-)^+*w%KwugGNAG4U z01w;TY9w$c5{{-qi4GT6=I1#n6vVp|kp_sdYkaD&q5oN&)9KuSBSv?(L+tdKUBuJT z;^6*jY~KDmXce|+32WOgazCY~N00G6f-dS27S4X@CR>OciVn~R3pmVIb(#~|LeM~2 zbgNU2$)o-$(%hYxG{B4w%2G@_&=Ayn5S0d~(NnldR6IV#*}9c_Z-UZ1d%W^{@k6ai z*ih-o1f_w}*ln*KvEe^iiI>np^DY#9&L6r_>z!zb{^`Ha_8y9)@!Fvm!9v~1u|1Uq zQV@7ySG_R0adbl1OQE5`5*Od_sBq>?hBD3OYF4urAkN|-S{~BGjGD6uN(0bMIN=1S zypM=GT?O@AqS929D%+)<)C&ko1JIKqdubFXJjK?k*-IaBl^We#Low_o~sY~J__ zc*!>V)p%{&MfMA5i+8&WSOMWN*Qm$DH?J9nYqcm!@ywsH$Y>xddb4JjU%Jgw0QhPG z(f}~JgDwJU=rWZZA4}4_mbf&)jeb;W0yoR}>xoALyx7N&EL_9>Zo)+M_hn`az>-tVa3C*!rFE((4C-O&T?07d&ig2R_ypuRMG*x8=H9sUKO;wr0k#nY1Lef-*^qzEpkTg{xag>%V z%qJ0&29U7_KnDTY2tHfH=d(pA277dG#Fw;pMp$Ua+0XX#*!94%m-@{~d@Mwq zMjxJf*^%gf4wKLJKPW99r$$4M4N>7X?^d@dzcCUGCv}vmHBV(E(okvH_%8~%5g@*c zWvhh%%nEXM%=x0_gJj$OnaejM!j=C3itaKlF)$U;?mjGW=T-mdemQ@=mZkcfau{92{tbO<`3Xb$EiC7=`Jbzd$#xG3*eEZnL$y?*pL~{_BnO7W{tU& zL7)Uk#;JVfhg`a*L2lYLQ--cMLHrXE(}1{BGjY*9C&>SsFFM`kz3gdd zptnL37{F(K=Se<55*mi{4ls186hO_;+auZmD_C0U-#aMD`uH*2L1_fK82@H{? zVCm_hD+bZ8#4jQ-4Tvi=fu+Pn_naWVp5!zjpS}qUxupr*IhSh!S)t}fz6lI}PUor6 z1n$b3KtA^Vd3M{<1menn07Zo+P$?7}UU}%Zq_8TC0Bpx)@y|(Fg(@3H-WoyO;>{~oS!~61# zJzHbOpRMr^Ux7d04kfZW@tr0Yu_0(`GzrU<9LO%?F%-&WsVs5$4ZSuJvp4SCIW z);0}t_Jpa&{6%o7@!c+UcXpbIaGtlb$TGq>zC>~^rf zV*%%QVUx=~aR-|;qe)})7dtUkIJS`L6YO8I^7o_{r)uC3_g05kNlz(_V7{1Ch503K zkkcUVPuwCQ+Dn(pIb;rUXdve)TO=oIFiRyJMoBb~v{V*Ap-Wcs+=k`f?fg;P*4&HH zZ#-@J?mv4vsZ2tpk`RUqKiolX8AEM%c8WpW%xnqMVxsn{3 zFEavYkh}7>xrW?H09wEIg==mkH4UiuCe3f);~D);q^DuM*6rD#!F?&`N2Wn1R%Zg+ zFe0>j?-22U=?86*-)Hf6@1O7i80BcP7S zC;DssGmfcZ27L7j9UDqRh+V27_KehSG+9&(v|OrcGM}R((V$?Sd-KTBeyB{`zfv3x z#6AD!5tjvEnZPenAPodQF>x5?_#5_Ww{>fAFmnlG(gi@~@Jp$S4u#~`0kH~r?}u`v z#zc(Npf88g|f)EDs3J-!M|`YU%aHh+H>LgWa4 z9ehNQbW_)m zamX$B&z!OY5p^ifvQi5rG1KQdl#GQOA@nQ_p?>lZvL!%=mD9VJdGjsKpJ|Zw^zB+8 zLA#qw$ag7(213#|CxMV4Qh0Wpl*;!hh6ZBhQwK?Zgr|BO^R)~O@kmf7j|!Y>DlLW_ z#rpX(84UcW76Ot7gB5@qwID|@T)#!Z;4;o&@R>JvWZOuCtS1kKP=W?SCge^OLIWYm zgCP`>1w$t0E)+upF{y(Atc{F$EWyBQP+yz6fdtPYZZzUPj2?OHB4ZI7Y<%L_yzqR4 z$#MK~E?twtzo+QY%^_MfBAQ;K(Ug3OURrWCv~oqN%FNT~Q8Xx_>u!z`3YM~q+O5QA zQX&l`zW8R7m|Z5_eR^l477Pa?4O5ILxaVwh|$^FCj7cnmHu#cv%;^ zderQ9ILg~*zrr(!?h^!UMGxx)jSYn$EZ?GGnS6R57KV++tU%0Zm9cA~nzULxZ;TH&*N~DV7Fe|M=z=n{}NB6MP8!PZ|hbOWc2! z>ToY{+^ylU+sB6lmH7aJ-$mAB1U)Zx884!XN6_M2b=al;63%lLchK}1NuSa5u{nzC zlgF2ReW48s zrGe1otyGB&-$rF&U-Bzkst=}E8i;*P;-D{4(a<#9g=19hwqa$p{SyP;#?VBxJUg`u zbb6f;&aLWP-ENLnX7{!STCP5IMpMV;B@aTV-zNLH`yx!U5DfF=iz%6sK)A|8kbhZ& zJb7zbszO41;v3awp2-fA28Hy(o2hnv&%U0>XHz5%L?&;ACPb8k_QY>&Y5qQi(m?1l z5(oB#hDMfxNwGwamG$q8=^$9#w@{gU2)uW(g$a6d(CSM$>g5bB$L1Tn<9=k2;x71W zMr|*(L*~V)B82PrG+dKUO7rv*r&*G!F>j_z(V#q561!AJ-q4S`r6#1J%zx5}Y;Cy; zO1?*9@4&urf*;1_>8HYD4wKLJKa@)HJsM7g^20xVrv8z9kA@>w&+sK+?m(ZQLGF_e zU~?jL1|}6Cm0|8kDKwChe2+#>N;c36iRrS*LLnP{u ztFf8eg&^6UC4`?LY)fL+3sX6WneE@+Iv?@uK5&AfF-OoxXiyk&{Ue4fhY|c83<8pnesHC_H{(4Ks<@SZ9R-7tAP@kwloqSxLr?-*pic8g)x3U+Z zfrBOAT~{K=#cV;=+bN3%vXZaXl*kIBvmouAltu$-sb?~oGQ=Tu>=xe@*EV-$=vn`E zE}eXVXsJJkSC`psU%Z%+Jy&0NAY$zZf2|++JH}b^Ew!Pjv7r`3*-nkJWxHJ4@YQiQ$=b zZXBfJm>rBN@nq+|$)~3JJ`^8ReD{n-)iciK6iB|71pCyKTBTHV(BXvbB=4_6RXy7o(cREbUv9VPUbsk00KveR*c9Wul=qd<%4297^*f4c? zIqrriv;iiSb{Ydro!U9_7S&y@aTHy+7nOoDXXizrE?+i_rjR*@Pu^{iZlt%-3*KK{(iM(P= z79`%D5@{gu$y*YbPJoL}UfUR@rczHB$oCY@^Pqazy&Zs&3VGPtl zs!s^+2_+BINwH&5hd#2oMS(ggK^!ihtg6g=IlQ9Tia^aP@T(pgsQE9gybn+w%~k|z zUV)dF1#12WR^o>#kp>d4NgSwo0S$YZ-4SINm@6et^FL)DmAr!(_PeXt+c4;~dJA}= zy6$g~L~iD{iDUC*9tv>WM7m81{+^ZUw{b7)st)ysS6JoT*cga@LC6q)1Ny!%=9Ct}8 z@4m9KE~hLS$V$Bc;iwzb@EeeoW3lmk5+07Q42BngG?KVTE5?d3z|22J#Lh9$$s@4ZUDT=N;ZWn{jBpK6CTr4d@83 zGUl7l=XgI&gVCk%&i2@xbbmzSG5%+g7+mwu7>~(!^>_tNs7gaX{-FkB@`imvfkvb& zE-48qF7qfl77Yp}`3SFEmW|00ac5H;4a7Y^c`F(UD2vMQd#zD(9tF}sVCsXGa)sCM zS8@m1%6SO`GYbIc@afyLQPbX!8}*yoVrYDhW;A_f)SuDxvAOWUh|=RnC0{Xh0*Dct z{60eoFEgNG5x1|^xJ|xFwvG;s-jcGB!Za_S7t)}plJA~Am_!@N>k54#h0;K1@*Ob; z6B_ij>xvyyEDgjyH+7dgsiH9&;lT}iYkSm34=h7bbxHH*jP&)wC4C2%J-Okwq2KEa zMD^kJ%6~x7ndI%Z7c(|gfpGm>4cFu|Zq2UmE5foc|3UYmK^Y{!Ay^P%iLpH$JIUes~NLgm96Dls?AtK^-#8?xe1b~8^0 zph13P&TXhFK*M4}Mu#$JAR}g^QB_734ii$kltKe3?TtfXN+k{9-L1YRu4q2QSWtiT zF4(Hu1^0IGf&+c^<=!q{Ke0MCgZr`Duvh%RU(o+AOGmD(@cn;Q-*2a*lIG85O7dzR z!WyPQ9``0DR)5dYKaBJ=pzkN9&-^?m;S5TkfrKk+_HiX@?CtVh8`izdr=^{@8bCT* zcfPwjvPQnU!?y50=d$}Ycgasaur5z1U~EVX=l-fXcg*=}n`%bF%(7K?`4V2!%KvK-=WId9C_$in5XOu+)SrJci zRZ`V}&*E?t^>7zk^c?ej#ui=Led}BD+JnpmSg+g7g3JXN5^a$E>^=;#iFBXTbbp^D z$jU^H4K*RiZt)$dt=faEj8ukK#V=HexhGwRCPk1HIsFoV23hfID`|$3Xi@}Ok<&}c zf~@!xE9(@>qDc^BMaqUvz|&G)4AOKmOwTdDk{~Pop8i{VH$GhI_eYD(a5$k!Gj6zM zzQtQf#}-mug8NH~i+K~;rkbTmabr<~(7LsTR_%?>B&7saK3P?m3+XI0$a~DPR>i!F z5DltQITuq74dm3`mF5{s0xJIlTSAvm5)C9poaa}efEvn=F!EzT`mH$@ep2SE^*c^~ zo(tE5g-$Re93m07eVAx_tL7uwTTP^EQuy~tdMomVB&`)C&I~be>Cm<4zY#&U)arGXu{U(o>Gw8VOAdd0Qft^8Vi)OLTlYV-hBNkZ zY#zcP;gLZKFWj#wEaFB?$W=v{szG?oM2A;h)Y@TW8JBV~C$LSXK{-Tp6ZMMGm$wxq zok&SEkQ5PKwMxo@EN~Gmsk>7a4P9LT?O}z*u+*v&9Fb) zk<&7o!`YT@^=o0N!zRu!acn-w2P}@8NY5q7-!tAKw*A#BSoI<59;8thvDLj^0XFu0 zscBJ2shN+_uV_#*5&Kb62(ximD(?o$qk+7LT^ca@U3_Kw0+>H+ind<%^kK6)XSM2*Z_F`qoohbQqYL_U#IT_J(UhIsRq$_ z_Ez+PIckkVpQPntW;k%7f&ZlK13hzLpc&MKRFye}l4u|)Z67!(DTp`!r7fvlltlws zN&7%g+^|Kn8(wWioTYuB|4I6>rKQ@LkE@*!^dH>Z<3ec$DgL5~3zSmYv1Lw}szF>` zwuNzJ%Y;lRrrD~v3dLxj<_ky*$NZR*XtpY@0!fo`Yi^b! z!QoDPr*s&Y+gekSoI<5_G{E7owJn*kg;O%3sq&l zOuwQ*$t0Z=75V+RF?0IjPprfnDUk*eQ%;JC^bMbYDUrCJ6||3Gkhz=t67nMMh)zFg z!yD*l_j3N_o;a5TE?XdBY)WQyfje15>9Wt@@Rb`$@FVgx7Dkx$@RTWMB{!q_~on7R|u{oAoc@DQ% z{sYQpe&cOBbqG-f@R2`IABngTTnDZ7j;svKAF-98LEbk$bh@erctpT`9bLgy0{GK5 zBmM5mQV*-Kt=YZO2+v9a?lK@@Y=-AaGZLo3OM|~j-;4xgy2?ULaFLg9MKe+$S4RmF zwS>%&%?J&uE9tUESoFTn)SG(YS60?4Wzj%Z#M9Rm+&Cx_FDvWHOQap3G#W@t+VBR- z8mfc$9=vm#mubTr{ERLg@nCF~(&AIi&G|upsX1(4wbJg*+Ge=VFJ}0~jQe72ev9Xc z-VUWX`JGG7V=)5}2guZ)0o97we1pd3^ON=(QXu)9hrTya#H!9LvuUS6DMg$mUVkY` zBjRFq(i5!AA!X7)<{#dif$>&)8q8z#)ygt7Ux%Q@c6rRk;n8}@Ax&k#7i z4fnLTA5I8UEeMv6X|P1B7(1-#NhMUmB2pFR?(=X98st9WPF_tyG9N9GbPr0RfuyAk z8~tjEaP~z9dxvvgV*Z})Dz4(cfRx#dyUOXbtjO4cLRQA+b}MkxTj_=SALLggC0AN_ zpOG#DU-0^UFYG!T%iZPIFH-t*pXE8V=2B4{Au z%0zCzBL40eKSMvaz6R2W>E-5YeT8S9$vI2y1-_5Bxzx5>qTDx_kH|MO{02{R??wRJ zzWmE99mBBZZwiGcZ<228{hxXz-Z6P0RHUFLplL1|Dh5i_N_rRiYk zU;-NyNCSZ{OcC*={c{E9gBD+m&HsH&Y0&b!65&jS@U012D_k`q zXm9ylsoAXwT1#FYv@8ZGIrFD1O=^y`WGtEc-irDnMbSW1 zKfxF>$Jx-U-OdxlUCeRxW9u{S8>-pZN7~&sr)>K=!}f*?Pr+|bYIVD_cp6*pJh=3)KO|)N)h>eD=50XCuP64q9Dzu*ISp%-Nh?&>;5_H{$D)q5Bc@ zV$P!&8iWLqRkUWHt<(s(Km)_B%6XGFOF$h$XS9MJ%=UOLNk~ zhp~CoK7`3(^4b0e`iP?es?sYnLSsflV{gI+!sVE4d6sMQ5w?~z$Z^CvT-6*0tAT-t zk5L2-L_{pj*CHYa1MdUo1`45J{ih275H^DB-URliVNa*m8g#D4z6Y!$pXjf~W^EM#usur%KcgrTMxy7W zBo%^qI9uZ(p)cfkr7`v?s=~aBzCeQlh`5J7ZCmVV{it52)IQzHc`xPAKu*NX()#3N zfl`$80ZO8Qq>T?guB@n0C+RGEzXUJ#!ALtYI8IE3=5hIr+ z?=u{wgh!TZGvxS~202dHTIJ|9C;}0y6hQ+K3EPRB2wY_Q#;gyR0~A8T`cKwpPzQH~ zIo3<1&yWQ0CY(^u_LmO~I}3W0gu57~YgT~Gx=p`)RYa6%o@ z+HlZf(ULIN(g|pg`-Btf2^lUda$=rCF*Fd9a6&yHCJc|9pyyE#4Fsi|P&+*clN|dZ zLnU+7)HSq%jRw7b52LKU?JkfqV^hZFj~7B^x7{3B3?`pG!T)nU&x8b`h`HqODKef^`ER? zAYmh5eU0=Bk^tU>jq!X(Z|dQH9Hux6r$3Y*)q=W}t{3pYWFACLI4(dg1e?@&i;X;DsPqHnYMV58b zWaCGJOs5>gxJ*m**$yI*v4=8fAS2;aK3@(&00dInltKe3bLk?0jE%qv&6gPi))PUU za8SE2Xw7x7`BoglU5w3*mmn05@Ylgd$Vqt1&oNStsz6M9Ut=PnONO-Kl`cUwm?P*1 zG{}9z(VS!T(W$}VlC7AdD24`N65hUXtX@nOBJL|I=vWG(fuMA^{2Xb+eX#7`W2|JZ z3JnSSjKu@XeT^0QG&V1}l6{6=xc?y`VV~h8C^_QeSIPSf&ndwXWZhiMx~D;=69#Br zfQCgV;}XiCfsBNGMqWl15TTUIDTM}7()Ag_*a&%lDSd{ffI8s_qBG1MyRe_f=JLxB z2;1Cc_6brFu6_klR06``*#DHWPdI)LSS27_uB8yno#+5GX??LMLW3eNWZleh4W0&>PS{K21!zEoG8QO<1~L-%5_uU}FoaSJrO-f1x?VyU z8zJwV7zWl8L7i|_soNgt?3y3O=FbKQfy3mp{SWjBSCt&SGQjc>2jb0>o6$FaF5pZ7f6UilA@k+AX2WGFuZ;PJ^D-;7j3Ak4q% zvCpMR>wg6a8U{HbS5XKJgd|)@EeOd%Atz=;F*Fd9t|w5+MvnP$(i7MuuqSModhPwA z*8IqBn($X+^U6yR7~8Xi@G~SO?3_HO4o@fq5i+k4lCXKq@oJE`!qMU|x8>M?1_h9C zy<}2|4V8kN+fxn=hJ`A_V zo`G&ZkIg^v=-h4YGW!H630FD;DJlUWv!WrBu=NO7C16~xr4YUcynjMK!lr!K>FK6xei)n2wK>m_ z&-OpiC!A+EdSymLJX0eg;SkeN+Hi2WHt%4=NP`?F4Mm{Vf`nYXHW;6-?Ki0p0Dl)-h}tYhs&+Ourq(4IcoFVX}Lx2(q=SmY@R%a zV7PTLIZLsB%)O~8yRb>ADh<){VvUxFQ|zW)hH|+N3yPjwNLNMX)$|$~6v?yGZNDp! z`wb4ZU&$AkmG)Xnqk**NZN0Q0$V%nCp7LlQ??AeE%X2qeLGE_0EIw~u#4z-Z@4kbw zgty%Gcl!$mq$cIl*c{GBA#SA??te%~c+1U8P;$iApJ{w0jBd{<-BFNra~(Z`2ANKH z%PlWJBPf*dBFdnFjD$nPyo@YbLMhi%3Js*ByX7W~jga?M3(WM9) zh)6gZ%ZbQbKM>NV5E|BhvfhD&jezyd^n34j5e@G`8?R|=bvHb8)&B0JL3?h+zIRYR zj?K9jpw&OzUilBm_U?`Q?CI&17Y_e^b@+%7pPo!yJvQ4-5wK>1in;mufdQ=mCF{8hjale>xzZjc`Uxc8z^TB_l->*xZc1(Viitjtf) zeZ?&fTI~@J5Kof@v#Ps;@IT&@(t?K`%8zPMa95>qi$7j@B z!|s>{+1#DPKfu+<`2Lj@Eu{;>MAf-!v^w$s*nC5(lONX(rA=3zmR2cIonKE{ot8~{ zVCG9QYM#dGq)Aqt;A&)iUz6(ObzHg9`CRC?x+n1x+f&DcY3-b$IW2C2f?Hs6HE9GZ8t$)-VmE=|Lh zk-d*(G$4CI8nVUKU~afL==Ap541SQDG~m249p|XkTeOTHAtMbKFHggWHJ=V16O$VJ z80l!z6)Na(r)8<%nX{ZXkdr1|7MBN^-+Y2}H0kKbc3+#jPmzuWbP>JACSzP8a5&rQ zw&$9G*L;SgG$2hB_QR}1KTkHAglzJ)G~jHeX=p}^gZ6N--*th16Desx8SymiG@;=s5g$Pt@J%w)fccUQ z$BvsIZiIcjHmTp^K%>~(Kec)ZV**c~8R>8X+X7d*?U{|F`ac?*2JSMOH)6oGw*7Pm z#evBAHA_<_3`2hXds5zytz6zd6FlBo%V7QNJidnP*teU@xX!&4YixeH7lXPZ{Po%q zr`zAL6wj-dc6|LUZ*j;i_)ln2n!l~38L<$(p-+U_t%Mxs$>gK~XT*l(O$W>pGP|$cSy;pivs-voIgbC4yzV3~4R}+y zQ*W-_TUo+t|HwtneaJ`y#uV-ZZvv^y-~Gu(lZb7(-#xI}>e|wLAlYcZ7I7nD)3rEg z;YE&1%~`BSNbNm@d^F%o(ac&t>;`Dfw`O-*)`yXmCT%W9IPOhyc?S7t67yk(DST&= zj|O}x;@_6)Xk~UUkF*ocv&cyU&KkzH6KxJczT3>VwC9qN29%d1XlY4_Wf#fb1>~Xu z*J1)L_Y&glRmk#+bK$;-+%({hxM8>Hpq%99OQ3}Maipf%Dr$M#tWaM{Y8p_daN^vH zLTz?;lamIV7girb+d*H$IkROs0mI7tNVbNl%3N#IYK{&p>pMmxrz-xBaH9ne{+lNt z>ucN30MrSDs%fg?SvU?=CJe4Gu4}5|;T!y2 zq-0}fB5XI1jRtHr3=zumh8xQIE!8>1aTgDE#~ZSVH&{64Ip0pFLD5@ zG@wh=@unVLOBqD4KM+v(KU{-(lpV z0bimaMetm&WN{lQX+W7M9Q;#~LU<$zY0}l8KA9$L$B>N%Y!Q3SrWsMVhjHBVHd>X( zk(dU=iJEQutb^q9c+%0ND^=ZLE^K!o8x7d1-wX|cz7c%3G1%tvLUDd{arIfI-H0sH zGy8dL=J_1$Hg~zU?M&Sn&neltwNfe-rem+u=~xX5eqn~_$8O6s^JL!2c9RA$C(PuA2al5P?0syz&F; zl{MU{%)oU$XRfu3U8?P7YjpwdMCo^TU@HzYXSNws84WVE1-v^Q?~&xCNz02>CCRVn zJ%+qA;H_b*SuAHPuH$|XjtjyaOu0ELg?t=IX+T=TD56MOtkdI3N0XG!7wH{HN0XFp zm-C!El8y#+kF7Q8WzA(4Hv^>7?nEA%G(7W;=Pu--0Z$Dxy@GSh4f@Odm64D4yOND2 zC7XARyOE71C7bt*-y<7M61Mizp7tDeK`dDRxEI-Iz*fH>&U^nji99smsbRoe@DK1{ z1A;jG4ieFTDB`GrjRr;qA{}Io+Rb){hYU8`SFOlH6PEl`lGA{^hTF*# zj!W{jwLnUmB(*gh`SFP%5ehI@tKbU;ia8J40VF)){-G%m^fgbvz zNi#NSY*t@@x&N_+)U{*Jk-t2_{j4U(nUJIWSQ9w*`%ZbGFHQ*IqPulX^mzVu|XU&6YkYyQJcGvnFh>tbP*FpDk~w_7=ekT5Z;x9G$5>F zDWIHiuG3nW$6A0Ty&FksKw8HrW*ySLS#dy$U@e05AB%Jau9_f71C zW#RUF+$b(JdJ@TLK%OpOK#slXSc??S9pt0|XRn5_c6o;F5lOk3cAS@ETYIk-5=oLj^Jq9zBvUyP*w`BWxp48rwm5*cd@oVIktX^SOs2`Bo zI&R5&I_1Ii>ujBV)v*BR!DS+{xUvTWsV)+g%iMVp6-R@-)UlMBr`wCCayzS*>I72J zfU1TqE6jwgCHhl$N0_Y>$wdRMI-0rySD*K@JHsIc4nbMoouo8LNF8CX+YL$YK~fr! z))DOaoDP@z{n27GU%2-sB~6li@-!4Y*F0G0lG1>*h6NwVW;`(dPz#!%ZI-R-fF247wqS%xGu!XggCwgcK=s z1IVyBRp2ZynNMf3_oo`6iAk!f-&SN2I2y$7#!{N8NS{3-r9b zBBc9BO0xx|yvZV@SCf=x3rKmZMM$q9DNVwf-81O7=4M&I!^PGzPni(vr;?fm)HTe- zOKTSEhO>L=PBNMn+GmiK2DCNI#n++j_lKC13gNRzNRu+3{qD+A4^fLFSuE{yNlOFT zh(p0Q8rzlUv(G_vbAEsW5r()&-|o%2T(6OyCSftp4VSw-lTM2HIug<(B@7DqMI@w2 zNQfl{95-Qecs&VeKv=_F%F-I0?_ijcEtE>h{t zb>yT;Sf-0%3-AUK(j+AeT7Wl_kOqV`?0YXQ)y^rlINwY%nuJv-3!Af8HMg8^Atwzu zQw*!w=`8hE+pYZ_H!64=DQQ4i!v@FFGF@)DF#J2R(SR-07{o0o&S&BHZqm|#wuY6a zbuww!G3BjUTx?oxZn9E8LuQ(Ul{)G#H{Fo_^W>ueU#hu3=KV{}tJ{OV zYmmP{QW}t^nlI(rh%b?l281=-YbmYIm0kz4l_n1cZO^Xg4Mg$XFO!@mVQyE$LCcLK zq)AE`3|ej?Aq@yGtNc`8Sh|hy!UkuHi*pleW2-f+jk(uvMIK>S6oY z+F|E10cCJjeOktb_*kENr>@VPRlRumnx}Q8*HDZ-Y)qBMVIzx?zaN{cS&RcI#`Bm^ zPcb?zijQLaU|q#XWW3#a9qBc^Q=!)%Ea{ym`7}0nd@7cRZ>1M&w>pnsvy{%R?rfe) zNl;8TXff3=TK3qo3@rQZu*+hwq*UfKHXSr>`uq_PwE6X9<>13k;TMZpgK5uxe z1gB!pwnM^4l8^?3HH^{ngt!&M1lf~hi}TUsqe;TIbAs<2^3i~=hRIGLe|;>n;_&q0 zGW*o9SkEUdO_FS?%Y?;xA^B*)cTVLNSaR7AYpd=5vP;WCx`rFqdKjrR!}@V-e)o@f zU3ZS;l0_Aau~fUSmy5DIJyIE38g>%C;60aFck;|omo zX0^@L2gpSOuIl%0m8zltS%$ALmICjtVHItNt@^Wzn2kz2`Kz%x>-h+&?ODRw_KVz4 z8Cd66@6bH9-mE1dV(TXwTQyABa`+NnE4@K$6~~I(vA`F?b5LKGd<_$#f(M^)}oAQ@#@D!Yaj zaoESQpL2fwjJK-49qc7r{=-VggPmtdlcD58{C^P)#_Ubn^ zJQ+}=Q0EyoQJ2l|JEb-^vel$P1|#0n1zDI5vaM$n{MJe|r>kr9F1J>#*bRlU&FKj4Fw42+pm6?d~8YbMBV2?V(Q3vxv z9g1bwV{_CP4b4%(PsVFUT@?HPS+8MPCcxJr8EMhV+*4bb8a6W&7B))1noG0F z>ZC!Q5;4y92ZPyu8%J0&gXRDkX~0-VPngw^&^tO7m$!9T^$NxkjEF2k|tf5lG3~Bn0z!z%aqTO zS||NO64HP$QL~0ae|n=%7dLvP7GFk28ZcHrfi!4n8o_7Fbr1H6#U81K=^5@dV#}fq zz3u0*x$rMIJ#&|9+b-50aUxs8^emuMDs+J7Y6n=u?eYL!I=?=S4&+1D&4u=;X-{@l zTJx8jGtnSl)#pr>xMBad9Otm!!UBBa#)DZsKH}t!hV=Fvjn?Gph|(*%^ckF*IO9&2 zxx@2Nv&WZxm8FKqETUv0_Se@Ucx)&RzHo{9!c(@YpjghXM8dp_9`h}(-qWBcuH8~e zG9_ML*mo(62Ev}ZmBO$|VT8vc+k=CY+V?4r2IBT_xI$Ige;TfscC!L^`$IzMQReXs zLGSZn4MSY|aNIdp9*%s@;83$Aue4w zx+Cjs$+-q&2Is~{XRptRwb@#scpOeC%%^Kocor%}M%>fcgkqb8ngqVosfGT3fh6>;tf1th*al57poi@q7IF#KS#Su3R@;j{E zIXzpk0rp>58OKrv4P@-w0vSPbTaN^9^81w z#sk~+S3fO`2c%?TaFH?|RE#P>JiIb-JOra)SK2QB=5efjnw0Sn3efq1t#mKrQp%u7 z84rPs$$0Qmc2f#X!g%1=-%Y?h@t@@40m%@MEFN~*>9&mr9xU*M*M{+clq?=_0Wrz? z2Nk0V5D#xk91k|{GHS4n=<<*EsiO92kl$qeLnt5@4_?L}QU(oVBoOz zhd5wqWK8d-&x!|us(xpkx6aCQx!=ag-=TB(s1}6vJF5~Z8JzXwshrhjjGn_BN#@Mg zId`K$*6MfGfKpdUGU9KLmm3nKoDB4{9@_T?*Iw|*KNIC??I|4;}GgzTxiZFXD@ugKQH7wGzd4}v^Z z0N7cFRlw2y51$wW01~_q9rLFO02QM22!L;;4S-;>Rmi$IgxxVs!T<>9a{=JW-yB8} zGzkMB5HS$|UdT2Ip-C42m~Iy9;G1CpsNbau06WdF3OKyq^XEYTAi)QK4)Rk4fC^E1 z1i=5K4S-;FRmi$|DyLL52?OB&Q}^8gk{tEbg3~DrVS+#;142f|-ctf$#_$mY2%(G+ zAai(_o1NXAx=EUuy&$4QkcDe&V zecgM1yzS|ktM{tvRqX1jfId+GZ2GGwQ3N5!0uYFpC;(2#Qz?XyUje}Qay$=y8x{cZ zUFHSAohGQ;LHB8-9`ytk0DmLAMk-`p034Hafk=-6aKJBgnrGexO0elJkh>#MS0}K} zBjiy49GUBVNC9y7jffK|f{;f6aAZz|F97a4Bjg?wLdc;2IIfDjGOYU}_s4vf`G6It zaOwE#W53?;9GHF+F9i|X%m=K7aHL2Ei{C;lp84#GjTi^4E^_LHTSXhR`~M-@#nwn)f8kkJ58M^Q;Ll!0V#7)#%7vEU9n$mHA#lQ?!;rJ zmpY!da~V9Iu$*_hF#Ci|99e3PK{iGlh6{-1>v~Tqn;kp%jurkE2 z;f2@rT5y_pY)l4~FyQ|a1LjbKr%~(Li|<7Qi?3`VXjN)EYcc}T-;LQnBx>NN9L`kCDK;# zF;s8h*p-0TW!`!wNTu}*sNYO#0;n?|!X>DEr!Sy?8|ewm*NiPsno7X+Aevds1h(w0 zi++Mw7Z)RS&hxZ&c@0wjVHC5jrWvp_tmK1rACZ@J4Ut%v(a|wf|G_$ofY@bk-H_B+ z*HeF-)C5pxZ{3hOu&$^7B`e_FtwRa3`q#}SqdRQNak;DqzMUXwh1v`pcn$gEaXxebiSA(5tvdvk>z6C ziy4TOQ|0{~dLBSpUAy_7#`AXcRn319al#9!xTx8z9CFyic=x+(T zdL?^l1mu6_D{(#BSfTJ=7#Xjj3<6|iz7p57IT^l4_%Dr=*Ha1sQnFr&>&dVkym|SJ z=jzc2>X|GM^kZPb+{%MlGyyjE!s)xY1*j_zSgqj2$kK(}%7cg*DJnpDcu~&fAy_bC zQ=98V$gU1!?i2DX4}kz_Bqn6sgfa+umWM#bWO;BYa&t-{l-N3m6m{_L$v#xVZSm`>Xbr&l*~7-NKKDq85xtaKsf}+X=XgG2-QeA86$r$OA1};T*I=G zd8%}D2&-$<#)q2$~&?JIXT42Xg=pD&&wSj3??eM*Yc6S5wlPvO<2 zD&;%Tqi#+M5s(x+Gqz9)D~`a?*_n9WXQX_RhO(JAo=urQDPira3p_7Is(lrlv#-83 ze~=)VKPj=K!Ur>aMa+=-9Hb@Ex$k4B(5UXCfw9XtyGc_CxW3H%lq3aP<`Yu=#{4o) z&)JF1o4Y%8PRgA*xieBPW^WRtjWS;gD!bA#k`#X}`nNI;sFzRei+!YP# z%j{PXE*>o(o&CgEf^w`mO?+qMe3fzt$cM*eT_Gk2ofzMsCcZawy+j9PTU*5!HV*LlCnOA<6RQOOF{x7G> z&k{)~a4}RLX5~jf>@sim6Qt6C)G4VGSACS!1o|p-qubo%+OojkKIWewJ%Ra}wXH!@ z38MOQUG3`|V9Wfu2LqPJ#QJKa-gG6*yIDTizaY;1F|i{SO89r5U+M(S{4ud(at6ku zOGZ=uhSd`R5zKs+CQ0ipY{`E|astRR9}*|YlP0zT{zw4?2*~;|vF6t{wrqc)kBzTD znE49@{f@D52aK2TJ<3hEg%=8lAk6%Q0z)Wdu@k}>Dyj&_ysRmk&cB3=g*&H-dH(mB$Z|OJcP3$>tkC5;mN9rAKLZ%%Q+(~>u zJkLn4>3!(yBNs;G+^r<%rgRHt4c>GbZFGfA-FZ9mjez(}sp+B!O+DjM+0fpFv;@#j zX{)1XgBoU>dXCftP^X_>HVZR4d}Aql1brIX2Ygcs{dx%7*r|CQTQy?}@5p|`d>W}2 zd>m#y(BBBJL410=RRdz7gH!)joI0iQoHbgyW=Td(o!dgL5fGUvL%J9`Ytuw}sz;EN z0MaSzYhp-4lO~BDNn!$sAClUkn}HV=O|l$KhX$Sj*_1O1*TL3Z?#MC$oVMG+6QEzb zP50mQ2eh~PFNjWwHl!sI3YhU9#Ej=;7P8csJ{s!LtU3sYKzz$%BcN%F0Ryr+$p|2e zZweA*f$;*u1ricKn0~PMI&Dx1ETHaAv-$jwu8;=JMd@JiVx(&Cht2lY*X9pm@t{~M zSP}^z9y?h)c6L?)>%8|dP+wyn5THJ~v9Rg`g9TLIAQb^r(G_@t%G)cT`!?wa%$LY2 zjloueupdZoN#-N;Q{ywoIt#{n-FslHO#>W*BM5?%Ga`_{;i`v;tD-AksB{xyRIJ6T z*D&P?kUr&rnY9<}kV5J#PxN{c5kM4OJ%&V~p=_+)L^1-%9vJN>+R27|F5RSa96@JL zPj!}brhs5+r0)Gjsi$yF$Knr2GN`A7M8b!o8kyBoMm_svJ_hQhOnm~>XHZWCB+gVO zvDD$DB7iD`dMcnw*vir!K{^8SCEiy{G?oo}-qcf)>+#k)zc16g16+*MAH-U`hPC)7 z6Kfd~2_M!PW@RlCurz^`t7D*U%M2i7Vy%$GSj$u0o>YWPtQArP*79^ml8%stwGeE@ z=ert+wMd50Nl5_ZX|Z*gW`yN}@Gqk2 ztR=t^pIyt_hW(m(J$GO}jMNn$g!K+^pMy(AEZTknsc^x7mx}@8yD>rFV!=eL)bE%@ zgiKs9PG)SFr2Hc(380Lg^0S%Z`kjFlleB*!EdjLYhx4t&{wC;(rI&nD&!Qo{QNR>E z7#P;1PmRA=$np*j26!n5g6P43A&|h~ycdh}q6Y(3IIANkUJaQG1W1oAt|5h3%@ge; z5dlQer6?rw2J>VWkcr059;M`~w^e=xg%_B+-Kb zOCsUJQEwDSMRy8pz`7puF;L%Q>Jy+odN7b6ai%hfrG7{%0;r+~0|}~xtt{P7NJn74 zL^hygqp@t*Z=kaz^AUP{aqri97wB3TEokq8k^1uMV6M&b!TtqN^u((UkwiiPf4yJ) z6+Q9lLKcJhXsBOtfdc^%h_6gsO8K5zkY?(7k`X`_J@J~1Q(&?ncE2Yf0fey=ubQtC zM(2I>nehP#GBDb5r*4dftC9NV$HZv-KqCGHQ3ggcL_z_heI_%bnUIaqs8~lsoyrF< z1VkVMqlGl4F4M^)WM`0!0J02>7LtWV^RYXdgai=A8x7&YXg>5$8>8_~W-+SHH+MAW zWhAP}=H$jmo&PS_?vTVi^U?etia0BFaG=8vLNlgItl+|r(@4BZ_kJ&Xze+B6Ypg%9R5vE^F@M7MrNwTlg#NsOZ z#qYcA;mr!4uKcL^1 z?&2WGXnJ9WudfqdPs!&jDYesmtkw6~3=$CI^Yf3frWel#B7Q^>1c+GPOCr4c10mN@ z2!Z*Z>iVqmq7tzFg!UKvfwz%g0$A5;)BoH1VERqG6a@8@dNqqU8|slFEgb&`aeOoX z$g;obBCI~gdX0eScJ~gs*xgI`A|((YVX${3c(Z#MU!e>FWIQ@IuY<4RIe$;5YtQ8y z_oZ5Yez4SUcDCzU-hUjar+);tKPb49_yAc;`DKY`m7yH9pe!8pE1d~D_ZG3PguNC? z6ZO~ZrxK6`kK3zKq<~Bax+4V*!)lTQc2E#sceu_hzGo3pVWM(T4PMlm|TeGV>>FbnzSmX#waP=Jn*0+eHA zY9p$v6SgS!hGf^RiPorUPr6D*p&4F`U>Ycza0f-vwX0BAz{ihpe!m6Cqc+j zK8}|1(az79j#C>Uh`LhjW)KkR91CbtfV3!~j5cKuAS1_yHYvlmBcYTYr4S%xKDW}K z87m?0ommcy6LZfDEEH^ao3bbwBFx8;I*}`r4+`!iK0sEE-7n87-7jiE>A1U;j(lAa zrU%;(uSL>CJ&dj(APsV?v^}qD%3NVdWRg0Mf(Q_lWA`gXP@>o*MQx=h0z~E4{qmYv zfRYMMWGM;_3?(_XC%ryKPdcmg)#!>%``ln3{!?G&bIi?h*Zzf;92*v=1^YpQ97X4W zxi>71Q#ULUTg|S1Mk^2y=^PuDqyQ-^p^RTp1_3g1tU{79d`NfK@fHI6lOUA zk_(Bj$xs*}}kdj{^(2RJu3w9JAsE6u8Aa_8W<23dF z@69&mt8VBepXX%6^S-yBKpY(2vY+&S;N!U*%jcN1k)j+Fk$EX1IgX6Sm~}x3?uin0 zKbnJpWLU#yQNbglbv<4Rh{t+a!8bq9%X4?eQo|AF>-t?Xz7I+#bzMI zCdbEumQu=#i?zBTv!B51&(W1O!8s(7X2mDH+Ds7yh{&@(4MhZH!l%Xo6hdJB=T{g& zSP7!vr~Acz;LX$aO*6z8;9{f(Z`QWwHR$<=(azBXhF+Lq`-}3oy`dD_Gm1La>NsXJ z0Wr?g_94Boy%%v;iXcElp0*D~1h)4=?oJ^D=6`;+2O-|qa(Qr}*q%4Qn`5VT&|Me? z4+;IpkvjWBC;|rscM=~UE5}(X&&q~cw4hKtOA1Afz3U{g6b+X|qC;)sOg;f=kmD>> ziWE~!#s%$1K?DfOah57YP*7yXMIA^{1c=ISmdb0Y_)C*dm$49q28NP6`~7|}BEyg_ z9}jLG=nwWUB;+_Q*IZI!NRAS7wUn3~pL#e>DJ(wf>aXYk0wSH?C{*)TB$X9otzN`@ zH|Y-Q9BWTTHmE)Q$C3KuYgl^*cM=~UE63W?vx*m}1zvbf?zLx86hwfa9BWU{>je4Q(|>71eTSk55S3r;>1p-*A!22t;MKbJ z^uJ(7B**UHa0$C{FLhh;w9I`PsZ;&~1?fP4BfN&B9ESvsQ%VtqpcK7ZN>PrT(gd#* zBAYmp9O`dbvl5U1kI8RPGAYCqp)omsPdNn0$#F($Qch5S#v~m>Nd!o0<<@O?iYo5P zkkKGB=*MpSY#}Kg)V&FZe2uE9y|bJ|X2R z$7#SI0eot4@@4!B(WLH6FA8X zACrGcG~~WOHs-gAr?vgn$5}ALGT;oqhEZj`-_S2wtU3{Hf4F5^t5)CMu64rgtuk=D>p z%TA7zzjRR*iXuSNQ&um2*@^PyE?wBYD2xDMgH?