From b2471b3692e34ec32c88c3fbe41b2fed50a3ba08 Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Sat, 30 Dec 2023 10:05:03 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?285807144916b397015d78f8b3b7325639bd1619=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5547548 -> 5547548 bytes ivy/.doctrees/index.doctree | Bin 674193 -> 674193 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index 67c3950d4d51dfada219f7cfd6bf9a18ed0cdbaf..9640b1cc24abb1747c62f0b46a58fb1c22dea601 100644 GIT binary patch delta 129 zcmbRCl6Bfk)(zK8*bI_Q%~Q=M|KGTK^K?@YCK!LCxh0gj`GYxU6^#9V<9TdKgtvy2 d!*u@NXfyqR0pqIe!McpiSQKxUHejrF0RSR;EkXbQ delta 129 zcmbRCl6Bfk)(zK8*wReRObiVt|KGTK^K?@YCK!LCxh0gj`GYxU6^#9V<9TdKgtvy2 d!*u@NXfyqR0pqIe!McpiSQKxUHejrF0RXc4D{cS) diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree index 0772dd5a4f141c5762f09f933188ed80a6137fed..9aef1a8e43ae7ebb57e43689d462df95f2aa5f81 100644 GIT binary patch delta 44 ocmeC1z|=Q^X+xPIn?bUvd8+y58pHEUQ1;|N6HA!z1e3a807niEMF0Q* delta 44 ocmeC1z|=Q^X+xPITbikviJ{@<8pHEUQ1;|N6HA!z1e3a806g0bsQ>@~ diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree index d358ed42cfdbad35ea0bdef86ce581413c941925..d51c01f69ffe860c2ec2aeabd4ba2f80ab7a8564 100644 GIT binary patch delta 44 ocmeyfi0RKFrVa6iYzE1u=BehJQw`5BLD`edO)O!;WhQK~0BDO2asU7T delta 44 ocmeyfi0RKFrVa6iY-y%uCWeNaQw`5BLD`edO)O!;WhQK~0A5%P)&Kwi diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index feef7c9552ab3c74946365d802e1b2b7e6bda845..23ee12437c0306ed2d4c942bfb0b0457695578f4 100644 GIT binary patch delta 44 ocmdmgiE;lW#tmVrYzE1u=BehJV^q_aq3p>gG%R7l?3xx109wQi=Kufz delta 44 ocmdmgiE;lW#tmVrY-y%uCWeNaV^q_aq3p>gG%R7l?3xx108o()O8@`> diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index 8c3644c0c113c1d7415689b808d38e58d5209bc0..3e9dc829c5f81a8e41863dbd8f0f8bd4e6fa2fdb 100644 GIT binary patch delta 39 lcmX@o&UB=mX+s|er$Mqwl4)W}is9zz9Eyxc+=HCVRR9er4AB4p delta 39 lcmX@o&UB=mX+s|eXPT+0xtVcFa_Z*k9Eyxc+=HCVRR9QJ44D7` diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index d9a5e8312e755dada4569987aef27e2144c01f4f..01851027f77d3ec871e31252c8fb2a1719c74d14 100644 GIT binary patch delta 861 zcmY+CJ4*vW6or}DMnRAe5DQThf52v4;|jv2ut_UK5GvmqHLeNXKY^T<*t87b|%5IXsHyP zo=kxXU&2Eq(FeQaZW?d~>&Xlc(Z?C^YsZ^;<$M2#xGQdykM}N z%y2#0D1dP;#I*t;xoZJ&Ed}CQv~(jwj0n<@AchJtXrl>6GO;x{bSwKQAXrx*Sf|A= z3F08i+_JfQj_MS9t`2~~opJ)Funu_|j_Qy-Ncz7zS{XTNDH-1#u8X@ek;Ic)fzs4mxxd6a)v8^jf4kIdl-*L{M-k5|_4m z_(i)|3Z`qJgJ2iC716<2Y0=He^m@tNjqh_GzdU)nwP?2%eQfr|vrDF7sFrRtTD?u+ zk5sL|Rex;kzm?=uGeaYNa9BKlZ;Lm0wCBKOe{5WRq>^Hc>%~^@lpf52jvs}DxXv!- zKnaYE&XX|dYYEQKeG)FcL^rBEu|z@R3z(U?Sz63*!-z{_+tV zMzF^6-vI<$jBh0=nqh2(0RFf<0Ge!pZTG5342qp#Y=>H4n;olAUKJ+B=&J5?DE2YT zf-Q)_ng)#QiWbOpk?pdNATxv@lO0t!;w>H{ckzrbeo;0-p`~L)PU;S%bw_y-4neLn zd85cO1ce-en0l+Mr-h>qoijSsS2}(atH3q!OO-Hdpvd;fHb?EZew4QN1+r=0fh*n@ L{0)}>RdS#IAx089 diff --git a/ivy/.doctrees/environment.pickle b/ivy/.doctrees/environment.pickle index 10a113f5755269d66b4fd41459a8bbd02f4e439f..9e5e6554187e678028470c840ca8512f5970e376 100644 GIT binary patch literal 5547548 zcmc${2fSm)c^^uOq_|wRWhW()0#_`%6c@K{qr@h1Nl`4K*d&Ugp>u(Q3)}^8Kpf!i zUXmMkTe9Jj7>?uE{yBcJ^BniYw(R7&_ZG)-k4xO*^4wnB62~?F|9mrZ<^XfKn{U4P`h3boU;N;C=by*_4X=*7jb`U;IqYmVdr_wycKV~?fp-s@t=cK) zr!N{E{?yUA(V^i5LAN`4dbqz9Rr|d#tTlV1;k6pZpxqXf-!R!+n+K`n_lH zx6v2j!}FI$!wVZxI~)z)+#7T{AwInDOw>C)8eY)c-WfHn7+wgV@o0F_21g$aFDdIm z;!%I}EIx~SRgTxV79nT*z!{loBhUMql;mIpc|#3qNi8s z?{q_KVjoRc>85Jb-PsuQ`-GzrQo(|ooA~>s?VY%fZR*9`gMFP1`DQe{nfNbPfRJ)^ z5ci|D8X+FE+d*#!Ye<@F%@{q1v1MYZY_!5keb7%AHt(<4A4kJ0D~*1;<^D2Q zBB?G3p)Qe3moRPhPk9?>WeF6%)ZM|jowf4H@>1OFhex_W^)z<~4P0ME??t~60+jsQ z*HVqz-Kc|u7Xu^vWhVRtbm8d^6sRt7Kj=5B$$~Df$SVbODZnk#rd%V*Rd-tv^FW<9@f7b9%FWelo zg5Etx@#kas=Q#d3fqzaeFJq|26EZ?Lyj)FfE1B8w@~wF3bkGgTL9@KYd6~|^@aklT zDp8lGnC*v#mv@5gji6VlVkdDRK*v|$mm~P;NV{39wZc&_+^_qDotj$z0k9IDq9gH{ zX206tIl4j-iu1!&^39PZ7}^n@Hj>HBjWDQ%J$3rx%0^g^dSRv3i@LSwOlR~&ZFmDX zOw_62;8tR=I!+8E+E(XlANk0UJ{Vgtys#B*Mr!_-Hrx0a5Y;*Rh{5`x+lqo(d?b!r z!QmW~}=UtO!NR>PJ0v6Xr)SYJ7| zarESBwZf4q1D@G(ybVUZUk1b+aR+qFctIS8{rJdcE7}Oui0Wu5lF1$S*zxtF)#Z)# z6T$lNT77-_;xq8}Rdjn(`^+1f6PtfW% zaHWAU1whPA<}Rzqp{)=v{T|r-=wrhhZDVK9?&3zUZ66)pYTKHfYHLsnE6q-`U%?q^ zuphp@ZK4O*#x_{|?w#UpSZxNaq|---w_8YqIIIM&hcwp*(T2S=h+B5+qQTtocn5bR zHlXxWh?~2XhHzs>tN!>FnRiAfS>~;~_R)ZDOIENeu!Fh%G{6Jz>p~#yM`IYdYW!#E z9u9A^@*?Cj9{5)WAdq@9tbuag8nn&?J28)$;xv>KgSI8C8rW`*ybv z!R;(W!wc`f|NasrO{YCPtJnwVv*%3lkMsN06DN+XudW_Fc>ubl>R*vGk zn>@oo;BQvbA00osyt;B?_1Nm_NqpqPC)5Srs%M(e8JyLfSUtLY0v{h+JIQIj%`;qh z7H6-iuH=^fbQQa}x{j|_*RdrlCy(LNTfCn-dS~MogW+2|oi;;oI^3o1td5>Mc^u*v zgjs_2A#bx6)S616aK1aax^ir7?KtRanRxIauNCY-9(4yhdF=Sf6DL=WL82zcZ}Uu% z2Mf|=(Ao?)dV%vXaIkuEeHDjdWo0#M#E1te_0c*{(fWy_$JR-TKBTvUPO}TaevFFO zmrty&p8!=IJ9%^kpWfh^Y&(SBnIL6-Wf`4MF0Zd2J4&SZKIw#UKlRBPREgy^%yO0Z zztJ;F2ka`fC}4j1I7T^sOnu|SeJ|+LqIPN^;Qi={6DvoL9^>468yy4lRjB@(?su!C zzvJsT&?m?SuJ=q3B6jKvOlfvVLOa1n|z|;X7C{g^O6k zK?mz=Ysc1)gNRqaBs0dNEs08?`xV#*j?@b1nBytLbAS-HSQbmfUag)yzP@%6IKek+ zf9*G5X%NzJtGIgwz47GnqbGpCwH2aI?Unt6awr7I=4)dgt*oscUj`>U3hf6UT|=DP zk0y`R>N5B(82zzh3gPMQ?Wi_@#GkAj2M7!rR|7d2pkJMWK2B_Ft7}J3fa5J6Ke@); zOs|<5YkOk)tH+O@IKF%myRv?K;*%KHB$x@7?apcW_=&X>E9=MCj-SMw2BH#ZTTw;W zR$ndRl4hqCo-Oxqif}_Dwjmrv$Y2%9p-q^o6c;!L9ipP-kxtMKE0xjk_R5)F(6xr7 z^1E6Qbc^`@awj}ve;viautb%_HLF252->Ha+@6y&w zAE>;z{-M(^or*B;tPfX31vVeO^hEFMOYc6i^18mF2^UVUi& z%q~-0=SQ6w_r3k_*ased>3xr`Y}cN|hj(R7@o1$LytY%>jw>N70?_L&JsWJVzvrd; z_A~DTPL{I1J635#XDWRt`4Io0c}Gerg~)YjeGt|LkDq$#^u|lOe1F`TaL}P5iVKC7 z$4j@4zjXSUR{O*=b=VD#WQ~7f?0Xy}T30U}tUcS@Tzz5?aAOY3*P81di;ik17hz?Bh9RM80f35lI3oDPG*m`LINZI2Hg0RWT+I{I$?|bj_gXVj>$6tjp zuM)h;4$r4=d8> zgFke^dFSmfmrHLz$LW-sozlY*OzCfwV4=A8-V&`M`}dddzjp4ZYjpX&$OECM=Be6|IO2{reSW9#bBJ0x0nqi)8Nq|1Dmvssk3^Us8WuqJ3*gCi(#Xe4qUJPUSyI zE&cU7O3k|3Ds+QCsO+%(mz_;}rF6$R;%S0n8tbLFztaluI|#4GX0ro}T=(8mdHHBB zY`^p1{V#%TM5X6(*Yt29zH6zmF8H2+)2u^p4ohd6wSMEigGY}oA1pOO+E(v7i0k~| z*dQAbd^PQRODk#=OBX4UICJKVS&gDtn%-(lnlSTL3-Ys2)yy`O&F;Q~m=~;m(V6=W z!Zg*}>Gs3gkv9B#!8=RcX0<=)g-3t{{YTxGW`h`tUDy#4e%F$$R{w3IcmICu1B~3* z3ZQxa_%VG$6X$-MZS6Q)!`-I*cQmDViL? zL9T*3?|+h_cxRI>gW+2&Q%%euF1jGL^}|i&h#9WMjbQcYu_F(Kt1rH`v>rZFdwg*0 zLpzTz9sST_@k^bJceIz^+j?L7iD$O@$3FO>lka`+>4)yajZ*DFyTdubDS{I(=tP~J zb~NDN*DAv`ROdEiX?Qd$V!%HC?O51$&>CR-KnIPr#`^FA9NN*-pFL_EZ=BfL!N%jy z!>fR0dI&)@#xvOXINZzFTh;eypooi@Mfox_OVUn zUey+>(Z}qh_P2u=s*kd#4=++OdNS%h&Pp|HeF@NLKe{}Q20h53@t_XTTG8i)O0pjw zz%cL)D27qvgyASDx8cR#2R3?Id8LMLE;qY79Yh8k*c!lhiot0&--x2qqk$dbN<9R) zQBa6h8| zCFydRHc?g}XoSx0-x$r@dyX z^=*@_m6)=$48-FO+W>^81Oc}IMjL!0>Jx`BWoq97ysr>HoPEAb0TLHEh{ewKitdgQ z24i?=aou69=D=Ltz%`}ZfRx$J{S>jp`P9ueN6ScLjPS~JXn|d`P%f)*yBxHi@Nd6a#J`PdX2t2 za9`k0&?>sPG@m%%U~wztL9V-}`IdHYw%JBs#)SmD>goH#zrxNYzD*{qF6j!O($@z@ z^uwQ1}@XdkYhmb&Jq{1yLpqmSuFJ zJ@()}6`FP4@IwBsnEHOzLq!IRwyt;+Hj@A1w^t`EPBemT)*mVta%0{8e5v|Mn8FD6 zs(~gGGT0p$g7-TChnj<74)#E7eetnqfhLj|uAB#e>f24#N~| zADK=Ju8li!tK_b4pZXliy8hir0J1O@i#0lIXdJ;@6tI+T@BFGK4)QjUC-wuGT{j{l z&`~L-ZL7k?f5gRrAlqC$;~xwKd*J2z>|J0$4P}9B8FU?zw;#liW3ck?cTcBGjTS7W zyt{OCty(5duQWlGhmtXRBDtq!#ftMIM1l8*2+|44r3Vc)a`k`IZpHxx9LAAquc^XY z#&$&7A+3wu4uMzc9lJ_>PwN=%BDADH^hA7C^EEoVT6PMJ2OAGr{(Yqq2o-^gGcMun zjTag(ntqM##u@Wx69)y*@Bj*hCyf$EHGZ{SqK3hB5G8j|<7{Kcz-&C$c#r+_GmZD# zKfk;2u=(>)<_dP-3&!U;lm0cH7GGsU#^W;8$An1Izwtu0S9n>N_-!r zKXVmdqrk~c#EpV$i+7c2mYF1CbkejnASrG0U#7FfU%5MOT691e{IGpZ4Ii^#NgKuN ziU?-O7+Q)~R3>ed<(>BH)$EfdBQ_2%EcYQG+A(C6oEc6*M@%!6$J6uUaWfDS0Yc`- zfhXGpu9{z>CnVUrQKm;ZOU48Q33W{RXw;}aa_1*)5`DviKyjD)%D-#;`{7$Tl!RUy z_jEIsySocn{WhnWfi+5lF&%mPVtIh|k-K)|W)!A5rg_T#nFS5Z6a+dG|a)osoR zHai35ErVbTcRmCkaPN-~Z*jVUp+kp(kP4G290a<@wN4LhLPX>iKE1|ih~Yl1!X5&( ztk&EvTd}YNlOHr3r>Cg3N{$|V@QwZFoo9T^C2$)k?azjrr_Oc{NsQ3p((B4%0lVR# z*MYr+fkQCeiG6M92Sz1~u z-F|1O9l`)!0$VAa!EGFtAdldZscB&QVVYRF`|kavyGze1EXO6y+iNB6X{nCzf>Ka= z8a%9wUhMdwiiaq@&fm^ygP!V8>PIDzC=kc4wx3M>V__^mw24SVBUg`i2W*C_c z^0BNrF1`N9`<{AEE&N>Rc{`(zh#m1GFfR2QGENaV7n~crx0gx}Lw?;rpe`r^rsJSQ@+`@DEj42-6M}hIE0;ddY_&=oVW~@d zE9e0GdQT4L2P7dyn22X-R%1Vos5@q&t(RaCE~`9tKANBwD%2Lmr8$kC20?p9}#Y zx($PHLb6Z%yE=;R6f-?g_()Vb6PA?TUcy$FI1Cn-jDt4Ky5bVCdhk7`o;`KM*y!Se z52(E-WT25#<|HwT+ivsC*zNotnYQZdF2T-Cg|LKr1w5#za~UVUgh*tPEM9&k**#hLqtO66p=m5>+>H9p1}FkdH6{pm+GIo` z@3E*awCIdUk~oxfF^7nIjAKxaDZ3oH>%*P94!f9EGzKVyT2_BKB*+&`5_#Mt>GsAO zC3oWTS3Ol1D8EWCUtpGLPB_G&66oxkT2i??h#QBT&(nQ58{uh!fw*+%o$g@c^B{a@ zlLWe2&daN>q(M)R4Zr38Ccd9sg78)8UP@s};})j=_yf3%)bhD0E_XOwy3;+Aiiiy? zE?Di3HqFI{+!Lt3G@Fq6k`S<82`$~0{LOaMi{>b|c{t!WI&)CrKpSI@*d?_JT9ytS zF5P$EeWknZnijg8Zp(EZr*NRa#`>bi6(p1cRtfG?SEmmbQ>V0rbRFWjB-VCB=yE!- zf@n}|k5xHFYRjQ*UZVIHrmAjvcecEr^wGlUaj~)mo2r~MInj`yxDjCB&#J2!7b?BH z7=4rMjk6%b47Q_YO+{!NVM+~K)%A4=Zlo_Inh-l`-5SW5Tju(i(#xv zR07fH!~#cKnYNP;-&8IoAY>%1a#&kSqS9!!MR}-Qn~qV3WC})QL6n7(=EanxRW5|c zK=Txd9edy^Wumpv2F2tBN6WfdsY7%aDSweN1tMTpn}@d^pj9S41u&WhG#iBXa0-dZ zP7Sdx0Wt_{w_m{?s*>bHYaYJSI^}B}BuG&4*zPH(Z>QTvW`gSb;M!6cA6>%M9ci~) zN2;78Gjc3Y<3RLb>IyTUwtl2thLa!={0mWyL1%O=zD(ERE2Gf%v*2(M!KIU!5Udw- z)p#-OZf-qA9sFrm5x>&7bTk!#e*PKSY0W!en&?DQ*2|>rGSfDoHSA;do2$+541lUg z?qp&SeT!{P%nYIn(8_5IR5zGz@QlKm!nh&$mm=tNH$D2olTVhOe(0%FrFWfr>Y>M< zeDI-19(nfEbI;vBvQxM&`C5Cp`XN#mhSxs%(9@5-@X%xU^vNe5Y&FYKZ`1kgG7J%( z#bJYk5Srq?ZVkqG`~s>ZGOmBauV!wb8 zgOB`lKz>3REB({7r@W%ad#kk24k3SPBUT-b$=0CV8GS4@C-ylDdkif2^7~El1!4tS zh*@dDprDM;;BBL)rN_0>W89XL0;^0FVz7HtC(_fpMm|(+G!Vhk4qKpncZIa+_+^^0 z<@f95cgM73jFr-Um9#5|u|D9W`F-@o;YSz@FTuK_UN1U>Y%}@hQvHn>X@4HeyZ7o3v9uKz^n4fW#dlu-=-q7!#~Z8xx(B#}sU^$1G*+ zM}nR!5=gXxTMD=-`JGO2x`!msF8TB-w+pU&(9aX+%g{~}Vk|>kC1&rP7N(NYDe%Na z6CWWn1-49FC(?3bGLmjd5HftzC*5XfoL9X@Sh}CeU?P)0EC6p#IwCNSz8=_lU^$hk zKK5Ym`;^~7I$wgLr0tRR*r`12;l+<55si7Z*vS*Y6X)B*b~!&uNLZ8TTli}`I1SsK zoC$i$mA%Lwo@-*9lU69^ICu(>tcYBd#7=q@j(W3Gk7%D#Nhv(DniWXy_&R(MM-US> zeB1jVaA2JwW@ruA)D|E(NlNkMPa$_XY~kL;4#f$pxY`Wj;S2{%+vGtrE&g+DXP%&C zxX(Ck^;x~nfaqX>2v2Xe5TiFRC;Ud!s)8v%%QlBhlL?3D8{ASy#^JsA?)#4XlY{U0 zNW$MQSG}}Eh8`Cp%jRs-e2r?R|Juqf6l;vLg;P{xXcu5gtTCPTpG68aqx=xHoqT#_ zwbC35^0i>EX8JPZhja|EZ9Y(CDmskpr^6i_o0{77;l+p;fwz*YRDX)xf0i@8Q` zsCK(zG@o=%8*o>tK3Q0}maV(t;Wlb65$ z!FC|WrSL#E(X!cfT*ox3L1>5@j(7MrNs(6p!Gn&?GgIkgI!3~}{D-&e&PA7cQ1{nT z8(9xLK`;a`W5#5x**(1u=NddFY;_?cb&!s&#vdWV=n~tae682mznYE^x1Qd59qfft z$+bx{m>>=N%E^3D*f|1rV!Pd#bkoBb|L*Yom89DhNjDV&?` zy`6wKkbpo(@_R23niatG)9p7T-%5amxr07t7jje5rOoJF#B3!20tP7#&QLd^E2mYw z$EJ%jO^J}w-euE%WipO9^M?C)(Yyy6maO%yNhc~Qj9UPEp=%jTCt0?GeA`XpJRtI# z0k2PBskK90Qv%BH%B4ZvTiQTkbfd{Ml;jf!T^6o~sxAijn##6D zFmwd>Y=UhhBy0y-`0Z^1O=IWV#EyyW2as8})^v^h?#l?=nl;DG(SP)oLum zD_@1U#$%F9!Ky$9beoEAQjtc*hc-{PYcmw-m*%kT52C?9)cJpkAhylZZZBG;3m58af&sz;NKoqA|4uJB%%zBJwV> zhV}SW@^s`NBr^Zxz`B-(QMZx~k`zRxfkLPe<>6@6z?A^PggE5tM;M6Ylh-Tm*QiTq zdC!4`GCN4#AgzHhYwx_i(cvUEBhq)>ZlYKZqA_qcA~8|-5lsth6!VCq);8ku6fU;z zgf$|O;MD$V*4zIP94ycoBNim_}#%J5EjgKbN{hY?z?56*zNkjtm62aafXt*SyL0i6sHuFyX3v|p~;H|y>3hU--WBIsCPiWjLa-t`3u zYr95uF_&$;gIO?e((Kpp2GtJEN+Tzt&&_r041Yj%fwWYSurzXmLyR!*v;5gb%5;f8 zz~Tg-Kcb0-7u4C31O*BJhDC~M=*Be4_;uC-fi9vIVmQ%9&KjhTR=6lsAZZ9!PU@}^ z94c{%>_lu8&LX6pKlAV#+0Ka*6I_}OaSK`l`7T5$bD>ER2WJr3N;KnE(Sa#Y{my?K z|1f33g1J$F;dZi^goMef&2=UtD6J{8wK5KYC{cgSz03q5ZWoECw&z~cj@zS#1PA2> zFgTOBNEfhf(y2B;+w(k>bxDjE7^)PHOGc5MGv;e^(G921IauA~G#1Wv7LK4@2^z^gWLu3bN}EiR zN*$zs8f~C?oQ11lcp+p*YJ*SME)y^m;o1+~`intxvtsLA$eV`1MeR zPeeHPTr|EtVYOQkXW8YyjDIGX4?;s>oYxgj5?TF5I}y{t5s3|yYiuVJA8c=Q!0OZ- zOnZV(7*w$92m_ZeGxtPYL-Ek$g)6yU1yKva9cv>m$|S;!&{7} zPybxr++6z5i|?;(Z@l*O``_z)=0Y3|?;rmR(!!GN5-%M;dGZ8`NE|zk5-TTn{G~kn_u6ura(`e0-{WA?!L&oX?O)dj0e- zVw!};J$y49J}is#bYpFJg(QZQt+n~$XSChfR3B|z+qiz~%Q)Cq@Lylae|;7HMavRG z(3!>}lDyH&RlngrNcl?VhKO)z_!t$jC8Hq)EmfCNmx@v4=8`5=FGx3)QTBrt+A32N zBryAZGeQDSVIm0FJt`m}eGevn*q4~Ae^fzq%OowO{sL2lr-;&M_?&MhwhEAMRkpD_ zK+rJr=v8&8$^dC!l^P}M(eM!;RBgp)xgQ@~r@4$Wo*f+Aclp3zOyB4D853&aB*Kg_ zAY}}n^?mLP;{)R~mp7WKHc>^@K!u&NS%+!lJ|9q6ir~}q!IPFU{!>v#t>H7??^(B$ zsPlp_jf#*Ax*cpk>;ox*3J^ejAZ;V6Xl)`Sgb~BuiSgz@A{WxNpw32Jsj4_e=Hq?J z&3c8ga--o>zKKyoPYM_LW|!_!hIe_?Sh4X~kxq)wLZq+LUY9!T|d@FZ5BM2|)T&}6GJ+t8oLt4^J zvkdO5D*30tyZw>^YGrqrk)K1lU2oE;a`4CWm*9uRf$((l7(eP0p9K>jOc?f^U zC4$Nv75)(pGWwWQw1VCd7Yk`@)e)G)Y#VGOb>pZviM5F?<^BLs&prJ?1~X2fPih+F zVo|!`Ad+Kw4|e*D`2ePSFpjf_q$rj>8Vw(s8mlU(gV;pm330niJ(|pVHo{J_x1bQg zCPmtY@A0j|Jt{u5xb5W_*G>2u$jr-1oV&ya$!WG%4Gh74(sw%N!D_~kH{q8(sFufD zN7%OdQ#ovQAokPq39GSTsdM7g78@MiWkl#D6az=JL#@Kdi={J&-iJX3mB1l~pxP@E z)V;`0)0}Ui=^m&l3{b**=UfBpU3GC?j)u6bStjUAv%7>cMM?3gmC8y*)$rhw;IU`= zjdDVUJ~~PrTbF2jt8zQ1nRS3F#EcDF!8*P2j9PZS=#ZAx9N}T1lV=zsOa5c>t3D)A zDjkz1tf`(P{BGYz1#SV#rTsQM@_Z-ZIxkI{Gdm~QkRL+S)OCkEg`*IUN*TG08dxv+ zR^x8{(sb-S*xsyk;mKSDdN=c7=gM8~R8-;CL`*AFZ@~!$-@a3g#BHJqt*F`jB~=b^ zxRpDl*^fn^kxc>er(j<_+r$PeQebLeeXQh?zkiAvau2xbRc@`S%M{Txyg;7zA*S?WiV+7$REjFUfzxAl#neueao=SV8U6VBdZ(e8o<7NcACrZJhc&jKN`N@ zH`nZ=u7x+GW-^)_XU>G7Fkp*87sTZQK9~hLBi)gs;Rk#W+#O$P3w{R=_uAN;Ys0r3 zrx}_eBVWDN2&Y>f6jT+1*oDm!!Pq6Kv^8Q^vNJZ8dH6JScohmD2JKrc)|}h_OoLTU zS#HR$AG^fkTe;g_j?ds-AbL)ROLnZ3jtO@_4R432w?^uSHfB^Z{94@8dA0KnV(D>G z5EU>QCUTCld$NWyjjYf(_+OMCnWAE?_l&rF%ZC-Wy{v)*hOhWezuRxgkxO!6I(^IV z{tiaNja>NI(u_NevKDQE8Zx=*1V%`c)nMM9sNFE#VFTf#L&5~TYPM)@2BQ;#_AN|W z%F6oGiP|itZ3-EiQpD@DxQ4BW%0DU*lNYeiuX^U|(4L!c-q{Lmtx{Nao~7I)ENl_cyln19AuOUpPuB&2(Q`)}fM^*X22v76Qk#QxegT92e%{4n3dMT#B&0QVz zSPc>IU_wT1YZzMKy7iG?0bpXK0jKl|Yy|+ostE58BP(%1jfTs?QE0oONCa z#`>vz+h7~Z+JiNZeT)_(qd}(}JNNpQLbmIh5`TyN4r(uoe1g>8>HC;hr|)C_UUn_y zV!$<|BL3zvbD1%IraMiqRKt!+fwqVp$;h6*C8SP<=}12@;%%YJ>O$xYM_Vj2+SV>E zuhdq6oJkFd52>Vfkq3R!;-&3>FZedv#m1DTJt(eW4+J!uTd~TA6Ij#{MVA;MVBLzJ zHbAILD_$Wj958iKVhW?;DU$zRK#{cDWSf^erRBt`;{?j0%Rhe0e8Nrp_|{ z1nS~tdc#DZM|wBsvYn~0Z$xf3S(#WVUvdj%%k#YSa(%HdTd_3m@D3{=*I4Ei)xkpb zHX;Uuh+}NjkW)SVkUP@c#C3&^bbT-a5D9xCnu)|T8a|(ko@{~4#bQ}YXPbd~l*}7h zQGhs+rOI*;er8L~gT?qrO*f$~N2Y34P}lWZs9zV zP9D=LgREGQ+^b%=N|g^QZhN`jYJv%QMU*L~1EH2LQ^GI=(O|EDDPhwaku}B4lwQz9 z0K7IaWgoy@6>1k}8A`r&JNs~M8=)ZeVoL^dDfvQI^V1SdaG(M2O*#dp#U=frT+T6# z%^99-^{%8gJ9{ZBtylPvpYBmclqL-p2i9F z8YWz7@rL9+5$Md0^e!q009-Wh1j0 z-bApH!o1tRJkh0G?b=u-uPSN|fo~U0n<8mU(0hC3-lH_%tRVyoq6Jb7=*FAXQ-%mX z#q@W3mFeszN+2LQL;U+*o-obEAX#uUJgztoQ-NW-B%**)$TzCa9m8kJx=H;&IZglF z8n$S5phW-{OZ6W<|HOXXW*50Uh;2h~oHA_rZ%>B+ecO~ezDDBoLMkA-0modRm2NXa zehWatQz@B&$Ga-rRQ1>)73`OovmFWAgyDiVy&-j?5BYE=El^=p0R-CjXmdndVFgU1 zNi+Ir_=NXrOpdJ&u0va8RFmtVjBs-s;WqY>Ig-Mfa?&FPYz^^CV3o{^LJisaK%DY2 zu6wT2o&>u$Y65OQCkj-H(xc&vzE!A?@Zr@alL!c}$duLwl46o$_xZ$NhTxKH21721CaHkf5b;UE_UV! zr|w04y!*TdK57b^ET}PTE^xN$T`VVVN+i%ZcS}_~%!p4U|Cl<1po-YNW~}tZ+2x4z z?M+s=EOq*L8A?_!epxmy%6Is%&ighwfGVqpmxWPdv+=g8zL@4p^ErA{uoAAXlnp}6 z_%qJV2x1w|wgQ(iQi&mlkSN;elHd&j>McytiQF^kEg3GyvS7lI1YJIzr~*w^_=K z0tawKNlxlclnXkWvWtl;iGOc2e7jW^ozMju7HY6KH(yh(yV39+wpS|X0G=Kd;Xsx` zS0D0hXo2-cR^(mQiL6IAFoNVkr$xM#B82DO|I)3D=h^T&V5ibyS~m>FM&_9lrNBEv zXed%+9z{akW;nG(&(+B}NaclHZ8Qw?c}cLNHPrDd(p{H{`Cv4a zc(w2rFvgV91{o=1j^oFNaiWgiVy`pl0fIViz*R z@N9Wg#jNYzx4X8H$*D?FDH={-zZ?xeoJ+pur23|iB4E=|yQ?ZyoHnlkAT8GU;HG=P zfkL z;7W3@1xIR7c3q$8$_ho`RH$Of>^4RSAgD3PZd*Q~jiwBgLQM;?8fEZjcUyh@3gb!A_hsi^A47^^nIX(d&P^Y=9!h>JUJvgXHgp^6SD}5kS$H(oAj1t4( z-Jdf&4h5utrCS;WYc?)V){!=m98w4vcX-)sQ9L5j5nimLSNjoojX&vb9ti| z1+^-(S(R`PX5~fiwvA<0 z)oLTJvS(u{yuP^t6GL_kUpnV|)mh7PY1}t0x1F(&A_aNFgbHd5O_t>^qP9*GO`*y| zvnDAkw4nfoD)bhEKPR024Uim?Pzth}>x`O=sIV-J%09gZr3E!#79M21OnP)%?E5 zg0z`1c|{ahL6*H{qEYOA7VtgvpvQN77kh^t-=9_UGP0ok2)WLE3B6tCea$b>H1?+ee>5GUK)WKLL zoEpD`rLh(i9*Q<)0=?3dWBl|j*lCuSdB~+mrMg2X-UNS3(7v(+pvu5mCcLpjk^GM| z75b)-!g;#8B3hB9yt020w3!eViF9fBNXnhToDM-LT%{_X6pqZ2uwwB0P}P4Q4d13F z2|~|^<(l7%M$NQHqNZ~Ma<|Uut5VzWpjUtZHSeKu`ugBH&9LCWP?@CBru=EPz7lwl z-%c3fVQFtFl*#djxy7Wk=W~zUgbSC5%BG_+0yEog#`2W#)Z>k_(XhT?%GE^*M#Ec^ z+m7LEu#wbQ6}%e4=g@27(C6p7nC1KS){m#t0bjPLY~To>f;HZ%#9*ifrrlxrAubLd z%N^9|TjtwR;HoVYoq{sM?Bzw41{y#SYeC=lGP5b99ta;oh8Trz=581|Ehxm#Q12<`bEnq;LnVa3{K;6 zavvPGU8+gb5uRZ+or3$BsAaESGzA>vmP3Uw_0ZrMb;A}2rElzXp`hVmv)Fh!xcm%Z ztvuPgtRD=qE|OaA-R_!&a&hf;77tieRgF7hqmq(1b@dc6e`W4~ z+$ouk2qWCUhzhcN|v9?itmU3MOcF)kLIq_>03rnBXsE`xiZ@x zkzo>5KPxx3@^)vLtMUp*8z-?ZAv+^(v!M1~7u$0FH8Ncw0UjI;-1wi2Nfx;5#6?o! zUFVH0F@)*cSJTF*PkCWx_*Tym;@L-!LYAOB_T;3~q>Rd8uMVpg-Wbbqx25F--=b1n zIo;jpM8G`MCR0Zc^*NkHGZ>X%`6N=16u4DC*}#E}3!}hxiQF|-)^FZq7bPy+WS7l+ zBu*KsMjaDYdhPu-@2i-S%Be#S%%vVy$e_wyotoNDBBlnu!QxMTD}Zg|N0S$hGD?;f zfFrxMyLCz;4^qfT{bg4UXho6?Gj`swa*XSpkOd3yjF&&1HaFr;#X>kaSyItVZX?5I zP4Z1LtoI})&4?=5peYYLWFD=>jE`qYY}pN+5w(#^^@iJdr|R-0)3LnKLWCBC4XdYn ztKVqrtPiYiLInckv3Qj}=c4ujaGJrqsJ@@fv|OsR6H`=1#c5;Su(Okyp@u(D?+w$- zC5SHSWXL-!iY>}pE9PYeuk~vRY6Z8Rl~B_vtnp>!i<)M8efUmY9;PG8%C#zIScA(1 z{1-_tPhUN`gQdHdnRsDTqXH5;ljK;$92>QhF z_1d&{y~ie=&R|GtzF*#uoevX!`qainV@<5)vcg?VO{o!#-AOb^T1nxq*C`-{&Hpyh zTIiTDmmVpPf`ei2K})5U$##r}hq5+%1#Ti#Z`MiEO!W0`QsE2U*2tH*;nek=`pZPB zzuGIei>DfZyudOq!wfcXuoqIT0O?F7iK*?|A(t}dND#HJQX#CSiVKpGiWe!l=XC6V z=3Bt>?j=_UaQc>!z^99#dkc`I5aXd^w>|wPKz>i=CM0K_xj@q~ zx_A2s!?R=vkr}(1D{jDcgq(r_Vh7>5FrvSEw9@(0yNcE7Gcn4|>OND6I;ujvH?-I_ zMfq^)wwICk3&W7tzFt6x#QR#f`SK%D(~^X5QYnH=ch^Z6yhUlv7Y|G}_N_*&hH?8j zA9l5P#H(+jd-mbFo@ct z)84#n&p83Ui8{^Yx=Km8*)h19lAJh~;$h0D17Mfy8^Si?wK92sl{O2_2E0{lcyrBI zh$ADNvVfXl6dc!nrF7LYtTm*?hMCkTc{FIuxq0bGoQ`#+6o-f^@4XSoVG{-7={;C{%q4d zRB)gXfDPqn%WL)lmKI81+bbw~1~<7b{N@!qbK%I8GR}Pgl7tJH2U|($qv0`o?o(lI zV(Hf}R+xt>65k8704WEXDSz`v$i3VAfepXb44&}V{<_K6*ppWovBP1Sb@f;PVX8ZFzWV@OoTdxM2$7|en z9tB_>*MX`F>J^x#IOa%AUPX$ssS`3rl0_&0!No}_7dO87E%tOI;R~WDfQ(Q2xFOVR z-|paN^Z2*YRlN5}n%VfkqXLux2TQwygMqC?2rdgNYP!&*E zbY>of*vP@D(9U_ixXl>xFxVdBnHnSSUEB)BlhEcLM#GM8k5VXi?T-1!-zi1_-B4AJ zaRFrLvw0`Pk?xcbT*;kv9>lCO-O?$Qd#$>evQBGRs#}2z3-UNcI9-8iPb!Y3&g-5) zbP!*pDxT5xb1BPo^t{>D@ zq(f@Jq;9gEU|waM7^`4uS)nK^)>LSYX|`~&tF_WUw^sBt?(2x_(~j2Xtt z^K-2ns>~h6>04I33oiv)huqznQ6KF#Ts=THiXY;jZZVnYHoGH<9BDYU)auI6P@O4w zr|a;;77|%Z%@wgQ%(!XV@i7|a2X5p|FN?X#6$q7!N!52*_uhLlT>NL`b)NjmB^h)o(5802ybfBeuK(W`gWv7`%!o56%spI|rvPY!I!%F=HOdW(jn{xUG}n5++NO{6VUq zsXxKqz`EK}SkoIfYw6K9Z`;T!RAbrLFXvtx)2RV8n-4nOC~DDg?lnTYTj`sw+dj6{ zd%(i=J4DR1^Tst;Wcj9M8;MD%EDfooFV6P8b`L_K$}mCZu|4O?Vq|wle%cgJP=(vv zd%oIob<~MLi5!)Zm0vf(IXONYr?%heTaKFy1@)?j`TQf@Lp%J{E#vh;O@SNKDuNt> zSAWKkRPmML%%zO)N}cl(*70&RZHux9N7 zOgHg~Z+SG7R$Lb4pc!MF{lUwysfa7zA(P%`AI?+DNOy-%(Gfi`G@(ahq`FJLA5{V0Tl)4K)vcVK~4e8$1 z(OpG2s4BXa!IBIm`(|U>P zPmm#;Tnw6yCW@h-b#t1IK8U6bb^y@2cHS*gtq%GKf!G9mJ0&gUxG|{LnW^j=H8YYu@xFym7bHtchE*vF z%;zp5OHNaHawF(h8@k}+lA1?>1R#-?AkTR9%mUJkA147y^Cu+Y-9dSxp8n3F@pM$%09! zf{XAiLUWi-r27-)Fy~y&)(1RghNAM%N=gq|W zZ9u)_V~ns&iK^_?JniQDMzoEzKj7I(6jc)2L-K%4O1TKSO~%Z2_>2t@mhZ}Q6&K$G z-0LwNp({0z^3$+qA3+X-sp}=|RUyPHqjCeGmxn#I47VTsJknIQcKCd&g>!@CBF5>9 z*iU*VKF7yeU1Tn~p4;33+|EANFTEnThVZ&%%tygcYD^XT)85QAtBKZ7?j$?&-$c0`=yAm)<>q?} z(#n1=lGELh8@d&#dJy^M?AdADM1`7~V)+uvbmmzsAnc)9i!zAMD@O)+Yyt%bb*3T( zR+!t9*CbZ(uHIO2U;ibPS(riA#`C&e(H9*GK5+675Q~P%IES%FcJpfD1STmh?6=61OJ$~@_0Vl8Ox_pa9c$Tv;5 z9nLhqh+F94DX{jSR|#61;YKgW1w3|^jTg;(16y6p2h}!0Pmj7*(=>~B@0oO-*RD={ za$4jW;Uz94S$R|L3aS0@)8pYL;rki#Vm7;Q4jT;;vY9ikhbPv)1b3ai5_s|UwDWm1 zToFZgGM)XT&TtMSZn1(_iV@2QmY)$4oqJ=TLx$PXVGh3CcA9Y#$?UwsVgVss^g8Ru z(+T@hW+XrHI8DCZnY!9;x_jANDu(L48i_-KKKM>^8E>pe9@2e2sU~+fcz@%CF)$-9 zG98@zCgL>1=F?X%ZnQ$YrX4q$beO%{Hz((#JeYWMaXy_5aT0?TvdUFeyuD_(#+d^P z$rnF;-udV8e|sM6Pw#Dpd8h!TGZeOik{sAyFMCZBr*AvbJ#Z;tTjx#afkhOmp4TRm z9fy>?PxnTjA3O!#3h*OWvZkV&rEn zWm`N`2-W7#4P~g5tfg!;?kbt-XU)AbSpjN+tw;1!CCVTdOi|sqe_LCI6s}ZTS^vVv zy=pCn7ToR?qL#v54>qUdY2-t;TT1;t10@}GY*N`}3$oo)c6^(6l`OXyR>d8Y;e?F3 zAtE}1__U?|F(ae9%QNSaKFa4U zywktM5G_Fln_)$QaezRtI%dzFZ$Y*Z)xVXAMW0Krp}=ZFK1jAvN@_`Q*L%Nv%D-Fr+@UUP@Lh}=b*o1uu}K8?Gj zg%|V~w8ghxj94@$ooa5FakJ*4kr7Z@`xnbj0sjx9Jds7M-WxyayU(#FtGiWdY%T4c?=dxt&2o=|m&&jUVwhXd^O-KXd8BcOB-JdWL>8%hVpP6l=tdHP{? z6oAFSeuaw%Zh3izi1wWqeVdg!7}H(!`a%2A(5Xv5W{X^v+P1Y2C6E}8vy?`2!tfer>kd$ZkDxo6(R zI!e8dkeueSRIu<4rDc`TaLu=?o+IdPw7DdAyXUiQRxTuCkyLL`dY5aMsc)^Ot&Du0 zScj;+%{iyaPh!ieZ{VRs$|zpHb1n&)wI=>%&H4b*d(}>%Q}&SA00~Sq?>RZT)b8_& zzAoZ@=ycmvMJuDtn6;Z?x{ldu%5a;w)#M`(HuK-BjXOeuZ<lYN8gOI>l|nUF7oEabPTrE>@};67A-NeD$ck7Td;AP6ya>z z+*Kb_IqzO$PyuZWLFx!HIei9qERLF2I?LuY+CDC2I~rkt7f$1%cElDePzR9L3IproVpKb(@4=TL?QN(#7;;z@QI|zc;t)RTgqoelm z8v9$4A;0%>2~t`*5#FmteA42a7cjsgq;JDVX)Ye7lwVP69x0vMVa0?{FzVUMPcscW zszLM~9Xfm1Vm&b}kcT!qgJ{6Jq91~oMP~7O=M*c>uRIF>Z#zN(EcV#m4mU@C};o zQI6qFR{>TOp>mz{|KCp6Xkx(~S3isP-p`1mm&c zD7OO#E+RBQS6&^VfbOabqiV5N;cPVYR$nOqOs7h*#z@M??vXuzGc*L?`6i8RwxH2rPSZ1#ctdh&8sdq3(!G;4=#n>RQwsn>C0GQ6VMl8O;dq9$U;REe%T zlte*+e9})4!BE)dsM+ zzF7}m%@Eb?Y1#cKfr02Ug*wXdY75&QpG9$$?JaPWd5zQ8;@x{PxNrn?a~ zg6$^sfsFgwh`K(iGi}PIuz{K!#8KiQfhoPYt*!E2A+7-CI7OA;ozjK9H6wO)OBvmq zk2iboyn=JtTX{lmpZsiSgJ|C-q;7Z95hdSLntYMM#x6_E9l-5et~cTAOKi+nI-Eu- z(LCeho&_0MhBV;4*9vT&suxgE+!4~ZmmG8NHM+iS#SrvfGOq?xl4s8Sb2#I@_5l61ihqSkFi0SBFJmtpdA2FaU)ddV)I zYo+n&1?n0)(%l)GkfGrg;967%z@cF(>O}ajWV~!Enk(RaoQx3VV(Gj}6E)5c(sN`uc3NqmYcN~8r1%gq&P+)iM<6UL0Q0zL1jo-%~9)Opfo2)kA!&YK`6q_&tLsY@T`9%x$3ccZkiLk{< z z#TV_46W91+KKVUvMK&7GZlc0AR9zP>A0QfaQk!{l8)<6V{6l>v03p)OL#eT4M!LcC z*)A`2o6ovjlTL^;qpgjPR!h*f6JDT{e=clO2 z<>15Q`(+$35~ z*nLN|GZH3K^!1gT^zp1oXVz0SBmX_od!2la2;u5dREw*o@y7|kUfp zOpwvF{6L=(7KN4&%FF4$ZV=q^1Sge#E!7t0A44O}RoP;L$tWQ?d3y_d4%ts+n>1>y8 zoP<}|&;Fca=_ARp#*%f%N`ITd{*;5QC#xR&Y9-0Q!{ySFYH{Y<|Hi}ROmytq@d7{Q zvtz{LYUYrhtYY)!2EV*B`O>drn%)>DvIfS1$#SN<@8=*ax=3LYj{xzwU48Y z`DlYUzfLI(BvKPBCW6KH5w%y_M$sXa`1AW*$JrMj(-R;}jz$6TJs+itfUAQQziWkz4YC5h2s3Sh4D zPT)L1IHIIy!%>)+#H}F6)m79w&zl=0FMeH?TW0yU1UXkCxHXrkDQ=T|MA4XW)#@__ zamWNua)J`~Fe^Y+R8FA%Bgt*9O>wNf0`i-=VzFJ%I6+tY6_}eOXi@xTgsGKR0r!K% z;ar=ND1vI2-$a0U2X0r|R_cSy?j|mFt{pb9wAAz-=5|Q*&y1)`TXAKMeL|gYjw-lG zpnVR}Hy6pI>;!5{9^wq=+7jjCkO}_G+*=~P0D*Q1r#2V)S=*@qyoUIb=(ZX67<#pU zdUEcQWaXz55)0*=aMkC@)w;zA=dsE{ z_!SGIVE88pbx#Ol;;Q|05`;Y3IVUD2uiT#^mZh5GoUl_@?>(fqJ=wgmEBF^U-#u|m zIahJCXB6RH$@g>HBP)cUUGw-dvALdD{47b;#OCiaBXCa>xa@v$dc=UmypOM2K7 zG`LsyhxUwo$FA^8sQu<$l!bVYy~;m>bKR2@oVwDhd&bWuuJ%tR=slTn>Wcpz($}6` zMCq&k*GXbh6D9i`PiWPX+U-Oa70)W?uFSbhw9y`qQSEBWoecCGalbif=SYn@G1DT8 zLH2%t4`DG=uWZP0-?gxH+2=fDpzC-F7J|S&o-}e+w9FNSi$I{fQk5F)XGnTdv?8@Z zslT{3n8}TDTOES?4dUyioMpJ*=0KhhTK*#mO$=(r;4P(($79Ttw0{?SA5+sw_g2Fu zKdGp+35j`|d*UtRNfX-G*Wj+;Nbvj$;T+`1-fS`dx5)EN-t`p_zrx{*rl+Qb+{dPw zx!Uzaj{OpD;YvZAxuWX-!w-uhdtzh%2d7;0A>>Jc^F9u~T5#4Wnet=P;A%{4tWJX~ zSBU#Ml83jLmWMoia@x{VBRkfTcT9ulNong_Ij&S)N)7-|lkY^a=)TbM&vMkFpOHVv zXED)Kv|@`RzWvQK*l{Jaf8d8jkNlVr_C=g*xgZHzIqNtvQn*W`pJ5k+V_x>W?!Uw zvP>ZT%lRgzAgSyM0rxn;%^o(7R1Jai7}=aR-nS6Goa&nb?=v%Rio)=u@`ix>euDF+ zPZR@(qT>SSdxtqj^+&*4?vy%p3>5K03IH}o5gMb{;cwjzg zjE`=CHcrbTzna9VQ#(z4s*1T;HMU`EIUm1-`s#Q!}Xi$%SyNN?ox z^RZY3$=S(o=fu3?nze2Cc!q6EJD9t{z&F_7o4f7e<|R;k_-2$5JkZ?!s=<{ z97lncaes*fBnHvhP+5hyi)q|Q>}b|1DoID?I^fd10&c;%daDr$?4KYWyqfcru$}qd zK$!Dj!pv7;*TuwZ#PMF#Wnz+$Gvnt8*PC)QB^Cx_fd4rGd#}KvfRnTOlZ55v#nZs5 zAmdqc(7%{>a&;sl>*IMLVR@gSgse$GkIF$M)R7mGJuXyHboWDFn+|C6vt{^Q3)zlJV{SCsL z=VC$qh*T+6&9({FYm_TU1^_$3Reqc}orkLcXd^(OKNTRJ;NV|#vh&=6fIG%d{uie@ zk4OQKlOn};%zFs{>Nw~7Q67PLh${7*k?elNd3udh1$RFMvx3AIq_PhTJN!J(cpi}e z=^}U{QPmHT`M#O+orfvH!f%;?=QR8bXFLz#y6~OD`(vcCdGPGQoj7i{bJp{SGcNS8 z^YKHRx!2HGkV0J8<0SoqocKIkovfi^XizE2`gXgCkmtGGcBw%vr1*97%4F#g9AbHt zTy7pBPeYy{mp>tH<{`#3{4s+0O%jaP0$Y$^($L3A=6eZ#9-cCBS>H=^cx}4kNB3%! zl5dfe_Y<12D_FsJQTa&jS$RUH!)e<8`of7|2% zl)^5`)yfH?h!u2mDS0EXKSJ2E9U#_xsba!-chFcSPs~nLgtpl=p2rJ_L%)!iw`2m! z*qQ&A)0^#lt70&Gm^JpC@1Niqm~DfSVjmfEzL|6OOW=8!a0LO`eA)9GXo&V}AVol` zl3<#c+RWHjF=p3sp0iOs=NWgAO;VB2NCEgYq)e}uLB`&N8BYQ`O<-QHQBh!nP8ICk zcxN8sYQ1i@TzE8?D>Tb8kIc?3#vh#!fZsd^Krj3Ga{`==T+)(-yX;$uK)-UGM}q>? zPlf-PU}xKB@5%mxO!nwR?)fOuX)XsF`a)ac?7VV-(>)hj)wmCy%_Qn6!RerxKjHMe zcfmC9YC6K@B9e`FE2e?g*+fYJ#bDmW)y|DP6dx3DAKVk<@c{vW_YGX`+|xtote##b zAy0!nfLj%KzqVKK^m4zCSDyERo??EcawRH2$t=H&o8mQM&j1x>LX;m8z<)!)UQu!e zz^$;(M=_dp4gA7P1~~)ps3$Z2B_i0XGtL0ChiYx9DgVG;ZXXJd%AEgpFU|m89TRY0 zO>pz_Bg-wnVlVgypy>nfk33LbwRnpCsfC-XD3vD5{c=vwD?v>IvAK_^zE3$*v_3AD31g6$Gq$p@${Nq{@9+N?rgWcq8Gat>=$+=bJG5R z^Ye;NQ_zZnhjK6p#azA@SgfM}v#k2ry#W{L1M)3%wV-(q@FruiLe2j6 zaZ|kN)>&iT@AkcZ| z*$Fq1Ah4~kuWPyK^BzyorOPk>4PnkZ&2AJolWG1ULC(v9@y3kc@lW=Gf}p&h2BK!_ zP0nxLYb?2APwfTu@S#q)tHF+B)jvd_^KLcXIzxd^R6ZA&U&nRNd-?RDfw6+Tn>#Zv z9+Q--uh|Q-v39ecBLe52oH3jI$eyhARb%J5n6sN#(37X2WN-gyFSsI}T0kx5sx}v0 zzZd&q4Tb+?FAg1`X|u+!5rOm4G8Wr?P4M?0iNE>b!TTccZlcyUui~rf#HSSBfXnu) zZq8F$UemnOUUsrUWxDI!9lzw`e3uIsDTZ!Ugboe`1@=->r^n!dkQksA0P(iN2*(i z;fJ|T-Y^cg$V4uo`f4Z7Wtg^&+l92p&$uvtxxPcs_i16k=@TqDP*YJLt zpE8jkiPzyJx=1E_jFX+8>rE8E_=3IRda2SFZ4!OpOF2(56X&+fWh_qLa@E#lxS9if zWMKo@alVX5+FaN;s%%FC&;IBn%4IG~s$iKwHmUBkv?uuEaEZkC3-V{Og`Oto1w z2I=$mRg1+UMoN{~c!F45+`_s^d61(#n~NKX1054C@Z}t-u`oi6ljp@{ykFv$E$$@q zNoX19Hy1om(+u>r#NgtNGQ*N$=O};sVow*f0QRz`c8xLe?=`r2s!TMNcsUkkn8&Gjte+-mGeU0cE3mvF4=0(b<=vZRZk zT+4$bWt(?XQKlz84y9$nKF4S+U^$2&m*jc<(j*eLOr*$X5QV2dA!C{-sl%kiPsot5 z@u7YxF}nz&+>Ux1$fR~Jlh5Yz@&yjZ9Gfe1IDN}V$xu~C#K`BR(K4Tm9k`2e@17?;#Sp4LI&f-(qAj=X{tEQgOx9c z&PsnRhbevXV%LNOSIuc}TkM(;=4QpSf4|r}zZ0JA2Xz~^{#{(y;;s;0!$|ZJT7PY^ zR|uk%^cC{kTvWd9Fe?Qr|6H@alX_2NxLB@x77h*_Sa~&9w>UBFHS4~9oddm`D>>}?Hn<;*9V=;5%Bv6KHru&9nN}6e@VGHYDC&zFQaD}$`^4Nd(BV?UNe-l zoc>kX-{3m(9SP|u_Q+LQG^Xk|F^)MuOm4oF!X0E3N-nd2L^Ibi zYt3M@4(&@Y`%Apx3UImkhBOA{5f`}V(GXc9Yx`3kgZwz9`F4+SJQcX>iPorNqEgOq z=tUn942>`tUGCs_xRGZUd_=V63fET$aazbIg#k+w(td93_JYT60NEHg>LE6)(vI4p zVGvjGp!OF$I!k>tQFH&bu;Rv>d<$2eAC);DnVoI~AhJp?(5}@w32f1v>2wc|$0^09 z#5Lv{lIL6_hQnJdhWYM%A}G2YoDM7Tc8!kfN;)6@Gd~ggDgl6aOHf-d|0M@q^c4Vi zP6z>7pWHv7mbU1vfHM zL&p6O$6fU0*Eiw9ECeEJm(kzg{uZ!G%_YORH{So`ato;WDpxgM440JF#$W@NIsyW; zK=Z8}q=0c}szFX8th}i!lz$J==6$OnZJnBGfYyq$gqL{=3OG@w8v&0-ccW$;Of4bQ9OJim59KpR7sj*$#!QoJ#v@>*HKszP(_M^+la3VjdO|rX$|Le|0U1BA}OTdu*^RqE6JAyXUAl7S?K;ru4<86rVKGv*!E<+zvFoM_O;m; z){eGAl(N*y&fgG^`O(j_57#yI)xToV_o^{|)a`Nm=NvNMI6Kecw7o?e1ft4zs3Txs z;!)2x&dxvf059ko{_;m0^b@gQEOXo#uuNnxbio6@`xU|En2>LWrzJmldUh=LqW($E z30fR0-^MfhSV}{*l^1NR)SoT-e(J*%EzIYy$qi5wp&Bpk7S}TS5;@ewCjKEuUF0VA zqi#jl_Blu@U8I%?)s-Ro0p+w5QDStowK0RGh`R9ndy&Yl`^=!M& z5P!uZmLE?x%_TkJ}JsxCre2_mb#*(I5 z39BHZyiMHY;c>9`9~OW$+4}@*U%csCE#1m6pm(A{tJRb( z+Ts}b!C2Fd(btKvH!flcwPvqbZL~~r!uN8F{D80Nmf+;g9p|R!`v9hcug&JN2}ikt zeDi=U@|e5Vwr6?J=>^-UCF9gw`3~~1e6>XvYs?=D1tKT_$s=MFJpb7q^qqLZl7qM*hD!@?fze>&KTT2mjZk%tbCc zbL4Z})X!hwvOObHi_tZv@HB605XO8r1JBFB;4Pc+yPQ?Nw1La8-;Dcw%_5%)lDlf9mbE*c=F2zifMMtp=+xVVM6bte97vD?)SVaC=*<)7nrP8F7K%j1TMB=AYO%}^IZqutZLc}+`5Y`?SJ$PQ z6Av>_3!pkd+jws;;SwL6d0M?-$6e%CbCJ)^3Jt{;dw3Rg(CtFzf-KbOqA;i4`xiOS zSldQr~q>CjwD%+LxtIP!w2Gl-6$P(T8mpMysVfg~I2YXB( zv1kZm>hD-b{a+HI_eF^!5C^>;f}ATGa8id9h)m(Ww{gqgJtH=2VLiYTRdU*{nP*>+ zB^h;NsMA3YI?|@5n(rpa_slps3o78B;QSw z)vO#-r2_XuEo|P)Sw1!+brBS*z9Lwmt%>#hq^((R34-f|^$_f+$Maqt^kQpv{?CLw z>zW$~je{JeC%H4v&giSl?2IK&A)sF%=qG1HrvY6HQOq;RJNd6%`MfZpdb%*bZ62m# z<~iu%2_nr@uHwSIS&ap#-2mK1fy7_~@1Z8#MbP?YUc$3(K5Q@Q7zwBsx$;>FUYl_o za22k5R`EcCvsb#z@WY(pte3e4$yaQ^FrA5hE~#i%p#xC0LB)aiN1W#av(mbK=I&1k zX7;^xg9m?eE>Pf!v5n0ba9?L76U2E`8%5CN=N&QtSXU!MBJ(~78BZe7LC5~BBc zwgLx^Ok3^b#MN>sPudGJZfX|~tL%1fT}R-vA{85r5Val>K#Yj>ac=ji8Ru%ind|z0 z5ZJ6@79Khhd?I1ch*@vp2F-f^6JU6@8Y=yj*(Y$mC7`$FVLAkD7;XachdJ9>PoV;7 zMT)a6o<+aXHU4;lhU#zu#|V4dR^NE z7?OaE&ZwGkl{0wN5`Lfwy8n41cvg!Bhv>Jv5LPt_{0{N(;H>N;@fy6sS}4{E%e%1>}wl8%t9wEG0*|GAhSCqo2jq*Q99L%aGZnp!S?)}Tzt2AY3 zeSRTZPZrgFf;NoXp@w%Sr{(AEQ^0d=AO|@^zwT5FVtAI3mLcjaAx$-zxT=m(CvgA8 zQ4BcY$*uOKJnnv5O>t07x(sUnhq|kPldAf{^rNM_J9jDR?k?$CHfGrww%DLi3{V~; zjIfk|gb0X8qadZUGzch2he&rT{O@a6vt)Wo=umHQXwM8MmO`VJ1DMs5_Y>KkfUQ9ceTfCwS!)HP4 z%&v!7?RCF%X2pquNJ|sqYJZB%Ymdjy+2pQ`Gc(qE%`ZjdXQKMm1ZQQ{^Sz(u?<+;%$A99yd43(dsTzsoBF^GwM*c2hiq{miZvD zEfX>f59(;b=2~8b%xgYQCYsJ5zFnBRX%_UTq%}Ie8i~yeK(T2)9VD8Z(CC;jyV0m# z((9G)#}U6(6r0ibg{k$P+m5J!