-Nw62O(;WwVAfz(%6+?=&-hCff=QTf=!raYBS2Md=4pl-4j7k0aD& z$R>rbtG96)lR!J<;Zw`!1~*b_>}@0Cos>a(SQr<%;1V~x^q{!KG zqypZp;x=tW^?eozy3tv14P%M*^Douf?Pg~&Y#1jt(bxpb^5EG5@Y z@-;hiN&T8Ow&n@EvWC|%W>M5hbfK1NosP5d-*ElY!Qn0W6o{(lQRR^_C|)B)A#m@e zU+bL7rJ5b%G}d)GM1y)f4MKoH)-cBwpC24Og{B=BbRh*1AZYdDZ=&?TuAPqeD)U6$ z5IHj8iCntU*do1IZw#dQk?WDVoNFldH(!nX6%wPGhcN>YLJm{jSWLM+XFhF68&e%| z^=D3H5)j?hpP;Tk?+qIcDc4CaF;<5$%Uzm-`dN9ze0vQiJ@l*F8Uw6ZsA6~g<_-)% zgQLUb2Xpd+Ir9Toa~;mtk8iW$Z|v9U9PGdji-_1rQ9FEfYw^_;MTpR5TPX`frMiZ- z4*{w5qQZpw`f&}CKTXL5NPcDx!?%?rROHL8#&X!FLVWEjRp!0A6-$^g?{s(O(h3^& zljY1F(f7tTpkN&;KeMIHeh#_?jU3J3#f=o@psXA%WhIw^&t#IYO-|eu9qJHTivVlo zGLMoVO&N$KzBi%{qbLGIb@TJPWQsF*Xcu*7`q_9U@JKE*Uv0D&I~&c#rD3&Q8}^&K zbTZ-YoZOw0yCZeMTVdqCn*2iFO9sKVAeUK{RIwrrroNk)`U!ayrBr5J>rZ?mdemw3 z5dn#j%Y57fu`{?#cuah6gq=xY1PEKhLxlBrgC>ZbFyHV@{KklT2*nW~ZdVSaZ-Tdi zJ7`XH3D|0ifYEYS7DGCI(%rcXEpet%XSv4}7y>4swj+#BVTVIdVF?^3`fAbZ_?e;3K><&Z-IkNkoa?I|4PiMD{pN_ct zM`kwx(amLsdYs<3Q%NEJk3tAJ`OdK6i18rb)p^=?_8zEnDRKQ8R(G|l^`366< zl?kj72W5?^N9#CR2{yusqT$ zp(r?{FAm9Nq?DF89NCWDmjqJRa;}kpWXR*G_ZX}5j7=6J<9s^DWL6?;@~lIK=4eh` zqs$HaBXuYjpxZhGH|%v4*E!cAB1R;@A&<+y4l&UWykV0-9m+l{A>TS=*mr(#)Q=78 z5J~o2Js{gInQCH)fy0oSu{#gofF@g^;mf=|pv8y;c;J$~-~ow#=mC=i>gTK(2swKI zN7m~ChIB=km*Eb9I2XAqD8c}zei;_p2YO1PXpG1(Jj$0O65^R;h$y{)Ma zB(Lu3N(*5=&*Ae(ef(N@;^6R>`^5i1Kb)Dd03k)rzff|1%FucC2r`d@NDH4jzKt9v zOt*L(rCBHFQ`->Vjl={HPnn>NBlZKQ$yomb$q68TcxwN7Chm%1+Nw>WU8Js}f320Q zc}|ZtPrcEUVL2~G>i*w@U$IX#uFW4r>_J(PNcgbk>%^L8XBDs>+xQr$uQOW+%$7_^ z#DxLXH%UbRRdij#aP%tz>_MyFd>7HZVH zgONJm(=gU1UJ8QXa0etM|}NI>!-od_C12$O&5@z^<#8d{@^~yoO`>2PEnX6&ST^iyq@LmpgnmwJ5t(l+9^bFYn~~;vq<;IKFxdX~qrU=Sbj27D3K5+4U*fcA z69i#vv)LHv2&s3ov=b1GM`f9AY_G&}Ny2|8ApwL_CRNwoK^l*nH(rwT10*GY^o&UF znUE_&ZrnEb!lt#DCEZn-5y-r%!nj z7WGEv3juM6u7bvhjQK*kw~&qiy68dB7+qk!kn-)MB!DvZU|wOY$RCq}Kcw%hCBPBg z)oI|^U+Hn`tC4!{w_&=?^1=QE(J8T&g(DIQIPSONxajKJg{%!1L_@urZ4dzwi0()w zX~b?J+3QF~09ka^nk4gP3klyyLIMb54}H_&R>IJ)r_+oNKoH&LHTny>PmRALwd)5k z*(P2Jf*^V@Up$iz$mg)x&Ox;2RinV2ac3e4olZbvdg7G~PjtGLWoHy1NWUPq5C z5w1KG=EX?e{#&rqzWUnyf&S=`r6rN@;i#j;QPKTI8?ZEfE(Yp3tTzZyA3dl@kT_GB z#8S^A6#-Py-MR!-!d8~^sp}lKBWdzU|o6Yab`g9s{ev0zISDbgaZD$tN1IvcV$Di2D8yn|HOPCAOi6%Q-a1>%#l5cWCW1K_pTCT z36nX(N0X2M!sy-=`Dim2`U&)z&;MwnEwsAk>65-1sgH2Fb+df1f3q-}BN7T2?WBy1 z=0es+3!h0&5UVziL#MI<9+VYDQfH(E&e5)u+JFq#gx5{7<1Z8W))S&Ym9 zy1HW1LA$e?AN~p0?vTVi^D#JdH~Q>m9eyBUq{s^|K1942J<&8y;4NvRp&8YqnRf&v z?UZF&E;o%Shq{CIO@{(vO9<7Y`Ee0a1b9*yq!*?`5HE(Yon<_rPqqdR^H z65~Zrbt$O`po;GJC8z@LdAetij=+40?D&zbLXdn>kEX>W^AUOm*6PahgoSo@exyG2 zKVmIhlLUVlh3Ha?faqTdAJ*z+W-X(h!&Dyw^>Oxz2vDDawE_}rEt^>ClcXYmDg$c; zRH3yT-DgNgV7^3Kt2+;Cxv;y&T9WJ0b03R!aTflL)P4R7#@fV7LCBAuNHYWyI9&Av zan+fzcD2H3Dkok&kSR}q^yrDSkU}iwiB2IA0YuTmm5|6A%9EW&G6KkAC(;mV#fSWO zx=H6af{q^DEpo>_vzpOdkJS7(VXFP@M}Gyvc=vijA%el4AqI=CQNqY*lL?pbs6EUQ z0-_N;f*hwZW=jx0lY|5iM)yd^2?Nt5NG~TT0i>~yJ`HEZ{59$LbQ;jP12oZ()=c_gVfM8`S77)r63dA~h^}l~{Dj%cyJb<4-W?-dp0XaH<<| z_LP8#HKVIu@ko%uEFTHenq<@wR)0lu0?6C>kWUymA>d{dK!AWpMz+U^)U{^bnxMOq zp0)-v-+(!~8`x~u7WD{&7bCUwV|D}ewfO^*=x(4Tk?>*G*NR!Ai-QeVd(_83-I19? zfcof4J3%6j45*GG6@fm8HDZFw`!Aq7nsfx_OQh`>Y$XW$HT0NdK0=S~>NE!n%}&$2 zRBu0w)LTCbiyh!T2bUl{Ejk4QQsIK#-XnI4?o(OOQeaR&*&D*7KEmN20Wpbgb8Og- z%vjGv&`^Gilmt*l*ZmWefd!Ma*N~O~+OuM9Xo9X-dK0yG(~jOKV2bYGHwVp*Jml9` zBQ^Rm%(z)T*uNl(e%j%PgaRJCMm!kZA9f*2oyQ0Xhq@U%Rs=*K1FO4~a_w-CX6hCs zBY-TrubPZgXgVLeTal0e!q}%Bnh$pKp?`v2Gd=)821e`DWah3pz|}~7@ftB2Kahxj zL6m{f43SX4XkX3DXeMN1G%D87P(v1e0wR!s(Lx$q$9b}yBqM+<1EYmxq0v0y1tcVZ zFy3eg7e@1;Uu%rUJ0OVf0S(Y`HZNr8%aMBGXJEDcn)1nAFgEdxt0fZ_xb27HwhTH8 zHfUoveiRn$?iuo0?1;g_z-Hvhx{A*N#{6%jvj-yuz9Mu2^S;v z=r6)f`|>6pMd&{ui5`Pm5(yuU+V6UuFwr%z4OrJ(TCR?P`VGr80qUd2pa~LVDwkO5 zccdbKD!PJ9PzAQ~bbllrf%y{I`6pW?NVUz#6`$+zMFhdiY>6|NowDnF4mLZ8)aH(S z@N+9?#5R`<+mnwJ8DYGei}9j6Gs)nc{Y(TjoB9m1ih!(&9v-F;dMhSqKSx>uXrosh zq|hd9nV|k6sR^JyHv@A@;M$^YMvfV&ZbqkS{}_G{#<#0onT>08F&Ved_jS99OVqVM z5X85uLLh;|jCT?<#<#0RxNcXic=dg@Km=w+ba4tOjPD%Lk4QuSQGBHl5Cu+iWY>|5 z0J7+IwYykxnXQhbr)*wlktfF;EA?J?@wj70>bn1ip*DjKAM9VmA$kz1LnM(1eq93UUwi1UU)dx84a&IXd?a6LncPkL_z_h-7iCrgMf!F9W@(*GWKTc#UXf z;b~7Sbnx7x#dBHYkq_M(FN~VHmK|mSA``s`#3hq!-<$;#q+cT`0i=x#I)-C$Oqel2 z{0$NlK>Uz+M@rbVWrC$jZw8(LSr)xg;czve`8ZOSeG(Qu$caF07=8eG{7}|LP?HNI zT-p_vX3-@I<7S%RMEum_nR5ihCw?fKh>tE8V@5?a!(>$#l9mA4_@V41ZHiSb^^-|W z0QEz&@~W;wlPTMwTgM!eMa9#s*IHFu$ME{10r#v*?tD z0)!NveY|)!dS>6KcM&wEwVcAIu4W5JK$Nnm=xp$l^{f5H5Wkef1Q0hfs9|mJjyPdl z`>i2=ImrnikKJ=FNN3iwWZJ4tqFtmONAp@MS@UG(-cDCG6tz~x=aIV2mqPdQmKVTJ zS-RH<5K_4J=^4A%gl~HWIv*Ja9Z9th^O2CHdqYZB>5dU^A~7LL_lCri?)9F0FaF+vgA2n`K?kAI#y7`%sm=KC|d51mwa9<6bGo z&7!Li1fTG&ji34s8%_ceGmEamIAPMYj`n+`C4e@IuEIF&q-P!V4@pe`b@Z&am;-+B zj&(#Ypkb|ljAb&bZSDTF)}DHQ+E;!ftZjMA*S1;hPiqM62Du|eQkeEN8P~Qpf?;35 zMN(bFdWV2a%&e~vQYL-tiJwAZ0*Eu~D}=<8&h_M%kemSWtojNF-Fw$ly*g3b@;*4D z=cwDYUCs8gtcNhyBXuqN2>aWQ{tATA4~YUoA%auiEl!P|1_{E}b*qhmj*vQtc||}p zqHFSTDsg9$@K6#GKo~taF;3`RnIye2NeLj0eM7~BTuCy#i$-+r08P9JvDDg`P_9Sn zk9_xTf4oAky#isp2|b|@!Gxd4%7i{_F<}@Xbr!RSfM~>ri(SOwnTkOiRfUH}Pb5XqQmlm2W*C zh_CGmN?!ZbaM6!OU1;J<(!rOTf2$KPde$Kkx){@`SL9Or@?}c`QZc&YH%Vu#IYzoa zNeLj0o&}gB4a_-4d=QBVAU-Fy;|Mtm8K2bQF>q6uMBOEv;@$`R+=_wob)P&F&sCgC%sX?6g@ufb$9Bx;qOQt!ZWru z@lp^3C&xaMGXxSioOh%+FZ#Ku6;2;G@#<(cT?9zaptwrfgjO@Dr2dXX1Q2CViab$h zFiW<-TUI3CA4XhWInk$NwehwpDc`YRAdyEh;d zA{gv=F<5kWA_!a8Y&HfuLh9$t5(1(TJwh6%l6oyk_)8KJKp5S~j}v;+B}sonQUXY0 zXLn4hp z+=uRx%tz>h)V6HCHmp^LyL*jeSkEskck07tw}Y3J`O$s3Ww|qG46E~vg&HQDs@Q3> zhEM!&y0+8b&Y5rL^tW^R+mX7%^)TQO(|=&TOAC7XQ+B5-LbOPOch3^l}H{au*X%#dz&$<*vj_Yl6b z4r>1q4!T9sLH=v=jg#vFrP%bUVy2XI;nMIUMN#n1BgH!z7Oe!2t_G9Nao>vu^#}Tf zfata}^NnMfa1Fk3o?#-Wf1+n3d(t!E{OlaF>~y76JN(jmrtuee=9Wp%1mByloL(O; zUGs>%1dkMT!8QwGo8`QSQhXCcQL9jQ=)yPz7V6B5<7p^omm=LN#>qst5$%?1~ zyrb4?&IhfO{%jqxi4Hk9yk$O_3K6N2-alVs?J-6^QY1vypD$UT-m{o3Y@OQypKz($ zGJ^?-O6p9}`q?U)#bqL+qEqk^#*St^y`!PO*-{%+(N@9>J9PQ34d(C> z{fZqU^*#0@4hrt@gZ(v2?fugW)A}fd2if#k$)@x%;dU(kOjSU@b%){kS8{8Mz~wbElsma}Gu31ULD)>i-+FD1A0% z{q!S6LgdoLl1u3`5bFsWXwx!Cy8F)NXQZvk zGBk@P{}%bQ3AZq3O+-xY6&0)miEMbKWWxiZLen)Wb!nmMlT2^|WKQW_t)Ai%d)=n? z`!!~*4gNC>o`B$I?13OKow&MU=yry+W(V7vdy3DIf&hwp&Qu*BEcnDqeg(Z@b8hw| zsV)zjvcDXHp5up+I+)|;1KekQseeb4+;8S=byUItr@TX)GJA@XT+nM-GA-M^HDYF}^nbJ<1RR_zxUbjC)i;GZE1IUh9_Uk$KHCtPL zjS=C`kxRE);TQhP$Q4<;&BHcs#ZZ=FrF&TVWI=F)!Szpe&f zhteMwX`hr}#XwXC1ASTyG-Y;m%?6r6qbm%X0;y3{)S;R*5doRii!)J*lE6m6w}Fwg zhELH*F1u32Lfwp=+(pdJ*IF$-AlA>%24R06-_GG%J(`wpU623dKfpvsO#gxYEE zf5rjwigM9efGBw9TJg@53B=XBvm%E!&eUIs0`)VxhQNH8$u(0MD)IHTW}@J@cKQ5|#__@Iv6i|USAzv*&UzMtdwrVW|1-(#%% zf5_-tuk;i9Z7Kn?f5yqBRb-1aIN_(_gei08t5pW8uxL}P@EcK~9z%Z+5Z&%f{#b#d zBHy7af*i7q$5xkzM#BHnHYTI8&I&A=uGV45dbe+SuDCOYJ9GNZNS%2dTykjgrvB{z z8=WxYJl_Pp5F+n?CwV{PJl{mPI=2&dg-P9m`Aa|~W}D|rgj&HTOz^M<2og~JmRZPD zOs3k5qd$g&T0}+~_%O#0BlR&p-#Ea1)|dKs%%B-Ze<77HAaC~loldS9M}J|EE?ayI z)KPqhL7=T>Dsh%UG9w6j6ND#|C4C|9s;vwe(1@EhJnVPjo3uXH$9{>txq14R`u=2a z%(aLlPL+o&gb-xmVUmS2PBc%CKF4>d-wLz3g2j!1$j#53xf5}doW|{xZWUv!Zp55t z`lqM!jOoy8^y>{QX;>aiPPm)z=J;J=!hO^4V1-*u``Udo9w_ZF$z)i};l9gtl zh3Vrn{r$8N+V^zVY^9&F+QciE=P%7X6%}+!XlQLo`85{3l-`K zv<(5#OYMC+PSSDP5Cry%`sK#yd=JjI-)2qk487q~W zqvz{PO9>j!~8vsHzjV~$Vc1zk7WW6ZSBDn6C9%hY{H zoJ{W-C!aK3uhqmt;#z%Z_P@f-xdCs^$<2{^)D1UbhGgQtzE#yfHUFOxpKx@BP#4rrLL~oB_8J#K6NsOIt0XKw#ldQfQ^%ws95f+liF~d#=K_ zL7){)>vM}yQ4eQsN$Lg3HREiEi5C|7V@*j*9vYjB!96SrYT?=O_qYz|u<_gGPL&T_ z^nYf-J0&XDY)Ga*DeHael5y!T7Oh^JOLB%GOGTc%FOgI~VfGOamDG(0*30K|5CXWm z$0n!R#$1#%O{QS_J3p)PV#5sijjmX*Uxs`dsTbb>_2z;82CsvT$w{+im<3*VJs!gvYvwh|$4Y5D)*!sa?7dI307_a&TDvTRX+&8y^{~ys- z>(GOs#E4{u5g#W;oUyG=3)=WG8U2wWpSqZ}1_7CO-i(=-3>bNc8{@MQn(VR6Oi9}y z_DslG^K|T?lXmNH;^E)-ex>tt{63_N{r{Le9SchGl+4J}OXBi0C1}ahu`kdPfKR=Y zc}hUS&es1LPnQaAOg#M4To+50jtc?vjKfB(JD3=S>TK0tOw15GiL2>vminE!jrwGK zmSDzV<1}e_pam7k=4VSb&p3FS7QD{tv@eBMeVExzK%zf-rXrjc_{3W;wpwOf)#c1~ zN%oZVjY@#=QDl(${K|9==42pwGHdI@wf@OD1@lGf@bawL`VNv(X%ey0LhA1qiV3!7 zO%T{%oL{)rlV}72jL?WM!g%o33cPQdXVmX{+J=!hgWgg z&tc=Y<<3|mGh+uoMFtvAS=jR`$?O?B_$eVvE+-$n2%GvPvzLJEP2IUxO6Up;RL1x! z{5;W6bGgndnV~vS$C5Dp(Qc#FXybv=&gLNXov7gJEwyd(d>4O5>TmZ!|9%rM1rf3I zC+g2ad4xO1=9E1P3#&C81IPvOl+4m(tdit}8St<02a8LC2BqD$) zy*SNC==>}Ko+}C2|}&-kl#XM=^RJU>BGhK#G~FdZo&mRKeW@nHC~%PAW46% zV+IllACCI4I4XUlI77f6~2m2R9>21n7a+Z*t!AvyNU)Yim5P|s0#HAGH6=g;uNHcXqW;y|6>FwmqaY~xZ#%?nS2_TF; z%u+{0+suakIr_}_00i+3;=CMKgfo)Rjr%oBwuzU5Ac$`eg+Ky_y}m8>iZ3BXxXyJe zUcG|WB0ze4gBVgs-Q|d0O(Ft_;yoM?1*URjuOk`Z;?Wfs?{kBF_%FU?oS(0_Tvy+s zuXNTULh+f?Su{(bYrH~lh*Kb&<%9hTqWJ2|5(x$T_4BN%FB`H{Up^Y@dCUz$CRv}P z5tjvISCWhXviRyNK^8bIAbb%C2_THFz8G#Luz>oRR9~781o2(4L9-*xBrdQTjte&S zt?}CY0ZDup%#cX<@Yr9(WAR-ut6o=PE(YqqnFj=@kMDvdNW@^C>RY5DfGWNV7E%TF z@^t@0Is)@0whM+}u>*k3clBp_OEMp!$Jb#9*>u5pg;jNYm3uP@mvGFp`~^{b9cGDy z0{*(u?{xyjcfoAPQiu6ys5dbm2#7#@^OdA=7Bgw4-byk8$l~j;1Xxh`OPb6Q?j#`rgwb^v`LxY!=zk}581J)s$;4=;u|$}tDG%nW8QN&NvD7y~ zl!?*Id<7|Bw13RdXc7h88}rdnmoh5|h(IPr3uv6tOq!`@kc0<&guK`ln z@WEok^mP*v5u_OdPT^BGvNlKcpg z6F{E&2x_);t{5h~m%!t?nW5?w`qo;>nkRb0Y#XI!XGfziXDypsb8-vpKZA#FGU%N54l|!8X3or6oNn2>RQ${;|-&KzY-mWK%`CsPUmQWi2Q6Q0DE3*N(y0ko>gi$xX=Ys@hZM)v}3 z@igyjSo`zf=}Ui#0&!4q$9>4^%l z-&X0D{s|7gsdaGpmAhLF0%D~eJws%ZBnVe(b&7$xpDO0gtYshLNw_@t4uuQ+>Ogi} z35aU?+r2aRE})sxZ4Z87gd9R41PIxkRm~pII3bfIA^4RMa~Q=CASU$<^|(awWkXZD z+Fj?!Q&>u@N5|c`LsCZX>s@cv27?9~V~lF6_JeLe^^&ddwp)FG!`ZOSbGIX_gWBEs z~MoZGcs zCLupWk%aO%vF)?@Kd6pS9(6$mf1K(FQ1|q5WbmN5*zPtl2c=8NCn=CnB7szw!vl@Xxq$%QJb4fMo~ameqeivV307pkk??U`Lq zjkG^f8liA$jdpLiyV`1Q$0B~6n}4A+0;FA1XsRvryY1?HtA~D{(RRb#&_;l^V#~n7 zGR_bPQf)Jp5uhw?w#^oMH`5x{XSS0(y|&oWYIX)lGMk+TP#B?jVco@0*ufM=C|p>( zF<4scb5yPiz>O%30Ac@9XaSI3hqMSr++R@~0pg0SYrCCBb*YPosXEbaMqLExDz;=o z*B~sJx1cftlwDY8b`JYIZAvHCttg6622q$-)}n4pQ3Qx8w!OTd(eEZQ@%EHPfV9)~ zDuJ+8T+d+N)SMMt&6>DR_9pvLUeWU0vF|H)Y~621>gs2sXL~2abI*bI$MdM$>m$bz zXR~SJjFEN(GOI%p^lg75ecQM>f<(~MrcV5ieD9X`7&}bl=}6z1IZQxo<7!>cw!&>+yQ(nRB;Z>tHWLE?3j}dm^a8M16#kWbyL2z*8xZ0D+elT@~Z(q~+GI z8szU8lt+NPGh@1W&VUtONjGY0=c*N#5PG}zHOyby4eoAoD@5{?i_pj0@BaG#^1+?i zhC}PNi;xl@R$P%JK}+wB!J~I~t3T*ejGMOi;ZE(^N$i7`R-&YIEKfr$6#+4PVpgd< zt=Ugk687b^rZcID08MdE>t;?JIVM@Fc?i`I3QQq9Qjn;OB-hTRCIU3chPw$TCO)je zmOM>ZpYg3DJZ}6rg9Zx-*H8k3UyszEPsLE{pND*i{s6zfT>L}yfJ6!;iBKT#A_X$8 z6E_z4v{D)V%ookzu8DpP(N_fIblg(BAZ(oxQwnMLvs7VWan(6APl*Ibj2jn*+$(g? z!=I%~)Z5Kzaf=j3fVjAIf+1_1IK3U3R;Q?r0CjPVeWvQLMo`OZQy!s2Im;cHw74F{ z5lWPHvWbtDH=sO1iHwJRG)&^{pgKZ{5|6ul7r+32DNp}_15uh$^vNW^eJl|M6zF)H) z#H%Tg0D*B+k=Y4s?r8F;L!E#xr9J}mm8A3EIDffji^j_-j{tckDH@Ibf=RnqQ5>N} z;&%0nxYtq~0pdzhlxg zXnEE7uxfcHRT9eMz=gIOe7=Y32vAp&nq{$WTaEWo90B4=(yT3VMGTLO)y>8SDUbkx z&n|}pjlgQye0+p53FWb1vt3&>iTE+9BS2l;gVfCW2F(GUkvE67cW@0A5}>doy@MuZ zXlw)gY04v%NnXcI(R`Nj2#{BjzF%{IVr)BCU!Xn$^p&IvY}MPQaD18K2oP72{!6Pd zz*;3;|9zF}2vAp&X#}cERDNHlMnZ|Qw`=RZZ&Dlq;!0Apw7QGO9c%LUJCsK#mpt3K z{~qNLAg?Tiqq}H3_dldM0@Rh{aUt>+XIx+aV)FMVlt_TYvXoyd(I(?hsgVGUC7D@6 zGB$Anv+R$lE5iSyNJ9BUcKFtT7WpfRB$O(*bxOK1-SyN+C|^SQdDP!iBmp8zGA_X` z6wUUs?KS*~0tqD&hz_+ExDQ{!B|u~K6DKNx{Gr$7P(mZXyy3_fp3bp)s@Nj1}N)SJD27abgvg14qd z0yLJS5ceDHTC+3nCgN^Ki3CV2$vCRtUFP;Xx-q!}IhI*lKRE3 zj=D3&5z3TwZgJFIsE$w~b?5hOhkuUh2vAp&nYRI+YW8jK;8^M-Kwn9EfrI63!#;L2 zGX?hqDkMN*Ns5MF`*tG55z1peIqF2$dH0|?0@RhHN=DB1E-*QJPs$^dN#1g&ZsgsY z@(7Sul4qO4KIA2zZQhS62~ZielTz^HrV?D6#7KSbU{~Dpwq3nOzu9hdhPBpO-h~K$ zK2qoHhnFFqhMk)C9P)th3#7v7nW_>hybf`VybkfAOhcdgK12|wEy3=Nc-w%-;Ee54 zjM+q&k|t>`<4)EDB*?2uE;)RKLg(wVDV_lFFDtwFy568y>wXS(6QKL0W!LRxKaa8r zkp1ei%hnq=FZG)pY_X&h{Yt7QK>aH>f_iD7we}ZLI|17Nt?b%4<&I977XA_nCu{`E zK)Bn+SgZdxswZrOWbera(OUQ`DV(qogj4s4#xJj-Z~}zCrtC%^VBV!MUk%FX>nWcA z`K51=2EJy06Lk|dgzhE}4A4G*D|Hi~yYwy602_P{!WQWrR8QCl>gn=?`gc=30qRTN za~v*VPlly#3$uLMIR8%Z1c-lQ+3Oi69+gc{$$x-xARrC}j5dN@bc4}Ga5rVN@li@9 z6yupd-0G4iMjM}?cml*nzT^~)!&ZE$Jp7&A*DX|T_Iyi8>Hnly0>lLx&U=?f^&B#|Xk+UU2S zb^^4&Ztpjg>nosjtVA1DJKYX9iZ_XWD@K5@5ll1RT)?}II^l0i-2~`kDoS|2LFPfb0UMAl4~cZ{Cbm)vi|m zTgoSF1h*{sF2LVYH(_Jw?%K)wW2l<|-35%<)@heMdh4cm9#7!}2rqpzx`?&;O-%b3 z?RTSg!bV8+rQJQgN~i0@f1q#zgqOYqf`Qpb6CnQTySnPro`vQt3 zTs&Gnx~wfsqrI&$Ki}+NgBG2_FQjNfc~f}7rSOX>mH@HOFK4|5vDiCLC+*9qmQY@` zO<&YrLA8VutMyKJHPsTJwtzv?T52&oHXquhsjs740^}AjlwOnE4(1ZE@Dm$s8~?tM zq6rXP(q4q^`M5skTd0{(e$B2I@pft^lwY&!MZAle3D8`?ixF!vG`+FhNsLI|OVtFZ zE?_amT2#x_Q1UI5_fs|jvP;_R^?lX+A*v-nZAq(Us(MJ5jZC-V87`*9)e1-Z6(EsKQp?_O#SYN_RR^4U)boRd( z3j$(M#6;fua{+6G?UccPQ#=9U3s`SELm`-N))p7gl{Fsv79&7F1PWNCHA@8CVyFM1 zcEX0yj#oNOx__VA3DEww4N-RaI%*YfcG5uIj(Y{}M~nyo5!o1(C?bM4_;6H+o{G4R z`U%kg?hTO<=CO3O*}((rDt5%h6H{B9f5zAl5Sw>yh}bN_R)|Kok4%+B?|*po$*2DHnfc6bOjI#^`fk31p)>@7nDfoR0_) z5P^*`a?ocm1Tol`F(4oYZ`lx4lf+;wBlc%B2pc9ESgFSvHd(zM#ApyUOo3qKw9snW z5`8EmKtKfEv?1&yD<#n##BTSdTDmbKK|mxn#%NS;9E?eQZ2Gao4(M*mSP&44jnRP` zVy_atM-0zkNvvQ!oN*x_E(N@4HbYyN=rtWd`2@%>V)ayaFlZ!JPw5*eGhu&Cp#%sm zV)fMOLMNua?nuc5NG{?5)*2))EpNk!0Gkikk=jwzOn~Mq3#cX6pm}?X`;eOo@o4HL zKyLxd6`69Y_;*X|xG;hLj)DmgT)+!KYZBb$O1kD?fS!F|jV)A8D6ev>y3=Zf%8#RR z0+bi=jAacb8MM3I;Zil}mAg_mp}Z;1ElANc_7|H8uiTx=2~b|Zf&*-%*X%800=C)h z1W#MS+bK=Vy(pRh(FHW+p}IAQo@j3FL-_>AFJO{zz4B{=>VPwy4cjX`iTVl9UqIh> z{rU&pdQ+cwSH-@~wuk;e#)7axa$(qN)CR+fP3IyMvO9?MqFU>>-Q+0Wm0GN_qV;=+tY&>O#NU#=ey2FE={w)u?kB z69QsVz;nCx#$0AseR@tp0F{z!wJfkeH(g_+6fy+`?Br5DQYJ`djaFx zb(_ZT+~1~h0+ernZvRrFwxc;fzu6eRNBM+}VVb3|ks44tVWVgd8mS%BPJs3TCKc9e z_~x<3FT1Imurcher`_v#+Hd4PmhuUZU%&w^>rM7{cSobPt7)fKpFs5ls4w8{_4TUn z)ok^C5rq>Vd;<(i>?6ztU(G*-F(4oY@7Vh@+v`ty^AJ{Vm%_(RI~sQ5mrEEG0-{pD zSu?XnWw{e%$EAz|VPjH%!UoBXPgrmsUQafRzXb(n_Z=iMpv=^`|RHxf- zhs$sD=afgIZ=*~CWEQZ@VpW+F4@2Kc!2}2{U>~;C1?#u8uz0#}4_|r@6%)#;c(LDI z?uClqN5upvF5n^m>S^5U;JFkY=Y*m^NYMm{E?`mC>Y}j(gg?@6IGD=$Bh*YNt>)t= zG=Gem38mF6UJldw8fqp$a{-GX`*@1fZ3jy~#6cXs_M)e_2^!1K+1v%b`7*q6_~PRRsFE?}#M zwIp!3Bl0};WBiH| z36NO8o`EY$49svvZ=W0N!+-M9^Yv6sfa(Ia+U8NaV`We7q$Kd4D3t)I1@z?CBsEBA zN#A|?5KVyS0y;r!6Wwa;;tx%Qyor(t1xX%ax$0optS5G0#~8`pO|iy-luUr+BI-6T zF03Z}-B9v`MGm2O0>l?Evlyi88pPvhM}1hI@ycP;PS^)n38-fh@3SZ+e?1ZXc{ zqqFs;d%bI4Cb~Ig6Ck^QM=3$cACu{`AP`s;R=BS*oK^()~hD;~mSV|{Adg(hb=P%bf!)D7qQapj$3D91^_y^bBC!D%=nPv)^TZWJSr_O-g}sE$wqby&bU?DowQajouWR7Zfi3yVv;`Nl$RxrLcBE$SB(MJP7O z8qH3(H>mdUBm<9M7OmZWO?3pQySTU{bL!+cKb>&Dr8GiGr1cuy23Je_1Emol?TH1Z z8eYd3V(p>U^k-@!K+`3~X2QMFE8$YA%1{XjZq1g0VtPQbwsL`}9H4&hx zz(!p(Rr%Jf&c^*IivU?qEiN0`$?Yt+@j`9e8tfn{BS6_j#VK3Db{jlw+N9T^R7HTQ zON&!w8u99Uquy`GuCzKkZ%lcFa>&EPd_vw$DUSeo1y&k1^_F`W6xmASaB3qI>$m1W zj`%fxJA$eRP*q_0genYX63T8vWdtZIu;*x$VPW1EN0cWwXl70bBBJhU1#PNN+T4UWFoEC-DymA9CZ<(>+%A#a%?1Am1e-U@OPz3 z0#p__s>6G$*kZ&sPIsp$LgAuX7z3F6tWXpIq6+MxA*IlD?AgloUQ|VZsscOOP=z|9 zRkQv7`%o4EvI=a-akd0rV?v{eKCQ{dlc_gmI5 zgKU30QZM*C=8(^Q9OjS@JlWkvgdd!p7$Lzt@<(MJ`3cztJ#{A8MkSm}w)ae=AAv|K z0%9B46S5)eq@Omq?S3S^#huOJ5+3}|H*s_ZUzplfuQuB~Oy24oc_hUV${-FWqGKns zVFMeVYjOWfaRi8q9P7CRplN4HIW5i(ShTzvE$mBU@##ft#9E_X z)jHBxut$Le2s|^Ym9u5JVj0kLoYuUksHAANYm1FFv~&7*BX#6G(8k?%fHrRPDg2*& zO8UTT1W4d$+rITDoq~AE9P!-Q$7@PeC_nHGNEpG}BZ7*6*gdWQ8DSfyQ~XE@B0$i| z(aBN?<2sg^t*Gdl6H8a`Hpvf1>Rm5`pH4={aL<0H)pj@f0~+e&j5J8_aMX3;s2v%F zJFRt{a$c*6<%8J=CLo4!PgsIfo?`APNBLT@$9&c5sJdE$A!?B0x~w zlt-)}9_`W@^tuC#kF~UOD2-5XT5&gJE$CqsL?}3|j-Q`MtMe$0P;gpt=VqN&TPcW8 za9W)(nO0RwBNQlYzR?>l?Q9P8?jt*#!?sZx0n*|ok!LTB^ZjlQr{$V_Y)}yaii)a4 zjUrcPEm0Gpcug+nwo?w=d+1(^ZG8r?SPeB9-ikn=F5HuLJ-7rU2 zRYR&GKvmq7!0f8zusrN$J73lNH*=k+Nwl4mM}WMzO>t(I$5~GtT80A^?dh)*GB2P^ z0%V>N(_h|W)dUmGI z%vhVyp;LYMpLOEKjl{=}NLyiUXzZ7M;3i+#7)xSYkHk;}BtYD})fjEGz_1Ih^X>PP zN`TboWSm!12Pz2zK@uMva~3s`mRsse-Bx3;9Zx;9(mzot0ZJoFev&^vQR~>S4pSsr z=02Q-AwXu_n%K=XPML)Ad9&HU>($zu zx1>k{M2^bU3}Kgf^hb@(TT>?iI^(t*$-Lq;htSHq1v*i0N3jHmjoYLuFR@rT!}V-h z?H#C=P}-!$j2!mW)ne~Nu>^>X+e0$1qz&c|wc`_H%K=~!wcKx5pFg_&y{w7QGFGkOAr63XYyLAS+ikaYn%kunL8 zS+b73K0aNGyaz=RN|@<8=CL%(4wLRlp#%sm*$`RIaL4S9$@qIyDgjbU*5-@U(53gI zSOUbBteQuQ#FsL)Pai;;1jsB|e{To2T6N9QgQ$~GLY~6OkIFz7n-rP0rJ)03AAOhz_&F&^Fxdt;ag2|)IY~U0Y$sA40rKJ=6X{f|Na9T?th=JB+Qd;h zt5+N0&qwP0H$>%en%-;W^jfFcTgKZ@e5QwJpPs2Ip+ZH{k%}bl70fUaE3F7m{LWV@ z;cb%!XCVy~0Wpso-iCokY6~kHom1yfB>^hq9cW8zE&c6nU5 zk$4^@5+E^d_?@vtyibS4>-zXco!MI{lmMY|UGXf1Vy`Cj!_C|BT4$9y38gY64{0_z zzKsG2rONSMqu<8-T9}dz3MD{jc}h>eA^U;o%wD2I0wl&wuw`k=eq*py>tPJ5HEyRy zLa7Yd@3!!;LJRCrAOQlOk!dqKtzVr;?DU3ki#eW4D?FbH38l*B0nR~d@Kj-~aY&7X za;2gi6s8sKq(TA|#?4G7@^6K85sBYT%jcc7UTs$c6MkCc1r$ku$nx|lWKT*h@NpDK zD3uqNc}`UwkDau}CsHG!REfBw*}x0%THuo?kWeZs@tA2#Q;}KBFMLVAO2orxjgKMFc2{dWTC3 zs)VUOX0N!3NpqCZ>IRn|j@0>|#N5Kyur6@Veh<;7q{Y9(bJ=KJIDvRUA9|`2?0+eYP+%4g zmX;S5xJ8Xt^m8gAKvC3et)x^%{+PhWYp}RIMEtp5t5>A%ws7btmApiwI7G>P;O)L90l@XvU?kRvz zj+ivtiH%ZGk!Wq-r8WYz#l2>nfwoS!!|{=k_5(^IKw4aLkb$%?&3;T_1PD7b=9#YdI*IjkKRenCQpZQ2#|A9 zT>Udd&68T>GTDY73NBT4!V)YZTSA36uWNM!^li<|F@%E2J5zCuL= zD2m$i(g>=Uztbv>xFvhx(RpjAzx)}mBlYG7q7K`4h&t@xbAtPb_GxkTm=8?qG7_OK z`?J(#k)7jY;8Tl5@Ux&!^LI`3_eb;<0kMvIqCcJy(<)jo0kxTZe>?oo!9JKehYq4d z0wl&g{|i~@m6;{hv8S#+PfrUxlmZD5xF<{JL|je3Ut!lk>Us?66flZqbQD09&tOkm$**3qbZI6apy#hwtQVu2^tPVliF>F8->}k zFIVrym|u?6Ki?LSy%1Add-gw9PA292PuwUhkRb%;EJUWd3U0%95WoW$|0V0-tQ+Wfpf zZwV)MqHgZg8&$k*x73}-oSWA6GioD1+vzc_fTgY2i>VpC>JkQb4AbP1!|tmsHKgzk z{ff(AMfautkCD3k`7q)0G1s`~;QRWJ=);Gu=0g|aI^+o(DJ;GY6(zV(k6bq#rYs56CnBO za#~}erTGXo6QKFUCDlC9!hDRP3FUQi(6U@ZwS@Aj4O)~>Q!N2%uPUb@k}b(+DVR`V z!HE{+3lvO%;8nK`ET$f2hc0M2zD&ggD1PKBL-6$qu1t>ZQU|@mOuV?QHdy(jDJOpm ze>zg%dLu^Rhd&0R@O|&c8%TlEGgTrK7`xr#` z2t-#A5ZP5%rn&&Km$Rjcq3EzVY_zLYlM}b0GyLL`MWLQ>~ zNU}Rp8UfN)U9XU9lKDe1b*Vav!UzzSO-nPI>$m9HCY;_--QK{)MoTzf9ml|TddtIV zZGbHk>R1e=1s_ep1PHz|(@J2ap0kdW%NPA=MZtr{`9|;GQ7-{{vzfe!N?;tA(Zac- zm=VQJYI=&d%Go`fg5KEGzVIuexi2OPoBaAO_C##-=V+zMF){AleMa zQ6T{eS6%6lzd}@$IFl4RX=`zJr8ok_t-4XzUJ^Il%}q13yt`8#p*-@;o*r6Wh4KiH zx9TFGy_0%co-G{rqCNuj6LRh_>C9pVO$10DUE>9kF^Y;nFiHk5ITg zHY#{s1uv|yM`;TALnw~`d8@9X%d>XWl@I$A3)oTGHZA8;9RccAT?D&V)cH=ONx(-? zA^{Q$?K!vv9QK!O`aP232;~qrsBY_axnH<$nE#pL2oRUe%*l*(p`_ek(CF*F;ZP45 z2Fu(0b8DlxM#Y5EDjp#7>%(Qfma5Zuo{9-jyy`wu`4=EbrqTi!J0u-*gLTN80 zq185^HbN=1)w^x%(QJ$J4r(Jn+p2rb=ALfQ*6wzKF0b+5ZmJ|eWuY^U+JAtBCeEMJ z_2FYFjR0w@o>8$E60kG9v3UZe63Qoayhgl;QVEb+=n&RqIQKBu+5Hp>BS2X3&0oFW zsA1dI<^o=%8lVX@A}^sx0z|I5F>3yvTpo58ppX+#IKta#yp$RV5XWfICIbG#jXIb{+cv-s}e0#1a$X;!