`bio&!p*On{ETLn6S-OfxDSv^pdgGUPYKAI{-oho$=9;zB0o-UBw9i8v@CI4oNbmwBhY;1Y~OC2 zXsw~Ke!=4F>*hV;=O_d1na9-{6K{mXNXQBP7=_SHbKpyY*(m*Ro1;a?kYw#)EQz*l zKB{#+*%L07Tk^+xo6wLoZ(?$}7Ugw!4)gs2M36i~rOoB7t&*=(M_O9+JyfFRdjyxu zVu;-9{uWiIxpU;Q$!PI$9Luo&5$q;UsnWf2+(W9tYVr&dmh02bpiq;k1cnA#??f$! z7LYu{58tH~&r|bMn-V^~WrEu!HmVWhvgwSabek^5h)1Ragg*wlJ!>WhJH}%x=I~)`vd31|#XAcmXeB5%GF1G~RJ;`8_u=$AY`?$|@e>ev zcwz!_tGQp8pkX#d8K?J4Wne~gC7*~H`elze_b1LKh*A_=Uno7D{E_BBl%3`jl@zOb zaRQP{^BL^c)@pGH+O@n)?1k`}OPj>PYvr;%>Q?gwtSi>6xm$s{&^!T@us!j68$Fl4 zO~d;Qqp<7k12N$QakyLz?nH@c?k6XhCbOBSLBqtaEad5s+OU=6Bv~qP0L-{vOfpIG z=63Vz;Jx!xAo4x)1CL1mFH%}LaWblKRmwywiy z5U#gIT4`<}48J4J;(^p?!Lrt+23o8*KbHZLq|Lng$Mx znm@IY8;R0v9EsY3g5?`SPhdy0=$*17KCX+rnp3q9In>$i!tK97`in~ ztfe?Xq45r@i5sEIGUSB+3yMi|SV-Is-7I5%r{6o?2Aa4bzBPn1b_u1U`RXx&n`op6 zjnjJh%*psu#8=~JmbJV!C(LSRG>TfgVJ2>en+J@Ud-5%0P;-)&xkxBk)>PGj8O`}i zJl!O8jf#!fCs3SvwOmY)3gxA_Jz*0>GjY}kVNrZ~m8&uhlK8d;`CG1RFf|Nn4)ZRg z&@y_RgEj4XwPq->{8}%^n1JGY>%^Hy!+Nmxwu!UWZ7HCyjL8JN!l+Lgi+l)|Y0EDhoZH~40hT@qfRDO8{&U_#dg z$MQvRX5u3bk?4og9fqrlNM2wNg#k-f__5tu9$$f^|O-Z z2o58H(g_6Nb8noQ{wVVVmHD+F4LS!CQw|e{q4Cyh+|TDDJr)4qr}w6+NaR|Drp+GXp7$**fpxf z@fU{Whg34{U!nbJmz&t9juaOli3yrhQZ)W@69-Gg7qjHqzLhYkU2bBE65mKMXRS4o zSwb^wqDKWpMC;94b9-Qt7fX&sCaa8A(Olo=O2mhz?26@UWT38QeDPZe5xYQ^6c>aA zUgSETj_B9`%MDF-)-qyD&M&_75H(b<8|Etp5^*{pKo~Zc*k2*aW)TJZ58*2O0si?c{rQsV8s}H5`n2V*7 zA1aW8dpr@69aPf^OaW5HFv=|Spm%zP?LenY?F&v?Hh?XIiY34S1 zKfb0XuD=pvvzPz^bRi-tG3Ifj{uu#E+T;(jigf@E2#p9dk9UosYMT;LMFz#CUH;bR zayEPvIW6mG*rLsceyxiG6~?Q?t8RJdr-w5d2sxS*m{e;x8O|~cao9{qVl5}bnjabb z#Q4j>|3YwU!?RA1zT(Vde zyW9mtZkqQ0genPDI-SZj*w00G{fMOsOQ~e;Z8AJn~jH(n;W~~sr z5S9icbm>=jv_<&P80KT<{A>?YiTNWrbTU2@t`XrNB-fKM}-d&OWk;a(IJ4L zVsH`*7fVSvrgI=7_R+Q=!(!R44;D`yqV#3%{zjH3f)g5la#g*@o;(o`tF>&P#(}c`WSafVd zJCP4V5uobuD+*LoB+yU{s1s0epb?Ok0NRBRC4puGl>#~mz0yE`iIf`302PF^EYRmb z<$$IFl_x#es{qs!VJiaV1*!xT3BAfd+2H2`ln2Ncs1l@AfKua6Rs1OpziL3)VYxcc zF9=Zs=r~gKE|5Q@HG$?qS_|l3gslzqEBxvJhSbO(MdfX*SMErDtxY%8Dupw>VN{6U4Z67+7+k~(0f2BfVu&_1nLen z6!v-m)q!76px3b13uq;zy@3Y7avz`_(CZ773aB4Yen|TRHA9F2KrujmKq~YG0yTl3 zKhP0`2ms0ezd)dz&3Qp@Cygp2NVJHF~UXy9e~~tph~b31#|*_(LfOh5d+i^A!30_LT@Ngbx4N+g+n?V z=qkdF0O|w1kw6*nXB7T?0>9Bffe1SW=mVhlfiA6QC;a8wYd*VaEfVhxAjRpAhylpt3*{fQBN33RD7q6M;^{&j{2C=yRYMurdi~ z6VPO!dytxd8o=)hpb7As0u%_psX)tMIS$Ade$#*|LT@_ITKLTXItIU)K+y;>3+M%; zUjn@Xnhi7+(m6o25MnOSFrcr1E+OahfQ~|MK2QNj7XY1r-$J0jVef08eDGTYWP;x} zKzV=`13iGfB|t6Vw-jh1LVOF93xAg3Pj|%e9Z)2s%Yn|q?|Y!#u(AS359vyvLO`p4 zQUI+68UnNi=myYQpsld74(Lnxtp{oY^aD^Ur0PeYaX=e@egWDDv<-Sc0c{7`1f;;; zX3_)N0(1f)wgTM%+6I&!e}2ZF&*AqAP$Qu2K;I$k4xpLv+X>VLXcy3PNOuEuL%e%{ z*28ZvP-*D>3N#7QeL#ocw;$+d_#FV+4RjD_9;AnWeutIAK(UY>0on)YQJ}m)$ACsc z?>C@sK*xcm1Dycc4|EdfA<*wYX@LF!$_sP~CXcWR$1^O4#YC!woR~_gNm2kMKk4S*WKuOU!FphiFoA#Dsa31OQ6WdUjmbQ-7`P-BE> z4wMzB1yC-8Z3(m(s1?vjpw>XQ5w;DG9)4|sS|DsYpq)VNftEqq0jMcLbOibaew~1R zgI;H#-H>(xQsCDW=qCK$1ImLC-GJT)>JD@UdOd)Cf?iLc{HU#7K>m>S2C9J&eSrQ1 z>I+l>A^HJ5gI<52$B+&Hx(ulw(7&jKfk4|K^#|I85CK37;1>wg7k)uN!+~@_*@1$A zn#0~8pkqKGKnG!253~VR3_uY;gMo4)AE7`s;THxp8DYbL!eBW9CMD09Aos z6wn;_MFTAWiUDc|X)MsYusoFXfQAA64!z+(7l1|pEroO>(0cfd0xAnM8t7Zt8v}F( ze(wYQ1-}n~@*(V4px2Oo2=o-_BcSh~_c72O_6KDlO%mT^=^d-7fEEIMh7ex^bpcugGz8LbfbOG(Ee48)-x8p~u(uTG1NeOlR2+WGfY!ju zcR-urw;X6B{Jsae1iuwPMuc4nlmmXNfJOnW2KpY-H9$Lo)&ebsbREz}p!GoGVfhE3 zQ26}_loNg%fYKuDMxaMPKLK4sjy3^}h2LhNh6uX_=nJ5&Kr>)v8_)sh{R~tD(qDic zLb@Gj5u`hS9>Z@ZP*(Wu0#f0(8)z-i9-yO0!Cs)<(EAmrGNk)}ZozLqP#2&BKnmhL z2(%o2hk)h-9R?Z$=@FpxKu3XsAUy^&6@I?~4Ts-xpcX(U2tj%hC;)!H1Kj}n11J?n zkW)b8;ddJ7cck=Bpg8!Q0lEV#XMu(RoddcIz4JgBp?3i&JM3KqS_QvLK*0!c8K@Zi zt^kcd*sDO};P)5Mmq6Em{zm!z4Ri{6*MaW9?*>px*t-c-4bodc58-zkr~$0p0qO&E z7icu}?g2f4-+iF9Ko5YnLi!M>FRVNQS_kwP=wnEq0385&3iJ=8&wwr>RnLJs!|w&q zdHB5q%7)VT2WT5&`xoeYSa}6>34X7EMj~vAjN(rl_@xA@0l!p0`(ZCNP$x*!02P3h zv_N~ImkuZ`VpD*|!Y@704+xO~=ps-?pv=(A1oQ}2G6UU299e+c!!Ik)KS1vQy?`_u z&|Fx~4m2Go2T*TV&IxoAC>Kx_NOJ>)!%7~YP@ud(_o0^$2wyTc zq-B6A!b({n15i1jd_d)a+5%Mos)Z00f!>8*C7>S>Z)KqJKt4e4LFx;%1gHwo*9cn` zXbkkK0bK>E4%7*HHGral-UT{_5H*2@!mk$4Qux&dYL2jVfbPSuF3@k#s|Pd_()vJW zA#DIu7^opo2S^(Mr37jWloer{01bm)Q=k|~n*n8jv^mfsNLv8)fL}|X`9Q6J-a!j% z4fF^6+5kNQY70~pVcP-agkO80EkGTBRv@;HK*gcg38*$uXP`Lfbph%Dy{B*Au7mp4AdKF1f+d{P5|`1s7gMd09L z4Kx_&2ZRj;x(5^nQ~)8ufef%00kjK#kwCcL-!KHIB0@v~-Gww7C?ou0fN*!cAr=TX z&KrgT?SS4epySXR4upHy4I_a1!*3+eA3&pk0+E8zK*iuU1}GTleV`8^{Q#&PERO}6 z1-}o0&cg2_pp*#lF;HVjKOsMq!8o84&>Ii*4bZ1RxNF()8PF(%odDDmVO5~5(3=R9 z8Gc3}Bm6!G$^pMgK$U?e1MP>@1oQ{|z5pr%zbQZ^;5QX07$^>C7UG=-6a>BLKu3XQ z0JVkQOrWOFn+3EU=u4odkj@6mhg{A9>W8p%fxdv=S3v!tHxFnD{N@7`I`F&|3x64`EjW9fWiZ&|RRlKm~!;0pSWW!+M}dg#7`iB*Oj(gv-4Q z8-PBBbR!UM&ocZ3bRB-1fHuM2W}pQ?TYy>tZ3V(rO@?hi-y+1%Kpz490#prXI}mOk zGVA~-QINo#ljG#!>70u2Cq1Qdo4kAZT-?+MTopr=3!A$*%jv$Vg zKxt5Z{{T%v*nffWn?b`Xpr`PA4O9{+MJDkl6k$^W;YV|ZR6xC9IW^EF=%oQV3BR;J zqY)w<&@D(6pgKV5fl@&)15g_HWduqMlnLk@P-dVB(8~f;4=5{8DOi37r~~w}0WAc| z4%8Va2hcf$$O)7mA#wrL2g(h!5hxFk5A^Z^MFHgl8U!o(fj)&_0id2h1%XaOS_r5D ztP}=14paoFI8afb-q0%sbPr*R1LZ*3mjHSKzmh;Np;rnBXSxlgfzraS4A4)oR~G0n z{K^6KN7(W}2Z1U8JqD@>R0(>OfY!jTGSDIT`2ZbH-x6st1%2Wl$gJALumz+5l-o zpkIL+0sR2f7$_YqHvtNPUsIs%K+S;kK+S=0RMXG`=u7yu1S$m73TO&qYYkKker zf#tS9n;>lm^c>RmK;Hp%06GV0N1%TZq7%?pK%IfYq1Oe-4}M*N1|!6KKsDgk4d@-{ zbq9JMem#JUKs|w$AVe>qs?h5VGzorvfI332FVJ52^#l48s6WsZgctzy8IT`PdPoNX zy$9qE^e(If0NsaPAkfc1K|qaxbU;TDA{a=8-yonAsJ9THOpxk<{sJ-p;oy*AFwj`U z5lVVMVL+cjFC6G9>_q^52owo)0n#BrYk;DFNfUZFr3-lrUh5`+Q-!P!R zfrbNRfpi2APJ9?f0u_e6Q3A!r1{lVsOp!ty;4o&3jttR<5BCWY_s`(^lfbxksg3y@ zJ?R9GIFc6EE~PQAqfn1uOh$x5mcvmN85!3ugE5zbH(h1|{rnCBga1(f=)fp_q=+fC zF{gu6oR#CdO= z1LM;{;)(&v)&ye?JAZL%C`uPM!Klb06X#%z>E)r^XdH?$X7!I1XJqt2`1X`I78++v zr4NcTX3>ZFi(^puX`hH7E<|t4rV~Gd!MA}&h=Z#kI#Ik6jJX4a!eDXvg*Zy;=N}X# z4n2zt<>EdwW{wm`%<%;;zu2hIIAgw$n3%}uy1u@`JKBd!z$YSVkZ+tZD>UhwpW+L( zB5X%v=BVI6o3LffVR0H4htCF!bN_l>OfVS`$9#N4V!}dU3E}K4WfkW-W5s9G@abFR z!tjk~N5-roOpHE8{NisoPI-xJ z)%S_vy{M}EaN{Flv7%?HO35CP#2!+(!l#B3>qczB(I{eg$EqrMd^sH6<*LfR-N%sZ zIcc`59YAb9vGY2%l8$2E81^B_rjsl%ESlI%l0E4^kk~$A4WDyb4iTH5VGzkSP&)Tq z9zpDPvNHK<1hILfxql3^{G?fC<;Nt8AX(eH9}t^FvO791vqmJladiO6J||hmfU(57 z5j+2wbM!N@{Heo8HjiQt=rNkud1BK?jUtA3;i@vlk4t_Bg}c#|)ABWGHrvEyR*Ga@ zCvbW0CYHBsI9bU{Df?*35Mp~sHv9w5LmIL&>hLgxgwHHm(P!^K%N9tyt>oaUQu__e9m4)HNej?eW6jO*z zB(`t(*TnJ>OFxQhY%YbHlb74XdnEgH6ZbfrB~q0M`VADW5Xr{Y;=FGowqnsrlAR?h zr9b(G*a^x*y9w)wZ70o2omLaeO|qI{JYwb{maa0_ElzEz%K7)Xy_Dtnu5lh(lIGR5 z3&=_Up z{RFYCqqu#(LsrJO;Is@OS;nPHDIA^wRHgmcQ^fG}q$+y~aJgU=uPU?0Tq7BtiBzRn ziS5Mj^r9+Vik~KiRk^B+-gl1}*5hIfnf#a-o_JIx$MAi`u+CSNFL&G|wvE_^i<^n< zAC4aeR1|P?f5I*GaaQH1!Ye5W_Q%=(oN16Prfia{u)! zF+8t{QE@KEfF~hUIlJ^I$?){2DtU8mBZj9!RY_HF3o$%5s>+Uj2i`yBVn#3s8 z?QfFd=}}eMH2jGep379F^VBoM@U$uBhde(L8%(lymR=!-=Rj52R)I?b&uOYMY`|rb z;ptdanxEvFUcxpXays$cswx{Qa}UQ8p{m?W!SUhQS5@{^-%VEV+^s5ucJjzjlr(?1 z#`!Bo>}lVFq=~0BRp~JAAu&8hikUL~d1BbHQI!VY)~t+G*L;!N&rU1#xQd-7MD@zPJW2%z+azSD{DcncC zC5U0CPgSN>QHWu8PPB>rIf-E>PgVSKWFuCa*v^3^iD5TORVo&*O$@t#Vg~A;l^Ax! zROLv{s>HCRG!#V6Ekd?dL(;IZ28*>xCYL;RphVvsUx;Mb0aTSQp6sC9VjoS^ zSYhsC*oRYcxU$^9L>aH{fgSY0X??7yi>mB)>U zVHZ$UGWc`5#-62E5B_+PY+~n6Rr2-V{)fF#RcX8N0LieUs47rawlw^3CVZQ|C79Y@ttPOHhLPnY*dcAZ$-`vzioZzAgb zSr{?Al~I+;h5%w8k!GV7(Zuj3MpbrS8AR*>#ZbN1WMX(Hq$&ZUdJ?NgHrG9BLo5}s zQ@N)Qt43DV42mJvkF1@J1NJKB#J-k*ti`esvN z8Hqi}(uWw{`KZdPyB`s&MmE=fr4sv!WRv%PNNf|?Jn$@(*eTL%qcai z47xjz7~YAg%7OcV#D)+%S9%gLyu}k^$f}ma4pO)+-}fViH(sJ;<&GqV_f@Krv)x!? z(@1kuh4+c!O_!>48#s&@-tMW&@2Ptb`POPVTW8UW?=#y$ve34RNw$mF4%64fa7sX|&sNSLhEoAz1Y0?a z*bl_2J)KYN4zVITz9be%;bwiZir77pbsVygSW2q*w)Z%W_6_A|=zPv?f09l3f@3H^ zvcHdT%FYryS7tp~!3hMh0?foUhSLRNj=Rd`8BA7YRpXj&N8v`zT1(+@Izme|kDw%%ZTIoPB_z&TB)`?iQiMuI= zF2n{Dd`1kXNL1z551$arPBy>yc|{E8XjEl!@6*H?X4^I*sM(k1PbHtVsE0^aGF`S)Im3O|oObjPq#7sH$0kJJ4o73(uVmKe8D$7c+ z4Ci4~CGFRbNVbmH_@Vz0%Rri)Z*Y7#DWocc`<)=!ebT(T?ijHXBr9D01u>j@QI(bx zIq!$b%ILjZO7n?bEOn7Ivl1(D?F=!TN>Y_IcYh;RnA0-h4`M}$jd{-b!`UaXS{uBF zWW`BVebilIDJd;-bz)@W!Oh79ckXl!}X4nT4LSvU6~+vm@mZ;@|x=i=fG4Yb}ie)c|BEGHzczUo=JWrw!o(?vG*vQC3?0ehO=y9 z74&0GVq-~`(vXSReG1pVNhxBTh;=%Wj@Z`}``iT`h}9ytv3V<3B<9oYU1IN&l^6Nj5X0#>@r>7_9kJ;ot2?_e zF`V5~6<>W7VtYw;cV2p8?aAi5ck>c6kgRI`roh+RFT5X0F=F0(i0INvGO zXUhu^YelkGi$_pv%|Wc)0bZ@OC3fmuHT1r*2 zwCF(L))K2(ifeiaS&7}-o5DS%a9OMN=DtFjoBrn7oItW0y}0M}BUz17?@_o-#9kkb zqj1Z}X0rm^k6uu?ZCwVCCeCZA%F0fiNV6$vu8-(J3}>pu)7hM!r1^qu<{R07SRk=n zlekX@5eq!lg~F{TEBTJ}BsPO&PnPqVuOivZ(1Xhwr^>{>cd@pld5qZO?$s%VR}{{t zQ4?Yfh+X)c=YajhisWlY;esjLv^$&!{1Q}E>b2@j;Rcb+w?aQ+II*TG&%fbtN6E^! zb-I$3(j}H#136>ce2u*m}$m9VpECj?7?lf1hJb6uZ(9A+t8~s z#W0j?)*3y4*f3%PSMXSHlr&er?m{+k)=fNVOy_#s3REJ)v+LCwxo{=eET@-;=q-ijizZ>|kPjh~-`V0kQAN z%8KnXiQ#;^*nxaGlGtUEovW=QHk#P0b7P6sAkFc|=Mejc*!zno5sRZ3cHZXR_%VeW zGGijif=RQ-d;>B3EVv+t_%(aR~s zaAsfZ{-olv-b(RZIX|9cEhxT99r_T%Nq!NoRTMFtkr(@C)29ve{=Y5gSiT znYfSGV`9e4SBZsExR81Ki3L$w{+#iYm`a+98vjMCA!)wca-0}`vm@5m_m2>(N#TBb zvW?g=(j3!wJ+b*DD^!zfr8&t;R^}-uD#BP%8N#*Rs))PBDpbD|F#P;4|wuQo_(={d88Oq<1hq;O6 zBiXusHHlp$S*4>K!%t+TWBt4&`<7&%rmRLxA+|AhHe%lqi)>t%SW&W>wHT-RDOuUv zpbp8dlIDWv^@#mNthZkcV&y2@lfn&%9g?gOvE5`v|3y|}IVjwuS|y3?A=%=69Q$ix zKCf$$tQ~3obG96@8Dz6f&t}ACljekerHIWTwq#QoVhe~(zgw2ryAFDeGI2 zSX0sz=lO}fqWChb;Z(;F3mo5=WIKsHdYX>dH)N&trA)+rCo7k>S0c8QWUDLt67#2U z$9Ci=wv1$5D`g;dhQfVSsyeX?#8yAAOzbxbH|U?t#PF+ZvAeA1BUXiE`*o#>wI-X( zju#`Ai`c@{?-BcldfecjI1gP(Hm3`RyG`-kI^B~r3zN*hM-gHTDTW&rTN7(UY)IBt z#L^Qh|B}n|HH8a~;}*G`WVK#%3+YR;Ne5d{xXHwRX~ivT3~Bmw=eFxdY0-D&5}ZV= zZPs=at}$tDuF#oS3t~b4_9ixkG+WjzNbDuCyf?UA@1ywUmFAZ9H-+1nzXWMEC+1g+ zdsS9q{kL@?*}r7v-izAAaPNSsq^Zt1`iL~UUujOVQ53_?$=q5qQMgnpx6hL#8-BSv zX+EcL11fPV$U>TpXSXMro;1%r??r48$?o>&F=Qdh`p;=Yvb|)bWX+<)7L#Tk+2a1$jYBfxNqL3a0M3zkPP>Ss7m(zorvK^3-R=FHH=tp(##yoxy9WT;#AV+7?OQM z@#THOGTa{`-W0CnmRz3V`~3yyuP$l+I*{8$Ws+@q)t9V1Aa-JNKVpR_z8_|AE3Z%C zM*O8C8SW7gI~mzoR)jQ1XXsC|Uc@>SHV}J7tb8j@OKOT?c%vR9OG9kby&=TX5;Hyt zB6gUT{X-Qn<1;{74fwvxv8W<5>2BG+TTb zNwTiQO1~UPtO?mHT82w$GRdy(<=9QcQgr1O*^Ai8s)HyTZch>Cvr=%$pP|@GH3}tJ zZDQB&bGX#RmQUvx{-pS7pW=ELNH%@rSaUha8tw=oE3-+q(=US4Nmf?%?nA68v1_fm z5*tjKA;H|keTZFH!liVbG+!^|l3z(Nq=?~~9!;!f^ZfKYU6R|wD?q?v(Y z?=dzPF$1xb69yB*O=jYJNaMW}yNSY;{j>yZ z%bW=$!%b-7J;FMEUcsGe;{8}=-W?f4IqEau9G3)zTQr6DU(S+dgK|TuAq9{o!!MQYv&-bKvs)(DE>b7DDj^7(@5WOH_YJ;iW^Z00UDlVT`M znh*E#yTMQ?wHA!>xo+lK005Lx`Em_G% z@ij@!dux@*O3ymODcl2+ZK%X+{c~h<>e%ySWj1L({W*kEts_=y!&f9rO>N>*E`E2N zhpY@q$!~M>607}VO^P8GF`r(%o=_-U^>*1QWt~Xof11PL#!GQN!VvhoYDhm-hCMRv;j+DpqQ_N)}2(v)Z4UrBT1=$4d+NXpU6uqLD# zK(asQ@+x*evDkF$DTWbbb5o7}r1?Fu(uKE@>@Q*^UZjOA)|fd+eD_;?t2R7P+^iaB z%oHfTug!=4!Gd(b{^BmxAbns=+*I+i3EWaH?nM@&)cAGD)VOhRUB#`U>qW{Yiyu-H z_wm6c!oKDkt^MhfAijZ7I=+B6azvc5ywsta#REg}>7r=5u%9k5x7RJLrAs#y+v%C; zs6P^rKmfWeRr~}({PrTwSVB9YmfOxrDUp=g8Z^-baPCb(XITmED}x_J({gVa;HMkz zO+l>ai0)0nL$|ksZf;Kjev0GXTENeLkb*Mt4`KGBjZ;HX1ubiqtJi()ESl&_O;<`G znTKx^-I<958{|yj&c^t=+Z*FN52%U!Zl9AQWGT3BZ8pj6Wzfjo!_wz&FM@6^ zrXU$caQml}pJf8vIVR2fe~d}4trO16B)GE}@H=StPLexZY>ml3O@ICWXbLVZ6iT_h z40d}!m(1(->1mG#ltLO07!|&Au}38P3=!n^4zbMbjS&|?U}$#d^w7rLtED4uZwMn@ z>B)7mZK?Q`3Yb7Moi zlvH)F@2FNu%c6Dv$wA#jADl`gB_g!Et_jy7#ToP1q=Y|mDK0y*-LtoQaUgSp@5DpN zL?1aqj17Iohp>G^BBEn-K`{{#p@IH^Av)jAbn}#Nb)TwLe5zLW9bU7BZ>T=Nm#<@j zuXqy?NtTSYwXzy4au^Y%A1Q8u5}&?|j)?LVmrMBz-)fRmN-H}T6qiGBqHnmnv)_^l zNMsppscFil=EJN-#n+lWTxx6dt*3Ydkq#pW50p(bvfm8Gapx?Elw9@XLQ+6t=zI zM4z`ymU*G3bAx+KENvOL)Pi;nDt%TXB>Oyt+2KX?&d9I(BP%QuH;w+!Xq~txB5-009F!HVH88?ez zC~#Z9DkQV((qytt26EeEayBVb;0brHVYbU+b6aKSmL=e1+m3m=IU|pZO>+$UPe&Kr zr{@`KkCq-&Caq*j+}4L1$v#{q(Rs^u5~HU*%@$>=W%IyyKA{qiCyXMK=C+QC>lx8t zovj=vw@l1~yxq2i^(onY!TzPY2YG!`rlu1zkY*G4PY0bL?k>MIvgH?+9V}X0*sTkW z4aIJhxVL(wxUihJd=|@;mXwOIG5XMGU!6Ex8yn^qDK1X;3(J9^VwxJZi8ImXG*CJP>~wX* z19hT#M~Kf6&>rk@nL>Llob-;e(ZaQ;u;p4l>}@*6{I!g^=i66GKtx1Lw76_P(oZ)$ zMi&+C&ke9a5-s~j$4~=)`@Z1k9}q~U8YeL+B3I^f@b;sRxebZ5+KoP~k{FS-iOVFL z=<a-ODmQM(c*eisxj#EN1g~W08kN1jU;BXurGz0OfAJ5E!)*O=TsAr<@ zW7)P#hX7c!B8MjW1eQ~Z+2qV=o=D=gh>MS5F`n0#(K`RAK=H{J{^3djucYl26M2(k zr);7Rg*lb02A))D17rhEw1_i%QmS!9wNqvN%-QS>bXIYNEQdr3tgN$*7dK@)m6@H+ zrV;mR!=gtF3p!_0T_<71FkOs4j~}%YRXE|!!zM2k&lxyP;jG-8d~)|`nx?u_^o zcprkI(nrVW#YZtI=ZPGwbyPQ(ghPrQ)J*i@XQV{F?-R!+qGQAszxeBidpcx2k%!n} zu-o)&!gUc}kdP6P5iudUXnnLfly8vOT+*2tgXG{+#{11 z?HfJ8L|>-&jG^eBT%@?CG^b@vAwDcD{!yEF`)2KWE;K49znp9n7$j`xphSipTh(|5 zF&h<=p|`9Mv#!<(Vbi?ZnBOYxx4 zhyZ^cHcf`qaw5^JE?#{&%+tpI)9gP%7M%N2lE!1oB&|$|c^ed6B3c|>;8LC^!XYLmaqvM*aq>0yC5IKm|GxwEmlYcCZ=}q*vZVQqw~`6GdNjTv3-upi$?anq zcOu1NIT~O|g3ZIgn=x2l>l!;Iv3uLxSm$du`@8ZCV=@$%gYmlwuNi3Vj30f8-377i z3J&!j#0#B7*1B4wN^%Wotz2GX;b23IZjd+{WLIP+Ln&Db?jJIq$o7^zYq%uT&fBeA zlVuHVGNkgDA-sZY8A<(NrA|Dk(DZ8_qv9WVU9T*Yp`OPS)Gdc;;lF*5JT9v#xyF`6 zRz6}Ni4EjOJ(Hn>$IS8vWovk2Mzfi3-jIbx;4V_MQInyw$7JQDOiA+W47fZ~Xgt%K z4EP2wo+`~RqAYX06(kw14ibOo|mNSo;O*na$lc1=6NGb8QEsy8#^r9 z8AfwMk8kX-Y9=&VS+q=sR-V^32FTJ#C~y$F6VHNUY2(nkIw4jM_~L%`=|Y zH1E3HKIBOc{)EMwp9Rtl7r%wp<0c((9_P)at>s6gb}gJ=w!W!tG8~YTlACHQqvy?u znLRH_)!a9}edT$jvB~8wrFl7(&5H4@A16<_uYy8k)E=?KE$Dew6X|&kc!*4rM^srB zxs&OJ)xtr~Yc2OYZv_!1JGgln=D1LMbMX4V4|mf%uj0yiUXmWlw&aGM^{wX(df$3p zGuC-tn|UtVjI+ye=LZGN$;P?{vj5#iGtaB6j3atCo04nGAQ`T>2Me?%h@TDcxH7J>A^) zCc3%yN4dH7jc(5WRyW6=(aq(b!p-?V~q};XQndRm+$7MHfn)^$Ehc7jz8G-ks{eTn#s`4t#u#k`uZfv zy)3tzN6Ct^p53(`Y3%0tIJ2AMKknx8@8IT9zLSh!{z$>s;SHeOi6Hz2!S*^O`7{+T!MEA-n5CV=_()9c1iY(^wX{br!Ad*4TTv zwWFMsdH0&8GR&=&wba{+>yex1tsZV(H*9fh?}~G4?5o|{Ro1yR_6%-r_cOh13cl}c zBiji#k1Xlj{6u=#%`JSso8!+a<2Qc=C!r@Io2&ke=9P}dk0b1!Xl%o1K0(FvBxDoL zWcW=c(i~|*iS&raw!+>v3>1|KcGt#Cw71o8aktLPDZOo8%qi{8 z{deRX=bqUAaBJS{x_Nyu)Y}G@W8OA(q?0x5p4NR;#%}%;dV)&>amQw~&X4wN`AW7J zH@D6eZY{eJZjHUUjNNM%b-r$1BaM*-mb9k+gA83$>ve?2YYfNlSsI;*_KiSwwPK5B z$?q80WcX30+59uC1Ut9gH!W+q5U>6Bm#S-p)F>ajP$t8B4)aW6&qX$0YB0L;Tx1*0 znP)Z|eUss(e4k@3&%_dG{XCfYQmBM#z^biThVj(8C6vi9R+gbRHPQQC*sVHwVVb{| zgRe8AQ1lz~d@UKehF0f}r(xQB-_m@SenPF^MqOU5Y5&GoV+gSZF&Qe#w(p@`vx*mX z&E8(v%qMzbny<;u*lIEq@WO8Jj~Ax-hTMnnrY3dM z3)7t03%hQt7Y^$ey>M8+<=K0I`80%gybs zolCnXqczWVA5omAd~IP#TWe?szc+QzU_^aPJE@nr5hDD$>`(h7(u$B`as!um&tYzkE->{ zH73IgSpaTmG9^5q$uyNE<<4&2-+fi^LbfUMr$8M>7@HF#fl||%f-)I`T+lZDpJt}@ z9#FM25-tZCL1IQk%5GaxHiY=Pt<5J~Doa)K)R5R%l=%4O+H`tM#vjkLFFvnMAH_2n zUda-OCr`EqGa5)$AMNFg-H%;tKNW8>?3W?kb1*j8#kz2&3%OPsm*h%2p2dyB4|T+s zIAx06FzEl`VqqnB!#ygSinARj`77(RECKW6?=a@#j8s%as9$hs#4x{zNcn~1S~5@} z?YxYimE77yfkMfXBDk>|Q%xH1OIv z`jSj}QXWmkYb!a%c;EP)@$G9&^LNYES08V_7)s*n2a{pd+b7n%zIAPV{Fb}>)*mJwiQCTdWo5HCc zUxo){<9F_Cp!r>XJj1By)8or9 zy(~jl+tfpk&)Im7PvK*k!vA2mI@II4N{}2ZogW7OgJM%<4Y}Go8hU(jU-S6+y{2ps z&Mb}Jygc)mtN|A<)0yw_>(%BmW6n(G)}M?naOhnQOMqnD6xo%;F4NbQaF$1NlVOp^ z*I0y1VLZQ5usa-U`SrmJSsdbej6w449e#;#`TUi`;BPkoIfl`^DpliJXoqkn z!w0gLcu#_58*pYr$04`cm*G28O8?4bm@_SXkS<&oAhmf(Zlmf$ts*43wZTM5sSW0R-PP=mc~4Edrr^sm!OpDE9rlM!hT`6q z+ZEoH;8EU|;P+*ZHNRQ48zyYJy!~~`#(1tSb7*l!&HEeWdjWfkCPN;NNl7EthH+(e?-15xC@T}}%#ip-;4Mk6u`_Z7 z;r<%SC-dOx%kYb`#9Z$kKY2{=_*Uk@YkG&`G0pTlnUeo-_n@ek^o*ynegB6=bM?Qk zjlaCD@063x=Rd5LLrI>Gc6-binZw)ad5uJfh9#bZLJ*G@1drV5k$lA#vKQv_f z;X=!uILZ1J-DL3dn9+2S$E2jO$MljGZfFrxJf2<{p!htR9n+ ze?6wf{^2oC4j*|;?Tqr6UYyBe+Q~_eDU;_O(@wH@Ozr4Brgj#2Oqnc9QkhIkog!rl z{QG~LFWu`gO?R=!RMX-lRnz~Yc20XtnY8wplw9Ezk?Ys~D-@q3)cf9SoR-(@c2#KAvwWqglC-ON z+m=<|=B7UFG+R~8{UdprWFMKnMEaQZySC0I&tw>%P?2&S*uU|5CflKAS;ogDv+=1;@L(|XC<{EozAIFQg*hDO7zt2L-v_3S<#6XqYTkBki!wHgtQLDJ~b z$7HP|e{~n)43CHkqiV6-hZavc*ril<>E!5kE?wej^Z6=ceHU{1=1k&J+1k9Hs^vng zcGo5wT?uK|=!~w^r#{So5G@&8Dp#A;j7#BchZ9%MQaDb}E;V$^r_YS8MCmXJxl|p| zcFP}EVvV*Rqm%wEDOav`viqrzD@AJ^MqMgehsBV|U`l)7ts`f<`pEs~=iwPz!ZOgawl&R%q8H&!}ZqV|2p z*^;qYML63+Y(`1#^_fOV*v{qg4w9NX6&l8@%L!-8#(u7Jwi@jEzq5(6u3epN)Q$tN z=B%nw3~$Un&epm0ImT$d5I?a|!ScBLiF1>RW6O7X2tO-_@I;1Y`{z<0IkmS*;vP_7 zL};ik5KlPKzWxD$G-EeNqAhcH&5{ik1A0W1exxqQFGd$GI)$%!v%qAyDs!&6<7J(c ztnJI`GCd+^9rGJ(jmoxIH5r;o?E-SHL3fY#)eR5SMN$b-={OyChJ;?^S#xDBhQuCx z?K^U^tg2EZzFFWf4Vw(9WEjo5;;w2p9GeVv5)WZFC7KNTWKTm_E|Cs$Wcq&QElC zePFb2=~_+kzk0LM)v65jj}m{QgklWjL1NQjkUl0PHbD56uHK?_t>)r?oUv8XOo>t6 z-`V}8wVu<-wf7h>yk0EkUoU!FwTBIlOVyb2?>;H%KYIS5LjQn(X&_v6gXt)nKy{bit6u3c_UQBwJzuPMhO+3<0vNJu6lFWvUuDQ4Jx%awjb~G-8&#QJTdr-M>gw%C`z=Tn5YOpOZ$m6rq_oDhQgWT z={WdwW;2=XW9JY%8`$RWtTK;1^Rs6Jvq{VvG5efZH+FtzXC4PX&(3X5%MO-(&7P&0 z?Pe!08{5My4Xb>|P7r%8W0j|DtPQgxEE~z1Ev0FeeaOxa?7YXa^Bmwldw#~ADzkJf z`|ABdNDlWmv#o4%GppQS&s*&5X4zJjrQmSmSXO{Ne_^LPJD;=6 z#Lh459APUrICvX&s&Igxm`!9SA3Jkd_8znJTrP!}ZDZ#wtDN8%wzFq$W_j3oz|odv zSxfe8#ZDs*ex8}aEEh-gB?r*6bAp|BSY-&aP0ZGC@EYv7n4Jym`6;V>#_S(vRheyL zXAgT$V&^$~zRy)N78^A0V<(?@I8e21M=oZGr=r9L}fveS`O z!kHPFeZ{8#Wpe9fMNnH6H@$KejKvxH>@S@s<}E7`LWs}yC=V(eUD z=PQ=I&ul)k_8hJpduC&{i}TluJsYs*0A`t)9cGnh>^YE~6)Y>uR(@lZoh&=aOvkJa zJGI$4!U5WH@F(nyV`l<8KeCgXoito#VI2G^dv0N83Olda8Nkj$)-1`aG&^P3na)l< zPQ-B5%)>FPX3v?dvX0p`R{4q9FPyQB%oeidX?E(c^Cvq!IovsB_n779aJ`xNu=6Q9 zKeH?~2bjQ~X_%#D=Mp>pS@xKn;vB9NJ5Sg%6+0E!vmUcs9Q-(Yc3^gpWu2M5Wam0( zGm2%s*)x>Gon+5*?9^w^99)8fSo1JDqgl3^HLtU?fMu^ZhL70uV|E^JfITd$$C|0w zsm3b(SfwO8*IBlTonsuX49i-v=KyB@?3`hhyDU4vHZ!u5nVo8^`4zKGta*w(L)a0MppB96JwL_AQ6|mQ{2td(N_E?Aei3HnV3}W*@Tb4-Rmb zJufgz$xcsJnaHwH>}h1Sm7R?2nS$9Nj$sG0UF`U=m7A>j13P!v31rzlW+^%Ev)J=8 z8#6HL!79br$;6udn0><$^=DRq*;#fTv6Uz61hYyzmc_E^+-$5O%Nnz1W_FIVX9o_@ ziJdO&Y+;+(S+fH>i#R}Sc6zYpS!To7S<22Mmi6FpTbRYMvzk@bv6F#4XR_vf_B_EX z9Vh-UtITI7D?7ijQe9piB6*z+noG3=~h zX9PRV+41E7W0?KG&X4T8$2MPbL5^j1pJkoc`I>{*Vy7ajRAHw#t4w6)8mqKq=UrAQ z&$8*veq*+mS$ozrFnh#oF0-nvnU+gpBg+b~^A9^WIMp}V$;_Iu9Q+~&zs0hA?74)U z$Lv{wt+Zv&XY5&mSt!fG*}2KaUa(3lW;xht%T6?F-eq==oic1}EjvqCeK3 ze#|zpvy3%gu&e|-P1&se(6vx=-)nVnGjy->8&r|H&Vb5`_ zGM=4n?DS>XLv}`RfF~^5&sizPtPeZivr0-1aGBX?c51NaKkUSDfR9-g%$@=4`6WB4 zI4kElqKoYO&CXU1*Mh^{Vb5$F-~h|AGi$)cF0nI=17u{jik*?{d4t(ncE+%03uYVG z8Ou%=c7}6AkC^Rd=OCwLG6(;HoulkImDvH-%+A5rvZJspC$sd-9x@xx&SQ2$Sr)`r zRQ7Dhp4T{{nk+lUp7WVCXSRUZE)Lh1oki>!!Ojf!Ov`LJJ2|;Li?Eg9>{*#L!`R8n zp10Vk%AOx^fDhR7UryjB%qp<#F|&=#Msm2#%yzPDJ3B^pzF_AdJ8L+=G-k6n++cP- zW!Y!!RA-eM>^x)7F6?Y(CmV?cQS!>qJ#SVY($@;T27VJ!6&zJ1%<8XhotT{Vb+4+}M_*!|xN9;L@17u>^NoLPk zmW4g_?74{9LS}neWifj$X3x{iTC;PJojKANtITD_my#M*vC3_h@r{=TzIM`(n?3pN zMZ-57jxQiIl;?1D*|RdU2kaE$aP?Wn*QFVXuxBrJUa^y!1EgUmEjx!<#y2V%YO&{S zHs;GRzF5cbf<3#k(}XoAGc&Q%iygk~!*GU!*Osxf^CyQJ$ePQU&1TkwRhqIhm_2>i zxz3&|IlyRkO0rX(RdTXQ46~1zeasI3B3Ay=)$j?2tHe$pcE+>wj05ao=OsHTI~mxt zfgS#pp8Oq({CSC?8OuIkXC*uQD+vStoI(C*!0-vn_<*dzhhyMFqlP1#mS*hmnM*?o zR!PN99d`DymHez3&Ylg~31r!2X6;!ef<5oB=R9Un?3`q$9m~3NfST-CkUjrpXBRu4 zvs0Zludrrm_WYF{f0j*Uc3e)T>>0pLHV*ec=B@&|jic*2HFNB6(ll;UNZN*rY11|g z4MS5-Wm&ehku68E94IrnoH8>rGcz+&%FImvyZdCzv%AXE`sL*Re2z7DXJ+TVfqla> zo3oc6`H5#}t+UxO#6~t(m_6A`FE+Zf!IP2g^M1Y4&Eu_X?a5BgDZ!PkCG5b{fixEP zDNDPM3D#p{cQzhmqk^Nr(?QmgY}v%pR`b)-Y%FJ=*Rt`cZ6sPtW1(0mP_rlySsGX# zUwHzJ|D#&BP%~K<)0-AXYpq@Jcr+Z)%(hU+SbM_`qhl7@h}J%MybcJ%VO9{2A^g`m+896R!dR%=tz0;)!p|r8L0iWv1L}&Ok$6Nm#6s`GLgU4{ z8$TH5vmOCL)oBgJ4=PFv-31FRI|~gE3ym~uZ-lZJe$cqE!ax(@&;*2zkTo4YGx393 z-Wr4-G@LB7KP|M%tp#vJ?QQ*zpKb87Eq>4$v5tlpG=wZP7A@4X)@k@@!E5`|&xx%) zY5p*{I6`Z~ldJm{*=HE6+<#?jZ`w>2rZth|;C3u%2sH<=csMyTbPdf6wdT}>gUu^X zS(%z5+JB`zMMOp~q9bEA8@H2u^n@uQG7=;d89%Yxd^RveM3$H$BI6IXe433se*H9l zI)k5{V&geB?%*(AXD{coWgoVT^3(DBv?D(q$4~Rwcz})b`SthNz!VY5@-Vwy%$6JS z(_?J(;=mr~ryTZjH5)Z-c@=xX6cGhBm7iW`0vD*XuRLoDMY&^u42l3OvZ0y6YV~U7Gs%I}RvgMQfgef9&3-c4Ei0J7i_OcUO zVv2|?KVZu(Iq3fER=}2@vQf;&XKZ}V#wY9(9{`2&IX_{Fh@S3YFJH3d*K9!PklTIi zmc{QK&Tf6#@s|@$0{`aX1^O5Xk54Z1i9QlSgFP zz_0(tmiMx8G8?Ef$qVW%GA?4D1NjLRC|RNkB?Hw98QZZC%h)F-kI3>ywmgHqpdu&B z&)Cad{DjFPvb>X@E@Gc=v9T>1Z?mzG-+ParzUQYt{N8T-G?a}a*?556viXIh*)oTp za@knL#$N393mfb6dmFOxD_gF^#-?n!9Y1}|ufM{UGx+IQcAL#lf3bndBZ_8>-F9Qk z2*39lTfWD}_H2pCBYL5ZeLl~|e(ZK5`}~593)u~mNA$uWYm zTh_DDk1dHs zyp4@-*$A@R_xyy(BYOQzw#4KSJz4y;3wx z;%vD-KXu_yy0PV(Y+&+;!hD0DMzfa|etL=D%VSG)9LQ%g8`rV1oQ(-=4C5Ej3@4wr zv2i;a^EgaQ9+BHY{PY96&0+)HE^^zNjm_B0a5i>hFUPX+8GD(;#+K{_y%T!Fm?ur=R)hTz(qCJ~4SjuiwdTecAY%4NM-98zzs)z~m7b34Z-UejSrXWZ9c7 zFJ}XjM`XDvhcb;VF?mFm8}L(v-5S~WiUY&s5qX)+PnB#;V4+7WS{8Q(hD_g+{#`~=cmos=MXkt zV&h+S8^gxaY}B$FI>Z!M9Y4Ln#*6IbEq>aXjgy#Y0UM{Vu>l)rvVpE21-3L93R`0G zh%9GwnCRfr(^U3y3tPUcb@PGaL(Hg4h< zPUWXF`Mt$#9La7+u`!ChY{ACwY&nOGd)Vm8@4d}ln)#`cjqYq<@`&Pa1wSoepM&}J z7(ac?Mx2d$cDt6J3fWl2uYbhG`fOas#=dMEz&?AjF`q3lj702T@zbqrY{JI9?Dh`x z_2#D!`ROk9awR|IvvD;W1K8(p?Bx@-{FIGB?DiZRkFl3Zc6*$k{$pcjwmhAEp3Ro$ zuyG+9Te90ZY>Z>efBC(YY&^oorR?Q(_HqS31=#H>etL)9K49ZzcEjWmCC_kvn!-N2 zvw_JYa+}Lf-|&0=`Dq7!VMjI!*!Yj#uHmOW_~`^T_GimQ9Ln)*?8KH6**KXk|6=1Q ze(!U3o4`gH8~?BuOdgSdhp^?o{6aCiy~a;}uv;lxhS~BGe!7UCo?tJRvE^lK`4&G- zVdFzK&PfKwUe4twOdgRCH?Ws)*bS3MWQoZmGJ3EjCXeXpQhpDUNAxt9-y6-AL-^@O zHrD0$wr4j?9?=WyvE{C8{L4l*zmUU5E*sCY8zztFy{*~u8xCw3yJ7N(-2P9+6SUM2E2(CXdK+D2IZ{BYJv)y^LoAlSgEk#a`B7V_Pn+OW4cMDq%GyEU&VKz^I4 zV3OB(b)dB<(A*pgSKC937<$YO)4=0iD_iq}kw837{DgBG0}YG{Y7$MUhw4CZaV%5| zKZ(}-=0F{s+67Kj+w&LJ3B<&rTPG8&zs)*@43hRVGFr<5Bq436$y!u{^HGy>T4$4+ zbrt=PjMh11B7M#ylis_4jf>d0gpJE=BVk=ZrgbI#5PdJo27$g`+m(u0i{goQoWBt=D-a-xwAMra9nWyXt22{2zJ zNYI;(HzDd!Z6FaLKwGN31bI&>NP<2`L69CnI&v!%C;GG*@|9AGpXBmTY=041i>kxT zW?B4Q$vt1@?k43z?s~fK0aKJhE_5@CgIhmTDrLa@s31dEd=#`*G2mGg2Pg&jL(Yg& z(#{Ed3p77WI+)cstH;fi>`%+=x$Z>YR>_(tYoZc5xWU!{t{P#IlKeC|%H7*bej<$m znx_=v3^@gIDAyxKX78gUeM%g_tE6j3?;W$pYB$E3eoNq@YY2o-4irf+dQp_E`pIRT2IjUkeu zLl1$gmRFV3$H|fJYo>kHqG&Cuxu%4pv9n4k%6wUrT)U%Wd;;GoSs##DE2?ABKn*@V z&*J~LQiAhk-BXFi&1!Ug;Q(D5?|oT>a)>~urbN8znx0C2tT_|fcRfhwhhiN%9qtCt zK&2E9%SEA&+0sqd@EER?wB6~l*eRI zN;`a`&1TzRp_09qtewl+8)WWMS)-(XT#mf`ZKf-WOO*UMa#_r+bv4KiP_kYvvlcZ+ zNgYI*Xl%=<5sp<-*T@OpKQ$PYXk7hp)EP=?u98dNdL)A}9qJSkNnI>N04i zG(EDLl=M^O)Ig6cVHAk_m837o1!CQdGvFDeFe~H_qer_oN~@9IR7x=^11X%P(ybal zRZ6j;TpGGgTo$YkG}eWxCehVb0Y{VdCsTk(*=^(hG@gC%Y6Y_g|MMfX?I0G2 zv`-fpgYCsM&^|QL7_MDDXs}V1i>tV$hXMN5@_qK{;BTLOXyzT(?LoJX$Nxp~r1AKF z*!Yi)E)*15X4^)hH3#Rbt(@7Kmz=Vg$sLS5a!zy@+Rq>;9@@{fU$kypZBp1X3)z## z&M_jn0lnIB2;VQ~Jh^lhPHkCUHJ?U~&A#L?CG-2TswkQiqsbRqH@?`U-d;)lgPhRi zv*-j~nm1^ytD0d?S#=ysn5yJIYPE@8M4>0=mO4%y*?7$%#--MX#|Y5UUBVaP!}-3A z`>a+G+BII)44O3w58(pQUJk0#)C{jG1;UOuq0L^ous+aSRTB-xtDvLC*3_7v$10@= z^>U#sn2g(#=$vw+NPedzeo@Yh%66^Xp8kdie=9|JQjUAxgit(O*J#iduCJ>Lu$NKD zb-NKXHWmw*Y2H)G9F`+oG^;UGg$AcX`3+Q3W6P!x>5{o2x^p*FQ?-zqU`C1$SCZc( zm$hDPI=^aaV{ME^lw*ltb0TK0rWvD@V<$QN%f}^eVyPNu-^601!!#v7w#Z7EFk^bv z#AQwN#nbH`2KhoI`3G_)l#ZP}6-^+!9x^N68YTOdat+jNCbfL(xD`&f^^o?jF|&V( zQilF=_E#>X#x^y@($zQzC`BlcGhq;E-67Lym}oR=oK**%8Lt|jh&M+Y>;y^n)~SbV z=FhQ8!9JA*>x$}tN=I|3HW8_!qGA-!Gn4`p%L0@_fbmhf`Ud*ZV82w!{#gd>lhF@D z2PNoC{F{{QpUdpsoo!@Ff3pPKuN2~w)qWjmx~b)1?xymkDvnO-^GS*9PHMOIPHLOq zHP}UchL|*6)FxRw6$KlbX!JJT7&TWKd}Jp38XGD5e6`tOH@*gNnB%&? znlf2m(K8KbeZ$6gZ2Z8+PqvXo#AWSP8=-vpk zKHgeMe4m`*#ldJ3m2h`*Pf&7a$zOaPl{Fe4H*$H7lJ;;pmrH7CMUm(H-QG&_zH)l! z)H!v@VkPN=GHF31S{J9;N;9dKDTx=z#Q8~`Ze;P{O5Wq-EY882C4=;2CFzM7kT!(l z^#O?KAP%)^lQBvdB9-)RRou3FUrk1=%O>w7^{YzPSn=~@r>vXXna{5ciQZ}v*<50uPzWf1F$kr3|0TpEs>O5__Q_pvf} zK|EU9+!RTeAM~F};@&cG38_um^F!xxP3_lkSvd3U7*^W^9k zj&Jf}USG+K6TJk@Qb6jPmY6v@0z;L=>&j6sUP?RVh&mFDHW?Ydos#>0nLCF%{pNc9 zDN53JN+vuIMgMGQTQUTy(-=yuL0LHm3rsmBbIp>0E?#_R!x^C3O!u&V}wV%spl199I|iXeB8Q*b_eEe41Hkh&pokG$rpQat;?xN;C#>d9zt#T&!fCBqwve zS7mX7l6SJqn;lwiR?GJ)Id_y*N6AcD!$Ol8?pD}SO7i#R2hQ4{{FWDU!##mzBlV273kLrvyTVDW~! zX4k7ScVRuP5QtMV*X+slRx+2%rK@BD9rs(+wxzz~`lyYRO_8k0^h_hZQ`y*=jTvmrvW?`3 z?;Lud5#KH3JgA%y4brqMmWNDS7QpUGQ-nnnQpY7)enq%U7NOfj(r}4}s-{45eN}xZ zf;Cgd*B?>JaEF`&g%d)drm6{a#DKxPT*-W-TpY`%Ha10Ql&oq&6CJ(nNc|&}{71<# zx0i!ViqZTVE!Xl`B6^Bagumq^D8UH0ebxsRLnHk!P?C?xApULbwyLqQx&($B%))oA zQiS_u5emkI8v`-tx~#jD#E;7fU${#sR!wUXn#~0W`gX=3w`ak3p zFCU9hJj`}`l=u&o{0GP?uacJOQ#*rt3sqBST?RGr%yR#&QiLbu94MrT@0zfyxc{YO zK3Qh2m_j-piw)+6cwJ1vAZBfhWfPXu(NDDYINX3El#Fzr zs-)jurq3TooAsz#HF$SX@}4F0RirHS#uHWsYS5E!bq?Djh zPJ^CkRL~U#(FCpWrN#~Iw}8Gi5@LU)7_D+bR89&ntC|!DL&bAlGuja07^Mj3$@;da zy|OWj!Rbosf8^Nrbrr;_+2N)TC5G9~zCW6O8*ldP zSAL@8UM$Bwe?q9mbw1XQO5SzlIG0U~#iB9q#^rxX`bD{7u`9BNmE2AHl8tq3yXP{X zo)=n@pk{5D_L_Da&+4P3zFf}iBHnY0mX<-iv68x+BTBI($~@h4NFhY6DyGJ4FOu0 zP3!4!1{M9&F_R&4HO$=y&9zd{U>Goqv^mcW`2_k7e7O7gC93REKUAv$xn0edIO z2$+5MSCt~*4l|+gSP+QSEv=_(LJh66N=dw{obcJs$bP5f93vO>oZ3j(OyR$kqaNWLgSyRry0n)5YFl-#&_Qiy(joH|vZ6=qFvfRZ;P z$GLj|%jVj&q}O57$0~)`Ru-b9HrfzqAUUW)Hmis;l;qpUh?(^_DS4;K`lk?wpVCRZ0dx5LekJp-GIKud5UQcAy2c0ojFR{8On7N^YQS;V z#G6Xqqh;O!ba_T39Hi9;$vs)g_BNftT2GsD%?{9~N_lRV<;ka`)S8{g9R8%_?IH6P z+d956+Ta{J${M6=jo~_8LBZ0tv^wX4|57DwL%v8`90@GPF|&;{u3;4SzDn-jt8ZZMp%mjHxwMx-v11!1io0WcxL!#=P)>zhcV{}GWZg(+ElSgN zIYddlu}oc@uC;uElKV87ySux{IeHD}D23QgZad|~qK@q~S1L)D$)&u!t(4JKYPZVFN^xaxT7H9Trb*-Lg_dz?U(*eIodh#fMcEVhDy?lx}HKO5TO?r(HQ^ zc~g|ui^aon&(#tkr3mlIQKxZ#bCM^f} zE^pIbbgd&PPqV5%Q^`M6=1;d0>oO(vkur5Y9lBW^a8zJ7D|sJ~v$>-Es7=qkRu3p8 z$d*5?ybulKI5haPO4_641kY&*1nUXeFrp1y0`k-8g`2DP; zUL{kvH%RDO(1c?~ugj*o2FYG>F6T|hD3aMMEK}0{k^wE9>Yi|PHTo%O*Ox!$?x>(? zw;Im1r_8RZjRfkGZ^p6!EiO8#|Z{(Snd zUGbi!1RcU&|_`BpwRHg7s(tJ60pLD9K-u z6Fh&OeNwRbRUNA2ogqg$JKk)5R3|DqpOrH=Z#ta=?$FuiDrskD5Y?7|xgF;!CFfr< zXW7g|Lp5nkug3Q6O8PJ4ZhP@qT0_bA0GK7~5hZs_&gJf7TWAvqF0ZSigRs3WM0rsu z#BOr>mnXZHo*D3-l0PDU*2Qf-51Q3Cbm&(~?$_iD$fpT5S9kt*CGUGOZ?-e8xtriZ*t-w27ANM;&7;aSEv8 z(6C<#{*|k^f>5}Q`hbpuWDZgiA0j7wew@xNtO=PD62~cd50!cID9LHrhEbcGrKJ5) z{^0V0(MDP@W6)l%q4cWW=K8-|l*HSmFWIMd$?B4YKl)Pa)5%LB@n)Jp zPuPc*7}0-FDaAVJrD!J)Eu#yJXidCp;l^`H@{w{$%Z*1Pj%k;-m8^Tp1uds0958p2 zeXb-OD3fN>$gq*OzbHAskn=V-7^8lW!Me`oI(>PA%vw=H%VO$rz$_;78e2x1&8Bjt z1TV>-bV*yC;aY;Vu9AFXIiq`4k=1E@av97PDaQrR4lh&eUvbiWmjSQgS{c z>*(J2hO-vc@i1l9BJXzCQl%h8vLM;crqE$Z&Jvk3uO$?$aU5TKl9G0$T%OBTqdU%1 z(w~<}tf@udP##w+Y44Uxce~oAmcDtd+8s*rH{~SnNe6<`#O-R;_M=KM>SZxX>1(3} zP>r;M%DGDaB_(@5IR|n`znJG`zON*0l1p1|xY2n@)z?baB{FMH(78A94<%`-Jf4$Z zLrnpym<=7CH$>MYdsfcZ0wTP}ABe@LfqmfX8_99x2kC*vkq?%OM;X2nx`UBE64!pf=P8tqgUEjA-;h7nGHTS( zL?wpVTEdRoTHjI9e_J)h$f{X!|l2XZ15gyX0%9ODDODv7(u z#6`A>bW>*!)n)ubx!m=jjh7*+6S1>^OMvUE?5dRFSULZDhU3Z7pW6EDymPC+QjC4& zeCU--jMWyzO_g%A%E{3uDTl2J+BfLBGG=R~B=^aZbWci>UT05G3Q;6yOE;;6&QZ#c zB_~AxWJ2(55p=4kJ<=5Ps>SwJO7omtk#_A^P^+C+lq^;X@UWa5z3eOz%I7kr9FNL! zaEl_$=jnU2C=OSOut?URW$n7leYeHQO8T$lkD~(g>2I?=Un#+DvIM16X;P1hTKcps z)*L&yM#=uI%$^gbZ9+z4{!S%nP|ow>w#t&$92ne>DY?IwBV62`+>TSGUsiH=kq3w> zlX}N4=^mfk2TBpnl#{*!ZKbyI?rtl8qm;pJ-;QPX1N0&yv{-XoZ)3N`*mOJltpwuCcN8IkG@yb@m7& zT28K2oa>olS>5QFhSqzq(Tj~fZ1l5@RxVuP_zz zXH(wZT=G~?yN!~6hRmPe7-)3ur<|zdy+r;{OOmZ6x~ai2%|BO3zKu+t7g|OYrTHN) zQqt}sm-{|}I3G6bYBd;NW<)8;yK({)Qm!|IXqAOIQnFmhyi{f`vcEfbt{pO&`s%MJX>XBfE8A-wY8u2sxboEaEIw3T?6yu)yBaV=>7f)QPwukO@%G7H zGHpE%V}6-Fes5_uP)hT>Tm<{r4Z&EbHWZ7|*(Fdz!9*@>OjU~UvMffPM{8skC2jujTuvqdMOl`WdBU zo{$MM4LC*V0%~)bY$ql2F!>YQEY^h~4UOW26Bkziw~Z6rs>m(v4{ zj?a^8iu_1und>B(BkA>y1L1yo|B^@LOCuvNafM46oO6jQmFx$}v9`-V#B73JsHFWt z&g;r}w3d1S&Gj+5_9q&l8;8vO($^_Pm?evlS3_&pg696!yOp#T%WA1l$7PCbds*%3 z(kSpxC?(limL%6bDD$e4bu+oZl}2#6sb_ItrDPv2v-hU<2~Mh_)<}rvNYOswePKr8 zf2R~=H@Wns1Yv%bg@iH$`CBQ-v9ch=w0?}{BXJp#**GX1rBi*M$t5r^K~1rUSpoG_ z(oT|T%jh_0+PaN3>#qLTKqdW_av98Tiqig?s5#;_T**6F&gpLUndhW+`3|UnYvbn_ zr3|OZaW8HE{#+S9P09YUoC3wwyd1%m>kF0KPslMZs|{nhj^_sN8YTU7xy-K<9&Tus zB}z(5j&UI!ciI?DL?U5>`2Z#J&vIn*>fJZu9IK=~SB`MD^CXBfl$;~vBHgX+SW%ou zL8JI|$gA1Ayi_Set~|z-kL?arjTzZ|lalvNIh%V#qO?^Ivln#UAjRH8o!_sNqOU9k zt*OAlY)0gtQPTb`(-zu8ia}?W;Y}s;mvV=tqB*db(mD`{Hqu09fL4?kasN~)!B?^b z^nJUU?msDMOXPB1NV~>cXqSy+wmfSKT|+4$YnHqgcZ5rov>(dKCC61s_f?X9EoW|N zWMsMy!X`@g-f~LkREL_)iRvwsq?gO2sa?P6JA`AEV*Dbfd~sbYnn?D}j8A%|l6zBG zolyyQU1GO~l6IP$@`bcES2F)DCw30BsFBJECFurobn}{{l)vVf$017E zh@82(v1s$QX8ZF5C2OP1+O;WRFOv7Jrp{3c@Rh7S%iB9U9{t=amHdCoMXaD9+7fcr z&$lUwC(98p7*FfkT;0ouP2x2+v|K3*v`KQirmyw!ubJ{%Pt!AvIX}zB^K87x#>=*m z9CLn^9%#&Ynk-jIB+yXZwsXc%1|Lxv9S5HMlE>xmBWETZbzzWxuO$6Wj&V=wr*u4} zvW6~(a9*9q z9#_B}sHFW<&RY9>8f6YVv?^&gkZDU;eR=HKIa5hKPEKm7FtJ|MgZwfj`Cf9&D^R9K z(7AEmM=Rf~l;BUffalJni8FJ!9)@3VQJ86ha zOLz6!n_4{&7%5Zoza;bL%y13`^;44mE9Y|FTpCM`nv10dDQU;Zv?UXl(X1eyB|v9r zm>0@ysU&||CNHyB2GX)0UZZ9d?{P}{S~;J4hn8XDgod=2hMQ@#a+}UEwcRYGAgkp5 zdhxtwYM9dvUNoy=B*LCb?m9UU?7D4a+PW>Ql;90nf}ECyK$8*e7A5J6a?#7S0_KW~ zLzSFw$r0^3o=&QXMI&^1ZggoCZ38qSeWFr;tz`kS=Q)Nu&sB1sB-fvIV|9etSiMR~ zyFjM3i}k3q#rk%o1gFRn6wb5nl65X{dql~+K?clJ&alqKvETbeCG(jwa}HFfQL5il zlD5dDI_(XoUn#kl%G~+$=qwy(7XPl~eNj&6`~|d~C){ivew4elu4&d=o(b)mtg-Da z)UM2~R0=R#*4q_yqChklrs}eV>TNm*&>YPgU`nvYhMGspSyEwNEPy^D9WqcyLv7~T z+L5MY)+Y2!gUW;1*o=)KYz(uF5hdZ0n&sd8bYt4Sh>25fqFO_J|Ofpi>I_RD^Y zoHLbl7b32pw3oQi!A#DJ&890wcwNo{`xXt?5uCdziQkloi;}0yJ1-fiRZ@Q|C%fy$ zskoB!aJiuMZm<`E(47{Tu%`mo7@{pm&IL#ZDFrz~76gNhW_@#!Nra`r=K{^|m`?->IcbT-TIYvjdU?PxeEys0z zzbNUimCIH|b&M_z585BIy)n`3lC86iuGZ`#e^;rc0v?5}T*?2DoC5jDyOWKKUsuVy zpUm5{ne=Dd=IAuLF$OEe*g{Tz%t}-7qjM-?QB2L!F->$Vjyce}l~RnqWigVwq8ezM zDo)gODfsb95mw4yVz#sGGF!=cs9Xpt+gpo`SR(I=_FhU6YUPwKUR;kI`m~lfVD1gJ zl-$*FlIO&mYt3~SOO>Q&$)v??A04e;Ha_~pl-%pcy~i?p8wPYeom}gv&red)zb{v; zsfL?lJnB3p_lKEq(-=1&*=;shuU2w@E^`;+-V~Zhb6k^phm!d|`2){iZ0~$A*8@DN z7+Xs*vQM)r<_!feDfz#ZQ@m@kKj@wC?<)o9Dt~FIqVBld`)eilGjgVP zjWVwz{>~VkPH(8% zZc6r58L-poTEWGna@==nRVmq*%HJOyb67_O05=qP-D^5TDM67O|6c9aVcVD2w%>he z^r6f1e6}`{^Vq(2rJ~w$P3m-qj9rMJ6}orr5yA8K#diph6s+=R=EYagqf!aGIi6<7ypdslyWX?2`U}sYR9fza+G9M%}7YADG z;pk|@F-muZl6y`D+zo+c7z&R@91YD|mE6nZ+Bf}5--ndsKW7l}_C$9?{COq!V={Mc zxVE<0Ea2}bS)Y|#dS1(RzEIMhAS;@*D@J}*a-Sq~XV*A-t=Xe>U-OG{GUp(34Mo~j zNqUML(VUo*w7-({8Mzo2CU2m3wA(jTGFQl&!@cZnYbEK;8IXo+f@a1}P?F}$8B1dz zN&W0d=cH=3_`xZF1TROJ|gX%unD>r64=VxsmPEc8@7JKa=auR7=>A?=LI4x03U{WS)I4 zXqEe%vk#QyFUg7Rv1#HPCF=!plCXb$bE@|CQ$-ADcx!UsE5#ytk z%**7|&P6}Z962~m$vQ+X-+4SlXtW0}R?;@ew4N)6Z&31<$%)*T2jsEahAu;h<0?Gd ziRIdley>uLuVqn+(+$o(rQ{wVCx1?Wng>RnziyJQu@T_|i35ntJW)&a%?JRwfD&^>nVwUkrTjcYyM_R+B@a=X17@8@|JCs zoGavSJ3k(-Ypf2N!&wuRy!Xg)Eo=-eYYx;pSJcc^GCv|`ZWUd$N~?K-2|8+n6nfhR zO1_EKrP>!M1$sypD9w)bh?2QgX6|aA;1;f3PSd<0eDj8qU#=A3Bw2tG+Es{^j7`y{ zj-^#cD9N9d$?0aLrsXL9MyyX!65k|$b9uPiB4KWuzCcNPsvO@k`+8w}_X7^lHe!9P zlKxEji|^@Ct2k5PE~OZYWifIhG{nORr70@NJL0TVcE++U^NxX$joOW~NUrO%Z<)lt?@I}EGU8`-5%v{h`lNp7( zhm!annK-}3yTIyk$gon3D8uxoj1B?^E7h$=obQHcXeyy5e7r5G_e@;NoMM8o)^E>V(xoB?UAb2Q~fC23qH z&5hJJTLAYdS?lF&rhy~JD&nV=q}R$(&EsiXBU|54(iY0JIiXmsc{k1& z&EQ5%e^iowB$K8+j`Tkz_xdt-4((1bzu1x;bS$9WZuHia$1-Y z2|I4)S)yd#Sx)968WW_6vxaEcJQv^qCH3iYaV~3bGP(Dq9;>83TTb(AXZboq$$5^< zSx_H{)wr5#mnw-bl!3%f1;b4-T)}C?I%_9g zi|A6hWKl)vSYlABBz;{jSS2_^0WBVv-sr0&zapa;JDORWC`kiy4%3tooyvwgi(8y` zUT&dezeDw#i!nRBRpZ_Y>Vp(K4-&gN`t zRvHnlS911|SC`YwD-|t+HKAl3F2}S8)xJm9{SYPf6uC6#(p*u)2qVHLn5=7T47j^2 zO@Zf0trwXBS*O!8jRBv@#@TF~%f|V(ksJfQkRE6Z_-}b0810`C!;NIPo?h-a`sYnjYiLg`Cg<0!QP9Lw+@P?G;6mo3WPaHF|~pZg70OgOt2sIi2(AuBeeUA+y1=rIPm&IleTp6*g$v%z_;lJgw75a*Mo80oxS?kXj3sa&K= z?Y5lfSorNq_H*S}XH$>gNa;tEoPFgX+U&ZZITih)lJf?+MA1N9)FgdRN&1bPwYdS; zc*<8M>lz!Hyrmk#mN>C0^!UtLc;Ygr5Vt$Nqr3mZFN};NW*09qTkXczc zNGZ_va#_fw+dUo0aGa9$Dfv_EN4K;G?bBltajZpX2+?^PUSGpmN?F#EvjjU1L$;1i z)>Iya^KzvayUJqZppr7ah+CAT|H`DP02n~X73k_&<$%ydAi?lb=}}9 zr7T~_Inl?~jNh2`i z-4x53MbFgap2NmGHWsk4&^D4I=)2Jaji8Up6Z;u2okh z_c1cJR~^+~Nn4mJ>JG1By{VGcl4;YNCcCwg`59S9mrPtnvo~Q>5srdAK}mjMo|xL6 z_kGM!@{X00JN-Shdn?Ju%j8}+LM>L(9w^hMy_I#DlKc7$xYIR44p(x&Di`oHr|zGu zWPVF#_HKuquOzN(t0YgY%<7Vbzw|@&=|Apklu{g)L8hmxJ?>O;znekQdo~juQxXr& z6E#}SxIo-&XTPi@{X~wf$6bOSC|O@iI(AobuOoA((VXimnYYb=c>*n;sB$eX9I9k~N>*B4Hv(;^r0tV0W^?XT z+FWVsjVVgjMmd?&H-i=^$#;;+y_!MQO4^{D!Jb2bQ6=w3a&$eLy89`4r{{|$%QYr( zw30I_r?E$AK26E`t(?M@BZdwiT{S(hVtG|dylNtSPcfsTez7US8XNCDUrvy2^XW9R zcvCnMstPnNufn=va}eP+Q#R{rdZt0&YuUJ-jT_mx**21czPHi?4f@7p8H$D@c@{L% zEl@_XJWL^U9QgH1{hCbOb!yAH%wCS!wiRwj-&N8D%3m>mm|G72|xlEgWGrj6azNRrKza*dKdj>?J40u4>H z505lrO_lrm+(s$F$MRRwZ$c>4L_6bZs%B&TGHt4jO`TO0ZLFF+dx4Q06P2=TBxh3* zWlAtq6?E<>nX9CJQl{P%i9fokt%^c1LBh2Da9#r0(D)`rZ=icqdV2ua-{&T$o=~sQ=&_&nxmw@LR5XyN~Zwrw=uQ* z5lShxk~5>*h@m4#SB<3)mdZy`2%|upqLiUpmZ9f}p`%7uO<3MY7tRFH%(G`@%p=<_ zP>Ru2)*M6I$|XLQK-GNvPEA_>yEIwRP+nCh!jT#%ljf*-?8UW8@ivzWY#CR3sC8Wm z;>tRIyTP1mRf!O>lvilnD z68M*rx~E(MH>ZUMp-2?-#PoU6^?@zX2<;S%HU=V9)FQWwg?D4HV5+WB+DjI0v$ijT zrJKEcel!-W&p>nZP|DU_maPvBUz1{;MN@)y^F7%N+}LgOttea8oD}ZVXjX2g~`JO7;r5aaPu**gX0%$0+H` zWQ|ca3L2xmD`%94)0Om3W{~!?Cd?aef3WCJ8SIxR*_-5=esEjbbEQ%r2ro`#P^H|c zl&o4#mmZ_g2BCI3?a!{7K=*J`#TzxZ#@?rt;%Qlmep3>4b(A)f(97=7UY`&O&o}bw zX{9X7EJL#kH}n8IAI|y}|KTd}AllzD8>!$a@t~FWB7I%pgX{OB+%=4V+y4_vPUio))0pyOfp1kjGKdll$7 z*sTJZ5A+?-13-TRosWJ=H!cPG4Qw|7O@-b4Krg`GGe9fw?wdf9fIbD<5dMAw zIv6Ogihgbb+5l)C{0#$oAE9gy^aEU{0v!d{U4V{(T?0@a{H*|b0Cq;?jT zjCY3v-Gn#B0PO_VX+Yn>bs^9PaIFE_5)v!{>JNVh02RRXSfEdV&HyR~x)kU$pqqd` z2f82V6TJHjP!q!Y$aaO@uR!;KH+uv6xd(4_1^N=M{eiv)+7#$9_}d!jKKPpel!fr- z038m0djs`_>tdh>ftCR+06HA#IQTmm=tQ9NZGS-50KEW?JAuAL$d3U{1$r51I70aV z=q}iO19U9VpFq8V@(0q-x$xH=Xddj=2P!~*3SenUA(aX=vBy44fGIP zqd+}iw;xbXpre6)gruhdZ32H615JYK4M3BD?giQrAwLE5KI~ox%7@*@K;0qL4?t%j zlz)N3K*bx<&#OSafy(j5MnFqoHxlS>*zE{(6GEN~v;|xj0bK?Z0lEXO%Ylx>8%F>g z1-ny#{)XKJKqFvxEztcycL6;P*T;d52YLnQ54e5^bO1QM1$qLme*v8gRIm~KoC<%d z--ezuCE8$)ZFHGt_TeW}m^7I>m5rU*n8C&@+el8P&Y=gIOq~LeHUND&&@iAkbLeM# zpwSR%D$w>oy8xX96a<=?OFvCOjj-Dvs1@ER%1^#XXDhIj`s0dm5 zG|+o^;|-vT;ra>CV%Yr%v@Y!a16q_zKP4N}&vQV1fG&r>je+{X-zcD~fp!AA9Gp`Q}i^#pnzZwv(b9j?QH_5m6LbRGOn1KK2yeij0~j5lh4 z9?7SlB|xvi?f{?=?2ZN67U&G1ZGbKXdI6!_1T+mH-w*UF&@(`X1HB1!G|;C&w*&nI z)B`AM5dGvJ-%5cR^6959&~I?v1n6F%Er3o28VmFv&`hAcf%X8p2=CSd4TN0+Xd|FQ zfHnp?0q8WKbAYyk^j88c!@IWu^(>&DhkkB|<;Ei{IZh_sGK%e1_-+=CdUD06r zc@U}A3+PVRZ3uJ`-W>t-7SIkr+XC$j^fu70KnoFG2HO zXeiKSKt}@I4D9}JzOh+Dhudm08ky?-5lt7plyNn zgTF~YH{#uSKwkjW0$m7yaiD)8%RxYg!1XwwLxIi$`VpaA4)i$u-2${7-hB{g9iZoc zM&gaPf%e23p92j9`UU6<_*-Xl`ndt99Oxy4w=U4e@HZG}GF-O;+8cJ`fdW9Yf!@Iz zdjWk1e-_X);9Uw-1aufs3D8MEBk}HeK8wlkcpzq-N1<(hu`xU4QQ1(#z zS%^2f0v!u~{ekv{>!v`hu-h8wKA;IeMR1)1lm)xJfu4gbi-8`7-7=s@fer^+1dfw| zzQVib1KkF64bZnhcLD|B?=hh7VfQjn7o_tCKxe}B8=#NC_9u`9yZmAFvkTtn4parS zK2R~<9SXE3?6w2C6jDtA+6#6IfcnC&8t7f1DA3Q~*bnGepre6m@y2ODJHy|_KnX~2 z15gjJ-3zoC{5=J<6I@>hDgpW!=oPsB05k)k{0lS-sCYR2%mG>t=w9${22_D}w*i^~ zG!f_$gfbUs8=yr%yWrgj(7Ui(4zv{L2%sx~P67HE{w@I81>s!_bT91g0$K_5IM9uF z;}xJ=fIb8&gzL9JXW-qxfPR2$!3g?!6?Q#<@{k%E06mX4h5=mwv^`K6&{Uw8fp!7v zk5Ga@1Av-<;&9y`Xnoin1Jnf^rvr6^>m@*M0^JBy4&M8K-hkcHK%?=-8$d0v`vmAE zg!dy*9$fze`UI$CB>gl4^#QsLXk(z|K%;;r0PO@c457>b+8=hi1KkEx2Xs5o3ZQx5 zJrd|I08PicOMooc9RTz*?2ZLG7j|a= zjljE?0_7s@Zvwg#{_Y3r3-k=o-#~8yeTg*q6zD6UpMXm6Zq^p`lR(I&Kp!IHzCd5Y z-zGr4;kpITqwxfcw+No{d7Sn zcYcA-qR{CL+9-fWC$6`#@b0%GW^8z~3K06|l?OmVU;7tsBrPpemrH z2xSOR5$r|--2gNhXa!v71APg*0MN}qjX?Xubzh)~usa^;4xqDv4g$IYXb#Y=K+7Q2 zLqI>n?s=fcfZhRm7V-E3=mdoPE6_eI4jPgz}}0;QAZT zKZs?{_VjZY>?(jZg}?QHeu3R)KzG7!8=w^kZz9k=u$v3?2>dMqdI%^2)C#m5=p>*c zfSv_91?VP(askk(u)7xMOoVqA&|;v+fsTZ~SAdQJ`VeRo-uM=13!uM%eurzp82Xt5 z)C1@qpbdb!BD`ThZ{v;aftq1A6{r$u7ohGyL7*RyE=@pJz;1t_C3yE3puq_Fbf6gQ zE&=)&=tiJ8(0xGl@b@&(wXk~ws1WEApj8O@N1%^@{sUScsALEFxellg(7r$$108^O zM*;N&nglc-uJeFq!fqd+uVB{zbSuybpiO{|1iBagRsy{P`7Q+N4ZG`rK7`%fKzHGd zCxEVm-K#+PK&ybR2Ko+Y0N(u@=r_DkxFh|10@t2Ep8^d88U%mCft~{z1N0c)mNeQi|}w2x3v-oH)C6m0A=k&KbPW-QlQuIMqi*SV7CcS0RFZBx(aq!hMC-{&2-5g4QB%;66X=cpzM^ zXYB-6+;(S81i}?`*2!?iwQ$y7K)9pLdJ5s;-ZblT_`_Xh)&wBjFJ_ei;j%C5AH0DJ zxGeh?E!>G^9RgR}QDyCmP;hCKRSbW)$;o;RcDP!}`UC!O+mTfY*FivGxZ*}2>k`=E znjY&S*x}L~>j}Jpn{2Gh;EL;Itjpkv+g_}2d>ju1mt0=5*;1AbBSoU2GxP*akQozLsRu8!1Y68o?UjWww zSeGI^oYHUENA2U(d}}bm!-4hIXt?6^cxwpkaG1OGBM{D1x7I~?ILzGI9{zB^xMiOb zj^n+p_27yVwyj-(aO}19FAxr+wz3fl4u`gKfN(;yl?#M(ldb3B59bzJ_Tj_pOdzy1 zT+4yJ0o%Gj!{84`+*%*x&<{?Swf=-F&U&@x0^tBwYb@Ty>8I8Su)`sw)`>tk3)I>b z=rADrl+BZX-a*JXxzgGO2xmxI*+4kH(Rv%<;VeaKAH4e#&^55b(Sp|5u){fj)>yoO z^Y*N9KzS4CXE9v60SyJJ0{Q~3Lx8SFD5HV)1DXsp5NLOxQMvR}2hwel`WNfVKv*PaK&5bYdR;%mEq;*S&$p11$zR5NH|D^+1OM*@rot3}hd! za6V8Sq`C&^F!;L@$lm||7|_r>`gs}1-X;G5&{qfL1;X|r>o_26*s(_8 zUF@5&KE}J)wPI}qS8O7&o&>_44J!bD*f(LF0y}JAu*+8l3S4Y~Cr?692MdM}55u%6mF8?GM$g@CZg*vc-TAFTPcdg2W%u(f&tVL7YS z9SF-wEqhHU7I#{+V2AaU)~5&=D;=$cu)``tYds*W@3VFX!m2v!K_IMfvnn7n7Mof2 ziZQJFvYv!1)?ispkP2&_tZLX{-I4V)5LW$I%keIj-&ofIVcm=MDG(N$BwBNtqqI~9 zhhg7}V2hl;wxJ#g0ym*j`t=-{jRG%vF-g|Sd=C>ClAhSGVn&+RT=5sF3Wpx8)w zu{m$L!8CK;^gN0o&6{4p#zkyg!p3E`(ON)feurYTta{~9t$9SBh=o_Sj<2DF8rF6+ zZXhx&+_HRF5Vum(!Y@1wO}P!lW1HJhTQU}`wJ6XStf%F_w2Xgc{cSu$+u9+D*4ZS2 z)t_WeR0phc=mA+H%bX0!BW*dvUUrC91sPu1Imqgn#>HAUox}R+9Ez&EN%(;El2mdG z8f+|5n@j6LhP9RtM8>8furfKtK8k!Y z_gMej-QtVGO^f2Zn*&$6R?`;mqmm(yZV!0}-yye^uGB}$GHz#wwDxkma%?OX=$LGd zd~YFnI+O3#{Px6&`%aupv%H6$<<1zmGrq~c1Q}+0gYS@&Whc^}JZn40d(t6E&9rzt z6zlM@ICA}Bl1`cH7x+$@Omn@Do$Fq)aOeEF{-ww;=g;yTa+;hE`L9WgHbBQZ#D7>; zsvuT&Hb&3dFY+qZbd^|IjW(zgm6+YAC`%nZ?>e^UBa+Bp`SmP(t&_dl6*Y8H&>~QJ zH7wd4hX&#}7(aPOno(7?wJoev)$~DU(>_%Pz00}aI|DkA{;O|9P{yQU?ocdwJNwO; zS8HPM3jkK)tx&T3vuCJK{^@KHNPWS7b~Xrn!K_EP6sh#c zTN){7F=Q|Fb$l1&PV13=ZCwNNQX72W<~E6mzRRw+Qkkz%Ds8f+?%!brLtQto-b)7! zGtPIxO@4VP4YQ*ig#WBr;~J(t%UsFeP&f6yv&^M#LcY_@GuN&86poQct?Sw9CVh@3 zMM+f>)&51vQ1>kI9dc5*l`etCia*98;}S+G@oR z-`$LP#6Nw8s^mf6A-hz`eVq*=rAoLQsZ_~%8YxJX+>UYFwbzWPz_rBfms7fWM1|AW zj5e93(I)YvfEntOJd)X8OFvnZQu-v@4#IyntnnrbWsebghep}lclNk6%3$BA<*iYA zQ#htZ>CPI(jDTCGZ0uiv40Xyt-yyqnN>yirNa++VODdg`rICVkioF4N?dg=><~@&T zZd+YUky;ZCmDvi_LW0tr@b>-Ni%8526-<3+vm>QoLUs`U0}7^>XA(Hn%<;an%B5zG z^_^zkYGwt6W2%|Hwwm#bhFjSj=_NV zgZLj%C?% zNU0AlK`QmJu|^6~AM@9)`smhv*>sw&&`A`ZHPJwsu2CbtyFtfyHWyOOlVj~5{s**4 zTNb5yfexi|i|;IQDU}<2r=|(~LYuS10mUSo`BX3$+x45FzQVl6cx7f!ru07q-6>~#$SwMgWSKNwa0VV00P%KjwjTV|6 zvE|EfKxJ-cOF>Gj%(8<>t5w$GqI=4nj*)lhlx4ni$E8yezEjIvr_@k5rcUYBHZ#;Q z^OF3j#!AdTe})Pr>N{kYLW$Txq+Oo6#>dZk@^ban=J};0lfN(0mFE}vPMJ*eoR?pF z#ll^cobO+X40HY*-y#3M=X~GPlJ(W*{!9AYf8KZMWSaZ^?JquEOxz{l8UK=GSOT8( z9deoy(215nsxiUUNGF0wt(=?Q*@z??6MwATL6FksSU8bI{p*@=(6K_cVwPXM#wbyEJ3MOM6n&j|3WLGtYg$2ZHO&==ZmX8 z8R0vvJhRrSqHv6SNv^u@D7{;Y4E4{Rp%&T9cgQX+GRO{M?X@6!r?hX!RCDBcfTU8k zA@=s2HksymKSwRnF&^&R-^0Hg8Rq`3zC%uv`<rOoVQbw<(F@INNbB6rrgf^?ILi*=f1%pQx8v;49S{4?3s-&dfbT@| z%uefi3dgK3ig=9NUg4UgO?5Tz^-r6js<_K{$SzfJyB);Zt0+pjljfDf-;*f*zBX45 zf8#qrGR@(xb`EzC-d!bp>7P8qeE!UL$p7#8T#;%Jc;$8f+3LLROF{T+DQBA3ytdd8 z0e61)@-IM!`Q6=j$Z7Js6ZLnh3BVOXCxS>d0Z#91!A&*+^49Ktg_2k(o`}$Zv}>!v zp1#YgXJKodq-Y7Sa4efq{djaEck65kO0@@ev4i+uXb+Tjh`FOxaG>vean%|7`A#a& zthE+XI7YU#a-GpZc()E&?w>qE9n#`EWS0(!+d-_owm~+9t%>t6ADIX;CWvj;dul-73ER|Svw=gu&fAM_pa|9dWXO|{QGa{4!YPXFvX zO)|}CUe9LA@6PQX{PSm++u!;QIZbYNqSj7T{9F}uB8XJSVo7HslI&PKwRS81UhN$V zoPQk&E%RC@yVYF3I?A)ywQ9~eXzN=f#mumKF^VKtb}xq8L8NUSti3v|jD zGejc=buyk?ySgSX5O+;^oIz3W*ZlD;Y^`Ixx*6?9(t7nX+8ybnaD&JCCLxWjiUd1k0}IfY~7NNcg(*+^!VOI_URpEpBw zag* z+G_?RmqB{v@FgUQvK4Tl?*z#-hdVBVOq0*&`6tgXpU?Ik^8b52cUT7LmDexo^ZGg8 ziIQnvJC{MG$?vEA3y@)cKjAy%H2K|$`a9JG;0mD=L8O`hJ9joB$tJ+-Yj;UQNw7W? zT%6pUZ?puu&iAXEJPVs@8Kf;7Z%!BIAWKPJe+}eh2}-pGitHfLwg=W?mC+&Mjz+;K z-`SFkW@_=maNjBAnX}da3dd{|aFx+Pcy}*ih=1}7Rmi5kLw2cdZQP%I1v8nYG!spD(tj~K^g5W~y~Cg=6GNYpFf1*e1DKZ=B$tIYYhC z>N{kY-Z5lMD0`mEg%#vYi{%UaYFi#9}?2?TK4uX*(G&;@?Am1n_g)f}o0Dcgi>lhLT2 zJemxfk=)Au#vnV0v`vP!SD)C~|clsb<7msA-i;w8%ZU^fe@!9J zBG;<9#4ahGy_r+KC-b<@CVr|Xa*Q3s|A1O4H=^!PC^!4g8ka)3!FO7D=B{-Sg zgf`J!Vn^3Qvw#_{z5K4TIgrvPU)w?a59kxh9wYJ&jnZQmzuDu`D3uh1zeb(6M(IM~ zm>Pv=SR4^>>y&c;0%WLDN_>ax(kX?V4I-sexGbr3$`_q2(aA2*j%&AhQWR|rkyeR> z7l(}T(fO2^YeJcf^ICJ6(bg^q#&Q`&)uXR7r?VNKQX(_$Akr$4wKzOl+#YX-{#fce zM_l@&*>^&D>yIFXV`NHenLR$*F1lNDEb&jBq2_4x9kNSvEVhGKdmY*e9$;)wE=NvZ zLgM)Q_FOrAq3=Y=G^e?ya74hJ-{<)kAjAAV+jq$S@A=&$HN2QE&tKH%`E$M#Ceu9U z0Su2wxbyvK|3YM#?@#y+IZeKIqIyrY5V)e~L=dS#(w#dSkz@1^sdWS7#} zq_aV!ln$3ImD0)ANI^p#^VhD@$z2hOMa{v|7{$O}tH`soweH}hUoz^EuuMit_0T2J z&ZcxqmqhF!{s(kPz8z(U<~Y@NMz}P`$-dLbGcT=!DI6m|k_*2%r;@a(*_9Lg(`KkA zT78G?(i2B_Hi(p-;BuqV6Jd=Mq$eI&yLzIcIu;GoV0D-0?CmQQn>C>`cJ|U48MaB< zCCqf{_QlR-K}vxQ}GSn;I`VQHpSH7}?SbOcy-v3A4mw-oBRBZ>DCCTjj4h;>%uyh6l5fH`MnPE0& z0bH=@>D(mU)9DV~otX*9rh+UZwP`b_RkdUGp?|^2`T|aoISN5${;$5Qve`v4C%U zbq_?ArD)$sk>waPSxWcjI{-)QRp{10!F)NG9E~qtGngESMwWuf;RK>_UCInP&J!pL zc)SEAS@tCbG%>m!r;D?SO2~fC;f>JrdlwqH>3*NXM|VT{{%U*QUx_A1*Y|XtETkf` z|1ZZIqUrxj(a0hGH^=~Z5r%XM;6N<+P1l}D6-e^y>wCsP*;2DF9 z@|S>PdhWTMd@_d~@jDU#aW}#kg=OZBy zclJTMONu*t0R%1^RL7mkfFs5oI$aY|5jpzofj2}MedM4s4~;AZo!O=kJm^quSp}U} zO%?810YT@X#s-}U-kunE*;~BYItzS8k<+ZQ$Z0(5T;l}kD)u>_Vk!V0Tuvqsp~0nr z+Y~4Is~!j`=b=3#g_IAXxl)IeGT;b)snN#}{MO5H#LRm{=O9~!nH)n-?yN7(e*dIu1v0j?Dd=QHfVbNMl^EMy*`_-k@(w6!1K@B zd;VE8H@cpuvm)wx$liY%Z-=J$pF|^vc;BGo=eYyzIt(EAQqQ|hE5dSzS&hA^VWKw! zD^G~*`Ce?uQmW2syGZ@XHfo*FODVF4`Cu_F$!03z*~1(H5t=h+w`PN{+@CuNg{?L?cU~m|Q_18rN~~t!JSg|1p?^YmJh} ze}E=N*W-b$XS@=!-ygvnq3QSUp^=;JcX8_(r!COh->~=n>u7RxeXrPh#w#NG|5dyp zn*RSM8ac%O1{nZPB4`I<0Kvy2yG$#>#v`K|yGlE{OM0H~?I&Y{l~Qe1&+}2Mgq}%} zG8_e#S`I(nN+3o;$}pDHIS@QfLHk1LI8H{Bq;zL~E#L?aVYf6;SFvLG4zhRSi`5Jj zC!&$1P_czTG%iJ8&-1A~d=Z#pnHpS(CPdf6{^$8Z{QO~j;hKK_5E{AZe)c`jr}FjP z_P)LoO^U9sgU|DY`1>}z0h<2)DjGS&-v<3RPXTC$U;x2WfWu5H!cu@QH8urkua;nY zR-rGG-7Z`n`x;aO7nzh&tC?ROTP@Y?5;`75Ch&?W<$UtsWdaeJ2{f*=80S?xkPOU! zAJ!qPf$(Sf<^TjPV^aDw-wHT_PuShDp6T+~VJ5z4&A>4YjVuL@$)*rIa8UhN1&)_Y zRm=iMXJaQI7j*R(v(;P)UgqmBR{Hz;O6984$+mim*S@_6_>Cf#oM5ppqHe9p;w@DG_bTo77h?55#G2$f1?Jh%kl^MeaCA;v( zXvUy^G_n+f%BB!J22qV!#h^_#R=^_2jg4JT-2)R_9)#{B5F;T74M9X82tAK>n-qkeMKh-kLXQHDDhLfx895Pp8gGnd5PA}gECr#T znL_X&L^Wm=gl@C30)o)L8hd_sqI=XO1cwE&5lr5%>(N+x0}xggKIM9Nq>^uXmx5o9=brj!-{q0ncA; z@A)gy+~|5fxFghG583;du8RYuFSs(ID$WFZDjU?IEt0Zr#W85m#P^g{)tAGg2dkmMB@^J@${I5!oLTef^BD# ze-{A+E?L&~?qpsBuip73!35t=77t}~ezN<$!bxEt*f-w@Xn!y-kI?l)F_H!$a;&YQ$N(? zyDDPXBkix4dV1f8(*-RdAR53Ap-k(_PN=^)SRc31Vn4iFC!4+=V=P!}|3nC4_0~Uq(ZA z{!zdYh=hYCrDAbc%KcJr(?5V8qSr|Nf>b?|zj{GSi+gdiE}8kqJ&2zhLe$y{xk@#i zt2({R4^I%JD959e?e*(dtQ6VaeOn~bRn|CU@F0YN-)?X;VeSdBv5#kgc z%jf&sOy#qhP?0~UVI7q3HhKRw^5b$l20HqSxvqggmbHy3&Aoa)KNY&8{0;7R)70k;;Na%C~8Nywm_N9p&XOUt@$WaDa~qdTAZN#7?*I`caLC)m*uHdC3toE#0#wWsg{LsJ-K zzvUCZ;wgpDHt;1hw@fFbl@PVxfaXcxJzmq5-Satou|tk6xbQ!XMrNGw7=E28gc~$z zo<+4|6}rzNRz#^XnjLMeWV#)piT(;oiXibpzH-U&LQqUcqoCS& zFAeO? zz!7u71<77+L~0u~A_enM)Cj4izTckb0aFOxMs^U0$h-In%Lj^?-dr}ZId@thE`AzH zjH0WTJuorZNlQ&tNU0L#*O~IgrG2$2MC_E$+A`4RBr+g;==h>iOR$?m@X zlvk)k`0q^F;)MU&6e4!QC$B4YI)%h?r>{^N=yi%!LGa@`8bkV7Zo{D4Vv=DUGQ;J zh}c~)Z%Lu*l#39cb~p*rOg2}`{n=`NIWRc5J2pqmPiD9cDbhA7+y<#d+-b@scgJm} z5V5;s%Ci1SwbYx~(C3s%ry;h6XJd21)MS>FoGS5>CF-9x<&9JSq$xz~)Q{iN<0Llb z`k-GZic{b%PF$Jlgk-hHN%hqWl?eZ@DO;TIf15(YPWb4}RoDO|^uWp3m>!d?kkTZI z6Huh(KwyC>M37>GIaS}ZEExwHKyWKgFda&=Y1z$<-4)xmddEOwi&F`#q`W5@5!L2< zle3+U)0ggq9&$0PTBfU{L}7}tzCkU|7qLz<6$Nj)TM0x1Cu=9WWV#cz$}o6(G`!~X zfFrO6kG8p-Lcv3X!d>=!_M1ZR7E&elu0DPUFE=T8+k#Ah;_uYdKv;V-LU^O zQ!SOnD8658J|H)Z6VhR_+bdh5e;<4L_cDcuy&X)cw}ZMHMDo|fM*dW<0YFw5ruKCmpLg=S`X`)qY@|f3?w>BiJeZO=s2B;9;X1)JPB{o^BAG`zBo1qC6YUP z22!1+)J`Ym8j_-h3^n_DktwO%FBh6Z#O{~)J6?3;L-kr`#<+GKGlUEen^Hiv5+Nd~N5~XJ46Ev8xLE%v|?4 z8F?w=wb;CqOm1_{@wXd?nUd=e3EupI(sSU?(8vMRh{m%B!stCC?;a8J;p?zjd{`z9-{F|a*?8AH~D9cBzkBwb@9 znd}P|Sq`H1Hid}YLDSrkV>(kVX9m*sv_wcsj*HD7?o`-eGTq0Ta>ZNa3R8&K>7KHw zzeu*^s#El0Y-CSOmTAdD<>K2-dE?agm_o!({k%<1s?Pq(Os)XEl-da&kIf15VLM8y z?uRa7!%*({s417+9Un1;2)e_dbK(6HT~INA;8tuhorYpdWWO8@r@+DvUWTqK7|(dO zuPkSJ9rua_aaQEvXtY&Jcxz~07oDV9t4ByI0~60lvyi zA7n}sj|=;oLd4JX`u^UarZ>gNbg{n|G)=zBOm8ryi8H;{6e4z}CqVQ#4u*JZolLnX zO1nQc!sog{WP7ffD!8S(vBdj>On=#wJ5GPe6e4!|$HJz%OtB;qe?@G>PjvUwL3t_q zA(MTXDN~&6OH3i+Cwn6tZpu_dvhRtJ>^@Rnihjss-(|`aC;N6&h}g*LFcrEgHm)Zp;R;B%KsX~zK4rd_o07$qy~GqEcD^TU zaf+2v**z|qI7B2p9~zp(YM4#bbB&etZq-aUu2qZGUbTV ze4{Bu>@>G-98k=u{4_SECnx&`=&TC+l==RVDOsHF$4nt&=X>$=TC*f@WAU7PTq$^KGN0L%g8yYH&xArPQ@?4Z5V3RY zPetA=O8V&7$QDwOH~Ui&#rcIJO}XO|Kim`|e)^ZMI4Q9fu0!vK3lT;7(=pQD>Fi1s zSgEk3oBu&p|9efjOqwkD{==|paM_jO-pX??!z|1JKA=SrikT!PRX3z3h zhh{m-CGbUga{Q=ul~VrW0+RaLV_6srlHG(gvfGC7 zkm5#2%J>%#F1`*jIzR!M05b~lv_lh71b818#}Y8g!< zzszJbgUU$w=?JCd8d{gqXtJSHQ1sCCnC8}lzOWC+zQ%xTUqf@8!MoBoj;~gsaZQb^T3`%@ON4y;=sYStdl111O=X&*y(Gh z`BU5nCL(%jqKej`vKOi;pPC@`88-bp6>S33F;D-B1R^y33r|dp^S|~juCL0{TNBqX zN7=qLQ3D(?-5ZxAbe7eRO?=Xx#7_)OVrUMH@0tDGuHvzYVcNp|Xo{I$_>&XgM6;z- zeO~s`Wb#z6uOZ7r>bvoUYd$=2CmNYC!^8P)rVu=wQyp1_^Fd-osN#%U?c}W$=p8E(h=J1+O8US%{0+xk<;hz`f?uwE&JgaSJ4dr-2!kGr5yZ zA$SX$Kp;Z3ZR&~%OWadUi7f0I0i_ALJ~B4?Cnm{RD%dqaOO+@;+>|da>O)N-VyC>F z-SHE=iQ~Po@jVVk_T*Y2w@8WXcbPK9$v(jpB6hM{$vu8u{RKhVXT?T!8@agX4em}L45l4S zqvC>@7q-YNgKV~@FygT-jLeGYC!ayo@r`-NzvRh#bh zYp{TuhO5L$Nka5hbY!13WsxiDQv{-c9oh8NMW`Mebb;A8GBuWf>*)nfzZ(sw`8xnd zV6Zj=?(eG?o}%+|ZsF1>@7wmgK41#L+sM5HBJ#d#%<>Yvk|?HUFG5jKbX79tW0Re< zIEmyxm@>r0`&(0p*h!x0Q#s^Jy@?9kCY%)?BbZQ(i}YE3ox8=SSn-k*+QA0PRCuf@ zgtilmC;bbW6afH+^TBO9`I(rV+m_l$>ucB^TFbGU+cf<=kE3pwji)^KFSG4;3$mjz`e<`2NYUwSUeQ7>uNVzIX)0E(_n#4n2KJmY=}ofkV91?Hf*~f{uu&GrnE#H3 z=KLQ4N8qqFD@kvUb;G$klLTWUTD%lX{$JcOy6l4)aAkR>n#w_f=z4&aE_bJM!2-)neU>Ri>>ilCB(c6!OfByxkE+5| z<#jIz@#dYeIblvRlPZD%opl3-aKzh9S>$2nC{u{o9Wkfg6pE$l5X~VQqbKUk0W27% zNt|LzBlpC~rVz1vV$sqJ9MsFYJprii!Vuu{mb{ zBpiC82Bqj$l)6DF*C6-i{<=X@@9{xXmbs(OHid}YQ4`jc$`0HJpXu!@IN})Ki?MkF zuIz+TQ%=29iSo~z^2I6tj44FylrLJB*_G?fo#r-Yht>ga4D;pDTvcov zkH+SW{ow-DxmQV+~;I-kV&!=1uzFBNbIa=BvxDOg;wES`5nZFbcGp_riTh#BZT;%n0$J_ zscyLR1_(q0gYE9Cmn{?6y)GJd^B)Bqfv{T0bHG>Ivv#E^1aB&r6NtzoC(wJ6K<~Gp zoG9X>lHRQ10;Bs(x#6PxhABks^p0A8LO{O1i;dsW$>NS|R_<_qZORTO_?M;-L4pl> z3*O<-*kb^}t=M5&5!T^+tFen4?d!apT4`bnE#GL<79&x033|vVADf?jlAh4r07QQXJ_u`y9 zxM;oaF&9qB;@(2qeVVLPagPq3H@JSdQIGp0d>6P6sJ?i?rpW-ysg2JSvxWXnrwcZu z6C?5~!L0nT?w2+2#i_Nz$i36)tM&}8`5*jO8=KAakyDJd_NAHZ_U>}2zt}lg8|7ZO zGk8I5Oi!+}(fe$`wRiYyi3Wz7p}?d8l)&II{m zy_oz)Frz;|7Y_CxHz7X{K5B{F)1aqb^Cg@~Q| znOk5*pB|5Qx5?F`ywD8Zh>ibQ?rSkAdQRTmCRfi;WGB3C${=^btELb^Cm8hmJawRb ziva|;qF`DPHjX$)OdT#8)v{ZQ`yaXbujh_DyL%~YTc+`5;~DGLrpRJ|yDH_z+)Oce zBjn-bNFr|SKyPdz%w9n%O;!fL05Wq$4G?-pMMiNb7-f_&a_t>VAR3rav>o3Mr#*As zJyoG8pAZed`4xa8&=xj-wb`D#jiwO1#jGO`k!KQP;qKV}LPp&4HvnZtku<0&R@?%; z!;~K`&x$ET>=cjLkgb;1trbLkb*u~@DtA6tn$p7=zT6Zd$gn}r!8;!sh72IM6)Dq- zu+Ha{hTSGeZedES>n~JuDY|yzEtw=j9_9U6G|H+S9@71|wxrn-ikt7dw*aIOPxb!T zlzcA49}tKJ_C)RM@vto?tP@)CKce9}{~N#&yP|RRH^ZtsdgaFaH+v5MVhX{V(VqxJ zZQ#JSw@Xkdf(~4h32!OH)iC;-`02U_s@m80qa+t*5-zlp7ua z4l{)a(reI<@UDo)Ap;0*#UrN8kab1RjDj&w*oAI98xAYGx#yurdp>VAg2t+8!(a)q# z@Xun1J0mWMhTr@-fFn=`&%^sCFBBJBe9WH7nkfWtFBcGqP+^;1yfgL0a;6W?B84SY zw?nZ}42WdjrzLmNqEo&cN}4B)RmQosL&f{;DZoobrE~Lc~t_w8q=3N2IM;2$kG)x`>y0?Rxo-7?jkZ3+=P@w40sT6cV!fW58dOr=`x z&sO`(;sV){*!Z7K7RcQ4Q?RksU%upqcbIa>_5U_gh}hkLo4@Fc%^!Oud&xu!oxEUo zNrQ8S>I*Wata8V^&lDnd$4sYFN_;!6d)1&Y^!{*c&X|#8Zm4g=4Y^_PL#FI;2b^OH z5xWC4_e0+pn-}IvUZ_v$DLUydnDWS7@mW)d*j=Hqu=iMOZkUDPw z_eYZa)uwp!C9s8&79$Mr6*D7mf}$-mzyH}w=|83r%!xm4>{85Bch-wsfxNOlfE4=6 zLn890|JhCP24pW;8FuQc!`{IM5{S^Luly0Piz9SvasFudSH!O3{4)3F-w8$Lm&12t zGx5QmuHm6k;U;L02XZ+yT+mw0fCd_Aruzm@#q z1o(RLVE!cd$iEjr+5X`@>Hgsry8DMiiSunIKGub|+fGcSVinLA*;oPFi61r!=*Dy5 zW0n(13hnsVy*T7+G^j7Yqh>6 z`f(S_u8C3yTQ$*BZLEMM+R_UAHg379jVw~R4<`w&^g*aa6s;83T@06y-EYb*Z^GXs z5TOJ|zf?7eZ@pbs$W+A1gWp6$bN(lQBal~{?AvpjCFM#ZrRVM0eAX0#k5Qf`5YaDJ zd0SBF8}Pvws>bYyMBobMrzO2%Dt!iC`BK&HP`**H;!6DDLxtzz ztMYqn`^U!qbh1d>OUj04;aS;|_7|FR$LUX+Lc~u0WOC_tG3zAOIn|z0rxV{= zdfhe@oa$u-OT@1>WsMWR(i9>{yg@(Dr)OwKVgSLdxZ5;(vXOnRvDtk4hN6>z_X>h{ zQG6&GLHSM!mx@lB6(sa(iaDBdOvS+UbS8laO$p){!e0tS@~nP{m!rjlz?_%GUMf#g zekB6whJ+#b4Q{bFx?jEwUxEqzdcDM*rR%eihjh8^zLfncFvF-9G5(t(9{_g73ew!6Q3fVw!g9lpMl>CPw8s_O={nD}%zP!o(G77!~!)i@z zuX;h2&S{PXI2LY~(r|l(?(B%4OkcqL4cKcLaA^~@3b+s2SOEd|YmHsf(Ap%kFZe2o z*o$ng!{tYNyAm>)6yq^@PXZAdlcS$98MSt8;1tPv^VFwzQ+S7K7DFh!N z98Dl1pBovqZtdz#LgLT^1w|m<5PlV>868t{xGcAsLd4GR7#JwQ42Zz+M`C68Q2B(; z`KI)6hR-#H2r_KYS?~m(h93h6ZpD1lim-w9I~zODp0u=|uIeO~(p4S*Ej$lKBc$4} zOG!eURE)guHzkz|?3)Clfj!GS_bw~dHryXiZ17!(9kQ|S zd3%PRHHF}f=V<~Fc_%c}U3lV`l)G;@OBd;m*%eKF@=cT0n_Sj;aC{fx;wywZD9Y{*q`jR0oe5KmMv4i(3CeGU6Q5{u~R>8OW0G{ zu~9xYN#_q_rdONN#F<`c3K3-5pqJ-~0_{x z;GQ!mTM(Qg7>@>fEc4kn5s1+C8vSJ8#AUG7)mU(!s+_MLYswn$ zbXJ%`#7_KJvK=!pcUX*#?^ZGlcK7y6`rdBJ5vRGw6e4z-$JNKa!D-r$$42#dZ_KNt z`=h2@ak@WZ3K2Wqb9p#9)+vxnMA*!WxHavz*w~-v3oP((5}4pkzbTG!e$|vo?u?sF zA!2vNloMbV0Ze)&wif$x#Udmx!a~K9vH4&soTMcs!#U1+$x_()nJI6a`X8G@1gSU3 zWqCSG6D0!(ZpHsB)8Pe;UA7qRhM-BOMUpnu^mpC}Ih`UO9uF2-=EH3SqJjBv>k4>Q zv%GO2A+*}X(QupJ18@Y^;2?qH7T7nCVxMxVaF9KX`CyE3Zvq@K&ua5lWaP*=8GhO_Pn}>2!P`qafe1~ojBg2; zwqjSVLMGAa<$scf4~K%INVjCtr^Ee!v}|_&A1PZJlpbnI9@p=|l)SKm-OZGtIaZK0gXCGVI znSezacDW@GK#uNIjuJdE5Su4vCwodeA<=cX$jKvEikYt+rX+HuS4<&-elY0Vd453K zn*jv3VwiYms)iY>i?EXAvP(@gd@6M=_x2Z)lW*7Lf+?0 zy~u^|X;X;UT`+zbT!vK6ZR;m5occG;JQ5r86X2>-U!fA=-!o;46aF1jh}a2l-Q+$W zo7mbX$owy{k=>Rg@71RI`{b_XPo^w!qF*qD2oh}&pLmF)DX{?rx8g<9#GDO*e&5(3 z&}4UY6do@mSCY9qh6On-e19ZqV$JAoG$EN+Of@ILILj11K_D791fmb0!GqEM2)QyE zmh*1`9D%f2Ym#m`P^2Zx?Ad##DFkmVZzm9;10d6cVEpPLJW87>j{tt_zIPJqb^gnc#zDRLc~sZ`v!Q0xmTvU78~8;k|kcGMD_)yOmVW$Gld9}ZP19dkI7X z`yw}Gr>_&huu15Uej5$X`JV!gz+8=_?7UE^-Tum+$LCBTc#C<4Kt$dvP2A-4m7R(M z(w0U^W6y}DUy>=Glq`$IN~Dj1vMm#--Ao~3Cw! zyY@5XjmM3BOd(>YzRf*!TZLyx#B_IEY?QYr-OF2PiIU3KnDWG_US$dqJJn;BWV24- zCd|IrcpjU~(BdSLdrcYQBbVkdd(W;h@K2NT>G#AuAjB6hmx z(uHss(RC)ov_)k9=drOrFPSB4@vaFeF@;e~XFOrbBzMM7O(9};M%&hklUSCi1m=zY z6C3yK$^MFy%90W#-M?na6Q}wWQ;689o=(F|wb#wkVg5+Y)b~6yu1tLfi#LJ7B?rt0 z3oP^XIi?V?J75BgO1pC1{d6@?i1bTiV}7E$lH@B@qWlI;_1`ynedrT*i*u3c<8a!_r{>JY8(MYQ1?WbGp zzYBA*c$um&;is4?{idltxWw)z5DlCvZLM~75PF6F==o@9&HoT^1lDS8$!b@M&?+ys zKWoq5)20x-aXd*NBA+51y(Y7(uPm^<`&rTCTQbXIl6g{^6a`zLNXrE4zay67wrZ)I z?dizpsshamW23n}NlHw)B}!B$?Ws>;+$LaKD=dP>82v=`#ZB$twcu z^H;eD|3TAMYjt;zm*KwD!Sicl%J493IX75a;2jO)Z@l>4rx9X^BJ{q7HiM-LT*uYulR$)$ z8D&iMH3wJSJ$K|Ug%5bqclcIuEShAd8q#iv{#T&6QtCf1`)Q(ktrBn0vYVFTi=I~5 zp6g3j9CBfCy4c^l4bD-WFExc@(8vsehts1?A$U-y8nO!N^NAIqYBO%R)3;XKWpVd7 z7H>>Kz&#U6j-p4Gbuj~0s-SRk6w6mQ^S}=>5R{2BPdD`d4~e@deT_SBIHMjBU3Tjy z|HS3jYhxpJrWY7pdU@#*vsc+Odxa?kZ()~F=R|$ZP;kN8+_p081_-ReKF}Z+6uixx~O z-o8R0&K({b)opNP04q=;`cPArc-uPI6e38pLBrr}iw>v^Ah;DTlQCHaHAE!?TQ(@~ zYwTUl?b+VGmUOOCEQu=(#ek6hv=R)aa7BtLb|I^+L>-FFV2C)*BO@?raw%Bo&*8P}JhqU784j4> zpf$Z1&7IQy`7;1Va953v5k33sW5l!I2Win4;fo$}jCh`hd?6Z{38Jk4m!+hEpk7AL zhfR^jZR;--oGM%&RH-s7Dk>gxbX}Ie%d41UXiok<@{9Qw8a5F~COF0woD5vEoQC}g z{lW)o zp=X}P^NI)J%ByJ4uq5Gn_(j^T|A}Tw>D>Hp0Y~r(Ob@yp2De>~DSyY8tr=7PibiI{ z@Yef(1R`|C#~>RY+ROAQ5FcLwU+?vM?LRke^kzZP$Wrsr3qkwZLh(Am2^ zHI1XRyD)&@5$93UpvCfqdySs^GM>5~O`5xqDSRBQR;AQxZy}k2yURJ9Eo3Ticw@2f z2e)JK|3ycpT+R%HT>Qwhf{&Uig=YmHArPTsjYat*P7SW9vb7|4G+7&4EoG}^2gX8I z!ynHWT$I;{!Q)thI=c__yz`dxZw#LQ~xHs0xl+&3)w*%`G zwicD#h-K;X-b^vq*I!_*!iwc$soV?ZShWb)U(i|V9ki281vt*a1?Sy^wPS3&RdL{w zU#n&S*NwYZyjr&KihCIa+!dRJ2^u?l;Oak^>46^1DvItbXZqkNlkP#MHWpeZS#E>w zVtxKj=(WxpT%W&-eSV#N-pxMmVV~b%pWkGk_p;CX*ysK1^8xnxE%x~!`}{Wh{0{qk zh<$#SeSVL9KFmJ9&psbvpO2DHr`Fn=+12UvReJ{4{15)Cjp{CxwhgYYjm>7@;v%?l zWqqx^oY~3isMt?*17N`;d||7aCTY*m12{!K^fK6hn>mrjY%h^&@QG`Ud_lD>Dt|rT zh~x7l$=+27f}2cr(Cm)c!*i%Va&|BTJ*QDFh<41xN1oN!0D>bY@#6oem7d*MKpWO?efX z66NSf(UcF=aX+h}OW+Z_S(*~~9vXQBNuVl8;0=2TypCohY6(EKWC^^AH%n6j|3o7_Kq9f5m4 zu_S^6KV+Q~E&_;nh6D%cbp^CyvJCdc8>T6Pz0t@`mw}fL6y(m}BzqBTMKcm{Byg)G zOJEb;EKLb)KqHSJ3CMBaTzd(80L@6$5>R#qXW`A#l)(GZ$RkGrML7z5&0YduK{FDu z1l(%LQQ*sXvos~}MKp5LCE!gF^}!a|;1tm>?KSWVG$pzk(3~P7^^!&KbG%)eB6tFg z+;kCmNg=F)%5y~H&$Uhp+W?}eNg=J6EQ2w4!!%{EI~uv^GMH8$8 zgu~Ia=*EM^dcy;+Zn78-#oMMShJ(?_O&0^(y_rsjXraqq3t2QPx?1Sa)B=;aEQM3> zrfEvyWHfTqrNFy~O8+(~Nx0Nr2p6L{(G`N`oI#mXOqRh#c*8Vha3LDG=`!$AMU@Kf zw^zY8(Uj<_Kr>Yg5y9PfyEH{`CmOlwBJgsAYPsL(%?N=qO^9wR(2_vCR*Yr7YitSLE=>u%1C88t3AEQG02{;oH^x`( z{eLQ&4PE~)(itOcgI6!)_Fu#srRn_bXylRNe0STW;QUY7JO5fV8<9GnR7q<2SK*D) zbp91+pW!@(W?nhpoo} z`vOEf($AAkx;j{hRwBu&SE9*x{|$FtC1?9BBFE&mtxuKzij4PDo3 zg?>^c$@x#^dlYab;hpY>{o`p#q23l!Sh?p9w!i3H<@{7=u1;3*4?&6_Sze0 zuQ4g|+f83bbER~A{zbqMZ%bJgNwPQIZcP>JiAI+C z%J~GMadMd*luKq?Hl2ef7K8x56|Aznon;f68{JT`HVU6>Mh!2LcSuvgGoXu5P2baDg=3THx&K<~%bL{m}&Xym3# zYL9@Vy2_>A^s6>W?_MMC9e;d~KqyrytIk4A2~aApRCQzUUH zFxPJ{n4hDW(G|>^2n18FwA5`qfj3)IDnCUdH(e^pfK>YGV?y`t)(kvL;sgRs+lAH% z&lrG+Cq3R8fo^05bU4*8oSrVcQ$P&5`Ujt1EeHe}0bP4S{L^sx7>?##Hoz8%WzG*L_yU|4H zis;0Md$KwQvW)J;*FjT8x1o`nE~CT{GTPx}0}6W4UO|6AbEK=FO%W>ysxOP@w|Mh4 z#q%pPa?`~#Hy|G9{*}GgtdCd^!lna6JcF<(W}Ur?%YvDLH(XON6Vb>`7tDNFF!eYc zh&0RXC9?$0k8Y${A3>x6$<(VZi{>48(=|o&HZ*e6MKenljodSxYOj|fni^fbtd2%6 z$_{Be-fB&$^q`TOE|vWQQrQ7hf^gi{;R{>J{^?qK@mz%_OIJMai9kGIJjjvf3Vb~@ z<#ZVuIYdqd+qU@5FS@_O0D|xQ`a62_39AUVg6=D_vf?K;R>1zV7sulFpP6lJBHPX; z6yXW59ZpL+Ltdct@8$j@y7eiW4tsK~tG@^@WtWPXg1e_|as9zWvcZi1TZj8HX8qqf zsBO$NVf&Ke$?V^o>X>gU`wf8@37d>2`l}vD!N%9Dv-UQCh$3r$6$lgjQkz1eqThNs zmW{!et{KaAM!Sis*$f<=~lgAPaYqHM}}+26B>zvVi}UOyCX zgQnLHMk6=f>$CZz(?fW^%ii-@G&j1QpGQ2eu7~XXQ}A|ZdjDiJa)|d0x_zEG(5}M( zg6A*Kn|5Gq=lcIOHgjn6Trcco{2W@dO2O5R9A>M!^n^A%=1d=>A9e%!r%e^ZGllC2 z#1NUnkk4r6Z-zq(h!?c;x5Ljvl2_X>3@IK5^1glVpTzgGhkMuA`?aAE$+cP07zgF? zC%M-~QQdkrIapg41sr*Als?ft+>6ax+_7tiqG3;XvU_6`)fJ!aJ}wGK?+Ncn{Na1b zdvz4nu_wJF@ooKS?@dt{7JTA68VlJ|-;roVeDXUIZ?LDoBdKfs3Ghf{=X(l#RTSPO zPl89%yu7EuBk3%JC&DAK&wDC7lIYH#49`DCJIVF=hoN(JUkm>}`+S6bKFU5HW1l}@ zpFd=uKVqLhW}iP{pFd@vKVzSdv(G2k=acO7Dfanu_W3mXe1?7gf_*;AKA&Tsza*bd z{&!FT@?LoU_we2N{2$2I7f7`f4}^aMeyyPogok8&Z@S2OeEL6975hiRZvz~0K0X)TA<89Ow#YQx8(?v1W--;BkOP^=2i4US#(bdG^_&}k4Y5HuuiJFo)1C2bgB%ye1 z`c`{M+=6B$MoFk&p1uihqNXHnL?e$dNysmYJ#R0GXVI+0DGBA{qfg^a)Re@NXym3# zV!FTMP~Mm@;iJ~+L_0vllVcu%?>fR>rXGtoQd1VA(8x`fg^*7uUZ+0FUKDRdvl3&Z zP`^}t7~VupNgRSk9$}J@JCAOANpzxFiBl5F&Le|2QBxA{LnDtYNhn^g9<-Ol$I-0B zC<*mT)*r>2s40n$pply{31N0Z^_ukq_L{gCO^dE345q9?UbemmZ=m??-u{Sx}I_S#s1W=1z^9A%)5(3h~6;?2~Q#xZE* zrb|QYPE_w8_uC7jjOImG7$)6G$fL+5ypfu+D4>y>E(;;`RH@?A_NurJO^dE73{uY! zQCy9;QBxFGqLG^}3L(evUX%{x7(cWZ#-nIzbcJD%V|ewHbBu@ac4~^_AvAK+#UVrt z)$7^+u@}Z`Xj*iIVGuDwUebOAZ=ciK(X6@{JEBvzh#K7-%MU5i1B|d^tXwLj zy9%Y9=~7=sd5|&iGab1uYNfD8O>vfSIarPxNHY5Q356vDBJ_kp1FA#NUxa$#_P8lER$E3ki3ei{JT>N?iB`rA_HVFBwQoT4 z2=wPoN#|kXGXx?uY&39B>Udu9Ka>DK&RfFp*ENhEY|+vUvoA$-}I z(c?ihvJ^e;ClHP69j4Nw!^($yrbbUR8_&Qhv+2b$cEztD%OK9Y# zd)znQ8tV0hAGh{;5+HCXl&;t35U=xDV_pl{^9j5anx0>PMh@}3K{wAc1=?L0K=6F! zdQ%Crp+?K-h7L8xz|H2xZgHUDpyjI6TJ0F)B!L+vbVZ7B#WqvX@B|@EAVL#_#`PSn zw9bM4;(W9#r2gVuG)YQt=Bt1sIHWd?L=NUFRxTe^d;njrW~?|1jV#5A_nSiSSV5Iz z6)WCrV+D*V&TZ@!3FF<@Mq1LHg}zL7yKqawccCJPR zAR3n%jHjuA!oNQSOK^F)IPthqn-Eyh5 zr~ixQMAy^P0$G5%P5&ETzNWYTg+>nXwn5*`yMNjh7(npu|1{Hzu(ve<0o&02kUEJp znkS`8^Xmae@JVd~2_1FIwh)#=FqSQqVYoKr}89m`ppsY+rIg;y zw*!vg5Vj1-e8tK=%e(JzHojcV;4uS@ECr9LrVu=MP~}(!kH4Ghmj#cD8oLZRs#J8u z$Z;~z7)9iGyYYyEm?X$j5hvbl>TMn;P9zW`AWn>NYaECYXQSO9MTs-e6se;`0dNF& zu-Qc7Cn-jphA&k!M(ji*OEIEq3c+IpRgG1Q*kWS^Y*o0p!7-vYSLqS5i~FDgQN#%4 z&S&4sf-14_{c{H~OpvA`QhdXdZ5}DUP9Q=fMFV#zjB%?R2o=9ZdqWBpzeIDS4i!HD z9KjzfR1il=q2d?#QZ+-x&(X+IsCa@vG%i_W3l9qaPPz=++9dyu2Z$&VM%lmqg$K2l z+wf&;dU*^Qx#?c^Ej%bZeYCx&k3@5#+meF|4{C28jxS%++lQi&L%eO!ck}L_b_E6y ze172$)8NF02oE&2`)_ymnQZIt>T=3L5^y?NtV*S+cOTSW=22w;^?&Q|876c(iX>o{ zsd#u2&`%&nLJ~msj#7^VQh{sHK9RbLtI$j--I~7;a0IW^XjkEL8Y}xOZ+_tleA$}8 z<1#d|6g(~=5RFR+e1~B;X90gd0yg0iamnA`Lo=i6@8Dq=UJH3z`a5_lG(G<>t__A-_Rhd>&7Iw#6yJOHqQ$QfQY+ zf#v`-RZ6et=Kzk_vAlzhy?Dm%A(b(VXhies;oZD?Y2m9oNKDNtisBx$_Gnj(2G8oB8r3B(jSDdb+~6Hv+} z_DcB}njKxGSjQAzZCNfgyxE#^xd4sabh+#y#uUn1eK-)1%zgHf`39OHUCFGs4K8BU zW!ZckZ@Q*z?m#0qT{a6;vSH(cfNK8FUNwJ26Qrw}b7v&CZmx@rf|GLWMzHf@8a#(6wtTP$W0f}zC#L#ZUzcS=->7d z`WKogT?uWCSVC-57V{I|`0@{Y4KzjcH#BmHhz$17@oji?`;7qv--fprSxRf%_KVr+ zZMljAm$8+K>2j%5O?TyrolZHR-b1gn9_Aek5b+H24A#Nam6oGk3U9QgU=KheOM<0R zF;E*9EZrPv0Ko;jo9WuGYXzJ(e6g{YsE^H5GUak+K-dpZM$20nS!?e!K9pRyO4xa* zIA~BZl?~qzS|AW3VUJ)Nt92mQT!!`rYa0B0rc2N?DIJY;uvJ@~bAP|k~TPD#vg4ACA78ql>r|&*ACAwaoN)jT$e7SS@2EKSrUw<8q+;m_2 z-kDVU`>*!?{y#J=y8fnjUh`WUL)-Ts@g`{c{P$?