{}X!873R7ogDVveh{ zrQ|NB(J1LX^p~X*&YN0Ib)mD?60cwfwp+rI{Braj! zPCSyvGJuvouue;SA0-kXvG|V95=snON0WRXq&5Py6+eYzw8?4;qwphCNPxoPJKJuy z&Zzqs)e)es_;J2dXL>=2=fBrbDgjc9Z?wHs^tLc>Vq3#cQzZc^S3OcD_l}xZIo<{O zEOipfVatUoR>KU2HWj}>bp)s@zT!63VRgATj~==yIbWtk0wfkcO!cb~zDivL=z31! z4+;EZK>LsgZzY=){5q8qN?}2^$yL?m-XFTv`zF;9psvuz<*X!hkAbVmcpQe7_Z`Y3 zKwj}9{#LhU`&{3nFam@XUoP4;98skc?1$7vfUe?u3ee>S(6-Y12^A8cu=t(=-fT?F zZ2pw$2<1?>+!{7Ur=}q~m4n65$(*foI#`9HXPm4F zuctf$|$5coqa6BNvu;gCHnW2N`Tbo7T(gOOSQ@RCu$`?YoUuPb!#F^@EYyj z(2k?_;g*R6=qvu&%GeS?li!=DkpPXwKcpJdXft|0iX=c}@zcs)q@H~6y)l!d2U0Bo zYKyOooLZZhhfp2?@`_*Z;^kG-Q}Zy&B|vWR&-43@`Q^GDt=xpt2#{8MUDnvks%R*T;D_37NN~Oaf#Uzr4wu&k2RwZJytn0tpaU ze47J-W9!3iM|}k7E554{=<`ovY(;bjN+m#Q@uRIlZHLX{J5d+`!isMb@e*EINA1oO zNr1@WXYR&D+C07sRT7}G_~PPKT77fWM}WTKAEk$H4joHn1Sl)M-AhawpFn8@NGn0X zUFzbrP(2Jhk-`WNR(vBjfG{^7fo0tdyRhUQlu3Zh;-|9*%?ldUZhs!f3C$;mt@or( z0(2JNk)3$==H8S?fV|=-pG4k{W-WM-c0Vd4Kw$}LKO8Vn-L^Z>_Wn)_y?uKZul1WsnkX&Mfz!N6RRK2phiO3GzM!Q&Zb5JG!|cP2kDqx z`S4K6BtT~IgA>RcU-$5E3M4>a@%0S^Vv@068+L8O_fOPEfWG28)`33OiMC7lD2gPM z#f&x)tM>dT-Pd_EWfIDg*DTL9?7d+6Vs+{xKwt4sn~~QYjFr*D36=>hP$B^mi|=AX zV!vj4vQ0`OKw9xHb`JZ^cF=8TQ5>Nh>DEV=rfyu44UjYw8|DsRT$Z z{@JOPikE)+&BlPMV_6B>Y=1nJ5}>sBMp-Mx!kg+g*t5~G3m`6}NJ4p%lR2I;(f(vA zB|vHM^Kv>lWtttY7x>q{E~ZLCc`|+SVZhTUk^qs#KVJ!wvW3Z<>Y!Jv`*l}Or&a>A z7CKilzq?awV_U3b`MHep2#{CkD0=B`)rBTjLvz;2wAs(5HbT)!H&|L;zz$+nqtVEF z4&@Obuh3rN0B1mMtwkS%Lrxd)tqw)llY$~nE=U|Z2cUha3#22 zsXAQsAbM90R@wkm@1=mcdW~l>*`JTpuU>(A`tcW_o<86t?#F;ISV^CqO<6G^N)1ga z)X;mRhR$X-*hXa4TF)vOtMY7=B^@qAIw%5CAe$j_M*70~Sm)T2sgwYv*({mMOsT1c zYyDbh5p|iCdokq_AUC7B%x36nZHN6`dd6?Dd-m1_dVRFf`!wn$KyOAZwAGQ3UhbqJ z&&G}9r&BTklCxQnnzbX$LS$`-%cz!6+62~W%{n_R`Pr0AfaGk({+TE6Zd=}-L#+g8 z&1NsythLJP+%3#l;8iD`zR#m(0yIA_^X6y8zPl}(tJDz-%Ps8Dr^Q}Lu>^?CX0yi3 z6BuGc`@V>Z2~eEPhV)r0#vB%Bu&jq)LcxUc3hpk3g8z+z38fX>ZVZ+d`#h#hoA{L! zOn~5Qjz`Mc64F~wv~#baXaYo+vn$cXRP0h0%iMJ$zn*#t&|A)G4SF$sr^UXBVhIpi z&T5Tf!)ooVR7@ys^5PMfZ8hFOv4k><#p$Tp3-6{_0>qZHLwP}?-yMvu_{V*2un+%< z?0=_h0%Vu7>#k*o9{vC&6CgR8)wfyI!^u(6hpCeQo!LC>&PwORXy~JqN+_MwiE+gz zD3t)IvyS?0Hx*XZktKmiCXms|DU_>4v?fQ^Ttz2E=!7TjemJD2gH|Cp9#R>_5kbA6xm7KV{8R>9t^1x(d zSc3dlxdfTaAppar-x{PB(C=rao~+@75sC3wB!)|oSS|Bn?lU0t0!Bcz7a|4NT?v)~ zV3X;>JPZp5tJfkM@0`0OI#0U&wkbG1&$=_C>@_ z0qn_a!|@;`mf9ZnW=$38eTbU^xRV(+>;&9Jd{B`|t}yRM%oM=pAOQ*x_(0kTOyX|ArVsu>giitZ$t+mygfe5N_aOvKk!HZS(|=Oe%EJkm z0)Ri9)&erwsusB`3HKJv%;3B@4$O%}*S+NtBtZcZccq>LPC13sIFd9d(p-2-R^d6C zfGGg@J!wsMYzgNl7Jco?aRg2Q;HmBZ0X(cpA0c)MV812BiQe6sFC}scAW!Yc1*y*K zzwAbR1#wfPyqLFwz)vJ_3IM-3twja5aq+04H99|;uqgmL8RuPsy*>tq;ydqRc=a42 zr2x{@jcL6xxNrV&Dlt<4b26JJ5=>nWvza%XPP`Pro6Oo+f_MY-h1JAL0j$X^<0OdH zZqm*qP>M7Hwa2Gt5hz6(f!brC4FpO7psAaxgpGmDAz%ssPF>p-G4|O^%oMOl8+D_MT*K~ zFa>`~j1<6lP9kll$m}s+HU*oeWKPgKWv7DsO}3XBaobDljgI>~2aV=lvphk++Ow40 z33@9sHs>-zG@s9t&1W)Gm_Q`G7RT(M{)W_gqLO7_B#TRdQjyFiUn`D&>$rB%NT7D( zDspmvLZ$%ZWDZ-{IQlH!*+F|i*2|^iaIOo`2NE;|K))-I{@O;8Ea)Qkf=ko~6Ey`; zC*%6ssi^T$d6C$M5;jE!O2`Dx5DCyvC1{Eal#m9$`X*36ji@OyP(pxOmyn|fn<4{= z-7M(DK8C0%GLYCnyjHnnW2f_*h%Q)C0S9?iatuqgmL?Uk}NrJc>MBx(wvPUfEK zoz}mjj1(p&95a2mme45xJ>~8yKra>XF-Ong{91yi$PV}_ua*;I+Up6P0^rl$lB<+A z)1VHqQ)DOMJtyaz37!JrQ$7o-6n2y%oC3g8KL4rUL`!L= zj4u#~N_rEKQ=}hx)tOSa;|t_B6FCKtr@T)>o9G)S-a_aU=}+{TTB9Vt`XCbhRwAbW z@{~`6X84tJ0s1zArU2-aw}J!su2mS*ZT3||!XJBghF*i&9T z>rMq9pTYOs74(l1It8God`48Swao5>j}tZpV5fX)(I`#n?Kk%jH3d+oyhZUgXx&H9 z6j?}Wvp?%IL`{(a)R&k|E1xH73ZPE8&#-|7!n*b>e~Gv$fIH=5!bWSnSuYgz#O*6Y zP66a8uae$2zONHBMfwXjK30rbgSZwB?Nxf1Xeod;nUk731+8v1 z9wA(c6qf|E1^=f6OOfKVtxlD7xBYX%rATqX^#-E9B3gbSlh7`Xe zT8b1Wu5}{dQNpE2H(cF_{gH4f05_$hOud2ITaft+K~n&9N+%;4v~TDCUx}LnxKrv$ z(zv^J{O`guwiLjg%xxfvcg`BSSwDI#F;f6@N>?2<=I$N-yAnJFz^A-sdW&9r5Htlq zr*yz+?dV@bv=l&_(y_cZI^Kt1DN>xY-VXl#h?W9qlez6E@#ez6bN>JWrU2k%?%_!u zu)WFlAmXI}-jq(3?7gXn5H1DarnIVgJM<4HSc(*bHCtX-&ogX-wa4FIY*FHCJ9N|&`Zb}!QLe2|}5H&@5OYmgHTnn(2Xeod;r7hW1QJ+U! zL9i46o6>IBe+1)10;T}ql)B=>j$WKh*c9n4!lg<mN&vUvwO zUPQDMK%3GV>VgM3wh}T0Ag8r`&}UEdoU=&G6u_KPPips}lSzW6NIz)rut|xaDNGY} zw!DI1DF8O5ZL$AA%c}{P0)SIGNVaZ$cn#4~0BuT}wXS0~*AX)XFsHPU2p+e210hoY za!Ti=_A#3`5iUh~%dmC4<{ycc0%%j(o_V_&-%79)X--nU-&=jc$Z7qi0PS6wpozl)( zrL?yu`e9b&P(IPlQ*d8%uYxz%>Zj8iZ116qZ0 z%+C#C#AROTxYdX7{jBB{0Jvzi{QxPmWv3vNQQ`|)&3_OdAiRC2#M1Kr;lfgf&I-bk^5JW3kA5`lQk}C%vE&CEmfGWA{`3Q z`D8}vcx+xuHWXmlN1F=-JfAna+o11(W^*_0+c?RQA!P5 zo8(O7Emm!^q5!L`HVuuEX&PQfIuseMOpV%P(^r{ZPf`>aCdDG>BlSj-q5!E+XS6ys zr}1&?=~@|E(M1z+136KE(_I0l*d)RP!m8k6RB@c=WmM`$Y(p{xi(k<8fNrobWnKD!ND*Xq^ zgCc`GNaI9RxIRQ46yTAyDNgqw^DeTX0Gq7!iw&=E-Ax)4S)}2Okv~Bi6rho{jy>r6rhv2 zo~8-EZZU5)(O)GS3b6TN#s-(F{+LN695vR+<{M;20cKfiwYw(&-zFIfkja{J-QI=kBXC|4n8TV3wiAOfmCO`5UQFfXa}k|AS;w z1zEG*DNRi`^OZugUfQ7=g2!A5IuxMu;p|kNnOb>nmLKF1t=Z#9f&wIl?86u&PgGYK z-p}ktP88sjp-xkA3UoJnk_-jN40*;fj|>X!b@n193Q)Q?I~7Oe&vYT!`Rq$R6yWpq z%<+lQ2klRS6d-tCRtfsLq65i@0*r>dKWHAcDym01n5-zkDnmn4Rk8dX)1l--0WP1) zT$#f#p`6Fur&M(C33JiYK9z(hKqx~)RFyfcYNJ+fVsP4UrntX3UvUcfSesz>G%}+A zvoB;WtGb!-YE41xC=#Ri`ykffH5Y=|F(gI-V%clZXKVHGQo}z@dIlL$fYIIADT5*H z#3-3ifXN-%VxsqaFCzsCP{`1jwYw$o+PD))i6UDyrkj#!+@3{76d7mawQ6HzL;*$_ za+QQNXQz+~1*m*rxQ)O>p;^c`=VqLME8gfs77|txJ_X$)|0Qiu5k(j`{(taZ;Pz;}fb%-#K0oId{T-ZVi6reC< zPm~2T9)+&_IGxQfRVc~F2y<|=%#HZv!0yb^ihk_!d6 z4B4GDc!e+4TJX43YgLr7n#!CC2~lLRkWG{(Cl!ww@}K~ZArIOI&zOnQ6qeNsib{i2 zD6*I(_}Uach%M^MEO}6X$B?%H4W1>FW_@;!G$=r0$ji<1pi!l)D6+|;rcYsAO&%2BG2}V!Jc?HxvlUg{Uq&JnAd1)9u!&R zQK?Pnq2rs$g91E;yyi1_3yiz{JkRxwWI_QZne!7>ogK}>WYY{(-bOMMAd|VKi&I8? z16y?`H<1cO7HbM_P}U>*o5_O$Jchg=H+W5H%oK2@WO6RwbhrsYWz8+5M3G5K@+@4y zDS0a?QGinBCM;^7NWmNE-$ptVnWkf0ly{I01?UWUr|dlHkSuUPPvxEDM3LbvvK*El zB^?UT$zC%jvnb%V{5UC5fYRrOyAV9@QWxgFyobCfGF>!d@G zX*$N=`7P3+0G%P9+L(Wtv)rB!k`D#=WOc9*@P2-WlqfQsMYa?4d*nj_K3VNm{l3s2 zk`YCQbI5jyK1@Co;FHxUtK}Jegmfq}OviGN{*-hmKqqsX9+X4D=O_I+2~mJhR_EYB zcj>Rli2|Im+Q|96roSd5iVW8x%X#`c(xCvIAs^hD_rNFIhx#a)QGi)ihjcq|J?fnD z3ICCNC^B5|E_IrEKha-EhXQmmx5L2Bm%ow-1&CyB;nd2IU0w_x6yTB2N6+Sa8eqz) zI(2+x#{ZENr48AMzAK?q0Q!(GtB4J~YX|xsBtZcZLtgM5fP@;z)SZb|QSU!rL?#qq zGUQ9!;xq9v*oO=#z+lKHl=Lh(cx9W>ht!7y2%iG*hupRrn8C`dwl+0v_*R{GgMfNzDd^nXHD6+?4g{~Nk37@Lj56n>y~9D>Stu=0cL70Evu@ zBJ@bej8R`i4iwqrU`7#J$$=t!9Ly-9NDdU>Fy#BqB9ZW7EEUtwzl2mMKqVt%M&)$& zW=_|T14Z^Y7~jDw$bkYJhP)g+U_}qQ5ME6t6kw8(sgx>F)@1xOBtelq65janI+CCO ziHwZlbxv5r$TyG$1y~IEN{<0+M)wT;P2@rWF4^kN^~l6b)c=uGC^AdMbmwm+6^hJK zG2Qt)NQDAaGO}K&s(i@o{aqwO0W#U@Nvuiydq{!;B(l{A+jIH%kp%@kENrD0-GUCy)(0`cdDS&?1E}>G@Db(|Y@{}`PF9i1)iHGW0$abTT zkp~5M4EdZxd0srab{~C`j3~fp*c*4|$EYyj)-d8y3z?rH9}4gp@~Pr^=FoVdS)9g4 zYHBU-I-*aL6$MxgyL+EsF5!j?y;0$FBtro*Lq5?p&n%iK6{aS!0H?~_7fFZ$goZs+ znP2Wqm^=HvOfD3e<$|wVs(kqxxln-1kiY3P&w|D;cINSY9TvD+)qL>sn0%X3D$s$-OY;*FB*$LjUp07Gn z1#Sjbh49B@M*((2z9(Xyg;0LAIFB*8qV#`Bi2{_eIf}p`cPH=ly#Go<6d;t%xkaT_ zZk8-Y|3*d>VD!0c)+xa#kWs%REsD(2!ex|f(f!T&e~=bMW@#ypqJKj8ThgKctuJS? z5Gq<>^TI!n90kY?dyC5a22P5cH9h<S4_&%R1=3d|D!OkNb=mCZg_^D>jg z{~;xctW)yljQ>kY6rl9AEH@VsQ^$X}3j8R*FPnX`Duw6ckMengA^!0Vc2_S;!;pu&2(!Vi~ME0rN#-*Cl?BE8TRhR0l91| z=O;?DipP5Lpa72{-zUh_jZq&)^D0lu%j^s}n?xu;WY|logA%Fn@~%>&fkk|)h;1Sx zitI7cY^vq5&FBSWL;*&_-orFt9yKbpT5~$@FLM`=4@LHJs8O5b1ff1v@|C$4k`Voiqo?#W$>YRN0sKS0Su}2w?5`FM2~dE*u+O)~EJV1BJ*)|y zCKHP6Fo|e-w~+}2m}F$U658Ze$%7(0ITF#-UP2}mU^3(rZzHA$7R--PqgE`5eewB5v7op9zmB{pGMZ1#vQua@^X7(z*OL!Lw)vQA8s11g6xrru z?rOM!d?>(Y$ZKx%sYT=UT4AEd64#h6%s9F=e+yYrfK>+j-D0iWs#NJtEN)Z%?%Tdt!X~_gboP{+WEeUOwWKxxPa9_K{~lX@(}tJdv9BtwzS zvc~;Y<+|c>7r9VmmrF~JvhOAr3UC>+!*pJStX9@cK0ziFV3I+9(6m#SEj2LzQHAVY z(xJ#^A)B^4&HKrPBCA}iPV=+mLIEyA_GZtg!jzV(^7RGspvY!*5gQDPxFkT)d4O~% zK%@lN_{0$PJ0Few%)AYviNw1svHW^WXQ3n0= znvvchSc}PV;YU0_vx;mkQPNoX{k?E z1Xmk=Mp_ivrWJI~|AMqA{w`=4AN{|R7RBEME#s>H4QWw;){u`k&8x|fbt}SS|9g_7 z0J$L_0$l*P5Xb$0k{AVu4f&+}f`~=>@Bc)C6d;&E->TY~;&bEwHz`qMoRa03_!}uv zWSWxCssEUlfD#2LWpF~Gw?z3I;g2IHicDvd&mX=UDN$sel5vagNlFx;G~^?l3ux1= zdGKB&L;*q>+y$VjQqW1hFIiD!y5#wM<@=KoMaC&vJ=1}tL;*?}T$xd2&v?!cCLM}Q zSEZl>{ZO)^0IMON`CdSa7x1G$m82*@Dua6>Rmt<*=}#jc3h>G997_A3t?ub45~BdI zZ)9)z#$=Sb=+vn;YIQnnJ?Hu{WJm#q8C*9AF!cG@pFwIAe;1h-=4u}$Lkcj=;4+rV zJli|HjEpG2XvjBLEuguNa#Ei_b`)Tj!4oGczj!F4`^3q!$c-Y?WwBYC$?Ki3V`M}D zM%nc*`I^L2NQolTlxFQsJkKK~ii}gTCMGLMi2{@|xcSXGw6%szD8M9xqxbNZZY@bs zfK&z-gY7169jQ=&N(Lt)IGE)>Ot+DID8MI!Tl#%%^||Ci0WKLl@ECa@a0_`+WHXO^ zozMB?LXlN2Ry@NJku@sa&DXW0LIEm6zJ|As^UJkL;KnGa3>nQ{Pv8^)KICh7V*>9Q&vrFcJvJlZzBZ? zQ20PLGGMAuspuTIiSQ`^f5>yvxaCLP>!^y*%_Kkp0z-D1$0eW#fPt!f3z<-W$&hDu z12Zu-`c{&l$Xs>=EB0+2L*TxxtVP^ zg?e!sN6-QzC8G}+EPb5tDFA=SlT-sU4*aem(>)|Y0U|@*13wrMRX1AIdSTWn=S$TI zXNT%S?jt7(a2oQ>HiK~rBl8)Op#Yg7yYm}Pv#X3XLn_CY2$=$qZyjz++ZS?Ih4>1= zQvm#XhYY@k{eIoelGKKz`?m<40?>y%;K2UGc+k7j|3Q+V0Er>rv=N^~sXFV_oB0{1 zUTN`^Vol#m^&PUI0GlCCs^haMJ3AOywWi-A1qx6Y^4^d56jbjJnJ+&iDGHDp@+@Ou zQvU3Dm`o^AP{LUB8_iO&P!9GJ-jk4a>!+kZ0Sd$JuRWmgD0H=7KPMRqkQwq`UQr1K z$q(}ZqGAgk1wEYl6&X=voss#@=da0#BFl`bg=)nx`W+cjfYFebXa+BJe502A$b=%JC2Xc%(>GBbKq?fVlDPrc zC9OiWSt{$xP7fj%3UC?nfvLeOzIdaU4~!`fAtj0oQwj_%4<{uGP#U(QY~V4O$|Y}v zc?8)|fX%SiA?C{_IH)<2oG8F)$hW-AyB_(*Hb;{XMTQCahB(KO5CsTj&RL`Ckbk5z zLPiuBu1CQE&r))t$aXGSqlFb@L;*%w?O_9hh7(DN0+fclZidg+;fp$R0SB(qhWMYK zL+BKMKICOUe33SnzcYS zOxWAdXwA%EQ$Pbdt!Byvetb_9ji>9JPpHIjXfP6#x>Y;;Anm6%rRe|*)Vx<7qo6?7Mvev4XoO&Lg7_ISpX#(@b z#7vRS^qnd+ryYDiP+%<(D+REou)~&E^Zd4^fIC6B6oC8o^c4qAO{%R*exg*-1$c^x zDS-IK^dX+c$IjtH(P&+wr2yJwZr4b(0aoLQ{Df1is|lbe78Sy#NH=WkUGc%5A#4i3 zPGRGwQ@b^T`J`^#8pKSI&hlJpXJ9C9_6sI=-ukmjZZGI5Nik zdc5qQ->s3;}mS8CWHid&CfW;_oMt36D6D zgcK<&o=vCHC|#;u-rpliigXoE?IX0jnm;5`3Lx#IC&x8XgyHQ20n%|;b;%= zuZficSg%h}<@bU79YIn6WQz8H^>MC0O4JnTN?N~D{f`7m0gx%0n*^Nce<4Z=piI$} zH0VVCD`8RqW{QTSAxIJ(PY zcHuvnDr=A`E(MY!p*~heCGx4)Mqv{$Zw?-8FEyuefrHBEd||wpFI8r+30q|0T7snj z*ko=&_u}GdgN1=LT`j&6sqHG@>j<18jj3FiC{*%|rZc0!ZX{R=fKA9JWO8)DsVu;1 z$Au^q=MpXj;3jiKOlO{KX%y<-aL*@Pigd!Q zH~erfB3ufkeiuQ62bfBE4&=QkZgLjw(dhj=T9y7*U)%hY`i&*Ya&1HQSIZ7#Rsh63gXC;-$%& z@73AK1o8LEHt{VW?oxpDYf=EqK3pbp=6nLA0Kkn&luE&V%ua(q=I=-(8Ont@ryh5J zD+71j8!kXuT+>2X+;yFJpM`N_!gypfD2>mRrSatn+wWBzRjT;QqmTVsuy-lIJed`1 z6=$FEN)KdqnG`v+juR#5-UY|v6?oaLaY?Pnzl~2j7vDU6{-I50PJLr@+1el?r^hcemg!n!*eDA?;P<` z0BskV&NLgBjj9_0&s1zxJ8ZmOco=_328!=Jo%r;bJzJFO;X8@p>WVYLu+7`X#KBjbbUl!D?K4 z?{&gnPTAvHd0r<&Wt+?~bj)FhIFVPF|O@gNY_+;*`*!kc~g(-!8JJC~Qr|jb! zD^t9USTVSi3@Eab{!VFXTA{y!=qa+3{y>ktuno=NDl(t|gN(F2r7A8&RvGY8!lwZI zjI=%YT&e>9a)PG-_}jA4bK#a(4CfX8R}nu2@F#Pn`%Z5=eYez#4xmjE6d-YDW-_5( z+L6ZvOr{>Zjw~oLmlfE$uuYYx*OLSVNZg&NtgtpQtCR2-ZkFRE{IsM>KqiBW*qE$Jp!^!rIa zOXL(lp3o}H&hnEME&u2j2%7@1letuKr%jW+aoht0O##r!TsN@uKzshsuM#yy`pb5} z5Bd!vr$~Q#TmH{)6E#Kp(>vhze2B;?fc&m>w}R?A0elk*eowu-P&MY?B@GJDNO_ZJ zyKTQu*c5=B@+Q&qEBuI{DFFK2=`J!pH|@U=HwAE~d`{c#p8W~IQviI*T~P|W?Uwx+ z(Nkn5=`DBcF9@Cj;8VV^u980JhW&Rkpa6rEw~n^^^*4k~0oW-Yds%MR-xD^Aq)1V+_9zAW5iSMbCUclcr0Q5%{1?$x zT$9LPpi-!oW?J}$D(+s0d6db1rQ=@sYII{S-+^vy(R#}kk1=i8DF|hh=+d4hyR>93 zjIl}eJHq4(>+jy|M=EVzg|u-gkRr*r%yG>e zqbM}*Byfl~l@GCRd~W}-J{ z$|c>%zn{n{GErO_m$V#*AI%b}{y}1=$VRF+3q_pY5y(G8mY3~?nZgc! z1W16ti{L2$KK)~{W~r>p%iRP{k%_Y2s$x82O3WvSogxz@2G`Tqtby3Q1Wy6*$z1ZV zGm1Mu!>x+={RB(_z{%WXyi)+%qxH`cG6f)~w^rg7z2GSQ3j|I9;K?jM?TobU9-Tix z+!U!U)Yho{s{~Au>Jkz%8vh1?Qvi5+Yol)z{%u000OVx0`0R{A?H_$VM9dVaF3{Gf z`?~~80l;tHDbBrK>q)*0iFUh<+N1676EQ`qi-mub{Uc(gNOvk*W2Ju~VhSKmX19?q zulw8)sMXF0iVD$X&1Wf_ZFG^yE zf?Yz#>>q0M8@_y!%qNqowR$D))&vo@<9_TVSkn2!b}Z>Uegof5?vqIdjEn?}I90ib z^U_3m6Jx$tHzEW1+XW#DqyWN=NmL*Ka7@VX;+f1o9-J_ks8wPvgUY}i_i=}S>;+eIAJ4hs{p3FCzC+Y4LNUKCj0i?;?L%r~%?XFsv5G4grCewW`93?Gy zRjNsZ6hN5FF0Et`2CLF`;-mo1WIoxG7*2l`x|BdEQk3QXs&fSqQUGBhJIG{8j>-R2 z{R|FLlKI+u1D{4JPM4}vF~?0Ne8)ZM223>S`1oggk4@SNM^DLo?cGE~U@|fcpx!D6 zP_Ij5!r_ae*BHtR=pRNIy-JK0KZiga7#1ufBj9=SJx+K$h`?OQXI6z>2 z2{BUub27^ZI{|aGR;AlVLB58NDF8W{QQ=O2Y^U)n2$%wZlbIkS2-sKWUQMJFX+>)4 z+G~iE0!WkDRh(>^+WCJSu~GnQG9N@s5Uam#y@60E05zFmVuDcZG<_3+QUK_ANw}>H z&N1_sYHvaYJ@te}B+c04Fbs;0dH^G^n=i)*?6I5h;Qc8An>fk>#N@J2yH}XcqFtazPwc#Kw?j z0VgNxqYToOR-<_}e!@%&djRp_8n~te#@mRI0vO*g^JEI=oy19zy5z*|w=M2L6v_Ef!lVGqWIm%b@8s+%ksl{E3Shf-xFu3y z^OeMV2#*5r+Npr&FM;#3ViZV?guKXJ9Ekw6hXf)g-$}?6fSk;c5Yd@i<*QfQV6lr#TQjXMwkk9A z8ai76{M`gj0pQ6T3E7#z8!c=!6S&_?+!Vl_%*NxLhPy&HvjF{mf~ElIWG;l*X`rnl z@NyHO_6@kvju!;OO%hh2$}+*6IzS1nudOJAS-BeE8=fG?j~Rg08VBL zSmFg5fW1=j3F4(lFJ7lq_3++HycEEj&`i_HDo#PS z#h)cwiWDcU={UYXuoUS{TC2l&fM_Ywo3xFl9sqrnU@1}z){J_-L9i6*1?%-@-zHcJ zfW0V@`JLBxjaf~D>O4ayQ^~k>TR4kVYR<)+=c&*g_t7G}S$}NNt-D29;4*76Ze0tK zj0khP-0tG0&t%-XRs_A=x;mJD#Gte)3I2j4a4En(8Mm&EwNDSGgN1^#=WrsY{z{k> zfSJtvSjWFGn4+i`n2k*FN(>r!Ox{mhl=P4U(I?qWQ zm5d5)=LxdyOy+7$O{AZ%$%M=Eul!`ITI6kak@5vO#&jX-b}0%z`7-gzFtEZ(|<%3ioOf$lZ9flRxe%ZOyuQ< z1eSF9(z=3-ju#qE&;CCAm5#e;Ejs<V}UMnGVMIIOmvkpOOP@y1=6LjZ`ZRipPY-E%U&!J>1ZCMywuF+73AfFOaaJ! zH)4Cn{{KQQj2H8z$_%z@i30dcVx~xOGFNI7xCxRUsTPn=B4i3c?t7v3kdj%RbQW-* zO}G>(E*1FbuCMYvmzXJlxv&3uNJ$LLt?Fd0Ji+|{BBf6wY6_t4>lGayYJ3Aj0bWJG z6ad`s7KwS|9b*rrBJ_7R2QHa#Dz(Ovx>J~_IHQ$`#o~9zEv!bb^mzHB{rFW3#O`U| zV0al4J<0{LM;QqQSX_i{u3C>2Myj=@GhVB08^OWV5!zPq9NIHX`_PrjM6QtApiJao zB1c$6wV%MLNQ{Xe(z1I#P+9Pg^##rJ1?v_~K@51ou#t@rC!Xk!GpMv#=YVg#>=$=8Yrgu0DI+X)9NcjcgVVsLN?x zPU=AMsePi529XaXnGeTFrrn6fnzfw9lC!Y5)1(?6`BD|Rv!ei7P9u+lsCf~A81`uO z2-G55G1B|S2@}#}rYGoyd;35k}$vUiO9MT}@)g`@WNP6172WU*Igmn>0zUy8> zei4zM5*hiDLfP3-b((^%%1sOwMwD8W;%}Y|w)?Jy{xk&N;54OPsB%h`BN&#};|GbX z4;2D&8Km9tfd?5x4qSm|D>PU0vTCKn^6>IjDH#c37w;dUdsuQDH0AGzA18RKaNmOB30Yw3IFJ)uE3TsM&uAR$c+O=zuw0RY6 zF7j2c_&8aSa$Ob4y++^+t2(P<;aDv58a_KP2d6e89P58J|_w_W3 zM}TL9TGi29_8fFH`z#(o$sIYJ>Q(Gipvkc;Q)322$41xlKr|hfX3@vo4o1D3zrdTi zgBfW~J3z>$!YP(`97F(pvZ@SSkK6i54lkl!dM_gS=fnoS7#V|oe8N0th%F3FRLuLW z?S9f$N)e|Hj`(^sx&W&}b9$uV;D{A_ zJaIUyG>Pqmvda}1j$@Gsys=5Yv69ERyf@km>{X#0&F6IBTp%z~X#HTgIax0Uv3QMw z%A&;t+%IUGp>iTr5U*tr5Z5FC5$%e?c4#EF=Oav;kHbOnG0>cu02ueJ}Z3zA{ZKTFPLoJ5p0CPI__!DL?@qHOLHTey27FD8QFp< zW=91~?at5b^elUB-SoDO@>+Da{E$(|aikzX*F za;-2S#!0gHsUiHxZ{P8zdw=us*C|+suj?JEEdq#!R+z~tGdXPrP_boYff+YjYP1UF zQUgr&UmZuqD^_Ss?J@H+v-V9J;|9Dfy!Mlsut=9XI`?*!pW?9m65qxt1fF#16BOS zt5hjIc1!FR+6=3QR8AT0f}Ap*qj6c|8mRa%4lbJ(%*7kdkBsB{I+#f+(EDxnd}#Vf z+fwGV5-?UR7={>th)jJfJZGJ@kgzbrF(H)|5(IPJaK`;Nj<4jH zrq6&SdPpat>M_7l69F}_aQ}l*+GC36&!1)YOn_y?{T-tSoe6B1e_XPy5zatw5Fo}% z?te1A$Wg-i^N*9mgC705jQ!7yJ;o4V?fh|=zF&3eGUC57;;`<10Wpa-)AK3F#>Rcj z9*ilZYhOUx+8w2?ielpuux=#sfFT(28#TMruGy2w;-JitrL}D4N(_A-ybY5?1x<3iy0K$mq z9Z#8me5PA;4`u|qS1irnqUjE0v(u}WvbvGO82fyBxC^5D?+VVi$}wji8%n@bP1Fm; zqEmLbu89$!7f6n_8gjHM(&g)8n6DpwnjL)odJIT6a}4YYE`}7okU1};^e8rDjbum+ zJM_+ikR=xnkq>sqB^*rG*CDB3;oQh9>M}59GtPOBeZUN3_blecAY^(t_VLLpG)DF! zdyCU$F-(%rI_`-_bCG?E&~qGguG0{15UCRL0i^=%XGG_BS6tFGl5C4ivXcgQSFeDG zk&nXYUjyu35?nEmeX)>%F^!;ahBLl_%|Hp;?H7>=yDHw2{pvx$qheuafSjaYYYfM> z<-)jA)^rX=Er|%w*3U%yfR{O5RWBodpFaqUe$Ee(07*DMo;?UEGuF|54gtd(<|uXO zz^BJVr>l4`meWITZAgY#ae^vS2Z`a1=i5*f3(wo~k>}*d$qI%?$bt=nkhKRvdIlo~ zLD(3@s&CLd&F34CzKap*+%S>1eS!QA4ig9nC+3Y1vlj!buTMkd+etp$Ui-A-guZ?a z->X(Tw&H{szKs_Q!m-O?pcWkFLOce7)p1=OgXlNf4D25>>A;~rg9OU(Gne)*!+0K5 zhVdxrGHlTJiswj3873}Yps+G55hhWFpSg5lWmvzD);h{J7gdIzxim%@UNT4-E=?>` znf_S*IcTYiUQm<`kr;!FiP49cBuTA|(cR1;Pw04KS>!OwHmepxt-*qOAx-*63@De! z$1`V-4cv=q$qW!+Bp%gn*9L38J1(elP!Qa-_uN?6RM#KUdyA2bJ4yS!`}mcyBI@V5 z5Nuq=7Q=OMLaZoF&#k=_B91EK@VamH4EYc}@3PB==%qb}1UBi~{i0i^^`8Cl8L_b2 z9kJgV5r}Y>5%z7Q?|#bi-_ErAW# z`7NYO=zhk%x<{Fiy+<--!bJG;SY<*+y`VCoyA8A=s>kVaOo=k_>Rx3+8}YiWkhP&6 z3(aDD>YH3Iwr9vAGjnnTD{8Lo5V&p$W~xW}90F(0$uX=QR(Jz^!E!2?Z^o@$0X?>j zcLVLX#DFR7r;tEsf}&mD_Pc%ufTHKaB4+LA=pjq@%W9t@X1xNs z>7#wU_40u%Hk}4{PzZaE-zP9ET22>wc!m%@Sd39wytPb`Q%^wAG^#d#8TT!$pE^)NdM;pNQ5FZ~ z{S^li^xCL)2~%lD*~4=bLP$4w+Nz9iAKkWTbz5ufn0n0iLSm}a;5Bk~Oc$_EhI=5C z|5Fu#C$Eoq+!jx;Ek(bmcc?J)iUTFD!|TPR?^pCdqJoqv&d6+IbfnsSt8T< ztd7qL@QAy}=Mz_ZZwoIlLu}S>Z!m9*MvKqRm2bDL7jyc>9AC^K+MIlmjxhaVPQ3_v zJvQEiBycyU$vV!y;|NcKv^XhHTo!8_9)UG>P}wq=P##(nihy-var!`+pc;!ttx8b1 zMxb6Q>NGw;Rb};Xy?WTT^o&^RkwVe)2|I!OouGOmI}XwNF@xPNu=nfV#fV+|q5Hjk zG0F|BikSOV+BSUza7P|?TjH}~bqVe_X~XLeq7TdXEU1n^wC-LBa37?x(58PnazO2~ ztFo~=mD{=%4{QmBiwNL2SoW~806aned1Fp0r*OmNI;j_z@c&d2V;K*?F2w@9GmOczSqT0KgR zc<$|s^p~5P{fW?Vjs%oz1&#%6N>CE_jL3!vb=5S=ahW(r+C zd-LeH1cp3$uFR7Y0|m18+g2qO{9;z(D5HUF_7XLMt-$V{!o0RqHfBP_WNKAna&%WR zI$tH$XJvGXpMbTMS*Kj%HE*cH__o|EH+|?sGO7#k!k{^4m|7VZ(ABDi@(4n2uhqAW zn7tt#cg^!qe2!mb?DlyF>#|r}@q!~sd{N|76gjy7#NepW+SxM@5s3{YXoD<4YL9J9 z8#r30ld2C!IMQWQ?t13Hz~qir`CY=+!X09e&}^Y&#wmn`@Wbe>M;-SeR@DO|p0*F% ztY6EWhKoH`t6M&pe)|TakhYLE=gG7=A{bzC8DIKFH;W-PT6EhucUxIR9!0hXhiig^k zL^{}{MeevSq>a!N+0TC4P7HS|-?4^(hua}FM*BJyrhz-bw<4}n(VkTSGLKBm%bXFV zt1AcH<5;fZ=IkLVo5E~&geerO7Qmqt94(mygN_M>FYyS$ZAK>Eb0Z?5dm<~nuZ}AZRR7c&^H)yyr8MZPmhlmK^^q_;Z+y%ykJ*L) zM74KcA)t0wM&&q+0oBw(VP0CjmR7r~-g9CnE0Ai37-n5oopWDD(@|ASIpt!YX5GpK z>z4Zl8V{>Z%4ZY9Fp+!pC}--C`)1mXs5d7MlrXx&SjOK%1SE3W#a|?q=jrt)j++n++H*LqUEX|?gyB`4Y zt{$VudDohr2~1Jbv&b&OCORf4N)Cdedmocb@-)=cN^_C8Zyxfg~W>Pq|QA0V2(SyM7m^v;^ zBR?LN`4Qb8hQDv+iNF|@Cy~8P(5!J-=)9p>_s2|9kH4WC**0~V_3}s<{MW8L((BpX z_3WAXa^cds{A?rd;J|8Kjnk>aitdQeb=*%r8#%PsI;C9AfF1c8>#sTa8*R;KWWx{| zi?oaE`Hjq;=%y<4^~IurQQ#ggn$J#K{ok|U3%4e!jJ75!3arWhVJ*7oL|T)jSy|k} z6z@*k`Wu#?HCUoqWm4oyRGCzZWPLMyj9JZGw6fa$H4Bi)Z(sgKHW-04kWIg2?mkLe zUbe)xVdaPWCt<^6Mr6eZ;(!f17u^4$9e?sKjT&17ZFzN!>F)0G1elVEuT~z`MP}rQ z`RUqrZkWRsO8EMUH5{I+)f=j=;ThL(@C<3ApLN{7uvI+Z%+QBIPaiw?WLhtwI7N>_ zdZLi=p)NiNykI7}!RTp5*GU1syH3v6swxZ8sw@Up-He`A^~P$I4q@3U7=c0(JvZ$g zgD5j%%}PWNRaaL>mB9$>V<<8qxi5;0yFUvi%S}iKWNc)+5EYkdWl6w2n6|yTJg_Y* zAKk-*Et#3X6*-e**u}+~nmoJyb>xKH9 zs^bPMe5P|F>RHEqfTPa?kOpexV?VU?a5B#2^h@9sUB`Q(kny38pA23w6J4r%nz4Ey zfq&pq9bw%X9NBzDBDp6qE4-8nrbuK?N5$pkG>?aFC=Rbh7rdQu>##e#8YK8q(E z_ZKH1m-qMQvV3G|1tY0N)|w;pU4dKWF4m-VO~9W(sIDW4 znLL5KwGzfXlS%KTjz1kD{Vbsjta&1_yBn-rm8kV*z;4(lD~EMKuG*rjhLe=;Yn8Lo zb6rpiuhvT2Cg$#wr3>5tcrE-%>Iv4W1ZV&HS@fW?51Nk4Sdr5g$edO?b_QUjJac|n zU@I-V=QHIbsc`5=s=-dB)F>{&H;jrZnfRyh@3TwmxGy^riL=+nRhw1{_x>s>N)6|->8iYM4~sh&tDQ=tJ~o)Q?2 z3&#-d-xjlRr5MZNXaQ?+R8y^ETc6A2fndF~Vq2zPFGO_SeJS>m^% zc4>O8=DU0!QpqedHHUh7acI$sNA=|2`G8ivgpv(lp%S;URNjQ|^6 zKP(&DX(QAJtroDo^bl2n8$V4|a4+NAT@@fSB}IY|V>a{3Tb{p-Wn&;x?pkU0)sRDLU@G zJY%-!IVMQQ_XCLa76|Vp*>%ZR(b;?$F(aJb7ZnV*cnTMGOcpBGtXZhbgH@v66cHbA zM%Tl&90gFH(=W+Q^VB06-7R!Qqf=S0HVXTDd*x5AG+GK>Aa&Q=WlfH~q zw%N6YB~w;WFYFjfexMMWlJDM43(>_~wbhm}uYAi!k`&xe(n?5~R-Kmhx-QJt%lGl+ zt|Hw1sw%s(V2TFA{j7L3SYnUtN&)bd{avuAx?iM)sP?rR1Di>m0xA!_A~2v_dJm8b zs%f^E^HpC7bictjgDvb+y1?