&5T6_L<~$*wor3`cPY80R6=4a% z>c%DnB1?Gsi_o*Jx2Go^HE{_TJxc!eE6HK-Zo0>PM@~6s0k40_-s?A@nbGxn z@W?5zh3xsy;jPg0{HM{#A)Ytr=6R+-y9)ydo+<2WS`n5h9NgHO5Zks?RmV+Vgj(R@ zlu~ZBlVdq4dAWo|3YMc7VX;SxRT; zUjwSd?BQ^&IrzFeJG=@q6VLK)IT(vKQ8Vz2BFLfsZQwms)9TgtPFV)Jk+<5r`Y=3? z%9EwCtB)~rwO3cUvpEEBtESI8(8y9}b0C2TZT*oSJ)X+N;T^3!chEh@p1%stujf0# z9$dhd!axSiif$Nqr>Qo)s!9RjeRyLv#ql0Aa?`~zlZ&HTO{@39e%xLlA4M~xE0Cq8 z0^!w_?B{IvCh`SWJE8XAcZVw4`F!$PP**~jz%LlT^>CD@OFXciroQ)lg9=x#`02MGr{f zLhdzr)LtGBqp8uAhjH}q)mM%l58>_A6v=~Vx=?(nDxpp8X%=2%J(fuVL_A{|<5aa?Sy>(l zys?_{Sb#=ux;*B2afF{DQjT~x+pA1!FP@9W;!Rx zt)LqftgQHz>2?XWcjfK|?{ZyHaC)6$btfG55{|w+f^KQbW>VWa%m ze?oJnbb0=1z!CgYTOvosFwb^`)RkGwx3j!}w^lPE{*EArI=+G1SrTe8I?~>vzJGCP z_O+^v`?B3yc589}%l~;Va!LPR>Bryb$IIkH(!vbDiX!!vwQ!uZ7JSv0R52BAx27s4 zp^=$!yoVZ3AVLF2>ijSji2BHRkvsajd_EgLJ~VDU#9n_;z9N?p~y zLcjRj@x|ztrfep)RjQN4zPCzM51IM?xx+I~=&%(D)kUTv<_Xn>1Y#ugtL^n_2j(?z zMSFz_oF`GYpm|a{Hh&%92tKJzARTAjayfwAgfCe$fZd2jmIBxp2t?z$zRC2AZk?@w zpPvV7Ec>}<(VXb|nLcnXxuRsjab05x_vtKA}faWC^QHRm8J|l>}lWWC;^|H4k(kCA4p(M4^DDO6lJG zdjLmpOKma&N;ECH-lkVn zNL7%1emUL*O`l(iMsB*#XYt-P-0u(D`~4v_HM)ME8%P>_)sTJvAl?j3-`|f$4)MJ~ zr_b{S+G!X-@VsG}X+>Dxa7|+m9Zy;5y)vsheB63HHe@MvS6ed7@=b2XK*!K8pbq<% z?PxF+msc|d@tomJ1R^wN$RBa4_xvn-sg}K4d&2^l7r*%f@a1aw&VA7KPjp&*h`I9o z?eOy_4=$>mGz>S=Bfs+cmh>YX+cK~a7tfjRY@c`LI~#}T?t6Mrp*MS_#B*}J95a4> zKgVDr9(s22k5M(P&mROLK5uY+KE*ye*ym#Qc`*AtgnT;r-@z}g`5*k3|2=%SKK}>u z^#uagpP!p>|85@nN=~=#3BP94%y^Wg&CDvw{?9VXZf@-8tZiAJD!Oh3E^!H=I=aTv zKzz--JyXo~l;BC@UT07-TH9nQ2_AVj5Qy-|J2T`(@aPxGTbFHATb@O@hq6IpeNVMcoQ|#yAnYT^=|{$!l%`%?_GBg7^Qt0 zOvN=y$<^24c~oBQAiG-YY6scXUR~vs{%X9fnm)f0jm(JT$@Jv}qH#m`sazb&tr0&2 zdn~o_D4G@BFrc*=S)~oHs!~9B7;mhmI37YHk05aXiHf%r|6?zX*U+r!ibLyAwn7}N zs&d?T1#haRG+ss{H(eUDytn~;bro`b=}NA<80c8`|CDv`SO^ffvYbp74n0xRp;ig6uq=~} zc!M=%vJQ>hbeYWb%OvCt)(_f?$BrlQrfN##XK3W6OG8LiUA|P$?zVs0I#nGD5F;*C_3A5&WE9?BO_A(| zMjlxr3A^Ost@a{03{8!05V07~c=eS5_ere0S$cHD)xRZ|?dqmi2~j>%r^sE_>o zM^*o1uZ$PaoaidUbR1K!DC3?l&;AZ?s-`f0jYe*|FeY(f$m84DpRpdl%m9dZ#xHL( zoJ3U*Zl~hy)D*=eG;-5L!7~kSq!;K*R@f_JDVi7Eh+&#(c$JkqlVkA4YRcniH1Y_N zhd0Ix$fIm8j}n@fxaHwhR+dKrZ>**~a%kkH%Y(1H_{Metfm~-VkgL(m=nBMi<;7QB zSt3{B&DE61nw{Ufwx&xEDO-cO&7}orC5~L zTyD0P%SJRox-mxUn#*D25_ZkyI=t1If?0z`4iSvO@fUuAhHj@ffZ$uJ3#Pj)xfL4- zgq0O*ZLEM>7Ft{3?81~a-myG(9*>>Qi}KXS<#4dC)>7`s$PCl=L!N5%6S7%a@NKA(z44)M7`cg`~c+Bq0N@Vw+QQ}Mc1Kt?csbVDzyTh&(>Fp@~LouT$yiF6TOhWaDh8L=?#ez3i>4znFC=E;9u;Tr957 zRVrf#OGG+6vjl-E5{@%W`Q|a>Gy)MCGa5LN*)E-AR6a49$tIpZ(X!*X@_R z{e67-n%@2{8oBA-_FW@iXDs0H|Jr-}-)LTRJs!M9zFr5}>;J;rpy~C0ppiqoZqTdq z#DI1Y1`vEYbEj!VTq__k_}1u#CI;>9FcO9rx$WXJen)=+8={nIt1VRyFLdW2s9i!o zq{t191Y0e~6NeLsk&qjVa~(qJ9S9+5v`3^)5` zo*^7+S`n5Z%oy9y454jHS#_21t56GEkW#8Go*T=n{I2g|t}_0osWbSz!ruu*Xzmc& zt;BGZ@s>@BtBmK}fb|q>IDFM}HbCGqETyyaV*y7@9JH=7_T1UwRgjs;6O0*n6Ey?R zRDvAp-v-VbO{-VmyWTg@i>v@sag9=P^-?^K%BzfJS8E-dmtF1ERqkw#!P~0o^P|zo zQfG4{fe3B=kw4lym5al>-`9V1z6|zQYNLc^MK=s+9fVbB!>g(k5DIu>HN}xbBR5?f zlRa_NFB|Yn<2rk3T#e>LR~lNkDk!8;uc#!9EAggk3gdD#a?^z|-4h0!`cs}MdDLDU z52Ja}6^Ciu@G2{JDi7g})s)ABXym5LW2Rpo^st{3yukQ1dx5-yW=2;aS|_9x(E|ih zudXbSm+|ImO5`Opa?>R;#V-;0g!IBMTBjXJfQV=Gp>;x9tq!QEEQ|!+QcYnjKqEI@ z7&Evq%4yac2gWO#?ZvSXO^j~n(7Lo(B@VB)vOw11t<@CB8Z>g#1v1Mo5U)oLNaSpL ziJXC^Mpq(QmyW6>;?-9c$!U0dHAS)$jofsR%n693-YW-Wa+AGGZbXx#D-*3tM?+;& zudytYFW@cK6v}7O$W0fDZzKb=zpBexp0?M>lW1OaHDWxHsaIB($ItM_YRcosXym5L zW1bgByz3{R#VM}b7<;32!a52d;z?MwuG~;Wl3<->vFwJoSyL=;{QoDG1xm3fr$-L6 zm&+k|>NTg_wXWP4MlNAjZgk+S))dTvXylOSVz5lhS978Ucn&(!~#YHPC z{%X3!$<~`^j&10A^Qf{@=ohxBpM`E>%1*boOtlvcUPI6AAQx^Z57qkqxq}!cEMF=% zqrKl$ynI1?dfr_tVEt&=Y&Ux(&M>CpT~0Y~r$I~qqE#Y*KX#8=}> z)eKlyqLHP5bvc1(+-l)?x&=+)-yeb{mg|I%qWRGEFFhp9ZI|>&LLDQskYkm#j2rgmQZq?nz3g)T6N%(>_!^T!LvJ^Hp5s1d60_@r? zwU<8v##m+p=c6gn^|Jrktx#W|i!WZ&*B?M5H{I91Yq!+?zRTX^^vtx%tT z4R3;`&%c634)M7`pU%?)+Bq0N@U-B~rWIjn!G4WBr`EQToi48kQv?5kTHwNyQfsxn z6^TIyKhWL*2igaP9!AmW|HG6~-s%61K!kSs`6EvCEvgJNlkQI!ol14Ec915v`$`Xj zSXhhdEcNR9t^%}Xd*I!H!P)_u7F8TDUsp_(Qn^adb%hS?yqc?2b6JdJ`>VM^t~xO2 zMmR_%)+JBF_V8e_@pe{Kd4_VtK&I#;y*Gt(3Z|y_sD?7SIJuMv(}S!YKqIG*f8cp`h2Zgl zYQ`!)%(1ZouDLp93?y5Pd&g(|dKkGoorz4joEZ?t4j+Pw;4&Dcz*wLl(@EJv#+|xY zEc^jx5Ig*T(c#V|IGt%~kswV)pg6~rZXPJkBoLvTFN$e$aXks3{+f%t_-P=Mj{YAN zNb1;@ac9uBMhEDhne)v*+yG3u^ABGnpXhP@Rg~x`-=b=VS%dx08Fc4$#Rsp*BUR(5 zxXG>=H$q4cbMs8z`GG6(B1wDthIFab9gG1TajgVE6z6v9v1$fs;t~iKZ7?`)9+8A zk)>|>aRSk}^lJ}4XIqerU`C^nn=Y6IO2Jh6U^YIem$%vLlEy_*39pC+KWjsXO>g65?L5ZsE>O~bWo1q?=h+1Sa7QA^!K)_(!ddFTeF zY#p`8lkH({&-nP;WGS7TzYK81 zRQk|ix=eTAwpMu4fsq~NVbShJ6 z+1*DQxZA6!+|50PH&oN_-$x@$-Q0HxL}(OR8f*eE8a*=S&T*_H(eI~^&ygP_}g4yedulW0yzTBkZ$-GZXr=M*(K~FkjE=; z!5gb7lsBW1n=TZolVL(}uSyfbNRPcr95g+;DlzJ0{56%L$u_*Lnj%S~k((}(`RhrK zO}3nnXj0B}cf)R`-b`O0mRx49l1tG1=&D5Vwtzn@s%Of0Rpm(XF}$goBB`N~n=TS* zs;tgjf1#RFNab7hQn?S!lCD&Yrpkg9mId<-yuq4+`8pc8>4K3arGxyXbH#N1RCXZF z{MBAO|A%HwS3Da{M#Mu^UKY|H@y2Tk>Gx>lrVD8wse5wz3Yn~vhF!RH$8B($e*Raj z$3$}gBAzkPN+bD5RhC6F6K}GnXr`f&n=Tq@+KsH|2r2JsdzGw26QdhsjHcaa9U1q0 zFTgUqm72nMCmOlw!k8V5CjG^2xnl4coE`SssGzyg)rQezJ*}o3HTv*oYKo&5jT|Bl zgY9H|M;hI(VgSK+q+MgWu+6QY8>6hOIK##Y*cUgpv4?b8;i`~IA9T|~%zXgeu9S_U zw#4`(pJ$e^>q>D-=U!9!^6hZ<5QvemRjR#S?LeaaTeLq|8|6FUeud^q>C*g<07vji zZ34-Z>Xyr)>p6VMnxX3%G_n-Bo+1#9+v_x$Oy6|W*$Vi1%Gazj;)wteMMf<9ncfa7 z+An*19KL)_Z?~e6o9^xD{4U)PkH5p-<8MRrqT8}(k(MpjLH7C)cpEgm{uVTHh}R8z zb)Fc|F2VqUrzdxr1}oPJNDQX8HuUsvt9!)^T=rNL5`#0)a#d=rwn~*4`0lzJ<|@1n z&p4qgQltl`naYQ!2RjKwXnN4NzN5Wf>p-t@J=!T!c5n@vCZ%8VHNX*E!m@+9<#Ocs zB)(+L$ngm@vJ^Q6O(A&Xpz5)T990`DAaZ=NvDb!H(o{r?Uzjq@qs7k�ZEMV~HCAq2f)qVjUrcivOWGQu;Fg7r+txQEMmZ z22~F$_AKwD%zyC3YQ~Az(8yApc*PWg#|f$%t2pt5jTI0la*d4>mb9}g>-1HH zXt4w>Ql-Lbo0ZX`R1_|{Rb?7*f3EN|9bjqQP(iYa5b_Q%9yk7CYT_Z}Z3JQjgpl#P z-hnvMiFT0`M>1%llwQtn1RTLBHTqx;w_Q#;-iI$+Gnl*wjVuL|lT0CaFrf;v3MNO` zSOLN0@x}&|ww_G6vjX=$_XwfnGf;~t5|3k5p#(8r;noRKRm6|$DesrHwCvX6{)e~) zMhYa?5UkKZ(!evI<2(Waf#e~ygQP(6AY}|elsb@n4R8eS)FzUI#4}xvBlqKr){GFo59Go1Zil zuxkb63zHhV?m2!roCr;@TLXoZA&u6oQgG~f6aQUn(p7uI-c|ZuQ+4pc#JdPYXbuq5 z4TSWe3Ze4CAEcWZGvt!U+L0vB5`I+pgY_>G$C4@svcX5tj*zm! z@1Z$T`Z9kf;D~uYort8KV#S{2O+@GUg5lndNv3c=$9)s0o0xX#83h!giT zHWz5$(&HrHL`^O$K6KW8yBI81?L(gTT1`KWqaW+&#|HAD6j&`$+ToOU|R{$anf*b&Mj4tUwu-b)>d}9oU&7d%~|w~jIm&lzZV$ZAS#gBlx(RNHhERk zeHqx{Ue5IOFvL*=F*Ha-IzvG2%^knWsk*gK9P1SNguLsZXxPrr0UUu(Sc2@Pg{FGk zLRq7k2R}z?-Jg)a@7vX-HNUq9vCt5r)>eSmo6@iDji; zkW(jwkfL*x5IpXPjmxRYoltZNIxn|q2qH!A;RqhRZ?&iN7E=f=;G3vdB221@ekTy_ zm%_Eu6{jrH{`1&qpFnAcJICBoWf4DNN*5RLPfa0$jPpEo_&$ra#@e`T{e^;4O}l*( z>vUyepzIWE!Gy9U`u8{GjyJ%C zrVz2ypIBY2!h^cmYHo*hgtlXhlc^b-`in(3lilLRqQu$~JUUwtH~N)hbH~hNnUq4+;b#G{uU1a5j$g@>J(Sq`4$EI>*yKo=RGdFdwrgv1SUvg?xc2#D5^Y zprbnK$~b#=Vppxa61 zIu)t*y{7))P3s;4(YU5H-W@?CHV!O<)m`yMwqM1@D$Aey2C}43DMCGGPvbMD5WI0c zWeUL?7j|5v@pwBpS8~Ok@?$gya;X(*_Th4+3S#VxSW=L$4W>e<)B07vjiZ2{ThqVQb@sf-kvmf|fLa&3#p z{bLBSfg>Y-ZD5jHb?<40z_Mfo%*0KEGY+@HFVc*o56_|U4GP(t3y1WkS0y={>&2U- z>DD|NneoMAZ#RL6GN&H89Zx3yufPNlX%_(jTo2Y*3g8+vC%Vmfzo7--)k#*sC-F9E zD&P}ndrE z1`s^{98D?`8h@fsBu2aPJ5f;Hn7gc_&h7w#OSW{Cx5tpmJ5dfcEqGHjMfYFoEA$)I zktY$P6FJfAas!>n!S?P<;W^aIB8Kinc%5Xw9)Pz=)35uXk)>d=k0}HXCRAPje+83K zYnQBBD#Vf;5Mi0YbfLM_jV0j&5>gMT|H|Sm(UjaN1bIXZNZhK2g_29{y?HU7L(NbU zJ|GdQBuA2q@Fr=x^+GhV6iGfzAVL#@==%~vmY2K-`jY#>8q4PVO*ALE%{ja;5$hx? z;BLH4nhLlRjofqvv{SaE0m+~3eg7hw4PD=d4@i8qkplW3@b+l>{kLf35WgEF06d4F z-HHK369*)aLu}eCLE!kfwx3catjFZ2+1KfZ4S#JHrji0 z9iGDoatL3QWVf!to22R1RcK@>k}M|>4b35dtgsy746w#Bhd2$*iEckKR1V>p*T>+3oxNJ!|#Etg8{{or~UEdFtLwL230{Un1_GtS3Q)uK6zZ)a~Jcpp& ziUC9ubBH!?Nm@uGeq*n`=g~gVRo~vB6Pvs;lK7s*o1-bdrwQ^%$R?(H^$$xaCfse^ zqqGA=JPG1~!~4~%m)xt2#oMLn;8AE~DZ1=NAR3of%-~80OD>KAlPr^qx1x#BZQ=)M zNWrU^tcAnyhG}Zy5HxbrwJ_PIg{l*LbFTaUQFkS9ZdFykNZVP4Z?YX(kC-+71fJCxY-rQ5>o$Zn%K(fxEb)q6qFgDuN1%qNpIa z;Kq0El6Q08y)SdmeR;{~?`Kjv)Bip9{QvjdbNBEvNTYpXDudu0Q?8S$00(cAp#siF zBL^tJB2f^z2J3VzAUc?99K7q4O;VQeuJGD>JDLqs?JWxoL8KZ=e(_ekA%=o`Gew>Z z`NdqQxz_{x=DWWZp3AS|U1&I2v8EZ9UX4^zzl^uYkkl`tk(DU&c?!|KoT7)Y?{&I9 z`u_&Tgv=(MM7zYaDF?52NmWw$e;jX;A^(3wBX^wtnbcXzM8%<>3C;W}fQV*D5j<2B zl~F?Z3cNXntS?0)2e59@@r&Gnbto1P{@lR=LRi7Jh+9AiE0)>rWg}L=_Wz^Xd#_a= zoD?fpO5`No=KaoSG3UF@qkwKn+5lKv;e zAzGOuP&dyYZY~vaIVqk02o#3P0krzn_<1JvGc8bY^apLdBxL%3wh)m!n(Em}rzJoC zFfucvR=9rMm2p;H&}$r2)ST| z+PWx2d-|T{Cs$^soP07}sQ89V&qjNl*HN5VN}%1OkGRVKN1~+0hD?D34)7|eapFk4 zNruVu;b>&;FVS!hr4X&`4x2N-klf!_t+>fD9QsTSjzKP#^2^{nunE^|Dl&Kp+B2py zcrKkdX(9tn{Zvhyi?`2E6T8vK9oIzP5WI(-q&G^E%Tfw?Us$**ydJJVd&N`_>n6~H zziz4)F2mbqsD(?>$Q{?h?4ewt2wJG-{ZZle@GAHi+8?GWIAS6dc(qdb|1jPvL;i0= zBX^wtIm0E_O^?ys$QK5F64pkLk-M8BX?W_{cyW;*-i3sQYH@>qc0e| zAiNSzMEk{53D21z7^t;V^>7^CIzv4igGTPS9+okW6$|BZW-#YA$rbm6*To3hKc>1k z-bfd^TB`bR@m3n@V-StpaeXYT7U6*uH(7woze>rHTdw9RWnaX2OL%2mi}sAEGA0^T z>guOz;u^ethMKqu$5h*dh)-00vc30X&D;d*Rk2O5UM0E`Ws{F-jTv0Nq7%y3)JpgRKSaFIRz)zuorK?m+G>gTgV4XWCCrPK6fv330 zMc3r_mIc&6{Dyd0MXXShIu4cKj$V)g!_g^K`mKgCb=6=`RKpBgas;lS2mdi?9icIg zXeX1e7OLeWxjh)3S|KxYfwh63r!$_Hb$%&;`dNb-g~r6{lh71ASk2_p^>#=6o-AgH zF1<0IxKgXE%>Lw%lOgr-9N^YwXY#3BHSG>%$hHD#>Dm84+s{tuo?x3q2_ysAMKsp$Xdx|Pb#K*_sl{*Si(fauRzKM<-v|5g|)V8hE5 z?R}uBXB!Kav9oEyDqni}Vju{&?xFA1b*;}Iq@}ej&2r;8L@a}$UJ}|xAp(2(;2SS3 z?xmo6FlLimhwI^9%9qAk7n#U4!(O30>lHVL?hWt9vMq$jdW#gIm8*R0 zO^;NeIHvdb^-y99w5;*?+&C$2A5p%xy(7xLZSWAq7M@kI_Yb5{`M1`n zNjs?0rK(am)pSHp+PYUr?Qsgx&W;Ek{wNjFRXQq^yu0X*)`Z3BfFpShIwDBZMWISZ z)DQn6WQX2s3n3cITnZ7`5!qZ(NqeG&lA`sSiBEvCThS${zF!ot57X$A9tm$lvBJXh zY+WeSd^B@m(9MypPpf7^vn4x-eeJ{>heCA&p0EA&g0}&aVz@%8EYUTJVLa z@~y+0v(qI1>I0iXX2CraB5*VjnA_Sm2%3Ju0Tf?Sa7<+0ZF1!0sPOJvXA2=j{w!Mv z5&sy8lQI7FZ5=C;Z4Bj1nZ7LVKbew_jQ9ER5wB?azC0;f=>i>F=ZiRZzAc21Kt!F- zS})9PDLJDqSrMV#4#^ES7V<-x;VNGTYkax$ipVHALIk>@xoO6`u;NUgTO zTiPS*yk1e#l#*sL?z6Un5SscFg$V9GkGpWnlp`)3zZjNl-?V(nl=H^3*TC1vC$cxe zSN2I*?n7+*$o`Z3{Y9hI=B6gr=-l8GDeq}& z6gg-JBYmQbjcfTsZ=O6ZW3^_&xSTc7SSIf-uyNB_zn4ZlzjY=d^`pp zZuThnHM+i?eJ=c|CQCVc4E)`d*<<1Jwb|#@qc#`JvEo?7saX^vFiy38nstWu28`#l#t$eLG+o(t*Qu0Zrhr$b3IPp65k3(|tU=^JBIU ze%)J){KVjq4J<4mgcUPvRm7*W?r87eamI#B-l4~B8i$PMw?!$aC`5aPip_7==}(QgsXa+JKa;FGz_)C4Dcb8i42mn3EeTM^!o ze6_vnA~Vl%OM_(2WK0^Y{sC%%ld)EVwH4Z)WUp7I6s$B|$?t5vDY}y1P>8^;qrg!0Mq!hi<$bhS8x5jjTk6 zskRUzIxr=LiVnZB)iaL{uWxU3m|Gva$9B_m*p12N8Q{=Xgb0J<-;yXbQQ~x4Zbg*X zMj-;DMC;ckdUuxKN~RJV9O27A^0>Uv8t-P$2OPDn%qAwky z5Uq^R^kl=Ljc}o)w@wg1z%@{I3*@aKU@@GwYbd`N4OiRxPzbwb3lTXDJ=-(;-E@Ha zKOUL;=fy`!xy{`E5nG=Lw|~$UB67Dc+Ub-k8Ca-m=Kdc?=KjTTxHg28pO}z_AKLm* z(C|H5h{$Q^-vwKs(@w6C51JnQXJi~Kh?D)-tng;-;P1BH69oLl79w&2CYqgH@#UyG z0JGWIrBFUDtLHhdaQ6p%>N6a1NKU9rvDe%`cF`B zqAi4<0*hgX7`d?Q)&fFUvBkC_^O4I_?VTX+p<5ne>vwL`9C8_JjkJvJDw2|K&DdqH ztw4mv$`rz4>|%X(rS~kj--hhqhRvHA|6bP`|7KqcIFkQh@Ir3ZAzQVf##;-0U@k-Lo~!M zISV!>zy)3O@-!O2Vq4&{vnp)lmQ*n7E3L@^)j+m1UTQFbMzRFCZ;hIuNMZ)q5i%E? zW(yHH8FR=H@z}0C8FqtV;~e8aWd5H^&xj|=^->j=KhxG?~-Y7>>%iNjlk(W>+Ga&^ZpcE3JBYgV_RXEOYdZCRMk*xRHfZnuelCV z%3w4ZV9Hh|LTMLJh(H&&e)f7kx$;Q3d1KBg%aQZ)*7!JE1sutNwSKZD1?Q1D#fcOx zTWP@dRhSHuT333f-0xU_u{8DO9qCzcEsCmDwUxnb`V+#=>HEXkUbzv%L8j}0J zLEWEi*kZzu;nClpJp>CtNqT{=Tay0W_c?9kv|g?M1ae{W2^Tc}_66hY2p`=@bUpkQ zIpQbX++3SVuUU4oryWXzUA7RB>M1}meJ`X} z4Z~v|^&lw6-syL-=1z69gzHBAHxsKT`vADbPCEyK4R!5w$2PgC0wmi7S>NP$%7am; zXIY$iNOTkBMB1}K5zrKBY^a-A|2+u>#9A(yYK5B*;Ku9J7}=M zgbuQ~yF_LxUR#@9a)+v=%($krrc zK|)%e>y`rjiz4&?{5T|LtY~kdTb*$@+tza;fSzRw;deeJ9PoxL#yTtywtx^;oM+pR z`B>-f>1`eB%sj=rCBAWp^M=+aN_)$`xR+i^%rzsM*V&3f=;|s8(Z-R@j5A=P8@Z!b zYM~!$jX$&R1RTk0aAvrEJ%QRTZw>Fin{6RPi@1?O1dd^>hv}>M>1?YG?uRcM&8Z;FxSw!A@V}lo z_gq_>x*zh2@!B(rW8<|hxSpI~j=S1)L^F6H6{{zp^Sz4?W97_n-l@PWtHukMenUTw zQMGkcoGeta84K!0dM9PVbEDTQCxm56e)<@#OQ`(x54I2@4*ZUJv~`OxT$H`*^D%yJ zLX0j)$qIeuS4q1Muh63?jzjOhskKC**=Yc2t4~s`Y6}KGs^p#(cOcK+?~E36F2DIS zSbu6@TT2ZKCAKxT5D|)vW#Wfytd=W<(U{lE)bnw9Ky*G-Aez2rNjya@@FIX005pT5 zm)iPK^f528h452>364r$&U!iv2w_E3S;&%2a4+C+e!}$Qb&*K|?hl|QnB^T;*%B%= zaRr5FV@|#3jA|)XEaWmU0|8@Tuk(}o;9Dbe@M3sSrj%giCklD5>1kTr&EdU!qb-Ec z`g<8ct?Ox7@LTFdJ;<%gMDgAYh;sP*PGnRpi`U5~S#_C6zQG11@%g5$FNN5@W(yHH z9mkwPw;<$T*`@^VT0l-pDA~Z?DNK}$ZYndBNyRdxA1ANv(bwW+qMnG1sAJ=7gG3IN za=3MbEdGk3XI;W?okHPbw*D6s{=pU^atc>@cba-0A(xt#VP6ls)KsQx;oVWC6|3P^ zQ+~UuX9>B@w9yiUn)zT($XzA#Y$5#ASmXv`+K+W;77)S;mR?vu2rJlBl?8;b;tJbQ z8lQZ;X1dMfqwOkm?^bsIW$Y~P{>#QW$d|N6?X`d#LDkDQrHM7obmY0VViloiw=IO= z_)J>}&hfQfO*n4loDoYJro*O!N>z?ym$!)7X_gldrb*nBeVIwh)51iz!6l zG^lMO>OLFptIfbUxb^aM=LcHjek`#rW0#?H2$ zbM86CrH>%TV1r7j0?)lR2CQ#H=JI)vP0@16#u!?z(iz`l>ono_yC{UkxX#+0bLoR3 zIkLkp26If3Hy@46n>}!|82FJEOQu%UIjl#*JM-b@&TM%c=x=Z(n+1h8nk9$MzNa2q1+k8l4FigiIKx+d_!gaIh_eNYxm*p;EPnm_AxPMxV)!By96FrV}IM zzMCIM(6*!FY+Wsa(lNFWf^g<)3$_H|EHqj`2rDA$|L1Hfq^jQVUTW~!$Vi_XhkJP% zN>y6=uq|tX__QrVvxN|9 z|Eev7=ua5`ld(UMUk7O%-aH+d9_El!0OH9TrNRBn*5RVTJ!K0aXpg7^p9!}Kjlzi9 zcZ1&QuSJ!uca!^rc!`RuS3Na=1(D+1=EyufGoGp!s5p9qt(SzR zPqu|n938<6Ph^zHUwEob-C7uR$7@r|Zf*!(O>+3dMZSlLb{IZIl!IzJ`~jja_5jh^ z2_7J#^Mnl#4)LZOZME0#sP)(PX0C(zn`C|N=JN3!wRvfGv`}7mVKtN5L;oK9A|7;l z1ynJ634ADzH+7R8cpKPrSBCzgk2YOOv_g;QoHm#GEPEmR&9w(jIcN&`A3LzqF1IXX zm4}OCOYlmT{C?ML_OszCtbwt|vlg?zsXvWF@6e@xCAsW%#AR2Lk2k`H;!3@d%;TL1o4s{c{OhbeNS&kmOYWjh?5RLMiNh@3Z$KilcXn@-7>90<6ksX z;MbF`0&8o%lmg;+=m0Bl1S~gRo9q1@JhYjESLIgL{~}p|TOP^-Aw{157P!6Yf3+obt|`d;Jt zaCr7_L%YS4{WVS5uh&SGz%6)-3?*NZ40OcJo(=6FuauRXcEw;Y#l15S^r8Q+LOA_ zyKM2w)%l5!*H zv1V$7(#aeG2q6>wg|-l)5znU(txO^)A>BJmZh|b+WGa&TPln=JAajlTXTc*IE^NT3 zMJmod$<|Xs)W_RGMDFaaonsqEoYJV|>A}c6JtJNmOVRQaHz#dX_1PvzhdhtA>A+8Lin9+k*JDXmo*>@2w}wpowapf zTgk##Y#X^@47ySHjFG!XV!DpyZ;=ThM)pWT{DND{JUiIs9f2LrleW|fbv#ZX+8Efn z&V|MG!ajKhZP7QQN{nX2_wn+Sw$%@XhDe)eEBU#UtyJ})vKcg3r$IK{~?vGtH}^0~GUekWT5 zc+p3&SY!bqteBvWu$UF51G?p6-h$rVPX^d&a~k*F5w1^y&$fGaKo zyN4@nSrx*#+!i8oO4e>Kzy$`I+zLEm0H+zZjui_qpbEAZ%~L%=TU!-%#%~&ne?%$=l&GlbC23W2<1M)oZsrfpss^o@U5sa zRpQ~}R1fz-fg!Wh9$SdWJ$&%FyH1z#r{f}Y@4j+Qb?-5@z7b9TC|iig-P?Ogrn0p< z2v@|w-p3-m(jbqzUK*LR`{KhefUXY0jI>v>5_Ml>>o?*0vuz>#uD3`!Mc&F{zXgP_ zBBH!?Hr@RV54@E!KJKrIjQctC2GYTLp$hF+*m5RlzswfG?{Evw1nq2{&jLbN@r3Pa zBe4ROZ+|kity>4@Y=(;vs-rP@Q5i0Imjd^fTB9ev&z5fHr2A9pp9Wl7ZjzTPtvqVh zaPP2{hfvsODMWkHx$dU>j+VmoKim)wn^?)TARK|%3w!r7`C_%=+lcaOGy}Y8ihYF- zq8+DQhR=Q%a3qpyM>T9jk;ohfte)Ce{~T|g;jWaQp^>@oL{t6=g=pnGUUOaa*Bw`` z4wh4;OtIp>BD?R~*i=;!L=QmVl221XJaa-phTXV{87Ks$TB;6?$D3uSgJaRi9oIpx3neJAv|VL3oVGj2!(ib7X2RSiq`2c&5FY^Uq5C4DEH^62yGTb#}-0_4koTpq2ohgtbkRoliC|Py7&`0(t6j@ z?_!f=t@LWkv@wG}doy9MSPWL+@@y^%5iAx^h~Qw++B?tKWi)GRCp4>e!@?hT#DD|0 zxYTcOsU3^_$LwwP(s*qH@*lzyM3P&Otb;V%A9FIe4z7&KzL0;fr{C!NV~(N>SUi9z z8YLq!RHN(*V+AzIx3;%Y_HL+Va%r*;mmGB61Rbx`JO`mREjVcz^cKt@FPvURM?^JY zOHJCkSG3fZQHa2n8hj;+b<(s#aWa1}75wc#@b^Eh@p$$^z>)jnmGQc}>3L$}ZvM@)>e3T8u60O1i!wGA|#(&!IIKkl+UJK4U5D zIbqi)yfeIiueXH|BarJDMXlcTxtbB-?$4Afbf5nyeJwoCPr1fmL!Cs)S0bY%&MB#z z0*~L(=fd;+q-z3p*r^HVmux*NBF!DP5RsF!M2bk%AF*5^1#h#+kHP#lGE$bx(TGt} zH$iDBzqa+HAmc$>2tOGX>4C^FSUj|V5LS%QinMa{Ndsq0k_7ZjWqNuO_Cx5-r7!wk zOA-T3H?>L@2JNQEF;Xxj@ML;FSQ9dT@3n>S6Jx=xkO#|6EFgpxFSgY=u>um%9qql! zrnml*ckJAfQ!GMHA@vGpv_@yOL%sWD$?FpII@)#hYe$p&>Lp7FlV(!sbX$>#Ftm+A zSY)5J2~p1`H&uXFO$()1p#<-nO71PR#=Y6|0Y`FPZ63Ui&C5-&a+RQ-3-8U0Ere(< zLlmOr;dK5+y5F>%frqoHvdN{Xjn6t<1Ld}0Xr*y|KY7*x_PUa?6I9!zY{mUo+xkw3 zxn>Iyx%>OJ<@vS9dhdTcGVjlaN7;DMO`QJ`Th9sSf6x{pa_9G-0ZGI9(lC9gDz>Xy zq%-!7;{S1E?q2|p##a&!FFaA^g)8d+p{@4>0pGKQh@60VJK(xzXE5h#o&V3soZlPI z^MZpN|94xj3CI7%79w)TuhZ5^a5M2iPmtU zEkxvwpL0&e-51*m*C~>hW+ktuBlG%PxYx|xm!Rtmq*TS_j;+6h%g?ukh}`9UoA;;O zB6(Xu@AoSr^ZWd`TQ9na^DndYoN)f7wh)m!f8q8_IpyYZPTnn4%lgFg=Ew+G6d!FY zzDe?Vqpb%83GcOq@RMLM*CD1$*kIZMLRhiIHkaVjCHeNQ*DZuz45rhoL|^2hwP6_9 zLt~d>>w~S4SnUYSoC)-0ym)$$vR=G2_Sa0D{M=S9LUBK%5N(_|SfXKfXIIWSX66v2{2u>@~*azpC(7pcA6 z)8Re-FIx!Fx}IXBwR&x7<~DdlbvJpKMq*%1WDInZeN5EZnu(OvP;AKLd8I8x+|C93^0@n_e$myB#TzV%80Gcgxg(Ph{)Z3=q{KgCu`Mf$qn#ugDG71LEgbWf^Lr4 zu34UVePmq3<7H+Hy$D{|LicWra#NI6@xQjd74*E;79w(b)@`G40udlzy5G!{2UgqU(OHK(2g0bf!5>Q)z7U_D7wwozk;G$Y$1#(vfk>nQtmEb zCTvHhQW=Y#Qi3o4vkx-eAm{gf|qYmh&HCED@nj2 z+iG@^Td87e;W_J}F(5! zSF4j#a+#)Ef}7u6nxewIBTPFIlFo&fJ%(}xxi??*!{|m0aET@}gl4WV56KKkkSA-Y zAxb0Y2Wvv6vc0wtkrOj-do@?dKw23)tD2_|tTrx5oe&ujz41|AaH7NuRviC4Td#@e zbF?i)Zsd@wS<_r~FIU|MkS%+&wcdQCX~1GW&6JAV0gCl7Dx1 zSnv4d*{bhF#=;7CM}S$8NPAXzy}o7!>)W>e6qJ0!7Q&bk>oG~+#%-~knW9TxRgXRR zj(7j*lUGa4;V+R9F*}~hB#OLfbu#78wmuVX{}Y91M}HJ6K>}fT zN7+L79d423h(w7s7YhhsMMR0x%uP;tWU%0r(h}#xk#XJ~PkSXQgr{xU5`;Up5Pnx% zuq6m*tA-X3!it~RE`#wE;#zw*)c0-4?2m1M*F4DVD9yP~kQDXK)+kE9qdv1gImC)i zR_OAaw2-M;7{1P|QHVBnfj#gnDG8OC5?vRQ-FruC+?%}(a3tr|ddSj`{-4N&uVz}M0NJhZ9OHF`!idJ$elfJYhfQ* zT7mhh7;DIlQ)SccjmqV{@sYwlvWfx)2Myex0i}n`{+^z+j-Nv|oxtY3&81SocVJ{~ zWL}?3_m{w75to&!qyuZhyL`1RMC4juaPA0%RibvMyobK5wAIbY@2Z~`nd=wE_mR?x zUWNv{P|C z-%CmG`_ZoFF;QHa^&Yg-v^N)JuK^r6(R)_IrCEZ-fq-f$!TMcz!whfEdOJl9B)OF- zUvr9A>3uPfgiWcLN;2uYiS;{RH!ej~*#0KosWa$HBY7t`{@U8~k~>r_WyUpZAA@1r ztD)LKd<}1*A?;s9BXjqOi2Y?-2+?ma@rCL)-b$?qlxgcjQ7`OMU0;E1WP??RL?pSA zqR`AAht}nEfWRfgrctQz>b}M(q|`_WKnLS(GF0LeiaZGd&@zQsuVwmT&vV0b{A|2G z4P(!<17eS#W3O^**h%1xGbH;+G_n$Q4!4C6VTVcXzbov_2X*qx7WL^*4*U|bL(HIE zYZ`ct2o$AKCnfX@;jJ=MV~QeAg3z-{<6L<>^X@3lj ztc0RJ*g}X<#KiaC6^iD9PB+0Bo|IOmt#2aQv^3T!8N|^bX zErbX&OltpKVP*+cC4JXjSx;`<>P}P*sbP3)#Lv6mCB2SXg6yOi9(fUHu zZQ)tJ1@G9tJUG)-Obs)$ z@P-+ZJOhoagqdl!5F*SlsYMxPES{umey(RedmTLKdebPrKJZj zK_79F4~#z&nJ;I=3%oof7k)Ur^B%H=5aIt9wh*EdVibnzguXznXgS&QNIQZ)Vh@Q| zP%XY6oAYS92u+~sr7Z}86cn6b1uOI~fYNd4JBJWGL7y#zpr1M3f;&M!3y&5M z!isk_r{CuMFm3EBNXG@^u?JsuU72)VWzuVvE2V0xQia!sBsH88nHrYUZYu-t+>}Yj zRVF=FgAs}{HrdiDl(C*dSmX#6VYOl8@uuZdrkppPrM{n;Axq8!CEs0(S?=a*;8$yN zF1Wz^tqU#~&)x)onWZ;DTn~S`czkX4ltU@vHuiNI``XUF&Y)k_?2_1&DLb-D>F3)B z!tnjrre)f&;khDGs|2Z)!dn_$tkR+#TL{sX&ZiKq45a}C_wct+laMJ44HV_~LEa2j zkntp?dHw|#_|`{yd4I*tm*JF$oTC4OE6luOFy+24o}wiuTv4*p(EnyjpXigHq!1Q;vQ7FE z5VQMORg+G&QYcqPM;+g@PRk!?2-^!UxIq2&7B=T4P#7))Hl=iaozlj7Dx5Atm#?(y zehLxDX&ZXs*(Z!-(s0ckd6ZthF!hv1F6UivLE|sBki|`CFPgGAD=w<0cD?J-GL`-HH3Kf%ksTFNdTQ59&05O4t=Oo;N48vP#4D~9o!^`>>TyTN%+bz`H z#c0o)>aH&?>`w4nD#7C-bn%M(_Sr%R`L&JszVe<-u}FeUa;Tb5DX$IP+Q>X~9O|#P zkoud^jx(ixe%v!W;nh>&{zi293it1|h3EkHGhpf>30FQkQd|FNBjdASAkTlPg*@Mj zc9JR2Gs%X(1g(?8?hnwVD(rsO7Q)Z2MXw+_7M5^YKnN>XvTp$)tavq@+p~ZWR=g_A z95pOa{-C{2$#<_Wm)#Nxk@65`&Cgph-yCo)ts@GRR?RevkgLHET;i=Ld?kelOnieE zA;V2DlIf(8Ph=bC8E3&uP^mphcpA#LrC}@D-Mp6KD%#CxN9hC5(SRe7Qd`-u<5(~^ z;MGOVcQ@c|G2F^|EC`3dFsD|_fo}-e5QqswfC5Q4p`m114$Q>;uv|~)^ zZ@h|6N580*Due>wDnlXU(8wJZLcR6p$9(kP5T5>bqTOLifAiL#*Gx2DkGI8;^y|>b z9VdMSYyD|=FRVS3N^Yu>g!}zR9e4;kKkU=Nx5Mk;8)y%i>Y(waMkNgBtEa|;d+_EN zO5-jxa>u37$EA@O<&(%hIs7ZU9G*gZ#Z(T5HA@Q8UX@e{{1tDKp#+{lBX?W^{Y(OG z&K-qY>tULzT=9wEh+l+G4GsecTncR}g0;;=&{!!|264PmhBAnukvlGfIa~%8!mF`9 z{?7@||1PvcO!;5clz&nimH3@_YYd6sjz;b{@pC!x`=Q~Neayc)JoB$Yd&HFa#yeG% zY`~?}QK`QeZ;m1L7om|mPCak)Lr$*j`k4Pvc;;_KJH(Xvrfr_qMkW4cyfucz--t%; zIPptZn;&*y=W+>p{bIF}-0S2rX`c%2hpL5~6!NggSNC*#_r}28$mIoh~i_hz<-Pw6#-( z(TBIrP#8UE+z(-b~6Y!0u64QQ{JMunz%f~b-zfs^qj8A{+JG;+r! zz^59^BaXs;DLnfHv_nkUZ#vaTYoijM!&_rWd15d*hMgyT@d1X9C1=z>WOypP9{!4Ul&KyXZ^Bi=LepBR zLU{sjrJ+zBLn8+W#bR5!*xAnZKwChFeY4AKx7QFWU}t-e)y{T{J=pY0hitu5D zJZ2Mtd<;wrxrq5;w1Z3qvY}yivY9}dR998XZFqAHm2wLjx#LPXd?=sHlR2s(csVt> z*DcX=+vTF0$_!;vaAb!5)Hiqa%kY|c0PQMM&75wk8Iy{u>bVbZxS@J}j7ILbdY)^f zp2q&kr=+>R3LSlB0R%3kGgZ=yTB)Q)C#b5Lfv<$2s-~flJFcqUvRi3%mrpY%hS$t- zXs4KJ=2%0`_^PNX;uyS%hKe`}jofiXtns-kSt%sFK8kl*K9!7wSBZ;ul&MNiwNr_% z+NyE}@n#z;Cy7SxxN_#hgjCaLa&35>T!VItsZNeF)QM6_RTWp`jWkq64UHV23X5qn zG1JBdODVJ|ii1tjm&^fO~o5o;Rlu5;!Ir+)fI63cfSKuk6TKGJY4*kj-A7Xsj*$v zViDFosWon-;4x&Nfyn{2YDy5v;f*s)-!c^0f@6y%!sZk&Q~VJ0G}`rGbI3{S>+lZM zKF6rCty|S-%C=WaHETbBx6+XIH=&WaCPgrR1BGa1pWj>`hpGC=jFQk?$iwNZB>Wiy zgl`()9Sa0JT0^}oK_ds~#bRtChBqt`vVagh;t&;nV2{}Pta#?Oy8f(J?4w{*$TasuXxErF z_@gK4jOq=3prL}QDsIIaXsC*t(Z~U+u;@HQ|HDF%1w;q?AM!N)PPkEL3wiTQ-W2+1 zcu78j=EYQ!jn9_{M5%^qDgDsHc*6{(_z*=7?1$PHb`Fu49iThx$dbFSFIxDU(1B+@ zKtz)T>o#LZ zz)058UGj9Ta1L{3Y&%Vmq~)4RTjSDf5pX2e)#k>TOA{S-wFy`jsDE=aQ1y(JqsXM*p()tI*g}wh)5dzuH1@c9YX=*tMBkr1W-gf@iy8 zyWxfsIbuKax2>U8dtwucOp;4c$`fuLTMK63Mh86f2u{~fh&E;-^E{X8l9AI|aqfS%Nq=Fdx|(-k+OoAw(P5Kp_J25osv5yCta+=76maejY; z^NU{DNW-ZgM_Ta_Mc6xpcATQcs`kQDAk{a!Yvc-ee0QqQv_cK|u%FZ4;WM zI|})P2^HUsjEZIPJlIfI_=I$P%hs17Xnfrk!cT`q<|~qC*5oW8gcYx`t%$IK1<+7d zOwfVZO4EEmJ^PWUIx_5ldL~#BGDDkg3n64N0U_2I#i4wYxtorWJ?LlW`95#>Z!g!7 z6X$i2F|#J_6`mk_(Baq*+jQ=x=|iR-B77V{Ap&#g)@O3-O#B{OUtxnq z-`M4h$S8QW5d{f&XO0eH!7e2OJUu)c+br3z4NJ3kkqZHwTx_FLma~;YWS*WArzbp} zTp~pZRos{h@5YQRga|uBwh*E>Vq}Kujkbihf;I3^R!k6rZN;~613%~H#oO41s_%NK zo52Cm4C@wor+&oPdXN;a2=Yc-5=4}JuPuZSWJDw^63&MhKqlwtU{LP)z8M({a30Q^ z*?@3B%BSN(4Gmwj^`W5QtF{o4)35}3McDA}Rz&ilJq7nzWK1k29UwJ9q#VI#-~M3h zNkPW%Y$5z)Sj09Fq}d#z1%$9-b(nz*tWAHb&GW*$+zYF)v`k$8bx{28xWQ(;`1<&gKG9e{Zv^Z~IggY{lg* z3b7@;Beh$3RbtsDx#q-r6;tz}0^Tq~hI43S?llpNGqw<-OJF(+)g_!9-U=4HLRqmg zj1|x^-PqnuQ{7vrIjJe40W8MzGc|Ow2kx zldr@!j<~5kaz_7)*7!90ZNQOxjoES7Oi)SCyRkJ{{Qcp*_)}X55hd=W5UrowS`1gV zREseoIP9NReJlt!fxk%`dF#jzAEPf_!bt&fD8Q??L( zH(Mk=B7~j{yE6wwhwk{Mbe4Ii|h6MD!$Q(K~o=G32j#_^l-g`f^g%BG49wVUDJ70Qe zo-fi)sW16YWUijaa($6)s&4*6bSxl*6|7IOfDl%&5u^o# zu;O;x;S;d}W(AgZwRIbF7u}!kJA=C6(Uy#$YR4k4X`{y=z!qu9tC_q$8SD!=wmOMI zScGbuey}?h@a7CVC_p+$cYkHOlXr%FOt@$!c)uoQum{o3($4Q>&jcKanA#DV1L~Z@ z0biYz-ZqK1%5awRWfVD(*;bC@n)7;y>;rGg*Eg4aHQ0-re^V%~;hm|S%T_5q%9vuW zdTJ+iCEh$kt}jO;bKi-0{c2kX(Q7cph3Yk4Os#02HW#Hv3Wc(pgli$w@PG+F%kNX> z-C$HmWqt+iUDM#ByBx9}e6*EQb@?T{afZ6Q1C6ZcvfYa4O;t-J^1h;83x5f(g+HU6 zVycBBn?xyJwNw@S32&C63LZrxcU%Qa`Tf~-6(nKw3^z4b+>$Rgto}pj*su~Ha9NzG z9&|V7)MGq5%N4%DSiM@Kb@TuVy;ngsP_KK+*p4p_+@YhS#!Ct&w zhB_#tkvpz~Ij}4mAb}5rm%#hc4l$L$VNE2^P$iZ9_ux%3WdB`g5Fs)-NdtuxfbZD{0qQrEjr%&UWHhK!`Q`<82q(_@1j< z+Pmj!`ubAI8Iw;8U5pm5R(Z8UycQQN1=G$B2&}4K&{V0+fc^Dx#II#@pQ_a0a>hbGCjGlKr$TMC7iXOGT}}K=`4^{M`fh zfpIoKr5>kCTA@r8qPF zv8a@PXxuxm0N1uKTN2zBcBlkehDy)DU=S{e9Oe5MPk4@6AK7oMa5QU zJTdrSdyi;$on9CoCT*_q`uP{MMqssN+RfNGUZT{+X_A8zZ6zU8bsU9gPjb+FXKo*v zhv79R4}-bBB}xbFa^8f*uIuyB{?d1d+W|-7hTj_k7rp1o1H2A!@rzs^H7dLmZ;#<9 z;zej=WfXBXg=l52(wzT(Hso%ifY*aXxO_%Y!2hECVyb{O4P(i=0@NC*8h9<SV`zsfq2do{PiZ;J{tR#=R%$D0 zsPOJ0qQng})`Z(4vislRZ7~cIzoE#1WVSE-!_Al;mEN%xUkb3~acnbESX~4VxJ2BP zRW_R(%&J!@wGZgW8)ZmuFB)0t1LoR7h(3UcEL0!xE2h(+L&U8QEi+Gd#@rGKEmC0F z1>V3#az%nW(GE40;BsAH5%o~Q%67aZhPpeIB2R*_((hH@Yk$6=a&dS@FT(p#d(=|O#YJsUtF6>dh-5^eQYxiMaKB=!Es@}Ui9!Shua+*DG#?Z9 z!Un7)o%&4@ua|wH>-T7W8r$ubEApJvzScN6I|MkA z3u_DFL$vV35Gy=Up@sAIB4#Zr;T?NnbH}za5L37IZY}JKRSIwiB-fJsLd=^Z^J!mv zq_8hhDZqVnUdf6>$HP1HjkXXX0KMK8LWDs^Yp5`or&a_Cz`9}0*-|1m|G@KD>vwLG zThv`pWD9a!O^ccvAL6AZoMJ|Eh47uWJ{K|S3(R5dySR4sx$uO#OIlMg=cL@26RTG; zHpJgmm!?)8j?BIB_&#C^XL@p8hSktqB5LQf(S=jc0M{g{-up1wmsKc*)kCFS|_l`aI zs_V+JQ!lPwwaG|Wkg^FAQ3WPQ+Cp71i|0k9w0x*Be>WsRbtT6(IOR-A)^i2QZN-F@>i7OQ zNq_2kP7JcL7586g>pKx9^R^I?yMM{Kr3~%lJPPXLX_%v@kU#S$jMl-Yot)Bh}N(Tk_wj&yvSAsnUGIMM##!|nV2Ey$oR}qTFC9T9u=f~ z%oZYYQs$kVua;eyNiPjo2^TUA_eVxUZ@fwih7*eQf)&UA)Yfal@%P$7MDFLxIQ13Zn(mZN$#1=6r2sOJuaf#kxq^slecKtmwiEW!#iRiJGF2v(eVG zqP4ux79w(TVmqp%JI7+XVCx&a-0pQFu|#a6QzogG6vi@xHCu`o(-m`SwWFwA~$-5=Fcl>f|q@{fy zo9w{hMM{$mnyq7Bw3UTW*5@fi8>eZOcrI<8fc&a8F3x@*a3nw0meS`Rsf!KLk6(uO z@dLIHqTSp_AzD6#(+_J`&1vZRYip8om4*dzSh_MGU@BM;GXFcs79w&2<`V+y35G5Y zKQc1^_f!AZbBe(9`*2&|i5PRJEkxw*@7n=eN1eeO%wzJsC~}>-> zXLhQs=Y;c5v4!wE-=g0asRQd~EFgpxpRtXi#0psFxum`8JX6cAo0bL$uknfLJ%>%1 za^86MeeCN-_VoewbqoE{Z#h4no>8jLv^u$Uu(q>~J=#Y8I3Rv9K>m~c1g--CbEJ;2 zo>0_gmfRuOp9oU{truRoE;=c4b#uvqN1cl!9PyPDF)+<& zWyjY1NYixU2j4-Ko6*GZ>UQNa@CufbS*;n5xZWCu<3Xe0XsHeut6u zUVN!d&#b)NLw+|JnfqlX+4q$M-;8q4yu%i0)?hW4BNy3_4Wg{ROiCh@n2Iy|ZLeal zurw$8Bl-`s?`rQTWO~Uh!iEMZm^=!WG_I{p>; z1Kc=Cu=UWA6*7Iq*5^Wx4>Rw#Wea)pC^Cap+80N9{)Xj*H|E=+Vocn#0irS4wWKxs zPe7Cysm-Dxgp;KNk(u~%4TH#ZG%`0%G}nVEMEm*(cF7_awvXeJz!qG)Q#d{z?GbI$ z)o|QPIi^=c)|;im^s)HT4Viu}8oA?4_j!{MdbTs+*&afB#gy#@lx=?v)C3`gx4@9` z3(&{`j9c{Pq$_4IlXVLg5F)}nM0*w|dp%^o7mu&aP8@c5MR-DR`gAZRs9y>UT-Jxg z`bVAOlq4BIPDwiO|4csZ?w8Voo6y45s;;&{mmZLUb!h?l`vEYGS_X!3yQF?dlNr3v zRz)H+xPe088L-%4+B`9suT2`BHEZ0mw>hxx*Gh#1->>+?7u~M5y<4A+?Y6LkPU$|l5I24Vn1ddg<5F&6e4TTCE2ZgZ$0>`}e zCMA8O`*+h*lB3mJB?DhhQA$a2P#xUJNh`P7dUW_;hB3RSS&~{cF(hN_c@aZ~D8wX) zA)FRbdtV^A8cmB5NNQ+zX_?Kw9B?FR;HnQYgRSt#EjZu}0j|VbU>HpZ5ihSMH<06XOO(6oKNK22mHXqn@*Q@OdACIFMQNqU`(SFj0kNW{f;sjphA>pHL zxtfIh9$&Iy*!V3PSqU4zrVxRX2Q44E&SUe2b#M82Uhx#R`G#ySKqGgY?S3(D7{K^x;ThkG_KPXwizwr29aPpg<83fxeFGXffOU(0U8DxA zi?DzYv!7qF4OYYoNDW@p-WiI6{UeL3&`QPZLX;5Kb$8am!`AWxdGulI1{<7Brj+_9@pkacr#0wQeh8yvP8peh9 zqLG!j@NQcO5f_+dLdAtk!&m`v;rZ>|CNXs=myxF&9)$|DVz{tb7Z@5hLFfWRHAqEBy*>*^L zU~qnW2L`j)M6tT`a1&asTB+4e)a3z92MEj}qeX}J*{VkL{x?vFz}~-&U4*E&F9rBI znhK?hxEt*#Et}cf0Y^>&SQjB|SA)h^@MRkYjW3~*m7sBlErbXfOhKW7#yi7U0i%Z5 z?Hx7DDDQKM&VJuH`|f{YGa0SMYTI-Xqj6*~;mE-=Pm-!;^w0$+<1%9|AQ3;NQi#C# z(Z_?@Bu@BpL)~&UcpQ!|*)Vtk_XBL39r+{Qa!qZMdL~V_aHlN^B3t+Zg$T?R+SipV z(z?JGUmigdq+|{cqkX33IQv7uk@%@Cp>tE(YN#RRA-oxeA?6ooWF^GhZwnzp4AWJp z5c9b(R=^nK@9mwqSP8eFxg~m#qf+o4>`)@j+JChs(wvTtG|Wmk)ln%l9`P`WH*3J^ zkfW2;6k-y@o8?U$;fp$_p~+IB&Q`SN^ik(|fFnnp7>znjDx=1p&3I!BW6uUOvJ!hv zwuKO}hiNQS>{%Jc3Wz-yv^Vx}F_S}NO6>6+D!U45)`}eG)K*0vuuoF7CeOLTmJN~T zTt*=#LEKpy&{W<1zNm96nkXge+>G{{KI&WtI1)#-70sd!Fv?9i;BD@{5pRlN%y};w zS&2FCwuKNehv_R+%(*m-6%cc7Yww)vLfDZrQJV88RH+rgW)nKtfN|*b<`G*0M3{M) zLQH}%vq0kjUx4ZPHwNN;q5(zwoo@)H`p|M7;OIh&rV?ss*@HL2Ftm)Ik(JQm+CqrX!ZZ~sv}_Jz1%#IG zw|64Aj~{HMw{5WWMLL}JA*fC(!V3O?D>aPWwm~zO2}eb@+In8Zl$$BUB#0@DmWJB< z0?PN%v?u}PJ7{<51IitMBL@_Az*XUoTX4V|1AP;3fnhZH8X8%NCSSFM5YdFGDO5DM zF^m-uO}^aTc^7Z9nv<8W+35REYr=^2W;J4vq*BeaN)H%`%ig(aL;#shAtpfpnN8Nt z+;kG^?F${pps7$o$5CiU=|jgVz>!F)Nt@LOXG+jmhcDYOXgmvztOSiCY#~I@U(ayTp{`KFYFWzS>EA9$&m6*PlTncbx0_;?Rhm@5jUQ{YSK0 zO!;Ql_bF9SIsZN01Vhe$i$)IM+@e<(i2>^zEFi=twLP{KAyzxN0aktRV%fUzNm7e`WvzyzUv{Rg4O zSASosunSF%(uwRuJ50-N_GG}3$f>cduWB9CsInbzgJD!T6^*P!l~ZgXL{wpl3Kdlj z4`T&HmE+qRRb~$rMx9XzEHFNnPu5=p6~W~_TD|G-0)@AT9Nl(T^7jMGBxaGMR81JU z+Sc7-oKd3?lOT-DX{fj_etaBFh7vzMg7%b_&+NMaM`DHF1=?V|8aO_PFWfM2{2v-w z2^=4=g%E**X(&|SxH60t5IBx&Z{V26rqp1&yzUmiC!sQ}2p%ugO;|KdMd~wsb*m() zY68gPwr&>zm(z4aPjYg)c)&k zrDi!@P`60xel#h;*KIv5Qi8iF#AHYbX7XD5;>P1>CX|fek7ze($;{plI1(j%x}Z)M zFZh5rUGRH+!G^)&w`gP~Sp1qov@apx(*=5#S3CpT-V~OX0t7BUHf6bSx*(A2#rWb4 zxn6)q?l{*C(*=6IPYciYRuBoLltdA{k(vg9U_02EJk& zsCY8)nsz4xZh6Eh%4-K#p~b3IS}pu$=@Pe2>V-6k!48D2CUY;#Nbvm zD@vDfGulmBVzbu)jzmd4G2nFZf<IY;R()GF>g^GAXA5&zw7@k~2nkOuPH1BvT^}+_5Ch z9&AC2SQ~L_+tHhqJS&-z{Dd<%QR<>JS;I!OYI!^nS;Gq{L}1p?zD{LDGf((3i42-9 zrH>gxyH3k^_H4kBXsWHE+nAcwMxCTg;jJ+YKNp~pl`iKzTL=+;n94$hpXZ0M0yan9 z-rn%jRn3VY&#fnzHjkrbRyAtpmoFsGsBzQo`PG$TrvaT(fGT2ixRz>#R- zN3I%-S4S0>;tMwn9+#kzmEiGm3empgU_QGdp}}E3wm$|2g-j4WjCPAD+pNP-s-SXy z8{Py%&Tl~@cbxM@;+lkD-hUaM_Xp6fG3A}T8KSL*%Kd$KGYq-^F&a65dyAf4Bnzz5 zuz(QB!b@!{!jpxmGp0-l?6m@e+1l)~Q>RQh;?nVp$Jb`BSw3aT$S1OIg0J(&v#WxB zZ~%T@n+``SN1gpro)DXcjZ<2&)wDNImR+Zm8p-5`b*X~)!vSuV)FWvUh2>x>E`jE< z5sAVQ3K8h?HqIW*V3qdu8XM7U@G9Q!Z8~}(+DlqOv+DpyVx%^UPDOIEc)16>a-WYc z*Dze1fJRor#q%gcV2iS7P~EYBCP-V_T-LX0IWB@NAv1$fv`0)i?rpgLDTwJTzH~#T zhtbF#XSz@Hrdqb&9-i&DqP=3uHoHpJUjsE2cr)GtL&nF^$N`L7^y4BGVBLZRgh&Mz z*;a(70;BD{ZDCf<8FNc;{ZpYdD&+$|gL>eilU8iC=WEw4p|r9t7a(So2dGWVB&p}o zHc?#D@00b^WHszZ26#g2hj30)#z>x7c8oA?) zFBCm%AnPv<&-yuN&zQ1)2+am{wNRPgg}1_x`JHIw0Ol<^c#$Kp?!p2>s2eZ+6G;I;7tkWas=;(19iKk?nsj)Tx%;FktAG0AtpnT zFq7BX*K2$R&4QZ#SsZ#S1>*O&NR~U$9}w_y`(V2^k-x5baA3 z_;v$5%fAI&Ix{M7 zdfttetTw*rH$9`Cl;Acp6QvGGlOvpIt0a*l?4S^nAxD_oSan~bun*0T(uGvezS2^h zO#zO?ON~uCH(IX_FfPQGZWvASXk;at?4c0t%NF|CP`uG&KEB@z7KKb1-i`K)Dc|hE z4Ydv`>+itZV95I0(8wKUeX$sdH(~y};hFyy+Bc@mFZE3+G}c39|Lb@=4B5XMjU2$f zMfWc<2-bC2K!^sc;L@aMK<9<$eXzsfK0+(xse@6)Ay^>wCg;eHYp(rd+cZ zXnhq>`MwixfFa*sKqCk6ZP9;=6o7RI77!u@*l1f3o&v0CZwk;o>WtBXHba144{3T#4NAcz9it8Xd-we#d^kCw4bzG zW)}gDoCM6JU4&=48Zg%2i#7}xtI^0xz*uPuAp!=|PpE+LbjW~lSbGD;ELgoDcS(~q z1!-qg7QBheWwa`*ov4c#O;<3eMa&>co|-|!ur1{xWTYv?BnTO^MZJA7<8^2%l$dc9 z+EH3IvtxiGk;0E+3)|J8aRt6?!=P~)8d(V%m)b&zpurRrDrh)itbk>T1MLkO{pt#+ zE8p$(4X98nqK9^|qG|N-t(<{fl3q1I219rZfdEJ zldq8-nBAHXvRRjapiXsB(oP}wG<*SinMXbb2_QAFLIoT=0k}bJJ3GT zM~>$Mj>Jc8CLOs@qIjtXyxGgs@TD3Ci>+v6C0J~x5bYb7&gN@_D!-S2CAcnI;rHce zf0**y(=d6dXL&!qY(ti-XylHwJWovhXk2F&#LVRy+lmk?AOYCl-mOo3m(7%9HJ=&sUk&#=s0%JOY2{YisLKV| zI=OBQll^3XFQnHElX@OaCh!|u$BXgAuPDT1$OPuemG|WYbLL=qQTmK-fWYNVT57XT zfy*RjYAlk-_N$Sk3tzrrB$05Es0U^Ao@(Tw7E)e;(R1rkt~D z!*sP!nLiqDg(36LK_hpZ`6UfKE`4I79*2GG4~J(zjrNWy`^#yT7*rEg0S?|0Lj|0V zMh;MbMG7FY2-b~QK!_~jm$sc5&mtDK_n!HwIHN zBP+q;a}=U|i2|QS(D3_Luq0%9@C4c)ru;TeBj{Ov3}3b(%YQ&4cbw&hX#@?^@wuUy zjsZj~l7F=&`==4~Y%j-`Z^-r%G;#pj7QMGf09aRG0U;8Ax7*5=CjcLA?>fS?GCYr@*~YFl)Z2dISvW}DRIXi|Wrt#m{R@G=T98B%~QT4!Gl@ESBDym5$4Q2&E= zl9tr$g@7Xw!goS5s(7&?33w&GSi^wv3N*43FvciE`;q{@6I#dcN5GVjS-=O;4l!l8 zaVK;D&;N%n+>qxFppiSybHh$(9oIh(&-KsHPBG=$zY{uu@1HOOu043lK~u>8ve&~Y ze)7oKdk&+oo4t>H-N?Q^z`kywUo}JGe}t}M0Pz;xxyT4u&tL%|GJ+S|R)l8+Z)xvl zrD^K(^(%U?(Mc<}R%8SfC$(q79ZE~VUR;{Yr6V$e#S~(4WCWznzKmc!nh{<@krBKA z?IbO!*#zKdGXhE#FIHp(C*q4W3>e3uk(GdP425WaMxbFh52l372=<^IV#=_T5$Jgy z!541Gvx`RVIM0n4frjh1h3EP$Xs4KRtz-mxzOTg_V9571XygFCEqZa02(S*p0zxDL z3v4UG6M>ISZ|fGr?o^>Tra9^GQ>X?mGHIozKO5C_uQD;n?4ZNFwyqW#zz--yU zPGXimxy(KSIC2ue&PI8rtBZ+$!xwEBFrGvsD*@wiTL=*_ zn0`V9jPHiA0=6XmroCH|rkxG5#`04WC(V;%#nWr)@bI7`=-0vQYa09NqF-8l)#lQ< z#LV8YfhsLS(pr5^ur{;g4#ABM`IO7Al{+4aZyX3rTs%`ktv6K|Ejp=6vgnkY;gVAv z;fTjl#NeoK+=bp_!~CId{_OWnygac*H8|*$%2m_u5G)Rs$IlyI zTU$xJK|MjYVbMPgIOVcis$>fJ@_22T_BRG$AmQfIl{|zXx z=%&c81XVm&7#@bV&4VglEER}z!P*sCYxlaP!9qDx85?(NU2eWYodiVe$fiLKmyhqr zy8L^He-HET5&oUw-&y{>hkxhz_bC6)({Hyn10H`*L$yc7PkkExSDQMVD-4eBsCA_r z>I?W|cgfi&Y^i3Kz%$o7vP`vgHkF zCILxiD()ypdak8a*(>Nj%znDPNl@2TuFl5WD&GO7G-f~(dqW@9SObFjmWn%6&C#Y@ z|BnH$RdhS~)JUNOP0t;#N4o5Guz)f1Hd}x0_8{IuA%bJt!c)DN#)BCTZOejwuqx;W z&EI05v%Qe6=3Jf2zX&$sT+Rj91{OweugK}pLA_WNYt>gfiFQ*%)jaL>92z>-!8t(Prfm4@0cKL&B1yNJkn$f} zhYRujlR^ZBlr|pC>XGX18$lh4=7YD9Z+QY=1rWGiR!eDi9^gpC@Y^UQ^XsE15kFSo zi#LoPOVP+m{8&sO+BZ_>w^2$i^D%xVm}JwBWCi0p(2g->yzw?lsS+yhr{Rq-zfyGNTn%O?zt$8Og%jO(w;L7XxCnF+k>F z8-6@M?2?43i4)7fR$QLUMI++GArvAoPPB1QF%4?$ixV5rTqtqkWVDO4bY=$tN1~%P zgUw9z^)raZIfDJ1h%t`FdgH{|+FXygE{E&6QH?Xyn60zwQ7 z7TQ*X4-9_V-fq8Vdo@?dz#3J`EtknER^w8{eNY!%VA86s_B=YH$QK>RpdeX+8!pQO zElKDKQt zidYK}xUAV!5yxW`A=Ofq#2UPnhLTu~Mh=jKMTa5!92S5qAVi<@JzH(_KIi!M_Bm6_ zWQRv%N0UX1S*t|-WE3e4dN$o;6#vlxHAo6-n$Bj}RxYBmNmGc)(Ai8URrYl-FV!$aT!uzgLd2yMqJ6yvzYRdc@29~MTso)l zdpp`6ru;VE20)vm!t%%PWgD{mVKj2bS#G!uK*RKJ!ZZCVv`%)BKZgvoUpX}E?%5-quxP_PP@i7>YJA0i>&Kb

8RxDIT+;XNYw*A^q zJsAJXVy5WkGI^I5I$krbV!2YPreGHr-*RP8MLJ_bwvEFxKW-^GlyipRpBtM>{yDJV zxyQ{Gn2L5}PX+Ok&Bmwk@6-ABcK*GCf1km>ck=Hu`S)4;dl&t7v#$VPy1h7iG5l#q z_7eK}N?M#|Kk@V7pIJ3O5m8z53l&k9hp__I?9OfPnTWovp5kL%Jkqf0cii1;8pu?qG@Alde|x|wm7FoJ&DPpiaJn*9tcNuS zGyB_C<6$>XwpEKd?`vDp`ReE(MAmw9YKV~U1euWt`7ZwbZvK4({YFQ;Yv7-SjCf4= zp(0)>j1>^^9%ye4c`zJZkwV;;!Twf+xUjnvh+Wczg=PZji?+TNq3-h(A~4jobC&|t z*f)Rl8#EU@g%*nxze2l6+hb+F4>%GXe3t^Di5DuSkA8_S)O4tcMplNJ_fd%UO&{@H z3M#w(3$QIsVYe3`a3Rl>-Ns!CT8`)9i#FtV78<$Z95?JzPl5+C8*+Ud8aaS#i#}TnbXX@~0U@T2K4Tl0_|(y3?H%Z_%k8vdoL8acs?}N>vua;D zKf(CuVq3|Hq~Rh8F&UDEm8|Y?r+sp;RB+NM2X=ar$))m$Q}l0+eh->irNem_+Id=W zWUmGsIh}Y(vlZ@%#&CQ@7vKgpL3umA8ioPwt!QK=puL$wv@b!K!!$HlDCEk%1oS&# z3T`l3Sa>wB-lv&=hu6$M z&`vVd%*$G!89tMtIzrXa-|!VN)X|e@Wmghr?Kv;S`NkAZm5=3XylHoWreJkVzrWVas^mw(dg#f@VeQJ_K<1Fd2tJM zBYQzr(3$vJ7%FH78oA>Nn#&Zl*U42~f26rAykagzd&E>R+ghL)R%=xum*A~7RLING z$Q@TmFI5P1MKFAF_A4U!aCnj2hIWdnNKOwg5>atgC%51YH`K{ZXylITgk>(}B)r_2 zEW$7eR{VWQ?*rkbav$0+rc!A^<|5TyRm+d@wi~MDhiK%EtEJDIiD9!a{=R3{qR?6H z41kCx%iSI-toUoLDrFkpazmv&1C88qr7TPppyx?D6($)# zYSGnRRm@TUPu-UX$W>J94`dHXCi_ML32WGfP4+bq!j^-+eB!o>t z6wp=_0-`7iq6ms8Dhh%iiuzO#L3!d2p9_kDpeTyF{_0j$cimcU&-to4w>$n}o-gp- zbI$kmch0R_w=Nz%Q89bM$Zc25_PymCJAaU!4OZ-Be-`;#ubg7|!i;G)xp4Wcgv&&g z&v{|;8LkwzmNIxML@k{IBez{kGo+THL%ef+nS7DmT^eJ}b>Zr{7A_1`Jtwz9J@Mpi zz0~mFiF&yPMsB-arizu{=w``zPyKMXSRRC{LKREcTw`W#E9HJXa-vf1gOS^=lxebF ze48aZU9-Hw@RgUtrSc+N7OGTM1o?`Ux~-KL@X(1`c^*b?yH;jd1&iFp(94|J!M98^ z8N{Z!WjeLBdWq7vH8TwlpQxG1Fml^9BmG5mA=d+erQv!x8ZJwk{t`>w*2AYakawly+hzfc?jNEnw%{FW2 z)XwAK+W8J#8>)6r3$hz`{WPCp1;B+qKYSM z_h!>F*c$pXo(54ve}s|SuAwDrpO7!Q}Ii3?%mwrgVBfuZV9w!eRa>va=TE1wD1%BSEG zQMD2_u{14%t)WliX%IE^aTvMn8XC=xW9>6+<^P3C<;QR(s8U%RWGhj&wjzFnM@v-1 zQ!sLZB0S!QRIgNuSL8e()GL+ieP3~quT;)S_lqzivc(PBNeXl4q9eCcknS&U6FvwN z#iPAr=Qu%O7K;&^>7`iI%aGGKL?^rqIf`X$_{w202Qoi(g2KUYiJUYRc40Ug9r6T) zh$eYab%MeH_(h5K@CF#!vWLAnM0zhM$`cf9b_*)Unp~d<33<8^vshrP=ZYq0RS=h`kz@s2CKOaVJJM(jo zX5aA0vg2XP&DlRKoc)vG>QLFA&)HAP#8$v^JQAV;PJodU6yVYP)%+mZhzEq4A0GEL zF*!fNz>tT*gy4F`KYF?;uh)$Rnri$ac*{K5k zncn_V#e4|%MVJVyd)y1x%gJToR)(Wb3p$kqQZ^?&qQbS8dKyiSv=TWZ)xIZa8)*uCK@@~ns^S6k*JAhVdS=JVxIgBHR{EW z3vivU);%v+9TONtE9OnxF`7QaupPsZt*w)Bc(g>FjE0fhu9LaFYjVA7GegD7(BL5Z zsuFvpt}nNa9d%@Q$f4mXIS8%})kBUT_LZbuZH?@Y$4b=5zA$pzHL^oe-MFXlH(?C5 z*3;1#d5g6wM41f z3VAOcDp4WthLPK@kgfTLY~szQzG`e3%Gbj+@(5fWsz#0^Y9ujPTO|+S!4g&S0F2yr zl}zC8jqz_s8M1gaTo$ju^`OdPZ=x(zcD4>)!lNVV;5RUGf(|^EztjqvSXl9ZP%CKH z_}-k!6|}3;T|pajto)!^{KL0<&PVUToFb%ua;))HwPDuIc4vWMcXm=GYVB+n4$%o~ zXS0qz8U5JIQ^IvOEO2Fv|{P;$7=hZPKBwE8LLNbC&5K?vROEs;phu! zhcvSk$!SkgmNHJYU1u2{C(&GvhmkFFS;`?27tt0K=AF>hwaeujFWtDPaNYc_t~K`+ zu4jLoyRon^=`Y4FNccByWdCBV`*`+|^>TS=klh2H&JLH+RPh!TP2dvRC2&oss@RvJ z3Nt%P4IA+Ih-z3TsGO3-%gm&|Xf?%ijUx19*glASHIp&MiaW#E{sdmlvH3`VMRtzD z)wR*(+^V5+ext(!4)tKWk*Gakd<+kiNc%@&WXl9T>FG<2&sKe-Mi%@CUy?TobAu z-T>*Lo}Tr?-xm*%D2KgZ*y>Lx7nH+d}mK@H<10>4fTo}3Sa+un1 z2lgp*_NDJN?3Jwes=@W)f_N`n6{;Zihx|b$Xi4JTc!)$vyc0%lyCfDgBw;?U6(9D| zcV#^iE|7=d8c_wZ1QJM6x|UoXzyl`Aiz>UL$gC=A{_#q~LO0GIIn8^<2U5|8j+BSIT z-JU^gnwy|~D4wOKXWs!Wz{4X-az2b~NiuCQ%n;RDRc71cbL@=f=!b0F7M~Wbh?C*M zP;IK|me%@;ydy_j7R&J%iLy8WMsB+-rd4yEsi_zFp1*09Y#(NhsRi=CL8hG z*aJdMHao$q$}$nTHQ?LCJn5cnZ#BOzE8bHsPM3eqkblmUf6kJB&X#}9;eX}|moVTH{>%PTxRm{0D+-tK|9%U<+)!aId(yw6 zur>ehnMNBwnA{g*5Mx<`hlZI5xB6>zvO@5;Ci;Sh;s zUzFa{qOl@r*B2>7=Y{{vz+R=f-01r%SJdRP|AHLOAqrhJ|L??^_qob6KL14i`lntv%%x4hT znCv99FoEG{eALEq+u%gWtEw?zE`C*_Rm_5sEvuN$A<`QICWuDr;CDHT1pBpF{GI^U zgUWArYzT0(d@O!#BFjr)8UvoeuS>Lyr(tBvGM?lR z>5Tz$HNeU7xb1=mfzb@26@#A5aeOr(iRlse)rm}Z!N_fAI<^|%WPAT`w)cgrLj6UX zs{u)j?}bM|WPA@8Ie~GHUarOg(H1-))Hv{2Uz3vKz^HV`f$?kttUnctZ%Q75e5<+akTuhuRK)CFL4Numhbc6rTIImlb7>nc?qSz2`;_-DLla*n~8^9H^Aj` zvRAm0;b_#Q@kU}; z%DnA^l`@AxwBp9XwiHw;@jPv%%*5j)DrFjs+;*kx==PMsY+ql0&MlSW!=;N z_z?+!sc4DXS~(gIl&F;>VdS=JC87UROXcX>^Db9e7cP|wTqmkjP*;iPX)9$AkCUjB z0T{XMO4-hGm1-#ycV(mdd@NiiABC$#)yYBR+m{|AOIsx$#-k*vUfoK5nHqRd+Me*iJRKfjt*4%x7U@sKVSSQJ7jvwhEuYLn5m1X&Bj3q2S*` zLP~{V*~SAxsj%O7=$A`!zf5;YZj$&GQ&)zcD5<|Zu=Nh;XzvtY?NH}dom`b~tvC1U z=Bo9N-N=ZvB_YRZ-E0;mcK0BaqgLx?aEMM=(UIR;lWZ8x?r@k7nWJFtX(z`*4W#`o|3IlUSl;2IFg4NP){RYv96A z8J`{7zB3H(IXnm=?<-;Cw(~xREye4f^>T85Q#kiGz{R0*KaX>tkcd4uT!#ljEH((!ecsU{j#-A(A*rF^&v-~g^Y|l2PGmN{QDB}`hQ?`# z#ze5gj_6OzqIe;Lzy@Y2#e3@al}QvgaoToq37 zm3Td!+Xn2uLNc9LZZ_AK2xU4#ahsRvjH^#LOSH}7kFaV4n$1IS zL8)f5jl2EHQEiDWya(`5h{F34NA3WVncmV<)qVO)|$Q@)V`zD&oXTvGI8?R$4OeL0+&Fx)yOhj()fRQazx!o5+ znTk-@=4C3Qqt`X|)*a%5_)ls%~4$3kM%TAuh;~+}z=N!2M>|~0_J!wFh zwsSCC#aLXqhm|7GV?GU6ljEzS!HYo! zNchyU&yq$T(4GNJT@>sn-3%h_(K()uHMLB@10srW97pZ|YvEH%tO$+XZg|Y0;q)Ga zSCi;5$y19fGuv$T$0H;1yf2Jwnay6l5Xx+X+BPq<;ZuvTdOO5Q5jeG!;cA9YEv}{8 z5*`Opa{U~+1FVHlEwMFD!%;pGPUeU3A`%@Xd1{FzWE;r`@PLS{-UuUGMsmF`gfbGL ztaa) zdjE@8ljt$YQ;RDz+id=YM@HoN?=Z4uHn00aD6(; zOUk9e(vUu_Y_V&w$@~W{C)H%c+s)RrBGa(U<)3&UMA7|?BX@wgOqCoanaXbAbS`2L zn`Zdj(LJ>YIvW|;X0jt55s}yJU}Vcow)KTjW+K$Jd6~($V+K~{`ug(4)!NNZAFD>- z%#wu*O0^UB7Jik8Whm$2p%8_4Hb?FNLz&)4zwrY!R&C!CPU*YwIuhp;_j^HhPPVCB zjmJdf_U$mTWhz(rLMT%a3fsI)WyI2@r)zfdEmns>JNX7&N~)c>*HWSsEF<|E9t2Tr zU**UhU?h`R;z<_r$8Z{dk5`arA?~%5cs4elzr&*;^7&gB*)oq``$8!55USd|%wy#7 zrhDwVTd;fV%pf++Fg(XO4D%c;``7`Gf+)9z9JvGRqdUqx$v;jHC-M}$ghcyA=Sa*?^a2QxW~L2R1Y(mj%B>DUf39S?^{=@b~*a*#-Xq6+*uFM(@A{WL3)l)9Q;~+|IJx5OLDe2kD6p?#UQ@Jag%scQR z5=T?_-c%zY+emK510u3|D~xOz$t}JR%1DH^HZLO?w>*0xKekvu*y4Fsjlg#HbGV>X zFL6J-Q;Ar1@>4t%qVRsgkvqUnrZ>`0a+HaC1XDVmL2Q~a)&20!&dD~FF?dWwZb!n% zmZ@yv3!zL!C~WgI6=N6UQdW&XQ#l$gXiH4R_3HVNcql~S9mbJ6$W&r4Ya6#cgW;48 z;B_R9DNRi!mXmEN1w1Aqx2s`f%T)S&A(W{Ig>9auV!Rf5C#y!FseA%1XiH4R^=9bD z@KA`t`zS~5AXACGOKF(O)8UjpiPy0erV`7^HkHTmn26kd2S&C`L0XT@!sSm7Y z!C_(E30+;gT)y$rjf)D`&F|`3b6??l_6Pga-@>H77{4Il-?)+ei?t~tdDez{v;F;< zj4}2;!2-p8Iu@JX#jEISLpGbnlE21gBO$x>d>aplNb6%TvaFV}+ebM>ijRC6{6|lc zE&l(>!U^R6Z*Wnlzvf~17YW(?{{;_-$p4>U?jY{-{e6bmX%s|>53e&F{N;pD#sE((==V-Ko>e36j#+rI=4iKu`LFml@! zFkyMAZ>T@l6DdG{<^G;<@;?pNgG&CezkJ6@L3iTO5PAOujNEqKCraM?a_jQF`mg@E zaN?hZ3qmE{*fXmC>SZ$4Fa8-k93t~i!^mxCzW$5vt8N(7i66ID@SHcAL2Q~iujwyd zX$kL9GB)q$;=vGke>05ScHXDT4li0{rY~URi@jBF2h z43CJYfJb5Ewku$|>;u(uwm0W&1b++Hz+d3HP&LqWy&#s8t%5({F%ebp2N=2SDyZ)Q zVHL|44G-9HpWxep?HI(SxgBWwbbx1LGruh!4UzeIFml_O?^eHmwqMFPF8S1O>Q918 zLjCDC-TlR>kJ6C^R{eh&9uSfJ<6-2svp-g{zfRjP{g!arFM(@8rQJAFPVf5bY`!<( zkr4S_2O}r&?Xf>!ZSfadi9I0Hp3|H7w#D@JoQ@Z&Tb`?CHQjwVTz6lDIic!q+a?PS zJQK@l?!{vvD(@Z`*;1b1+(R}>dE!L`4+y2a3w<}t%9l$Pj%IgsQ<8SR&rJ9WpBEwc zX8Gx-=PK0&jV0yXQ3s^*f8Y#kc zar%6r)f#E!YZ=5^JYu3o*1*UK8u1t<)HEV&$^$}8Ba?U{iAwbu8=Aj-H)mCK*`HfCsm{?!94zhSr ziJkDI*65&-yX{`*;jt41aW;%>x!0RGM0#Ctd$)38_HT&ieJsGhvHCr5nW!D`)E0>+ zmcFf@cj4g^^>a0hoS+|%)}^|iur&{eHg>;Rbs4jV3TsMz?*8|kaOr*vW{4`?%LEiFfUTje@dSt(nhhf-Xvm|DsZJ>D z%>$y1op4I?Rna$x%l1r|8)^?c3YV?51Z;J`)A4YLB0Ys8cS84@XOZ4;e#5q|4CnuH zyr9IscVamIjl6BQx(tt-D1?h)WXr8CB+uAllgFrbUZ>=8ezWH%3Q%iWgR13YY9}V0NgI zT>?wim9Ew4euW226zVTHawl}UZ5)+oc)np<)AtXyttkv*(~RiLTcLqQ=C*51!Xqb& zVJjHfa;>o(BE4?6(50G~=^MgX%)$%ocZb78qMFCaEfG#Ed0RV&;K38Mb0CbIpdF8P zr8=IlGY^P1cD(Lp-R`1r!LEmyp$hg$Sg>ZQR;R1t!4d^}0Y~nHPB+)6Lc{9~v${Q; z`&;pH67T4a59Pj*we3>3;87Dra5Ic-xztS@BE1eb-&9M?;0?k2fQ1&=-JXC8L^X?L z!Geh;ZfoYdc;H0Md>cki(2Pf0Qk_lMmj^@}JKH$-)4K5o1j}>`gV;3F`@yhGRgzXW z8;OTW6y+8iIkB6iXHT;l>G#BbpN28LA)N8O@lp~y8NNTsnX+w3J$T4O_IHDkElXPD z3!yAYXmC?nQp>l7P7o)&N3Vq$5*=Xm2<)8&xTMtHc?fJuDo*O17VW>L6SEn5b+Zy>A9xzcOUxks|u8~=dk`3?;YfhE?Ib0=wgiAwJ z2|f=wQ?_;Tdpu;KPJRa?w_PWbo3@*U2L?|g+c1btbBlBYJdNnN+RE4(kCmv5*)Ve3 zl`)MsmnQD9B3v9N!eybl2fowCO4ruMad@~yeH;TLw_P8Tnn>f~aA{l!SA;5!!(iWt zXKJfr2#=JgiZYCxpbC$hV|9Nm&J^*0P)mNl_dVGpih_Nuc!zWklo>f#F7;_=mOKCp z+Ns9c(fk0JdLPR6M`y_F86EV>z6X$JpL&h{caQq(p6GwZ{>%B0tWn1s&5b2E~GsH9FN_JJQ z%FboU_Et;gN0`3JLJE8^_jR~1RIxODEuA11NBVZ7djt=ksF;UfdLyWWGZX2 zgE{kSJ+Fn!8()qB%BLG$LnP8&y1J zqBbsok=w3~36VBdmWGObraJBjSI6yeJ*etvy5XN>DfO&vecXyiP1MINFml`VF)7l= zKrUO%RI26z{13ww@&m9UH;m}oqAU8(xf`icY5KN5Q7ZKU*kXACOn}8r6w7yETttw*3!W4yr(!ZdfD=gePsQIjorEsg z>Y3X*IRlTJsFPD+7 zRr&rZ`@)wo%lT05-Q76Im=r3c8gexU!KVI8W_3lTu)Qm2Hkw$63+L{ za9OB)&*XetDcGFfgoi-n{00~~fpd?ZuEqk<96TV@STNf+5jhs@n(n&~-6!V4J*VZW^8c%m|L$<|--%b$dES=YqXL{NB0rw9rGu;R zsEInb5=OS1>T(W|UUS>VA(%7s)io}~JiuZLw2Lpn6{6Zj({CydZx=oBq%FyO0S}uf zna{z<36k;XOscsF1M`4TcT(v$w-{s5&2a9*s^)L6g{$>dm>jBFq2}gD)Kcgxc&J2$ zzQmCen_GHTHQ%m7<9uLa3ZH*?uv5)t5SwNSZ@PunbgCvf+cWqqJZ7Q@ro+gVO-=EI zP&Or`xG8O_=AvK)$H8-Wy;=JLOnAD)2#N z6qmO4<#W{Z^mOFvVIec+;-My zt1cU_n!)@N;mm&*t__v>tvU1VJZ$#AjmJS`|1lUjfqjpjuf_(^Iy@lM*l?V0B64i_ zVY+*m#++6y5A{|n+KR!%BT=t%%B{91b?;I|2BCE!$8<2B1%^${QYC6S7{ehFr-Q_n z(fTb*Qm*c`F0_ao|U|r1symhoQYS|xevf5 zz3K9EGU<(6?S^tX9xIXkQ($DPp{(E#iH^|nrxS}DGFes54&>IC%4^xVM(hJN1Es#9 zetp}}RV>Ot#as#3ifR*0U$ttY7bK)ZgeUU3I5^8i(kF`?pc{v2K^ZT*#lMx;ftfm&i$HVGYC4=#UTcBbqF; zT8CehXjT;%*)pp^4w2psmwb?KvwJ5CB=DZ<6L2}G?8YDDJ30OserY1dABBS-5kQB zvA2E=e&$j6Vz#{D=rT+Gm}0eD8r%?-UmLp)go`gTR;_+NxM)uP3Og_yjiB0Y;z_+^ zRFc?}kd=%}ExzxA$3=9HJvnkB$LaO>h3;B3)})PxwJTZNft^2t7uC7`Zj=26fb2$s z_6&Fq9w3qRvtVSaXS~rDLiG%xy`Y}4JC7n!rL8xj$xSWjW)@DMDsO`8O0}RJovO6* zvCQWNJR+hDuM_M|Iiag-m&-R^x^YqAy7^sQYwjyt&;B@fV0(y*P! z!U=v9FDKDL&PL3bKFHPk50T{XM9LJX8ZJu8Z=lK=5BvhWwrFbXTFX5Lba{U_^Ie}}Bo~_!x zXaXJ(s_hqi6OnEIpXs*!Nh^lf=Sa)WkDKqg1ob7S*lO#kd*tnd>7$qKlD1&m|8!50 zCqw?W`R*)1Y{-|QQ)9y}9HJA(hOw*qOIhm+D5t_4TD|2YxJphL6b@%N`sA=Ax)t)K zw?`ywPaVtffQc@3JdA9))KU(S-qbNVU$jK=78XO`z;Ov&392ZXZeSbsH{TPbYfEAS z9xhQ5>tN)zOJc0BN#h>l)8V4H6RrhS6oF1561HXW2|Qq;EItM!C&OOc#L{j&J zkuC4v-4{Z6zmQgt_ixFgNEBh~ZDiE3#~f=I$ptJ1%(pEgDZ<618p*cF;uD!zRic(qWEo&%Ep>d_QvBOs;`G5cYvu(Z=~P&6&lWx4d?YdypBX?F?J9+d2J+S z+soN_U_^r71S4Daa)vL2vKJw<&CFhw<+5uxoSHLkem=;m5jd{AA1)|$Txnu2DjUmQ zHsbLR)%QM*+zIy5NWbwbH0M)ABEesQku7`qvM+?P7a_CF z%U;H_eY2l5LBI@r=BX!n$}8b~zJ%A1=qXK}4(UnRcJdoMC?c`Hf{`sd`GqfpvJ)Y%&C5m-K5E6q9KdCF6Y|l$8i^ZC+L~D&lN^ZAJDZR*66_Sq2xA>LpFqOhhJ@nH-PDLR8&S zj@$ueGMT5I}0?fLfMIs*XCs>BTqB8sNBm6 z5$GoOz_p~hNt4NhCt{h&r}0pTn!A%DcYv96N0}#i$#dasK8u%-=p{`i6D=p(N}j=E zBGURajBHuSlfDqjN`$yJH!H~-yWM7-5Nst=8N{X;i|-FPTO%}wCQ9bqLb z^CT-dBAm@b@e;PcO5!=$v>t@VM5J|p7}>IteSIO6l?ZWdURE;3wYTj;R*S&FWC$)N zbud|&yaTG9i)AQfJQ||%N*uWZ3}vcJKFL#V3+MDBcom7Bvg@#%Hqx?f zBU`p|qc4QA6(OWMq|ALV%Tlu>$gt8SOvCYd?#-7G#8|)v_&!;&&T!V*f zG7WCmq_x$PvF4Qn@o4?ww9H6 zTts>^FtTMW=lDV>YY`&bysTy9>Di+Gg7U4b5P{>$EpRQV<4Th?6`qJ?DL3Px5H)ub zNA3Vi>5ei_vXk$Iv-xejghV@OvOKHhWLwE&cuYiEABB-ED|y%#LRpCrR|~Af142b1 zj*IhvP=^8j()ZB1C<^vXgR<9m20gx6bR+u;Qf>O;b=iD>c4dEV!K!k0Ah*6$UaJpX zGnb+6=(M)lq0|$Ov-OBFv52(8=^RG|PGeDG_ZCvb>ZriUz7UH0iM|k$`?JzL*t+}l zT&0>Xu6CYmeN>BhKY+@6RRlvmnfeIdVk^oI50}{X&ViAw zws#hXNId(`!;{A^NcdJAH|v>Z)uO5z61k4W6gbRY3s;6Jkt3sfb{|l*D~7a@!>_QA)yL6)%Si z;zhV1R6!izAqclaynx3@l*98da@*xFgB|mp87x)u(dpmW{!F&Kx?*&YIm?4P$V>)- zP2*Hq9D&Hfk*n<%)9_e{@|X-Gw_P6d93_(jxuKG!;VL;At`AiuO9NFRQ?|u&BpxzR zEQi6!ohcUQ=urt5%OG5z)WniBhYa8$6U9=1k=rho(Un}T&+w3shRfo^a3!d+*bDKH zC^_3LK8OcL6u|po9 zkuA@7okOIz;5Bt|xtxvH%iwy?aISY}5UsdXvALeXxi&MfyTmSd1VqMnf|1+K_{^i( z`gb;8%#~xm5`*<~!dX8Ht_<}TK8LgJ%ED&;jd&D9=1+r>6PWjC?rJ^|?ZN{>%?Ho; znwFdop7DB`>hskezCu4HT2CpJ^#j;$hV|+cTkUY?Y{0I@9^pCX1Mycq^_a9)tvbc@F7X8Ct4n81f%zlBReWm$YhTnpcB4Zp@OPvrWSFml_uo~GKV zoA22t1@k?FL9}8Hw13qzjfo)f_dOL4fyj9`jGVx^M=w|7fM^aL5NaH_&R4v09QeO< z$AJ;%GQpX!P@S$)JJ>Y}3{~^}`RWGOC?Nl;CyGbwIgT;lbYHQkG2j#q(FtR~D3-A? z0$c=hAb$*M1XvH3$Vp>i6~oc!sErjP0HaA>RJH#qeo>-5TmU0m_E6*y>9zl@WdF3- zy@Lf3*!pjW%Ryy#5@)v&y3O&e_@#*)-vT4Io#XCU+qZcBVK~n}fJ;KGg%tQN~8Y-ybGH=BFC|zHo`0JQlWNI2s+bal9pP zp5#?k$KMOTD$ybKfRQbS*wq(8IfPJ6kVA|QiGsatF?DRJ&krXqscsm|IrrNSu}rYR z#VN7cI&Kwfa{Yt3awWPKNZN0^X2W2qx+Yi2SL$2tv46U!FUqC1F!lN+||+M+A^&!rp1YkucWShDAoZrIzD1Ld*lb_Mu(w55`|3vB7QLNAbi!@XwCLGprdrDM z)^~9kUFtJ1AM#i7#N_%5%%6e_=A^XnL58E>8y()vc1&XVt{N>>+igCHhe~vtkHg58 z+uX(>(z_v=TGvMX6?a1#|BuBJcvtjexGGd>9OfmBdZxBAeuPI#RK`;6s2(8kzPgS9b=L9}AHwQZy6D~S%u)!nf`pGYA&*+use+0cApr}riyjd@=(rjhn3+<$iUU0b`DGl z^$cw#oP$S5RKi&>a@&uJ6BsB*Wj@d z)$tA(x$Wv0x2iu|Wrrvkl6Wv&68FQ!pi1HmP{WW3+B&!o50I#X&%?-V*TFPdrVKk; zE4ouF4jPJhFN;5gV;28 z9N68cnW?Re$#|qhWlV&T+pdhQ&3a{4t#`V|(cuy~5-tzbJ(`|?V%?M`rfh5FFg#?U zRt|=d+pd+_R^eQ2W-weR18{AqLOI%J@KDE8@_cQT6!3V7Dp?I9w_PPuqbE}JK9ecu z%p)5=9IlTK!d0Q_1M4+rrnWNPk4H*W#zq*q?aEjX)r$#&PpHyMa(!%2Wp}o0na~(l zzZ0&LZ^1R9>f}VoN1EqttL7Vc+(gxU4My$&)s(Y+`CPG@$rpP|1B2OWKH3#h@9KtX z{u-{DKf^WJM5<|;x2>8#;&BsI^LrS%?W*ZsU9XXxVe3p6H^Ple0mlW=XQGQsYP-TB%o`8XagQ6;y*$Zc22OucH(lVg7z zu8|+Xm7!{6F=QpKY;A=+g-1(N$oFC7wkxDt)J*R1H0)#48NoB_mJFg3W>zgtTND3< znX3^s@h=#;?V8wLD^_M@ws&pxy`1Pqc&N&5g-hmh-+jV$vgan#$qEk(kv|7l>b7=v z$3rJ-XBQZ`?b=zSYiD)2G!#7=E)P}LG!alHTtMf*wW9W*(*gvPl)tT_v+($dDtaS~ z+;$ZS2Ws3!4(~v^EMc{?b;Cz)F@!mFVGlu?hhBx zeQ>R)0`hR6Ve_|D^m#mfqKZBXBez{e6L}wV-Y~roE|uruf>5P$Al|H!KCba|JV>G* zehMSET@MRmdT@<}hMi1%WAL5RWCpQm?wpqSYQ&Ye?IRQMz=^sU4mxq{;d&{+ zb)o77+lg=IYO7;49xG8DeK2y{)iHm4IXh@S2XK9L@Ppwpc|Tkrs!Xuwi%pWY^|BEU zny8oe!N>`E@iFPWOONClXxY`_iI3k>LC3o=7m^_#*qdX0|_n5j%iQJB{F3 zSmREC)^_Hn5wOExs<~A|{1Z_<_5ab6k6&DSzuj^2<1@YzQHKva%^^GvAMp9cM)S{O zk7Wn0vN{y?uW$SdF1q{~s3Qmd4wuQvTj941N28>+eKfDQ$?IukBjZ`#I0E5yJRYKF zyvC6|*lhW?&Z9H`Ihj2fw#_YH&18(5n4QiHzKPkMLA2r~#^!Z*0Gkk3UfI`dIv{r-B5yj6LMX)oR7}IGT-?;jRh8Xg2c&id8og1{(|2yzw{n6L0cKi z@c@a+H~~gZP=-gZSL1>(AP)#NF1#u{Y~~4FUAtVq@zRZp3fIl=>RNMO;d=JRx$J+= zOZc0@!lb`w-gml}=F64pvh0Rj`80L|RMdKYEnJk>z|2rZxoZ=fGLy2p&^z$3h*EqT zM^5ZQ=~>TQqX-SlHhR&0;Us?^ucq@X3cDBWODDOJpKUy!#p5HgeK(A38P8q55XyLj z<~A?mnRsk}sa&d_QOvI@l?OE2`2(v+U@v?bE-KY_7Bx|%o|0ucFXBNFW%vR|?f}!7 zt(BnhlQb-6&YOY>p2;9K&G@@FmEcBpw&6^}qa!js8Ai4YXQD5JG900|&C77MiY;wu zc5^DLN1)xD1ecU*H#;>^V>}_tY?k365hZv$NA3W#*(O#1>-NL2oJ+z<-hfw>IOQBb zBiYK)HlB5Oj6~KeFtTMlgT4^Tc!c&gFXNebVm3d(j#FL1=A3N5W<6hI6$!MSd*Px| zt*6YdXBPW_qil5P#t<|703>d!ivv7u=!;4Auoo1tsJ3HHPp2edh zQvD2!Y&p);93s7Y?ge_)%q1~H8xzh7{`HSz5SwNUKB!4gYM!O7k%`V+om!sU1rOb4|YZQDeSJQJ%29f8L}6y2d5Ik5+&XE)tZ z=1HBW6i#P9UP5B$X*OGEN!ezS$AcpBx(Y_N%%s;BLYawB*XCs=6HaBv6qW`Y6YeKj zK>{b-kHa;kn##^iOhwDcGMC%%n1~|$2uDsdmlOxwS@9Aixy)1H{C*#=CDCQ}BJ$fv z&UTyc;lUA!{vR0Ga+_~*i1hl+wwfY_nQs5ff(!iR{|hb=^_R~#^CvvfZknX6kiX+W z5*6|~jGUklk7lC!kuW3=h&B$lqwHtd2fjI2j{7l)O>?ugpovk5RICoP4;~Crc6)N< z#1536-Av}GH_X|%dtMn%Xa=t#vGeRQ9HEV@Y(qH*kBZ3bSunC?C~x$IP=+G(wRsuJ z7}s;^n^`RaJKRlhIjJ3PyCw>(Cu5n)4R|<2>0QT>6HO(>v39D=zVQn*eC4rlRv*R7 zNc5H6hG(^rm+dSM<8cw`eGo>roaKHFkzRM1Ti3xbbL^j3T!FvxKfu+Y{>q!}k4nnV z*2T+sd_-Nm2qP!x!lPZNjw8&+1EQTH?3;7tlDZd(s`I~8bMpt7yH};HPbW(rS!{2)nf7K%*(%y`6ysY+NU(KnP)jr4} z5{sSU1U-i5Y-6rZ9E^F1yxoXdI-NP(X1YTku9_O z5{F2yVNF~d9o{cgZ7}>Q3kCb7Sq#4d7lg|2WX^Cbc)KaRgkPM<^KW3}w(~rNy_i&kIfh!#-Yt4ru5hmSBP0IEia&b!A5L4T9qyU|`lEN_ zDy|Vg{7nxFO2(u$o%$3|8&}S)%CT4LdUG2KH?t|GaF!vT;lma3sZHTu%;>FV2D9ZX zJBMs=jYNDSM@*az(rX`EHHu+0kIP|-WX@yy^VM9L?VA;~y9}85^CZ6IF=Bg^89i#{%$VFenHtj_jm_IU{ z`NQDaP=D!Lo3|&iJZ$z4#^WHee*lb}z`n-_5cO~2sG@avKq%*Vz}LLw6me_1XJ}2S zPZ8|My<%msRLN1VLkvOTMlz0he&U#n5|6}jj9>E zf1gE#P5Tz_--ByIGH5fTT1s)@UnleO7@qkcM#ya0bpN|{K+Y`+On3+2=xfHcH|fl{_I0zK;(QajGVx^M`u^VfoKjM5NbI1y>E+>!@=9q9S%mb z#qWV3{Xn|U!&-F;t#)EdW&;_Z)`uLU!DoF1q(+0gIYcLn24h9i#$@me%!}1Co`$RB zq_*%V!_gS2ZN)uAk|nRJ27@Q@>k^IQaTwV$j_+`Y^ag`Tjb(fG%QHA0aenYz(8VBH zG5y&bi|s4%=Z#6O^j_g?@3G0)7LOLq3~a`C#Umj8 zws(e+6BzgC=xQhsZNURV4Fz}kN>>gAe@gcatI@rsVsBPoFet%Nb#{*0v96(DAY052 z4)tfN`BKrf^D+MSJu*10{Wu1KeqZq@$H{Yuju;3;(nhnm4(3GuKHk%~W4{)zl9SfL zWei7SL=FU!EO}iu5Y+JN5>4Y87}+w7cW{W*2LdO@53^VT7YZJPD?;TsJ`f}^eLsG6 zBGdQ5$ZcmjHV`=3emR`&7vZW<*)|7)B*tIBBOo&VJdB*cxJNfv1A%A@9uR6ESmm3D z90b`dvOfa!Xt0lc)>|7C ze!~*MOv4)(rS&1lZ15}JlB?O^7aXD!W`l{b%ncJ6zY=A{8V|-W z2yBdUl3IA3)k~wLCXVrl1#i2@Nc`eN_t*kPw%p@CLIFwN?``?#d#8yN`B=dWwhstr z`wehesBDXe&sGXH=X>KJ5IOIGk=xGstfLzn4w8BA3+FuxmxjvwTw~KgEDf9c^YAc; z+@B32Cvfl4>eaL$nuZ62nil@gw{^*BVat@Kh1`XM?0X?ynZEphe!}I)VAVP$=iZta zf08illLir@h)`=$j>+MpzB*Eq!-qLUM@$Z}%#B|1O_&{Pa`-x2Dks5(dl`;Ki<}%{ z!P`#q2!3&*lRN|?TTb!-he&U2K~4^_f*EYT#sb17cZ=;;;j&QKj!zD;6l~64!9yT& z{t}GbcFtpyL#${9?+bc^d7sZ9T5*41|H{qDA(n>C{aic@BKNakR+cXFl1o4Iz6U#f^&gEJ9f!6H1uo#M30D1>r9S;;T&K2 zsDa@u4$%n%!x)~kVIo(+tXR$CEpU;X#1@JSMr4GHozSQo?huuuZWgHOW+p)wpl4K{)2JMoJXdHw{9+;*O0r@^|oelDErXW^ny zxi(LOP2l?(JOCo!Ps7Lwe0y|qH4KP`-~pkAfj9alB8P!<(%q^!vM--qtvzhmx)1dv zr^sr@w`3OJ;c1=6F$&CPA!DPm6ptDOW^jm37zIX0DI1f(;V>sMLA4v<5V%H8S_``} z9F33KIKB|ciIP`UgTR6KRf&eNAB=1n#y%V(y+L4tSfqFGyOu=~I0vkO>p|tWoAaw; zx9<^i__c{FuY{4?&hljSWWmAoP2o)60M~@dwAgQ=$8WQJ9e#Zx+t>24$#)yqDSsqY}T z9+s(7V=a0dAmYtZ$j1RLhM#AlU}Lw%@Xz6bP#KOt4oKknr})K* zJpTknZadGh#{n*`C$9?TdLn~p#mHy>n$5=n34D*o10eD}21ZWc+oO}KVL&tl4+u33 zywg{>av1n*y2HSfzT9AS&H8*L*Olol71!<4r>zT|1dG<`F12Hv>jJ}lBd!r!Jv6Na zIc9=ozA92P!SNiT6J~;`X8Oi>P=>j&nnww)my_PYc??J6Mt)|&%)q|A=*J@25f)Y8(C{I+HdNl@pII>Tu-X3r9tV;A8)4+Ovmg7+f>}93 z0pAN(!2iJYp(?=q%z~MVt%7gju@F`8br?B81s)@Tnkqy~@qkcM#Zuoy#mPL*Y-%?9zwiv}B zI$^eu-|Xa>8|KmjGbHm=4<2@dOXVcFFqh$Iw8-}r;YzSF2XNPbdw!nWXnyq z;}Gdh6!LwASiuao&t?Gy4ij&J%R*&4{=Pyi1-pZsfrmik{8SjZ?VQKnSBMqO;Qi`w z-ro+FhRVD7zCtVwoBJ#9Fo@j01x8Nb-lO%a=|MCN4~WL}aKnhMExMxr6t?uuNRAOZ zrMpdG=E{6ATi(D{CZZ=6U71|5S}qOhXDWS*rGy!nQ-uk;7ujWV?yuPMzv&SHiufAg zX)Vh!NqobX1vN>0jYD+8Bq2G{OJJDIOE5?BhonY|-@r9<(p-3k;b{ES=J34?P9kL# zYPR?l9tF{BegPv}Uh{t(BE8vSp4cJas+__9tTpIw)Z%|SgTSV5D*xhsH8~f%<4nP0 zA*x^!jNEn=EKvIg2ufHIu7t&Kji^f4o;yMFd~7uwj>kh(!yzzof*L%A2Q`0)R^tKD zm_G_%^))v+b{w1TGm%lHp=z$IEnB<|)~!=?E!rR<;?vrgW6XG~uYA;)aVdxBgfU|b z&)MiJpMY7h`pU=PA~}gIT*q)ULgWSsL6y9$8YDi7UzTVZABK@F)A%5VNNZA9uR66xX3pVISiba?i$2saaMsg4IBY0)hV;uA9Wrp0oKzN8FdU5$`8fwkmb|VS z0M5a$OEikJU}VcE-pC=+8vx|@otzwB%VG(f0BUeWs2s;X=a9toHTczuOuqw0ZadSl z&p9~RelVQv`{Alk*)~7tki__XcmzboKMx}(Fz(U8)es=sf(L{e0`~V!L=FMjbccWu zMdQfDf3o;7S8|H1cA(b;5JjUk8%O*9n{S0x`~M4vNNoS<^@mX`VWahLQ$PujzXbJ2 zVQU6~4MVi#-t5b}@`^J#M50$LO3^G>#)etE6=uXTi%a1W zxy_=V;b?S7vxsQ2%;F;aqC~S;4k(@PT<<3bF1brnt%s{ zx-mH2Hxb$V|B&vZ!V$T=ewf;vwWt|671pAIRHEp#ZsTbFGg-vg7%Ziun*THo(Gks` zWo$J6Lt#d&_HYnfA}6VZMGQxyLpJ}2CVA0;#y;l#@rx48VqX~9GK;-9MC#4oW;f3Q z32gqW;BrvejW>TM$G!Nai5#B~Be$L7So61ezA>EV>*116c{ZEBlk4~5mnU-lZWuX% zYmd&Yn!jiQ9uTVePxehjHvjLXd#?KI=!NO7%<5b*SI+i#Wvb6nvjUBn}1X^$t#xT?1oG_!~@<{1K@I#lOHs zb244{6~oa8s)@I16S$OdsLA0^cpOBh`2&n>InB$y5XxzUvVxrEdm&K_tt^aB*J(!d z<*M2agai6pV=Ap#V~nEH1nY2=H?W8UZ!`Ah5Q&bG<{Bf**zk`x!;Dz|aVA_Mw|^{U zI2s-DHY1|RGKrcVR30!-0Zq@un6Yzjgw;4UY ziOAcG3F$Wf(d%-(eI>pBzs6F){KzS?gqsTV7zG)i)^i*qz^lG>S2q=}aEMMA0mh1? zjVWN}0LqKiC#Eq7Y*2DiTiBA}XpG1miIOaNU3J$m8NV*kI3~i#mT`>d5a|s9az~<* z4Rb9wlf{uk?3T5Fr4iHxGGe(%^itJj2G|- zh>Wj>krNpA=;&%F5N*K&LJb8k`8Fpx6zr4kj>Jh#jzqWzmaJ26wWFLXj>8>^zyl+n zh45)#{ivDXP7cutGeNhOyD=I(1+!wcjqk(7auQqkD#Ou7195Aig>Nqvd=I}o(MA3T zMz&n!n;as&31NmfF+eMs!T5h!NP&aGzu>}98J`{d$di_Y&HLZ+Ac(xb4kNdn_c`i( z0Ih5W_q!K^x!;9BwBkm<{;S;_> zmea#6X)h^ci+#os2Ww%)I<2NvO9~=DtxGwU6xR3(NR1CU4$%qY!`O8^X~Rk01M_0d z4ex@hj<>_emT_FcA<`Qd>PrePj=#cU37izZ z3|EB8v9_d;!1NdKs}q^N7e;P7)A1z*7u&xLXZzQ1Rj6!RO9}~${}PXY$oS7-vZO5U_Zq6^jLm+Zqgpu3MxqWD}gZJCR zdA}7d4VCwVLz~^)--3rhkOpng#Cu-g`Y?#qH2Ab!drI$?m29O)%6CW+C5C`a=5qb7+F z3<4XvoHQ5y#0sZR65_08Cy_D=HBxlpQ4lTW-@ckqKkk1BP0T!@t816bH(t7NQQ^Az zU0rMLD_qb1ICo=VUeaGIO!|xQ3lgAiWQa9+R8f`LX#TJ94#{?caEH zZFD)eYN(vw=-@woR6xMw7M*VrMnGs%I$S{BR|l3)hJ11m;=I zu6%4Yycv&&sD?9PK<$G3qJ47r8oAnp*7>KOD03)}Z_1Q<4iq$OJFJ9J6&R~At z1;NbEVGymjr?7wN;@wJj9ya?k@i>U=PlJ&Y*!O7vYJw20!vjK15I6eDSWXaIr~BAr zBzs$bjrO?XY*?;Nmq}QrKwqxl;c3muF*Ll%S3GKHIDjbxsEy;zgA*mMI?&hyaUp(HqG1fd$d+N0IYfFx!UQoSIQab(izIM3_#|8p zD!<*a;lR!E$MI_uS-uTMZad49RWo%k{o`<^e+1Wr%Jej2XQZ3$r||0&+5SF^oWQn6 z2UkOYXayb+Y6v*hHxW4m45qswa#X&^W>{?sm{mp{$tkiHeey}fr?nl&7%-j1j7`Z> zK57h@!XY|g3>d?6Hs*kXVOC^@>hZ(@aFLwE7ItDd8X@wNPl76WSv3f}0lzHKH1>v( zEz{`X5a|s9@{><4hF7yt0w;k!xFA%9qAq9J%ds9|7|Zz6ISxFFqOU}SH9eo&hQo@NPP zp5zo+?U?XK2~lWT*Kv#iPx{tdjRB8yh)x&-Mn`NIQ^4ymAM%%>rhwPr8aXK~{F32l ze8|-Rt|56j+0p%-Tz*g39CEY1DDB3X5kiwqft_uz*i9Kbjb^=0pQd4 zg^6ZyCyZ>F#V0sK;_u1h=hS>xVz+o4;AZ(}EEsI&wpe}+E(w)oabAWNzWuEDS^V-u zuAhOC+s^eg^-#dg_k?ON-{TlWD`r0XS1n#@u~M)(AB~4VCUVBFv4|Io85;a?)FPGsDq1sZA8~ zL0wbw%4$GZgI}3wAUPP>GLV%VBE11&vh1+3S_aQIvuFY*gqz@+PIV8NA?nhup4(5yNv;kqv5Nb|NowaBaArDV$M2_KLBnufEpQU)zaIgi3=!D^5 zbd<8uFm{DGkqN5D20Ozwa?)Cu$#672eiRDR=+4csiBf?u1+@(LKa?JUP08#tK0GMwql;hIpHHXj?f*}e?F zK9TK5a|s9aucD8;c4rFCxOWf0-J`Z497PSCh$BFzc`WS@i21Rd5&!&ba8!T zIM;{4MWJ$SZX!(J`(Qi(BHstV$O(LVbaFKeh=$++p@xA6d<`m!f_<{_hIAhrY*oz_ zE2VO!)W1$23El$B)v2`>9i|wMQtLyG!Qc{KDXGC=1Bd8@!C+!6b7MTX4Q5FGWYl=@ z5x7)Nk_+!)I2tYTFvVE#_VVI~@QV}88LFE25 z7&(D^kIt`#2hlV=qQ-8cq=eMaupfu$grQ-a%-XP$^I&FVj%r{y8!nTR+``vls+6bvbD-jAl3* zPql@7|6;Rj>>HHncr-*0ngSzR9yEzVq&H*iAoc_{tDvEWV_AgQZ`jhq61YxOJ?zZ& zFnmt7Di-505mj+GjNEorEK>Uh0cBLfm2m-FE2=Vf%0`=c2Ij+RGf%@6a#C7&l;LP>)W&c#VI;|G4m1`pp2V+7G>XSzWXmYN z!y(ceF2;*SY;ikcL+}XE#UNTSQrg^#S7Pds+YJ93=AlMp_#ZHG+Zmpu8mh(eUg0e7 zvB_8#C#uJzx0&7*zdDiWonhnzrad~gYWl+dJs?!mzspy$^`@Whp2%_H$rW1x(3T}i zuu`3kqPC(Xyzs4+u3Ztny7n4hy+-w>@mXF4tQvmAf+4Qdg$3Hn*Pr_lALiT(z9nS9uU!>j)9RagF1>sq&JA{Ec*B`MKn}# zF$*$qJh>1q6;&0xa#fJhvb8aUhegyz8AfiqHg;1(3#N}xhU??waJi`Z=rKl_VN$a- zavL5RQ6nFLkrOoHF`cLZM>H!B2sPkr=bMNeaQ>d|){XJ~LtU9w*=Weo=9u5GG%%lY zim*k?A^k)37_~O&m{@-0TYfdM{DMOyPAus)sI3}l8%=2Z#V9$}XflRDV3VDb-@@yx zSQ;mCHKY-`Z6YJ_OA}3G3mDllk^lJWN12GwPmqcHUq}?}&9bA@T~eJO8cA2CSSk-_ zHgY_yRHw{Z^lF*xcRWf>v<@R#>Z>JXBu8_IL?cP@*xHG)%ndK;hZ(ZGBoCL$Npj&$ z3`e6yzFHOw-gc8!_{E8C(hDP7ZgM_{NUvkaSIc4rGuZwB3kYlL7TY(%WudYif3+-@ zg3bB$cnCz!-wPwRo%7hMWwD|eyni#C_pigHq4I9NS{6&g=Kc{p3?lar!N>{Rd$fKv zJ&2~^0ikX|j`U4L-h!-1cNf;ofua6tzALjPmt|YX-J8ZoU4r_SQ+x?$*A2I6oCnC` zi-o6kD#rk^B?}pwu%(>T0P$Z=WG4&|f+M2@hQ};|IkI}oj&RMKG#92b9F3pa9KQ77 zBvM8(aLyK8;w0tm@F<8Dvn`BlS zW(GBOh*skPp~jAX1&$pLrn~YvwUXm6tL1w0l^lDPTk6wK#rc{c;xFyd)phR1!u{fp zuZTY$5`R3*|8OeMy%~IUj(yxW+wVF^U;b4O3y-~`#-kI#X$`GDaMZ??bE|UYT#+5~ zC%V^H4LuDXx6o5T-5)jYRwkM@$?;((6SLWm-)P-+2M1Or}1j zKVOabkO@Bzm(WRl;Yo(0u~wVG&BsimZZ}V{e_oLIb3B5kcJpil`KK_ltkJmse5IOU zbsCUW`iU>nRx5}4`x%oFpe8Y8KUC2cwz{-lvM+mvQ<%yi*qZ67>E88p^S;C0mF>+{ zD*57SZP|1Y3n@NI4POqY0BcKKyGRJ$W5%Y5xNbcKCD$E!3A2R{u@8}4x^Yoq_;_Ux zQ@Y$vurTF>uC868kD4qhT*tuH+*i1s{lR>9X3}5GOZtn2Nq^D&6Hrr(>qFP3%uJ60qIn7(4)?yBq~0%j&4#@e#fd(eGH^z;TEmH`z8M z3g#x4r~3qEQnWuUzitEDp0*}Cs1GvlWT~{mOpf+66Sn(|MJ5B&^y+Yut95DVB}g1((WgBOhQm8Z9;PVoW@G+e7ZauTJ!k+hJtOLvHnjP#z*w z6yzb7heW|V@yJTcN)Ey1a2S^fF7O6&|w0(?djP^~f}}I!xq6-@+>s zd4WSDnn;SzZo9SI4IAmc4CTeLkqHbUzD_;-?B=$Sf3k{c#MHzIP+Iu5kBq}FPxO(| zFtX(%BRE8Qv*!%4*s7JxVEj-P681~97(WOu43%;5u7o2AoA>?kAc(y03nRCk_c>~L zwHf#MaPC*Z#i4RP&sbO060!O3#RDPoe?E+yz`sZHSM!5tARZ9vPUv~xHYQgz{*dm9 z#tgooI*>222_jc4vHv4$?kfGHL%=s|(X~Za^dFza)f0T@3AX&i0@MQ4nwMj$__(jG z)KqaBhe(_%QfxHQ5~NW8qtSfV!BumLtVZ)~xMFUz`4Yp?*r|y|<4D3bn#b@Uh(_}$ zjBFXr!@dy8XoRMMjOHUDQLr18pQn4HGB#g{PNd4}JJ!d)1s#l>VyhkDX(^4MG^ILx zWDE-w8@Q!xl#h($5FOwn=i$Y~uJLaRFfZZqV!vi4l{dpL|N z`KXu7;QYmK&R>8FL*?8$=A)j3&HM9s5JcX84kIV|Ty2ZUO>==DuRE?u0N z?&H%LLq)!LQOt=|E5~-QMQ=q7%c(r~cT)*lGI)fUdVo!KgvGaIu$TkyG`8aqi9e1PF-?8qfiM-uh`a|a#-(O_fo+uf(b8_Pn5qZ^Aj$jVB=o>}(9Lm>Lf?l7|DE4%nYC|?nJ3i6e4 zAyF`2=}LEInJ;IS+=acl!RXt!?CAJ%w%2vQK$T_Iis8liAzbouOe0VcC+$Y*0$);; z)f72I2UyKKaf9KigW);vhY7PhXCquVx97Z#;pmudi;9Uc;|X z^paO$WXnrl@r6)cB9s*5C69+h!Mx<_=?*fp_zlu9>%0fPtu>Z%qNk-qBR0IsyB`ZW z@IGlD4$%R|GSgK7!(PsYNwVzaO>oKF_Hr!4(d|W?%jn9&9$3!6qad2hsW7r-GAH>$ zD3cMY3No2JL!w|N^H{njBhFyU7YF;@w@4pk>9k^Gaek1SaElb_QbtF+F?zpm{ngO2 zkwbKVxA4=};@KO%@(@gpBJOkTPzJy0W^pr2a$d;#k&KE*? zicnLKr@SvD3g#)9bocU3YV5VM_t^c5rP2yN@jVJj?#>c{X@Yg!0R7#!?#fGE=Mafr zlHw~rj1|7Ukf&}K$+lObtXM`ek3nEFo!dyZVmKNv@+_oy^tOr2!LLpq6yQJQTEZuvuS<$3SHLXc)Qetj|^_m^5L2 zLpby6;M!1`7u!wTdD!e%@HmL<55mX^?0a;5H8_aY;Q^su0(#B2fkjcU!Qpr5J`$c1 z4G!$glKeXMv_`b(w{MJ&A{B>9ei_!TQ+VEIva+9*2#&Zn|BJpdQscwD9HJA(2gZ$- zz0pzrAIy!_QGN`U%SmtHTMS2^AjI3GMgq2>{0I+#Xedv?$d;jepF^ZKM9gY5;JD@u z*2lg*c#aswAX+gu+N_I>(#|w&?zhClAaeiT&5!%7wHDlj|NX-G-v=-J*nE+l6<=hB z#a~?;%?{rmD(5#ke)ZcJ$Ds}T``;4}g{XnuVdRA0zsEG71`5$kJRsCSagVQ<7jmEUg8uZrDn1Q+4g zCbGO9Ms7RHljDmB7Snf!Gkq6a6DreU$E6;>&GsGm^@(iX4kIV9?a{MU+ZV0C146a^ zoqZFLZNE3&jSE}V&mJ2rt=GE$%PbGfmz+|oE%xmG@+AK#EUo7_W`GxcORi>s7dS*G z%m5Qq;>IMz?KPgV6YxIUD{gZ=s}t`CB%LgiX)b2Brr8Q&j|fXMj1Fml@&pQ(ClBJ25Z)>pxm zp|UPEO}nzNneWA;ATobGjGVx{N0V1`f@l{W5Nb|%-nVJVIpNiGmj||z>p^U@LZ3D# zd=l2IQ*i!sf_U5!g{5^Q$DHtSU+t(l;WiG@8FNA-aie#97iPrj9p8p4pNZ@%=&f=q7`=n_AlI;6B=3A%x{ZFL1ca&jGVx{N0V1`f@l{W z5Nb~Nh_8g@oUp~%uCBy>m1ty(3iub!Z)D$0uT7P2gJ+}t*p9=q`e5lg-KOUIa+P== zoJU7{xhm@`BsDag$02YMJUD3nm3cu<>~KQESFVD|u_lKr;c_|oEmRneJ~@bPV(}*< zP|qDM$0Hzm%4IOJ*?i%Hk=tD~NJ<|NmYwZr?n=Bh_ z269Tydyh2xu8`a>C}PuO>$na1x^MNBqddYPI>1pFHCpn9p}YuFV;RZ|aJ8K57JkHV zG-hgIi?oq|J)=C22SD_bpTo$OpZwGpLivf%QjniK6cPpVljqYtv1THB!BS<96iq64gDZuIMPRl)F?yJ4~{pScSz zo7-nTz;JY*ncwgkS0=XU+<`|zG@aXFWXp7J^@UKTBh(dSI+uq;!A$3k={|rN7riLT z*DbW0pO;w{t*{vX4^R`|41LkJ+{#j3;1G$HlH$P<>MWiQ zf@?zMS#0IgVeDizKtr1g3SdB(wz&&RI25CU#_A}1)qe~>XcgTaNipb8I#t4 z97`A<_Z5vA3U1>NoiG%PlS~*h!FORUtX}bLxJ*tu3twV58YQ&};=V%CB`>T-g2(U+ z6Yb(r7}>ImhdD%gBSE)lscx44#)1i)2>t?>gv#<%&axK1-5UOcU!KVIA7JFRb3IKp zQ#ao`zAKpT?HEKWCVl%?Ej|TerC@WuEgk}q^La3G0_PsRT#W;wIe0**ao{7q;+5mT zR_X4)m{lAakn04|*Pq#!Kn8LHrLz9j=RR1xPN%8)o}kTQ6gQ#lc*bHqK&>%3W`(S; zqSUN#9*0Pr71C=ZGhG!h=7y_alH@N)z3y=(Trwxmg$l#b=&6ZKUal-`lerv^f@m_A z!N``$TOh%|G$YjnAiGtm8oRjW7$JEAYxBs8IcMpuKDF6Qh(j-kU(3TcjT5f_| z)B+U*K@_bZ*CL`I3WV)ulkBqDO?NkG%T*9TbQOgliXsStCpeSDWJ!fWi=gj3a^Pbt9lOKP0z$EW^=6TI|=6%kYGbdlIG;+mCL4AsPH+2Uy zL)LNUy~vBM;fv$z`(<#-;I-72JALynYs(!