^AtHing#Mk^ytZJ66*u06d$e{1=9iK}?`>(f`W|l0? ziyg(BIgOWVXr!T8Di=T1{9x(m(lOlQiKWht`(Exh-cx9l_g?(S$sgdZ_e;exE$yNG z{xcxr7$e2I$L` zq6{s=+Gho43-lhWrK8Kn&~6J=$Gwn;1r`b2N~M!ObNVOJQZMYpj6zyPR_w7zWJSLs z5=7{=YXV(VW~fUk`hr4sEE_{@w-~#-16eoEKG|zW){e_4kY&fpEVCQ8IPdFq83D9=UB<4U zvCNsuBnV45*Cr`R*T;|LG%KuusBMK-lB`uM)fh`%OrO>&Di;4)uKLz0vY3;NK;nsAhXqy zY>briYNTK{Mq9q7Q{SH#VrvW*+0pclEgA{+aiX9weR{ zj~_lDqMyr0o-+{laO+1P)}yBNKqDhXecb?huwwVofyC}%Mb}zEpu5&;|NejpWr~F` zYf6N#Y}nn`0C=r}B8*#QBv4-TrlA3`dm{s3KdK(9>wV%HM{ULc!IT}`+O7+LC_CY#u3wLTn$*I zcT;qvHg_7G{+}Ffzr^Un-5Pyt1}j+qbl(!-u$Rf)}a1k^eFtAf#TrSS=dCG2+95E zQA7~AuCN5`?x0Pt!bW#}T~>T~V9W1Z&a#dlxRR zh6;k$(3r1=>U*j}psmPH%vIqIEpiVby)q@e7PxG5#n^~?$jyZEVaNTq<55o!6i-*l zSNW8l$Wjq&fqalt4>)L6512mD85W5`Mu!S}14zL}kDfTv#$rW6LElY*!KinH31?;3TJ)6%2#4$B?B~$%(8GKV??nvWBKMBq+qTgLt`oySzO$=(Y9S9qnpz(V?Lbkq%Er& z{xz~M3Nt0@-@uv9`WHK^wr&;KZteyWS-*Ab@pk5mdN_bZFZ+#I6oIWd3-h8)M|T03`Q5vJ|-dFzh*lWp5dW zAme3hvo1|eVwYB}s&aA#-2?L3hcyVNvei5s-)N}j+gE>!+M6ey= zF=ChTAT1t{X<-d*d%le%0RV|Q7eMWPi768e(M}+7%sgL1+G31_tL%bzONi$q-g9eN z`?6;tfet>Mmko?;GzMeoWg^*Ap+2uJR;M`m zRlnEYCk^3%Wfdt`#&r!s>HWsn`49-XXuCc8#vtz$hpo4~R7J2z9;T*!=x|xN3{9a0?-K0*pLz!`l?jV^_w0 zp{>Gt9+(DuEf~i-Cj{>IqVXJ!1GT=HI8L%wYq%T*X@sFGwguLaa^p1&RK=dV=G=_K zynF5Y6y&FGh!?tzfVdFF!I$A`Ibk*@%!(_|a>6Xi0L%icz9nb@U`>*XcFU>rTlb<& ze^}vO7J<9Ri*39UO2ND%ni~}vE6j(<#$GJxS73ynLrfc{oyrL6;Sosd*W9TvKbZw{ zF643BJmEzYl^kD0{CE-Z>+QR7QWHz{vYwz3s7@5hEUSS^)z+2jC{wAdz^GRyH2@uf z+YBfD3|=@^EfWq%5e`W8nUpw4Isa1I-@F)AIvubH5A_`iYqawlT@&=?76ng_mCB>F-v5|jEN^XZy+JZ0;q~I8uwcqv&hjz)QG`yr$xu3`+K%bs=s%?L))g)mrsD( zS}*Hi&+fWKin!mWxvoBajW-eOVNJIZYy;6n=PG4i6QMhE_s5JQW@o)VPRz2G_9Bb! zNF~Wf2w<@8S6!Lkvtb*nhW9RFgRa#5e7mbu8}Q!k+G3OmAY3 zeSAs4&9ea5@mVw|5R**5B8HS(e=0Z9*dka9!czp9% z5smKT5KHJh*7hU}5{bI!O>Dcv;7r7|znmni%ih!@?3)#+)NN2oi)6Hyo#Mr;3ys>~ zD9ZtO-K63_SQmuu0B!S3?G+R+V;q5(fkmHPXVVuCi#4uSu|I*MdDSw)dB`!m{)HF@ z&&)=FpROMft%HhU(I#7m?a<;UzMq9rDQTQ#&H3ZeP?H3cvY1QD7jb=#$kV5&DMMI@ zwt8rq8P1vY>wu#_n;Jh=)yv`zOdX>F@}!k=kEj0`J`69_;$}nh3L+o8mKLX-;x>K( z6ANUxaZc9Kl|E&AFY%in@e+X$&z6DHT$1D%y-^ZbTy!#P=zT>^RL?0>H^$FYd zg5{)1O#f*T|B1_EQO;o!UaQh^g)s5eC&fhS%n-xWCwrnVb1hy+=IC2{RVms>6;h*aYmLq!W{y4=9>2PX&q9ji zlAnd_E}hnpvJU~=yT`U!wu_?c6g{=6+mecVI=lQh-K@2d$g&*P%Z>#md?e(aDTWr> z%WEcl)&{D+R(;bxVRRjh>K>7ezi{PRlizqY)t!fS-{+o9(@|ZWwaD5p2Hk{pcT=K4 zayK)c-kq7cxg$m~8nXuTDu2(X{b1)cK&s1LOLa*S@(V?(2m7j3-jugrn#eZDltjCi zkuhv#41GEy^##v3sUq<>{w_tvG{Kl6` zWMxJcyW<$31gPAydJK1ladl1L2C%6nUbfAquo>(Y2C%7cTK$2$!^UZP0c%>^ucYdd zqxxM{r!J@2uoi!#HFlVAoS6!4%=Q*@^QD@a9n6R4ex)_mP)k#R&X%0Cn&v`HEQ@; z+q6^0Vy>AzV=ODk9k40%AsjZ)=j2PKk!>);9SSNX9p9nGqszP+zfo6;C%SEPKg_oHIMG0c zwtA0T^^c8UyJz{wv~6FrHzqfch^1`1<#Ip9$ikZ{YXfh%P2EOWbwiX3_Z}LJXp{O{ z6^)UoSlQ}yHz3mR=V&;(iRo+GYFoOJ;!DCdO0sT!tPsF$ zd5FVt>(4@&Wg>q{VLvi($>faed2opj~huq^&@Ea7;fdNJY`F z$*Svqmo|J&fck7iWY<3CtNZQ`Xuz)aeGz!u&{^NzhXn#r>D3jRr}b>ptg(m(PaH)xYYS(gp{ftjhXpV{nLq>%$&hC4QF^>L_ zad`R}@TF?AUYpRP0D*SVT3d(Nsr?gp^v$DvEsOn7{CwPWt-50LB(b24eycSjMmgJ@ zdKGK_GKHS5=GFLeT+h&L9S|RlQvt;~g)l4XnlcNVXT(ak#YM4KgM$PtWC@J?Uo=Y% z_}*qPh84+j#LB(_+cJ#6Ay&nz6P%eVW0+gP7=Uez2TVC3Y*=cGCH8G#Q#>KlBt}yL z;ITRlEglgsv~^hFIN;uHyraTmITzc!VO-!9qb~bYVt2b`%2K^0zZJx)KRSwiyaLuf z=LXbmYD5G&AkxI%9?>HTnB|A65dN^O^_ZpOLx;8tJZ1%lT@|bMMKtY5 zmr)90-6_Jt05ygj1l=-lt-?*g{`c$(j96})tNx6AdMbDqX)nc8=F9g z7=>B424VGGMsO4(I0O-hh9xWtSuaRJATUMG$V8760jdVLIdpj+CKq!i^LwFpyfjS_b8R zdb&7rwwi4-=vwX(w?c77C5D+f9SV+MF8qoTG9R=O3C3AxBPl>x-`vZV0t{kO#xh&2 z&Z(-p-3!M-6h-B+_dn8pd}!5WOnd>cPtAt{KI_+n+f9Csm7@rg*rIPOjCkFY*U^ad zU%sx-o143P$hLe*ebkrZ3LTx?uIKx1sMTW>=0$D0Gg7EK>f4l+YN;W&U(;POS*v5r zgcFGR`+q9Mk3Y|TXZ?n?n>LFr+rD@7XBBaH<~%2dDAe7$BDmO!jo>*%fhGzk>r8Ou z(FOA&(sWovaHqGy!u_D?3>x-QO23TAl_NKsuxdglhOw*EX;&4t?FGx}c^^l9Dj0Ur z2$KM8pCpK1q_ulMj7w2v&C;T*x(E3jnW%vy8{|@Or)?gI<{gi6`qBJTPq!o78zhg9 z;Pa*BQq#MJPgl4jbrUhdy{A!Ok$So%VK7;Al}W#g^4xi4_e{Cg6zu`)V^gCy9~u|= zeAwAN1GUX_k&fDk`C2&=)838|KW7_-Szyw*cv_^!-P$r=58M=dDqJ==ShT-f3kO5F-EIO!E8E=!`deA|MZ`C7 z+j;I_xJ;vI;IM^LjizqlWO@~dCw7x)ZN!dKVs%?6ia&~{*;FCpb{KchR&P+=x>~Tg zi)x!>+$G6dztE>KJ8Q7?*R7aW?O7jut(aROfc{ODwHhBM#o0!Av2qi<*G9RQFv=e7 zk$wNr^km+vW4H;Xq_6#*ZcR;r%_Oc#wg*TI(Q#kQYxxg3QwCYXAl67|l~dXbH=p&? z{#3enibhf20n3486bKm+2A|i15#F)KNKx-BmRFq@3)PWv2iG$+T7@#suS|$B!bGWo zy8`C;t1&X& zjvzSu*C0UEx>=~3>6n!{_GHS-9QQhwfqr>#u~*zfB9Rwm$KbGaD_P)Jdyt1nO!rNM zvhWnKJ9D%#^6DaVkn&Q)I_6k#?W*;9JeSAQyyuuM*{YQ; z7!b>H8;iVp7_(hqdBcqw3xar9)`@Q)nIP>$mfKj&Q(%DsU|Bgpx~#CVh%SXd+Se%{ z2jRH~M2v6M^EMt?DIy;M0$v3Kt8&HFwM`r1uKUrZ0;?Lt4IB@8tEP}_~_Ub$9+HTM^+Q;F{;$054neRQw1dC+iB8Y zF;0zR2L;-syEnm;1zK9Zla~7x{8(|Jzo*P@(_M;cwJ{r$k$k z@1jR|2v`vGFfY4Id}H!28WS%L8+9o-EA`QIKC{*}ssrcmuFwn+dFz`C95C*Q-zuc2#D!sudRQNYh z@eoPA8GpgRjanfLyjA~lZ;%MyZWM2kikpn$?NaeBqfi##L&fb|5ydU|3sKyv6(Wic z=wI$DCB_dL#kEp#hf%y%Dn4u!%Hl_;_&qDpNAVY;__$VxC_brwxxbbe?=_0wNyU9e z@u*aM+9;I8&rxyR3lPQU@fV`_l2(W)zN~+_drOR8HHs%n#n+AENmB7mqfi$Ai3+!X zC?3RLh~hh1A)@$a{mXs5H1K_+P~m?>MV-ynkMS1_{9mmQ27aP{xw}XMKQ#&!{^wMT zvMu=q{(^yj*9u|a*ZP;ljy8&A zQgN(NoFEm?FbZXHl#1KWK@>~y7ou3M6(Wig^e^`zN%BOaP~lIe;`eME$M6>noT3%N zz^VF|dy6!1no-;;6)TP6HmO)`6w2b6RNTH9QLM#Zh+>^qh$uGbU+$lzfwPT5h2KQQ zI+EOszhK}ztq=w-(7)VoNdp%dg$jQ$6?L|*dHe+f<60pMOz2LWSQ!#h+5h$wE*zuYS%#v6^|Dyev@Q78lNpyHwz!s1Q%3l?wI3Ssd*`j@*!8hEc!oG%r( z8pTCY@d2Yy7H_9w9ebTS@E4-EQ!7LiAJMI7X8oo3kLp2D};f+ z>0j;+X<(Pn>hPCI#XlIul~VCIqfi!iqv8i_^LNKzh~f!aA)?qz|8l2fD(zzwD*S#_ z+7J23F}`?ly^FjZvuZYpK}G!Nc?M7YwY|3SnTQ{^h=0A~?q=RQSzQ ze2s147W@SR=WB&9aH0O?J|Ydg&?r>+JQd|DVPGr%f`Ot|2m_A(Qd1%idm_cGm1;4;tHdVv(C=`x=q@qwk>fDIGkUDSE3XwYR(7)W9^wCD5Zrp%Uni zMxheuFGisf=&weh5@?st>6}&x^jM=%3AC$Gs07->C{zM1G76PI`xu2vp#7*=R782& zAAg}d9jFzeJRPKexd+R~hZ@CUQjs%?Bc$R;qc}<`jxma3rQ&#_7?FylMxj8gFbWmz ziAJHKJ=rK!w9hdL744};p`tzAC{(nosko*L?rZQDxUba;!Tl`#%UvfQZ#0UtrDBs& zY?g}ijN<=sao6Er7TwmsNl5_#5fBCG?h*t9K{^Bkq>&yv1!<(aq#LBAyQPutloF5z z0qHnCVb@q6khlBp_^YgKOkwI9$#5(so9xo@X0IVjg z0jwu%0Bk1ch;0N7-9gaM-2@HYN6^p%9@4dyeIJxc&UwTj?E9E?_V}cSoh@YjDXc$h z5Z0f!&RxLcON7gSYlOc6Hwpg$?htgueS(HQB53Fnf`&dLXy{81Jvzv~Ur8nBd}|Q) z{oXnkVOMw@S^f{!M*&15L#!V)7B*DY3q2n-&EdoU8&?vH!uiqx}kNh5gs=sGy}9Cv;?#vXkvSUW^^KGMi+u+ zbn{Tr@2b00va4POVOM>ubA9o+KVbl1FkuK_I6)If5j0~gK{Lh^G-Hy7z0GA;lckbf zO*06)nqi%riN|vYa{==S3jm7=O90CV%K@ths{!i>>j9exn*rMh+W|WXy8wF$`v3Sqqw08-5+6M$Z?Y{&)?NfrD z_BlaM`--5aed{4kJ9*RZq>?usakoNv(~+%nQKXW`(FoB2u?VpNaS8DN2?z-RpAZrQ zJ|!drBq!*uQWA6@X$ZQH^aR~UCW7uGD?#^>gP{A!P0)Sh^RVS7xt;t{$?*#sgxe`( zojv~A!;vLHcf zTyKN0&A!&TU+{PUVIW`#VJKh(VI*J-K}Y;b(9nql4V^;J(CHo)`0uPUq>^pUHVE6C zYn}TIj~5UY0+tYd2P`M70IVjg0jwu%0Bj~~0c(9T1UO1K1~^GL z1vpDM2e?T13vh*S6>yz!18|FQ8*qwAZX}h zf`(4>P}F}crb{K;oMjNUImbFT7mw!?7629#mH?I!G;t+CGu99^W4(t2{+EFbQpqMZ z8-z`4wa#tB;~j*ZfIWo0fIkTb0EY=W;ut|gPZBir3_(NBdpOiZws}D++2$pKu+1yh zxvO}5op1wii*Orok8mIGi107qDd9iB3&Kml8^T*agnhQnh*HTmqY$D3q7z~OViWXa zaS3{s_yj%6#{@k~VuGIKQ-Yr5bAq1b3xb{{H9^mkj-Y4BNYJxn@o?M!r8TQma@rgQ z;icrV&gI7Ae1!aff`qRCMF?L5z9AF`lq8e_lqKjUDiCz+cLW_=muy@=m}^~=mY3T z=m+Rb7zpS>7y|g2FdWdGFbdFFat1%FdHz0@Ec$lVF6$S zVKHD7LEq9?4~GWGYpaXD!;UuyuWh1rt^poTCNu&}B{T(0Cpf@NLMy;*LR-LGLI=P+ zLTA7NLRY{dLU+ItLNCBlLSMjgLVv(Y!XUtE!cf3k!U({6f?n4q4^zg<{l&lyZ#4+_ zx7|7y8;^Go;sSON;sf>&J_hU~BnJFR_!MxE@HyZx;S0b~LTbQqLOQ@nLPo%8LKeVT zLUzD;f}Z^^4{gTFW#qw%D+b{*u36{uHNXqP4}e#M+JHBNdVqI?9{~~e|Ih72_E55~TvsA|x;`)n*A?A5 zmjsVv5|RO86Oses5K;o-5z+wS6Vd|`5;6f25wZdj6LJ8O5^@8Q5%K{(ClmmrAQS?m zBzz4>P51_omhdegJ)txpBcU81GeIvjn}?)}<%Y9MB|m?28H5|oW1Z_(F+9#k=n43e z&<9YE&<{|EFc46LFa%JPFdXm=VHBVQVJx5|VLYHTVG^J$VJe_JVFsWgVK(49!f${o zgav@_35x;M2}=P#5LN(c5mp205Y_?e5jFxE5Vims61D>x6Ltcc67~R^6ZQjI5Do%b z5sm=b5RL=d5l#U*5Y7TR5iS6JBIxJoXAi}HlMh%ospJFJ(;$4ndRymGA)qfIEubGE z17H9lGhh%Q8(;__Ctw&M4`2i#KVTH0AYcrkFkl>^C}2FHIA9{7Bw#Y33}7muJYYJZ z5@05w3Sc&&8elF#FLb_#l>TSR0;%MN7aN2d{@przyxc>o;j(@O)~_}Q>(^T6HsgE7 zdcroqM#2ujX2Nd3R)UWB!^5O$GIJTe)$cM0Gxu2MR^stK!WzJzg!O=fgiV0Mgsp(1 zgg*es3A+F%33~yj34a345)J{*6OIBd5>5av5l#cH5Y7Rv5iSC*6D|X860QMm5%m7< zdg#$dE;Kr>{DDEZ&_~v}*m(Sy5Et;25FhZ2pouR%oERn}UP&dNtG5PW#Cz-Pail+G z{j@Q%KC)D@{sV)sKDu@GIF^T-3uJw4tdDCD)_-K3tBDVO0zw_Y$AtQTPY9Zr)I*&W zGU8LIWJ{kLgb^vMbC(g2l5h=>ns5VN z2-N_22%4DRLzSU2;!CMy#8(DkL}BaPJOq4ASO_RaSOO?c(8Q7+u8x)wrKFM(WeviJ z^47WM2&hPS1^ABe7EpztiPb#JUMM4~OC=*}8iWzGt#gfV({%|=0rd$E@FPJJ8+)j` zNJcb~N=7s{2qRip=UOA66`>uV4WT2T9YGU2dPuTTMs$)&MszU)dL*%*g~@Kg~l6|Ci$FQc1upgAg#sI#&|`zY%o(0uK#FNx(v>Bw&d_2v};JyMch^ z1YN(%!?ckSuv#h!SZ5FdHdyEWLck`1uHWk6$tnrhCY1#2FbDy=taA}7g~xjcx_-Zh z_kIU|N+kh@3_`#W>)ciB;21&IpY)J+t^}NtN&?Orgn;wbx%haE7YVxlvWK1i60b-l z0e>5WfE(7i+t|TB1YLi}!)Sj8ccqem2L>VFk#+7ZcJP>>>;LnR#(&>veuR5IcdgD@hAb#6HVJ|*b-&pliiECI=-l7N&3At1GNZVUp_5`G1wCrkunBxqt5 z4<~2Jh^$h{h#UrCL@w*xP5j1?hoI~8dpPC4bA2h51bk%>0t#E_p5R@7O?U<>Ts4Z?_y z*0~dSxt$580bK~^06!Bnv4@AHvt>k2sboYSgD~P3>)bnBZGS>UY=`CSOuYY+nVTj$E)@c}}4z#&26JY`%3t=)K8(|tC2Vo{47hw({4`Ci4A7LTj zOTrRBLBcXXA;L;P5yBckQNnt_H-t@q5(IrIr98a7CU2>T)AjAOFB*X^PCd38QCBz5RCwvU}k&qbBi0~<(3E^`?`@(^*YoGdQxs;xmdS$peT0zB?WNCfCiNCN0WNCxg5KW*4=rxUh1S58Pc{e_ zI@LN?3y-H0>H=mG8USV!8Uf}KngZq#9AE*V6<`rTclEo63pZt(?XY6GLD=R>>s&`X zUQPH3u$G_!8$4Y5TN1yTgajSLi8$8}l(Dge#>^dv~=Ww@s3_`#@>)b^={*!PS zaFB2faF}odaFlQhaGY=#aFXx(l*SaHoDob0-F zt{fiUBvb_4B2)(4A$$+GN2mdKK&S_VfcS))fP{qG zfJB6QfW(A{fTV=SfMkUK0G|_H08$WM15y&+0a6npRt`Uz(h{No(i5TqG7@3}G7~-o zWF^D{WGCo*%;h1&PIQGt8`D5E3g{=UU)#WkPE}RYE&JH9|)~4T6rSyH?O^~bDp$MN_S;WXeJ;XL3k!X>~}!ZpARg3i1}&?$EbI^_XDr~FIMDNhMH<++Fa zkK|-8q>`I>Z4gfO);fC};jpY<<9~OKD3z>_Vi4AUV4XdV;bFc1RumKKKQsvI<67t9 z;c)^&Lck}4#DGr;$pFa-DFCSmsR8K-=>eGtnE}}d*#Wr-xdHhI`2ht9da}X<3St=3qEL8}4mTCk&%MS!SOKpOlrJjctf67~`FO|I2h6dp+ zHMY(*!Q~VPyna|1k3RwT0L0DhKI#(5ss}pJf zY7uG!>JjP#8WI`-ni6!TBj}V?1f9~Bpi?>!bV_G}PU-4l(@{Cu&r-=v^e_k~>t&tm zjmN(b`T+(K1_6c=h5<$rbi^2fhW<*>(1`>MokGyi=^jS=Uz=x0CHtOj5cWOSI`00MsJX2Gk?e2Q(x!0yHHw1GFHt1hgTv1#}>E z1pGwk0_aBQ4(LVb4fuu74=|802r!f|3^0-~3NV(S7doDxS2&5FS2&fRS2%;9S2&xX zSNI!2uW$iDuW&IzuW%_ruW$uHuW&U%uW%hfuW%zluW$=NuW&m-uW% zukfIUss3-ihoq9v0K#AUp&- zCOiQ=BRmJZBD@B?BfJMhI`%(DjY`nNMJMRtViELkaR_?2j|h6Wgakd@Cj>oQQi2}t zGlCv21wjv&ilB!}OVGn*@KD_U^ZATY$$QLV5Z+@p>s)p`&PB)#$VbQzC`i!6!UWAI zO3;kr1kEVv;mIZ0RVk@tS7i;tuF6~ID&X;Vgvx;L3Dp2U5HztiK{M(RG~-8tW;FIt z#Q%>tO{9`tH8%*mYGIu{ZtY>rZdu<3>)RWI^&PEqo$$B|p(~&}p$DKhp%0)Rp+8^{ zVK87AK{qjypkv1nbnLGL9XpYrW2X>w>~w;To#i3P8aexHspPJHGYDs&Z=G9!$BPL| z0Luu=0jmhB0qY3s0haoa~rEIN1s7 z+(|q>LpTe#K)49FOt=F0n{XZQ58)QzF5w>FA>k3=3E?T=IYIaRilBewEkSo0;kX@D zcN&?XJNlmoyI2UPU8}EWAQyy-76QGKq|S=Lwtdy3K+F-B@9QZmcLlH&&dW8!JiBjg=wj#>x|PW0eTH zu__)K`G53URVul^>IUKdez4Bf#N#@Ix_}0R9|4UCO#saa4$z9w8qki=9?*%PyXr#F zeRLz}K6(;#AAJbAkA4K*$3TMaV+cX_G2BCrLvlMKq>|eiZ4ho}taWZ29#0@l1WX}J z1wge*>$?cL^}Ph$`kw^d z`XPdD{U|}VeuAJ|KTXiBpCjnjFM61@Pu{^_Qpr2GVi4ZJHS65pczl!a58w{rF5m&- zA>c9L3E&ywIp7uHHQ*iLJs{Ev+h$~`WSbulq5)zO^dKJ+bnEd5y7dGE-FhN|ZaoP> zx1NlkTTf2Vt*0dD*3%Gl>*)!)^-LZ{UzT@}St>bPHiPgEa#-hb;&C2AUci@x0)RpU zP5hdm8Q%~z<6DAel=jg5nCz;IRI;n`24Pnft#g&|xC)^vpgN%jpcbJvpdO(J;3t9}`a+;uLIY-d5TqNjOE)(=D*9dx+ z8w5SeErOoqE)bj7Od)IpOe1Uo%phpuY!B_C%ZNEr$%uIdVZ;LK+;aph zBIx?xJ-mz|0ZXNlfE5NIV3l<)8a@qc2)cf~hrc69zy_%#V6#C8*lL|yh8=7t==z-= z=D(76y-O+y*lQ31_FL!5BH#c)*B|y!!e8?dsU+aIK?pc$om+)~(*#|A&O_Wd5^!EB z3HZw(1YEYx6~rA}CFuI=9uB>hBixWm0&W?EfIHT?>e#_Og06q)Ve}gbcqEksJTV9X z|5@kiA>cVd*T3>`JFXnzwNw)D&L9LtIAxEk;0Tcjx<0ChJpOa=fm9L@!yp92vd+E7 z4n8F4`gk5<_&fMWDhWtv5CRfe=PDu~F+taV>fvAi%`ur&5|G>=1bktg%Yq}MBIx?G z93u!EWeU0=sTAOGcCS1Ji;U=RWtTIUucpfN$$H}lZKe-4^UB>^oBLO^TlTonYg zCFuGN9tOXcfR0j0z)uDtpsRJRKLWZDbbU_`cYQ!FsU)DUK?vw)og0jR0R&w?*ux3` zO?8M=5-{8#1dO!Ky+*)jg03Iu;fenw{wkFOOf(1qldW?N5ipg|1TdY@959ohiE})x zi6(oTE0v6xZxBW-w9ef}z+%E9!0&`7fMoh zHWNw$wh}b)4-Zv7lvC`GN=EE92qX4d=W^ilzMqgAaDb2xaEPFZM?JLj-`tN$B_mE6 zgb}B$b43tvmQW0Eo=^gCk)Vl}J$&Toh0)1C1 z33y--0v=iCx*^~(p(o%ep%360K@(qkh~a-}dnJ{OcxwH;bd z8UQL0G_i_@0a;{3RjFh|b%QYC2kTt2@5AF-gyeuagp`1K1Wo+WL$2yFqM=kWqKQEm z(abuxzIu4<2%7*c30ncJ37Xi>!_QyHi1t#+h)xD!#81|_#<+&Agl2$lgcg7v1WoMi zVc$nGqK{NEqMtz+F~B<45}%hrgf@U7g!X`81Wg?2;g4K0Vw6-eVyr;TOOZf+kM)u;yzSF+(aDG20-Fm}{M@S}i=DN2m^1K&S~=M9{?FJsd72BbG`f zBUTvr5%OP2SY^H2Uo9+HLpTUnM>qo5K+w$19^(5UTcna9+YQ1wc39`ORSS=I5q1Ff z5OxFh5j63Dhx|2U#6hWK#1Vrq;+S=A4?dJ92>Su22nPXY{vV{0#Pc4O)shhx0GABH zh%45)R|vR9cni2rh)^RW-Xv(^Z4W(i%ZNKt$;|r(VZ=l0+(3L{{v`|nJRuAR{72Bl z7anS4lMyeak`ZqV!iaa)xi1kA;f$^S3J{4<1Q3OwiP1bf_3t9OR5Bu#K^XC&b?#{O z@Hj5v1mGisUn9vsMDzd8oyL;{_QawSc_cl-5!DRBh#J$`ba{(}T`mr4S98H9j7*17Z5!{c8F zx_*F%Bb6ke5>^a02mwQ_b5-zoIH4L~B;g0ZXhLnkSVBF(uY?}~69|m~lL*ZKQwX}v z=^ozsFO*Mkx3dhwzUNqHkLP*#GLNhujr9u+!urM5xp8>>J7EG~8DTPD1z{Rs6=5b| z4Pg#o9bq0|17RUx6JZHp3t<^x8(}5j55gM2PQrS?Zo($OUcy$ue!?Gs1B6|GLxjD6 zBZNNz#|Vc2CkRIYrwAtiX9%YO=LqKj7YG*te-SPNE)%W+t`cql{wCZ4+#u*@;g*MY z#pS~>3SVb;4Z?@xzIARa9zP_E2mDKz1b9N23iyvO1Mr+M8}O3w8{joz0pKlRG2lI6 zDInrmJID$^WWs7dRKhwyG{Qze41!)pY!46pZ|NUOCEsJ>8HC%3Z=F5<*h8LjvOZ$< zus*RtSfA877X^=#5uyP;C&UD#Abbc&Nr(qXO-KMpOGpGrPe=mDNJs|AOh^vMN=OOF zPDlgDNk|XKO~?euOUMeyPsjl%K*$aFijWUbm{0)lHK7oo7~yL`al$u%ZwcQ5N)bu} z$`Hx{$`SNER`gITtGw8>_(G~|5MFFm>s$sru13fVs6ogEs7c5Ps7=TNs7uh94Ll4f zEt@!j&ub%tu!$ztxzl*ujBpO%2p0h@36}w_3D*E^2{!=k3AX?p33maV2@e2W2>$|p zCOidnCp-uAB)kIjCcFjoCFo`J_t37W+)iDr7-SG`XNYyK0Ui${Gy;quGzE+zXyRB8 z3H`4{-{2LEHwYspTIasS~5fT;uxnBiey0ZF`v6|)UO;#}+8Lp+{GcnnxT_z$p% z@B*-e@EWj`@D8w?5D^DoNr(biP0($w^UyxI?7Ia1(ZEK7uA3-;9z(c?Iva6r)i|t{9u&blixu5a)IH3pNB%wFpG~pM(S;7Fo zdBR}8MZz$^CBjI+6~Y+6HNvle>x7Abn}jKVTZHL=JA_$)dxW`w2ZZ^6M}$Ry$AsSj zPYKHb&j_mkF9>S^uLv6eZwQ+K?+Duf5zg6b+X09~*bRt6*a!H4Z~zdUa2ODia10Qe zpdXI79^%)OPs=5I*N<-yJ}n8Yb64>=5#c%@G2tITQox)=tkBfOInON4J!cCVj2+bv5d2dGFmi-7M47XVcVmjK@rt^%qPt^(xC5v|xDTjDcm!xbcmilhcm`-pcnN4qcmrrocn@enh=gxrtq4&8Z3xi;?Fg{| z9SCs%od_QRej+3UbR~QO=tf8i=t1}l(2I})(1(x;@CzX=pg$o4U?3qgU@##YU??Fc zU^pQUU?d?wU^Jm1U@W09;8#LXzyyMRNGB8YQ#j2-y&Uo}u8tpzGY!JWc(!$}CLYfv z)B(&R)CVjeGz2UnGyyCjGzTmtv;-_Cv;nLn=r-4QxROcs{Q*|2HwgRQXq}6J$D0Yd zew&Aul_j7hzT@mL2m!mSb8YZ=51~C^AE6WAPeK>KK|(jcVM0&9Q9>WUaY8@9Ny0$D zX~Gb|S;BC@dBP~bMZ#FXCBk^X6~ZLIHNsTDb;1n5O~P!zEy8brJA?&*dxXV+2ZW`7 zM}!rC$Ar~@rv!a%&pqT#DetijKJ%{(!h3vUookQB?+Bd$5zbpc7eFLJH$W6ZPrwI+ zK7iYAA%Hl9;edFAQGob_v4Dhx@qk2xNr1$Jseq(}8GvMj*?`XpzX4JZ z764Kb76VcfmIBfeRshlyRs%8;)&VjTHUhE|wg9pdwgYk!b^>w}_5kt{_5<=04gv}g zjsU(Q90wF8oC17JI14C7xBw_lxCHo?a1~IBa2-&F@DHFI;SQhz;Xa@e;Sr!R;R&EB z;TfPB;U%C3;SHcB;XR->AriiE)+OlIR|5}azmYGvuJ~(GBZKe-*Tg#49gmw4dI21v zFQ6r%KcF>X5TGq#D4;z-H_^#Mk*{P|(Xpb7LD<#L*11@C+?@~y(39{Hpf@2QpfBMQ zKtDoKzyQK$fI);5fFXobfMJBRfDwcYfKi0ZfH8z@fN_MJfboPpfQf|sfXRe{fT@JS zfa!#yfSH8ifZ2qSfVqS+fO&-SfCYp~fJFp-ZNGac)mYx+QmN$k<`o9vJ+89Ob*m8` zuOaCA^&SSbmw*jYNx)`<5U|xcm*t1>csn6GU89X_j)MaK}PJ8N=6(o2qO+z z=kg)o2%!Mr7@-j01VIx|dx+3cMx2pKMw~YYBQ9F!iXz|=p*Y|Qp(NlMK@)Fyc+^=& z+>}a2+%^a!?po)XBj7%vCEy{U4d7pbCO-AhrIU>KPbwMl!XS)zWu5yT0dEL30PhI3 z01+&^q@60um8) zeG(64>PkRTsU+YtgAkD1I`UgyDd12%7k zh+hrDhzZuY(YWbJgmHi=gb9FY1Wlajp`()#v!s#{a}C0XdDgjY*y94i4!|P9Zom?P zCNA?3ubqroE|rW}We`TJvCbvI9@i0)0X7hl12z#fajSBR-HyM#L}(BVt+S>LB1lLVZA7 zLPNku1Wion;a&?F@v&4gBC$ajk<>bO0s+YgrvaZ6&H+*oG%=NjVU1)&YN=#II)gAG zgLSSQ0x}Ug0s(a4%mReyfUgL#0EG#fSk%Lg zdNQJzR5GH3K^RfeI+p``EKSG_C`-r(C{NJDN*=y$CL_L+N=8&Q2qUUl=Vl?G24OCs zCSg9HHbE2XdC2ZxcYUd3L_>oxqOo;uKLVN(4g#7JjsRK^G_kdZqy9tNMk*Q6-XM(V zXq{_{fX)O5=t5`(_?e)IJv`+0zisxEN=EcC2qS*6&eg-q>`(X+Fp$s~Fqoi;!#r&E zzcUY)N=A$_2qVT==gJ~r9H9bWJmEXQM1m$x@le43*qkbrjF@2%M$EF#mB2O3A(R6A zMkouIPte3g9xnPH{)?rO5laoih~?I~*9cficn4Tbh=^0HC1~OX4^`XBh>cRoh%E+T z#5U_(Tm<|?x0j?6p0{$jw;!O|Dy2yxsq>>SL48n+e*0~)da+hEE9#0G|;S1CkRo zF{Ouu-DN~7sboZ2gD@h!b#55~G7?q-G85JSvJx~ghlif^WkgP?WJDf=Fe0CIt{|@A zOG05lK|)bLA%Z4;?ct68c~Mj<8ByFIjQG|%w-^DX2ulHF2rB^P2%1>YLy{3PqLNfH zqKZKn@x66!P|fhTI$BEYjHoA-jQG(YjA&$?`w0O}2tNaw5qba| zK@(efNHSDLw3bRnv@-}JI#}l#A)phXDc~o92K?+H-(X4XCY2=iGzf{kt#cI+(3ha= z`+N9)pacw%N&*HOgn*&ex%>ziPACW%Nhk~$P0++~9`X&45x+_$BPJSz5tFTR84)m* zkOeTEkR33Spow!ltQ#dG=1L_a<{N|&3$1et5U`k_>z8^s>c0?|NhJX*4MM)b|s znXM&k0jwu%2W%v0;ua52ddP^aQpt!v48n+=*13HM*iF#&`#gN#Qv&u&B>@KwLcn3` z+(85!CFuGS9zGf*0Vk!BfHMXm;GA`?7;fnTLDygMux^M1T$V}#t{H@Y>(;sY2)Iem z^|u4~BixZn0`41xfQQz(qd3C9gcE=#gwufk2%7l9!|O3J;-yqF;*CKV@yCuOdb~aZ$_D=k`dVq!iXH!xfV#wMbPzmJxua9 zolhzWC}0o*zOv43ML=PKt}p5#UvCL0CY1z~FbDx9t#jA#u1gbieK`-^MoU0>sU)D1 zK?ta9om-9_R3+&8>K;z@mw*~lNkA=w5KzZDR~L^P5Yi&CAwdJ05cH2U_b}Rj**mFZ zL@R?ZqK$Q~Egp9u?82!#5j3C+LH|fM4>A2uuI^IFh+YO^L?7#18*KU)g03In;gtXB zI#4PJ7-A3thFRx^(_V~GF$@IN+kgs3_`#r>s%iMY$5am zY$IsE4iB&WCw!+=lDNkpB<{1$-NC#5lW-q!knjj_n4pQrJS6cS;p0-th*Jh(#2M>c zGVJjjAvxdzAtm51f+k+^@Oq?-xGI&5xNZ;=NQdBGP4rFd~X|t}+5XAn5uS9{%#* zZDL9#0UsKKfVkGV)d={Aunv%buo3VvK@$^uXz9O_lSm~ak{N^%pIhfTARq-n*QfH3 zq^|^|mP!KB8H9ig*0~q>IAtQd24o?;17ss;VoneF{EwzwQpt$C24O^g>)Z#}V*x@8 zz*mIWfWib#Eb8HV{{yy|R5GH3K^RfeI+qXur3t#eoQG5XyG?niB%qQ(2&inGD}#Wl z1YKV}fWOBYQb|B9gAh>1Iu{86^$5EDM-S`zNI*lWB%p~w2xw-Vdx~pz1YO_C!zBN$ zqqS5L(9R$Pbg<6dL_jBkuJ7WZLoW&FDwPCuHwXbet#juQ(3_y^fANsdf7$nwN&*HN zgn+@;x$(Gzp#)t&!ow-QgOO56z!-xNFwQ!62|E~1(Djo%B=KKylckb?X$B!+hIMWU zb});e>*soyj=7j zqlYq+Bw&+N60p@E1Z=m?eOxO%-a*jyyFJvOCINe-l7RgNA>e>@t~3G;5y}CM5Gn$W z5j63nhqJR}#3`v{#94zd;=FaP4+1U{`T;Hx1_G`SH1Tf_>&D86>r%;xe+ zB9c@xBC0_c5zRW60|7AzxdE{V`2ZghG%=os^W$X1M^ed%ga% z=wT2>^s>%HLqH!wOu#RM4*~rNnmEYA%+kicU zdw_ieO+4UX;Q|?PP%0U5#2}0~W}Ul;fD?qvfK!BPfHMS5Jnvz=|Kh(Om5jJ#5Jp_F z&fUP5_BDd8zu{q>e-SsOl7QO=A>gicE9{!vxiRq-0 z#Eb?ZF|&0p9RjivG6J#_vH)@tG%=5dBmQ@Vyi&=CFAc(og4VfR2q;9@3n)VP6Ht_( ziN!s9;lG!ZkV;0BG6*BeSmz!gpd8@|paS6;pb|k7t9a-+T}D)uN=8&S2qS*5&Q(W1 zEkaE|9YP&IJ%T3w=wZ@g8PQNG8PUWbjA&+^i-OOWBSZtVB*X-?CTLe6UTcP?f)JzK`I$B*&vLVYMsl7TbfSD0+>n24wy~Q#NRv= z@TZt3m5f+u5JoJv&NaXue<$erzXEm>CIa>nH1SUl$^1wDfK)Q#ut6Ac)H+uM0mlit{!{?}cb(Hx zNx(US5OBdd_Y(sCBK!=vOy~i)O3=jX9)|i~w{A!!BW@Xl5qGR}hY@g(pz9xch~vKj zK9WiTo*0CH|EzPLA>cV71>hwi72q{N6W@7QJzhqq?bwpG8u$`EY`VR*g-ZzUqB8*e?TsRCg$}pbfb*OCzXsS zU=T)pWt}^SfWm|$fUgP10mTTKSi-~AeKO)(sboZHgD|43b@FdphsWg!qX88O;{e|g zG_k6O>g#31_fpA-8U|rRP3zoJ?6Eds1)wfrHK0C06B~LMw?;-Zl1fH2H3%b`TjvHN zpao$VpcP>xpbbG2+k1GjRYr7>N=9@x2qU^!=c3~pekQ~MbSK0C^dx9v9}ja^%80&F z$%y_2VZ=b|Tm$TJFrg7(D4{7}I6)Ifd5E}EMvRt9MvOBEBgR|j3S*BG2}J>u3B>_Z z37R;=!>tuEVy09wVva!