>BC)olcyp5IsNL5J%abr2qp&;y=gSJX z^dRXdY?^$Pm)--js638G;8;|C3o9E%^1I-n&??+a9=Cb_c6X<))2Xac`#l%BG`qtZhhq3UjSEu_?hSq0ylRwMwc6j(& zYfdxlv%AX1{z~bxOe=5o9ZYgsIg&{vPAlov81dQNc>lHfvJM7h)R!?hVOGYa0n$<6 zG~=J$jrYNuG1vUmv6>`H>ZP* z@WvfE|F2V=J!-j}4tRm^kdRjM2H%bdtGOgytGO9lzL`sSLG2)Tyjsgi)Axg=(P~8& zo7?MYE8*cOPA@q{9Ka+Jr-<~bNCYO8Mi$Uvs0zZ`P7L z-o9fkISE!a=8O}3C1fq(BPpns>>m;ZS<6S#ttB(rt7&5+qv`{eYpEBVu$R88GNYH8 zSWwC+wOpZI?VD~{KCWaEiRB|jhuPQawpKZQ0Mjrk$M@ho*(=9aNk?JQ#UxUkA-Gj*WlQ7yPl^UR>kQ6+hjZe}Ild~h6~9UQZ+QETw4a8R zGp8L}mD$ReMtsK)1ry(%Bsy_%VV>Fgs?1g&OzPXs^{$TdTI@p>A``)vr;=#geN2d%~ zOBK1(mw>DycQA=*P(>mOF|e3o_~9*JYoc_XZB6rI;IiS+F1w&HPALiV(Au#Td`Oo1^D z#^4;ej)RxR-#ba@k2wX^@OT_YLlsued^GG3dy69>gW8C=I($T23FpamMC`;y#N>T4 zN5$oMOpc@Cldy8asPJ$V(wOim$U{QjBiY8cBjO&(Vd*|Q>5ZP9l#6xsD(83939O)5 z$Da4At8|x+#iYz=7T58ZZ?dK9c$7&@2iHN5u~@IQQquEbl!Y<5Y(f&4IkVy{JxjS# zkcd}TTew8S(o<}NH|$t1{^v_xo~i%lshV8 zx|+!RU3dtN%-;bkCouPz%%vaTlY@tZtTGS#7AoNf#?swZuQz%!Q7@iSP#&3F0gqPe zQ1gCd(hf?QeJqCHGT&h%4Z)>MVmcUtzE-z2M{p-h!*B$5z+r1!I+=7-Kd}wFS()4yv-+&ZV{xoLAq-s*I6nBc0W`x_W8yP3j6}lB^@Ixze-RM33_+G9H*R zbS;-BU-!+stS?_<64Ri*L{Qp2*DA_mFchPrJPN1E%C&SK=_pv5^Y|NuvFObj@-W`I zV-0x-RyJzLgT4~7hVW4oR71WJ5(U+e1Jb>*v1y}5pF%5?>$LKsQmv>(WZMfnQ$*h6 zSwtu{78;LC8LpNpvW%j|EWQ{*vWhHW64RiHL|A0kwKB32#$uF_1K?cQ%gAn|qi|{R zo8n6NW*yldZ{D$v>VzdZ z)U%rK&+}ocM9=i4AZyBLOkx_;6pmqM`H5gC=`N;qTo%JLD?Q7g-q%%IpPiXh|z z*30oA9P7&`VP&JfeB4(;))zjeg6hlqkSM6W{4CvTogLY=PJOt#wyS?|tdj5QUt7zK zjuvXkUpV?5^{^B5=2*{q6I}>I0ke2p;UZr;ddwG*EIyAiiD^)Lwx28;n#bw62!&@< zqD@Ew^Mm$E^ep92twcMvFO@dP*CQ{Tb7ywn8Y+F zHFM)V*UCx}hGLYJK{!=buBEq=j)Fzpfr&?NUODCQ)*Va8NwBg=jVvK2_)5qU!bee1 z3E4j+3MwH-rdvXKR~IY!>R3fxYI-eoB5qz5?9LY7E#!wS_+c?WY{d@NQP#}a%u8V% z87F#+kM>6{?^bW*8nn>0n5TcIEn1gH?y6C&R&wR#(SOE&cX{l0m$$=K263ylG-uWd zgN0h5k}ph@K0zx7OIK@HChrj+U(I>>>d0s=-{>FB)pA4R`i6z#l}s_Q;-vUyOkXP* zTDiForYQQ{Q>MqrwOm>B^jNdm zcZB{dtSplAw{~*UrX5?J(#n`de3yw};x8kK__fO9#nF|xzC5MX2b20s@faMbZwo6Y zP?x@7@&t)$F>Cc$xlC8$?8OOQFZjHHYn9|6yxeyjAI(xxIx1a{F?T5XsyuDG6@68H zM7>TaQbbt2vJO4(>l6wtii`)QOinE?QIgZqpzlbM^G== z{YPNs1o|Gcel%rs)>{lMX(_g05{Wk=(wk?NBxOOHZ4QQE8MDoSaN4ZAOM8-z>Mr;W9Z5Yg ztIiwoNF1xq>tSW1>b%xhB0AqM?(W*CEBc3*A3n^2%Foh}aOmFXymVKUY%2EKY3&N6 zynS~b^#!v`))DBv8@jp|P{Ic@WSu$3H}$g4oW&#(>r9H5E}N;H*UHQ1VKPQ}`7E3* zE8NmYNk=U&{1%uRzgbj1gSYQkR6Y$W8%5<)Od`E$Wf8ajYR)v~zo3|~v(aGwGdMG@ z%=srlZM`tb{{)Z1k^GNf<;=-1k=B2M^f&ovF#U~40`p<6^tqu(>WMi5{s(hvI*x#U z!^#OGz{3Q{%NRb5cu2_0m@|AkA}(W&NY_X7RC1NkT6IA24=dp@YaMXSlcwwuYb$DH z0<+u|Jpev+#ITaqVt*zv9jwJn(Q9pf8H8yW^GhC1lNEUBt)!zM5&QkLaEXSc^*ae~ z*s-9T04o~><(*6-Ju@Np`>|8Lh=K`p5g&$A;z~Kb-%ldz58}-`vVK3ToH^^*em{2J zcZBo49ZriYZ+*X?MCP~QAviMsDy*Eq++((vhJjBG9um?p?CaYRVHiG>?sD_lIsOT@ z!kRH!g!A5sXd^U!6Xr$g2v(u2!>##7n`;;<(C6yy>#)R+mb1Y6d0fgQWbp<6@lCq) z1^;3a)4>5|>Qce9kbsU@|`h55bZ7L9lY>%(svi z=dlw-<9=E=_w{gUT)8h{uY_2;VX_~`!*FC@hm{l9drbDyFYrmjLqht6fA~&a!Y}NT zu3zXbtfNJ#>cXn8!{gOD*qZx$It3AuG8a3bS-C=_o{+vsmR2utdA^*1K&G{N|S_B z1R~AE1RjWE!TAWRY!sXiF^Tld#5Uq0ot?3hje>h9xWIc3cfl!g9R=I7QLw@8n0Dja zcsPz@;hV5>=40Wd(rzT2Oj=cVE_^&Z1EJD$HZUokQ~RvpJ3&LG2!7R zq#@yxkB5XbBo*I|2t)Eny7wibhv_4Qfnu(r7?4+e94%+ovDaK}Ga&Id#=YMzmvJjI zp5^|AN#a{xeVfI>IPP&ti!E&fXzX;EQ6r$7`QEhc*-~7(jPp@B&LNwh+c7H z{njeT{7X?DhCkSpBrqdoMOykFWy|Id+M%0uV>aHjW8IhuD;ssAn@ObZ58CO{NWY%K z!OlE`^lRayxRQ?hgLVf@-mk#}aOC}JSUGdvF@MlbnZ~>v&b$aG#+AA5589nDxeww& zIC9U!$_d;(CU@x%_(b6$A^pJxR>o}d12{`o+@;${M; z8nIcvO54pA>HP-Uv48z&L0v031P@wkeQ6$KvkVTm6WYOv*pzw5;tU3SN0D>}IVO?l z4APrAXn$QnhId|b2=9l{h!aLWc{mTwmX&U4oOBd2O@6(pb-=vtI0p~Fv7DR*D;wqH z3||RZPWV^~Dkmp~L_s^l9Fy)F-Mh55scx^eDh$x(mWAA!6}2;Qhau%fU%1MF^**M*^x;k7M~RN zv6`=UUn?}LU^+&jISkI1z0mASItrU6znIc{VAhm_@dzAi%7L)5QB&T?B+_%cTk_Qx zde$`Vr&3gyPcXQzgLC7`oo~u&?}tf$43EQ+ehpU6oc_|4t!tg-lZ=3C!$-i?aDH4z z0RQ@Xa$n3*a3vm#<0!ZsR!$fN9;QJ03O=QHNXQ#1+xvDz+)$ZF*H>&hSRJbsquVL; zk)7&*>MH&~eZlINb?ABTjVWSlg{I6~7Ekdz-_%P_@fees4xVB&we#A{(svn3#+X@p zNCItR)-4%0?~uA0G#c5kaQr?uj7 zH%!8?3wOdO$TJVsNHsDgEk=&? z6API{qMt}_YMDhec(=95&`at)BW=y6ZfnFZYZTwC!t7r#@hg$2!8M_RBpiYGwRdYRW0T zG-OR#%OnzON{WlA_+~@7idIstfN2>ez&Pjvvy>LogDQjQuv9rDhZ{CshU9fWItko~~Sa`n> z&ii>dEv~#RU+%Fpe-019k@+*QasqRY*O$LuZ+p+{r7t%%0%G_kJ3$Lb*1YUx?ib+fdyU@!!t<59H!>o*XR@|k7 zNk<_f9(W2^qFregj=|e?EG9?8%0@AH3zJCCEQkl5R>tR3EP-C(TsR}HjN=bHlSsb@ zZ{3mfyJ6+bNyi>|T4~=BPWxs!E3UNl2cAj9Z^9#RB>n|hIf1yxEH8}$pB6kMq*2)2 zwAKSVhhji!W=}obg<( zm|I$6rZ(l=Iq61kaQGEP5uzJReUU+F`uS1@L(M4&l*_Ss6Q2730Z&m7z?UDt3sln zrzt;9_aW@!p#puJs8$#()M|wqdnY|VR;w4s)wjoPrCxQS_V|9Eh@zB1(!aH0R7SL= z?%d)_L)M*}nZz`xI}s{d611B0YZ#SLbAAbD&0cf9M>-0jCSUxM&=IrV{2UL&vEDoY zD;xFZeqRY$Z}`{>sy8=dMa4m)CoG8x~a*lrmf` z1!YSL6uTA><3<*gg-l`^6qLSJueA#DIv9pgLH2{wWUnB*l8%C;IfpGBYejCBjD7Hy z9ZSYuu(DAyR`^QDlEFt$P|27d5(Slvx#^aSMb*(pv0BNMyZV_~DU{8%=%-VcI^jqe1uJJh3bvJt)*VK| z3*jT-c{oR|BjKgmx^-KB%+c^19*^T_cm`HZ7!4kNLRu0&)p$tACq)h4jzm$AC3zrS zOVVxmg5qngLQ9x+)J@@%5)rgAxmnD|tEnS_mpHFt64Swa^zu$?)6MZPD`UDj4$hJl zcj;i#QHY2oB?6XcR~n3C@OB-G$prtq$&WJ1H_>z(& z((l1rcO?C8SUGdju_Yx|+P8$$z8TJnD{XyANfPm!@CY1%uZQxmo_0Cg@`Z;0+wi38io0IyN<PErJ_&|yU zJ0A_kZ-g`A$~bNml1RTEZ{3mfYhmTgNym(Wm3A$hb`{QwD{b8Lc%r+de;H(#yQ z^3}qi@*3QNt5NG?9c;~shwfHyZ#j@b(>PzY|u@oc8AO5oiMO z4~G-~Aeqkw7homZ6b%{uZF-n?TSc@kDO>c|sJB0aCLkk7SB z$~5BJT!Ws82JxjNff;C5;{3wX(g~CMVmt^(?u%gM%(*X?u3O_WXs9 zgpQc}55fa+ z2iz3icxZ>M%w85-@jl;yC2hrfnZ$Ik6@9I4YxBzuFfU_%xem^g6?y4W(ovX*8xO6> z&7yKG-m+s+xf)hBiprHtB0V!9ZalQIrEz|kqQM-!!TBLLC$601Hy&E?o3tOq+jpe> zQ&>53+OZoCt&C~Jdp{dYd3a(oxxMAjd{n|EaWAy_$qwMSi-Qv)v)9ujhDc%5%Y#MJQ1bf*US zWvYRK?aNd@r|w{5);i#Vzf2{gQ;L&izIebFfSfPxXA;w4zG#1$s@;EW=J*%P$Cx?( z0Vm9gxb%C{QQ&A_rfPS=w4Bf4Avo5RzrxB!UHLPUNN*0&zD(6ln@0X+*P>^pLH?yA z(TS@Klf3QARPBzK{I|seapb=YR?eKi<;zs<)M;bj=Fojd%o(Mdf-}*(fTXV-o3^i!H@sGi}&w-2Wd%g}Hu%`)}af zxN_f$Eupga!<47aCZiQE3hi#2a-iAa8_~ zjRNv|CXt>wm?fSV8g$oDAc4+c3{HnD-MR6Hoi@fbylF?qRaiN5#+$~T2^yTQ4(EI& zoDx^geEGE!zIi@hjyLbf`jfD70&9=iTp9vC33y0IL$Hl+M}#5hPWNVG-%zeGT!@}u zs^7)_9d!e%N!EeZJiz7)9JT}DVMS3Xla1x}z+=7%m$wHVWfIe2?w{4}x8?wPu19%@ z^F!Wn+=L`BlVn9&dX}=KKxy(hq8++fH#WkXcB~u!^QAA(*ne~Siw^DT+U2Z?(5)Q&2IXZ>{zWhVL`rm%oenJVuD|e2jB?)<*>3bVWbUyp`2aYDbr5#TsZR+;l#L} z=6vrLOD9b3@4|y{E}3o?X^Cd ztJUe4tJQMryZRf|uKr?WpqP(7c0Zmgk448E+w*uhH>&Owas@oPtwXc#Utm7UlxxOnM7joNOA3j+-EiFyH-NZ zgSi+bCmjWhzRxN{Cz_WJTh79pcdR34z{*A)Ih9GIXI1rmRxQN8Od(-s zqCxzNaAI7ETlZPDbH4!(!jb!RuyW?yZTqZR*gqD|{!utNuIv-{S+((liQGlz3@6NNq)R#z@Lw!Hx@Sk@8eeaS&l@t~B+ z$>JK8QJ|QY7UM>`h9yj5I=F_uR<||7uo9+WOdkipd9ng6?M6BZ6LHPairl>B*dK4% zv1aTGD;qUqZzhqRR}kB%wz8#h9;IjkZNdng6IaghZB$$Fo3u-K`;N4SVCBqd$F@;z zWlSS}Svc`a;k>vK*SAq^^}(cm2_AzZ^$A!xfx5?}E`0%?B0MCdFWADjBf=NFDQ#as zpIxgC)pF{aVZWwcU=_+b*qW;+f2`v9<+tH>+{!d%u@1lVB_gfE&zZz@unx1@{njeX zi!d?6JNySulofjEPo$$j5vw`cp__%}UwG4wh2uyW?SV~aT2DbtuA7tZ_`I5Dow^+g=*PMF+} z#)EL={uWp{fxE}-FAW5rC_E&jfq1~TUk-sgDu<`XsjPCsJ9+I1`lcLcx;|%vltG`L0fUh!)`^*7GsE*m6^<9FD~{S zc+y^6$RrZ&MS3&OE{;jjs?*nDl*WwoH8_jb(NOv<=_tgSuVAY%96M%KtgqmKIaaJM z!OBL(y3tocRxCdDf-2SpAyLrki__D+wOFT!gKRdg<7FP%TxI42FGbbWAYyH(bb%n zua1o7@{N94Mw_FXQ=`K|@ffCncU%^>% zrLFJ4kwp9#cm$5be+DZj5SLECdB&KvdaPWg?c}0jq0AMyR!I)PqkVhS^To(EmcE*< ztC%}hspZBCW%l|^LEXD+8AXJRUF*Ped7@Lu)$+r|%Fv|NqTc$=B`mxi;y1Wt}CdwmJ1(h-yY1RjVZ|Bt}R3H&{*K{T)P zs}Mecct}WhvAJ(Ygu6I8-5o)D%7t}xdb*?BDg7n&0V`M5@z#9Duq7> z%vmpx+hW*x9}~{|XgDpdyce;@u0|J3qwp3y1V`paz{&~CJ!W}n6!_%eAt8;z{l0}t z7=?dtLVN!tUFs$lubn-%Df%c~kvHd*_uwBd%9V?!sIRJC3=diBcxxUvsa=S^%2=QD z4g~wH<>fut=Ztu`%H(A63m5v1D(M$4U=oQ$QoQ*vH{Ny4G<*$aWlSeufpcZWUHS~^ zC|sKS-gZ2Cv$A{%Z{4x7+z2ZhmF0RSk$CcXoO^xSChRuGPRh;s7Gd#>X}o_=5n)!| z;QjyLytwk_?>z#e5nM5 ztxQ`MJF&`lSV=o^7?YR|c7iR6DA%;|(tv3h6U!PnOIF~elSoG)5?c>JutdA^=0gQ< z*RhAq>W!rdR^a!>8bkxH8rkLfA-u0&m@s^v7W3%t>ntAq?6- z3a9-8I4iESZ3`i6#J`6};7I(tuyO)%k9l5N1wJi!NJy)2uy03%Rd^=d^$+vw)xies zA39ts)Q79(0eW1Z*oHY@MvIhn%r(oC-hGHKnw<0|MEsYRM_o{Rpv+em2hm5p!mPI# zZPG#XFp25lAQl+?*UZH3FhkK>x#I4XaKfy^ptO{96gW+O)6?jJ=__`{LvXA;JHg6E z?b(4zq~|LZ^UHc8Z5sI#D6Bw>@lH57uH^aC@q~_;{Ex*0apeCtSUGe4%jCuVWMkm{ z;bY)DI6h!OEGFj@_=X(mp7h_DVP_uC(>r6-mSoz$0)ZzCWy-K-^=VmsWvK z3my{ED%{~)q=Z$tD&4I!78lu;oR)8(DDL6C@aVM;z2=%p?^^Khu=sr9q!?}E8FfT? z9edJ;A7}fHJn1IRWD<#PBE9KmOM4D9b8#&U)0lX!hLdI;52XpxQOyN^)N1dCdF^r~ z9*1K=x*S$E3eqQiC1gS3BP*yNofZ-Wy+5{hx&>**P;O)-rxc$*P!BqB>GHNoi%*R< z3aXAwdb5=O+HxMLGJGvpE5Gy2zpO8hF^Rw$o_*e zr2uL6u^S>Bm1tI8t89Wd>sUTEf|ZT(@jp&IwGTMX;dc&gg!c|7yeFIx`;1`{-i#5B z1#eChd*F>ba$XKAXU=(^ywz!AJrK@12PegqHQ(A%>wwAoL_7dT-tU5y6L@>f>CzVP z3Bf}`UZ*_jJ1vRpl$WQw0&7lrG-*BeRq%kdj*s-#D_j7dxfk1)3! z>$+wY?uJ>3(?>ozy%Wxr6?f@Nq@!8|v7S2?y;)iAz*~2$EVskTMrFB;Nu+nV*;>yX z%b3RdS&9g=?gsC_!g+D!t*qyc^}(e6XFLW+>VJflGp8P3&mGH}Mt<9`29sY#5}mjx zFwb;jJ$I}hCjBLN9FFw2fRz*IdsqSKCiv9hAtBwwrM|;hxQX41S5MO;Y>D`C;FE1AziTV+J&sp?Bnb$1$B#!qT zchYYh$0VkM-`K*M1FamL4YM>RqBG&7S%*WZLOKed<`Q-VYwd6pqHUe&>&;qT<^>Bh*M*v^8vw_Z-1dCEzj^ zejPp*ehDYZbu8?lE#b0u$Q%zp#{+U44-de~3FE=TVn~<5Cmat6=~9mI?TBzG$ECZB zOS%+3t#hM7Gri(cw)z@c*Q^6E6_>*M5gC=J7s@1PaVc9;&oKWl#+`I23z@{Uaw$p< zv^nZ^FiX*6d3$6(IBC}5P}-Gr6hN9wQMzGPqkZr&9IMe@u(DB&RxpXoT#Ax9Z3LW5 zp#{2>VK_mqBf#cTl+KvrpnwPCI1X0B%9)P?i%U_`r;UY=g^z`c;Uu|^g(R1vbjTbJ z7vcdqj)x0i<%IFzVKJmj;S-LBgmfwMeLEst$_LVQDYF{2;z(EjDTP{9{kYOEs2^A< zvyQ!HVG3`bM6rv|mC4THMtz!^z&rpN)4kUqjbXV4VO|sqt zllXRc1dhbFhLtlXzDV8&Nu>U^aOy|FnQ^7QSiAWldts7ag-78?{xDcMfxL$ikY0jM z7akJQOZ>>UXbCUzhjbTzc8^sC>79Ay{>DY{aJ7!LDSdHGgsn_g77OuV-(e*!#0Qzg zbg&S;ywlp0atln$m{M+rvt$Kcx{`DhBI3n00ZX(i7lYn}x9eC=z5pv5<>d2BB0cLM zUR<*>ew<>#jJ?75w{S*W8OL8-OCtRU-nt{{U%|?mla9T(W~IH^ZNaqXkVGd;qIpK^ zFRmpK@53W-B;ErnClL3T=cQHP(}IVDv5ii3PRB3#8@=`IZI8LbxU^=d`26SKaKmMiOcYaTPHoxt8dZN;k0SeDxky%axY zzr|pZR$>N|m=0EArs%a+R+htzL?7kKiI>A^vSKbRAsq#Y__|OFmuOhtc-R?l*s+Z4 z2rC<9WP2u&o_!Es7qU}+7X=e&9Nqz^#FcXV>q3dF-;Ou$$oj3Ya^|dKUl+3TeqT86 z_rhs$<*k2RD3STucnFTn&xDl|n0w6e(kAf9!9zmYgpGYWB5cAg>8^QLP^^p>YP8Mo zXrVST)}UQyG|O-g^#?0d)=}5YPih&WuOT9zB;=7Rfh&`h#XsET3rG5gZ!?MM;2$(9NhPhsAK;8x@t1y1Itra8e`nF`gL!fCJ3I!*s`D7EY*d{`nM8W7Vr%(a z+{~TEe~WLR=dQtjbCSRuw=4hcwCCeyZ_JS}50A!iB+P}C6Gno^tS+6-5G~-WrbfVkdDGdeCsYAy;*1KcdXj}NN>gw zdn3d%rt!XpBEmeP!TTyWFRr}fdn3gAU{b#VkHL}pWw3JQ)MI-i#IvT6e;}Ov{cvtv z$?JO~#QR~=zYmYYk^a4~asqu1V<5c+pE^7wq_;T2wdyl@)NNtf))d zk&fyk_zHd*yIE0o!`pVOD6fE(jf%1hlSt1+h!y-YUmEMx6i=Xs=!di7$~wM+U-rNx zemow5Bk|*4<;;o4R`AQ5Y1A(Wr{07!<4Rp$!7qDZl0P4h!jb&BuyO)bR zNJ#fE)3+nSJ$x_SI}>vUi)GqYX`q-Js#bDkiDvuyO)_4}%~*2A@DYB&5gqu5SSo9^>$I zm;P^D++Fb%?}taLb*ME@m_lDcAuDs1#Y~*%JDjAMIEP702Q#rrad)kzd;z9p%qO3R zGh_u_`Z(z*G@3o^u_{3lZOX-YpT*mBEFYhNm5uW8X(o}LZRq2#;~Q*$MR8!x-eCI+ zI2*2P=PIkqE z`!ZT(`mvaSmGDp%r9+y51DM2gFaxvN{nk7|5$0sf8-sA7tf)(GCmjV!b1s`V+M%1} zB#$@kSWZrYm5qtx1SXN5HJHaI*mk-!(jTR80v*Cda8g`J^REhN9WZ%+7!Saa_XlC+ z%y}=AQ*9FSJHwgZ0Vl?lIlqHs>4eGsc0342?zh3p3EVyAd}$l_MByPJZNvV)9TB$S zxpeO!bPv}@%f*J`88*HHtx(pXHl_OviLjM<%3>Z~^ra!q!+)5>bTALSywlozvLj5( za1Ps(L?^CA=8=vypV2O6+9ffW1b{)&fQdrq2CySXxdbUCAGh}7_R*EIiGaLzL z#ClSfOvdqjhLT7hj<@be`Vd$-bJDSWhOD&D45xh>oE2Bv`aVNR#Mk2yI1(R+l@o}2 z%=6MJ@M*zALRy7?`A$y4DqNQC9fp^T=G6TNzX^|1>mX~MIO)9w|5Xf8%*vExF$rJy z9Z=FFe2qy=2a_;^daOBw$6!w4gpsfDJqoADin??k=_ojwz3kpXgh@0i?ZLx%qmCuy zAz0ZcArCT%^z6Ybeo=1Ho%`)zZ!n7_I^q9Jy8O;jJ9LwAFW$5x;~B7W=8QL$7vU!7 z{lYo#1E<9GEavNul<-Z~d*RJHvR(lzC$RRI&!r{clYobWv;<%AElk1^?2+yp5(~yE z#WiEJ@nF7MsTcBNjpBGgxs`AVJZP;Wt~oM=7J>Ic>4GvvSscS!-|;3LLxV|72gk6v znE=f|Tn1AVr>d!}*M0$Q=37?eB zylL$3rMLobJ=_Cl$CdrE*n$SLC*}ya3y;Kc1biD-&U^&Kc7iZ-r;UQ=!$-k$aE4q* zfxZ)j*&A~tJcCE$I1>H>D<_Nu4KeYKbP*j+m?&+R^n;Jm&zn7iso! z$V&&3j)FvNUf9AV8kV;!j>a2yEGch+m5q{e1d~XQuh_iMPWfC4CeTy72TqAA<@n}> ziLBp^H}A;$bXYla*0IeC?YwUe=Y12L7FXW-=7ovOzkr93!2IG(x;E;H{wZBcGgnF0 z=g-4UB*6EW_@#H?vxJ9)^bW7|?TGLWx2C%aVqv+O&(X`8wL*O~x|3nq^WksQBdlgw z2VnE0Nu30;=L3to9k$!%4^R8Dk>m6!CXwhP(wk;DI5h#9rC4|;3Qn9;(o)PP3Cwv} z*_SpV9o16swO2NZA_!?OHpPQTC_j4DnGGu&RcEHJgseJzOa)b)Cw)h@s5(p1tvcO> zb)&h8`b_n0l*mq$ncSph#{ZeB2wNG+mg|+He8+^WGpm?HVx39xdZm|lTB|Ks*Ool#C`82CD*?+WCu{I_9m`1tRyNAX$xI@>X+*5OvNHY*#e$uY2IEh|8F6JC zUwf5A`cru8j-)>UD`!qRw)V@Ku6S%+G4U<%!Wj9i(XEQVnY^#-%q zVsJ^r(8naEgJGD}?ziR{UIjBV=9AswL|L(ywjmt_ig?qj9lH745^hp#>pmR6@PKqn(_?uqs4w$^(i3i}w`&d{xbKbExz1k_$n13*w z`TOC-xH8w@^lEp)8?0DaM_sctg;pZ!0q+2hUzxishT{9agruRkn@LOuL&5mP zdao6pr(u4Et#}Gfmvsn~9wr?HO_NVHIzADAyv6w>9)M%fc>-28iq7LqB0Y1l1z(`0 zB~7Eg^teOkz4140^ph>a8{_NIb6t%7wg3V^%2LL;L&O=EK~Z3Lq@JlPZq=Q2KdAggG(BQ z*D;CdU>Ih#`>lC~A()xyrCf3~04K_dy>v9`C{V;Bj&|tgRY(qR+Of2p2rC<<cjz8jPcfjQRAv^#_-XDOKGv^(9#L-Tf#{Api%)bdI z#+AALh@;&Jll#~4ARM`W4OULz?lJ#M3&AG}4+&`@_VewCun=SE?oiV`Zr*L^x(BUL z)}c0~cN;|5$~toAnrC;8NY>M3G@s{z!|Zg)FqQ~{BA=M=|l0>9ZA0# zR?eJs>~4dV_UYlYPl2=IN?X6%kVJef9)TnA2CSSw++&`XR)J3o9um?jJnuU>39Il} zx;xiw5`A`Fc`We_c%WKGS+jo%7eKI}l}X8B6K?e#Qqm^e!X&1HP3VrgteJ%0z@)@E zBX2MK8qSdwcIgMCqwr|XWDh+VDAB642*1Qzbu1%4hn0;o@&J=a&mzp`>l-Y5XMZo) zAj~9*PMAQGFaK<_jNQDh?8e)6r2Gy6yB<1=~x9T z8>QngCXt?95H}Yre9xgs0&T)sa6Vl5#&0gzDW8G2?MV4lSUGdbv6~AP(q9ZGeFK~m zSJL{;1v~BQ@b(>PUkfWI(DsZ_6Wnhl4CJhck)95|iSdbF*c~wbC*Mb23Ux z4bGIkwB$%fEiK%{%Gk|{QpMYLtSDtz*{CQ*CXwDuGN0esl=;$FUrF&`=cK{u=WgT@|n^N|GX&F<>ayUy?;H71xqY!DYvSzSEyYepQ%kg#{%gN5L zvQbWUWD@CFhxRIK3*!?hmO$I^E;u8ujMY`vcGB;_TX!V=c33%c(#k4p3+)et(|#YE z6<6BkDr-CO_u>&a58*!OBKCd5lSDkt%UV_W98AiXNv?r&WQAS2m~<2#V*L~YC0dnt7Ouiubu1%Sz{*A$ zxr|AqXBWi!DGT49QzV#oH~2mP=fjn6eEpQ2^8I+*j+F0%l{2RtTR&wX{gV5FNq3P% zCp@8fChO~`?6m(2GjZJ|?gdymfwsrIF0BEd3OppFH8|b3Bf=VNpY9!n?nadsE~p#I zz7Za%)_UUbX-@xd=26%bwK5x7+`;SN^F@p*=?-4YB&LHq=wW@<>_Gu$WlSHd;Urmc zmyRMG1xT}xJ=f%@M6=Q#^yAGs&K$?X%0?|Yj!C5F59aVk{x-rFQYe82;Q}}zu7o#> zy@!>+xrsOK$oYI&IdjhQu-g#{sx>BSJwQtk=6n8_Q9=q0FJzGft3?@dra`s zBk&2qLqd9l*Z6isc!YAg3lwJ5s*Ts|uG~NPAN2q$O4d;}r51rlt;|Rki|}t>7Sba8 zlSxbqi@^GLMC_sco;HX5i(jshyH|tnRwuF_9QnHXq zq;3&xgjZ20*x6_hJ`7HX^@J{&gyR+=f%Cz5@(a9u$Aa@SSlK8zKVcH-8Hq*wUW1x5jd|aXgB?W=Np!+9n#}ofd0Q_`@|)mM zIFjE8R?eLK5_$2yLHc`#)87-$j_Vn}OnX^E?TI-8_P`@?90AK=<%AL7;S{9V;M0hQ zgftsp^etk-Z2T$Ry=FJ1H@zFhT)C@%tim=CeDB0r6Q@sDF&y~Ze$m>yn3>AW`Yd>p1{c#V(3*|H9R(tAlqA=4CILy6z4Hy7dU zJJy>I!^%dz`5==>-)ks2)0p2)F$LbexD(EdD|5wbD7`Sr-+@QrNd9(MIdk%Huc72k zqyKC;{lCK5aiwo~4W%dM2>3G|iQ@?PBdnY-0z8a@^cs8`@sN;SW5l;3!fU*c?$XKL zk?MFMx2{-M9)GO3A1ztd5!cL5;SG&;;L0Rsu@}2hXRr%3F|?$;cmE5ycN!q6?*9nq@yrt&S94{t;o%?awOieV_7*IRyNAYAxt7YOR*Wh@NZ>H z<9s$n6KE#RgmdD`nHxwoev|fTc>9jD*Tc%0)81U(vPd9)V>t2a;k>vK=lc|!eK4ti z4v)c+`Zcg}0(FmhUs?w~MR-U^>#&P&M}&2FbGo-FdRNv8xoGn@#X9_jIuS2WKiIRY z>x7BYef;oae)tJLJirdtvDVzpW*sbB&gEM{C{s?$1~g~Z3WJ4Op^`6%`zL?Wl012Q ze6%#@<*Os3xqPFa?#|?fYPr#2q4P}^- zFwuNnfI_q-Ve)qEs?K|u5axt=--pV$Y_Il;vWVR=r0%PeWd1Vy*pD_ zPk;U`@`RY&><$~0PO39)})BAL}=gLM8(H23!pW~^MEXudJ%??po2;4M-vR%km) zDgw;_jp|Ua#z>()JX9+VOf(Pl?n{M=?s%a!*8NYqYNgOWTy2D~C5d_n+vx8FTmJ#l zsJ6$t|0r$LiZn`t{(dY3Dz!h>U#tui^HE0q3)m@zT9pL+PkJW6nG~8mw3BPC$Y+>U zrA0s4sO#K`Ri!P&aZ7PrERIXWaVv3LDvryl$L+*%dvScJIPM^hJBs7W z#BnEa+*urV5yxG{@#W(93UPcTI~JO~Be``0h0(_F#Gx4UE*4XOwt_FMg?5te{9z#)JCQF!@9@^ZgP|KBt zbvc^#CWknW-eQFmXv5!$_cgo8T#eO=6Q%!>1ycN%*p*3G3*on4q~GEXvEG8WyTOZr zZqnn*N5IM=Gc(J@dZVARGa_=6Ht8N_fi%$XrSABEF6G-9IUCN1)sR~l^VeUvb2AX1 zi8t$r_%v8q1b1pXCuy^tnd1gmqx&TaD3I=ra57x!&Sp35MBuIKd3g$7k2mbd_j9mv z=6q+%s}BwFZ^9A(8qS9+V*dKGjNPRCOT2AI%0GvdGpF3cF77nIvws?V4$mZs_yY=u z>wm{tm{(|iQEOD_ZoFAXwl9H|GiN(nUbt(3UlR`a)o?zrGg!uMp24re+jgY9JFJ{J z2q-SN`+UKGyv!*D`e`SN#% zV!@l7KZrN($oc)Sa^{?8%UhBf<~zbM-wx-)6*Ko)GIo>lZFt*`l)nlqXHL0$kZu`k zeE%HI_m6NUT=~vqWjc!5B>M-vRY$VFgOxKUJ1fc&ySb?0UGhM%i{64Hrp86jZR6$l zMMWCrweaS6(~gYi!OEF4?rS}3(Gb5m9PyjrY`C7me1%dga`P;H1KzSD;n%^+(}1ve z5~dMugcDu^X9FbMdWL75!xg+`N5Ut=%GnccJ*U(Ne>$A-r{HX0gjc8U+JM#S-teiRD?r0H(26yM51>5NzNn&d3G{0JkqBhUm?eSI}$!-HH zXHIrjlq1{K(%ZxFz7$%IXmfE44jE}^dc4T}wteidL_Ua|=6h1qg@tJTsFvjiB zO~$9;O*=AP4=ZQRxI0>0rs2IY9PjmTCS39I3eA?piR8(99iPKnbtHQYtUN8qj%j3n z9ZvR_a3)}~W9B*gbG%hYvJb$@nUkFxUy!L0p7~&~yXq#1sc~2Q`Y0Z~N%|#t>yD(m zVCBq7_plYO8sb-nBYqW}3fGgEuj=3{eU19OJKn4#+gHNMnX{cOS2JsX^WlI`g7e`D zm_IL+v72Y`33%I%l-~&}XHI$UszSX{7&yAHW{kb)72huB!{MAi2xr8VGk;%Ji{3b+ z-;cNN$of23If1o&?Q!z8Yh0o^Yc)LzEHvoyw%$-)q{FpJa$)c9J>Tvt-NsT;nxF0~ zlsk=8>IK?ZvOZj0+toifR>^nuuccQDM+>#C{zi>nSnBE@sSc>$wz{7}#a0bl$7Az2 z+Z#wjg-Y~(fbE4r@uTG|W)?DwxD_yumxrso3($HOvm`Gf?(-dZa-sjd9N4@=+wWG2 zmny|8mWz^pur%oh+a>*=k6!-}?{BJYd^CE0bBD?Eq0K$d!T`l-Cl~eq6;7aa43vID zItr}jPV8a#^Io7E^!pcUS`h%}TR2cZHC49sMm8W|`qM+A~4o$Z_%`WFg zR?{wYqXW5yT7y>nyfZcEAZrb(?NlTq`Yahq)M~<*jh4?4{)mq@!SI^3{&9;LRFxB;L4V4LKZEHfqQr zOd`E^{}%9_RALF!XrE01VNSrHeI}e1SK5o%L}GNoWPTbRf+O?wuyW?iw~%|OBy+zp zocr}~YFxQ5Vcf0VFxh_&55tlDHL!95dyffUdImmecu2@gnq7Q5A}(p_>F$)jNpv}@ z?g&F2z^asWs5M`1^9q(7Vd$YLZEDb$tK^5P^rG@eVZvev{^XlgX$bz0No>FnY;fO~ z(j0mL4tVjpv^o8Lw9$+8)&8i@Hn$Z0|I2f<<~I75!hqaiU|(A@H>kp16O4XiqIm@T z#{*-dyv_lJjdDFfbki(xxzY-hX z*6S@yhK~yCb}bteq8nY|BUBS%u@p+nd1+i#n*R&FL&*Yh+*}+NisK@2+(I0;6vxHl zxI`Sc633L zk@B};<;*E>Mb}gIOB)UP^Wo5+gVW;*eQS2ICw9dg1JB^0IF5n8z{;7Afn^Dai_Ee% z3U+uX*w$@F64;X!*HN(ThDHH%{vy@#x$@R{FplG3D_A-6aWI3fJ2l=%h4WqoC&HCC z-|Qs1ST?vGhBxZS^zbFK?0Me3EbM){0z%BR933mIK7nXkh`aAZCPD`(Dp zp_VX9Ex#_D`n7OkT&Zu#YPqEoCikoHARM`02`gvLeLlZ~DE+T?sy`GC{XsY@uFw~9 z==$AYqq_eTkHC@mk74D^iO-I%(DYG!cdxyxc>tyXO4SbD^uc8g~ogZXC8ujw<$xtIXl0#4w$@Ofd}Bodly(a zbKb4fo2Ehyb$>YO zd|jrs8z%cXco>fC`(WkF*)PymofOt-XZ!)--1mpm;(EsO8*WAyOy>LIAviMM8&=Mo z`9dvWma}~%oO%gPj4O3s=PjKuxewt%IC39=l@qvoETEQau=zS&4+*&j`}e-9g~b}| zr_+6JYf-*h8Sm;BFKl-84;0I^^mag5m3=)tdaXmRd5CR=YdN>RP_w?i#ecFq3a}Ml zJ3M7omu1cN=X{5gT(f-*lSo{%o!+}W43VAzZCd#;j7Xe5@;=`W;gne^m%dIq3ZCX- zcJs%|QA8mh%YGk^!m+~K4J#WJ=1yM;Sz-973aT(yg+xJXMgN*^g_(6=xiCVnXs#{R z)fYqOK8#vm>ws&nu$2|d%N~VT9LfN-)Q?#d8|JOWV3GBsmq{enkDW_X^UjBLwRNoP zwpTx5KVF_&o%Bt}*l$fLl8?SDX??2zR2fcq!vT>Qpl_%K$5I(8)5`(YH)@br>cvV2 zf*}=3OmHxbTqlAdl@%T66Uk7YtZ(Q530_@fg@)b+A?VhZk37VRm2p}rH_<%GR%tx+ z%7wuO?TS$xBu%R+^3bf(mzUq#q4;XWq2YFbog%U>iZFD@<_poccSCC&t4_h8RO>We zt#8Qy_y!6?D`=a7gzo_(LdEeS?fw#6=xApo`e18tiVL;D4v4Iy7u-TQ71oV*pgfVv z$R6R@9V}O))8Mec6P3x(#SljxnxVmwXi^GSsnReGJvE2&Boca34b=*C5leZtzM=`7 zR6?j>buzscsW$r{fC040+z%sTXi)Nxu1;*T6Xx$#ktt*a<(b*d;L@y(H;U(_d=tp6ozt*;yBF!q2~^br&fIm4QjMnFY=&5E8S>yZTJu% zQ@w)Bb@)ucC#6vQwL-o)TB}k)2!~cHjL>En1ChZAoeyf&vFJiM)Y#OELu3F#xwCsC z;h}Wm)<}I#biE(yXzFw=6>TXIdTQ0jR!2L0QbeICW_Nr-Q_SzwgbqFG(da4RBe+3Z zU*yBDsF+OaiYm5E#0t8Ld+x-l(yPRAPjTE!9A7PtdyC^f;`kbI+*cg;6UWzz7RS6e z4v1qx90$d5NF0a7u_%ruaXeWZ%i=g9jummNisPs_t`WzYIM&6nA&z6>I4+KB#c`cD zt{2Bs#PL*dJdGXUZ9aCSKTC6)j~VnBKzqda0EG~^ugCqY7vcMQEF&G|2~Ly05EwnX zFrFyhhd1i@MDbo&*?6LuHrMVP-TTzQcKtdS?0?}*SRdt;OtAd>GEvkf*%$Cu9mzfq zD`!r&C(6;VhW3@=Xm=$E>`ACATK;Vc7PiTDC%jolwmZPenX{ci_ct`M?+hnga^_rna?w*|jqG{hWY2+9;YwDVv+QBG!S*b?Sx2^Kz{;7k z?atBVtcLc>;b^}IXTlY&m}#SnaD(g(c&mINE*SRDfq~6t>BBFT7btwku%e>A_a7$iv}m3veoMww8*#8gJH-Z9lA>Iomn0 z6@A*-dvQ473*m&g66SBq#)3D`;S2D_9XU5)<;*#6)=Cv$Y^kCCPB`js!8vh7&A-j3 z#&6R82Hw6S?OS2x%xQ1l%9dOTs}X-XocL34UR;UuZKTaUnAD%dV{oMY1gxAn_1UeA zRcjjUrH=-C?8PK8H6EMqXd+`bDKEm?cBH%jR?eLA!d9kY%g8m{hlJxk2u_Ua$<5z~ zwRFPdz7h|@k^2F#a^~FIPL0-rX}rh7dDr2Dxbjw=TC|W&q*A_>IEpv!$aw@-&YW|1 z^b&>!_^NQgSHPKY1b>`d|gm{yK={Y|i) z-iaip#!k;>+X1v*d^7m&fH&;OcRN@)bH2U&9WM>YU)yRG^oa_y7 zB3#LGFBQGEYjC{|Z`6_NwXpIu;JQxVj`z`Ut`EbB0J+lJaR%3i@J1cEJ_svk&b2#w zPh2};XZ<$VM)i`!)YvHQk=fhr2H6>StBzzhhLtlX+r!@7*U;`0j&?6N6|U#3m}S|P z0|wg_c(aadcY~F)XUld%(AXBj*{+6DfwATLKp1TM@n#*_9uF&L&US8mmkSN?h2e-V zfHUHXcpkd~ibrqGy-mDzN7CoR%9)eyj&>l?2!AV_@HgO0xDw`bFWWc8IEQb=TXiIR z3#>dH$X4}N7oG|y`y`wRlq~IKV~~9UZ`G0Pg z+h}_sgX;pkQAe(u!OEF)ohkM_(%2pp&UPi74A+yE-%)Pu`eg7u0B_il@BXlI=6p9* z_O#L{*TX4~!YOg3JfGPrC4BQ-9>JS;WL<)lGiTi$Z8)YOz9Jm)WpE~35p!R~wn;P2 z;!E*X9m!q-D`!r&ueAxBM)$sOy7$7_aHTtkoxrWg&2#r2yk$qicfrb;6YgP~^J#cr z2*>+8oC;UG{H_(>Q_whjpTnDVWcv)PJRR85c3>LYo&I02d)|R0rp7(D*hU*Y8f>@2 zn{{NnHLRRD+g`qnr3UwH;c$@dMe(iBiD7Xa^_sSqn%ncus4K*y$;TVD_HK7*)FvP*=zAu9m!q| zD`!r2w%mhPJcIVM)$sN{9_*)Pki^vZ zDN&bcOK0Qk-577wk?V{9|Kr+2T=&>rBfD2P*%f$_dy5s?Q@%nQxW2F1T`LTZ)ru3A z4a>MwW?`Fbcf*@?WcvzOIrDRtvDMd7tqy0~52wPlC`-1M)l|ph%{sC@4pz>bZ8x0& z`f92R!qGP2Ot_*Iek$6K-l)jukJ_Q}8C| z{qe>fIqwTAXU;jQ+U$HbUcVm=$2nlzog>n~-yYPk` z`Fxzg&xiAU4o(KhSA1N{;QI{Tup{5Uz{;8P?Q4BHOar{b?}M%Nb|f)1 z)|#)-X+>_%#9QMnI}+XsR?eL8Z23tyjqy?8j90<=a6O5+-;%MLln=w(cBFhTteiRJ zzShU~G{$FyGd>m0hAU%!9=9Sl39rLjb|gFoD`!r47F}BMk05G@uM0&`X5+1bFMSRhg>zbE5h0CHf3!2b#Uto zv+`vI+m4jq11o1vc~<*t)EeYl!y(@Sr^6L8chBw6O~yCl zO*=Ba30BUWaS!`UxW@O1aK4Yjsc_}XS8DOEn;TX7w|KLTY#)J@GiTc!eY;&lyWkJO z#(6W6m>T2E=U?{4d4ud6yj4fCeXw%oWM`NkAUq%(?EY{fT+dm4MP&W{;J$dHj$HSK zl{4o`XRPu0!I5yVB{&nVU|VNw#j>085Z#@ltI`%PFmbGm)?vDJ-Q zF0Y@v&xP}S2F`{nUw(JF6}d_HFL=w2g#QF9XHIyA`B~WQ{x8@hZ%qfwHBrO}1C!%{sEZ99GVp z?c7FyD&<2rDO$E|fmGtgGwviJeP7*t4ta zgo)C9{P1Ib_z6Eezz#yFTdH3ZoP6ors#` znb`bE)E!#KS@TT;)qH)oK{_QG#VWmgzFTp8{cc0_Xt`LZH0sfREtfxB9{p$ghs&eT zcw`i2B|luHx7SAs6T`O%ZgR!JJc<@GqC%p(&227|NX-1siK+L6a{&No743OvyaGC zilbxYTr`C%F5!Oa2v(=81Frchn@g~GgOPY3%KT$71^4-8S(<`-nZyQ6!9Hu+Gr4eR z!mnK$*~vN4yz6d9OPka0pD?j=^FUiV;(fRIrufg7=gY;>iRPQbb*hzot})R(q7zDW zy6w~GAI%L+G!GBfqmLrxDg$(#HBz7GK*9!D!os^bTBwbTH3}lGZ~(Q!Xdwb{aB#wE zh5B%Aw9tuU)vD$4MDw8Fkm{r5Vn_N$Pk9Q3Q>bqph^djwpFGh#B)oHLbECO+g^rBQ zMzKtt3m*ex6*>ny)4fv)wJJN83#H|}Y^^FiN9FR|iB+Y)i{n4U@p*Clr#Svg9A6N} ze~aUP#PPr4_&;%cQ5?Je$n`f8$Bo7DCG1!z9ZZ27`Xc>PI)wghRq0UnzlX8##!5@* zs%uqgEB3$aYX1);OS5UxHFd`??7E|>tU3K{D0FNFHLmHFk_2|~Yn_BkzoB#}b83^{ ztY>qHXjNWvFUDJSw0VnQWy9vBO}01B=1Gn1;o)o#fpg)?mOmcnahoRoAiP~ix+`Jj z%<0ahEVaFh#&~@=<8e46u8jFD-FWmS={nxJBk56CIdjr;Vy;pHeN8y%tKfvVg65l( z#DX_DUx7F7$oVo@Idjh4k=@q-KM)T1emE1ZfcZ?!E>cADm zfN6xg{uJ!B{tIWsl`yZ>@#xKS_yxRmN7B#3%9)ey<(I}9<5z|=-jyV##!qw4B`)cW z^LQt`T}Qe*z{;7^ohfctXn5Zlj`vtN8Lp?Wcx_hPXEFG`4R6?y?@_RF=6t)Odq^7G z^TOet182e&E}wzfoiBszS$M0CWY2(=Gbh`_?&@i1zZ{PCi*PDj(ej0B{AQ%V_6EFJ zN4D3&%9*pBDQ>iCbRP?+`zV|YSGv3^x9$)dd>_UecI5jIteiRD9(H?JqdWJhVB0*4 zB&NnviF23T)i&7n;>|j;odGLn&bF^E9!O|-_Y23n51b9xlUKat(R!3(5Z()K*^%%H zSUGdT-O*zrjqY$b-2$8mSGwY5fau|tL3TCXsw3HcSUGdDGsS~D4erI^a4&?D;R=_} zyR9dV2Hy+th8_7fVdc#E_O+g-YJk5J4)|MeHe3Po+T4oVJcGZ1x9mvxR#-WKu*WJc zxe$ym4)TzY3&HMTPoO>4d5VQ#pPiBFV)1Tzlr+9#Kv@E|(VtOwXdPe8{cH;^%DMH0 znst>p|H*O@kn-5tvJ~upz5_-s1^YLX*uYY-)RqxM51WaCRw{OYIf!#YE*ajABs$^J zHzOT|NVEO0IT}62RIoMPu4AFt3RX4>#g=5R?}-QE$bS!5If1{20gxVoPaqx=(nEaN zw}1%`v0J)tl+8VyUWLrnw#}7?3ae{5#Y3!zN3M0)HTSaJP_VpHR%W5}w?a|oC5vGg z_Z>3QFw~jE1`Na0yj5m>xk>H4?Y%PfHE^uBbb za#pO2Ph9+xu8q2)f10a0GIq;j{e!e?UX_A8tRsRWxdwf_Y@+#=PN~(3>-sCz+Q>xn zs7^}KXFnn`9SyUVtI&IQZ|`K7v=>#SPT!xQcjr1YBCGUjC-u8Cr`~8ZB<=6$!WCu> zMP+@b7FMd$S9n<&?M%k%)$(}KtBZJS<4La$`$$E#YNA7xpi!vQtF;08#&d^G3N9$J z*BKPi4xfagGnHzbUcQb_g$}6|@*T|Gcp<9EqV5fJq@W1NMzz0wa$#+Mef`Ktp;0U5 z`>A46jh%?S1bZ2|yXYm@Pl@B@;&_EPep(!_6vwN?@iXFhwK!fQj-M6BYsK+%;`n)S zyiOdi7soG%;|=0?qd49qj$ahVFNx#L;`n88{E9fSnaJHjvBewh9& z&6jTbT834-Ir2M-Bk)Zjc=@757PiTD7T&BQ+g?~XbG9?cifCkC7fyCRI1#QV zF5kB}@=qdl@-@AE@J1cE?gcAn&b51hF0VDPCx?R_hBM&`mM>L|qBhAE@Kznku7;H} zC)*e0D7x99(fwFB-HYLDxYFhGZ7Xt<@P&BGj)X6Ol`|(igYNTaaK9T4_d9SRT;cMX z9NjZBYVx=6Mjg3+16IzQYj<=nPy_q7aIjCqnQ#TmYjPB|N%kqcRY$T%<0bIcmLUw1`To7Gr`vCzi>ia5%cZBV!@kd@e6q4j+~!|l{4o&SEPzP_SQhZ zG92`-Br!D}n!l3~kKQD`6W+Qb=^bF@%t^P-=x8y52Kt@hppS(U;&n!|l@vzhejDDn zBj=-F<;*$H7w1HKg@^|Gyl~j(z*%vH&ELJzdtjc~XWXyQ8I48rsLg(LM@i!WAvQbIBHf8Dt;ETXiJ+ z5UiXz*-h5eG_G_17Hq6%k;K&atseGb11-igsP^J*I#QhhD`!r1rdVXCq1`VW?LKfa zTu)iCjhI*+Y4F_(Z`hIV3RpRFzCCQ+qDFT(oNfV5g)3dLjTl?3YOr06H|xl@A6Cws z?Tq@kzV*b#;bbp_6X8mh-;JiA&6<1x-l!wjCajz}*O`=}=oz7Q)_y0P?YH1$xUv;B znFnt2{RZB!Bi~zL<;?lcYA;dO2tOT8_$fFYu7vs1hIZ&C<0tW^9T`6XD`(DlPVB7# zjq=iGgKhI-l9(FX%H&8_S z97<*ic38$-?*O@Q{#u zvW)t^N+%F3=+8u%d440>btNUV9SK)wr#r<@uTIra=E{-W-Qu7qrW~jI$EtY>eQ>zGJCn*H#PZO zez?#-SV`EA!6BsRE4kuraPj83_2b{JO7Y3q{#9!irPci_FJN5DW~FgI4Fof3Q#R47)eqxJq8?I1-`ke_k-23TCq^;FI4i?0qV~2zB*%-e4|*cw9c=>K>t8t zyqGW4`)SvQ{sA$VP7IZ&Zv*fXIH3XGJPzd=!_nRpzEzI@eSd{E8#&Umk3)q9?I>36 zk4EVFs6O?N6h^8w+BM6!LPd(jMuB$nSs4&hWo)E>pg5AW?}wGthA+k&+k@L zW1|DP24(!Mo&%w!GoGszbE|1LH+iD_V=Pi}hz7g=_#_2#ge?`{$w8>lj@peJ?d(To zz<1IUN|i#rK?O>5?jYZsM}xdUCrV4m`n>~}p;<4IOYuF~iuHOvSI$vZycMVh)r+Ul z@bj%hv~V#$+<)@gTy2O>df$Z7K532OXst@K5@m$;!?W&04dts2)vg(OKR+*$BW;57h z0io!7+DD45y2fMk9pFqUXrhf2Mrg`kolD$#&S50AR0ax_DyikzHiOn}G9AUDLKc<# z4rF?i=KW&5r4$m>nz6!Ip}$caDbPY!|C2aMR(&`(D$1+q;<3J`3RA1D?H?p3+`qP# z8>R1Z_s55+@6~Sh!k3; z!S@2WQKMTvWhxkzYK4ZJZ;_`9Mmm4u6OivT&6Vs^kac%YhZ@T@)k(;AqUBn060z>> z=^Rs}qf8^dmY9d7O(bFYQm2xzz_iK4y5Y5R(#+}PIL~^`vsNG8(1hZ9W^wKIl;T_U zXyqSG!*s<%SK<@)Z?QQfZhRy+8s7@@B)Y{OZH1W=$JOGP7sml{EQsTvI1Y*9us9aQ zu_TTsi(^?FN5rurj#Y6S6~{H=SQE#(I5xy_OdQ9>ajiJ66UX)9c#1flDvqa#q4#PP%8 z_z`iuP#iB3#|d$~SR6kpj+cnz$HejD;&`bzenK2SDUO$k4y%B!N93vp%>h9Y#4(9>z8KlFWAK=A+>mc+-xLhBt_~VwSUGdTv!Xn)hoTzdLO9~pa5`KOi?g^D zy2-d7Z`zUZ@vw5{jOXxc4)*+AqkLgFp2 zpfUeeIP-77$#G@QKdzO~5tIL|cp#4aZ-JFF=ik>_2ciLgDjfKea5h|li_PL&D_BGl z4eGsQalJp?w7#InRA~hR+4J0 z?+a&rFPscl*8G+A))H8eLh04+!5enudl#&nIp6v1<+;%nEG_iaK)(H#5IF zb-t%gom;nVU2{agid#S={xYnbI`Jt@e+3(|HQZaj?p>O1!6e#Knu`zEN6a@_FT|TC zvYrnsk092;u6d313I42)gEFoY%kbujtdD?|Q)fLc$6syGAfM|G`NOa; zsF1}=?ZR$zB%g)1OQgF7R!*Jn)aZ*R8s%I4DSr+236=5;e!CU5-=uvL-ae7`4X|?R zw6_j6MYeoBNDG2z{Da^r*j3aZ*hT~arCVlfJc*k{jE%=(<nELw=b*@;dAtD)Mjq+doDgPPv2$iz<+)dbe zll1d=>qOGe!OE$V-Z=1;+=~*qCNGw*zXk65tIK^+z=xFNw9M2{3kRH zU(kRb=ns59*c;SQE^>Lpa+C1hc*{h>d%()66W*lpJ{sQy8anAgBi`>%ybtycmAI(a z;(B66KmoUe7y+wb<-UE~P4Y&nF;@88T_a}S_>KyHRv+m{G6?ZVNFAc7>HwkAlgKL+^v5^EK{${@e?& zN2uJz%pSJhB)tl6ok+R|R!*Jt#D=d*JsRiF`g8si><=pEDSUh@+fB+tc-utEm&3}b zQ=S?<|63#dBY)Blz&@dp7SFh&_M5ct$J-~;z86+bo%SYyw`^y$YusP;=l(M69V&OR zcP*|bW(2&1TSAP07h&bpBVc;qx5iF~;Il3o`Gx=WuHEM|iT2d);)$5v1C#h1+yWx; z*|2iz#3yinv2`nr^fG_aN5I~oj&ZS`+OXUtd??;Bk?_H=a_WR92YzaN*+QdymOte+ zut%trWlbKk-XuMMw@xHoft6DyJ+nbN^z9K1_)Y%6Z-5;`1umX$TRLHKzaBS&$o)E4 zId$$c0+&TT5~ERn(x3X{uv@6q#g22M3nueNaTAElAAyxqXU;3N@V9(40I3MMaFD_}wckoBP9g}EJajr&rqzfkV#kdJX=3Bwa zsWYDyq(%M1SQ_?I{jr}6dxkpF#q$(fFHG_$;#LsJ9}g?1PJT1tv-nS#X;E;Ae-vB@ zdx;taTZ&az9?S7PG9%(V+#+H`oC7PT9ubp*h>#zi)8OCb5C0C>AyoL{nt2|owBf=YOT7~cFVxzc@VZ`-qYvqZK}!^)|%of7#Lu*P`m zyWS=HBqq_G`c0g{8ZqA-#}n}8iLA%M%Bi!SD4oSV*sOux+aL5Eus^7SSw10EADcEt z^sac@M9MqE%BfQxFF&cRAujkMUIjaYiddY9-}n}|!M6u*n8-H^E2qwPlejOQYrsF{ z4}1vr4i&h3CMpgHtu`Oqx(Xo7}@KbSlR9qetmnZl|_DFpNdJdCl zPyH=+qiY>7dC$fTAo89GE2qwTLg21}zW%jZ);_`?^r5gfr~_K;ZD?3-5cGiNbd(GaikM?3(#gNj(3fZR0QWL&|UCNeI=%BeG+Qmd@ZHCQ?IDA-VV zZXG+1w_DGp+Ebiw#2CM$&%w8!sI>{H-gB06s(*&_t_#r zw%D(_hd=sVVc$?k{G8AfulK{GzcX$Jk^T}`Id%G5H0a0g@YIsPD*s66f&D~{gsmfy z5Z@;=Dzdmu#HjcntekpOOc7CG-?uvC9{`ubE};g1SiOyyZ?gUb-aL`@$6)2uSx+9! z76)<}epIP``sV%qsPBb6LPafhN`$R9Nq-M-ok;pSuyX38#|-vm`?YNTl0V@WVNXyA zi}O_jt4*>m;H?tL{s~r2o$UDiE0yfpqu9|8Ll+F4J9PF?;TpCbqA+Iz?|OYUlW0%9 zE}o|}I^WEZwmYF5k-78T~k{G_lj?gv*h$@(bvWro2>9=ZsQQEPzJckd~8S9e%B zQ0lJb%j}!vJFp#|I~22PbCqiFuU+aVUBQ2fpLB6^>Jzf1?%p!{l6hZlsP`@-49|BB zmN89C=W+?$(GGr|upkB|2QVh+u{O`&3?q;(QrqOd0=vjcv2ZohiQuSEU@U5t|+s6?QwlIjCi7mWleNpq85yYXs_$!agy^*`XNsS6W!d`%gKOEdvcaMH0j>&i*De=1(n+Mdn9Ei&-P!Km zTu-Ji*Ow^=&+nK`2Rh01MHhw4W={e5GC%gFaz zm{&w!szdc-{S?`fiFnf_thvldGx*AMwpip5#5aXio7@g|6YL)d)+e%q*?cj(qR7Y{ zT+97uI9v z2q)(VEi-!Di0Pv(SLhNG__D&JQR{bHIJB%VSzf2e>r{E2Ca=@wb%wldD6cc+b(Xwt zB(JmObz^zmL|*5}>s)!AC$ID6byIm=Ag>GMbu)S0Twb@3*Dd9BD|y|TUvq^+SqBe) zm;F;XjQ!iP!r}aXkKo-NC~U%Rah4V4@c-qDSsm=pSg{&+yE^Q5Q4>`Sq}@v`W0qhw zs&OxM1n&%TOK&Z63vaNZGE%$N#hc*Dc5~(QP`qv89o50GvT;Y1H03GGQ>sqYK%eCg zdJXInDroVfD`LLMdH`>p$hrb6r_OrgnA-`B`c3}SZ-AXcr9PKG;Ew5t$^UxX5F-EU zVCB^LPmNCe8ulmsu|E#`go<74T#njr(tZ?gpGf-=SUGjtqgm;yAzpv9_r(1!