=@tbw7I`%l9P!q6_PzSJ>povR8Z1Ja9CY6j>X%I%Nw$7Ep z9@i4e0@f2M05%ddaf^qdM`grTsbs_-24Tcb>)ay*>?S+`>?J${>?dgAK@U^b$%sQz z$%vx{VZ?Fk++1A4Ny2=wVBlG~oC-ep+BxvF%9$GAy z5s9Ue5uX}_5uaJ-zQHvlCwvR|f>0WeilB*UJzQQZBhpDFBQhF<5t*%XlM#@WFb$BM zFcXlIpow`rOxrIb@=7HmzBC9U3R>qT;u;DOrT~f%rUQx+G_kmc4-dm;CQU+l} z8SC6}1e7D30#qQJ1ymwvVigYw{D-!xR5GHvK^XCab#6Vbp%!5ipblXxpdLXJfAp~5 zpQ52uGNOq=7}3l+cM*GZgv)@IglmA-1Wjz`VelU^qP>S14Z?_D zt#fS=FoDnkFp1C^FomFr(>*NPCL?A@B_n1Vgb{PCbMX-{kMJ>I0U$7_}}k&LO@>YTnYr_C!_)tAfyF+MbN||9wPg%-LIvR z5#Jbu5hbj1S8&rM34a4h6K(>^5;U=bhx)5zL`A7&L}i08qN;WB|8qAyu107Ls6l84 zs7cVoIv(=)k7Qk`WJCjlFruM#t~RcrF`*uyDd9&zbAl$e^pM&AYTrsK8PV1tjA(D2 zD~~;PBvb-)CR71*A!uSZ4<$Fri0)F!h+YO^L?7$iX$1U2I0xuYxCj_X(8M7g`X7-I zL#2`tBMicbQP#PexP~!=+kkO|dw}r-O`PPRlK(|)vQ#o+nn4&b!#Xz>dz?iW512#H zfO#H%Iv|PjrIN%&1|e~Yb#6Jfw3M(4u$-_Ku#%vOYdk#kKVQ~LB_lQ%gb|ypbGs0* zg`n%Vd-%csp8kha60pl41njZS%|^gJg04T{;jg6B;buy67b$21Vp@HkH1DhWWqOq zsDy6;(FmFt)5DvXa*wg3k`ZwX!iad*xqi6E_=JIggoGi0L_Lbhplpz~`|i zVKksOVH}_@K@3E00gjMM5ROB|;Uz z6+$(@HNp>o>x9~Xn}m9RTZA70cL#OUJ!l; zydv}fydm@kyd(Sqh;Y+xcmN<0VK5*HVHn^8!bm`L!WckI!mohX1bvTjJ#>FBFE*Z3 z@?sMhgctj60<8IX!_4UmR#1CWkz3y^_u z7m$hY0FZ_7FCZJ?DIf>oIUpC|6(A4cEg&Bu0=}z!Nr((6NcaFyh!6u%gb*80ln@v2 z4Iw_D1mR;qNkU>kX~L&~vV_k8YZk zP>1j(pdR5XKm$S%Ktn63`s!{FzP@@|=X&9BUqWwuEAB`51u%dx05FI!7%+q|3^0r^5-@@= z1~7{7D_{&^B48Y03Sc~8I$$DU7GN@AE?_EQK43aw5nv|acff4Ia==`|D!@F#TEGIr z2EZc1X224{Ho#KC4#0B4Zoo>yKEP_i0l-?qVZeIAF~CN`Nx)`;emJ%f^y9F@!_E`( z?RlqE^6}YY5I#QptaIt`_lrLX836|gSpbI#*#Sohxd6urc>yO0Ujj}Oz5<*j6akzk z6a!o&lmJ{Jlmc8Klm%QPQ~+Ejd6F_CcGeA|sOF%Wk8$b=hdq7P> zB>du9n-CRHm!RJn8+fSrM7~x2D3yGxY-|v|RW`NG9y<>U=0Y?e>0LKXh04E8B0H+CG1I`k@0h}j%3%E!q4Y))o2e?A02)IV5 z47g7C9&nRT18|E_3vh=}7jTcz0Puj&2=Iu|6!4hf08a_60M7_*0WSz00Ivw00dELh z0q+Ri0TFK5H=tgCNQAzCD1`oi4+w(*(FsEVF$p68u?eFAaR}o8@dy(D@d=Xw2?^5x zi3l?Ri3xK6NeS}+$p{MppA(h3`)l1nQ2L6X-X{9wp$or{N`Lz^2>k(_2!jAW5rzV~ z67>GMdwBY}{8G_FD!I_!2H`^cTIY7-)7X!&4={jm05FJf7%+rz3^0sv5-@^r1~7_n z9x#UR7hoLW3Sd0pZ@@&tO~7QrZNOB*J-~FrL%>YJW58^}e}K7!7l3($*MJ3tcYsBN zi1=Ie5<(QfQbIJqazaeNO2UVL)r5F}wS)wK^@K!#jf5nC&4grttpxpW{NdruG5PY_ zA(ebub{m9G%UxxCopS;Ciq z^MtPe7YRiGmk7lGR|q8l*9fHm*9m0-HwhI0w+P<>?hvX1?h&d39uR5*9uevQ9uw*V zo)Q`Yo)PrAUV3=z{|)L_Qpx?jH3;|j-a7Xl|29Cx+qOOu-biFZR6taMCPw!#%l}X5 zF{F|au?@nAIM%tP_%0rgumTXDuo{q%unv%jun~}$umzBmupN+$uoLh(VGke$VLu=x z;UFM2;Rqlt;W!{Y;S?Yv;Vd9C;Q}Bl;SwM_;VK{};W{8UL2o#phxgg!t0KQta^(dL z!j%`Y&RxLAq6k6P7xS>$|7G(VsU+ZAgAh>4I`;{FP?RAg1(YLv2B<(t0jNYs1*l9& z3#dxaO;q==F0~x1hE%evS_WZPb*yu#aIAWSw15VL41k7&%mL&-h0vIk4QrYbbgJ`k z)c?=@Eu@ldv^EIaXltD-iF33klmT=klm~PsR04D%=!k9}e)s>5LU*ZTW-o&CN&@y9gn$Fq zxup8DlJFVe2q6XF7(o+HdieBT8F5M~8FAJij5u$ddyH>97YY9XE)iY;t`IcwZx8qV zzx;JwDjD&QK^Sq{I=2`Db48n*s*0~r6NJr5189gk>DK9gV zR1%QYAOvK$&b`C8(wu~djl%legeZW#1Wo+XL!0a}qJUH~qL4utQN%iT1tW?Q{sw$Q zxCtmh(8N+6*5;KFrKOS)KtqBiHt~?Th>U0|m5gu(VMI&o+&l!dCM*QBB`g87Cum|P4|~hV zh|W^Uh^_`Apm}d}1 zEU?b?LBJwHKfn^gK)_OhCa&;s&tKF^sbs_&gD_&9b?zyyVFTegU=!gLU<*MLw|kgV zLPq={m5kVB5Jv2=&b`LxWgp=k;7>wCoZ=us6OVX^Y$PCD)-~zI1XA0nj$Vn&+$VDgy$V2dn`7AW7B_r}nC1)(8;6@bD&aA^3 zixGYTlpt&Zlp^@VG8WE$C?m>BB_k>*xDge#GlLOOnJ^4cl`s-ejo=e&S{TzvM%0o@ zM$}PoBRe>$O>pj z@QI&UNcEA7=qQzp2vKk&x@cz-aT~%3+X3AOI{`fiKCzdD;r18B-crekNCh_{N;`85 z0nr4%e}ILWjU`~9R1z>m!37M{&a}owjvxdBMiJTr#t?kscnb+tWW?uE$%u&xZbYnh zrUTA6na~L^l@JP;PVk8{ER?P+BW6k^BfeH}Bj##n>LXx2p%LI4LKDEZ1fRIrLW}A$ z;ybBi#8L$}V!3u^G6Gf*rU6zF;s9$1KJiBjCF;tEbyCTQpA_7PpS3eL5U`nW8}JL^ zFThrUPuyW4w5p8wRVo>=TfvRktDWhJfPI7>fCGeHfI|eIc+^5vB^hx{DjD&+f*Wy4 zJ5vJzX9ynw{vgx^oG19iOBP<(hxSjYWW-ekH{!Z>rV}2?n}krnZ9+KUF2N_>w-8xF zMm&&8M*OYdM*O3lnTInzA$$XPMpy`VLGX#MEj<4~M*J(4j7WahgBy`jJ5wA1sR*S2 zsR?BOX$d|torT->`y#zmGU9CoHzKokrUe4B5?TY^Ap`?*5PV`T3!Q>wL~f~ML|z3q zBENR#4czI1gw%k-gtq`i2|lreg&Ouom6S?GyszL!l-17U#Tm;J3IIMJ6b4ix_{6Ff zcG$P-52cb3H5A;4TH2Yt2&hfi52#Bx1PCJd#0D0cHjohwrIHb!D7X<#wKJt~8=4c! z09q2t16mV&Vz7l9_6?-1R5GH2f*a9MJM$1{>`X`kgc6Gf;P_WJFH| zH=?(8CJ+IA2pIr<37G)>2tF~!!n`^%Vt`aKVz7c6F;qKq2?4_iR{$dkK46T6_wDZ` z#!4lLpDVb;FSIkmaAPMC{Qk)n(%W}~DN;$mbOjd>r=6LN6U-#|{a;(?*F*y5NF@RD z6|}9R5D_Pf*Y|)I}?dBt|9aTtR=(%))9Q- zPZoaqL`H0sN=9r}a3g-v&h)?;w-R~*wiEgQekJ(C-4@=GF0wGOpNv>6m5f-T;6^Od&P>G_ zzbAYJSV@=(SWWPWYc1^PA|rm3N=9r@a3eNqXTHW6HxcFmwh+DnBoch$b_;pz8^{i+ zWW+87H)4-=<|73BMyLzePpAhtNbreAESzg2BaTWXBTgu|5ht}Xf8lvKO?Ut}OZXdb zj^Gn7T4>QpMqH9gMqE*FBd%#@I^m2r2%&&mgmAzef=|3>;YzTKxG$BAc%>TuDYy~&v@>CN>I)FM0SXZe zpa{Vy7Pqi4N=B5BN=B4ca3jiSXGSBS9AO-w0$~E6BEctCvCzuC+*PHL5!Dskh??4& zWVj6<5mEx`5PU$8h4l9GMLnq`v7v%XY^?hV}sbs_e1vg@lcIF41aR^}@U>M;izzBj*9BtubxQrMhm5dm#;6_Z)&TPaP zClWRTVhM?W$poJ`&BE|788KZd88Jh_jhLmKS%iSE2?>C?gk^yF1fLjhA(j2*;ajO> z#9{?EB0)Pd1p!M5(*er~GXN_HK5?~$^!78&8mVN&j|y(YdhJXP1pGwk1^AiJ2e6so z6B8|b(o9Bdl}bkJP;eu5YG-2c)bA!t0qiAA2kayG#Df-Ux0Dfwq>>Rw72Js9+L?6- z_?_VQpSCbQL;}u8B?0FYT)+kG%rIQ!C4%37#llS+a8)V^xS`+zZfR#mA>a_cuCj`cum+32)M6@I0Q&eI0{HfH~~mS zI0Z;eI15NiI1dOUTmqygTmfVxTnA(#+yZ1F_}lf4g{t;DekJa3P6c=Wa%rc_?^$@# zQ}*YTO73?71-HMDb|yF8Vu}#*0*Vm|07?)F14H+Ey8Uj8hd;+LPXa;CNXbEUUXao3!&=$~?&;ih# z;9rzh7HZqi8lAD@Qw8@bwbf3SJ6PywKeNYTen>4ao>iQ)(;0W%420%jA^0_G6X0p<}h z0u~T51L6tU01FBJrT@-CSNjfBw1D3T=>Yo)836|g znE{6h*#JigIRM8Axd6Wt-UFN>5&R3=z`}uH@=7<9 zN?z$t6x=J_R6CQqyIXEf$O~vmC;(_pC=B?NPz=zPP!iCd@IK%(fcXV|LZf^hH2-LNve-1^{{y1_L4p!vK+lk$@<|7(g^(JRpYf1z;c{7BHAF1u&E_ z9Wb0Q12B>>8!(zM7ciEv05G2LEnos+F<>HL2_TlR959)%5-^pp1~8rQBOs2j0Wg#B zGhjAh3t$dmD_|aB2VenV7a*Rn7qF19AF!Bk2#`QH3Rp@w0a#8r1z15i3s^-s4_HIE z1XxSB0$4}54%k5OkMYkInk<&*Is$LSTNK=Lov58IZ?`bm?vKL$oeFOMZtZmWHw!sN z%Km*)$@k4c1-JjOcBU2%c$82FaGVeX_?^%IaEj0vaE8zn@CTs<;5@;f>XL;bv*nn7 zN+rjg?74}%EItvvj0t~WMEnaw?9xjvjwkpdcsyfMuHE> zY@yv;Nz5XZB)+5I5_4#0uHb<060QSs6K(FLj$<1i0;BH29?acRhjaw4@{x%k}O_G35rILVl3NE07 zcIGy|**X&b0(2%k0E7~JVz`9_`!3T}DjCs3!Hwvtor%F2dlLo$`VfW!`VxF%w1t^V zWJG_dWW+!PH)61MW&r|*621itCoBexB>2QJ7Mc!{5o4v25uYo#5npI${>1OQCK3Gp z$re@(m4GQyNx*ak7Z9hNc?br8S$-x8?i_`(*^~ zxD5{oDFKfNZvv7CKJkf#(C=i#Q>kRc3k5ggm3C$%Ud(?9V*tq>X~1|u3W85eW#O|C zGU83CWJFp8HzH6wQyynbPpAmUNT>qHMDU4OEv%j?BeF>)BXTIX5$|ee7T|3*H{n~r zdxXV+d<36Z&_aeeGNO=FGNP!08&O<4a~J_73C94X2|l2#g?H_5Qp!msi61Dq#7f#3 zgR8DW@cXM-7-l~}RF_HuYALvY+S-|(I6+;4-(Szd4*QEseW@g%k%9~OL_4z@FKtu8 zT0nEcdO%BpPi$kM<<~OeQ>kP`I|VnQgLY;Y&e)N#7tooo9}r6LiQyLV*mtb1Qpt!O z3T{MC?aV}+u{YsMKp(vW1?rWW*GyWW;m@HzH0uvlRDnCgFR)Y{DwQ z9D+}rZ()=D$h$x)8S$-x8?i_`lK}zW5i$Xm5V8W65q#nb3zK7I#7e1T#2N)RVy$-O zHNGj<5t1Qs10f|~Bf%$bw$N#`jMyTTjM%E+Mr_y4bjFBZ30(lY2weet2tIM21!I3q zvR^70aY(_9IHH}&ihyGTzyEg&z3tC%Pf8^LXB1q(AKDrDGgNl@Ji+h3WMP4QyZTcq z*>P3D1zgw8oOE|d{(}WKNoR25ZWGP{?h<_FeG9qmQ~f|H8S=M+8}g5K=2x8Z31K(j z8R0j;3xZF4ZQ+M`GU8vUWJL16J-87mwKI=###Dr7fYgMSfV2dkn9jmf`>Skvsbs|4 z3T{MZ?aV8Db7v*^{n;)2^n(QCkV*n_DY$?<+Lw=01PMi#8DQeY?2Y9rIHcj6x@iESMg%Ij5$Uxv@8M2oB;*HVA`}8-A^601EFAq+Mr4;tM!c)wM&#DcWJSPx zgzSKPgm(c22tKi}g;g75L=mZEL~#W-qNH}l;5L*d^ahk6L;}hYeBuWdD%xL?DoQ0I zswlV-A8KdXAfP&-Eubc$1K=ZqPpoUw0IK@Kq9Wr97R5Ic#1vg@bb|wX$`dNfjfUgN@0CNdG zae;+C_FL~8sbs`L1vg@`cIIsaBoO@mWfoq3F9FM?l7N*8E?~8G<{aL_ejr=~{7ASA zSWobY8!a^0B_n>8N=9r^a3d16GsSSmZG@759fbD*I|)8`>;1iQ9eEy4!_(v)k@l?T$c&?rK6#*{^y8*8W zJ|NjYl33Wj;Ut$z65mj8iEnCWh9e*iVHDskf)7Yb1&mff~W>Rp8S+p~+@xWyx z`29I7WV64j=9EeTax1ui_p~$naDseu+1&q?pq{CeuL-6~@TZp!wzdx5s0wyZBfLQI!1Ds$o!SA1Dp^*I^ zo-UOH%usLvv$Qi?aSy&G`2F)N>^&_3^QDr2cm)@*P&-quw_9FJ_yCYVs0>(2@QL4B zsC!LDtdL4ZtX6O%e$dXGL%@%Oi-7fn%YdH(U)CXn6W~pREqJkT-O*=CkFT@VQ z48TspY`|`UPyEfogsU=QpHwp9pn@B5SUYnJXFN*y9dMj*8t^;8C!V(O^stOLBbAIe zr{G3h(9Uea87~oj0bC|*16(Ee#2Xf>*%3FTk`Z?l+=#!lGiwlVpYS8#Az=gHZ-P&J zY+?4FGUAC;GUB;{8}U**vmCeKHDM(n;IRg*0VF5*#5XJqydfh}NhKrFD7X=CX=k1z zARXZqAOj&F!Ueod@QGP0thgm3vPvZ*vMaa|Ikhv{5s-`UE+7vf4V zKn;RV{K&#i`>j`7DjD&yf*Vm!J2MZ@O9R3;fJTIcfKLcMv6+QWf0Gf-rIHb?6x@h5 z+L_J>2qts^v?Fu{bRhV|P8J#;kP)4wk`Y}L+=y`P%mf52P#3kR;q zh(1!uh$sa&B3e7M7k4^_upcmxa0oD%;1h>gsC8CG43|nqj8bqT#%O1P5HOC=0Ps1X zG2jb=PmHw?c2P!rDV2xtVM*k0pAg_0G1GZ;&Kb!Z_9}9rIHb=6x@h4+L`CtB?zIqiQbznHm5ex`;6@zM&Sb%zK0aDw0yPgyvzPez=UN=E#l;6|L+&P3yk7YPFZe-Z`*t`L0Ubqga8$%q?L$%xwu zZp2;fOacP#5tacS5LN&l5q#o57RH{D5s#&k5ziFdh!@(KYPb!r2sHu!5^4jIJ^7Es zlomRlkP&Z4B_mQRxDjc!Gmmk`K*BRXdcsRUMuJbwY$5WfjL0IDjCe=EjmV*$IfQ_B z2}c3B2`2#W5qx5P3jx<>SJ72Jp*?Mws$>J$0`8WN%bjR`)n zsfA{zWJEKmWJF5^H=?z6CJzEWCFBFNB@_g-C-}sU7D^tI5uK!x5uplhM3{EwG+xZE zgg*e?2^Ro{;1hdWn7Us^L`Wqg`YN~){j@W~5zwD73NU~$7BGn56Ng$jXFuc&lS)R6 zRB$6kYiHtd8^#hA0mc&&022s4agv2xzsrbNsbs_y1vg@vb|wG;UlCFOW)M;VW)Xbi z91Az?YcW?U8L>dYjfmIIT*hr!NVo=AOt=Y1Ao#>(7M5O+5zD2L5i1qkh}GJe(KzD| zgmHi$2@?S82|jV7h12#%{VbJ?*rMP@Bx+~UB48UK9bg9`BVZ@NC+@NE(tZNjE0v7c zui!=;)Xp?Rz+pm5z)?aQz;S|4JZT~NoQyanm5ey6;6|L&&V(W00-+n=62Sm26MW(| z3yY7-i0e|xh+7J7#2xL-UA&lo5$*%-6CME`5`1Ekg^c#o;6GByh^Go}#B=RTBF^}d zupRK4uoDpQ^gj|)Sg2q>N2QcXM!c!uMx@csq{K&F^o2MDN4_#04_@EA~y;1g?FXmwde)RIa@)KPFFKGx2x zLqI*kPk;u5O@KxOpV-7gz9%xGsZ=teg@PN=N;|U^FJ>Ep-{00k@0SwLPAUobOu+?o z($2g;duLOikB>~+PT!7KedlCHpJ{D5gfJmt%pr3*Z=&zm0jer3J zzkjfWYxW)tkxBxFE4YA>+L=ALgwX`Qf1HJacO+oER1)xof(w|WohgNYFA0ACR10IC zOTaX#Bp^<~1yhkirHWkV*m$E4YB8+L;~*I8N~UPg`s@T);W) z%zXr0Ao%@%T9{;?l*>{{z%>OIa6>y&76G>ie*awyV;)MtUs6fH0|giGNINqG0Z9bE z|A~dBcO~GdR1)w)!3Dh1&Qw9bzXZQO`7;UFW53-}NF@QO6kI@R?MxwjyQL-g{plS1 zEdlAJl7P1rTtH^+%nY0$E5Yy2ZXv}p3CJOp1mse10eQ4Dzat7ih0l_wke^UVB_oK}-Sh!~2)k39`fN%vD&`mpY2LU|@et$0u-zJkw=q;55L@Ky|DD6yj zTtYOV79fUD2QZM}6Ngw>_DIe+R4N%ULcxs~rJea4XB^)OT)-^t%&!Ren&9`(vrx}o!hESDAYQ=*EY!}7LBL{y z-@nAdGW)K!R4NJhUcm*d)Xw~kfYk)Qf31aL0rEQiD3t_kP;dbowKK)=Dr_Q@1Z*L^ z4@e~V#O)TY*%3RWk`cQU+=xBeneqtujZhJ=pHKyGkl+)KSU7BdeL5j2pZKLN56eB!$n4*w-1a!Dm4-cxWR z@@Z!pA)o-E37`<6IiLu^Cl8wK(a!WmKsiD*paNk4pd!I1RJX*@J|_6Y`WEWFmJto4k`av++=wRHnap_Vn-Q`B zS`cyoS`mEWrw;DRh+wH?M0*7{;xp|`C!DbpArufo2nTc__{6RjGTWECn^ZEwD7X>5 zv@;(eAc9aA5J{*9h$8sJ{uUq?5eUuIcYa%v5kAW@~4D#PS@%2EaVR z&wvGlEr58!R=`5S4!~lyZ*5d|CQXog4pp?!QH>-+Lp@7= z0E7}&1HuSv0bL2}0o@530fw*{(2I}=h#+hSL=tuaq6m8c(S&_~7{WooK*ABgV8U_0 zP{K*TaKahDNWwY5Xu?InSi)t%c)~Tn1j0?gM8X|FEa4ttGT|X$Dj^9lo$v$@M|cjH zNq7aAO$flROLGV*0P_f`01F6d0P%!Cz(PU>z+yrsKms8vU@0LxU^(GkzzRYhz$!vM zz#2k9z*<5Pz&b*4zy?Aoz(ztDz$QX@z!pM9Kq8?EU>l(tUPBWwdaAnXP_BK!tOA{+)hCL9AiCHxL} zPB;yCN%#Zsns5OS@KRsLKLN=JR{<#rHvp*!w*jdM4*+Qie**#u&j9HOF98_|$s^sb z#hD0i0J0EL1F{j`0%Rwo2jnEY4ah~v0?0#n2auPL6Of;f8&Hst7f_f`08o@r7*L#0 z3{a9#5>T4(KA;St9H1QG13(2rWk5y3hk(k28i1;Vj{wyObpbU9^#HX94FRFdh&}_yQ0{hy`>dOaXK!Oa~ak3_vf!Y(NBIt^@hc7DSR3U{4g` zTR=2nF(8Jp1Tc`W959%$5-^mo1~8oPBVZ(917I}aXTVs(7QlGIR=@>#`c*h$C_*i9$|*h?r1*heS3I7BE5I6|lZI7X-hI674CPV_B68Zt26Jh`_34;Ky2}1z^uk@qH2tabeXh2HBI6x}G1VC!SBtTliWI!Nc z8X!F(4v>*B3y_I02ats@ACQd@56Dhf1jtE90OTSp1LPsB0OTdC2IMEK2NWc11QaH0 z1{5VE0*Vv114d0m>1M04flU11b_u0xA>E0ICws0jd!$0%{O018Na& z0%{ZP0O}I%0fGogfck_dfQE!ufX0M?DEDsJgpdNzjF1Mcb0OJXF0TT%K0TT(2 z0I`IB0Fwz%0aFPt0MiMt0da(6gWdBqlaLZHoA4%J4k0aI9w8lI0U;wGo{$-^kdO_q zn2-aIK*$AHN_Y>joRA-|f=~#sicl1=hEM{qmQWh7j!+h`flvXkkx&V+iBJ`=g-{)k zNT>zaMyLbWLGVx9E(>#y$s^c$n0sCJD!4~*pLQk~%LfSU0fz`30Y?ZSfMbL(zzIS( zz)6AuoF?=JoFzm8&Jp~%FIp&2MJ^4cGhIKmjfOu~4;Y(iteTnpO@ z$UpAk-(W6KaJM{OJM$3B3kgYp#e^q-1cFaoW})wXd9?n(8_Nm>H)54`<^q=25dH+L zC0qrpBisONAlwFQB>V-~M0fz$Lhz^BYN1|!`N!|LkR1x{m^-yIr?I@7@CRTo;R0YE z;ZMK;!d1W_!VSO?!fn7Yfe7@ z&=YW#5COPO@Q1i%q0l}#)h^uLy9(}9_p~#6vHXCrAMl892#`cL3V2L70eDI{1$a*I zhj?XSZIGNQCH_rcz`q{csgi4F-o$cBLRvs7LOMWdLPkJZLS{f9AsZk)AqOBMAr~MM z;XObWLViFtLLoqQLQz0Yg1^+<7CPpZe~iMDlvlxBdw%WASS%MLd=4l~m-0WAod0j&s$fHs8ffMCK-Ks&-7 zKnKD;Ku5wsKxe`cKq%ojAdGMl(3RkCc@GPh*2rs+ZHRkSdnvfrAVNEn1Iv+wT!1LT zdw^&{en1SN5MUsoC}1$51YjtkG+;QPEMO#|0$?446)63Wy`L0L&z`2FxY|1LhFg1LhGr0u~TL0P%z{z(PVdz+!>{BoKN7 zmJ%WX%L)AeD+n=wRfIu+HH4vnwS*CXb%fD?4TN!kjf4q+O@v8+EriK{M8Y({HbNX= z2VoXqCt(g?H(@?tFCiYVkFW@EfRF$vJtWZvJ)dbS8`igc3dngb^kJx)QzwbSF#&7{XV8UWA!|2*THZNWwfo6yX~{G{JwO z8DL>;L-~kPA0MX&E4Yt1L$x!Fusod51Td1&959;D3NV)NDPTOI9bf{%A7YY)q$P5y z;rOB7WCeGssoI%QSe{N83y33p4wy-p2$)Uy5-^7_6)=zR6<`5jCLo^hHDDoO9$+!y z8$beKAz&%tJHT?nQostr_kdM|Re&{w9{_6!>j3KrKLIunHUTygegSMEYy)f|{0c}U z>;`Nj{07)TH~`p5I1JcLI0o2D_#Lp1a2jxc@CV=!;R4_Y;ZMLZ!d1Wt!VSPl!fn85 z!e4;1ga?3gguek72#*1m2>vm?VqxfLd9DNSS1_(Cxaaz&b|wXuZxd1h?h?`f?hyh3 z4+t3mj|iCnNrbF`$As*Fr-XL_&k1<|FA4bouL%VK0m<}IivW@niUU#-N&!+4$^cRm z$^+68DgputRRHM;)c_d@H369jwEI1S98Ub<=ngDVUngj9>S^@GBJ_Y0_ zv;!0*dyku4na8Qe-1&o2&hcB z45&)D2B=2xhp1_xR=AuhU5xu}b8Q88s=C^lj93mLWCqkHWCJuL$N& z0O&<%42U2!1w;~B0HO%30nvnDKn$ThU?8C*U@##BFq9Am7*6O07)daI(S+WBv4lv# zctStG1VRj8B4H39mM|1BnJ@w{l`tAGoiGj%N0un(| z9w7tZ0U;CM5g{ueiI5%enD8#(DIpKwIUyh5C7~eTHK7O~Ai4hHQXG(+PzsQePzI2S zP#%z)P!W)pPz4Z3s0K(+s0qkOs13+O_!y9dP#=(u&WD9&LKi?$LRUa>LJvSmLN7pRLLWdGLKL7Jp+BGkVIZI)VF;iyVK|^F zVHBVmVJx5q;d4MO!bCuA!k2)$gsFfa!dHO$gqeVbgs%aO3G)C=2;Tsj5f%bk5WWMn zA}j^8A$$)ACaeOqBm4m9Kv)OpNcaiRnXm~EO85m3M%V`EO86Dfov<5V2)_Y(5e@(% z2!{cY1plG1pM{7M@+mPIe=;LR!F@^`sGS*%<-vqufT4tufZ>EOfRTjpfYF360AmTU zfboPWfC+@@fQf_|fLOw8z+}Q)z*NElz;wd5fH=Zpz)Zptz-+>Dz#PI#z&yelzyiXL zfOx_Nz(T^$fW?F@fCR!;z*52vz;ePazzV`%z$(Iiz#76Kz*@plz&gSSzy`u8z(&G( zz$U^az!t)FKqBE5U>o5sUrz&^qYzyZQ*z#&4i;qLcGM+hka z#|Uo%P7u-pP7=}qP7^W$&Jr>M&JnT!E)a46E)jA8E)(7ZTqWcOTqhI)+$0nQ+$NL& z+$EF-+#{3)JRnp6JR(#ABoV3t9uukqo)YQ+o)dxqFA0qSuL(^70V(t?sx=@vAsCR7 z&>oPA&=HWD5CTX`2m=HXx&hJ?3?L(+Hy{%s5|D+^50H%z1ISJo1jtDk3dltm0mwrb z4aiFv2gpyD04PY91Sm|H3@A#N1}IL51C%7p0+c4q0hA%k2b3ek11b;}0V)y_0F?>L z096Sq0M!Vq0W}C~0ksJ00ksJm0d)zR0YQXBKz+h?KtsY#Kx4ulKoi0~Kr_NYKnubV zKr6y=KpVnIKrrD9pdH~HpabC|pd;ZjpflkbAe3+u5JtEI=t{T;=uUVDFoYyPFTxW* z1mQU#lJE);MF<$--f^P|sQ@vAG=PDGK)_%^2Eb54R={vVcECtN9>8cqKEPN)5x{st zaliyZDZoTR89*$dJYX`RB48?^3Sc^+8X%5P6EKrd8!(&jF<=g%K42c95nutK2_T-( z9I%kk3b2^)DIkH+4zQH)8DKe~GhhXw3t$zYD_{+w2VgCs7hoNs4`2f!3b2vTAFzoq z5U_SrtKA-}j9H1iM13+a$ zWk6NJhk$B?8h{#vx`0}QdVt!5hJd<+PXIxLW`O#HmVkzYHh{*2wtyyt4uEEaPJkAK zP(Uj}IG_!oJ0O_Q6VQ$j0q8*J3+PA~0O(8@36))M{!tRp-HY#_V;=f zBNPIhAQT0hB$NQ0CX@!8C6oo6BUAufAXEZeB2)!jCR7JpCDa03C)5GlBm@C&6B+>S z5*h>U5t;%X5Ly5p5n2P12*H5Ig!X`^gpPpcgfPHMLN~x`f&m1)p`So{1CkRW0VxUn z0I3KufYgLRfV706fIz|sKzhPxKt{qiKqkTjKo-IzKsLfOKz2eLASYoKAQxc{AP-?a zATJ>vke{#!P>_%SC`?!eC`woXC{9=nC`nigC{5T1C_~r`C`U*HR3K~zR3z*HR3_{L zR3#h%R3jV*)F7M$)FPY#)Fzw*)FoU51QD(Q>Jx4P8WQdR8WZjTnh+iWnh}x!EeKBl ztq9KnZ3wRb!Gr+(EuVIT6o3wdRDh0zG=R>8KtL!V10al$3DA|070{iK9bgFW0(ueh z03rza0Fi`(fG9!{Ks2E^Acjy1Fpy9NFqlvtFqBXcFq}{gFp^LcFq%*sFqZH!U_8P9 zd!a8ZoUJPVqNpnV_H3+z`xix%wKLVRJe5!jFr82b5Jw0C%p^1b%qBDj%po)d%p9QbHJDIiVY11;GGT5qbmG5F!C<3H<=;2r+;Sgh7Cf zgrR^!eqd1!Zg5MLL6WpVHV&3VGiIBVLsppAs%py zun2I1kN`MISOz#vSOGXoSPeKwSPQs7SP!^F*a)~x*bKNzNCaFbYzN#V>;&8<>;c>* z>;v2*90WWd905Ec90w#3P68ei&H$bg&HE(2Z@t^op4>G%0fKytzzKuW?r zKq|sRKx#q~AT8kuAdv7Jke=`gkdY98Kc1e6;NO6aP?8V=C{6GeQr1E%`**Bc;O|6M zP;ggPQ9IKb%asYifT{!^P~F1pwvrfx|JZFU1(#S`JJSHmbqS3DL4>A&`h*sMhJ@CD z#)M!%6GD4HGeSo|3qlB>6(J1JhR_WVOfZ0Ugx-J-gh)U~LO(!fLJT03FbEJv7z*f0 z7y;-`7!5Flae!Wg34jQ~BtRr#G9ZdD4G>L;1H=$!0R|H000tB01BMdf0mBK403!(r zfYF3yfU$%Xfbj(XfPG=1ZE1Pp!ts>HD&X^icBVU)rxJPsrV}CnafH5rnS^M-Y{CG* z9KvA0Ji;)*0>Vf@JYfuAAz?gVG2sh90wET#lrROboG=}*f-nQHiZC0nhABVh?(6Ja@E3t=T7k+24^jqoF22VnzXC*fznZo(G8Ucy$uKEe*b0m3f8 zA;Mn35yF1JF~T9h3BpmpNx})hX~HSMS;ASsIl_6s1;Qo3CBhZJWx{p9Rl+U6b;4c1 zO~QS^ZNekKUBW+rdxWQe2ZR@ZM}*gaBtkO$lKPmC67ZDpCg3?CE#M^~9pE(~BOu^S z{XWkONKVKGNJ+>6NJa2(4QVV?T`lhw&+%7w0u|hQMSAVbD=cRu1mLf^W+J2jWFe#i zWFw>jWG4gyauPBCauG5C@(}zn^I2#&QO-Ty|K$+{ckaU4nJ@g`93jL4iW8;)N)o06 zN)u)P$`ED)$`R%QDi9U`DiXd0R3#XhS#(2qv5Wv?H7XbRe7sbR?VybS7K^ zgc7a*!U)#^T?w}U-3fOAhTtEt-WGnc|Amvk{U7L5a8F#6cIGjbqY2LdF@%?Zfdrp8 z#6rq<<-fVn7C#CYuHZ(D)XsG9KT9BV@;^%;g!-Q)5W)cy2;Bh_2|WR^gb2W7LSMjC zLNs7HVE`bGFc>hCFbpu8;4gKqh03$#_D11@^a2HU?eW@~{#af}7zkKQ7y?Kj3ghaqG!gjz3g1?Yc7TQgaD+|N7 z)ma61W#_ar-LQOtU;vj0y#bdAk$|g&et_$Q7{E=!Ai!xkumS^sR!IqF0r?E zx*TcYP$}8p7yF|X-2NEtba{}4!&PMeVC)~J;P#Ku&WyzJ7{XY<=Y$D>NrYIy6v9-% zSA;mgEP_A89D*M^pWw&F6a3gk1V1)`;Kwc__^~T245=p9zEUcAwbm%OYhSCK`4P(- z2tNTf5jF!730na>2)_b$6ZQc15%vQP5&Wr+68t$%5d1k#5&SvM68t&N6Z| z5d1l=TlnY$xjQ$clDl(T!QGv^+L^zw{DANfkVN3oUVz}QwlKk8Z83ts+L8o+weJ)B)s`dp ztNnoBueLJ5U+sqkf3-CT{%SuW_^Yi;@K;-p;IFo!g@aY)m2M=J-1R03?v-w)oi4Yu zP_c;YZ-xDzD!Bb^wKMIo{28GmAcPPK2q$y}^dJ~OZ$bp1FChxhpAZ8WL>LShMi>ql zMHmejM;H(If-n*AC1EmP8o}R;ID)_YSpK4$eJ#OX{(6GH{EY;E`I{|FeP3SsEmFy&vQ@#o^xL)5<((G3t1kO@VgFtQ zw|}2@W5e@^65sm{+5>5fm68->OAY24oCR_nrC)@zsCfotsBisi(BK!?_Oz>Cs zjNq^3CBa|IzXX3R$x2q6a2NjP4L%}h2XE{9fH4>oEHAA zDX-GIQpu~DN5Q>Hd9~B!0v0Y5mi+~>zleg{Urakw9LuE$et#K)-%;Me5PO0O_>xKr zF0qPsx?Ih|(9*KMI`-F6aQka(XX;=%h~W1(Aov}PEd3+;5dwS^P* z1Z}Xtt%BR%UOUqP%bf_F0bK}TfNlhzXb3)|H^FB_5`0EK3&riJqNS2oa)5$6)gbM3 zd8mb-?FZIj*gsOi?H{e38H45VgwFvJ36lVm2~z;m310zb5@rGB5at3F5WWE{B=}=~ zNAL$*O7I8!p5PC*ir^3S1Hm6`9l;;$CxSoNCW1fMFBbCDk^7e@mE7;`3hw^>s-4-1 zi`IA|fVm?R#;mmF1aiO01wC$M~q;P;;;_#NjhEG!|37w{#2D!9Ze+L^0Z zzCrN&Zxj5EzbtI}P!jLqOCBn?#J{yONmzbDcnWwycnSEI5b&0}k16E;{a+(e5qxMG zf)5QO_|OalADYR+b9*N;OC_&XHU)R??Ane z0{^$!O$+Vp2ei~u$(OvP;KruY&ZNik+XTNq3&HPr$HMN~l9(M|@~(nQ%&nct zgXMe#zrP^C?iZ3al;1Ww|XG&waETJ6W142bW6+%@&b%GyJi{L}+5PWD5 z!G|^=_|V1{p4s0me-EwS8&@F}1jp*^4@p%WmK;75cLd}w!q5A8|t zp%DZh+SfvjvU2VyspQ=K72LT8XlDjuc?e-BU<6?#U<_d_;B$f>F_GXyza;q3sRSST z6~Twjv~Z)OoO_m3a_%__?%eaVGxM<=PxuzFnD8B7DZwXxPw*M52tMNng3nlIVY5Be zda2}88x`ECHfg8JzgUQI9~7~FyMo*Qt9B+4%eyVCwco*e0Q(f&{sY?S@?i@@?9Yjh zVE=IixBqwT%t{8!T{X}-2puby#Rd(k$`@LXutr% zK)?{fP{0VnNWd6^zdPdz{(gKx@b@E@;P1y2g1;Zr3I2Y}Ao%++o8a%qT!OzJ3kd$C z-xB=&SWNKuV+q0EkL3h^KUNa_{a9mRp?$0RK`MDT)+xA$V}o|)CoFFwYz8C}wgPq# zeg*6%>;dc}><1ho90nXC90!~voC2IB`~kQ?xCppR@K<(?;IHK-!C%WAg1?q~1b;0L z3I1A=2>x205d5_~C-`f5Mex@WkX~N{e=R8p{#sI5$Xi@qr8lLLS1GN6dzAvUGwHCL zk?=Mk3n42YJ0S-k7a=zwFCibGAfXVTD4`gjB%u_b48fnfJi(u|BEg@u3c;VW8o{5m zCc&SyHo>3tV}d_veS$w}BZ5C^6AKy2%N=eimE7SL3hoZK($2KTaxkGSpabDEKxaY- zAdCx5mF7Z3^3zAgl$fCu{)xOxOhYh2Rgdjo`=rO7LTM6a3iU2!8AVf**UB;Kv@bV1GYoj!PwX z^Q3~i_S4$=<^E=5vVed_0kLmHhe!497dI@fXl&}p9+Ba_dPIcBnO_D3$Pe!t+rJSW z8`vXeP~OmxEQrfXD4@9+VAqI&wT*$z){za}~= zB%)trk6z(Xe)01E3hW|zA#w~|JBc-SjxK$A|L-q5?lZeZg+zAG`yY$@u$a~l?83l{ zSjgl~-#?;DbdNp}A-(d3ME3BfIfo5z^AhrQ4~Yo-pVRKddIo=2{$q6yR&$2*kM7eu zB)UfzIapY@{39YJJgT3}(!2PR9}^kXqjyM@+(~~HU4Mx6ckFfb>DR*_^FMcO_J`@+ zV_JTkD7(ee3q<5*_zdT(MDcMa|r70RdCw z|Jy&oGBvhTSa|O~{W^sY4Cx)&E4*JPxg(uGA-%!}MubPZu2bbsWlEdKZgKKWH1GfV z`qKY@Utj)%{|Wfo2iQL-F*UaK|1-c{SEqjA-Fk=1!*5^dP6K*Gckd+ktW*F0)4G-P z#!-aP+(Hz^P8RaAdRpH2*txD)G=OwhY4x!