>u?xyt7~JI_26w>jp@zYH9tN>pF=OC1+!SIA z+yX179s|?a`gr6SfQJ5gfAr76UZJ8F@0ja7Fo{2lTRx)M zpTs2EQ~E97<9;2TG2>tYZVWLF#=^>}$HA1yBQ}lv-u~qGfL%fz_F{!DV!p|GSG;*5 z>z!fc)LBnxJPFk>7yL1=g1te-Ebi?ZmYalo@Ro^$v#@gNgf|NOWIPGhaDU1l_YmwF zDsJ&UxwRW6`^#}Ni0nTBE2qwWE91Khe}_pzsGdMbI;h#U&yP%)LB-&HZ zi}MA{KA6;J<2Def&xDmzr!KyV6xwtMDho~ z%Bhp*U%d-&jnk;F@uxljdxc6}ef2Kf1Cw|Kw}42z3@fKjd~(=V8tohWXbd%BeG+u5a7cP;WQRyEfn~dwH}znkH;+_5X<5DpURY@p{{52lc31Km72(X)ZZ9LZ1X ziG=7{I7F@SMLzOF91AoQd2P~iQj}<$4S+P^Z3hSHhB%fwhB1uEA2wm)O}dL-qZf8ZTCB zeHrm3-l4i1p+0sJO+M3`%l2flwHiBdgB@uWb0kempO*UA*&)_59$NlsrJQGnwd7Z^ zwyh_~v=j)wzC#A26??vUcVx*H_7W)<@IKH{hGXfU0!eDSNPb0PqIHt^4I~};cY)*Hh3O5@FU(0 z{{sguW;&6XbDf8`J%G1LEa2{km5l-}X|m&je7B@WyW@VHb;OhHtFSMu1ysRg+sXH? z3%ku5?U(U(iF99rl~boXU3f{=4;tq!CU|pR$Rvj2ZrkK6meBPcn8fGf77&Tgft6Dy z&d2joeLNrQ&v_Z_3w%7Yx=T7xEvFoTw@ajZD6E`1T|S<}_XFB^{;)sivtX}KIjiv; z?tw{s4Q>IE_yDY&I&nUpchbl6*Zeu(1p9)@S0S>jr%soT=kT4i zHlCmI=lmq>6)I;np2Iybi9e28KqUSsteiUWSwTIcuYqXPM|XNxW$QDE_Ecr!5x1=u zCi!<^K6N7bw_)Yf$=i82>pd`upNv~TBz_{SoI3IGaxGW`UH1ol3G56i=!tx3rLl-DU8wHGF2oxq z@;wh$PMz;Ku~@I+z1tt}U9c~xctvF{A2Jwp@4(w7(!C8KMy;E zidcNyC}g~urJutaCvtukR!*JsEZY+=4fu?S-u3uYCehA%+|~<|{3P58BKZlha_Zzq zv*(i<=>7ab?+rVGI-si7oa4B#V9I)1Cs~=+9RlKT_?a8x^zSfTwH-Fd_7}u~ZG6z{+Qnc#- z8J8FdRl%fC&$T;?@4#G)(%@ULtE^}XUuHTHEOoIE7&6|>A>YIsC+3iEz{*Ar`8taIa7YlZ`oeRFYQFbW+H)LE#lM*9;+tX|%t{4DzfQJ`cNvN;_OLgt}ldzXmsf$o$i=a_Y=O zHABd08uy?1bAK3i4VAlIGlaTfvi~t|29f;_VdWV14imnr8N{UFAfal8LtQ%}Ylh{? zt}{&Q=5PFUsF%Vb&mAUBK~t7B?(E;IZ~5M?uq|X-WP-A+HB4aUVx_f=B2_nxQ_}T{D4cWqhQ$W z^p1|j=MJ4cw5V|9ypE3LLxn5YrT4DFP3%&b^w@eGg=^Wr1wVgyXa4h_ip!(o@|d_h zAub!T-(Nmd-`nN}-sc_SoYBSWtxWJsL)k(X*I8EhJ2U@6_TPuH|33U(_D|t3_HWAy zhx7kEg8$Y)VUqzODB#%RKLzcH$BVC&5MagKWNNcHEW;n?DrK zu&cFP|B%USL?1S=}k=N7YH7l_9CT!EW0dJhh`FdD6br-Jz zPzSbn8#lPEk*-q@xK73!C2~CxR!*Jkq|l9<#<%Xz_Y&A4RKD^Yh0tB6!TCbGaU$pQ zVC9j(xw+X-<9xS2=euBspq!h=o8$Qoym2Du+hFC?IZxM@Jv7*V_J{pE>=i0(u|+}e zfl2&1+yWx;XJO^kiBE|vO=-AiO!qFnr!tB56yM@=O%d}=)|2q&iL58U%Bi!S8eKco zVDIM-dvDk$)UiE--)TkdH)-#Iw@;+KE36zt+u^~PdiExs$~Z`Y-aN`@Z#~IA zdu!e}b~NrBt?xs81dd&6;I-$;N{dq#KI9r&YRke}F0qcMb%{OJZ}Mv3l8;ZcTys6l zOAaUXjQ={=ZC2!kPcWV6(mZ&he=TkZG3k5;RyLB()m$RE9gmxeoq{o|Bw7?a%8c_| zx_<ce%NXy+Eg zmF$AY_=B>w?1I|b{#<0U@$0M?Smv?@U7fnwxQAJh;Z{T@C(9cbue$nI6%H?RiFFhX z?Rev2QT@HP4V}%7+jhJ*f7q3+X4n?(OpkEU;eJY`Y%M>SYl!XdB_<5AessBM{kprh zqEgQGbZ4vVo4S=sb}jqLuaBdYTCF@(KhUFZ-PuwmFe_%KF|l{uy}9nynU%$ImI*EM zF{j8r8_t}>)}-_7Q^dmW$9M?#$YQJXB(2zI-l+~q`2oA zwjDVP-OUGk(S`Sp8V0$6ke>BB+f>&HldRtxMW#wK2q#c z_I+jc!cdTT*ub>Daq`LDVP%eP#+aLBvD%u{0_yvHJvP zR4@YGCz_(NA@s+4ppS}%;rop9@H7{Cy==~g;`Oq*@;Xmm=gaG+^147?7s~5q^18Xa zZXvH*%IjA0y0yG6lGnxZx{bVUE3ezh>-O^6C9gZk>yGleL|&K5>rV2zv%KyiukVr9 zUFCH*dEH%J_mI~;<#jK4-CJJwk=K3Ybw7FCUtSN8*8}DCAbCBQU*Xs5CbK_F^7XpO z;agp8HSI&p7Hn0*SVv#WyW{_c-5915S*oaull8;ao9kzTcUSf0gyf6ZVa;Q>?341rzp${OPRL0h9Naa07_EzW^(z&U+kNOkwl9hWVHNn4f@s zLB%Y-h$8GZ>HZvVmq_=guyX2jr>m7WQNU@OH<;-?oI98V_RN^dSv&*Pdteg(FU*Dd zlHFUda_Yn8tonZX>Z>)+G3^-TW^xy25+4>wzr0rQzt#4u@CgKx*gez%J)dXn*shr4`w-j|VhkJzE2ka<^O}xh`(?EKuUZtW^^bx<*g@1N zSP+c@vomHKRB>a7anKJdryd7m`L1G(_>KO=zXZF2N?hc5u^HOP^IyQ5C9?e-teiUA znU?L|8tEteN&g&n43)H4XR&m`9MeC=jUaOW39Ott_bHKG`5N(#+1@qWe_@wUiHo(= zi1{Y#xA5kPtY3$fM*!>aYZDsl?fqGA!z9{MuS?cp^G()Uo_4OUK_`DEs>xW{3? zx8S~NRL6Q9!9VN^i|hD;qU@JCn&-E$YpC4CM#XS9OytkttrL+y1uLhHd>ZrBI$kN5 zys>wI-pM4|Q?!X!3bYQGyvN}N5P6S=l~dF1vQw0DDDLLJ)85?z^Zvfc%6 zp2&JBteigU#`~ecgT$&fefRpa&cQChSVzn^S+BsGC$i4K%Bi#7IN~hzLb*o$Du3!% zz|Nsk7svX>bj0L;8Ey!Xe;rm%o&TiJyZ;*V@B1^q4|WKZx!8^#GT!8T58gPD^WCs= z>YV4qzNN2G|A#;IzrpUIQWuX)W4mI;z+Z4vh%xYISUL3=m=SiIZFAGyO}wl2jhRGy zs&;W}Zgjz9J_|R2$b1H@oI3N3!w!pIg*(ij{2{P&sH0xY?=c-Q`5%ZILgc?6teiUk zjlyn=Tca8Dr(cC#L!~cXN3nLpWZ#dQL1f~GsOZJU2}>tT?mxkeAaef^teiUcdC{|@ z*7dCQzyAE+f*nNVFE+)kqcdh4yp9_~jDuHU<<#R~X4G}IdViZa-u3?0OrkyYz8L?O zPMF-cz>OesUkEFw&V5eQW$`utN&fUtfZanK{o+nPwku`~9E+PmjDcmaa_TX#anx~f zb^rPP5pXW-9BKrJyS|u?nEXGC8$#rN7Ob2)|4pK9i>>`{_YZ(uVee1_U>@HUAJ-Ez z0=|Y@LX3c$VCB>!U{dI;Pp#_ztv~c?8?4iOn^Ex^TopZfwym3sToi(1V3(~Rb_0`e15k%_i!^){spD0~s z;@-_4_b#wMsDoSVvWnPla9)bHPUO4;teiUMY0_7R1Yb2VVdwl|uYjFGg)N@fm>n>P zXK)jU#7~8lQzt$}I_$8Lh4&Tyyf1@YLgg)X)#>INwClJ5MB10Y%BjIfl2xSLoD-?8GO|93<3->|S#H(3<>^-L_*` zoj2|9j*i7a*|(^01*`jd?Ffbuk=5%meXH@HNsdlwbj^9eia zw|+#gZ6A3PKj~VLFJ&uhGu;*Do=mP(tCaiK4%H8^IklyhCgNsLwLe>_<}`yspPtxk zp7`{{=JL7)zrvqRn92Su$xkQDvN>A2&EARGkzt`BKaKUr6Zvx3CDue*Fp-OW@DcM()~Ddj6Iq`GE2qwS zmMwc}$Up9n{8HF6RODim+j?P=zX-R2NdA0SIflGLk)`T1F^@Y)s5m`;RC zUCba+a_0{R2~s=0-RtdTb3@Q)TLKOK|6MD~ zec8TZrdrGO57qa8|2*`^d&7TR$@SOr?8~pb@zAZ@am;xa4lOGjFRv%?D|{<=uwW3k zYBB8Tcv8rhS~Bitrg)a~r}5tS-@)z8bRq+wE*_MIj5kZV<#^-7RD24oY^36(Id?XL zUZea;))!C8ABWvx&4&e(@??IW-Zb50d@0^Ek?}>aa_WpHhjWvL`G5Q|e;4)$6|;CS z8n)gf{cXH;BI!F}EK&bnS?|L3?LxvJ2_QWlKHfzDQ~HHtPbG zjjS<7UP!M96C!hqrMP<2)w8O&dW}mYUR>>GD{w@wZRM5tNmn2H9(ul1?#pM3Lv?F? z)>0z)1@>4kX8E1;=jFaksa)v`Y&g)V8={rWKqiWP0n*_D}s4Q82G)!qEgyf^*@ zWGB;!402gOhKx6-oF#bU#3`o>RyL-bq&bh516pI;!+PS$I14+&n)3@Lv8lcmVG8s*FVDSrZX36-)~my4Khj^&Tx%@bK)3@fM3da87m zoESCO_xi*B9_$k;Y;h!I)P9rpckuR!w7&%_r%roJP{3%6U-W1E0_+JY&d&}RZt#e1(ybD)vldWYl{Eeadd%b(vlN-!;=Z5P3?#~r-!C*NfUuANK zdK)IU91MrUR#mb+d1e|T>F=;&c5SZ0l#cf9VKHCIWh&uq%{R2fAvj_X@@n^yQI;C8dt<4?cZBKB!I4t2HO8Vi5(kcsv?%sT9)sTIA4wP@$ z**n8A2&?4^TTo>d`A3x8&z7xJvTSp+f4X70xt6ci^4-BYtADx~U{A;MwYA|D&$HM( z7(5#Pki4EPuOF7zkI3se@_MekepFu1lh^a*^#XalP+l*R*Nf%#5_!E;UOy(Ub$R`` zynaGnFO%0#@+-XJT4H~O)ylH4R8^s<6uhd!Wj=X4tqLczcbo@u9hrQ!gB_$^ ziqwSgDrHs=W{vg_Ji<^RD{ zWSFbf{6E6JvVtuA>f#A<1e|ee`Fp%|;;rRxVP)gi@)<6X9O(`B59W`qu*Wps z8!kjgp}~6^lfW_~mACk&x7i1CDR44w1Ce?steiUa*$0-{T{tV3E9)Y^zd!kXVBb*5 ziz5;3{V?h8iQ7S>zZ_r z*LpiL>Yg;bv~&&}!q)h!A8WfoYBp(Gt!VzROB%}U44E03xGW1#XS)WLDk#q660rqE zao{xB-hU22`jhwhKVDdrEXAH#8%vecGhEUVX%`}7IfQg?5;Qp)z_ zhAcVccdkBGIpjB7A~uJ#>tz7zid3lUwv-$CaaZ?1ANvvt+plF^A`AT{L8v;w_Kf-J z>`ce{7CK;0Uv^E*HaJ8i$8NR#P02G6>&-P_ilF4{m1>Ql_7)iqK7-jxc+G3f zW@622th|ns*YWZ?L0&uMb)vjZlGn-dI)z{1HK{kn=uPZ3lJRofX*2tl%z7+G8Z-N5 zOkz0hAzx-5iO%feNpvG&7*qMCc*Df0d@ihPOyx=Q9mm|n(wK(#IDfoH!@jT=ZYJJN zzKcZIZQd9jiMLCndl;;oK3y?MX>>p0PxnKxFEF}tay7>8TD)B%-9cD6b-JTj>7b$g zxr_OauAFJjxu)p>P`%BmpRIp-SUtqOK_6fXI zBH5qA%Bhnb-Iv$Fj@jJ1lG=btw5O7iBbMD37@4>OZj`l*sjbSUG*JY`I1o zuiy3O`fb<|7}sEp$>4e?-YAjl?XYqTSBK{X>XCz3h<1=rk2rtrx*RSaajr`C5$80v zV|s9D4?DVyZHlb+m)Snx@Pmgp;Xt)UnSEtj?8>z*j*Fjk3EM)ZMHba8&mvxPjUx3d z;uS8jj%N{xt#eM-yRRjYxm$Rb=^HbN;V9F`F`WpTx;V31?}3?7X5khPGs+BD*~lnU zxkQ4Gu*D`L-D?{6!X z!M<#Nq>%U)9J1DUtM6&s!9dw(9T*guqAcaZH(kR;l@H(G60zk&a&yU;0D(4hJOx9L z!$EDUeiC+(m1E%nrW3(Y7wbPfaAd1$tJC9ntHccPD6DK`h(}x{RE7{yhxH$?__LH$aY5(#70}9RgE>U>ibv|MB`;b+s%gBMH$!>2}(u~}GcRTNh z|CxaoGo46Asmm>8Vgwn}-K}`L#Ody9u(C1TB~7qhaOL z36GakrUrOVf55xJ&Y%Jo+qxTby^*DN!5b#>T?#9w&Ud1!Uo^zM{)lt1Kd6YO@G-1x zH%IXbylo=o46K|!WmQjVl&|uqdgW z!Fm8b>$2@WpZ&ktXX^5&59HX%YH^28h$hH4d(jbHu_C@eM?^d!>{md^NZ}ylDuu6sF-NUymM>svU?np7>=_0dFGVp zt+SZ2mF;FSAC0$7Oy=vu%0@Cznlk%JA|H8T^k|@W^9Q{P>=J8QEtsGiUr7v^Z?ayB zH&0}}1FW1n>#35pOm!OUoImUpuurJ4#cAwO`%T&zynQ0=Q(@)QX*Wi;n3y!!SNOxe z40Z_>c4TDBc~!bo?Fy*l%@bK)0xQR`cBrRSNiGUE2MJY@Kg=rzWPMt8M3&^2k52Re zlril2&ES%rNLBtA9H-VGv+o=tZ9!%RMG6ed)4rd%28=4xALbJ4DAN;sTEZ!4`QlZW zgA66LdFW->OIDPH=a^1}NaJaVh#n(Ryo9$)OcXD|%0{AiflDO!ENrscoV!GSk8I&0 z@3MYAlNgS&-efG!-3(iAPXBZ8)`_HN!^)|Xo_=6tL$N`7nLq6#V6RX|w0MC)?}17D zP}~9{@q=OI7~&2yxGDm~wBR72ihv)xCMj72yf4`zfWMNoQ|v2AABUsX8gd@5B<<7# zypnXOYZR%<;36(D5-J1!N>aG{T8(fU%tj6wRU_O2`^$>Aa4pk`)(GmAq;L<+jB+z> z0WqU|1y(jP%9puBa@E3YHQ$E4rg49kS>?IW;%V47RPOpKN#TB&^nZohL8Si+SUGk2 z+AB$6&uI}bVX=1vjAatTQ8}6;-}XvUxG!cDjKXapM!|Zpa!eFBlmx1(5L1eSgsLje zcMWG*Ra}{DRWbhf=BHZ1&-@O9N}F3`87Wn)8fhBA+CX<3Wo!^#5xLx-A?c5 zSbXl#*+Yv8SI+C`SUyy^f?ay=D%`{_g-MUC*HO5Z{af(!hj->b|Eahr*%vh-p_QRC8XGtD`QmVWwjptA-rAUq_GxOHYSZ!=o&|heS>wxlkV4HU*L3Y zr;B|RZDFl9k(&*8u@txykR2W4p=#LzGH2}_dWh}cY<9(9ljIzPFzt9 z8EkjNnu|TFZrDUA?;xRW*!FWxLh^=fvxINh*xElk<3HHY7rtQ|fJ4+8 zU*sD$_C#7*5h(>N&wwkgfue5M%3NX{H*ASL170tB4%nw*uggK87Iv?K-D3q;IG^c6 zP}Ilp#E>&5^egZtiAmuySlLJlbuN+IO78mo`N%-}A#2~W6#qW#1uD|994WKdNc8vN zZ4#N@11qP_bOZf!rvLJX`VZI*RH)+khQMTl>fi82iB$grE2mF2Us@R%s+(@>Jyhp1 ziQy=^&Fm|v1|}O+H^v(!Qk?}Wr%rWjDR)M84Lc4YT+JNmPxdg_71Z%6Z>OZ$2HivO zhKY0!gq36HI@HUm}E>mfW97w&Wfa9EB8#&yT_JX$`LWzP3jK&4ZV0 zOYzMgc5$O36`!T}zSuQnRPlWQmxwLCldIIm1U=T)U2cUz$RVK$@UOuxva&3Emgz)r z$fMghCnHPTgttn}5;wrgMwYnVRYGM65j9>};-fxRuqQTy$-Xz)xqo*pKbWoM*`0AD zS^S;#1G}TJ23Vc?mC9_$jz~aS^21+UeXR1s|8a@f{LrrBn5-W^40YX>JVQV3T9qpf z4Al>{CE(DnwNmNLR(h&uu_JK@~TX=ys{Sm#Y&)$eY|_V z{uUjxep?ijpTKjYac@ruK!nx>nKPr{of zGCl!TPMz^YHHB%AFZG9f5$q2tWbt0SvfZS7KHfHw^0}~b>XauHRdJzV{v9fU!)6K|DBb{wpnI@$5^{z!wnk3ZZ!VP{Z> ztyoTP+}Ig>cf%Vd^4$ei9szvCZL7w2wLjlp*cl*SdB1J&&EX9b`L2MKQ|CLOv6`R( z{N)J?*>7uw|`&oh#Jm@)SFa;26pt%^Lz7}bT=h}HnBciEO) zZ3jV08zM_?mWLSYF}twBQwE88i17}Ov&0`_Sij0s72UQydXPT~UIz>QHSS2p)&hOv z&#jC4g!aWNTEQ>o*jl{x<6{(+pbMcFxE3*v!3$iA<#ii*-IibB#p^lj&yrlc9xthA znSD=YhUfbAZoDV{>(?`wPGm6EMe*GTCnK@%f;UV|>`P%~Be5sVcPt+?8r@#j4^O%| z*cH~aS}^H~R|CXYH`uPgnE|#-#H8{__=CL+_5>BI zD7tvgHOSWSR*7UUftAxI8_X;k+57y--UE9ABg^MQgY4aSt3>W5ztx;y*10J-N&#@QwZS`dH zhh5yjz&>GKq;9a3-2ZV6Bvo?1!6jl#?&RL=5pbG)*RsgM9la<1`AhDJ2zCgCOH3axfU<2`zAuJ z&Q7rI>t`=}Wcss}EK7X-y;AWMt{9t$7A2R7rt418a?u4aSK0TmY%M2O$rfdgKMMQM z8Xtu+(}`fKi{qU2ZZvL7PG`R_D1HRDV4W#xO;hFnNiVJCO3Bfe zr#kD-(_-LGW)(KJWy-yx>7v_V7g6ztPj%M&VFtmixE;hG_!_J%opf{4NlDWWo$9Q6 zPK$uwGaEf4;J2`Us1cx_>a6$0jDlxyTZmEc6s#N*1*)_l&o-Sa28zX8EfXY_$UK8< z6;x23uJ>NcMhC$VjrnMQ*j?5*DD22|B4}heqW8eeLHpnq5OdI;u(FYZc5{^o2E8b^ zL^OG&p4mQDu!k~-CA)=iQg^vH&{twNN40GC>PXr-kM(3Y($1=uX(xQc(=zFVf4NIo zFO84Hv?bk~%=_sIat}qGoR%W$=&a4*!YS~Fi=IPYrLOe7GWdR;Qe#hFI3(e@i#inKA6;hirYY> z{u5X^b?URjUyq9=-?7x2{C{EJP|1tCTzfxE`fuTO5b3`TE631xC=66>A*K!o33Xd@ zrfWy!ZOxs@uD(uZuW@%|`pbE?2+JyrV!0YUa%o>Uc&(9F&$KKsf~IrUCp(daSMh6I z!Q1E3YGHI_0<#nrd$Ep$A6z)x$L!7}MnYi`P>Xb5n`~CV)Qrg{1N+MgzOanxMA*n1 z8NCN)vN;vEfS7DfhLw$Eb0U{WuE3BBs=C)S?w2vEJd2Dv>>Dcg@Pew|50m~SxE)0L z7sAS^(+@4E>Ymdg;2!@7xEuBlH3IYnRlP4}6x@Z|LX3htVC9%7aHtkk!6Bv;2MJYh zyvMa8vf%htvg@ehdh*#-E7?=l$U4SvfFidT7g)jOed-HI0u)?lO4;Cv|T6Dnu1ZzyWNN&8^DeIo4xVCB?lZ>a9~ zV~DTuCq4lCg-TqkR+)V;saJ3th}6rlatw8cxnGqJVv2B(Q02qFTqi17KKwe_@?k>X zK(UtZV9N>70^-|nz*?iN-rIVe!t41fH=kP{nXN1p#GS4YrYeZrxx`4QAUd1<)~1%H zVQ$9M@+;U;R`i7jnN9>sT^w54G~LWEzrdR&=9kA{Wh1}*j7ua}LrfEMaMN8H>9IR| z7ZIbF#BdagCg}}B4?vn7FnO4o;4UARFR>k>CALNM z;`$i2=XRiyAF_<@*_^qh6DIdA+z2A~ZDHk@aqdtAs5(MS6b=%qj=0q|fMp%=QnJrI zHpu0pM>196P_@n?^%ZR{AOgE1vy`QD=ywe&RXX%>iIGq`jAlL7(#q8^E2C(*5_XXl zcj2Qgh|jjFwLpTrv_rjd`s%0?QwluIO6E_8}=!KC{GW{Br%!~eqWpwbm3 zVbgSz@&DjW6B&OOR!*Jq6g9h=od4<1`R}kxsGO&3#esD^{}peZ$ol_ax>x(YjI3c`2-%I_0Sc zme~m*?744+z078eWzB>obtoI3GYYW|I-zQwNI z)E6>|;kX|#NBG9ts)Oo`6O)-zPKVCVguKksK@w@`V{(n^Kc@%=Pz0+IQzVC5L*4wJm96U5}; zAff7nQ(QYD>x5U5trN!cZ4)bt`TodmiA{Gy(~~vU+Wu~5uu*~=ADN~sYYuZ+hp;+Z z#+RxbHs%r|p>mke=(bim8~{_3om6`w_J#dq1z+f5IuR!F-Oh&P=6tdj-ZC+_><%j% zx#c}vBDvZ@zT4UGmd3fvtnn-!im*?poWt*SHtaWP=kfN5v{%B)snZU<+u87#M*LcT z;-7*2LM5)h+u7)YN&RZv1|szlAff7qS*{(C^~2g^-|ZZ~x>7FX zx>x6-N9#VrdVysqYp}Kb)lOx7WU{gp5Kp;sQ3b@4Tq3rBNN#rNY<62qGw;CIi~{06 zu%E2t3x8!g5hn7@&Zg;Rc6kGDnwVYw4J#Yjs`|HNDN!@${wsco;N1Da*5cylHdnK#)(dAS>-gC zn2}YM!(Osyl_Qx>gh;)UuYE{ZvR$=t>J+?PVoEs)RyI<~30xw%X=Acj5wtS?II{(t z@D0Y7!XBYA7Dpq8tv4r+i}2Qoq|b+yQzt!LEoWM3f7hS(w_&ePX^Y3*dJjzEcj6Wh ziQf(@#}Idz>s7fRrUeHHbu+TFYe(eG$it%&{Vds-o@zh)(o|$6^G((TEHPQ*te$Q8 z$TPehs%5bd{^c%dc4T6*lnSr8(onY`uW*SGQ7VW|Yo)^6Jy2T4G_o<1zzQlW@WMEz z6Col?1qn;Gt4f7gc)P@OG6PmN(#cdVk$9+1N@m7hc=vE_Wp63j>tOWmSne2OW|n!D9cRM+p|aP%>!$a`jDj<8 zTZmCmgOy{Vz+vi8vyVtB4iaki*}}CWa`ss-*_VH&^k*xze74w;k^7%67&>?8?4iOn z^Vnnidsttv=(UDky|3lm6TNS3Ir~I^y-W6?(S=Bcv&=qsyCPDv&s|(%B+Ncjqn+3C z&+lM@#@zE8*jv^hC_Kz`B4p}fWi4vInR9-Pw@=JDzl4>Iobv>iNN(ntC2kU_ z+#4OW2J`Vu0;|uc%*BxuwqBUz$KX~F$!`EFr%rwob+5Zl`n&tne-G>(D*bud&2F?O zW(4enTSAP09bx5|2yiGCRJ|dl5eErXZ`|RU#ALnke6n}DW7&!PgV|#A9(N5Kv(|vC zuWWOj(Xc%-jadqe0oUMC1xAHSjD!MXyzI3$%UlC9GiI4j!)~%-FI>cQB1r1ujFJW} z*|2&5e-+*^F|AwyD;sI$GA@x^Ng>ZDu~YsrGX}c@Fev{Jb_tbo_>7WR*5AjQC$hc| zR!*ID=!_CO?|=LA{uk^PDsTOal33>dz)c`B{~N3v!`xxcS7n2k92_K6*-&=vh%6gE zlx*2BtHzE*?aS6G`88~%qRjp;SE`nyFC6c@51Om2fmg4zxr(UOWKUQ}8vTe&UzUnu z3F{knLnh-+RTN!ZVkA@)Gc6v_s*96gmd3nu0_-wtI1~Qe0~ob+Z8hgK8%|}jDfRY<#=&OVT85=NW-NRSH-{JtH^Is=vEWcvsLDi4G7b`|GTGL( zBeF8tIoSs&v%1T{F2Rn>%1XJ9?G((NK9DPQ=OWt$|H-<9hQhnd zaS=Xsv9@jnDXmaTAd_$_h>2(dtZXErv0Ng#!ep+P&2663`0vLo!$z{fe{a}7RQ}?5 zetcid>1Yq!7Gf0a3M;1`1q%)ge=f#IhFT=_`A0$l_7OD_HrHwsTV$KjunM<_7!5tJ za!fQhR2Hf@5mSwWgep${&vn9+#mU>r7AMoI<&}Klq_Qf{zKR>1$Q~(7z77YmH3I9I zmW2s+7<^zhTOwMPjDiKQa!eFB zR12!$5L1eSgeo|`Wa0b(f;HZz| z^Gkq9HmXXA3-CsXY2>4@vXMqU!X=U`B|1eZVbc8$GsLrc_!jIAD&5JU>cPtRn|RYi z#@~RIQ)fIytyGwt|K!j453oz9oW+)%i23Gt{vF;tk@at2UTO^VMpZEkTru>{SzE9b$|9(cEMWxM5$1kY)!~)7BvtvW{TYwG1#- zBFyI!BcViSP-}Kys~6r2Qh41m%CRXpsETR==U`@qUZ zve}bMBv(AhbqL*S8uuEr%CnL<9rg{Cdw3l}?}s_nlyEzU^jE{msnZXwL+GB> z1_z+vIopK#-n@IT*SUGjdq2ppLBl$jm()YkV zp_0~*i?!3f8*iUT`z}~HhPK08uF3&16*x$!JC5C5J0kBmKAUVg(Aju9Ew?869qo5m zKd`)H4Yju4aR~b}f%%cS$xJxs2h~OG}gl zt@pqrekg7Mk@&%|a_Yoqsi%yw)X(y#z6SOTmAZJH!`2Iv`~YqRk$eSKjv?<*45)fS zOcxFks-F0_>!c;?iS@@N`XRf?E3&oj-r(^0@<2`dwDx!5u(ifq+mD}@U64J9%wLwO z;@hr~rmBiNxx`4QDyBsGu1z-2!u*WM=4sej)(|K>#B?HH$h zjs33v?01HpLmln<@$-?6nEaREh7kF8!OAiG9f|~1XNU>JK|<9Tx4R}VS!et%*$?J+ zW^2V9KYV^k^cy#WaM)U7uAXc8G$Z^Tddp`T;a~2Owr7~>kx9%_T~uA;OH~*BTw)|t z7ZX*-wPf=dn3_>qTn&553chdw(}_@#YZl6OGrwGkw@u71pM;f-{PJ-wkz8FN*DRF3 zG}aF?dpy@HegJ!g$~wGep?Y8v|6kk!BJux$l~X4kTC-3-)2P4VPyL^;XQ6}-Us88{Z)If zj)Prhjex@bOecb;QB*WLVJ4cR@wSPH=15rCNHm9WiR6olroXi5<)h3V&!XZZuve(8 zBSl5C2PW|k;T8~yuZ5LUCmt>;nm*I0f5V^p*J004sT)N_vlk}$ui{n^$=?Vo$B=iZ z2vkua<_!l4Ra7i??T9QYUP!j67~fa!$#t+3W}=%dUt+z$@{~2)>Z@8VPek7oZ@EAb z{q?TEdTxAV*0K~8FS=q;Ma2tTVk8t56B^yt^31eDP-;dcF_}qV#g`R);lIpT5hnFX z{3YaugstsgZff zQY(DLHI`JZ@MSJB5^9BUqSM+8@>7_QF@yXB_L3EH;cliAAyV(;`9#8!?Wz|xeuTG6 z%pniJ%0>>kpGzcHCrlRetd;Rw%ofio;dR&}RL0XnN7BTReid(>Ncv@1Id#(0)%Y+KhNJd3N3>X3(tBXm2Mcivh{Wf^$}z+pCU;dIh-tw=Le&RfbPZiu9~_+Q ztKw6t#e7e`w5lU>M!wWjJ|j{mtb}9MnqKP5Th|HLE1kmThRKoH$x<(LyT+EP7f$06 zBcWcHDuKz)YjwjVFflod)U%2UVQ*QX7Y3M4gpB;+anyb@$DD_^Ps}mrz{*CBIh#u) zS3k%v9!GtqF~5u1Nk!4^ZxXo zgS|tguYd74+7mMZp2aO8M!?gsa!dp`6bGul5Yvc*gsLx=yLLp@7cV9I{9WnTq5y;BkD7ad4<{JS#XqL&rq3% z3yx?nO!7tC3L^PDteiUeP{9%Pn@0aSfBM(L-l5Xh3yx?{%n0}lZV530u7;IkBEX?q zPz8sWMjRwm!LhMxM`XbPCUH%vgtEzgnz)F z`ukzeP^lZ6FPptEYl-*aRuIV_2P?;rcPIo@Eg_~02MJY6Jn5RWWG(SXvYRKSR{P53 zS}!}Ye~IPT{?EdJYmGX}(-CMFg)o}gOgpsyQ?9|K3W*^uF%k+1NvzR%E!F%FOiYd= zwOH|8*jrZUg|9N5XfYx7LS$Hr_rl$=nGm8%gGNE|FY8(Rez-M`;Z6zcQP! zvfp6-f3Rn$%)^Tnt;qiow}MFi_poy62Js+hNGl3N4&mR5$%at zU`)d;Ax6MtSUDyF9I69VV2EkNK|&Q6m%E0tEHI`eyI3)^H@~VkS7E1IReFL;U%4+= zioWS_A{@cipvW9WIYuKsM;}|Y65=sxrGU5R(8?A*|8gtPg z>@sUO6mm=_f~PLdL9$_#MyMjBiW@;pME$U`k%;=ZL~=#Q9I?5<;y8`|jm$95O5{th zd#Lp1hxU6~x?)a7U%*Wv#=z%b<NXc7q6e}Ak*Us7iA-Ug!iszuXQ~pJ$R$QXB{DhObuIbq0@ITnRZAdCVP9DT zpsMDFpE5kjtuM!@;mAv>)rM({}{Y!8=i1aUnm1F2T6bGul z5L1VPgsLybyLLp@7k@~&zF>!Ycdus0Wp!tZ*-E6o_!;X7ma(isM>yIde3)j-gDt|p z+{LYL7$2F#EVaeMu4q(k@nbF#TU#VI;Y<$qT$^fMhQS%7#Y?cOtn3TVGMxw(Sz3gx zH`C0Ec4!eVu6s_4fLr_{;AYrA)CkZ&#IE%dm1x z6gU(Qs{RmDii3o@&Dq+uBl0$9LbA6x8?DNfa+NGQf+t^M|I(4^uatWRx}#5c|Hk@+ zMNBvj5~@&n-gVlOh01No7An*8rF<=)E#}W;hYi;Tx>sx8 zT)YX6VrvN2``cWjsBScR5t;rh^~nvc5vS^t>$${8s841X{nxV5!!So3ikN-ugTukjLr5G%6aXDng>}QutLZhUiFnN z(@FGOC@m98^w+x@wnswPl2d-*%0%Uq|K$>~IVHhoz2jxCwXE_Nn3<7P{tUaxioNh8 z(}^IdPvo~P4O~WAc^+?=m{y*Hm5sFWESE@b(wHJ@d^_b?N24Rtpge;~3`cotQl1`K zHjQOH6>px%dJ?RhI_nv#mbddh(4Y5yuv@63S}aBwT`+G#_Qp*hGT#GMj$!UF=c}?o zOb!kb>L%oWToaYN3ArQLvZ1qgU`6n-w#bg%h}?;M6b@KxwAD{;T{=J~esFtfr+s|H zHKtUx@F6ZS5~_uXs^eP0a05)rm`bjPJ!OSmxSZ)k3x+9tDp9tZIpsRMZDLNj7FITL z%4fJlay5fIHca_TWBoX@2P^0e){nwop|TDi8>V_-5`P4@fJpoySUGj#p<~08&ot`q z`cr=!_6(J}er%ZPg-QNR+zKN3*I?xs@(z=~svpF3;UJ;vhqbO9k@dsb$u44USjuH9 zxoR!g^;OGN`pd;^ExM$+&oR-Ib>8kB9m|Ib7l_M6;&O?&e2ibLkyl^Qx{!cAtRfAM z*d3X>8tV`B@s-@lTqRfP&J7i=nb*-#*pqcBeCO4=OCs3n)4I!j{n_qXraxQBuBv4F zd!^!TTrsxJNNxg}X>p5|jk;l=viD<)c@`qmF7IU>sAQ%ZWm7%DiTe!H{ zv0WU^DO|??uyAm)cQ_kVO3|14Z(wGGYpB*Pu*O~exM5C6ft`^!ZX}?B3fJpheXrv3 zIzeID;T;`|&mB5@Xi?z`meYFgDqP7fEHTfD`@!6}A1sXf!Gr}dZCuTos*h$J)>6xl zVKj0U?`MA~2J{bM4_WCJ?qoU<8ufAfRwke%8&z1ok2gxpBKN_{(l|9~YF>lFb_9k7spFcQ5-|Tx3;b?6Jd>I}UG|JMx2TyH*aAx@-C1Rlcs^ zKXYsPbCrB>Y8v~0RGaoiqSTTzMlqXRs+EGu8S8P0*z#miVYkzpBVDEunN)5HM*7%V zxw}@$vGVC!_Mbt@A>`bN`BHarpeMI7U(8j9mJbmMz@|@HK7VTdX4gQek{!$ySsB=q zTQiick7e$y-l4zaugyp_vg*p6xdC@pu_%N~bIwjIGEz$1FjKStWBhl`~`;$eGj^p9&A(^tRIHGLS-FZidNBT<g?Eg%yAA*`G_@z7GV@|i~cKmOF;fIUN{ zt}jKaUYO+njaxw^|1VfMhP=b%uj&UeT{uXn`eDGeBY_p{mhISt>jze(i~3?8>^}c@MWUmlzTCgX*}JU6#Y7j5*~L*i%;6g~OOm zgo>;mlSYOKQ@vI*%g1tgz9j+f#4@~0c;}#H! zp9?FePCQgUD4%K6zwJ-`PS`V4>U#a4dSQ~k9k+r={#IByhP=b%uj&UeT{uXn`eBJ{ zM`Zo5CfP4wO*|@F%J&bj2iU=i-UUO!!x6Fk{Tk~Cma41~S3k;o)i?asPRpX<6<7bO zMTdWKiFFhW>sV1cl(E&KiDLyOw`-O*~M8XS_BV^vq{bGgF~Z@H=*{^hQ0 zwOa1ZvtSy`1*d1SXM4Gp_`?EVYw}}#K`og?JHc05lW2!61-6yaib^@#)174x+^fCW zezxqN;906kyrj3PjWO3+Rt{Y47Irp;kkCk0efbcEwM4w+r~IxPw0x7=Aom6=XCCYu#(Nr>>Tj+a#>l- z_ZKVeZ)1RQ$+VM8xyV}RX=4k$x$I!R%I4DcI;%HOj@7T1)J6GruD+tR9n;ai(-C{eiq z^17+KE|AxS^17M4ZZ5A|$m^E!x|O_cEw78@b+No|Bd^=a>vrkjg|qr5JW z*QN5hlf3RMue-?Wd*pRjdEHH3cbC^a9{DA>2c@};qpdIxFiWt-I^!8qg?Gk(Yujk1V|#{_ zZQ5?GE0^)MiR;QmSlL)tPMY#`eGyG#eLd@vC+q8AuUOZ13npvv3`y^SN&H&e0wVFx zz{;r;pO|efWNNG*^=JJE><=ny@tU);-K6{w-Zqi)gRt_*p}e$5qx`l%x9|bF?PJCS-#yiiS_BpUesI=7zsIgZ1RpQSSu>0jZk6G{I9R!*JtEZYNgjrfH3dDmoPnM8YPGO;ty)(dm49)(*$ zB)=Z4oI3e&Vk3jbdRKqeJHx)9j&6~`a54heQO%!7yT)}06T+9SseA<*l=fz(z8 z1$FQ$x@?oFL3dxgT_WARVCB^5jtMr%X(PAd&$bMEg35M0U*Y20`V6u~yj3FEJgl5L z+0N$nWDW0i{&=s2-9g1WS)7>N+*xff{tVtUk@3~Aa_Wr7iM`<(;79xcKLq=N3RvW3 zxu@Nr`yk#fk?s#*<&i+wvcB=AKi$`0U!ZjD>l?4&?Gow!6IM>0?x_5Z+PK~7B=3rO zb0*QAig_$g%yewX^vaiU#+1f4IlM?w}4^G3z!>HyIy=H%(-G zIINsH;|YydfHcJC_#-|W_68O4BtCu{mYamn#9Jm3J_A-xo$zS(`jrOv7Js-m!;YZB z6^Ani?~EDQ`73y%M6O?kl~df55+jJwgR6p81EZH%b2jZ=Fc`F<3cu z(i=5=6?yAW8`ERo?_F?>ViN5sxHjPl+u9A2{d%|=ME39e|Hpo6!)fAuG7b99{?M1; z-nJh8Y`!%yBLZE%4`<}`F1&pr?QLP@ku%aGFW_p>v;NRO2)l-w+@m8s(hYN@e*iaw z$o~DXa_a1-_D9}?)}VjFANt2&pHQL8ksh(%qLC&TX?fXw%>%6Q)fHFI0QiB{DME{Kf!LHau%NuHo9Pr=Re>k5SjlD zR!*JynBbfQ4fD*Cy-V`xOrkv{xp?--&yO%h^Ax;QBH4+sa_VHKX(wQ4kPq;Oyf5q& z>R8^8=WMM5=1ATPH-N}{cUU=f-s}@c><|)-a@n795q1TYvY460*(t_Y&g0Dz*{+0@ zQ)fF-o&KT$zSbY`XJCI&0gHFimF?yTz8Y_vNcl=wId#h8tZO9?`4fH+_63!&*hvt# zM)Cu^T_WB8g_TpMyP=!EOjrf#o_Q4#}|HN$|QvW-woI3S!;_NAn z^ya5{SJ(@fM0+Z1F{b62S<->(t;TtHyF|L1z{(?mu4Q-7G5&Oqf_*_9#|^sn-9d-r z?Gov}7gmm;>+nH<%bKU7h|}a9B-A$r{_c9FeP9JUpzPIzze&VCL1q0W(PeOyT0?Bu zze&{iWESC@M0MAgQlA&NgiEaB^8yK;Cnvviw?yCe@J*PM96IWo)Zc(TWrbb%JkznB zC)c#ytOvf1w@u6`Uxk&8oN^)$bZJkOK+4eS*v>+m;;Lc>%#Rn-W; z#x1ZCziL#+dL6+(7t1Epxcw#EMC#~6A16}I(+b0hAMnOMo=FTxVQ3C@{o_Qc7v`WJ zgIi$@0h9a&uyPD}hbll75@OzPkWhuhg{~ni3yBAlEhI+gSFWr@ze;oj9Ie(&Q$L~Q zS;Ix>v&h2I$UJ5FqT!*gfuyp~!CYb_R1af$pS5gKg89gyq6&xAu#>Ea3#Txh2#~s1 z{S~NWvuXzE#hWFjj~uLQq>mL`BDtDj(*Bi7c5Ro9@HNa7&vN0@utTVXr}8DEkn!d; zaTVS;k@FR>a_XF?9at{aviVZ3VrBhff7U;QokC?Tp4e#}FnNC;H-O0dK3F-1x5J#S z$^tPVI7q0n-~iW-$g<$4qdGcbXQbGqwWu)n@Q#kf!50S?6|R`q(b0QX;YxN{K2%s3 z_k*k1&+B83V_$bF_eH)|IQCRDD_O&={@#{#L4I&;*UEuXcksc)Y_Ti&Pj>W6j(sa3 z$A(g|t0Ihx%siG-U=%YLtC?l+s8V1(E)nbaMTPc!r||tPT_jx4@>_o5*Sc2ZDy8y3 zv6vsKA3yBUwd_!RxDD>fvkwmS7IW-NX|2mh%onS&eSOU06NlLk{pCFSFk@*b^r?t# zS?~m(ir7wGx0ly0dEJ3u;ZGvWXMdLDClNZE(W4cj`!Pd2%apx&U;Mv_FpKF#(m`Fk zc-J)DoV519nH0rrG-$|#t4#fGuKYLo0Lyj3FE z9#}bbvYpLTs^R^tKi*Hl?x5loqqk|g$#@8Fn#lNaSUGjZWBHt>@%@oM-v?k=qi({i+iu*O*Z$d=W5t9wTF zA-AT5kxJ2WJ@EsQ7;?Gzm-peVKUD3C zqA$n39nKup`WvpUEtImQzFg2m`&jTML_gZ+si2V{q}uAK{z{pBc)5KE>hytZsg^J1 z!YeQ*u`C>{z`S2xPnOqH@gu8`MmeuYSZTd)#&~3G60@idJkk7j~O;{|hsy6Y0JMD~}Ai`I1I=M}NB8 zCqS2#gwla(ZEhR9T_WABVdd26b~f*nG{DRK0iOc9gF1ZWLD0>cJcIE`c+*72C&0?7 zGae^yR5iet`UAcQ_5~HN$j|Zy+n{?s-Y${uxv+Bjbj2cpM)%wPbnk?Hfzg$V8wTCm z@pg%HZ-tdpr#oIQ&}ex7=#TgJursK5#j}&f%96qNw|K)uzR$qQsq^h@u8wJhr)9j$ z=gCZ>J>|2Qf19S8HC89yG?DQ*SUGjZ;{rz+74$y-fcJ!bK^?+k{uOqcba%tsCDPpm zR!*I6kfDQxVQu`b_Q%@`JA;b1nW6cLwvnN8c*8`#D`4f+`A%r8%4>i>?GN}W*c(*9 zV&%DExjBNbz*{B~z6@55A?&dEKU9lIA2dw+g3>#>$Q-h$c4L89J& zdmVO>6>s6sOecb)E|$FmOvc3UD&8nDZM+OC8)@SuE)n}8iNkv&6Bfk0dBR^X=@c)J znRK^4&AW8pf=LWV>2A^$rF+wKlkq~lX(HqKuyX2*r>GalOwK3xb3PV!33U{UFA+z~ zH(4*knRob;@AJ$O&)qA}!TzA~6~~||+sz5$S-fo` z<)>lg)G1F@v#DhyPtAIhp2Q@Eqv|t9viP7x)P9rp1iXDB?Xj?O3~h(GT$KZ2DsYfc z<-nz`VJpjlE0bLn7*)~BfurFtwPurHF9*1xk?F@$4jkzkMyeb*j7yA&av{O17%Xfg;{2F?Hl&Wg~U0L)CsfjUIbf&#Al^Qa_77m?7}^eVxhe<5 zRNx??%7H^%J0i=0N0L1%Z+uUs++QB3E$xXc5p=FVvywH?2uG-3O9aZ=$V6l*492k@ zV3o5BC{-AY<`N^JFz9UdTdNMbU{11^syf&fc9a!$VH2hkfg(>UX_{`{T`a}u zVPzwoY{n&$D-ov275K(@)JT7Tnd4a}ydQQ7m9#igP3wTk`+c|pMBc~2%Bl07sqVd- zLqubKu|M+*V8>9I&*n!aS~_8J|0r$*k^4tro{jL%U`n|3a68arZ(4Egu9F_0sjy_3xWtgb9KEDqu6S<+SV&I>y-d8d3cP=p! zD#S5Cm$m6*RyR5(jpA?ylfbHI>##1Y&vYU@8c&jfh?1=y-F%WX6>pU|Urd6Pjrn2% zmq@NIY&=Oa`5wqD!E&y_cR$!4RKDS*BR(7r%6sE&6DjWjE2mC5v~*+{$^HJM`(U3? zN$X2TcG?BJeIo5uuyPD-hXPL3fMP0ekWl5oUtK38Sq_X%_DNDFI}=EJu1Q-w`UV`W z)=(Sv&owc7GyUaqk(nEri!Alw*Ii>u)dpYX5+k8Dn5a6gRS1v6q>LHlQP@*f*oAwU zPJ~Kb%pl5kvrc#fZ=0A?9)gvPobn)-NUlzhpKDV7(pbOC?D4D?-iEzGWgY%plj?y< z{7u{fBJtN?<IX4hI7q1a;YQaGmi5DoWS0|WW_z;zwftbNBg4R3D~Z)`^jZ@R;V3(7eW77_U^um; z=yeSh%xX@SUL3= z*i=39u{ckQgBSec;7_oNsBy5F_6W<;o&QJOc?U>Rl<$Ax?shLnxFd52!U1wb5k+zi z9v}!3j%99lZg=`-XO@}S3m^y*g)sn2&L9Ya7*He$l7lFGL4t^qBq@r5h@!}^rmAMD zEA-9#RPS`pk3Sfcv9??qp=Q`h%_3>)tk=R zh>eu8Hw;IPPwjcx0}hdsZ?HAf(QwGe8l01CRXK@W@m7hMV<%YI${gGKN~p{sW=*Wj zu~wX3uvhHgOZFCKTy|hVwzoG|=+n~2*V!mA^W&UeBffi1^;Vm-jvR8TF9(%FPT~@g zIb=?9Nn}D}+(st35$0rNlI!6>IZ+1}FdYqw+&$Omx@|kf8BTBM(WgF+=8-aXeCfX(|UyaPnuPr%Bl^A7EvYlO^T-nlR~^HEF! zvr<&%=I*)1AZ+d(cqfS5KN>0S9yMRt22m(HB-9PZ3BCi7Hyo!XYa1G?XC2*{#eHJs zb8~$I{%-K(b?@Q%*4*{1eWPVnTZ{^L_3&?2D=(M837~l^uz3| zVv~hK=ENTy#B?+~Rb%B-4Z==53-C@56Hhm+Y!#d%xI}UW!(91Pfiviz%Q_a*YMc#+ zhf3eM@~MVm&w+2@T_MhaDy*FP9B{3Cs^A&(;NJN2;BGiX)OirO@~MVn&xJej?hxm~ zZLo60T<~xa%7};};~}Ap$me|rB8|xV$r_Q-?0xesw55v``q1pbbSeR5E;)%_X|QP;v-C8mzm zVPz|ItimOdvl4Pgw}bBitS2$O!#p@1&I>rO`G$9NyD9I3w@swHC#)Pn*(1BF0wI!v zhlDB+|ME>yvOwgMeKgj%+X>yN8oPbJ4bNHUglqksDq-92H+-j=Dj;WYiFPO;4R(z? z)h)~;$!~_)S@qnA5a+=$c5Iih=yJWsT5)sSyzb>Yvy}JPolCTX_n4xM-MEV_!o1`)q&D#6;b1wD z2Zu8q4NO&>lC5>$_8U38d18K92rFCprH4x-=QmasdxEu)8N@GPU5e>6E`$R^B`$oX zV-Pm?^YBg(xt{|or_Oy>r8G{y{i6RQ78aJAk!;*!=IqJ3{3D3s^aVzlSMM zzCsib4+-TfcJUpE^c80$y8^ySU$)ZGohwwbrNLr8Q(+EcQMOdb>idDm=Ft4*oPgDA z)6;D*hrv1@?t8uKT19hMjWKLEm|K^VO<9c znU&fm!vi<|C9KqV7hASH&ihzfNx)sUz z4n*FHypimOx+bu_SI$!q)(_C6bh(QG4D8LbBT6v1ryc4joXa9 zU{Y53*d30P6L#=vrlXq!v42DL-M+Qh1#g>}Q+9-vt(>wQmq^Yd$n%s`ybRWhS$|?$ zg)$r!D(mohN@@f)@j<)?MB)Rma_YoG=P9X}8Pu({$cB6ACXQxa4=IUXJ=IFlb@Kbb;rcey_^m>tdra|P>pLFb|s zJ5C**7j((rvGR8u|IG%Qvp=}^$Lz0Q3-(X*f-U*qx8nc#P_P>NqWHXEb^dpLlK#KN zluhho^ea0ilu`6nWh24zhh=MLG70Pkz?p)Azq9CQc|*R?<`{%s^Jd_kAlAI8u(DP2 zlIFe&3z=iq8|ZhBkA4?8HdOTD!HIhuHvJv(eh}$z2P>yef92-r%kj||;GH0H4`Aigxo_?W+42gVkq)kiKPN7QgGQYbTk+?p-~jFUauMD^;(R$DR!)7s zOq<88-+|n>^F319oyD)>&xc3hpit+-Og4XyV&=08p|%inr2Orczema6jQm|7 ze|z{Zyg;)*`_I@>lZh?ROjOr~;l>xUp2S?2Df7W(fJIJcz6|zcI$ExipKnopw~h87 z-Zrry55US+K~9{q%2NjAtJz>;QoaI?2S!=--KKmg-Zqi)MX++}l&5Gl!vOt6e9*sw zLqY{DHYI7@w^=`mH&0~!5UiX!>&f8~ZlL}sKI#wQh)_{ai{sdJy458ZPZz)y}3{6sh+RNyj~hk9?5J|1tKNcvbb=ER;aE9=2Tw8`jZ0PJmT>Rw z-0~9MIx)BW9#*z;%kx|!xs{xi#32LWh#9wFognQ#r4SdMdS&7SgwO+%%JqUnQI{g2Ph^ae$C4$5#f-{OY&BcW_> zcX5avx-wktX>oHs#RB_8NneXw>CI*O7P9kWhAHRRYEu^F)LTrTk!-GSxLRy+%vdA+ z-IY?V7Q5P862sM2&vDiw+sR)Zu2xz+w7zU1TVl__a|QO>Jyk^$+Ra{UYJD~yDE4N%d7^AJ zw}GL2B`2C1Xz>&gO{t-^x;?h#w{~4OF6vg7gK{y?-Z5j7Bva@c%4b*_X?4-AT?7mB zIW{2|wU}KcTPPPxY;c(zOD3&$Sd|ic^N^io$6i)j%)C#lt4^iTEiZ2N#+(@GFy*Mb zST;zOn$Y&I$C)p$ZU1^g{{El*eNz5DC4YY-f1j4W&&c0rNP$gRY*o^_Z!c1Q8gHJ+dJ9-Nb=IA=n`8rVe|*GQI1*IElo()HXN_P^cTkpAj?S2bynMk+_E2mC)47<-U;NBY_ z?%i-8sBp&$xNH^6x^nNt8zpkR4OUK{D_g8GxV{sg>)UW3Fs`+QLyPNMc%wwFufxiz zbDeH3dm50}7>sS8S7j2dG0@^%F>?eq@tJrJh{R{W%E=Qy_mdqfbkzQ0=LpFMto%9Z zI2O3t`m;fNulU4whoeHhti>&p?6?hj7rbF2=pA9@ zkH@<~WPdEIoI3l7YOjd_{73PD-vq~l3S87@)pwin4S3r`%GbflsZ$U5*)HsdjP(?rHA z!pf;Lo~mzaGeB<>AM~f;m{70f8GNx!@4roZ3%q?I?M-3j^l9sx3Ju!X__PZGS=+sF;ntCnLs@R>}aH4a>C0M)v0vz~!BPh>q6R!*Ju%8ot!2JzkF6W;|6 z4E5p`PcI#Vu(|JucY?@$J6Jh&?qkJk6b9;YeAI(*EU2g_@VhSg`iBgldd@L`w@aiO zz{(MHJr0hj9RLvUuS1EK&pjm6F$7of7e$aGf8{`GyezuBxkO~(=LD@ec3?r% z5Mk$hWqLD%{9|(Uk5jVq$tds4^GVSBU3vb;*jWZfBehQyw`?S}Q+;YDt<@S~uYxxD z@*fzkQZ~chB4;Nh3>Mk(0;Hqh!4?+x@!r=sG(W=LPrDYGR%vg^w7)pQQSYt2tUuzS z3z_JbN4lq_;vhRnqXw@<(lvH1lCGf}Y3c01f^2VZuE5T(7-@hDYXA=%VSr3@3(}j; zPy!S?I4jxiEIYA#XrMcL^bmW^zjly8c7*%im#u{JQ#U*Rp^#-qd5m?cjfPU z^7kL|_kH>MPx<=+|Ao(Vc!d3DNuKGjvUTIMx%pc7Co8cRem}t^Mq=Uj9u^(_duxvN3g+?U~Tg)TN`m?N-> zUyJvENc?J8Id$R_)pD!B`nT~}KLf{u%35rRR(-cAKZUnVr2GV|+&+}8G~PKB+qR8j z60NaqI%QYY?!en7QvT@wW6E2aCT+|3lsCg8J(e#Z)ei7Iz1msIE*vW5h8-qNr_9z> zpd9Dw8a$<2k3~!Xk^$=LO4Y)2e zxqc%)*E8TifLz(Sj>Yvfyip?8lVRo5xlZVa;qYSYa#t_oO%oaa0ak7s#+JESX>n`|J&j4U#zJe?vCCUc z#+xQGo&YPS&$zKmz{u4*#b>-d91iR{Zgkzw)!X7t6B%yh zm9Fs5wI`G^bn3pSA8(Y%H47`J&b5<;XbS`E#qq&j07rrfRvgPx>$OexT)b5x*|TBg z)XA$1MY^EQ=b8=xObBo{NIny|6MpX zRQ}>qneK7e*Z(_sKZx|-hLuyN-&xz^XR!XnlGvtuZ6?tg(=9SP-#ALhH%nw&hLuxiE1v5N8gQ?V5BFL)7F4+6z{UF(jzQSme}s2}$o(c*Id$%xwQJh|{m1yAUxp(=1ufP? z_)C8>ca;s+Ck+^k-;K}s9XJwH#==4K^AW7;_-(vZ zBH6cKgt7jUba9u2L~EMd7xOV z^mn%`M&;tdO7}pf)R&Vn3Z04bC3a2J&cr!b{vINKzbt_1EL z?3jt_A~EW6f%T-kz$14LHY&&>J{Uy8nLC3WnU0qBs^Zy%>bvc``ti1j)j10*Th%#f z%40>kG6-MH1`?C-1#m2=gvFi^nP#mbcP`#8k?z^Ba_V%)$%JU&eKye(??)m-;41c5Q&#z$j=GRUbCa4|CZn!_A`GtIFJ2Q9j{IQ0cImF z5_SLnJ2*s6yuqVPN5fHF&TG@p;f)g0#?!E}l{TK_5 zmPw3+1GMRiV=Wq8w@bqqylEoi6=CJn8Bf`zSg2%jg>1>ed7Jp0KMjY3dKHV!M_Tu7 z)?47s6IpKxD@U;QsNu>6h$7%2p=`j9eG`+k0Yxtx;8BEltr>M-R(AnQ;5q7?VAWll zK1*r#U9U3hnO0~Vb-&^}YgFAo+E+p$FZfDG zFviO%dVd9WTJ6054(*#(Vf)YxPh4lFN#OIH<1>Yx{$i<+8ORPhJmnF-^GmsiL%Bqx zi%71(H2ccL*I;P!T2kvuUxmZvUzzv{-UDK)Sq3Xxsb;aSgi1AHHpNOc z2gm6JTbsTy*;F%uy};VRKZ(oUR1PPZd)PQIN93GrBmO1a`T-BDyV@Lfq?fyVQKd=)R_K4seR=v8U4p3Edh!n4|}MHMkeU>nv6cn^rg$HK~~6Q8L(ekAqn z<5S-jjtun*UzOjTx<+A>-v;jmk^HA&`zDY~os>~Rh=(Fvv z1B<0f?E~at?{FMEU!9Y!x@Y{AZP`1mC^@XcF}~ABS%oEBVmVe}o1+_#qUAGa`9%6U z_9!}7?*R4!(IxDkYLBW<`YeA&eTw)wP5gXa{G2I%HfDc*{_vb?PtzEcMGTt0{vrR| z++1OCwp8gJ%$5d*D)K|>%~zVyR`S`Uwf`ji{oE^A1Z(dKT*ZIkcL0V3fW#g$uVe?x zsMbGZJ;FS+Rjt3z2NnNafGX3`E`sVTd9<7bTlPUYwC~}4AZG3F!pc_GPMZ2SIdKit zzh@(fiTZgs7|yI2*r?^Mae2jAe4oV|Ci49atQ^7Dqok^;EHbl)gsRFF-+{=gyjEAD zRk{A$(YU8yiyqRW<_b=0#2@Ri|fiiRIMk z#0p6LxubPQzXQxkj#8}^ejW~#6LqjL)6wgO_S}&nv(m|D@urFCWNTR2N+(-#iR5nR z_2-Tj={)OB%(9V#gF+?kc<$)py%6sJk#`TQoH}p&xueDW!uZV3g9Afl9`W4K#r+(- z6GZOchLt0@d(?bo8$_Y-kWjW^hVMY6ZCIM@!+)WmbInx3;(Yp0=WRRq3A}M4=e1$w)HzR6 z>*OxhUy9HAi*Qh=tc4vk24M5v5AOhx_r9=l1aFU;u55uQ2p$s37Ci2oprkF>B-vfe zo$?bSVP7x|&s66$tA1&OeSz$%R)-wM;4I&%q>RBgxkRKfNUnCczg+V(7?4#qegX%{ z$vC*0>1aTz%l~rCkMMSh8RRBd*~%a{_)4e@B4$pk402|iUa(z81IcEPt}j(``CMh0 z_LT6SYz!lDYZ3n`;gIZ|Hc1^><2~P~tE}-iE)khE<^-*HN?6S{&9X8CO;>E?pPO48 ztmKM?OuoDJ@yBdFJCH3@hBLuj{#0^au-b{WM|qiGbN0XY{+Rt0Y{C9%Ua%$q`&Rr< z4F#*QmviR@tMk8KTzd#QiT!6u9^*CBH4Nj)&IYVc*fg~g>3V!v@gL%iVLI9zt%}VT zu2I;=Y#qE8#I(8=tZb!KLEa-LsLqgflFgHIob7^#y5mJy0f`Ld1!$B z9z7%;*@w;ALdFN1!p=fo?Q5Dwutl7xParql+1cYe;Z!0%ic3T$;^gdG1EOTuKxpKl zufq_nJaj4?Hs?GDhM10?htLl}pM>{>n2Sz;m91QKoUeq+MPhcv%0=_z^nw-9x0B69 z6GC5D)NJ0vY#bwzd=4Aop_v^ClcB zcaC|M>1bH0gl}QKhBr=3E3d%HR$6(HOC(oVW{73k&^$LP$|_$&uS|>f%1mM;R+eqr zGea-EhK69<+Ua-~h|H(J%BeG-rIu$yK{L4T7N7ghaA>Gk`D(^?^3X7B_B-I+AhQ2F ztQ^7K!viQAA&Q2Fgu11<+c$B^Tbj+2T`3x!VQ)cb{^4X}w!XM6-y8k1_<2?Qye59$ z;6Ki(R&9Q&x?ILsk}GGMu7iaB>|EYutya}7M0H##yD(eI7J9Ps=(iJ%dDVP0VqR6J z^%MsNGd*lycBYi+D`f`zrQ-2iu^o&>XDtv$uDKqjC&$~x)(f+xOkR%iS~zabSrDAV zbTm{|@vRchP+r34vOgmZ>bn|mb-DTFl7{jXu(FKHxO}c$>1MGRkde8RDtDVWDCcN8hWy*NcgQ{UqKt5%%M-vYd&(ZUiQ2%2Sn*aF8Bz zQf$&IGKsKrY(812q{YFydjD@l>r!L(ixI}X9pnmeIMfY6Rk(lP-Y&aZLy4uOBF2>)&n+P1 z=OrE3jHiVjMnsX`2XCE7dQVt6g0x4@S7k#a2@eTXHvZ+Cs$|*tXmp})QFrZ;Wv9!t zCCKnzns3AN)H%sU;A|7IdnVuXzVREr(?