^H|J2{k zP3Y}P=&$D`wB4zM{(N3SI}OpapPv>&d2iu3O^Jh~RFozMRcOi|1)hi5Q@vPI_WE6= zl0wruo7Dh*Ka+slm4H9bB4Dju3Ha+w0y>p|ok9SQBBpxND0>*VaU{|~Ai8cMy+kxN zMCtxvf)f$SZVdM)nvH6Wcb`yHORV=1yK)R;55^-29{``@1@Kz2kVhx4huBd&s4uqp$l7W!phoZXBp$c$E#pV@3PooF=p{Ti+e1FEL;{o ziw{|R&f-%R-?8|f#T^zS772?FSoB#uVDS};35zdKOuPD`ANCNZ5Z&L#1AXN^wHt-X z^%=Yp6S4G)ie+DdjR+GFvRHzf=}T!ag2K9~%fBwiK~In+1$!y~ej0(pjXgw*$Pe~J zDpLx?i)ZIwuy;nu{N0WDcO!Q^#_AIF{QR3-oT$BjZvMR+hP5safX#>y(_(45eP$l4 zy2ErbUi7LQ>`fEyp*V@`N5V@I;enF%1An%!FOMd0sF;tQ?BkpBzs7Ey1o5hQxH^LB z&h*kp{wMk4JEm#Q5lDQOL9j+D0ted`Dhel%`Bc9*vcIok(m;#A8>qrLe|rRJzD)AR z$pjI5Z#IPPUeGI?4RGjf(hN{*tRzR6#i2;NL155**F1bi6>AgVjT41KRe*{BP5MP4boq4Kt&R5*OOpqI^R!Da`6>x1#` z>t+6;;kuDGP;oK?>%V57C1KVVWR&Ra(jXm$ViZ8hhIc9KdQYh|QfXk!FDIb0hx#f= zy`Ru)3b@ZK4Q6-$(O1CY5_AqimJ{526tIMcShG-$B<2ER{45vC`H{T|`n`Xj?jN%S zu`52v@<3n$;URF!6@+|xt^PC_yIydxsSkrm+4Q<;>Z^>aC8Io*+1E?i7={x-gVVtf z3-wSh7e9p;x=8}%8}>LZyUtiAZ@a7Z@M3?^{Bovm3}k;0;vcoFn(>GFvIM1%QrK*+ z!C4n8(=Ak$^M+85PlJl(SG4tuxodLRXPP*TCR`$jD8{xb$CIc#%V}!i{+z=s)v2>o z3*r6bBB&h&ftDDqVcV04>UYdQj_BfXJk*Nebx_?{C}uPo#{r@|LIhM1vu<&uSNe^G zxEi~%2;L?`nGu@uYbYNUNL8$1t5hUU5c1TWb=3qz3 z3tR;ybq>-oe&%ir^UPy8)!U+YZOJaxVN?rg32nHJ;I*X1i2MWL%<2eUJ6b%lPB|s> zC|)fplDQ+kXARB+Ze<4^7`b9>KZo~v^qQH!!=JM*2Jkviqbvz9sh)~mEO%nTWVDOH z3ka|xx+ng);^MKcuv1~VMcE(8uaaAc**k%S#E?hCr5`hUjK8%;Sg&IC#=9I$$BZP+*s35u}Ob&v$Sv zh<6681uX(q7F8-IF9uk}Aq>8>%rNjr<7ge=vAph>Pd)In#R6cr$Rc@qtY58=ts+rEtZ}dzAhuN;N!PaK z*>Syf+vr5%fcaJlj&048$C~WhB@QEju_SYWkI`pCj`$+nA|Yk!Uzv(!-6VvTd2(SVLsn6J$3Q z%7jM0RE_CyK4V)lhpErf!W6~=@=H87E74`vQZ&f)Qb{UI{_yQ=_y~l>@(TRP{jGcp z*HZl1Fj`2>7TC+b%vYXZ^Qzov8U6=JkWcym`D6p7 z{KdO-HC7a=P`9EKIiIYcdXBEHGI6&mE0%lov^?zyt$&vs7 literal 5547548 zcmc${34kQWbsY#0_uv}b009t%5eN)GO!YZEGav^b2!Oaj5F|l@AXv<<%IeDQx=>lw zJq=(akvd37rNdHb<<+iaYwfjlS+^+5maN-4y*e!GvaHp)l6A|vWqG~t#gB-Ltd8u= zs_Md00?^$N`6J@TkAKIH&%WR*t~lr1bNIjE)p55Gwa=8p_IA|kv|C}jKN=o>*C1-v z9&!Hk<)gblJ~}%(Iy^7vc1O<)57j!=elHAbQExQ7R>K(dqh`6%4f>5{v_2YMTzOx= z_bh%JeK|fncVRReT%C0x?k z4tu?*7RFf7@KAWBAGYJD(~d_kVV)KtXZqz}(C=Ulqv16MOZa1zp9dRQhugJ1q3g{K078w!Y9B*3gY~eP{-zytJI%1u9u2Q|zS)TSjlp^s!vaA!N<&3Y zuhQS`hS#oU97+w1bpXm|_pU#vdJt(9u90w@kK?VV+YQ#6VWmE3t91fb$;a63N-gLI zqY%>_bi2JUjw?GsuN}2FxCg_Fy1mXO5CqD29F#Gt%F;%+bM^rHUm=;_jV@#l|* zA87RZ-T1zRg?a}lDsOZ;8`#}$6yqee7Vy;r^`I3scTYdw?uWhmmKGQ9UB*8v_@@_c z44Ogj-sAXr4gZ|LKPU0esl`PM)p$}y2#1%escj}R8(zK{FKh+fpd3WyP0q`74u)4J zJ5=d(d5YP7ba;6?*j^8Ml`3`;2Lg0_1^#jje>&ERYPDuK3WkStpRiq1>pu)u!c%lC z-ii9v2G7wIicp+CTqWNei@?y1@wAalZfS%;E$pe&7gyH9dZ!mwYQ0Xk*4b%~o~#XT z0Eg+cYdE--7_5#H1BtfO`MQ{V}+(@{4b4K_%k4?bM`TV^+C7U32O1N zIBu4A!u5Kyv!f8dwz^VZUs{`IslK*UuLY}1 zYwO2PEmtcXsWRZ1Eyvqn)Q4n1%n>r6ZN>}YIPAyAHkzIFK#i!5mLi$lao0|)9FT3LU-I_I}IQ~Mn9jZREJ5ZOC}aXqrvcEyBlg>^&VBg;;RkAQ!d_& z!Tbh2aPPa!)D4IQbsF?%F_{Kv2%LB@(3GZkMA7@3?zxAwa;2OC?#eL=)=>}}UJ&&` zJHxBM3QG@nssoB>9DQ>3%M>ZrgKg5rXo!uIwTQG(=u&eEq6PimvTlkx3+uq}LMw>c z3sGxhfl{#74w}tf;pjC^Teb{hYPZ~NZ#>Woc24(u15D;xBYIk4YaL|R>46wApP<=o zK%{{&1whPAMwV6N&{l|-eh+MZ^!o5d+t?nox{wIA?Nh_I*tV!$Z4PQ-C2B|g3eHG_ z{qXhedwPIvY=gz`-zn~f)hK8tojx_Z!$KOwVI`=wIv9$A4Mz&1Fo5I$vvNoD^lNt@ zT+r#x{ebntde{rwRn-%xTI76%;4t+bKEFEkM@ZmD@O0u!aQh}9ud5NTkD_V z5jgcVdwayA#uuUGMyKV$UN6|S5LEL`SIIP9t$?a*gaZbVphYRpCO8#E>gz5%oJDY7iq&U^*C)Dd1$5u)_My0) zfogdE{rBHrf~M)Thi4S~0G*b>?!$HmL*HN&-bycgc@XtN$bH%@qv1KwxgE{6+Q9J$ zo8bFhB_MAhBUg%DwMi)zmjjZr{F^-d>QgH#D<>CMPo7vgzH;)!^6K$bNZ32}d}^Gu+y##pUCxr&iZiPVh6|a0<_)9Cx@AnB&Qlt1D|OOULouO`hSP z@JH43M<a8`G6`S{{Ve7v@DiqpK!GhBEEXD?DB zxv4*0#x5?e;;ZFVY{}B8HGF!j_fyC2Z2V#{e6y$1MhH#^S?bQ}_^DGTpl(5#C1@Y= zHhMuVQU-=tf$mpe8#q!+pkt1w5YGWZNU*%Xa6qc;e*B$)(j3D<@82P6IIsw6CZlY^$#paY@v! zg=fk=oFYhw#5aVa2pz0KJv4%=N^ya+upuf+A87}zuu>Tf@2Kqbg06KWmEY0qz_y6* zFSo-T``1w%3`;agT(=sOgRmZ*v6>7N+)H;mgZ^MWv?Bd*Eo^n-1*ielEo@g0TEwNN zTD$e*{c!7DAN;^*cvL#T;m~VWV3}9egE)e#V{r-df-MQneYYYmzDt`ge6aHT>W8;p zc%*}QXMMOVCb0SFg(rJwUU=8Br4L2>eY8^P_kwC@KB~XmZafkld-=iDoqeXb%8%MH zfys}%_jw>NN0Rq*$p98+`On<5NM4?xIS+}1pKCw}M_wx@Pe=2<3Qi3rhVRO}h9FiRzpY5=( ze!(o?|Gu#C{L3#?)?16C;ajDL=cAw*o^if<@P#Lyd13e6>(4%gojH~HmAG2saKm~J z#0Dn$4ge10zY@Ltfu+Y!ZoV)8r0nqpLD*#F?Y{Ks_dN0bLG)Pn#LIA|+><$etA*1D zOh-6H=F^S$EnXn3e03)FtfuSBoNp+hD7?;Sy@0WNU*i1Cb6*{=-5E5WIqiONwT zjuGQ0(KMd;NM3!l1h+3E63a9ej_O~?rtU3)DTJq=fe-iY*Iad%`(oR(CH%=cpzP5Oz)ClQYJ$(e?{K(iK>m9^uTKAQf z)F_rNQY5jnvtw4HD3-3b+JYv`yw!sIEL1hKb>*`=eFXD@*RQj4`UqT8z1?mNcbHKvReJydhh;2*atYdu@yk`q48t-nkLRe zINLgKwgTCv;&*hpo(F?oncRn>HqDEtX`Ulqfd3z!d&g+={Rm!${N+s_IXc3>?jD7R zFK8#&BXKq8LYw&1V0e-1pT82pFL=ox19NzY_B$9lhFJz1t4PahdMf5u4H9EZt!)ypZ`^VIz-jv7!Gn3-1*Q`RK?pH zY#9vSY?*4}2652^wXGj+s6fncC2j=E$JdTM7%o5m%ED^+Z0+&E+J|=^UpW5ZN8=aT z>u+l&a&~`)eQi@Tn)B*n03ZBucdh>kj7xrwBp3pxtTjwmJh2eyws`!*p&z zmqtXRA`a|xKLZQf4w?gOALyX5(pVjyheJDh=98nwiN?vzU2Hsl9$p13GeQWWF_FQ> zrx9Mp-m1RG8*7_qb>EA$BYxEQwE4bqs&SwBd3XV0yaD3Rwsm-k`b(wW>W`kW-7W^p z-WWh10>Optk^TFnN+E^56Nwpdk^CNy0^8+A*(+#O0zn19C^_J7dbQW-^v{-GHEm~K zg)i%D0=@)+LH8EyYaCK&ystnrQ!0ztzjTycr2BB`!&{t2`o}g@cvX9>Mz7mR9cl$J zOdsV>A6}qz^kmeFIV;t)`ISJU{pj+zGw4ANjR$q8)`~vQSDO9sFor>FKrxIOCyYQz zxrHeH#bBdbDk?R+upD)F+sF(!yg5MZ6ob=mzTW9dR!`bJ{6d(zagIMfrujuY7WiUpB7UB+TH3#PE z2E>#K16qm&o6(3#W^h%~E#VsmeBNVEF)~HF+O}#cQ;w|Wo_iV0A(t~J$mLDp18yEH_*JvBRPu}G+YKpl}g!Aal&L; z7sH7Ffx5LjdR_IqLjSG>57wprd~N#A*y9a|McsIzND5~|uhFst@&Z4>s^~&!K6$Re z;%3N$Tz60Nt*zip)Iwk8g#;A!jQ!zXVS5ALCKFadx&o+-^??yNqh3X!SqWbT0UD{5 ze0Qm8)H6*`e5l`yE8xn^-bns>DgRmp@%G?jPGB5@F^NIpQE<8Or7`xX|MEb^-4YmA zJAbawOU|(9c`rX4COdeo+eLE`3E*F1c(8H@y=gOmzv5z*(;&_s=q1=t#2FNO3lo-g ztI&T1Stbp*2Vndv8=%o?A}Z>hxyzOOr?sHCe`B@rX+{xum#VLXDU2Xj4K$gc!NX|tQzRGD zDB26A)Qn=LDmdS1#U>HPYxb)v)lkry;Xy)-3Fh2IgZ5UNX$rQFOeY4{hD_Wnx$C=F zeGX$?|J`T+vM`m4HM-l-IFh-jU@6<)`Kz8d$lGL|*biiO-3}Rn&Pp+Dn-wnpV=e{+ z*+%q?e=rp6ftTyEcb)+?lm)V7&~-@Oeh@>C!ODNoJ)JT&da#u7?$Xh*BXV;#GRb zu2SFAJ4U|XK%wxYQSzw9McXB67>I*TB7+)d8oLH&hYioBuMMCI8CZanqs`$`FU`YifAiekE;Gvn!&QC1YqUUQwB}QI~hx zuUE5AnvB{wJipwBf@sH(RdQxH1#NN7P#;gvkH^hGNE8T}9|zvsCUDjK5<4Nm-iRB=-AV{iX(nq64^%0q$v`O|24+7O)+AH7I`1aw=97<9zO?WzrMRs?gtKaT4GqFZl zFs37=FZOqMlhX+f0VJI29&B_6U_XkTzRKEB-`?qbtE4$67_|o~S_Z`!;e04Q;NG7e z-s*G(Lx&9mB^54H1PFAGYn>k2g^0{8e0q)35F>nAg+BylSuNTwTeYwRmme$~r>B^; zN{=3W=(R)VoMU3lC2$)U?azf9kDTcql^mhFORp-A1^kACUK{=rCJw=MC;qjC7t8m& z?SYTp@#@*5cfa=HM_&5KM_yXkxVLoIM?P}Lop;^+_R_*a>5e-~tq>0I64**<2hun! zK_7vTscB$`;F?&t=bl5QdrHqKEXO6y+iNB6X{nC%f>Ka=20W~cUhMczl@C#Rm47>{ z9eS!msoyDqM1eSVwf$t;XAR)eL+^WE$snxMsh8S-gBf;A2l-gm9G6~w_&ra*Pc8gx z>HT&_9}_>~$KYJ*H)N(lB{hD%aL8g+=EDz<$|v`lVGMFX9C5!?ZNhh1I<1#eR=;wA zN15#fWD=XwCs1>R$x)(CUf)%?ZARN+2{TpO1((lJjYTsEJ)D3bb2Kxk$wzWeP8&RLgW1YpEWb7J7_YPT0k z4?%xjN1`q$0Fwo!S5 z9>PRrE3uk~$aUKNd)4%1_Rp$Z81}dq3&BxBZUXkSj%XQN)Z{gUAibUn_30O{K7edIdbI;8nDiz~GpEq^1K(gndr$8i!Nhc@oS<7)wkcSnv|;sAi5i@KS7*8#+!Zckh8Ns|M!5 z7laUrOp?WmFD1JtD}Q%qfSu4ZmNag3`pyO@0!%d~2zT0KL?Z9ePG4xz8IvS&H0fdv z5%(C!pd3?oIeOPe+IQXUVp`D{pb%0FPJ3qxJlCOwbx4S#N}5#RTn6~N-tkv zmg!D7%ApeI?3-FrxjTp(N1e~peK{N9X@Y^cbmyJ!VB_;3d}oscx?0YQ%P*xt?;#t0 z%m3~9e(w^5uS)k)3QHQdaP`L@gfLRe=cc&a;qKC%?wM3XY+!N0YIn42EK>elJ zgw&UWfc;8n>GtF|+fgr?qulP{faB=QL4^Ztj5%VL)GFv%I(m2M^y$;3yY8A4x}0vy zbsnd3puomj&_e_X<$zU!`_$FxgJ5cxHgR2tI4+5|9T~cuPOKmr6x(A}j&Zf+=r)BY z{)MS3Deumf@<|^poE{e|oA9a1Ig=9&4T>892L7B9#So~B@?!K2vNz6x3^Um7L^YM6 zag0}L*s8=Ygeyp8!_Lzg7&p>1O&$42`$+0oJH0SH=eKeU=^Y+jytj00NvJ=i5jZ`e z42&Az(fH1RH8Lb5A#1H9&gTo1^Et6q&>RC&?Q*7N`jz`Y?5c z8Blva(jmjWAdvhERgFn!3@yIM(Bey@(Dt+7AczpsNn8jvin(l}n07ZepQa7|jBAKr zX+k=hiaa#+A}+RXlEs3P%kuVgejH>I;JA;@^ev&mxx{*F^&XaY#Uj!$yNd9=)EL6Z@QjKL#Fr`TI@s1#$(N$XRK^p`e`4;BBL4 zq{p?=W89aM0;^mV;;?&DyQ8OdjeMxu=pcfp9lk*M?h0ws`O9=;%iph;zdNoac|Ojj(h-b%Tja{%!$yOVSaEd5rbI&jZh?O!d)s_I^Oc9i;Om zI7-?dX^)+{r#-yraa=^>y;|(#$>7Oz?P0r|pClx#N%YP9Yb)4-?@rDHBjw6pWDn0Z zG0sUd6n7jV1-Pt;yDEvF^ePSKcz0E@XTsfAa}=C5sNs6oUq|-?}5UBb%vOs zbzsw4fZ`-qiZ6c}cbCH^etJfJ2 zZ7dM!=}{9odINL9Z#1ncnF6$I?~rLS;Sha;TiVDtycgYb`q*b4dE3Vl{(iaYr8P42 zI3Krc&Lqv(sAk5mt?oj##sph9MKy*F0jAU%)9KI|T%l%`AF{TSPp_<2qOl}j3-)SW zUxxmW&H=W~hpW7b4k!CoxQk;`Q@cLA2pJ=YR&tfbw51Z&JIQAbC{iRga#W}Rc8y~CVdXCNg5O}s!OK2?dWE(9msJhJkU+_ zY<8W{F`a5q8sdf%9ll+z$g70lLEGLlQ`gCKj)V>Q5AV>Oi!Swu?yt2rvK~Z&;0WN2 z8FORJ?&)vkM)mjqBKI{1GyYF0m~t)_RTo)pUfq^~~n0U@z24u1%W31nJmU zLFNm>_A#&%+wI1rn;y=@cZcULCEcz_x~UW>?>JlQbpO|oTmu>h_eBEqb^_vX0sl0XN?J(Dr zf-<~vVG#Eg)^Rbq5%C&I@`-~k3s=6m%6?-SlCMh1Kp<6B7Xy4v-L^(DbO+(t1lzcf zuq`y2BndG0M*UHd=T#Jw=`M)wZtp@iYJsBcOVz_4GE3U25EvWPS}emWUxvEIW0Fk4 znm~tjo62uenMTQXm+3a8>@j=0gUSVop?0m??6cOcq5-3nL0VDt>+znbO4T%{xbaHk zRrB-k2KL9YEAov^V!>Cf=uC)=0mFc8Pm|r1sHwKk%?27EO3)_ZZH_!kZoVU@5*BtB zJSSyIsa0@R_S!4NQ8G6>-W_H<+YfBpsw@?;(O}>(-Nt@oN9RZOS~mj5W~Ddog(^We zAVu-Vr0eyjt1i8QycOvCJ!h?NHa(&?ymHVLEoxll;3m@xvL7H2tF+gA6W)GfZGG3yDKSo35+Z4Ft&7x=)1TztjDjCr{fMn zqVw+^Sl7}p=2p@{E(OtOpb~0Sc?4QDaHW9oLLBbucQ6piC$CrBuhEv!`kn&|Wp;3R zgR}<5tfTWgwiKMvd5&UEt=_|1ACH$Nx!+vlc! z`#k)XIQ%w0KmF?`)4zTSziz(He`%*5-KFN|;dMzcNxK=998932C>T;-z{Z0e5Et(9 zDer-!8eXfaP)R~3Q-mw@&pYjxtM-k0YrNrl)qo5-7MP+S)y2EMBw=mWs4hm>#=DpW z6DQ4n4R28G;H-3VBKzEkV`uoostdHGiln8H8ysbZd7tIaE>NyZ`~Z&=V*bb`8lG2Y zOOg~Q0GJjjrlFhDDC5^z3k0@^Hi!{KA31A~KHA`-Qh`fD5IHGXBREv*64{CPDx5_~ zJO9kXZ*)5+PfT!WI>b#_4dlB}rHnwiLg7J~=IZXWD{EAfv1Y|-s4|(7<2Src^-=m@ z1$jzfL~UN}dh*BZ09UIX@n9WXu@7~NwI7^8WGm4OsiG58VEUc=D*oY>2@B>%1%}(n zViJ-juQu12jG(lp+}6rD1foR!HCLDkLfkHrPi@b=rX9CO4Hq0#6u{t2<|19dx=E+n z0d3FoP}U_mVqmCJJT4hUcFwr3ji4J&e(S^{D0OU`-{Y%`-K6j4lSIT*E;f>D zhus<)H3!q4pc4)i>^joG zCC$t|QP)sCH21=lUayknENv)_)wI)KA&ucgu;z+c&*odWxZB*#c#8|xTsN;!=}{_} z(UwxsTdvB!`C~BX?JRC_!HHH6&#_duO0>sYQ@zx6GIQaBYPxfLA$v@LL?(5_6;8SGB=_F7ko!pI+%jP87bi zmyW*rs{T>Q#ItAbW+oEHela~bT#QJmYVrg9qxsVU32jnn<7ib9rN9;lt0r zx3<0h$}{hM!uiaFI2ztR{u#7|1>GfHIC1LKNfeP-JAo1_r;ejG!V>O68URu4Y$8M& z-`)7vW~VoAClwuWNNMvf{&Lj$%V4lRyj)^@s(c~*I!~UXR`X~I?*WzFFEFlG**H}c8H+H$| zH@p~HzOuQYA{-q)LPKo9SV%!r)unVx(WshpNxLc<)lgRDJaBcbhX|(^gSK{&4~A_lBQ2PI>q?DAz-V}znhHEQ@UbDQK&2D0yhNGK z7>11eICg45`G#|vkuBLA*s>2hQFmcQrRO(e{IEp2rlx|d&ia5gDM!PHeaO)v5Y|fa zjpsC%aov&kQSbAC(e+(?AaqliEER?JUv@FDWNgMjcpS@=@RHoUQReahj2_Q}5G$91Y*;gH+(i zLNC(}cmHGxfZ*wYkEhBDPI7wQ;hT(9yYa0^TFNX_N{5D?h}3o1anbrkn(k3X{Ro_-+Z7TGzgFupzm!FrHK%RL z-BKBDqoLK87a-ywDQXp_SuChJ7yJqG;ZCDcFVuMB7`$DHuL`bsFw}rMy-MmDhCk(e zG#7>H>LZ_A&e-cjbn27OKQIdsv%K4|=9_{`l1Q=J|7^LPkv^StW-fIvs-le8X!xve z7zC`4TIC~PX(_{qUM1`$D6{v zz9pNsa<~iZe=K*Bc?)-{=$4(nP$M=1RVVtn+#x0-p&D~(yt`ePYLs=N4I%Mc7~Mu; z%>0s=@801Q@1X<0hi2PIUjYc-xC#m=r>c^#52j1a;>tiB>l!Y!(HD-$Zlw#K#4?ED z4v(NRE+tizv#YEn@6OnX`(|Jp=_XT2NnC$i>D1|*8NijMRd_R+ad0JOwGXUIH^^ih z4ZXgd0^7TRXbgi4UIQns=lbT6?on{;BS0P}k0&>1j5Q8N^;E zkU2>{nlf#0AZ|#^*l&j9nns8VR>1C&k&8n8${zBXGiJPf=K|Fnz>F>6KP$z#Y82O5 z{~8kC3n|SUeDg~8D8CHe@j@x9BvL_$HF>QQn3#fpRF{)^)Ms z1DuUQ5CSWpBj2tL6z)@Xdv9Uzl3JwE2i36V7a?0*M39QRQj~gBm@lW8`K&vt0u}G` zZHSANg~{~nUcHWO_WFp@o9Nq(bPoi?Xyi+#;*`8~V-Ii5H?XwU;+vq07#uS7LIQ%L z3`#NEsWqUmrPF8X5Lg@4&u0z8;R;Rnl_GJ2yyKs3rPXl>=QD(c8CQe~!Mrw9Q#S?Z z@%kL#e?y5{_)hZDH zZXX?qvTE(Sy@w}ZnqCr0nz4@BaxH}4+{+eo6$fz^xh_?S(y>U&o@@b+mL~&b=uvsJ z;Vc6R5Z`~Ja2pN1IC1nzA5NTRCAwgh+A{ikUt&nVjo@{Sr5TBD$aIe~3U#|t1sJLN zy`=@X^gx90@~Cs|)q^HL6*75nMCgkUGuoxDGzD5>RkL^dIm&%{6&Y$;0r^aCgL>CO zTMe`GAmFUEG#Z{zq^J`bxRQ)q2bKIlf4I$k$oEs`p*@Rxnb^T-c+kR+o|Mt>Y2WcH zunGD&(@iT1sP;8^GXNApjOf5+{t0o^MIR4z7gcupg2D89)lLW*e~*98NPw&1 zwM_N8W}WwI@j7pYLnTiGciYRD5rhbWwYao0rN-CC`<8gZFXS}>MjA)M>+BlHQ`Or; z$|9QO@f5GX&eoK590TKT>!*@%Usb6}c)bM+=siPq+urL-8ejxX1$T)Ty$!b9E;#<&Fn zPZK4DL9>B-9CxWeOLB;1<6Ut)h1j+Vq;KPqAdG4aJm=)JSX9TiTkhGNA+8UKMBN!C zMS!EKXTMNO-tP#{RY#F_&RXG0lhDpga|C^k8LQxA(Mz6ucQjC@g=A2j!`FPI=QJZn zmZ^IO?4Vk59aJ+o8R2_Y*Khqk7-JgwmT20_c*BnGp?Z@Xa(8#Xv!B77QZ(wZKiqa> zO`Aj*Gn@_u6<|*4s-toPdL1JLAW+-sx0ovgqcT71E{{I5^iL4}Cf@GOJ=NLbB!xIF zTV#E>@E?LwP~zWQ%`kE_n`P~5>sqagkBxcEO5n^#bNDmFO@!MC>iK}#GCwIck@E`` z6x4elL6H`@pvYX&O;duN=4Vd`P2WHPVmx zcGUfFQs*BY{ey+D1E+Tf@8?}>)f$Qha9Rm#i3ctl-&5u6@X`%FT(+4(Ns1r^jnVoR zSa2M7?PI10hPlgk)u&t}yPeDMhB53=V;pbAH;#uNx&RK!hpH0y&S=wSvEW32G3*xa zxMX;ykmRn)9r$o!iJdtNxPs%hxLGjAb0&uV@UU}$}I=zl6 zcME)rbK7Y$F|>Y{CG(VBw}V7E=%Wbw(Cv|(pkTzaZ#dId1}Py^`x)Q<6<9WppDHAU zvW+ZFUmbv(G6hfc^z5U!uV~PTeg?{z#LknBj`jwQvpgDpaLUC|Y9q`gkHboy3Mj?( zRe1G*3Fe11jM1>?n_h}nT2blSNw=qy;E$p+wF)i{^3tdI-ab2(;m>nH?JgMpyyy3(`G}}yu z@&Hzp61ALd^`XXT zM(7s0wRd4o5Wok-X)dF>2~s7!-diQ?amTLC$MZT}@A}63ly@3*Orm@mGI!sSM78LQ zK?-h-p}lGdhS}qr&G}kGHo3XfZF2F*oSocOlr-VZ`-~jTeY0D-D76gzpC$Y=KF`_Q<<@_C{f}Df*|56j7`#=SKlol zKaFThlC!*CFELF_=i-*D_N6i7Q?9C7pI_oPaUxPX4L;$_x77ST!F;TxdoX}K8hU+# zE_xT76PUXdPG71?ObXAxo|4DfvJ7gRb*NfU>KF_zU{|NeBzGxe$l^sORxQpzzSVwx zaBX9G>?Yicxyr?4JcVh!gEqraOORza!92@*BdMA1uNO5G>^;co?}A|OFh#F(JB@iC zLeo9U@isu!^Km&70U%TiCJDjnRW(v4#$)5T?I?ZDoT!6#TC0QrR9HeiRPD6(Yg&m0 z?nA9}7|ZKXUnxg;*|$MuJ7SJc{*Bj36KPQEg`Z@2nzB!TR^q6-W#|_B%tSZo`@sB- zCi|==gDR;#tvoP}bfpGTDlnYY>4D#Sr&UO)MERT;Ie1$z`sNomgf&ye8x`2WdCPV_ ztWMERZj7pvP?z#gk)wus3EmYiPG4kpw$&AHxiph)Ec3Lxt?GE=uA0{7B_*stDnw(q z3ojjNoyJKvgjd-rpt)!{o%;2_IR?NMu{j1)eS1QlPb*vzNDmZAPa>$Mc%hjtuvq#c4*V7&1{W z6tf~92-7C9MJ-_N5Pj2JZB|L|@+TyuC&$OjUb0c)NO?MFjwq}uPNgQMenK9f3Vx|9 zei#E@A8$cY!Cdhih;nlmsx~vx1w1kMi!e!pVITHW)L}Z}9&QWrYQu(MUe2XI_k87! z<94Qt-*fRH!~0c0UddIw3KL1a+S9n}#y8vXKIJN6y39|Sr$jQ>1iTeK(q@Wp&gmXy z+_cP6WeXq?^$1XYpvRZ)AeD5F@aXjdsE`M8hXJ<=+Tb2m@SjpLY10L3-D*YKu_SN0L2&@~LasgMqy zy?c@vZ@hoD1oh4D=gmi=#81YPPV+<0j>6%cp{q_iePL*^=#clEOt5Gu<-A@63h7(l#C*6bj{cu6PKX>}s zIg0Kob*5rj*D9D^Ycel+(=5+FaoM_2YI0gp!qbSV3be__$iIl=Zif%2sZrd{xM<$3 zAQC={x+O1wDOYaB?Sp+!lEgmPMOVY2=Iz{20{tRSS?5+Fy#d-0GGQPUGVW5fmtPcj}N{U@o48EFKhpmw+_icZKj5% zDuph}!;-WkqzwJSB1(qRY*vM`X5GU0W%_xOiX$nfl&Th9Q5C~5ei6NW+Vvw{8L!4O z1>Y+glq@W8$p#hl)dd+RDPC1L$>4|uRQSZM(%!@Tu$Hm^yr;({0Mn880hGHNnco{M z>dU&k8NQ=pQ`U3!=0K)-f^U-P9umHte?g=z)B~Jn^plq(LFy0qcx(ZzvW%ly)m3@y)%6`hE*>ppS(bvpoMSO zon~avfaveF6eTaK@gup$oxV4%k9EHFWH^g&^wb`hj^@fw{{XZCD0o;?!*|Zyv1cql zLv|6$wR5k7DwnKHddS{fk_^xG#K&2u{DN?xk}nBm?v4GQlIOZ{XP*ZPbuQ$+C@RFW z$U>gl3@5vnSrrtq2IK&aQf!AFHoGyNv29;v!*J}rO7-7s8zXL6C(|1$CB z!RF1@kqhu8Y<{&-*}@ZV8}NAgYL8k1L>K*XOM&Dc*WB|V);(e=77M!`Dr|ms(X=X@ zik4<1V>leoH)p3=2M$KVtvT}#6?EF=cXeoH0n5v_ka|jAt;}e z1T?0T@b#=3e_e^3don{qtrnjWCR*tF*<=L>uRCEfFM!m<^;Toq7Z6`N)6Qv0^Kso` z=^LL)I;!n)`*}2IiwtK&fqlj`06fOr$5R{-Xh?I# zg%tzLT}pbng}jBLw2X%NHLmg*q>G~QqUwEQydu~EDpjdpUV+P=Ud*h$VMqL zCMCx5GwQOpEOknxTX`Lsi~b+H!^|Anmj@A^T;xr~43%O6Lc@~-xc`@t+mm~4)tv({ zXS^huW&>XOcT^egij#XcNXN#hJK#(1UH6i^H`}zJp6{9ulGd%S!p`bS<+D7903ECl z-hhKvmOi~BL0!0D{ZB+RGm;+Mv+dhmw|z`Pj)uqloKAakS*8ul4w4^_%@2B@R&TYT z>;tTWP0hI9vUh|Y^|ADV1YmN|=s(TS01H9_Vw0-D^9U9ogF)0wFKrfJt~j*v0GIFy zZw~wf{01+xL3>t(G3S}-vaNG3=NFZNght@ki`5Cx5yk36d9(C$=^0w?_7a|%fF#Ac zp%f5a-7-(|yX|F-H?LKeuLh@k;LZ*L_8F(O-~rK`)w{3>@Qeb6%j!X*SpjVz2T_$5 zpFEjJo2n|EVph6gI?ZARKQD;cDw0#GV5-KWr#|!M4i&PdT>d^9YG1RIj$K$xe9O>- z;LU3U(bhnGdPRzF<|q#C(7ecHZtpTF9tIOM3Gc4kNVrd2*+wbkCYRlc+z)e{cRskO zxjKEz`h6bJ018(m++!4a9ef2TV!elJP9zB(+aC?r{Bl`h<+{F_71FLf;*HU$`01qA zUi-aWUEL3{fFy#kgv!x)e4Ggr@xoGNrBd6)OQgu2*k(-&kN}voS611L_3e&r1Q{V) z#Qe&_$}B6BnaGPQ4O*P_Ti;`{oCl*?x{yvY&+q6_fefwu!Ca>vu_i`dtB#UfmqBU&9L|JJfAt8&rj zc4l#kRz(+=%GW#`E|NQp)3=PLrtzW{U+K!%JlyH!4&rt$M_~P4m7$0}huDYOZCxYN z%Ni$;tnipdEhae53@A7wfV`!@CYX`A2-pnqjGMj(IM1*kG#rTTH?)ct?D~V@VFWS8BJTBIP zm@mjkC9|Vhq1n|WT|g%;doAh-&aLP&O~iKd4dHCtC`Gv1@J~7EysCEr#wlJ#TY4{_ z(#)C6-5}FZ9bTlJZ>!Tk)g?@hC8c*&v1&T{%~N0Hy;n9R{xgZ{lDD013YXItw@lCU zgSs-DysDwQYYUT|{&l=+SR@0>QMPk;#ObSE42&Ci2NQ`3`JTCb2+3VzS@*-0Hddp{ za3tjVUll7>rI=vK@nLeWR*-#I^!Wgb-d;&L61<1R*-$SAo%n@{c@<&D*>g*wOHWik z(#?7iqF-f;-03d7;3}QI@Z!~I9lG#gz-h(?^9ITME_}B_WW>Q4dmyTZQzApScs5@5 zwGYQQS3P@c&`a)W?)eF^%Cl5~vIu?4Ybh3l1FyK7@FN%S z$JC`PF#!T{K9+RCIbN!Z@g*U~~*)s1oIENZeCsYW;#w=&>t9_WC;djcMZ=!}7 z^0~qGB>J39ZG{wPLme6Ao(j~}U?P$#>apTeygf>-OPz)njqSPHWg!pCS#q<9*JLxe zdI4moOEqN>KsG&Trc3Ey3&Pj%{F^F1;>+4XYB_uYFfiA{2ClZD9_IYBD^!jNqL2F3 zM=#sX!@fh~e43|7f|Y9$dC!fzqi$yuU5z`{2p%dv#0Dp9#LX{jz1-_i)y&V9 zGU>%NvcdQ6fOxL(l7|>MEQ3PFEM0J6eb7`RnO|^;7p1-7j$gr8|PP-C((@pm%SMjuC7;nL*_j(81_4uHqEq&c$Sqhyb+Z6-GT{WO)QTB$?T+EHV^ z5w11JF=$+gZ!O=aIZ0+UDhPoz@r;2aSI?5oCVowGcLj37TwTfcT{u+iBh3_}ar!bY zuT+r-eH2iDA)4ATym$N-1%n(~$|$R!$|!@pj@J-bW7wbITd7%tLBzq$lu8 zqt1*o7=0Z@VMkbw{!1CJr`pRZsyqPYs5c)v*W%{g-6|f3##4v1cHe9j6>B0c2n;lO z^>vrK_%_mQr+!VLf+E!c_>cDxOhC81QqK2w+bpKh$fXA(3z1gVi_z-+~Py0S?X}A)NHiLoAO&Ax*(y2H$rjbUA0@i3bB+yq!hW`VQ3-W5!?s@BKTy<*(l=3S6|@fl0Z|m;w5K^xK(ha2?Lgd0@xxY)vO-K|8YJzm&q{FMwKApqkUI4>4 zQ#8jwC$mk!#3Af5vhgPXf@{6F{gtoLx;ru1w#gMv$q~=q4;!XYz}U1m_Ijrkw3?vA5IZ1AA>-TV&LwX)Sq%t057{2$zSwX1~Lie7oW_OWG42)Br`!;z40F*mzO&U7mab zceF*{G&42J>VQS1Gj5U>5Y#P^)KW9YrTa9$vWH;5^Wosq7-us=bdE{Y$J<=AOkE=u zOdD2CtHY=ClGjNSdy~N=IEdTO!sr$ET8a6}Ub+YJ9s}mUd4V~H&`S$W?A|1PpXtEj zJ`g5H%U(GVC80Wd1E5 z9fwr8`1^fG%-vI%W5zWkn>i)wRK*dswr9NaC>Bh?;RClDQwH)c=Hv;0OpPr6C)6$7bqQYCZR+aDNqI5Q1)xb*;kfog-T-1oyur9VS(`OV? ziKzD;@JZA^K5pRkLgb;@G3o4;gM-)D^j#vl%-u{=o_C&=u^Pig+^Ocw=N?)-KdU-u1dl9eR404V%q?pDWqX=PzHJP{Wmf(8faZR47X zEgB&YC}d=sD5jEsr79^P(#Jy$`EuD6Up`E`G@q{5TLX$2d6;K5td<^bhHQq9KX*f| z(WBL^d1s@yf-PJwL0lKNtYDGzjVWe_zi}6f<#L@B;NGe<6NmwIos^+URjY8>CtW>} z9cKVj&tlDlzjuNUmb74zgx%{LF1W)}>*%O!5pvD`x3d4~@{nUFVXy@(;Q z_Xf&I=L$Yvvo#sf7bw?K#)_x1Gow1P-81WpIsDMKPN$i-YQ(iXKer=-F%9E(^d^|( zYhLLd%xGguH3A`CZ$fIreN^Z=C}4YK8Ga~F7D11bEY^fh%LJLEcJikTVLs7BbWI4i=U z%M#N{!jwfa$+iPrm}CJ(w>s9EVjRVdA)7|%t*)G{3`$G6-2#@qk<|h=lr9rJ>n53W zKoy(Gf1xjZ1icjC9;kF@bR{GkT<5lz=D)J8D8X`yuGEtWND6_-!ynx-g zJAJ_)sYrS)FMCDb2hcW_?K4?IDg{W?uo@VzNamvh+w1I@09P??DzQrIqE9}0IHcun zMJ{wse|&qL{;9=`)#aWc$j$BLREZ3)aG3y0#^b80J3}hGtsu6j)E9BuICSMB8CP1A zoxbIM1Ifm?wg+Z9PYoX9D~3Hwasf2-MgRt-3e-vh$@4xeP9@MNp_<_ta~sCb0G)%J zi)4@xtQJW4jF-C8Ow0!^-NRIJa_Ya{Y6Wi+vA2uIxN_yH08@}!%lN|Yz?o#(TE-ZC zR8434GNbPC9}T_Xr~*Pw61+|RH6v}v^`#%&o8pTx>1I773hKW88Rx6@ok3X+tZ^~Pojkfx11(reA| z_Z*YjUQwm9>OPj~iia65>jbsUj=Fw6Pcp$pb5#L*R!;*G`*B>1r(ssDkvA&%WD75D z=jVUtQ?t7(;}@@trt2-AX@!9AjMzrpg-EjXT!YSakei%w`yfx)7q!vLj4kZ_2UZW9 zBIJ{*hd)+C8fm{c5zZa(4qh!XPLKQ`mT|H8CX&Ld=~!NeOxS|Ju@?a5NxPMCYgO=V|4R zI+IHJJp-%NmafQFTvU8fk(JxWJg$|<4!k9t<;q(Y&xo$1d8Kq~MR9eZQ;Si``d%N8 z_Lx%It#g+pBBe1z>+m(SHx{h3pS80I(cGDG=bg@Vjk^x@C2645u+;iu4F4uAQ z3OT0JYGgFm7}@h`?FERDj1Z~B$arXX@L%RUjD}v@!et#3R<6`{O-T@Ex0hyZlg_A+Cg(7$mPl4(X>h?zN)@x0;F<{9A z{z9)e3;T@W#6$7&shg~vBKf3Be1^54(3BtAG7+3qu`RE0?%%S~bdu$HMr~IC%W`iOS`Mk4PjR7|wHhf& zc8FI=bFu7OliOZqS$Mhi>=j;l;=^$h@_kGI~9TQ8yyj%_UOAoT?Exn1qJUqG8f>Gfnvqi+mpkvS%oa6a+o zZBUkcZ*Byw7K#UZ9iA?Q_$KSNmw9V3!$x&a&w~4r52)KY9r132sHhmL_@`F~G$iAL zYT6Vz9ejQ!-cMgPcU;C8cHVm3_A-h`wg$M{EzgxtYe1_Dr24wBTp-Q24IB&JhriUW zIDO?RyVT+JzDMnTIB6vkU=^I*d+JkQJu=a4Phy8z&b)+udDosaBe;OFXHtf2!zZ5I zac3ZPJStk!_h?d&lB zsc;~Z!6Ar9J~@gi?nqM)_;k03-WfGbZL@gAc&_VJa+|;$Yq)d*gF)PwJ|o&{8HM!L zV3)7kmk8a!nl!C)koZfYUb#%pj#pGR}lW&WL`MlHfIM3aZA2<->%v z1x+Ms0t)elcT(uc!?7dWN5lN26Dp_4SrShGZ@n)=4_xn|c1#%K=f%oar`L|4ym*Jp)v;7Ph~3Iq(7~$~?z?_A zf*w&oTdRd$_hSJ=MzTqgSOcsVl(&;wG!OXBQ~{U>4)VoPkfAq&e6l@(ijyDs&jXpI ziQ?%p2z&9MW}jz^Y^0$nDssExjSamOXf5MqH0bEwOk(Rz^bw+Mw0Z-4AaNCp)g}Oc z%(ok@-8j;T-0xec93_HA}mhXS|V;&wFL%-t|o4bKJab}sjsY3klO z@%lsxoK?d}RWM(Uec@LS%{zD6Cy-SG2a%Y%qHH)HPgC&YhxZMb6?Nlr%(zzMN6$M8+YVL#yg>Xln#?9D1Y>p0ID7}`%%m^SEUUEIfE@^ule zZar1rRk{+`_QXY;Ua*bSYn{+AEfX^({-QSKF1NC7Q71kl*E3_obFEuk#>BObuw_%x z^Yvnb%v_|Hj^@$PDooE=$&wG-Lx1wRbX=a0J2|P@XWSy$r`E$0~k}@b)BzGcSSb;SO-zzE&qiptQ==EgUUG%NkHu6HF zqdKI5W!}SIWG?{F@KwyfS6EpK3$@bPNs^G4&L?2R$#p$_@yon{u?m$OI!dR@`!fMj zMcUhBp*s;?ABPhy^C1gx>~4d(Q&qS$=jZ%n$w@EkaB((a5G0ZyNWOq}H0j)JbNZGe z9RbWpm|;Ad^*SJ}@R(VZ=V4l36jDx6A%&T}Uga`vTKd+I?g8ZmW~ZhQx(88@jb@Gd zPY>B0Bob>EBa=l@h?jF(j^i8EHj*7Fw~B-e#(1P~9v=W{DaQ@GD8hHqXH_M2{K@O7 zo#2!q{*h5jEO#j?K%u7-Dm^t+m!;f+ zE${+n;M5E^t=Uy*$oD&{ zNRp2TT^58WX0H`P-(_`r9PBRN&(fua52W&=LxmHhF=`ed+Kp zLUxc2AO!3ab}k&99UUEBqO9C<5BG>RAH4{5)pWk0JTq5r)kd3Nc_IF+3!m?GYRRWR z%|3@k(G(daf4}X51f(-k%#q&g*GuKYzhn=sxxPGzs#{o0uV0S3yY2PS=G!>jTjcw_ zW!g=z|HNKzlU{o#z7XI>4}~T>m`}c)^VQX!JfGNi6HWgw;SdjG4x#i66e8ZB{jY2# zE20r03+;NI;INCCU|P6GfU61MN5afE z-@tEH(%?_40%g(_#%o3M}O^9#7<>*RBrk8K)< zgzX4b1l=GTJFunIxo12}baV5;Z*U#@j8F>ayuxTc`=^|Q4l(dEI%g0ttR+@^C9>@7 zi#Uc(H1~H-`o8Yqm3<2+k!DVp@=U*zl^Eb){eFpEe0plb0t2l7ea zS?bvp+|60tBseE%>nk!4|CD&w42>NYD>k!T%Gls9`WZ;`$v@*H9Cg|E$r27$i}Nub z{lVCF`94Z`mHq4=_?bSEoZeWy`myqXX0ThhsMTcEV_$iz+?#LzkgId(YV6x_?aq95 z4fk+4bI6s7QTOo3t+JY`=F9hTK>bD|m*`JUFui|-OLKbrJx`|hU$M8dRZj0EPD9=H zg=L7d+G(4Qev|_1I;D;B^m4YmHzJC~NkY8ZHY#Vlw0twSN>p8vC9|A7S;$IL`eBZ6 zrvj4lL~uCw4+8l6+56Pq-fmB&sk(pAS4Pxuze)^Crl;E_?fBR;w)KR_EWU&b&x>&F z0kWre`Cn5` zFlDwWEMCDy=cT>vOFP<@k}3WM>1L))N%CdX{MJb|c?WLa`6=^3X7^t>yP0-aXRfHJ zeLc4$FT-fxsf~G{6x2EwJlh=A6(L#iAIwZLDKEB~;e|zb;J)h?hk*k2JSRBQa_9o|_YpUobN-pdx_h z9R%E&nHj#RohtCI=Jce#R`y<4dA(N`uuZAzENYwody!*ezuylu(*$L@zr^Jq$aMFJ z(vYB^&C!JlO*bu4KbL5beA5{*tUgaf>pu{19;+-gVM#F%4FA^yBZxhs_C_l55`38v z6MIGOV?@S*I7U;V_s$K&1*b% z2Qz0!L|@N29|)=K71d3`K9H?*ME3U(=z*ZY72R(>F!CJ};ja>Ko+4g|_gGQ>?}&i| zIl(EB{@j5{j6I_LQi48^8K*@2xkSW)2%@y8zn5?&1uy#?@3E@)%H=&>R2siXk3Xh9 zCeg+N9;4dTb?arIUnK4~a-{X1nHE_LuaDtFc+6Ddv<$b!;pVcgelIo9|24mX`l*4= z@C1kRK%kWPNe%WUlAc`i$R-Qd2eWsh+*XI+eu|K#!oz_;-lMeqEC;w#;VFq2tLY`b zs_M5&=e>>+c+Jz>_r)Fu(PiBH)q-DxyMiO3P@hm}m*08|!_jj#Hdk_H_Z=SrQ6ovL z6dj()*K}>Fb$=T_Ejn|xQHdV=C&chl!C_rhb%9GRitIfb`w)kf%Nq%HxJ|yT+N*GW zK3BY4aMmfE^6MtS)tK7&(MfRSDseZFFvZiGzgnN3_R~am(OuFd5)^6t<4N$mSKDfH z+=YU8<{PX+ke5&L8F`C*w$8~G%^7yow=bGxUtA6CANXO>gEOXteHGVOE{GbdXZ_J6 zgqu>OF64Mc&)Xhtsl=~~9+;Fubc8eZCM-G})OTu~X1oO49LOH;5}fzOuhTydTqEe! zVm>@8F#m=y#U>a#UK7AX%ve9uAwW-%HpC{F0cdBV!bdKV6(>+HJ_u|g$gEfXNp9<` zo5OomGP@t40_jaJngEfyfWJU|oLHP0qKm;LE?JD9>Gy?u(rpg3^!_1k%0YnS!$7j` zpCTr`mGj4?zmL|(`;_GsKLP!tM1Xh%#t<<6*#w|bwnL!bzzvfds|Nwy6qXg>T>=-! zz(D}lZ%zp8#|Zm_K7KqETKc`+irh38@XwM)4i5ZI133h$wN<5H)mU9*y8x0p*Y#9Er^i3xts^}< z>CO32l1%XJJGEv_2cQ07&a@+q2OG0r6@xo_f{j zznTE2mm@5gs3E;bNYnEk1aT$asyNye7!f%aE`MeGXdN0$gUo z;7qHir(MM@Oab>OXXrH{ih@(M;?zY`f%xkrAaRIJhe}T=a)JEWT)J1mEjU+GQ6u%T zh`|2WoVC|-o)ES}pfkgo)XZ2l#<(1Eqz^dT+AAL$cbJoe#qjp^%&(qxV5BUtGf|E1*Y2HRboe4!! zdai#$_#Zw9_60Qs1IlO;MxU=Bdg}djtEfV@H z>WmA0?0ozRkDS-hSdchFfpM@CH@W%+|yGV>)4{Sk#NkbnenfGw=v+$HX!ulj9?DgqN9NlYC z%6$uCp@!Q+b>Bty@g2dP_;CE_yBwd4dNA0TAEk&_F#3ttnicbb=v z1>hY7=$AHm0Oj>#6>8PX$1`EQi1z>m_V1AOO?QA$lBH6`gsUBB4Fc`Qrl%@G+vu9e z<4q)Szmk}@WCF_AncpHJr#s)O#up3urmF|avX61u(``_^lj} z8#T)1QhH{n%L4XpqBDK&xYq}q3y%(SwE&sfRh-#$+@jy{DE}-?+}(T>eGt3C3%LUBgIu`RqMTrwQH;nb z>b42UYYu|E`5dd}4S!8c&dRx>81EO!{O%{bSy^ioBk@j)rtc%bSxK>3ZOQb0iO^E8URaHgG68lZtA33*oOP@5J`rjQ*G$g; z+ezlL3bS5kV7wr|e-L;~u3QZ{y;;e|`ps@90%w(siQDW?IJud@y^K=VDhlz3MBS{4 zUW{j&ds?%7=^&1AJXq%w5_*ouImcP|!#WCYKL}z0H0{>-U4omHma*9GE3zSX9Sl4~ zUj*JZ>19^Kx8Gwlr{=gy-obX@FHaJ^9 zXPgMCxh1EL&d(9(>{GQlC$e9E&i(R>!AYj-hK|k>r?c;sqj}3ze}D+^i-t+2nyRX> zbudUBtGDoNggQG?-AW7>6RF-b4j3F^FH!~ho4JJQtI@D}FeKnsZ}>|_NBnVuNoKpZ zuEXCG4SxAC5nx;K;d?pL*#RcCAijn(^s8-?%+RS4@yx+clUqOH_Ya2b$0|$wY<5g+ zlBFZvKo0yq+(i6t0-l}g?J0oqS%f<~5>llxK24ZX zm&zn!={Iy!%p|9Fg4;JGS*x}#!+#`2H_sAQtDhF!k)R?ANc7k<4!-)*)Gw zk$#tJYRql3V%W(@luU@@DULV4lN{R<_H*-P8F6GvxqO&=HNT_Gw4~TM$`{O+G-wrQ z%WX8@)5U?@g+0NA)#pZu{RWas8=a;O)>S!LYyP8w_>-zX-&bsj`;``O#Y6Ju<$4p3 zvO)R88#nEm@yC6FqvgNWIQeKOo#9*(zp9vQnS7W=&_dvMBekX*rGV+~LE$v{UrQ2t4t zc4;+ve#F^IFnHzMebvIL%JbuOQ*VoUX5!FIChn zclrw=FkhjbdSN}-wL%l0CJN_wj!oc82D^{=o8Ph;yIoVO?+PMte#a_`9hvoqMB)5a z)l5e+nwwS6 zK27w^Pv*D7GyS06H(aSZUs|Ua#zikV!CyXK3PfI!79syH$s*r&n3e)nd@ic<)mz#U zvbcNZdyvl{z@ZZ>U!O10zhcAJXE@M{xtf#CdC1kJZEi$Z8<=XcF-c-Oe+Z-+Mj;*+ z$sfe@EJL}iRjPxykD9+ml2nYjDtq=CPj$W>YrdXj^v!L}4S$|`(|pF*-qd5%i?Iwz z`N&0~&I}1^LAMW2Bnnb&K#%D(m$Wk4C;825kQGe_-%C31Ux{_| zKPE$0&7@`i9XI2^p_@Cx%ba^Y514T7y-v3?=$liy!%dje7-pmYY>w+N`@ArZF~Zh* zSc8*Z=c->h4_d05-TrLyM{h|kHz2q$*=_^6zNPa`oP55=a5C^BoBLrUM6q|&(BZ}3 zQ+LRG)|!} zgoCtd|JPK$3urVmEwdH{8+BM;g4zFtds%?X%{HWQDE~4SIPcMrStD!v zVeVdjp3-c)$2^`2!u3RJr){!QzV3}UA{ZKJFuL5qS98QOb3P*4a|Q9$MxGXKl){0f z3F)he?0g5-Y{+f^*%-LfLvC25)!}s<+3L5ELGv4u;S*Me28P`XJyW| z@~s9l#VWl(hgSc9Cu!cCX{%@65dI5NSH2^8#x-KNunO}>_Vi7psCiR#E7%Gv@pg@Y z>q`1Q{5#)>eU$`2yd|hTm<=v^-XZ|uoDd4MK080cA?Llfsw6@(<`tx;m*;$5Wz6(q zf9H)D7`c386e%uoGpT9b!YJ-E;im?p2-+KiW}pw!mvGJVrYWAGdNa~w{41oX&YbsG zqE1*Y$`A<4ILu+^ttYB`)9_x`$Twu%n>p^hg>k#VvMR59+9HfAAXQDy2kX9b);_p8}5$b)bA?=--Xn^LD zvxIl?;1vj>Of~`@jqY}$IEKJVu=U<~3}uFCqs)6U)Q^(f3Yf7IttxJHI{ii^g}%l- z)}$&Xw}ReA40&k8o_rBfq)Bb znn8Y1F;+3duzfrM0SA|HJN}zDYCz+H+<2n~H15b>=YaFv$>a&exDnVVl>UP3F<+=p zzmxEVRJTYvR*(1&4w;|jHp`HmPOR^!yfXLob((`#8>bSt&_v?=K6f%-MVn!Lopu$u zkm~j27?Gv0ZPGv9Pj)a*)Yeo1e_7|Z&VR53si)^nG!WLd#9obq<(o3o?_fQGC``M0 zewkzD`?O{l6V5uQd$M<5I&XARhi_`b;d9=I!3J6)_BmL-vNQu8?LFE*Z{?8r&e>TOr~NG|4V85= zw?mx)`^%Jd`Oewd#~$DXU2{+W77qGGEEvn=YE#YtQqo)(Jm5=B9o%tG$oH)rH2KshaN|utgqo_uBR>58Az88?|Jdnk&D>(el#*bg{<#u}~m_3XnV^RzV5W)}Zg? zL%)^i%ctT=hiiss_=zC!YdJ+D@NCt!qdFXL5SynacfOEyk#?PAU^Wl8W4v4DDLw$i+n0b z`tp*TDqtXk{mc0dhPQ%y)lR6d)IP$&@^f>iU0JoGGkJ5p-_{+jIdM0C*rF?De7QR|3z&39pLor#O6hRkofS|Qxn+Nt~sahR`WO-mWL z)SZ+T`uX|pml`Ws*|*Ghzc`v9#INTuo+}cWZz=rg2_kWR%n)~;+IZSt8+)x=fAa4ldO)VYb5iPx=PBtnQz4z=wSTXrCL_=2A5u5qDl|JdXtM(6q368<0wM zopSkC+~BFF1yJpvWuA!tX}Xu+J@vGD!LGZ=e?f#jH!UGbd{>Y&?&&IMhl-9=$e zz4xtI&{qu*L$1^{llgW|^2sSDSw&RJWIxgH5<>ZA&Tb}@(y~GOK{4LJXTUfpT z?ZF?@M=l!DnEJamQ2&nz(fguA5r~6c4@u6Ibp)wHDnzDm-%W)2t|_ru3+ut4srBn` zB3Vz1MBI|>bYqy)tkK@y&{VU-eR*uk$yty|afDAE2)u4+Er;LLhqJp?=I@w`_Dz1X^)cV=00 z1F3P)qx2+yoF{79ozbGp?2IK&A)rH?5**2d3QAE*@6dPi`INR!@8Ou+d0S>)`^3QL%oUbA4pWxf*arTz@z5 zIjx$7hmHiFxG-qctd9`jv{Hru!!y-T*{{5Pg5X;M`hG5aTBbwLhT$e4|7Mm`s6bkk z;w>}nGG+&N2aFMur2FqE{-$MzoEgEPI(-NK4Pb}~ll?MIa$2EEsN}GeRnE5jN5Y(C zTkz0L6|WOGApgTGvY*pL2p>WGK3m2+A8_s+sO2vd2?_t5*#k|@2Q?E(x*z;uv=MdhstPmzY&Z^Q+99H=EWQEgeCIT{BqW&0(`{^lpfdJntQ-6Rno>rw0plMO~ z7X;{inXmwhO#to@hJQ-9(~4Mu>k)@wANE|`?uVo z*&xC*>8^H#tM!}V#pcKmWsA>(q`-b2ciV5C6a$Nlg03YY+4kqSct1Zb22+kUb7m4+ z`W5ccX`kTCE-@x8Ww^a`*2w?y|50}x@KF?Bn7;Im6s7l;&^ywbG(oyTNV$+((nz86 z7Zn7SQx6DIL=XkULa~9MbOZrGK>?|PfJjHA*Z+L)%~dwZU5M-*KYp3-oA>5TFFQLo zi`?pt5FQz^{SJ60GN?P>dT0g@9MR&?rtQ(Q1q`M=UACVKuSfRMo~}CLGoh~O8jMDl z_H@~PRXh!5(w?rmkEJUy*%sze1&Fuw;=QJLTOVe|&CPPOngXM`J5JS$8#eL91TL5~y81V%fzOBqXt7l)@)2+$Dn@rT>>5mOVdSbI zKA9@+(%`aKgi_U=d|bnLU^UEk$U0}T4+GxY6u01ULXV_hxw`(|`WE_f`jmkErog(e zsXP68T>`idkW1hYjHXY^k~jTH!=2Fv(x+w7MSh&zR%oy3Q?BB;INO|oBG7&1>~*>m{>+o=HAk*-2Z%R9VkG1Q=S0!=(jEBHU{-wE)#+$a43exrjHS`G z(?_*dr+dQ1vPS+`FAG|R?oCXtCF#MKW4pl0b<@AT=^vGx|d9Y%FG z&%7>+VREm#Fih(19C>XrUVI$KKCCCDU#Zf)a@<3%A+_lX)h-WJ#S@-r2ult*{jSc&urV&B$qoSfr;+Myv@~A48d?MP4{y3EE6>0KL zJo+x_s32PZiF1Mp;#owlE`NYg-Pdg#RCg?<=y)~hYVG5+CsF=#NhgUhFsl0qo7xYb zo#g>I`pX6R2@L9vz0Lvja_%h0-iA1?z$QOLJJVgGIS28?qbNXuMBesE(UD480#PMU6zfj#z-h{-P8Ar~$rccgsTZLl)`2acB-Leu>Ot9{V zgzpuG$3z83MLNAoxrWB`yxtQ{igw(rTt>0!p5ji?is-y3dZ*;HKw0U&zrtHey==iB z-#4dIJz_6M{!Em|?|#YVE=61+?ktd^m9WIvNby5c@luH2htuz{gF++3 zPe9~u&95-5yI+{1VKzh=r}s-cQE0j=!c@%AFMGtfKXEoel%m-BLg|_0k2Leas_qn( z7OQ4)0+LHJ2kbV|YjG*swZBZ%|TmmBtUPXMKCPyF7- z%%$(t@N&SI_w55Q;RJECTnw&2iRtbqr5y$tlq7p4wnNMJzL;c^ z5yvgLFCBbF{7^ zC^qlgKF;Jg*|YWV%_ukT^Xq2Kk-Brq&H~9^hC+e>+NXEg3flxjx(!xr428u+>CFQy z381Ed1EaQ2t>nkieOd8^Ww{}rrYQ}wC0qu#jvH@9z^HW&tihO zFNSUn6Kg3>P$(LeZhJ`G2wj#TC;ahfSGtSC)a}sCGPZa6)sk(XsT<;3LpWm=WK8$f zV+uFXND&&R;?t{Km50%zpVT0K%asl0 zL!R~fv?B?rrO-Zl?LmI^>(vWuCfh|E{ZOw@oH*NP_z>2fG;xl)J%+qKY2xA&?dl$+B{If#uJFAl zF%vJY8RL?MPGFJoncp$r^hB@&9NrD;gHGT3jNKi zVh}$%5g+`MwV)!X$F)g~LtMKiYEu4E(DwVwZ(+ydT*yjvEz8Cz%h8^e<>NJi@jkgm z{J6GQBH#iRm)eX$RXn{E&|MC$DQJaa9Q)MDz;+(cr4$w*4P%~K8pIE7@XaWfBz%R6 zs76V^lEW09$QQxcNPsv*VjfO+7|M3M7$K^r5CSI&#W*GgJMJ?-Vi2s9LI9Tp-Gg@Z z6to?mm9#}L8O2yJg&=(HjZ^a|Rb_tdM}y9i)Rd#dCp~S?c}J1*3MnLmAMVL;DfGaU z3ekR+S{7m@q$H&P{DBmFN00M457ktjQiGX~zbi)Qv3bS})iS!O@**8Jc^YXbtFI@1 zkScCxk%|2S1}p0-hK&-}I*B*F<|tgB#C8kgnU))fds2BRDz^FK#MH>z8&GsLbdB4! z#cvK=8r4h57l!?ZR5IMKl4twQ!K8k1s3oE8YS-Cc7N z!lHIzRE%w;WZQosPKQ{0tX2FRQ=AHy4ebu1c4RirLxN33Z^LF4{UG8l8gX?OmAAb-FQyO$T8fwraQCygdCC5|B0D;31^p;u zVolLO3BmEUg=ZwpC!;I2C{VBBa5m?5Sqi$yr1%xR*_O>Y$Yv#b8tly=kXIVPv1YkC zp|SQo)I-VSv}MV?o19765rSlTIkB%oyS9$W$Lb}>wv6O}y^)r(Iss9;bQhXTPahOV z&14kK(TOpMxbGstB!0f)7?3U@S$fvR&gh) zA_BdXV2@aw-naLFs>$Wi{um@SxDs)Lk+hr}0V?VgiamhSyFP`hh7J;{c_jkH|bqmyOyKyu#6X9R};-BI!tEoAyQmTCj~CL&PDwP z(p);35Tah>B)N-!VZ3iZd7Dtd^Kf?Te{;h{{nKPP)QwbXag)n0d6*PLVgX1>t3oe2F<7b{(U?V-^l{I_>$pt2I|8vFfv5?)pA*q-)J7%D%AX$cppK9*DWg zmLb{YK8LzvGI3E4jfq0!abm0&70mkyiMDso^%2m~Ra^p!fmBTOL&Rnf4R|uDHYf~7 zg}8*UHz28d9Q`_(T!`T)HiGXou`Oq^U|kSsZz?XPMQu~@perIr!O`|dg%?qvO_B*l zhX96)!AUG!>?Prz&h99M0DTKGESBx&aPib3N?+!#JxZdkXQ6CS%b;11WXHP9C8r}I z#G#R}7;)_z_2V$Pdz*;ZYUsyiyCKFsUll~Y5-s_$y2DMlxbi(#-0zq)E~$#zK_o#f zDN0 zsR&UQC<&+@P#Nge2bu%D20-oM*AOTx^cn$K;MW-F1oWB!eE?}wpts=H3}^~abD&)K z^F00>fL;rrs*tt>x&nKxfIfn>HPCrT+W_4MY76un^x6SkfL?o`Lip1Ge|o^LBhXgp zbppBp^a9WiD9O%1jo{Y>XgMr*1=<2>H=qqb-GL6n-itu*AVd$Ki;(sN`V?Vb0{R(# zy@0~t*BhuFLi7PT3e*?q7uf3uG#02oP+mv}0G)u9mw`fH#sIB{bSzL$SQ!VD3+R7986kZYs0Pq@pi3y1*MJT{ z?{%P|KyLu;0h$0b5^+of%7n0Q0__5t1oR8gWS}DWGX;NgBdi7#3p5od3|1^aUjV%Y zbQxja1`34UJ3wvVX9ao_deeZG0!;@R1nCT*;`ozRdJ$n) z08K`Sl|XqQ{Q~H9_2ua&~aG#8E8DDzW{v; zzr8@Sfc62+h4fdTH3<6~kOH(Hs5Q_5p#K3K1Zs}3zXM$cIs~)q`}2y_?d5>PnMWuX1AdLJi} zgm?s09F{ZW5P$xJUPhprkY)mE3u$Jc(m+{&?m#aqP%ijo1Ns_B0ZKsF>_7$JmjkFH zLgXYrpj<$WA znSsgzwSlx8Pz|8+KzXSufXc(KBG4tENjKmimb(J|4QV$Z z3;enRm4)7mK$qdy1Ly+udIAlE^d+GB@aqLs7N|GS8K6Eum4W&K4TqI}K&=tBKhW2Z z4geYgzn6jb0=)wC4?+wC8V9{WKpPK3jwN!u%STL(HFvi?m}t; z`W}AaK=a`@1gIOVL;(E_WCr>LdMZ#C_zeXbh!BxLtAV0`UImHFP-93Z038LI2s94pO`vwLG6`rd z{3Zjfft4vhe*tNPpf?q$7xXMZgMr=x$^i5>P&I^j2WUP*Sb?G;od&cEXgbhU=*^nC>3cxu;5QGb3efvNw^3X3ftn)) z3xEnE#0Nk#p|=p|Ur0X$S_SDxKusWB1e6!j#XuJzT>`WWejfu(0$K{R6w*(CP9f~4 zK&v4A3@8@pbD$YO%YYst#B!i&Kr4Wz0IdWX3G@X}JVJa4G!~Y>0@{bXeGL>2={G=Y zAzcOZGs3P0dH}s|fvy3q0m_P2vKHtyg#8ZadxZEN=nnMO0o8%udY}=|+W>SGej9-T zfi?l<1KJEU9x2!Y^f~;t0tLhG2Ote-8&C;Iw*%dV-;Y4qkg6R(o8Y$-C=&7R0y+!y z6VOVa-9Tl5_5jUBh@XL~!0#8JrtsSfWCq#?R1WA@pp{6$Z$KLmVn5JPNDlyg0dx>( z6!d-vnhL!`KsQlBhk@RO-VvbR;dc~h3-pcwErs+r(EC7t5Q6jsP<2>73DghhPoVR# zati2Qgg6b92_en^wS?YZKoRge3$zvJZ=k#gaSrG-(0QO|5#j>SJMg;*bO<3X0p$m} zOnN|9fQ|rN1saF2{{YPbx(2iZ>H8O`HSApn>H%~E=m&(o2^0apTR;ndZUaRD-2r+F zdUt`=0^I`|0(2kfIM4&2e-ZCPps#=)0gVRAkW>8m8+sXmdckrgpp`(Gfto`v3s4wP zR-oU3vH@9v6reYNvI8Xm!m!+@#+nSiPR9Y)ydKr@i$8bE&n)dZ>tX#mhdpg^GKA*}_p1%9=GK8C$IKtjX3n z=mntSK%Id;hvhCnBM_o1&?KO4Kt+JM15E^a5hxBJdH`90dIEI=dI=~aP%ogZK)rz$ z1N8y=4Dt2_x(C00KqG+q1O13N1_0%R-^)PwdW-rB&?!g<0!@aMK|ntP1p)no5QBlL zLN6GoA^bvs3PLXw=nDM8faXEZ1e62PaG*hu4gtyqzX+h`fXqOJL*K(7Er13eFE4A3ovhy^MIGzmz2QK=z}^U; z(Lf`Cf`CQ=^+DLtKur*03{X6zV}bsGbR5t$`27#4B=lYdDgnRoKn2l?Ujxbk^g7T< z=)D2-2G9f`Tqvzh1lkVEZvx@UW_1z}?pjtS1L1aLbqY`k*wcXa!pc;j>OwjPXd=SS1?maudqB9LQ=JF&A*AmE&4hG5Pz#_1K0BA7mEd-hd^dV3p^gaTb z0<;LIGeRr|dJSj^5H2rNKL(0M*rh-X5aJV{web5Cs5j7OK)85M{Tv9lS_8Xv9u(t|m2BfQjG68)HloNVu zfMVdc7HBp6z5~jFu-^kkz;7K;R_Lt<+77ejwg4@My{$k8 zp!Wk%c}TYbJ%V&Q(6jLS5hy48b^x`4-%g-Jgxv-71JF-E9|P?MiUHaK^a;?ft~?61@tS>X`r3ZI|Gyt z=r5ogKxcvW1N{wD6S18G$_;d$^nfk^t$^M|pl$HG1k?_3Tn1_azbimfp?4MN51@a5 zia_rg&}QiU3xwaVs@H+=161_}P=2)Cn?Pj{;ug>YSh)?<9q10wZ;;*v%7YO1fN}%f z2f_~z)dxWL5Zgnbmw_GuEe6VvOZ*9iy^KKPVJ{O_Ed|IR_AaD5d5E$_HsKpgoZ02I_~fd4L`Qj%#o6su= zgx|5Kg@7u-uQ1SiKt+J?ixBl0pxp>t6zC;bE(Y`pP;sCa5uyapXF$&abw!BhfPRBs zNgx%d6wtRorGXkFL>ZtMgeVKt3es{w3xLW4eFbR+pv6EHfpAz`tptRF*lJ~<$p}#e z=n+s=pd~=nfN<leaMjfCHuu>Q3 zB}nT5odT*4Gz?)I0G)$hL!kZeYXtNy{2BvQfnO7#UO-KOwn5qqs1xF74)iYko(I|k z)B@;3glGw*La!CjO`z65e?hMe&>iTt1=VvQ^0$qZ%2ap-4C(w`3dkF}~@zh>G&mcr^ zpg8FD0cs1szCcwGq90Ihp#DH7fCd2JOq%*K&;*2i1*i+c4kRh`1_9w5m>LAM0Dgmk zzC(y$pkEOp1n4E8P#_I@VL(lxX9B7P6b{q?Xb8|FgopsD4rB%@38@NH4}L>|uESm= z&~*4k0sRiYXrT8IA_k~0{9=JV2O0)cA1Dr}4Z_9);RKAD0F(tamb_v!kR(4@|pEydhD z=>(5Bl9tptqot_3(2QS9#zaF_&|MZAo76dnrLdbfU1kFP;%)*pczAGpXq-7##FW`m z$W1EFOGYGh&SWX#<{vvMAp-Gdc`SY$R#N9?iI&3Ryf@B) z@#!FO#Q5X#KF}FlPKOPmLj1-VW_zLLL4Ox3Jwbs zho0k2@kx^{xnsofkN?7;z0bc#29hBRum&{h>lMhn52#pNr=d- zt`*J{OP)w^*enqRjdPhv>SUxZH-!}6?LtstsQ`|@izuUqh~H;KicbY3B)yQ~Rva)~oGGfC>_IB&7#NOr@TKqulHd*Ny zzk=9ZVjm3K#WKQY@Ysk1F_-6mhAn6*jL2jcXFBGJ+P*9ddN1v zCE0;YT-JF1ttofga2`w)d&GQB+4m$Hm6P*OkXYYuKBXAKNpsIywpoi(*5DOR=UkGR zYjCY>q;MZ~+CkwIlC?O#iC8mY2fC~x){v~^iQ)JTk?hWDwwaA&?|#fy3X!a0KQ3#9 zWOdZ<$VzKs`=Yr1UZ&W`gnmY{|53PrT%76-q&aB@w+YNInli1+G1A1GuPI%_{vd`q zKvS~s`->RnBu&|I<{&Z53YyYA_gP|?|1>4B$Ub72?=~Vq^W;jjRJDp?4szXx>S3gNI%r2VpVCmn)FzbjmUxXRvQcW@UKR`0f zYnt-u%G1QK+R+rP!`YOj9nszuB09uTqL;PS*;L{q+bz_o&N zG@5dGz;&{MQ+As2$?u1Vy+}4k?z}|o2!)$9?_Xk{65A8cDH}?xLCfVNt4*xU1FnY( zl%ufd2PDG@BTYHdmP=_f#c=++^CZKmB29U=`2}L{P`I5-xRh>@W~IYNN%k4Z1|7di zY&yvfHO%lXM$G&ad)KggB+EpaNu7E8+(qm_8P4DTNOSzS`=r^BWJ~LC$)6^hyT(2u z+3TcP;o%ixKM;Fh<#hf+;fl>-n{SY8d6j=iGnQoiKE6ooBVxDI+r;t^JJ*{>njOi?j&@u}MW`h&i#<%T6%_7B87`$g6fWBo z9$QC}%-VMqX^tYcYRwU1oycb1>D=bClkE6RZc9Z;wp-yGy-hYZO}|Fra1u*Xel2~2 z7|vvBO88~2zmpVBz0c)xfWlRq$KxlSh%_Zo<{eKlno?$EUaC#3x;3SB%{s*J)T1c_ z0`d^U+FVnHM%N~WCml@*?ZK@8PfwasXI*xZ;mJc&at<#<49^W>>}gh!7@jONWybn) z#PIB!!wnzvZWNUhom{^vj)V>#7bu8c7|s&P1!b+ zQB!K2%TEl?P$IW~Rwst19ZlIhrx7tc4{1t^8+D1{c~n!rjN$sj6RV~SKA)RpcqS7g zbS1Wer!g_wY^}jIDP@(HWG05EX)&4(=5~hXF-;lXvKGnuknH@$^29ojmCwg;I`Jf} zDM?4!3Z9(BJa#A-Y2x`#Q&wjWB!*{8P02Es>!AqA&J|ZlhJ7Q^3Z{hdw7~sDYP@OZ6vGH z)3D6SK_ymx;9?&D*DY5yS4HrhK2J6*24~YRZa|9f-Y0 z;bvxfff#o8H09-4eTiW|OjGjL8%Zn&X`ab8h!}R}G$qqdLx^FQQBywO(UlnX7d7R@ z9WN5=N@-czwL3BFyNPnCmq-k|YnrmI{TOBxu81;_7z=G(7F5X1hQ zrqo|CiWv6Z#F}>gcw*R>)RZ>{_albAKT)1>vBa>;sVVJ#c!?PHRW;@LN$rSDrEq2A zBZ#%6ywCokBQfk|it%hc*XA;cujIhiB+EydJ+JVHGMfQ4_81 z9`~G3V&V)AX=3L}Q>Ir4C5F90P3d2dd&fr{d+CBC!=9O@e71ti6Z>$QvZ)I94(xhq z%E&UD2kgvg%COJ5zkfzn*3W24R&YjNtWjR(Qo{b9ri|-YiDcMM)0B=Qf{9^gPE(3b z=T^R)*oT=o9QHLe<>cGBNfY~+nsVkIryBciVzoAc`_XKYjr@kkYwRP6*st9vYShBrww@U;r0iQP_3Ire@N zV#7(ZLDnL~uwyF5o)>u3$6l_cG-=NB*b>rgTk18^w2+mz8u7S`JzPzh+T~f29V5+% zx;)EZ=TlSa_2GV7i8O0|z-*rhIc6<+_+`L))H&@D2W)} z1Bub}^_j%*PDWF9&RR+gZ&@_ur9ZzQ7DMcp`JWT3OKd{$hs5yKNsMRBrx3#%5%Em9 zYzMIanR6pHI3~#qIrA_vCiQ&DLXvuZv62n_F(Z>QN5ySf#O__Op z53$Z9Yt@un9p0dcv?N$ahWAyPQgZ62#G;9nSfLTaJ2YWs?QCLrKPLKgsRbO4Mxx#8 z<`Kg?B26h6_7kyZNps7jEyNCxZ2w0ah%F-4>*#yLwv%S9GhY(JdnmEGSh<}T-au(e zmCU<{;mw(*Tv@+@*m7dOEm%Vg@8&cmckRW*a+2)GtgXcGwoX$LK3_uY6VlB2({5tr zDfSy-8;Q*zHYYQ;mqEm?v_3|%AYyyUoh4R~Y&KnekQm-zizmgKr--emG7B-CCbpV1 zFFZU+3~!4y<&}vyh~bT~rkIW~!&_~!V!3{XWX}=HU-LMzJ`}^mB#s?#mBrpn+)a|< zoweAT+4B!Eyw%neCE+TuS4h@H{gYT#lJz}yfEZ2#Xv(M{&ciK|HSWcEz`J%$sk)HU zg17OSQfwdRD4xQ#x^ac9;4QVL#F%aqd!E>&gB;&>3b(idrxS1J#cFN+U!-}3*tyNW z6T@i*k@s)+6T{nZP09A{En+yApeYA;A0n2W*gLs6KD?3Fl&CV-N%kwr5*u);@y=g7 zd1pFDGQ7{%l=cg+5yL43u`UlgK`cLoTeXJEdKbx>k7kCq|Dtyk_?I+KlFf-lxW@1% zUsLwy<8GJZqQAPOLJq6KnGl!^s}8nz{Tev78j{i`ET^#SvT7 zF_0L}@n}lRnw+CM#7E#D1h0=Ka%vSUZvxj?GH!X9`z&Hs=;+jWlIm zA&wmDLuaB7`l-xta2^V#0erz8Jnvfu@Mx*^bX~T{YkP< zPn98NrEnL&<1!mfvWz$KldK4Z%QvzHu`fv$mB8uzlVnpPr;zM-vhq{LSBQO0niWeV z5PO3(m#^+ftS7O71N#y?OyNeD-z4@8$zK1cE3t(nyY=x@VmNE3DIJ!F6DvkB{9Gl5 z*m(-~s8cAhip1tU8$_%>Y1WuNgxD2gmyWzZEQmDwjT}r2=Ltpc_+Kw#pOUQa51olw ziQQP#fmlV-ynAN=u}Z}1<$jG=D6t*Cbs;u`!u5V(GO;jXrHi#AW+Kh!mQ5fQNUX%m zqlncZ)<5?!V)Kc$ooFUjgi0b}!*F6-h+W9=7BQTJ6r)YXKE#TVtVa7_V$CV`f|=VA z+eWgu$q~f%k!;%0Fk(0bD0c5UT8Is!*jHA0gV=Kvu6xUY#C|8uoquqS5{T9Ot`o^{ z)=@lNj~Gg<8CluBSS5CZV`w^vSbwq^J1&tJ&N+(r0a->8%R}L2OzlssB5D5mog)Q4o{ zB+1Im;C19>O7*qxd6f`NvhU_{8@x#2stle);j)qJ=w|L6IO`;y@%GFk*&t%ox-}v8 z7O}>o#t|#WDGQrUES9X)-pT9T8zh^s@EytnPECm&tcUYS6KBE1Zp@6gNESk}__hGf5Mt$TVgBm}wLP&U=aY#&dbj zCM(~3%RR0xv7rxm{aKf+EGfXLUQbqP44z9iapFw$={Mgcn>cl*DPd=sMNzn(*EmNL zDO{#4ysBJEvTMzFjBG$sI;=@jUnbt`x(s8D^3Ur|86*cJ~ZoIE^lLWBM&1D>&0F)^3?L5c`{0(!Ha^ z-ly0{k6uLVD6zQ<<`7#zZ2Ev-hYv|3tRGo<;p3&mqDa>H#&5(<6DxZA3u05rX2wa}mj0!1?|yffWLro!w<`AsoIux< zwkNie>@AXA$#j6&R$^I(tRVISvAxxH6RS=(LqnDjTgkC+{)1RvVh38RB=!ZdhK=7N zHjBcoF>fQ*nq+svb`ZmvfAL(^nrnIp#aH{i-$@oh?0m-M#NH=%N?T0qU$Sy-+o!}@ zQVeI?EhE;0WFI!)MGU_O5bsbnenRXJS$T2hI$}qNy;5-#v0fCe^_=6xj+3m}`9s7q z5!*51Gh(ACzH6J`CpMbcj164V?~s)dQQwnn9LZ`w+(PVGVzXL*N9TS9bQy_Hdcqh#OBS!5a*-7^EPn^H9 z6knE7^+>jX*uNv16T>gcG$o?NZHl1^$pXv`NY<3BB-Uz3Y!$KCSqia0if?o8a>Q1X zEcd`iWMwU}Gq2_(Ssl_0=~|Q+exW0tDLdvPhF`{rJ-K?-iEW~Ag??uCDzOvyvyp5( zv5V#k#OhHxE2w)ZzDQ#GZ`35&&lKPNcXAQCP2oZ(RV8+p*oOtVtn-nkxng;e;decn za;r1f<_NO+)vaPA(taC)cY$PCR^=x)h1k5SC5V+L)@5{NVy7tf z8fsx;8%cJ#LQ7)*kWK4@y2Sn^_V!y`57kI>&Y#6e)`YAa{GQ9~9I@}pXC)ba|0Uif z_bf&1Ymz>|yrJGrJWk(I=(H%W6RX_mOo zt#vHPPF*cY@m=Nkj$R?naI$iK7N=zhh3k8W(=v`UhZf*oRi9)N4scK1P3*@U*T~9H zVmGsL9nB}UzyC#&?Im{dD=xEWim&fCmq->%Y<4EjZ9K8icuwaIioH{fjFjq;WTnW1 zXNfH(_O_MBiDeXS$1)y?3X^R4{2Zj&oMiF4vJ;z0Hd}wd{WdSjnqSIGvdSc@HFf~8 z0wgYc#>@aTKmwhVjH26Ki>hV`xh3 z?cSY9)|zZa)fq@Ej$~b$L=ZblEb+wuh_xfl(*Ll{3?w`Bkn_HmVz*p~CC%X^YyQj2 z#12!qoOdIMy+ADUwFF{iDcmm|`Vzyhi#4UeJTtMeq*=27_9fX2er^`A99X=yx(SPhbG zP2iq7iegX(4JO$R(){3O?wdPFGk%jsvN5FDczADO-w`wIo<|J7?-x6loo5m&M6!rz z?u{A9X4l0%Nj8*h9*&$&YyxTKYQgQSII-~^xg{SY&3V1KmE%?hO(_)j3WdXs0b-YN z;#^{VDO}YW+&A|T%aS39WY3e8WtBz~`*YcS7^d##DYoI z{Bft5!+6(drdekxJyKw&uX}sWZ#hHp_-iP0>pAO zqwf}F3cy^m{N9q8i&JOD`MC04;~pBQMff5xyEvl=AmX> z4-1Lq8TBbyX+iAhVs2-5D27ZMx&9K!%EFTGlV)4e9DRXP)|)gFyKsCNN%MalKOxP` z#FmfcQYt{<*3RZs7b7-k@Ry|d3RxL`fi)`-Gc9179mz`B>AaFVNU|Ddtn|zrLacPP zy2K`sX7v+`h=q}?=I+nw>_`n_*KZ6YnTc3zC4LSMC$_a~7m^hvE5SDh5L-j(Y|@z9 zbqSI^pU7?L9LbJu`hqmilPpKAZp8W!o4>0!F^x1A6$v4>p4g~X+;gsyX1=2hsU#Xu zT3#xUNDQ~TiRZBae8w{u$x5$ZOR``Jm*MN@iPa#RHy*7cHj*^A7Y?QPW|HjAdwofU zyV=AW@O}MAmVw5e+wEJB>>k-%`$i1O?h~{2UO}uLS$V14YAVlPNY=0epTImuHfK-b zdKg2prT=ix$w=YmzQ!rTO>>&Ep=u!6%to>~$9fUN4RPZA-?UeVMUpJb5^gU&DM#uR z?qi=&4Cc3+k!D`fJQr1g817Tkl*Q)tl%s+qi(1Sjag^AL4fveuGsISA=#%6kk4q zb~&F*C_}PSTk_EAw+G1*@-`tWC&)^bz;VPbknDPsLd336xa}n#62r}c;?&il0mSN1 zxX=6Vr}(ClX3xI--q%8G%ce0D-*sXwKAugQH;6S^%xlwkD8ALJ`Sj^ll5OnJj$)`z zvcl(hZw5C+iuV?Y9mvX;6#Muoe112HG;`*{n-x<3(HxNaq} zb)>nVKrITFnQEoRh*`u`(u_(xMeGA&S8nk5`2vM2(T>lpeMGXKF7y7`eq#B;IEGwg zbNfF>DMtrLc6a7EV)x0)*yg9Hlnzqfi(9$h#uHoGh0ClYX;!$wz5i3PV!6t@jHNjb z+c{i&3itkMeg{^FV(*=^I>k4IG`AoAiC9*$GU0eriv2B;bsW42vP4VnF!9}Q@vYkE zP;s+rk|kHD_`WtD`UeX$g$IkfRKv`n2}v`=&n9q7xwscuh%)2XB{PyHCiN7zip~-? z-w{8gs2C7{ON0aI*6`3se3mGluT~GF%Sy#B5X4U(k}OsA^z1hXyXuycy0%-ggXuFP z90e}ShCwTx^*1&JuZmJe3M%R4jc!$TO|!+5j9IGbS#y+>{d#sTg>F8OhBYz`#1Ol`b$gc4)@WT8&M?w_Xm6sVstA=4wv{Q7c_v zZEP8s3?GrcH@Yhn^dbSNGy&&6meShVxv5y`%5P&^K`p~)g}H{e!;P{T7&$E{KCnh< z<^ySHXn1=(WO#ebW_TGCGQ12F!^@zxOhG}pnGz(fTrnpE1<`)0CzHIFTZu1wF&U+> zdE-36q_!}0*0s_%DU6+rI>;h7av;VX6DWlzd`NLFTJNgiMOg^81&7-REfcL< zHe4vqpKizQYz3J}x5{@{tD%<{M-{oLTj|3=>Cm{Ht3I{H?W}91Z#E^{OrB~{Y?j^3 z_)5V|GAI*I2XznIMk?Lcd4RIg*XfXkRNj8sn-=vX-2~fJ0&P9WN?-KyjavUqE^G`N z-KWcDXIKLA8$DBGl2!1u$6-qYy}|PFIU^wvxBWTI7*_f|U$X7jd6IH!^ZzrtoEyq= zHhzFRojz^ec_#60)_FaB>cV-*Of3Pow|AR3TuOm>^rF=jr#ru!wO3e;_NmO#BG z?xJdnG~o;BBh0)Av(h&Vk+dfqkkVc`u`-)pmCZ*okYTCLlRgP>ZYK8Dk<5bIS=UNm zh%~g`Ci%>&_HgP;Inl%96}7kuHp%jg)A~Ay3RYb33W4px-lY!Y!Za=}Sgz>(p|9{_?6jrECGC#&m`fMcUAu8UUEA3nnbkUaLyOMr={$2c4t0>m=KT@so9SpDB}~Y3VO-8$H$IUP(j8<&)_%Gr5cwUW_bO z`u?>SeK<7siTdzqnceDgd`e6(N5+eFxLCwThXslYw#BvHgoDHt?O~B}m@loX?W|Eo zSHpP|*h=3pKu(Lh=!%IZBqrXRAm@s6vO^VhQHqQiGDIHEwbFMFU?-jPV5QG8z;Jn& zxJ}|babi?Zthg*bD8dvOEADisxv!+YR-CwK9C9mtD+1I_~e#@Lqf?^hbJ~= zv*cRLwl)|XpWsr=&C?j4utVu>na1#<6zwf;n{1TcwYUZ?U(YsF<+CNO`Q>EEDD$70$KCIYqTWj`FsK$erHat{p9QzZ@N& zytyC>D*j?Fg%BGTgX{Qt@z^?zHIrb9iiH)}x6*f0P>yM>XK_Z~cI@A^6h*g>ZLR+5Q6>XJ}(vyFPd)I8x!RZ>0}hAu+b6LAS)jn}Xv)#YbWIw>2ret#nmPWpmv{*-D=w zLmE0wwssdSM`<}Ut@I(a6w(-FN(kl# zy;*kHR5O#q({_rxrH!tl6`m&cp3J_H?I}Sf)+ajHHc#6_K2MAIfwbro*{kVk_FANz zJx2$^W#(w^K9RjSa>Vh8#JuNA75}TJ^YL#U58Adub{UQz->LI%_c({A4YY};int5k zXBy}SzSJhV`qIGrKqkh3#R9&1VDyZg+tcQZ&oCgdsV-Q$8&{zC90by6KwU1D8%qnb03X92Mzo&Pt#6M*L5&ap2QHh%uF2 z6MKTGdTbk>_Dw^l_ZwFF_Bc!?Q#j(pFe)$k{$-CV&{PoEsPWw{p;H zm&UD8G&p&|3>8oZ(V0Bh8Fq9ku|FIqUKb4!Tg!pYuhA^2bg5W#tckux%T-B{*H5`8 z(+GmI-(r3hNBP1dgNMkC(k+c`#OW#{*D6k>xRa}| zG))Zhl~!^Yc72tUT!~VO!sEobJnt2H~N1P3$X5TvHX7A{0 zwz(rPI#GN;JI+SQNE@${U>2o-7q5ZhHz&c|RxEAO*hFYP62GG0?&ST{`1p*B{G_mW z&?%H5rf5@KaHLDAc%PETCTUAEuT$bY4q8=wjxL1>!g=o2UH&P(FC~8Y{L}-I}Tbn9i6bMjnm#iJRh!XKQ&6OqYsIU2?>_%EUn`Y zerDv|Bo`VJ=kn{Ou8h%`711L(8{3+cy~(-HfGNHxe(XF!Wbi0k zV@>Xyr&Yz58PVL0f9~2XQ{vUcWmN-wCIk3%rEe4^KAVY@r27Kqu{P#(P{FGQl+;Go zlpkQ!bY8@JKH6HT@%ix%VC_it%$-)a4^vPnEB(9?l!Do$Z_*DCGF zONSO>Rp0cPih5C|B)#@jQW=h&SF~wq;lq7q1jmP>F;Cmxc0BFf%wuxYGiKSlMApM& z19M~y?r)}k_?XPG;IOLrdNzvh>21dL^O-((%x4<$SF#cL&aR9&p)czxnTGB3z;Ane zcD*|M$+i#<$=GeD%5}Omc5;K`f`TK5m_p*{aG?H=Rvih^31K^-==O5saZPb3-S?8T zTDD*xDy6kDNw$J@sW_*qa6DM2aFo>P@!PhVaIYx49jn?~M(ycTpnLAukwoXWR`#9s z6r#^0+sA(qy{$CeqkpUmSkb4CvhVoNta#1$D(;bN*gjNBg?+D-I>;pXME5`G<+E-& zFK`z6UW<86R!?ekjD3}8|NXMdgeqrjhgNcPpIyVMe&|aRLua>Us*^jHlC<6TDlXCYO6g9t z2E!S?m!v^5NxEMgNae(*Jkv_=4wHHLMy9-hQsQ1%$3;xFaaJ)U;{ z*Z+sR0-lurYFYkXG^-R25<4}mB@ozV{_D36>|0{;JzJCmjeXqgO&OAe>o$Lm;{2X!@-k5RkSA%ok zM7BL+a$myGe)prHvFA6q=6A{58?`S{Q1&~c;y-C<%fDjqYIB;QZ9j*>Gu|%-xBXlO z=l@@WTVDx-`~C~E{2TK<1|A)+#jg&X@1>Hzw08~5Cv{wo<+_KHS3ueCdXo1Qr4+`h zE;n?EwoWz|V-^Xg49)ur8N1&!m5GKHS8;BSH>RV0EOYNSUF8#h zOYociHW*DZbTAs=Z`1tevOyZO1;5GPnpb6iOYlzyFT8UaJVC|D_>GyMrWw3Ax#Mr+ z(FlW^%a4XmAMIrB{boJ$v%&2 zL9`))vwBwbhQWi$B3azFZ)ByEdgtpSY#TN@2j^UJ>>NgSbI9?#=;Xp#)hI)|&{kPR z#!SykWCa-$`#nSR{;|w^+PYRZgS*yeGWABi%Nb#4uldu^c55}b?nleq`^~gl#L&j_ zrNLe0Pnr8b`RXI3Sjh4E4FH7`Zc({BsvY}q6WM)E__^j&hvSl~WGocglW0zfc zGMGLVsEJ-|$t2i4uvPt9R^S+g<&szFTw(V!O;UrH0^8x2oUxVW}>ZrRwR5-1*xj-mJ)-!+G+w z;G}O=kNM%KRm`_Xt@D1^RxA2pn)}OU;7_x|6+cXKkRP^?yHE9t!g<9C`v;)27>;^P(kA*fWoF6pYAOcA&!S=F9C zkcKy98Upky&E+VV>sOKkWd$Zv*kPvO=1}?suT`BQBQdD1PyUBZ&9j=mEJyNWwCU_# z!l+nTT+wdnb?Zovzt+Df%QxlkkXhAi(r_}jO}V@%94wQZ+8xREK9%B~%MPt%nv3IG zELL?;%BAJji{6sjw(oDcm6p@-f^xE$lF7c)2}!FOD~l?b8WU$F#4l&%*dPv%{)Y`b znbf-6<2TK?%BpN|)Hb%fQH4^3Z?y zqoibdx7!FaJLL*?d@a(d)|IM87Fb=`UW_@Yyk0gL16u1(K2Z2)3~#Mb1`o&+ePGO3 zD$Br=xwDOIHOb5irbrXMU^l`XFIQ)Y#tp}1WYH#*RJXf4tm;p0ebH^YdHf@LR<(t3 zx%)y!T~_~5Bs9(>t~iN_=GnZse2`CO(sf==c9j+UUp#$yHi2}OIWuxrxG4vwC;Vok z?bW$kQ*wDue7s#*8YTajok~!vnqQWl|E2tInR0*HD1Bd!8U9z=M`g-AIcw|~A1t;O z?eYVRqPnF`)o(|Sf1hBaw>;Ue(6*#cq1oQy zxlG*r>PBY;YTJ)+Tev>1X;pW~rLsp03H#*vG^gpe{BWY(nm)B|Tduj)V=7M(PxJut zgG{;awukC|J6)~x!|5uo-%eLw$dr53k{$2tY<`@908GBoMQ-+45 z@OQu6>KWpP^IC-8&TH?>l-s(ums6_kj)r7Lg~wM`Pc#Yt>$ih$OTV3*d-(iNcU}&4 zX=}n(^^o6o-XngS@?Nr4`O^-?aar2_l;%uNG`w5YQGPpajg~1-+b;GyvVEp?Od035 z<@T)Kru<#MT^)QcXE59O;*=I)jx%Soy_uN}d5{ZEQwpu>O4$ZIdH^&eXRpa|)pt{P z$D0jIL(1^1&zIqR*?v9gm(lh^rVo6+opr{oadkj(6VPy@+-+#k9O#H>YXD zvDjV=B=;EmWQn?(wqh%v{COFt!u2@mRyBK?3dgFJ_4$svAx$Z?s=vstYTL$0Y2tPJ z?NXIAM%grtm9R>N^W?TSmtQdi`bg_rEi>TBg8cFO4%Vir*q-LlQzvcZYx(=_fr&9eB}=Ldq@KHr}1$`pDsSv-CQF`v)Zz~^a8VOo~NBhuDk z(tY)*rK!=0&49F}-!>9Gg?aT_njZM9YPmF($kQCky2xgl%x@K47ANs0`6J5`X=~e0 zvBIuA0cgUw`ZD)zV&2#;hiq_*+vv=Whw#=f(cF z+w$jYFY@}>y(%;Ot?$&9eMk4~Pco;Voqw!u@#JnTmjJe%50~dxoi(^~AglV&-}?A2 z*%ExcU@v*m+}$3Fj2S$4`ddpFD@)jusn~5Sx+;VEdLs(=VzuFx#UZjfJt-YA9ywo3 zHcpm~C$D{+Z|tk@Z!KuIOz=}{23B>bjM9@GA(z|Q=0E+k?v+t`I~7^gXg?XGWBqMe z5ib+0yWy71vcjnuS-fm^7TZorYKsb|IK)q3{cY+SDI2;iw<+zm`ovtl^a&EI+jMl+ ziEbISs>}SXvlM=UQZi&Wyt%)X@JxT}>3RLFge$wP#asqrrvcyf!Z}Mam%X|5X^ZY{ zk8&( z*Q?|&nNII>SXPF#J&G9D{Cmk}<$WFo$UOK>gIwot3AV_(F}{^t_L-Cn^qHPh-)E+< zGd`1&zhp|D+Q@BHL;bB+4^H!l`?t^3^RM!KiQkO<7ksAZ*2t82KjCJShr*v?=XxO9 zs^8S}+%$Ktto}BRY<~Jj)pJ}m!e5OnW`bR7@w(~@6wi%g7WsbpdfR!IUy(rpUm{|9GO+kP;_Opchl1 zrCc%-YH&hukYmZR(`Q;iu+I$DR%6>^kc{5=j(OH+hU)FcR>=*Y=_TJ7J82X!Hu{>z zHiOze(=$67TMv!BoVQY+TD_Rrtm_ZI(_fLs|!!vex#AsubX)D=1E+RnP84jFoy<5(y174 zvgvd)o>$p)du!!YSW)7`O>yyNajhq%x31oYA(N>Vb5!sU6NU2T`znr)ep(uO5t+*; z5-qI)V`38mBVytcOkoKzF_EFcp%JFQ7e^&T#6$hU6-_fF2~|cw{rSorNx`(ZU0z~SBZ4q>^msO=n}GokdpX7 z)5uU$Y=XVVdDxh&YKXK}Nw2*5CN`I5YE>u5K{}Pk5$9{ZJ#O3S&;zY%n9NcNm&>^g zP*$~u3}ZVs;L=pN7@Xz{t7?+^scf#f#p7u?Sk-W8-}e0_o%B53L#=92SvToWj+PW! zgv+pLRoA4nfY%wpbS*pd>|MmFmXP^LWiQ-m^!K>opYt-&sU*RM+MnGoOV^F+`~fGKW62y>%3G+hZbyA z8^~VdY5Ht;mAlk{BYk>3?q|7<Oj5Ef}q8F3$!Jw`%l!@Cf#@T5Mm7PbS-L<9`j= zm{J-4UC&XBlv&noSv(&Ugz{#aS!X*sveXzmO}4zj3-t#gFFD5%An;~ zwtAe9dtO#kDs#Iy&(lts9?uq5HDgL;?ii=+j|#ejl0(m>$DNR6l@9e}|J8=efFc)@ zrf5?fKgL?sY$**TtpC{BK0VU+j9l#EkXR56RHisQy;;>iWhsO|wb>d<`x)CuD@*6KeR>x6r(j=ldrvi)vomu93BmvfbR8jWM{)PES(i^gqlDlM00 z>pwy3MCLLFrN@}+aW+Lib=lI=-P6!XvC|l9@w65k4+oayMk@POWN%LLEK>~;t66qR&3ZB|LeA?Sf|$T;5hL&PADco9wzp>MJ)w~2+xXj+f{7XR{T%0bWEG2 zA?AdLL|0Q*wW?eJv<*o#M}`FkgvEp=#F_I+Ut>uy+~7VT(na$1l4NjFdGycJt|0S zqsIlujS8w=Pa3zRqs?0O1ox0t>YLSb!KYJqMKy0!{! z;%La;_kyM#2i9%)KgiL#t;0;+ps1KIlh`g#B{4eoEN#3u^LWp;syAeb`c|s8%2c&? zWU`LzpJp*sq*7du=hNcU*}O2MQ|?yvOF7_lNTm&$Mg~X4Mw-O%6&)5t`3MS*G>t@? z1PiKLU$ja!c1V(?{S#VhBn?^B^D=E+9OYIkh^&jB5Cw%q#)J+{OX+oe0&}`$xK5@s z4LO(Hnu?G{Y80VWeL-4$+557j)nZV*X$ZZE$MQr>J_!*t`y`^e>eyx*%YR|Lb{$(g z_%E#2wNGaMh4p&1f@;$|{GXIeoyKz9wyGb=Y01|cb}qRd?4C+9!~|s$<3d6VJ8{9{ zmJ!iKW6iN9Jd22B4z<6!_NHg#)OA3Xesd3U6%j6<7s4ZBMu?G4+?~=;R-?tpJlyw_ zq4A(?^`1&u>r5{rhlIq4(;_^*)N5?(nrWD*TrAbEmtL0YiM1FH7f+m~y3&$Wjh6+M zpC_pyiRLge!x0ENM4U$5x$bH__n9P1t5QtNNBKlvZgflps+m^=jMN zRiY)kIXW~lG0YT}q<)qwLk4xZ_%ku7XHpe)7R95Er?0m(}em4Crv&-z5 zIQaL>3bGT+IBH&pWJHfjtx1vle@{VYY{5S*TB|?b$O6t1Mty17^p$u-<2O zlQo+%tIwJrGJC|bm)QB8WuLRNn?0wq^D8^IWEHdXB5NLD*{AFbWv4bf6*!`;9AGmC z*v0G}mfd2{&zMbTmY;)XV$WUd{Es~wGCR$hue0Y5?EJ#AH<-mT`-q)9>D9%@fS}FzY}nRV+Egu6NINt=e{N zC!UN7bF`;eGdDZ0vauq}+OhKtJAbgTO&sld_I#NG^kY_roonoDW?2pnx0l1MV0MpX z3Cy-J%g5{ivzqL*V9x^_d=8s_k7d6y`;DC(?Ae5!zc|1L%(_a`?BwRW=VsYC*6hx* zJS}g?@e(W4$&#zde5_=wEXC6DNS!FFdz1hjc zvaIaHuv3?vJsj;1teM2l4vwJ}t3{eYD28RvvgZM2i`d!Do{7vpW+w}qUM}Nf&z#I!vGWOgmgnFz*crr5 z5IY4~vlMHt=aj8x&o|h)%bwpedybtx9AG2MO0wra?D-0_s>~X4M7Nmj<^a=~#j~s# zJI}MTon@n$U18@RcJ{LAd90G1og7?(zcOpWDkV6;kL=`U*)C=UIlxKQyuwME#HGS5*+RY_FT?3*RkvrvlZ-2WT!Z5W@KZF*_q6qA2a)eoi{naBz6X{%I7TG z#GaMe`HADp$+9?hrg4Bf?2KT~A2~ofWXnORvjnpqK+eaY-kX1}w_*X;QQd-i1KFw4GSwvgE|c8YO;^DL{# zPJi~i!cGu-zRc`XW>y)1Ju9&j%FYayg|TB|&p>wSurr^XBAkdV?4082D8{Tg2j9kQ zAG7D#8OFh%W7+TQnZQl~u8wA`a)dqmvu072@u5#GYqZGm2#sS+`Z0Ne_6JL*$$5OEoNKU`GKA4ththd=Vj*$ zc4o1xHM8H@$`B40!Or{a{L3mWIY19)=Q+S3Ryo2>FP0r=mWiEF9Bwo_@36`^X3w(o zE_;5@HfJ*nW@jam8`$}U!&PC{lvP%- z6UgCKGh53}9rn!1)t`->O)Ptro$>6{W1Ere{LJBQv+OQA`PlPwc1EzK#nu5kj( zv1b?7EWyromJMWCH})LNtO`3{u;*>oT*Wq5vF9Xa7nn_9r#w5SIQT|p|FGu2>{MgV zCaiLfoqZg`*UVOy*>fzjtL%ic$`F=~W6%1`cC#~-o%!tSWha`$ z#j+F6&JGSfl2w+nvy5ehnKfrNlQr`)tIVtbvo7pZW6#$)++XaJWv3Ub3}Cj79SeJ2 zW@jLK)@Lhc*!hc{P?im5&A-``KUAz-^uv3<0{INE5EPMXOo=NPS;c$i6d7YgvS@SqMHCb~V z%Q7>&$g*0@`ZDX!&L!5o#%vR_^6WI?05_R!VUR_VbAZ_ z;j7ctLd-I-=1|t0z@Ej~Imn)TIkU<)BddK`wvV0XS>?~r>0CqC4Q;ubSGUI#7)KVN#X?AY13g2F(1~ap= zEQp=69DF-7zQITRhCK_gQ*0LzN8^9rj}V5cLi9Ap;4&II-hV^)J56FcGT6lIk)Y_kNjbIi^&>%)%5p6l7U z%AO6_3jYj7{<1|4W?2o^9LXv(neoprl z<#BB_lEd}nh(6)qdD)ZC?8#Ga>QVN5h8;dkrjF$R&#`AGW>wkP9Clt~Sz(ryVb+7$ z30Aql>Tao1_m;Z5ySuy7Qg`?M=e=i>&D?vJvp0u_|I71a=N-B8p0P7? zXXehZZBw?r%H7M&{P=Qq{E}^Fvh7(m?qkOs?wKuiyoimd>~|^KUSoq-Os&`1_BRK4 zgV__dF}S6){nF0zmLA^AI?G#nWm?jqX|R4A^VQ5VfNc|*hnIS+W7#o}gPdU7k}YNN zP&^cER5%@r{Rm)CkvxB>n8YO3}U?oj}P#Jfs}>ulT`$SUd+Nk-73RR z1%5CLw_ZVzp0J{`wlL(#z@rEV9iWBLfrUQMDh29^p9!#HU}?<)LQihZ1;T5Lg_jr$ zbBq>-*w)|pLC0(j1;U$$g-+PQu*Je?#TpHd9r1Gv-0%irO~%jhupWn>lkkIAE(>$Y z7WzsH?++)p^q}?j;KB%PaZT+)Tws4=zx+U|O7tN{nD#`HhugETA=DJWCezf)(6zKO z)RJ2h4mK@6ZFzc$=)mRn5)l~(lc;3OVB;<}utY?TSRx|heG-d|%h{-7;~);1%Qh?# zQIH2Hd1Mr@I1+`Ao~@tZF@Gh<{)peEuU>&*;c@|v25(cj~~Q-li0Bz+dgI6EVgaRA!oAV zJ?wZK+bs5*&$gf0*n%DZ;E)@zW0D<*v*S3nJjOol(DfV`yI{3+Z+p8Cxt}QBm+xCWZb}h&$HhWwk>623WqFY8*~Rfa3Y7q5)s+Z zoXPlz{a$CkPuO-RKX(M%zF-@ci0Fa2>^O%VBmCSq>^P4dH)7j~Yz$`OIu7|b2N}Y~ zlWd&9LC#>?*BtU(wvA`od29=F$g|n_H|59%mWW8e2l#<0Z1i9QOGM;1jcu>-{M3x=m^R2RW{H)kq!L@ z8CX0b<07_APesiJ7LUjeeHR(%qsf@bepoyr+hy$cG&^GPh#b*T_SHqPZBK{l{>L=POvewVW2o&5M5HjZIqZ#J&sAXq%2=dgH01{ROV z*p~gSXJZqN^G`PZ3>#|=S8!e&&CM-=i$cKnZnbYt5jHn4a^K`v&$L)q~Xw(Y{Ut=Lw~ zaYos|;t@Uf8wbJS5!qtw*Owh%XWI%ko?yo$+pb_Em!rNu#mA1tY#YPIRqQy3A3u$a zec4#RMkR;r&mpmRM6%q$j)${>#UpaOmu>5@u^T^t#Ut|T$BsX+-SJ*b1gY@ACo@Apl`#r-p zEFRGVA8|-59+B-7_A6q?7ui%F_j&!=Qy!=M2;V`?FKfEWTQ8ST!$mO zjE!U1@d~zG#l}(mz|m~%$w97VzlYdyV>YmOM0~~U7iZ%Xe&7!_7PI4%{J;dZy}*7s z?1;r9isfZ?#9IT|eqmz;J2r60N7?amcKnNNc$J|CX0YuVwk_rdR2}FWGNHHuhl0@7P$tj(f4~YPOx6dVn1_ zVk5}LY3x_SMu;6ZXJaHA7qHQtg?NMwEFMu#^kUl%{P^Q+dzo!`TcIF}`0@4F?@e}W zVgrju6l8l2@(w%h!6ES`Lw;rKw;?;8!^S0S+{1pmvT+m}o3r1sZ2O39-*VJZwtdZh z`E1*d{q|+!1UA;^AdMX47q*?kejBr`nr)>V1aGAzE?(uxsNo=|v#~S#VeyFk&f*}W zQU(XPpMyNhj#xaRkPYm2B>P>-ws9OJ$u_*-Qpji7*ohtSI!%sv`6FXGKd=isV)2L^ zJG1R`HqPhA-(}-MHg4hP?&ctU*|?JZ>e<+xgEX-16E=?LkUz2CBW%Os5z(H&wny1` zjEzk>`MG6moWwy6WLsZ0&R|C@9#NcUu`R&HjU41qjtq-O6y!6uUBE%Gctnn$bI5zy z2(#b!Y%65jKz{B4Hn4a^&kbhVb{yn(Ha6$y?qJ*9Y>Z?_EFRHwSUe)*A@)0%jYHVj zg5!*^@d7{hJNx~~Mg==!;)G&Z%ps3szZ=V8_zeennjH^d+xKkLa*#UqJCGf>WZQFWEM(&XHeO;Q%Fi{jkznH~etZcB zxsr|R*smMgc3|7-9I~8k8?&to+orLx2|FIf&wa|qKsM%bkUiOU9~&*~_$?dzu;Z2- z%PKZLWh2Ob`*Fz6*%6CJl%HR*4ReBI!@Lz4|8U52*vR9@ALbxGvvDB%ZOg`XY>efQ zakjn7#sqfk#I~3C@n*KY&3;qa7|4EDJR%_uV8>V4aXA~S__?lZ9LC1Y9P)iOhH}XJ z*e{1|U$ftEw#{eT9&CKWA%A4sLu?zw#y0%GuWWmSgY3(;eb^Yrj+?PPwzGMkN6Yz$!IRyHo;sC%>RGd5PR<1jWlv9Uh;tz;V(k4W79Of-Ov zUpWXCkH{~;wv*X!0UMw3<4>>+i$@glHg@d7#!&Vf!Nz2E+?FH5;t@Tt4f~a_FWB}a+je8)ICi|BjqllUD~<(=N0iJGwguR4GY+|g9ZzQ)7LO<-&g3HFFAn)P z8(VOY7uklzBMP!V+ty(}EFO_#KHG5C57{DY+m(r~;s?sv5sOC@q>^p#veAPLEFO{H z0sO#v>^OyOLpZXt**KK_y0Kps+h()vLk{v4+rDEzEFMwRBiZkGc5GqeXEuIe<0O9W zQMPT$HY^^|<2Uo;%h~Zuww-C)GEGPAv`)L}sC8*N>REpHK7JUBOcb%jju){pmHjSd z+iPrKk%>aS&bGff$QvwWf{lLccr^zZz_y9(hxH+P{8)C(;~*#4wq#3wQ@Dvf^Tj-x z{b5K;IjtGkr=Sjt(%0RIh$IJQQ8N z4~+x+VI^U1XbDylD5g+tAQ@@uw4eqjozc<)B528P3{dc<<<`j*I#C^HDGoF>#lzM1 zv>m4Na>6v3x6ksHf?y<&NRSAG^P+(UMuj!W#uCX^sKn*)(>jVZ2mE(Ni!rXLd3I*&}`)CFYH z;}@}U2^%ZexZF09)|F&hSJ4kiaWG}NAVozu(P=@F&WG^gzk{OD@XwI>yHv+xftp|d z`CuQ-kw_I7=fI;%3GR|5=-O6aGUUQbN*SX41*N z4U9yI)k2)cWRqDMUnxa-pIW~lN+})J9bDLH0euJ?Xfmq8?@IE^W%A-!G(@S7gcr7| z4X%ZG{dMi2PNwdH8W5!;;+v@y+AA)Wpi(KpL2^4Nu~|DUs17?yeSnfXS5AF#Q;bp_ zX(Y93l=)^#YApT=70ytu`w2>qw7<`n9XmZ zQknv}Aj-qhjJ?quCH;eP9qbZVZ7bMMDZwH+11ixDgE1UJvc#)KG$=(lQO<$S7QuIP4Td9=dPB{~Lw$<^~sJri!a(pYx(Kp=zuD<*GTPaIORzY2%dg}v; z`apHWa~xJQKsOS+SI&=;WubVC#Bhy5dnmapW$rSxMhyLFTb`p`3{tY!%DLa)*)CR7 zF^4O~87^z#K4v4$*dyYi$ptlP`1W$mUXn#|5|k&=CDxdxVFI85hxdW{1QQqsRAC%%{205Z%^9Iq54U(Sd1 zOhHzo7S2)%(^bxu?o@4=7pplGRY2 z-9Z{-#%GnR2g$|W+pL3`a{Vo(B$MP^FA4^t^o~j|X+|D=s$}jb=RxNw%}cB1&|&eR z+GM0^%&aMf06&=mba+DDp2BXO|EF2(PvtBro*tu_Gnze%MGcYitIXlrUnC+;p#Q_h ze{8Hnfygn(Hc}Jld1N8#S#q9qpFVBqylA*~DV;=EHI60@0#Q0`)sUhqMb>^A-LDjz z%59xa+sq5ySVy9M$ zc|?PIu9AEHYLjoT!WBg5`yaX+rfuEMSn?{NvCOa}8q44zhGexV$*@e;QnBBD?ZWN1 z-*Q$6ZBe%^hh@=@T5@qP=<*pY`Kh(T89a#-Ai`w3m9;FQ;+3_OV)%KrSz)j5RZtN` zYXb3_@G`ezI#5{@TgcU*bo#Wa2}>Gjko7+jj5^G$*Ar(DMc7A7eFP51Bt3YIvWfT z?pKO1PR@nS6P5()1JSxr)x=o5A>h!(&nN|WUakrG<3ovXojD?SQ%Q?2-Gu4AvPo0{ z>#OF*13_o?U!`Q9DCc@N?uCcWX$%F!wc#L!X=WSzQ7J^OT>E-Eg}}fFV**o>|CEwk zDA$3()DDJDqgU6_Xo@QjIXh7`E}3YGHPA4nrnP2Lmt_i8I#4%a+e*%&u5AsJDoW~} z4x@$kR?2`6E`^#}oMD8vk&^oS)h0hgrJmXr(|$ipMVJN$ZFiP91_)cFB(etxU3q}e zE^O-{!HQDce#Qq@k{+00HQT@To|{p`q!}6fDmT%>Nw^(~ZcQ=Dd#WJ;_-l4>IW&A=g7Gs|_-Vw(G;p3J3Z?3k~Gc@%ssiqzb zEuf3Q8tWa6{oIsHc4P0}*4Wdb*I;u$i?}q+{o2*0-)?nf)C1#v%zha#`#1#3^;W_=wEX}OHJMOvB|l{rpR#gfgnricshEcs&#K`dlm4jDU|gU*=auP8#caU z;|Df=vW?Uv*)L?lB$?a8%P{(?lTwy7bo#Ngdp z$-9BvyO*_Yqjcx`cqKbd3=!H{Zafq*H?+)Fl0GcAuR>&XVx5~&=o@qsbh92%ny~^pUAbkkZLvU^op6Ik#Cg5hsn8} z=kApLRI)xMvlav!8fhnq*^Uba>Be3!W>Lfw()a8dI;5MD`|vE%9H1!{=j--BC2ymg z=Azmd?GA~=VvRk&{}om_D^6W$CKX2PnBG%hjqdOdq1rUB70< zI#x-HgY<-PZPCPJlrLR3s`MF3<{RWfF0Q3-@v4)xw8zY#zEny5yj;>nb3F$>H!7Kz z$cZkR+vGLmx=+cxRA$btbH1)Utt6cySL*_LV`_*wMqF^6fr^X;r$Dr#6CH0AN#m=**fQ;t!uaXs~X$m@|6fK$diMl^)EZIOe^0JTQUH#YP zT_y&CO|f`*8O=UF%%8}qE*MMS zu+ly_qq6N}@~*LI-#g_dU$k2&UQJton#^UVT}_FsNo1!v-zjYD!p3wqX4*z-&UZFh zXwLTtIVXx}8$?Z*j$AO`Iu=j_?KeaEW&T1=bHTJ&T^%iV8D$Vr^8TAEHux^BgN7=5 z3zAcUrAi6r%6VQenO2!-n}w0`qm;aJvf)#sSC!3nq6N_c31MAA=kEidse_yx9e+Z<>VHPrwh`n#?yHvMn-S0Wd1r& z>}Ja+#N+gtf!)K8rg+uqksFI1VJTrSg!5G_BMvOuFv)xmDFcvK|PmxRa&752hGNI zppyDuIm7MGdnU$dltH@HWIs;H9+ugQ$0QP=I7T!k^_fa)T-+eMLwA`>gGqdBwrhw# z;4mdvp_Jf(JW+zOwxKP3)ng8Pk=aWzvb0aBb85Q#mE=8S@?s1ji9K3p=K3>A zYFx@8l)L@;LTiQh(6etUMVKb1zG6zWF+xkwRr4C@)*{Cm_$np;YqGj2oE4ANV$Zyx zVt-T;FOrFir_h>8$e#T+sQ*(^uucWV5XqOr( zJMR%jZ>0zy$ojT$Y&aT-JHH~`NJ-pZuJU;^=tCVd$44nyKa`VO-ZpLG?$&o!((fiG zy0~p8k(u)8O6o~+UCYO})Q(MCdn#$W$(?HX_@#7SDSa9gZop}CMkB9N(tn&UHuB=O z7G`F6lajhrrmk$OYGdMc$p+Wtx|HlRXMGtPSFmvv8`s!IYR>vP zve2A$k9@gm@|p!CFv{f~ilP0awO{HFWHr>ot6W0n=GiBeV&H-?p$9IB1eW4-lPL8B zMi#uL5#^Kx1Hu;}!FGCGk+1xEqaZ91Y%)`m>Zm>?D^3-Ox>Mx!Bm}(!iG~*>Rz$ zplot$BVkkR->f7(Tkdmm<1xqg6Avg!&n*yBT9BZr^3XC<#XPIzeML^}0J^Xu5)RVL zRca58Jb^b#<>B zD|!EsdCM`B#*RO{J2_UywouaJT4h0{+T%CJ*Op_nv~oH3aCc^|(d!JQ7`R4SNPQ3Y zklrQ6UP>`$%5|WkwGQBvGv_OGy^(g>> zm(WWydNh|_KS{}rOUZ?tF0u7_G}ho;1V2y7jhoN~?&1uu&Q~d^ar?SJT|j3**9Y3J z)#5`$ZddXiFBf%bYI@AQllu`R`Ofm#B`-lkDRboTqLTGBImtQBp~8Dg&g zBQa?*dL42mBZrMVHVSMbH5pw*7MhHnF4I@or>fFb6?7DT!nyq4lcH%qBkh;}T)F<` z(iL3h;B5mXX;3CDY0Yz*95sflBb3~KWue=!*~GbHbw?%dk#a#7(0ok7xe&LDlJ`l=e8A5+T!BcHrt{U;2OCSR!&~p7^D5_ ziEzSm&-B?!5gy5+-J>cx73}3o-X~<<9H)-EMalW3%!%C&&9v;`RC5n1skfC&x+0a$ zp2hr}lK*;{KW`q*gP8MPZ!1|hk(GNzYllWR>rtkg^Dv(&`Tvyp^BP=T%g;*I|75k2 zKMl*sW@fLmiEhYpmYmoe=jgFq$@!ejnQ3=yUnTW0nK~!YWDd{>hm6-a(C+2G9O zEtRzIW)xAD4nwUU2~%wIMh_n3LswL6sTM`e-Y%>i>~_oGVASu$q< z9XwqfaEyUoQt~#-IbA?~2F+ubebxI)-mm0NBR3Ine4h4|lJq^fA?LcrTfZwwFPC#T ze;S=A?%2tYx2bNt)go7@wiz^uT;|SF4N~WgaYPuK$v#G|Xr;~cbt4YxbXE6tH`D3WdO6Fxw6-ij6M=xXlhPN zNqnfB;azHI`*b~>0&i~*h&GQjhlh)m5?mrDJ)d+aZSOUDt|OGRyT}ReMYPSG7S!=f zU8e=!YU~uHAX~}lFO4LcXtQO~{yN{tg$tDA#j+O9CoN6`WP|n^C2cedT3o5=m^Zpp zN&A`Hzy~CPfe1dytcjt=rkNbNw=2_2!DC8!ev|89A$qV_)Un6*WhHTOp}6}k$2nH| zK*<@C%e)62a82ums~swStrVlLoagz?)W0}hP5w~QzAmS}hz~ENif6R7{Gqym+6tLD z&mNi^tX-9?PsrJv+equg25FU&G$|)_Q0ssgA0j3eh8ENB(gxa>6AuUR9X6&R44H;1 zWx7I^seCnWMx&MVxmolst;2NM&~09uHc3f-y-Z#}vrROkYOX=eRr2m4=XoK$frHna zb_*zpi{%98Qw4N3@u-q^j7*ysj?#LgQM30~vR)+l{pLP9{Pp^ZK*R#_Xd-Ajm;o0kOeBUKTv7HJuEe0v(7ziN@d+a zcA87Ri;a8OxQ~qoY$G+7{191aF1b>!={>?U$waqq^0yKg%DKi&|0OhnrYUsHIhiktzbd&8m$@tW z@&Y@y*b6Edw)1bI$Z?i;6zqQ=u zR<_a8oK+Kj^zInz9jO%IH#r9??IOrr`A=1f@SNNNS%k)TC}>Ysy43H5N)b+#bD_JP z3wGyQ6T&BxbVI9SZS`8E6bZRHl+cP3ed%GZryCv6T}tllW$xZ7HE8Rf%w6H*N=bH< zCFyII1z*KXhg{kdxIxMkSG{;eDa#Xbz37+9l`N$BP$|taIcGMsb0$$Aqv?-Yy8f%v zg2i+>J$(?CIgh?kO7)#ARTn6+%r_eUsg&RcS%M-+;8x%To9jl7FUcKP>);`?^6I7( z;yk&M=7#CxOG94_RFW3Tq}@|3V>Lt8VM-~A^|Rwr5Hku66`@qf(AjSJ;?^B9WB$q~EIN?ziPb-OEl=GlxYLrB0fTY@m$Jp@=r5q)424Ht= zu)foRg^Tg^yrG;wQL_Ie*T~N8You#J@du>>`xW8iEOMbugmBbLgl&`}+#rikL=~eUMB6mXk@Ey4 z^N})herO4enM{SStCF_2+!DG6lkqr}HI^6b8_=k)Y%-U57AU1yM^?`Hb#wuvW0otT zq`ge0U9Zlb-_K&iwp1z1F>*;%wAFr(tzkzg`LB>OqmZ_C+Xn_2&Hgkc@l`T$KH8k) zRrMkz?NM1YIQqEH`K|DEO4_4k+HyK8D%MCNv3Q7fqnU4KcPr`llxtbxq9ko!cb=>H zgp&ALxs(fPLbU-p)zqk6uPS*TlJh$!7&G@JeWc{vSmrFMCsiJ!+f>cv;%}AA&&s`c zF%2p)?bhH}wfRd)T`U)HpEmu~`qr6x>u{XWR5(I6kci8oRMf_jbPo|tfQCq=Ii^6m zEBQ~68(HVJbsL(3bzS+lzEXfcWC3v4g;S+&uB2To=X-CvKaGcKLo}v{+d7Vh7YXNG zo7*cTc`}<87$AD;Sj+*{6eaTnIS&ehv3NWf3)LEmZZ{?I3v!v$A@!+Od-_5@jOj