=DEGq}WZ3dC}EEmpfK#hywj%htf_2b?rt z(5Oz#6?*bRz1fAiJo~or{Nd^$P4B*CM4H}t%Re`_li$iTY0+8ydeW0+-k;qX4m`T!q@+QLWxDE6hZJ)*;>S3B8rkfBm;IJlhYxay}wVb#xj@pg$>^=??% z%Bq5{M@m##Ra{vf5-O{n<~tCXRZmXVjL#Y>)DHg1_I7lavwgLF!yVlN*-SypvR$X3 zGuEAD`Os1m&s)}s}Zj@FMS`Y6AF$t{$D_couEiRFqiCeTFkn05F8-t4457A^v=Q9E4>HcogvPHd9ZTo^I#qIgv}W~V=kN=e=eK| z2Z=ft)-yI8IR|9VhvV@M5$D6PuyVwF@NgE&oQQ(sA)(C4|6-bxjgozIICd9l2Q)Ww zA3S%R6R)~gQ#aD=OHFkX()6b97rqln*^QrbiRIXh<=*rK-)H23`@P^N?9bN@v|P|M zNcAAlE!%>8rf1PWrqI14SLiJ+8Ll4Qf=05-vh2D0qU>-r(*pH=wt~&hS#6Bq$d+7#{4`kRH1=}Xj3i5^CY+-1CEp}Dd^lb%s2A;LCboksAI#%eY{ne6I28;P+ zi`jw$VW$Q@c}p3VI|jOY28UacqojOod*{MT&lW8mL#5POdG=Mhf5AVn{)%>7Kd>YkS7#gl7xH8fFwM~2!wnNSph6yi-jzCN7J=fMuuf@gE zf?T;?F|xtWgd>?3yuqAM?O^IR*fHZyajjEhuNth*B(TLcr(qACWRcO=jl>~H#sKU)!&UGO5bq3EhLx>5 z!=!nSuRCJ{^gi)H?+HhP3VIS>5~%mwCcGQoGLi7kuyX2zr|Nen2Ir;mIS;`xp>h_x z#r6K%v`cvVMA}7IId$5T`ZJCDL<99T@ljs|2ZV}Ryg(f4yv_M?ym2DuOJL>HIggV* z*kJr*e8!K%!Jsl0pE{@;co{;q9qTc?VItp0VCB^LuC=@s69f9k@uB}0jt~|4I=ogd zZ#4Fm{%^cD#F_9y`*$u`w$7lRQI2csM!m-t#56BQI$M$`^VItq}!OH3Ll@B-! zzAwe+`+GPT7~lGn8H?}pc*8`#&%(;7^PSLm#$*tlbb4$LHl9he#)FBsCmUV2b95Kp zG?DRWSUGjZ(~Jjw2IWF@TQ53kA#)mhjGPVJRG0#S#UV~7*}k@-^80HGCmVlPMz@-nfAo) z1B3HD@j2fGhlI*mtdVHlw^`qTH&0}JE3BM4>&fA5AO`Bc#z*~UI3iTk;ziYP?`_g= z;;j=&zXmI(PP&V4$1xDE{`J^ydle?p8n-PzswQ?3$?&PW<(2VfiEO9C%Biy@y`{8g zeAc_cp`l*R&|6A7(9^ zHYCqB3>xIGickJ>I5IKG*S0-c`Ti2T7ew+G!pf|_YANgZ&NT|q#L)W@* zvwj3`p2+$^SUG~V$E#xMZ8Pz{k%xqO+w69}lNC9oKn_H{3je;>tMI`Z5$7oe>qPyF z^Vrv}s-3%L7qi!4v{%h0pMhFW=Nzl<(R6QovscY}Md!5bua5WHC$J7LSdgn|`Qs8c2JEB-=iDN^wdH%7 zVZGPd%yrb03w>#*JaQhFh|D7io^m`+j@n2jcf+)-WO64QCMWRV2BxDSsfzs=bzD|L zxeafam{4wkm92zwGnYuNP)reLp|~l(%{qf!lNRN-;E+%$i#raj`*!ho9dDk<`c+st zb=EV~c_(h(tDYH~_e>^%nQ1C-v2W5Eg3Wve-UTA_sjzYcbB}7T41*{R9ums7oZ~xr z<;}*O$=+;?D`b~eG7H()bTrHGWq7(e=NjQ%cwft)`mI$chiUkd@6=MJ;fq|N9ZbW7 z#<&gJa4byBDkw|gKsliYeN0D#QWYCU8eO*&%Mji)F|m|jWh=21xkPftVVbDCjc^&H zuVdYbX&tVCgF+=OHh~!fuz6pFcYw(Ia#%Ta-Ycuh8^!$T_{^V#14CuLig7?%V-Pm? z$MH@OxjzOgM{xJ3{>ngzLg68y48(rE1Ca*eey?TfIlk-Evlp=UDLcA*hRT&9`^0>G zU9h8j;ZUKcc6O@fD^{waxyv~TtEHwZ*!7MeOPRHy$dNP#qQ;?>G>6Za#>R&Eb2$T* z&zQ_5B7H`3C1~yChQcUFpMjyufve@ut>D->=S8qC)6qCpKf#mJa))E5sm<~35YyCL zSlLQb8~aMAG$rO)tTZ(tPA}NP=)K9Nsd0PMA8ly)XfYcF=B1qTuDW;AeAMiTS|eXI zeV9`Ajl9Y;gIppq&&&y0b9!ScS-Uk)y@JK;saI>HYmaI|=SyA0Sk=y#x>){R!hhj& zoW3EDCw2-rR6%ZFox?6etAbp|$A>)KcV5ZCDNJVsD#$f>cZe0_Dp=X7AW6@KG3;tF zJi~Kr6fucE4F`fsd@T12wM$%vPCYVx5^t2q^>J7^eXjPS@G;+r&2>d4f%#~RtMgI# z$8hw?U;KrYBe;6lHRbq3#rKdLx=1CckT)npyt)G|9QwVYeHtfRY5G%=%u(FkL4(AfdtvAe)51ZvBE9bmHeVBDBre`<{ z4h@yMcpJkx44eHo@oo^=p9w3c&VF^Z{B2w`2LF5F^S=uY50(E~#v-^e6nhTbfp>*C z2X2LxBj$jIT~Llg6cY~#=6CN9huGwg$9gT*DreXT{TMhjRPMr6I)`DiUxIgo$i4zAN3i#>1Ikf|qTwN-9K{E| zrAs=BUnT1(#`Y8km(@0uYHJsF!ZX%6-3VWz@^ur9ZfiBmVI^+!omk3B+`=W=!Agv; z58J3LFT%VmAMpYlCnxgYmrO@vQWc*vsQ27XD!;{BCMK0jF4HcH9GFe}S4TmVPOi90xr z>1af%6L?~guw=XH3HiBryToL2HmqzVlW%c}0<03jHQXcu_0mE%Q^iL{KWY9OrfX0SSn-&vcnFm z@fTl4%4+V2yz%ioEgmn!!;u?=V8~X765NAU#tQ;{LJRF5GC8E@LNGMbChHt@> zresmFret(JThb3%y%C&S@i@%M zDm0J5F>;~~?qE6^kLoy{UN|V(s(LQ+2;M3&i984^TS??TE|HwEm?(;|gYSP?PhuL0 zf5Y*h@|_Yg5^l=>#M>rPeh*eoo$^#=92}%KJUce&^_j#-+%ni#ve+)8_un=K>*DPb zY0rk0BWQb6b!7}hDe#a`#^7q-X)BGvX~}M!m@K}t(9tcvcCS4T>4zt*Gp`WNQSK>a zGqtmmnjXVm|ATY&&qHWc$>9>RzOzfYgaurp9bCe4zwB`)%uHTK>Pg7yaIl=%gC$Hy z10$b==;&ng$~T;XH&4tlUxSsc9P?E!k(_S`t%z%3Gfd*GtXnZn#82ViP^p_M;@Uv$ z8uMekBSii`fR!WodlU#&V?-kHkWe+I+jk(c#+;sPjTy7BlwGRdeSW}3fK6EEY^xsG zvb#^wXDxp@3d=uyNvOi|cP`Nmg{6y+*+?y`or99H3d$@dF%qt|lj&$cs^asH0+m%r zR>GSlCX#8evXw|CbBW{%$s}LR=c>k4))T7-9n1LC}#1DmjT?K9MQyI|~uH%{cd zJ*=EM=V|H|&c(VCpY_pjP^hfMK_bQgY~BUD14Q17VC4wj9@SkL1W^z?B$Pq;t8ZD7 z24Tx&H|34Z!>|3-`)||!2xdY({q93pId$5h*Z%4eGl*{%pZF#%BW}L-S095-eIvXN z#A|#5SUG~aN7YxxL6is&31u9<=R19+ao8$Z<1k?-cI5tIzI0sHmadENjCB^0>b_0a z7n+@OoeA|&D@hKUkoTQN$|mHv#ByvxYfiduz6&4}ho-Cip+7sfCz~G{t{%~pL+HPO z^tpUb%jEkrrQULXDOXrDOfaIpgQ&Gq$rSpB2@7JrZRCr6>^qy))`f~Sz>fYHDCT-w zIgG&)C*FMF&^Jys{jG-yN0<3FQ0~d(v%TGdck3>^GLKUW^>eigyLHp4TwGYGUwN&g zT^1NxH;kHoeHaT`mZmEGrEIysm}i$>uJw(u*~_oO(5e6Du)0+{^?z9Yo-2RPlfUQ7 z-wWjLh4S|z`FpYay+rvQd zF4l*b>$Z3BVZ{H4!0}8+GdFT)7%$$^>Z&Kax8ki5efUpdWy^;rO?He8_Rnk-F~PnG z2g2!p0~@UPRzR&bSX^Jj8zpjm1y)X->qO=JjO%ulb7SLOnMsVq`iYHK?D$iCw<%A@ z+a^+;0xPFZd3@b@8;p00&v<7z8q`Zz9D!EvxlMQnyk#Qc&%?^86Yk>oJqF%Ve7r?C z6jZ$8p}4qRvvPDEZz}cA~oFGyq>7AMhn`Jg9(0j#hoQuiy*uwuzL_gOyXK z+{JJC4Zx4Z2mA;e3Myc61&fsm>k57lZvqW1FkdOrkaBN?gIJ@AehE0^T-}^8fz-qdcMU zV9$WOReZ>sDA6scHvMdH|%)EFqyx0-srl`crM;Fk@3c`a_U#| z^hTiMb5#R%CO+yT;iym(wm6B`9Dz;zaJ&aZ;$Mc9BZzx!yiY@PDj-CZ9XeAJ_5a9-nr*!Kjh zGKrD6C$Kq(-}$Kb-=;kiZ=Xne2CSSq?a(_P^@th7_li$^cQ`K8E8BeMqdo?k`Yw1M zh}3t4l_RKom_FqjMTzi`P{!dt-()3?!=1?*hpygSUuIw+qxpu@;o0h(YJ{VTe0@W` z*IJ2kn8{OornBCQ5(7C2AG!R8m@!G5` zPI7>1b)grIkrQ=rAk)!!)ZcKa%`MrgG6@;HRbt^d5>~d7$l+WfIg=pIK6daOW<81N z5YB?*LFFr+Gzy2nFGq{=H}STKl+T2fQ>Pp{``AJHp7^Bif@4A@ZJvGXrhNzAK9TmV zuyO=#kE*VWfhYwY63Q5C>pKu>41VWzdW7#2h;h3V3$>jh75(Ulj*HNw@ySEnEf%gi1JkAZY~W#dzaH&Sh9R zbq$Sp@TcuwG$y-eUfDI5yGD&+Y11p`-Sf4u5qH-#s9E z8vGUS5OEs(8CH&%1|Bs+l^KyuJS0?^x!89gvdsK_bVo;II*Xj+-Y-dX<;wPVF}Az} zox09>*TTJy^FOV*0lL>h+clD#h-6)e_2wD}I}KbDxBv#i?uiFW-RoO07g+KoRsx7J&& zA~{UL+r9*pNqCD(M4E);YRDKiV8b6wzZ3-|uM~CjIfY4JHpfCuVWv;;y4o7 zqxtt2d>?v=K5MhqkwfPB&Igr4_TdtdIV8awjV?ZBBaKvGQdSx{8V-^>jU2^vG$8V! zmq2ADk^-emH2?vGB+I;90!TVvn14P~rz{(N4J*vAh2%;c(NT{2OJ$(lv4Z?=W zzIi=!s8BAJD%swS?sB$ofSuja(LInWXxn5aU4~{U=d`Q#wczPjz5Dgv^UiCP%3&SG zvjJh|T23})9lE$gJ6MMX!Egu+C$Sk!(5f?=z%g@9f?y4%qw%S(${&b0LCRjJJCu#^ zUJw(|2C%Y~fY##@$r+0^#EVR>$Qk_Sv!2ED8Hd5~q4Hmw^N${jeV=*=-WTF5I0#lw zeHP4Cj}i$p;f(k*;WRi#)S0lZ@o3aF9(y*NjQ58)8%~6kBW8n#qfn+qlo}5SWlBc- z4n&%gQnITSqkD4;7it#d5jFrUfjQ?~3*YYMUDgVl!+1RC%Rw2B`?y3q7>~}{kc~p~ zHq1$0F>2-WEjUI_)WLI1N8=&i?&hFmtIAlsj<-roBCo>ARuXxMOC)D3PqyyW2r}_xPlDfn!1?ZNA;@roAKHK9Tlz zuyO=#kE*VWfhYwY63Q6-!Z$fdWAMj>jlsf!%u>x5oB~f%=NxOHG2mU+3X#JYe9d=4 zDP!eVX+IGw2rIC*gQd`G$>woATp$+eFHb!OE#q4jBUn=@qYtP5NUvCREaurV zFWx?p_P=4}2-+T1T^R#W3Opo~G5Ct_K%_A!CuqvT8>L4w4ggus_q$fXICg0+no5nS&$o zW{HX9a9G(&Bwywd$(aMW&%s6bEY_8n?%X>2Z+3X3M)tO_Nea4Ac%tCA)ySyHogOq2BAOMeGa2D=B|d1 z*Z{Dc3xI{bHgU;HJ4RsrHJJovp`56L ziA+c1Ay*DKDA}qq2dm+&5|hX*SlLPrD+dnJ$HXVS1da)nw7GKNrd`3?C(=F|R*sv{=vfA;EC#-Wz|EPZg}j=vNH`b`R1=zi9a`2c2+Aw4pVT8 z?_^S@;ASq-4yItN7_?yvUVs@{W#hMSl$@A@hnbE>q&k6bWRkFCyUG|mgSSgeB2U4} zRuXxFOC)CuCX0=KPR8S|ifs)#nZ!s~Kbx^Q#3kH&du!S#ymcb!4p=#L($m#OMJMg8 z&4Z~@FoUNLIr;9NLHPSnB4 zOh@A(R}MHR*{U)KXXC9BlgPJVWh;qPxkPdXL9QG)_&&gT5_9F?UN|09zTuSvH|4wW zwuzMQgq2gL99lVWkbXBl>386mP)VCB2X5ML;o%XNn}qhk+?B% z@I8_BB&IPq9*zfjKLh=fz*02v>F7X6>^K0&0RQD=&9t2g-m{K?SHcUk=atN)-U#dgpOuvdRW_^e50@Iz#Cj*Id)*1 zqZ`Mtp2Mu*{Ndni_S1h$a9zz9e*a`PnJ!`fblmWq;KgnEzkgZ$yefWP6F+Z=pP#Tl zKYw^mHPbXsp*S>s1{3&f3w%HQ?n?*{UBj{MzF{%$0HHnlRgXZoRaAVtl&C!;zrU9Vh74 zZW3ki)H?C8c&kLROJU`9AZxu;a8rD;H^7lV$+FvXi|loHt3vR+L}T4)A8wUfya4luE6fF*kbwc=~eblz`~(YZaC6Y)q8GVyPM)I z6A6C`R!;reouaL58kiTv$J`BvgnAK+&ueMjw^<*7H&0}JD6E`1Yu9Oz--?g83P*y9 zSmbH<$#GxDTP2b`6;@82>^QlsZ(P53#)o?w91JSliQHq=pGR1A_!hijBHx=~<<$AQ zwobnlAMWdLB&cx3mFwPS`6}Kjk?c#ba_VHqu%}tZRXg+A*w%RllW2`~7M~`oJ%Y2Y z*r|ASAk+(2oU{|_yv=z#ym2Du&%w&6bMAB;zc&~k z@BkbMDqxYB-G}Z4c&kLReXw%sWV`qibmQ8+G(Osk;80M}j^~a_JovY=^Z9tQM7G1Q za_Vfy*EcU1cpr_A_aQhMRJ`I@QN8DOUcMi1nMn8^SUGjV&aX9o5FhV9;80NUimNx` zt8RbCnew$H_9`!pO0DqC^g z@|~p?*(dQR_u;7*p9g_wwYRyNwmgHiR)JG>b2;83^S+_>HZg1PMz+A z#?E8|@D}j_Z`v}zV*gE}>-N3wr|_nUj5mapQ)fI*ZVWdFcgH7u1RM-%dKULX^&Rcj zHGC-EFp=-UuyX2rI~{LTSL4I|IvfcqTv2=7?^2(Nw@M^?60Dp$*=c3{eF)4#a~J>D8C+`@~dztsFcO3qtnm|!jhmRW;r+$19o}A94(ZVc;?8_yVbM{4IFR{6nS%zRv@`_O}u$AB#IZ+20rlY^Ww!CGQBHk)7iR58r zD~aT|MB+zbIhN6`Vm*oZg5u?HJg9ubM`5`a(=Nf=CQ`l-R!*IA=qM})>Br-fehiKY zm9%*jmYen?c>6@!55me3v^}c2G6td)ct|K?u$S*Zq%pWDSz|Cxz2+8n2a~^tW+mrD zOXl#RCKh1=8w=*4<tMcJmkwk*@pYML_639*Yf0FU{01}_!Ar> zC+gt0Oh@A(57~AvPriY-N=zbugq5u%@-ml5&Me5UZ`2}X_=MGNK(9lK?<^*PS!XKW z@XCUl@=AEyM9R}(<0mxLx@iJDY_a%_72f9UL|%>EK+ZqminL7m#ZNfhi^6H)&ktSsl@6OFhe&3KBs@wPd4-58tmXeJT%fX$~0m9sd* zN9(@LdIh|BBJ2N+6l+!0o5x0Gh6xLX^7(9~yOtod%7AMHYU&;5JEF~bkb{}YI)t(1 zp#_x^tCE^c*aM!j&iPi|Bc@GgbWW>4b*~Vp!m}$pLuJlT6=o+9|7m+SKC&Udt|7j) zF(w9mrZC(`~VteiUSl~j3+Abx**;`hLDp%R~E zJX)xa!KQu}-UlM}J7DDq>K?VdR+z=@jVKWw63QNI?>i7_4-QK9$-;y}Z?-Tr!0sz6 z`d7L}eILzH&gn+@>PJs0o2h-F%ekZw{#;l656%tuSu0Wwil0EWM4Z(_sA+>knqxE!I!KQK7OH<-{C;P5f7Q4~WDcg_Tn$J~Lz> zqNsQLAU5@n;K)#^uWFiz#wcv^AL6|rlK%i!jv(*h0+f*u<-$Wk8HrV#n8$Q99#wJVkCN4AdB z3${M_^JE`|jITcmspz|~u4Kc&43BeyRgY+TL*o4qg!NdPx{g$GnJ)~LN-pLSZIDVP z$fpODijhw4hf!JSudbeb7=bhRe?C6{&%)uM@?Xn%0AdWq zo&#IsT_MhaEn($|IpARwl-Cfv=Pjaz&ZS*;grso~{hmm1XSWl3`x$HMd0Iq6!u zdRc0^60y{GRw;im#3dsAMRMh)v3glDQp{yAD$7`049CeyJ2->s=*B`{y)4-&Sk>L7e7pGyQjE*0pJgk)Q5ga5Z(%@~TqXCi6PsJpX&8ij5 z5AkM+>EZ)e*-97x;1bD|gh}EK#6@_M_=GoN5+iZnVG|aw42C*ymxT@R#)+KQgOyX~ zJWbtgxL6++pY^39 z+-*_3V_GqCScEV7P8($r_Tv)mU=i3``6Y83<)(Z&-Zqi)C9rbpltbI1 z9HgI&Px^5$<$BWQcnZdLw8De#a`<$qt_fynZIL$c+6Vt=OK z-V!zKCum}F&Nae&TllLMwN6vFLrrGmz>Kq;S;`?y;1ccN5GI92Zro#R1@n^QRI3P^ z!=Z8_4`wqR-6)8~=}_nGTZ_4PrIcH$J-xnyjR%{&&Y4&3bw0fgA1#8H7uI*#^?J{>Z05KPz0{YEDl!*wiFPP5 zHFo;=jl^>w%+4w`zkmbg#2@^C>1c4OGx`2IYY2AI`8nPNV$!)CR<@GP&$vW#1!q<9 z;MfYALH=*7Ti8`=k^c)E94h%WLOXA*f!O^2gm;9<{|#6p}zA=xsHRmL_4^SsrulJr1MpnnpJqd0!PaU zK3K$bbju+Y&-DJ=d1e{jJ~7WMhLx>6Q|1!M`Hj_7z0u=laKDlDE2iPN9*z!``fNSxd5NE*EuyVu<@F)|i(uic@A)zYGfxZKgmFBf%mrvJTl*yH|rH<|e*>bsd z$J?7N3bdeax0sza}FiFT+%Yb`GnMs}Kf z3rf_gN)wpGNLb+ySpfB_v<}Zs%NvcIp~m99A!evCu(Fk*R^$@N)u=hDMlCOj#+=xe z^%A?vtvRs`94lv{2<$nru~D&>H!gd2d>Zc;advD0D@V)@kK&{1mqPug+_bdmJ|X`|*Ad>E8n@r%rzj2$%4sK(LHg+T7 z911g&BURgv4u*r}#2)O%bTly4>ET;piB2}JHY^{AH&4tl`@_msj`;$YNX}=hsw&O$ zsGrKZ71L;(1P6yoT|5tt7>HeCPQW`t!BKLO4t~RQG$PfByq?r)S(W4!ykTM{c@b8&GRX_R5-O93xf3gs+!?1A?D(Ar zlig7;x|}mUYqG(uBa=pAza>}em^M2d`C>iR*_bwT9WD`>FA_X_r?bYw$QFCUG^}i~ z2OJ}Jw%D5KXgum~$<;tvsbW{WRbr~x30AgJ#r9kxxl&MnOU~xIg!Kd~+7{mm91kjA z?JYSc<)iVoiIfYla_W@BZ^_xDzZ0MIm2ga`q^-B)oU|{)+b7b#7*>v;?NPf``4^?Y zLqgq1tmQipc_T4B*~es~d(09M&&C0i~|;3lS{5s@p5by}7?xD#)f zm`QGfm90#2i?4*rBx3Hw$|UE-=>=P1{5aW6GA_F;+tHoREy`-SWQE&N|LUA!)x(?K zXW);*S&v1BwW;e!CjawAp_0jexI|Kj z{@b+o!P_U&-V;_%o%TvVPz}1{Dw;; zXCUMu;3{4Q>q&RSwh-f)#7J00n|1gQa5Vy(co*ISBJt6%a_YoGhk&b?8Pq=)pZaIu z$WX6v^AK<~3Y+{^crS?LH;0uY$a}Z|Wh6wo@Q_eO;wQdIOB#vuliesexs+j_L>}nq zt_<}o%IY62Tn0~D=bUTFW_;1@dat#bq#AgK>Jn);BLsc71b{ zxr5?&tpC_LigSh$K8EVMgQC`BZSFd9%5%OHR8D!COGM_B1eZ3)*!w5`2UD_A$$#Jw zIY9@1Vmca*>R7R=$uP-A)%J;h;f)d#$osIel|bI*63G>d335Tu+8wj;o#-`a(VfF2 zM&d@qrYpX3+vvK@_>*|kM8=E6@!e}I)!ryY9g zS&x`Oe5IeqCO(ZxjD$C|uWa+FXMGGd^~rc2h}0**$`RB(s=hJ~qC|K|DC6)=-{~uj z!?flDI8*5x$yrC8krj z0uBh3u=oyDsPlHgxD;=k$oV2zId#s{)NQ$o^%L<~{|XKYmGw%-&Zvm%`cb?CMBWd< z$`QOhs=G1>q9AxkD1)%K??9wM_;j*QGsg^C2boT}3r$MSS=K^>Ao{G;BZonl$i{&= zYB{BpK^Vs++QK04F&hS93z(D~p*lxwQ#eRY*uh#%M*|`afu^x0tWARu z!TVIa14P~@!O9W5J*vAh2%;c(NGOBQ={pc<5H3mBAk_T9*4lH2U$PNkNy$0OT4)eN zpS61AFbEI(l28WW0WQ%N27!;+FbIEzNy&>w8H7K>L2|+lo@Y855NQwuD%q?u2yf!e z5);X5u(Fj%Uf~jn8w3~O)$c~HMT_t%Oak-CRKj6{5W#t6ym2Du>9BI@oI?h|#d^>9 ztapQhLS=0lgb3a{;~gOK-T_vQ;O$Y}l|c{%!9zkBgnNAxlr#uCC;W(^R2(Yk?^K-z zPgLhDtM2N25j&q9$QCL~*tf(s%`ILwci~W>r;;nO17_yd{%2PG>$#$5TGesbfRlYE zj;LQ@##g(wKl`byh z63N>D2jOQ~S1?O%5&jJv5GrBK2Dmx@AKo~T^RHp$)H#Q3fP?kuU&Lm;0+SdC%V%HB zmJM+8{vS-GO62_?SUG~XM-5jtKokTI31tJ0_Z^6|0sl+({pzm4Vt(0TcFNl+!?mO7 zf{WRabipq0RCVT*mYnWX@2^&k9QI&G_*#(@O4)<$xI{bHgK=`yhCx^ebF#`u4;&^Z z>fnn^M?)fycdFx(4J(Uq6y7i~mCT2gtyFRtmq^Yc%uvsu-K5W99g1lbz72pJBz`QcoI3H)xjrgp2K67sr+yP087g)2Tpu+GoBR!UFNox?gOwx5d(?Vm z7eu-6kWhCZ8~YAK-ho_`>_!*%*|NTZcJJ{wHUKO|IcHim{%6Zr$FySPun2$gjkdA~ zf8rADU=i47%lZmN>X>maO2aA`Q<(&2qntp4k6EBJ9*xhIF;KEqwLmoqZ2{1 zs_5bp$=QO&XUi{d(>`K{zWP9kWl6S4c~$!%m1^9s$KX&o!3TFR9SuuW?1%_;-gXU-;EfYA%!9D9m0|AV63MxS8R9L}P{0h@ z|79JDX&(L!hlNU8Jl3*?U^D+G-UTA__h9AJna@&>GNZX~cwcPp>obXwxGAu&^3{yT znW16W?AOJ+L1aH0R*qorVF#3>5Jkg7LOF`7eJ8PW6xSubpukRB3~z_&hi9uZ#kBB4 zsO22t9M7!pgi;n_0hee83&EBetRn!=ggIH>;dD4gPSn8?rlWg@aXhPVP_k9E)Nl&k zDlv(C4OX_2$XB^Ua;BlN)L`+wmGva1Tlgs)4=P`Msljz#>yPoaiIjf;E2mCbTWYXK zzZReLD{xGxr0t~!7ws4E_KCD#fR!U?dsKC03`8mLkWj{;+jk(+7-W*&m@uhQV(+YU zbob^K=X&)|7_N6enwgxFt-6nMtwFsS)9lR|-ottawff^&Qdoy|8gtNc9w|St7MExT zKQK8wbmJ~_515V|sCu1tS2$Kqz`>SGN8?hR#(hD!_x4T3PI&9YT(Ui^Y~_+|xkPgQ zU?p)!9*&s7yTW=D(pq<;ad96{fs_$&V)N{5Gp@(-)~4n+Eg?bI6TiK+QB$XXpGyaBBLHaxmd2DgGpcx%ZWC4 zheb<+Qr{Qdm{785wWRP7%!vA?-iNTVl|DWY^k?qf(XnCet+P47+3dBm{#$}`*w6go zV2!AMu};*#7(Y8g>O7`cohHg{6zR?4lis9dq{W+=#sKVcu@T+@V!7A=R!*Jw%E~N6 zF`plw`C)Kis8{zYhEr$^!sdPm-U%Z2gJ9(d?jAK>*#uE2JS3D&c-A*zNt^IOvO5~a zRr*WWa(^+eAI@rnC-mS3rlUcT2BOh*JF(n`H%&||x4_C)V!4@1B)8@u4MZbc2I;q1cQ6ZY zk$wvf3YB!&Kr{wm^L`!g0Fn2ruyX3WLk6M|GK2Z555{IblSz!k?SXxDn+BpW2%Gy1 zyc0z3Q(@%@?jF@&83<7*JS3EXILCJaO9SyzvIb&w+58Uam*KhUOfIe5z(DyB>6d&b zl(G$9KhnrzSpsy#PkW*!118+)iy9VDPM)RO{9D|teiUK@CF8(^waT4KMBW#O4{1M z;H3RH-ae7`W3X}rZI7z1jDaWx9umqJ?B_cWX$+o9b_2txa!!9!a;1mReB_*B)t#Md z3iNFYwSH;E#<6BFjrA2X%W~4F;y;;7v_tV9!$xe>{?EWH%HNi zP+6NNeMj)#1MdKl_pY#V1aFTTu55rP2p$s320Y}Oprj4hEZMvN@wE@gm-|b(!XnKJ zRN>j`oNCn`=OVyJY%Bkhwmq^Yu$P*V;ybRVau>N3P-D3S)I4V@u;S(3t z2yEid;5{G`e+pJkop|WPMHMrH`nX48Q}1LFBjFeAE8IMBQH{bTKML;!k$eZN96{d0 z1t=pS%7ur7G7=~GPGM;z_DuFYhB4Wtg9Dpu9%4^pww}Ku-^YES__D^z7UfI#%eY{iW5Vx?8BS_b?V_OW8tCR(|eeH)A3-@4c8v)oDG&fkAfqQ}~d4eQ4Qr@SXl;UTs~K>bhF?L$k1fCQgSXrE54}+DGwGLwo*}hCAw^%K@J&2>LdJM(4CzRQC;mDnOmA!(nGlodkiZG^4mgJ2-^#^bPU3G!)q7sQ>rjN&$6F@mkab~YD~HVH63Kaksp9RydbAAA zhqB(pEExyGF`;r6Th;Xb+q4hF+b7cAA68DC_DbsI#|Yx5#wUIf92Y8aaXyAU2Alc` zcpr$=kAsyXsC(4*T45HqIif^(NGN;I;X4p%5B@tk*_{gcV&CSQX)6m4un}O{$vM$t zuPlh3X+_9k4DR)fw=xEIbBT5^23>s2Mzweo=3%*l*We&Ikp{nEIvNnUY9LU_W|bv) z1#gy^E?$I{t#t7Mmq^YM$mIeT;gx@hUU3%T=}ZFi$5g`M<$?&#Q}D)#oF~G{sdEl3 z7r0pO9G~?La8RhM&EdSUG~XM-5jtKokTI31tKB^i5FG27EEuRf5qA z2aFdLPK4*FbCSjWq!aI$R&yLC;CSC@qfEfDT%sLJKxb{ph6nf#Ov9=WSHdxJ0u8>+ zbTl6FlTI9zY*kr+%kWl-sp4W-*-8}`aEatBfP78S!T0}IPcYAI@%=R%4=UgAYl?2l zzr@=nQhpd#PMvb-HAM&M|HUW$A2=pd(&lT5ZrcCC+b7a~A6AZ_?NPf``4^?YLqe7R zrM?4^<^M0qo?kF(u((891K92{G#@#qSnSsnYyHxSjidN~j`bD0^^ucC75~q0iFPRd zW7vp|+J6+x!m17P;Sf1-2KzD{4TpS9v4%-Ds!IQ1c%#HLaR{tzrHO;ML~^BHzNTo? z{RZnu%*uZT91beo@N0@r#;4&;6B(ZjE2qvl^qQj0`S$pne+Gwy%GrEP(aHKJc=JTo zKZ2DbSbNlLRrW;@@Q_ete=FaC$g;m?vUmNX*me-D?EjnfA4^8g85XR zp&{7JKZeOH|C1Q%lKn5NoI3N+XPQGnGq`UNpZlgQ<8FSYIW!EL{ipD55U=+QVdV(+ z9z|dI22nITB$RKs(RUI{->^ekz9Cc4zm#w^JZqhWWyE|#t$$j9a`=XV?<`VDXc3oa zE8oCIZe)~Un2qHd&Vobb#2cKzbTll6Z>V9DjjQ#9Z{m#;^T?U7vXw_p=Mt&;2AlRh ztV1!^74Cw=LZ$8U4Nm5F;9VdxzZF(aow>s|*xdgbpZlNT&``NY`35KZH}P%|*}n!W zN3i!O`pP$mqTwN-d_%wQK%{RNo2+l>>MLb4>?L+>sbQ1H(M08(ZPndlE;ZEqrqv~f zUD$~A7rUF1lSkQw4Y))**oAR&)P_~qA7&!Qs2(|d0S=QBYw&rdqamqIly0BJvZ;~#pnH9I4o4&!V+3Tu$g}c?*ftem9TOIbB~&?Y=I~a9umqHtmiurX$wA1 zcK5;Po?^LQ^8|0P0brTQIn83fbHF>MRUd~Tc-=SJ$`HKDCECFdbk>G!xPggJpfu!l zq1?bYCV`nIC(z(uEKnK``OX0cC0kWipc8MEm?}oW%2ulA;1bDM0r}2>gYRcqPq3@a z;=45*4=UgAI|pvcTjFgKDQ^ZVr%pNa&VhsU!uX_n;FwTJo9`UBX&;5RPozB`R*s}&#H{@9!r`FO4R1blGJXedn#lNVSUGjZq0NUj=TH1!Y|d*liIH&d_El_d zK6J8P18<(ldR16Cg0)A@R%Krl0S^gP_Al|Bw6g3Up6p%!c(!RI)7#6onr@+0{|r1= zoe8D7SIp-Dq3&r_$6*4F^qoS=1RTyK+Q9_WHib$qh8H*)CL^yDwGMD194RNQ&JX_d+0 z7gl3k#=NwgL&`7A;u7uQ7a9XMvdNAx897Yl7q){V<%Ao2is@)n>VBcocRPoC4sV;7 zLp}p5TRCJaE|I)nXvE84J;3@C(=P;YRH&>qzt9+gO}r290g-qwteiUWuwQ7z%%FZz zeCp@Jk)cwz{6b?CHu+(^7ew-B!O9WjJ&L{Z3!+?jNGQLslJ7vIUpOw=rwXHU1DQU} zDEyWU083HMnHGCf0q>Yrj2sr>8Q*9ti|`beXa|eXSsSvEI{pjOu*|`~;TSoA25&MQ zjfdP+z(L7Y)suyP;;j->#e1-_l`8(mC6coRa#MkW?}ksISDVFmeI|j~WGdhArUEzR zb@8@|lxM@rsZ$PZDsYfKI6mnE;h0cKo0|&UwD-r`C(`}`tQMoH|7%t*+t@_!P&kuNjZXVafxf;vFIK9|tQ(@b@qQ%14L-;vu1YMAdg9OCRygWPOA>B57$+e{b;sc-}e_&WIg# zQ0t#osvN5d^L%HK@(}xQiFWW1jU$rS$c=hZf!SE~G4#O~>br^Hja{4I4(8VR%!7z-k58H4Ho557% zAk{vFP2e~=!3JwE9gT_n+H$?;wpG{&Z<&}nHh`6_)Uh6yNX{zAuPxW3WpJL)dK1$p z90tdP$~pYC<$C{Z+K1rn6KNj=E2mC7^tI)B#0=tR#3z0l92Y8a^J~lXG1$~k#`{2| zej=>wn48{;Ev09bNz&a>FN6L`n866CN2 z5Bf%1*@FAHL_64m&f1WT#PK#v!?FZ#!7*|I4W45<8V|WUfrFB*s+EJ+@m7hc;#FAL zN)<10iRA2n+@0XyyXrIO)n@UX$s{mqOywKio#3WC18Gf6;@9h813Fn|aMA_$_0qAZFCf+DM+s3?LUo9u!htKz#|Ro%Dh zo?AWVt6Nidc>m1v<@wcFetqt_OWl&gzdIB}kdVXw-BF8^H~e3a?5@IS`WnNTFsE9` zYI_?VN^mU;3^K?i0LD5#D;>b~a6ZTgaV;DqZA$Y4LMM=r+5~4? z(oL23SlI$xjX#!IF0O=?Nx8V(kw~ruSjFA9*Jb#R!W69ICK>)c91w1XSMwb@2+8xK z_`{ibei&A^p6AJOk6xGSm7Xxp_5a|YaC5zea>yVg-~Yi4VCMTnSUDu$5yo)Y2Dk%4 z1PR#&d@-scUK{XnvTeY`rMc>|TqWC(ndM?_SecZIH5`fL+5>O-K$qbIgellBj%0Wd z91w1X{mTa-dEOU)I5W?C!^+n4>{~w2<@yBkTrY!z!p*h1d=QfFDsBKX-^atsA^DCl zhRZg<9S|Z&$Tr~JsKb)i2E3f?A%fAJg_5#v@KYF6EoH`SfNNP`)X}s7w?+j=wgEqO zB!)#B;P|Yx0Z+mCAcMqT;2>#Jn!jJ@1QO!40dA_i$I3R~Pxxb*<>GNznUssi9Err+ z09}U1|HZfs7$YR&X!K}?{cS)*gD-Wm=H_t&hp0U`O` z3O9h6?=4~FkbFlN!(|)b4hRt>WE=3qs0GSv1NKh14G)~ByCFbX9%4@LcBJ>O_ldp*#=yI zKbBc8z6vXoa#3?65^n=^8UD2}#c(y?9ylP}4Ex)FkUZaoKb)E8pTo-5^XzK_bh-YQ zd9MEn2Zft!wG9Z#_v^R;%zVEBD~IGe!Wb^w0Czx$AR*g;LR3e*Hel6c+klB;OQ0=P zEw!bJeZlW3&3h89OTY9x!q=@Y2NF>)BcwbbI@ltYq zs<6kfLpT|Z3OCpO8V@4=DbW?j7@S$aV; ze?4vmGxOKN$|0GLFxtz8!5uClNXUj^PE<#{hT*@-o<0<(2y(^Fz`DU3!UL>EX;Cv? zH*hTr3`d$K;nk?|mQBJx9Esu3B#2W4A{$EeSnaQ9K1hGCijcrMDQ!yg{}GW2B&2zY zpbnAuSh;R60e>vBT#SX4Nx2y1NF>)9G*1!G4DTvT!G3Wh!#lwN;bz#sZs7hTNuIaI zAI{A4Hn6hwJp0xSbid}jd9J(Qpm1}ot{a5py8}0XneQ~L9Fp${W4LSs+yNniglq#| zh&n8JZNQ&LwY7zgNTEe*PJY^=wzf^{-$j~}zhHV>TlcN`3&o#f2J*AQ{^4Tr@3k?x ziu2m3|Mi3K!lY_3t1UEq8PPK>Fz#p?f$u~`M>YcAb|gZ>J|{Hp5yC!UW=Nu(e2jCQ zRyu));f#=R;sH2H+N9=h7dnBA)K+$0VDgehhKT#{=Q2yiy|6MV8FxDp$z^v{_kBcd zjz1K(81@41!4cu+c(U(>#IQ`igFl^_>9=5I>zSS+-$>MEd*i2!v%R5^h@-cszi4+o zNcDiW`7?0~m>HiAD~Dt}!dNcb0e4u4AR*gUowF9RmyNxhjY#6zp{|&4RWMNvh zg{8KiVMidX3k*S;reJAQfMipUawLXBQ?PQ=Z>29d2hNN4Gm$$8XTpKfrZ!&{I)S9r zR&~aVrs=eNoQ6M|Sw6l5E0gl^MMomJ)?l*R8Z^VDWcn6ij$wCjGaM9drrp`2;sDL} zO}GKfe19KSww~`bWfz{(+ck1)o|Ho+Yz zB1p(K;qy@)@!EtFlYIqI%u+jZ#auNT=n`fk-Cw*&etqsQm4tVz)Yx29Ld44w&5?E`@&9DD{ zV||u4!Jo~{@@!bydX|0n8*4KCIrB^(3CDz+Y4v_%eYOw7pU=$pA+T~twj+$)a`<gqtl2b%TOa2uFeUj?kHS&mW?MaS7?$yeaSNCke*jhv$#{gZT($%5un<8) zwgdY|b;N52R!MfVU~Er%d9Fvfv|#eHXl2rZR@=w$z+uC-!0@AK2v!yLVx6)Fk8B85 zb|i*FLonX+TImS3fpg;dD3=Q6!C}&-H9u461X5C)=o~g|q|1A-Yzf-&2Q$mY=CCp; z8*?0qChmEcye_Yo$MU3(kr61Cjl~8*rGkY0W<+bOI^y`h!Ngya&tv;8py=%(C$h zSecZK7aWPi`vZNJr~e)O<&i9}CnT_DnVV&Qe-N7MweiO@bG-(vY(3Y${y?AaMdtb5 z7Y++I-)dVBn)AJJ6PP*Q6IKq%d4w@twgv9s5J5t=1;2_~sJyn|nq-#^MrE?OLZB!3 zGEAx#GvhOcj$wh(N7E3T6%`xV5S;Ev42OnbOx1oj^Xk zGlov0yr;@m;5+zJnWf^}uretXS2+^NwF2H5Lrs4FA}ql=aFX9Y!SUec*MG)PpXJB# zXEU?>7_4kP%f2&)noN&*&N$N}g+v@3AN?h(XAJe(Zo{9?%=Uld%65dYTMqy3P!K^v z4*#b_b;KL~uTFMVp#DmHE|V^_rIc?VEre;+78T>`jy?P8<^{$cO)szjrqin!vKQFh zkr)oWz(nb|(h+pSnIR)a7LJrQx%tC{P9Q7Zb;r_ny0W+we>Ss*q+n$-Vtn3_NUksN zt~-|TQgVHfu*a}FxB!j{H`o5_j->}Q<6p%sU}n4qD_hUF@490dGbQWym}mViI5OO< ztJfV%FKFg}j$6UZ{7+%!kjzII>}9{;4i^z5WWTUWR7bpi;r?U~9gfN_?+w0^IO2J< zL}^JgUM_G93k*h@7U7eq(UvX3$Bx8sXc5NLT~WOLxd%U4Z(qMJhVU9Jk76vxj>)g#rU(C zS>6v;ww`6*a)Bn(C!1&bL^vkgOsmTU`fM-9pU=#8AFLdb?FeJH9RA&*AcBM({y&I1 zAbG?8cM{$$C}b;@z;3~vFs53@jE8^6u)uJm8UBA36&pGH-{wdRi{ZcSvNHTX3unXo zUC6ToPs1_NCN%%B&7C3oy*(Tg?k`y#{`J}327f*?+w)-M zkZea7yXElj4h0b;1Yw5iRXBXj~u@$NNlnofIyi}6P@ z>&Jz#GN~V5b0m`M3A}rao8eM2{eUpXa9!X&I4Imq`|mYwIzaP%FKz%c-*>~x*7NPV z*SHxnCFk#%=lmTwFx;H0_Zl~ypm~1_H-ee>H(=$Eyhj-1WuM><6cHq3pU@lC5wA~p zGTCK44Z?~;E-^$?0?sw@zW%^{u2IpX0E>oD_hUC?_C4^uli>5eBT6zg`02nU4zh^ ze;+r2ne*?$${{(AFs944z#SYSNXWKei>QuxZNYxYwgn@z<=~f+-xl^`g-J_UZGqwS z1a-RtV~?gCcr$9OWjpYiBQYG>fziTaWsq3oB{Ub_k3zNrlZ6DqIsT=gG0j2v)k$g%%{2T#vjkjbrx0*$#sM=TMql~AP_-9 z4*M@h9g4hR|L+M8`{Iab;LN~{Fr-?-jEDWYU4d~%Gwk0G6&gA0U*|{+i(y}QtPJ~) z!MPvO`KQ7d!&cx{I3(OG`!@kXbNyrd@yuNR5LULHYu_e-KHo2y z=lgj$EZlsnn*gCXe-<}^ne(S%<&d057}I52;0_KEBxGCgg{Y2rZNVzZo*`VNvrsCP z+fv@m)MpNyI&jiJ{<7(9ZTXE}MoW~Ix7uRE?EuHZhJk_MNYf!~AdJTPW{)G;A*}C6 z42KS3Rln;>o3J089nVqOCM<+wrA=^t8=(`(OU=FI-ful!GFX5=omoqEhm}b!*~O7a zu2)#YU2gYBOv!hju*k4sD8q5#=G*=74fTO$y@cDq%z6P53ZU-~_m%_>+*^e;z%l^R~IwDBO{$W~FN4);wie#4+MrKOEHxU0W z?8oYq7B%DDgt}dUK}pjr{4Hv%WwY>CM`AcM3!{a{%9t_g6*L#5M;IX_uzpIL&iq>< zPJwiIy9xC)c@LG#2%o@tsWHpM$FMRf6Cb!4Uu#iY+ottqc~1TU(Jgo1n!ix|5tp)0 z3;TyzVgE2;W{A|qLb2u@BB0rwXP({mAb)!iBMla>9 z??)k*2JVDIq)li3`$8v>4sY16r^$P$9QJ>PKa^P}ZiAIcnfQq#kz8KAVV`FA4Pgk@ zV3X{=3WtN6UH`DJ&GA3*M>BK$0<3I3$G%~o=6StWjq|*=kcgvsr@vx#*w^NI4gB%U zTu+9TLvkHq%$CExI|xLOki-5!RA{|n|A)z*9URr!QwomzpM@#amJ;I&haAHKBaLR@ zKO!nNa^PR$NDPO8e@xwFW#s=NoDDKItbk*rO=!Mb=mhfNT{z?<%6qCD`up*xGD}4T zRwkvQ*O5qW==bg$)a3WO!V<%=|2uFzxcT*8IHb?=xAA8)vwRh-Y(2}q3x_nB{*!s8 zABSVY&9r*qkUraw;m>Dg`w>_?68a^nR=xi~lG0vD@H}ZCOdSY%0%#mA$}>FXSrK zln73b7n*iQDY+(L6?eB?m+hP|#or}x@y_qtj7ujR7jB|g^L^|%B;6VO;mmY@0ao@{ zOf@5ube<>6y>(r#FBXOw=K4Z7DBN7TH%%!HG}is(&--h*0nB{=AFLdbZ#l|ye@wNN zm-ZD3*=nj@C<3Ddu9cVgO^oW%-Ohh8f7hr)_X(!<6)RbBNnuB}Gu>AZ|4U!4SpSdJ z6}{O&AMqz)9>%d2!rBsDAJLJnrc?Dt&dv3&Xz%PRW~#YTFO3Z6f+4f4zJ;}~A)?AvaF3VL! zVJYXjx<#F-bmuy&fyIp@L|o%2Fo)_EH?oCnPqyfopsO;ze{T0Ibq)3G44|y3G)tl~ zAuG+njznmsN${{_BUkwkdfx|&dcPI;w;N~z{co0?&VIe}-AR7;Nkcl86=QamKb;N5t zu1)sU%PH>MrdMpyx1~D8sf1EF&~;3C6Rl-h0BZ|%T?cPkQ@5>QT3{s8G#ZnHxmbVh zVI&)kiH<~QqmkTrQ%_B*;`3f9FWbVYA;ZjkI9%H7=4T0=Kx%4hI^{+6fL4^bxCP9L zvIVS6D$1r&C1gc$X)>xP<4vp(nTgI9O?=!Jn!J9FbmIHuret;Z$y=lg~#Q~sPH^uVudI? zJ0&~!nb@B$JY{AdZJFU6By)^oo*mm(*lRfLneRvpgYvS9&vB)o91W+1 z6qKXjNa+j8zCtHhP~4*cKI3T#IUIjDvxFQ9E0Yp(P*e$7LR^N7O2}LjD?|y|GTGi` zLbc>HDPqqx(5HMuxDiL6vYWPm47M9wEqVLEA-7n_1^!E-hFkU}1CB&!;Ye^}X62^e zO5L~<&IYL)KZ66MuN&VLI>EZ(-geM5omP$8@JBPN#!p~nQZ;_$NF=u?=6y4}87?K$ zuL^Up-yO;HKj5HnGwuIocGCfx?-y_bnEC!YtZY5szHeqXL#E_>?YE3`zJ`#%`X_GA z)o*4uouGN2j2pqs`>L>VNZun1?Xo*?2Z{(1a&zVUr~uck5Z%GQlI;$rRD1ixqJ~(@ zNcX36h4j)wuuC`sCRdAH#LX39oUqMjT3}q#EMhE)ijiy<4t69$n}y`Yk$P$Z-YZ3A z1)Lf(ko3dh(q=cG6*_^`c$+J#2ehJ8a0{3fr59Ev6{RPtgsdnoO-2>v023=jMVXfD zQPi2eW#`>D-fHRX!a1xP(h^uZIMOV{F*V|P=`B&yB1_H9j>Ir1HPc%JLa91`g%d`q z&Y$7PX>*?cjnD~Jote(gObcgd0s13u46^|J9#$p==+USWvH-b^85N+LOso(EXqRNy zOh>1ST}l_T-rMn18RJ*t9LoaCYMPj}g|%3#?|~yL%NmYEXk|%o#bd0K4W)?e3g?3q zk)7Zm>5IswLMM=r#w&47s=UX_)u`?9$1=;sHn1`&7xNs6uaYie({oDnaKh=X30tk^>B$@YXC*bshUrAo_Q zZU1Of5Z6k_$hwW};~G)3A)AE99Es2-A-Qp6T`yH?5R@_HLpV`nOnDEEnl{(@7llr+ zYnbLvJwmeS86x|LcW^_P_2w;Dnbey%qDshmIsiGj58+#rk=a-11k&TZfve3UsW6A*Rxm5fp|CQkFb74IkQK(I%BaH3HL*fen4^-dFr(^s z{RGc&2nXV5UG~z|6W<%PgS~L;7#2WPQ%Np~8g1FJ3^)>@l_bGsjWKnXmC|u1oDEVs zeg?-#Upl@kbOQPCZY6gTMM}kO_*0ps;wP{&DHT6*B$8`Jy<5pO`F&Mbg8kY^e*Xc- zgPULft>pSFzkolRndQI3%GR^&yOms%>9yZ6&h#2W0_&T&nO1Kl*Jpb&{(NS(SA~^B zvK?XUmcze06hx4a3mWG~#nxNU_$1lkf28`R$q_K6TEuEQ=th5cdY~Kl-G6DXTN4;! zG(-N9sHn&x|6oUAI1Krtg~!T>zXHwx84>#75NVT`&kCJDI=nBC)zjoXRIWZ$@P{&s zLocjMibIbhk=%gqeSwT-_dCK6!}0#xa5%Wx^?!j(o8znSM>BJL1*~j6$G$I+(L6tH zp6AElkZ|*?et}Gz>qqd%GjshQtQ?Z-2qU!|?A<{if`lCG4~XiBH`tF%_FU%pVxQQq z=<4kYesz4xyJ$($au)FwbzzfhQedFbjQf*>nOO7dQ6tCwiH=0*xS!ncFrneKGWKr^ zr^545UJO1T4wE*U`B_3IkP`0|^@ioN0ho(FnOQKlfR#zX*fgqyEEq05Mg?QMi4|gT za8$AdV-4@Jr?ylfTfYUA-p*GQ4q@$#mbTg}P-C);q0 zOm_r7k-XKv(aNO-uC~Cizo^?47_u}Ilr4p=h7**{9Esu3P>dEHE2GE~I2U9TIT#L+ zHl6w1g-#$H-oj)(P2NLg%WwexP-dA}1S^v=v9BYMT+84sOw#P0A`CI?5l(``!OgCJ zVN#pp6YxhfbG!^zww`0(!X(Y}jplj20S*Z_&+5XYHrLnTk7wrk8dy0b*Ad2SIqbWG zKm-Xn>~9j)5pURkG}&Fqb-iPbgM4e`b>S6OqO{!A7VDY;u?F7yTO;lXIrwWMuS89S zTxNL5kqGSyk{dkM(Z@jP6DGZfrpfyi$wkbGLIP{0w3*I-EFu@|6Q(-z480$;br_G^ z!7MdnU}aKjMn;v8rN$-8sMI_km2a=qJdx}h94j}MG?g2_4;0aiqqt~~QAb$G6y^oU z)l4`RM+HEZmi-)w(9)9N3g*Pd>R+j>)RW`k%#eCggd?S|C&vh#Kvrt*5jkl)ts%$Z z&t}$;ZdjSrkgOw-+z2uyxXwp%{Y_yH_A4a0z6_2EH`ngv?y3hg<6p-uU}pRxSlN2U z*P?5BBMnFFT|oaB9ze!}}`wbDYTU!5FuLXxg{hBE$&Df+DL&Vgc4136DP#!Q433pHulaR_P9QHecYz~dKCL2~ z;E!ikk=d{^sUowYO2{hWa%5CRMwnP34pO|4?Da9zyaf*LEkW_gp+YGw4pekhSM&z& z#w!TNum(trUhOdL8izR6pQ=Andjz}jkL~X4xba4#V=D7P?p)Ng$Rg9}NDPA_Gc_~} zO2PRmoH9~yYH-}NSRv{NOqbig!u|ia#xydfGj!Z8Np8Wi+us@Ds zW4ya6>0cg-8f#fv?sp_YOG|=_9iv4ilq&KzoC{J#-h@M>uOd$ioj^JoyQ?Bi z-b3Z?>TCEznf2mjSecZG7afV@8q>z^D#`AQ571v4$?jAkfi>{l>;`sMbva%Ke>5}4 zYr@LbbL`(;C3#+Kp6C7GkZ|)%c2{+|UWh-Qnd=3xa!9TtjM;M7cL#w85^@RS*HH_T zw}kO*vRfYOsgn=qDqTAD_zKLf7QCAFOY0qt*#$E75QZ`*9%n~oOLhlmI1-`VL2`qL zyBprTQKlILrD3=cP8S(cZh)hv&3OJ&p%ZKv+?%U{(~hPiw28P5H-uSqu7QIgux|Rg@Fk9U#{s%UjtG0Lo{0g3HB*pR zqNYF=nU@@i&?1xI6lAr=o~7%&Qd}l|h-Qcsmx)3mj(+uH5wbvLYVKtfLHlV<8IM1o zSyRTq%A}@@bR?1+Q`QRZT55B?i?9j%Rg#?V2uDUgpwOJVyKp)$Xy&)Wtzc$;YgpNO z=GUV;m)h*-%(LGKM~9nz_Z^`yPbdKy+!7`MUx1ZE2#C-O$bP~dMj}YaNzC(62QzOH zb7->t#He(p6kNQ#9tKuRTg~{My1HS30ZP+4TpJY|**aY9NDPP8VN5+2O2hCFoDDK~ z+z-b{o6!7iLMM=q#yxfQM0rn@>zBXApUNy1_rS`eRNUoAB-bW1?x~~s{Xke^*c|*D zjt4itfqUw-S^gLPY-X1K2`gLAvj3hsn(2)`GS2h{LL!dVpZ=1`J$2e_ua7^UneAz? za!9r#jNNkhcZY%q5_0&zGAg#-@V{rW$FQb#_7yYLT&XB7q3G-FEtRYF>-XIwQo**M z1IAZdWoifM))odmlhrU&TG=!*FeGVOgmhH2WQ%aDBN5snBsY#U(?#Q;^bKdj>GFP1 z@@0`T;J|4!p05aj0$f;+G>?TgdZDCfPlVN32c}|QfAuEqdm{H|9+QbU6 zkonbQCmvG<`O?RI!X2zJ($ZJcegm^b@)@6rQ#Y`nUsoeITFduXd5e|G`~*@OR!%X$?p?zJh=G{ ztc+^2{0IEm%q;&7R<@pH|H>%M^w|FxXL^*7!1^U_rpd~vHrpfc=QFeYNnF{EFm}t~ z-yI4fNXV7ZQ=>Xkw?Yj6YmaMd3muC>3)YbCgtKTM5iAlwYE=49AsJe@@T3x7B>&;Nv# zt><~NJi(~T^+x|S&h-XDB98e5{WZHg7K#Hj-|OQBF!MbPRu0K`gfU#U0q%ehK|)S2 zu8azw z9f{C(Ah{8vo)qc2(iNNyCxwg|XTY)2<~3gtI)S`+H{b-!r&Z)s{PD~xax$z;s>q2^ zC1e$GIWnpuN1Iq7CKDr*ts*lTr)b(z;;q2eN4V}2u3|cn7bW`VNhe5DbqzlDLJpeDI+E4B{+22tmpqIbb=+v{kBNUyn5Ei<&5WX zYnT=2Sy-7=pr@ls$O`0AW>kUhG_gWdpuZ-2gmhy4Ccj+&3TKTpu&OcVlX&XQ?vWNq z#bt29s(OVPbYXNOVJOz!d+5mOvVkKp462JrN5gNWmMn(TL2AiHaEfv zBh}^xICA=GbE(h?WT`gOSzv473@ty`;l?n_&o!_zDL>zeDj~~{%a~F5In~4pQGULk zY~wPzeyFHB(6PKOJcy&pXb+tu`!J4W0cJIo<&~)MmX+ltMrtd3gMGTf@rM^X%V;(d0U3p6gCHDBN6=eHeYdGq?fFe18E} z4#{_fF|8YDZ!?^aQK;JXbn{hv3|hapQhCRND0BZxcF!wA9>j!)H95 zPW&2wIJ1u211pm{a+f2KTz{~7@ct>mxsvS{n&y22ArVLaPk-g>IeFK*L4WV-<7O~(KMht6$$f-DU-k{| zpb-%5g2uHe52s95JFuK}$qd(F)=w_>9n`4@5 zSzvt9v<>N~5XrXTSVtnXZAfl3aT6n*S8B@HaAHX3a0VPLZEo`wp%chV&7Fm)+4BsL zs|%;%1~9A1$*?l1CMQOfkk!Ox$*7tfZDNI(g)B(6noMf-rpbN67p(o!@}|F%Z_rxO z_+XLy|2XIjQ%3gGt!E5c zM!Z4IH7mfXrXSfzn2L4n9zC*%Y~V-?gCer3-*cseEQV7;O2~e2sPrXdd!Z9ZOKq|< z!SP#93&=wJ>C6JM09GaiWcR2NvVgc085NNAO{@?Fq&?XJGBs1krpxsiO{Tkk8DLMg zr!7^#AW;0m12dej2*2X!O7@RbP8=&eBaxfB&W@T5Sy|3-B!)p{SvMpIN|Ct{P82CJ zH^5QT7nw_iPO!+hUo;7Egw~tua6_2&<{DU;)SGWbm5}wuWy`4EoN8i)s5h@9JM&rB zc@M@pK$(<{VjQeCxqU3e8owb5?I4BEWZ->ayfCUq?o2C~kTz7jPPvevxhNDPBo zv$i$_N~M{!5}G7ZX(kE@tn<@XnvX@`f|bTyuhqIi>&$rE3}&4f11pm{Gcu}#tTQfG zMs?=-sC3t@5OwCJWRH8TUM*GAg%wMoaQ%F}T z*~;9&e{fn6=c|wY|8u+Ze{QdMh6PA%th3a{m$RMOa<-Vs4&*NrmmTGARN_9k%`QN- z$(d45uUOJa^`^_|u5!A!+f%&3QN&A2l>3@m-xM@CwP(GpJTh19)}`x@aJoF#$BNy* zY&l)<9R58VLT%dfcL|+9)@t*dWti|Jw^IkbpZ70?mYd*5aqC*vp8K214?D`CiB9kY z@l+Cr_EdUlCY9^y4Q|c0jYNN;UOb;`di`HKp5w%KI zw$DqF_m6NpnR$O7R`z~3;|sY;H6?yKJ>D2g=SVk%unyE!MD3km;h zX7IwwtqMEhoOoU~IultP=HON`DcJ~C_7I*e{)=wuN*a%KX&LF!z;U!N5F6%65jhGD z4i}E?aX1_wDH@04HZsvT6jrv5#!QMvMXZ%)y6b#o)kBNtm=kg)93w6vyWxcRU8SI$ zhMUR+B3z_k+=QFR1mpX#atIi5&N}$`>`K&D zUfNeEh$~p@&5YN_xScSrm6v1P0}-35{4*jH?r`Z&yo{{4&cq5a3*Ru=S@^2^=Zc~V z&rBD(vP;Y9z+`;HD0Gz8{yu7lI(wAv@ z^StcJK8cFAoSc2^NQ6$#LVND`XW>&*&4beQnYf#>JvAAd4QI^zQOn8MEFlp`)4iI| z2_&hu4=sve>1}W2uxGN&^$gr(W|5rgD2F1D;QV}}77_8yVb2_>U)Jpwvjc_khE4Wj zJhIxEI)&ljcwq3kPO#VyH=c>bLRi@|P7YQJ9Es2x68mkgt$tDMsY*3n&1F)V?ouIJ zIc|kAl|NC~Y6#MDIAYqNBu_y)GA@vm7|>p<5BGt|QyEsa&eP^C>ro??a+yN#@SHjBHN!pY{Qb$%@U;LvvN56-I#pUSGm^l*eQ;HtN z&1X{dFsy8yqRm(o<Er}Z=;Xmc*Ke+u&jy{Byt#icclR88k zOJXxhVQH>8OIrwup_zTf-6u6-KzZ5}_kqdN#;~$=o>+A$o9j|9Z~DABOP__KWvedL z{ihrqf!ojIXbG%rog-FV5^?NL7b+@CUp8myEI49Zmg25UjTlg#PRD&<@^lKUY@H|8 z{4G}$i?YffcdI!}KZe7_g(>d&n-c&^(hqS5m?Yf@D_bXtHGj($`xTC!H|OYCI9Obc z;-0?=_bEkBW3p7vEl(9o#l6QO+@};h zjGND-=mA*SIz_zEt-qswhCrFM{m-1F|G)v`k`(*s=7xaM^das7lcx7zW$QG}<@8F` zY*D=4+fh9c=EQXkQkcD+fgxhOU)oqqBh2zU=p<>PO6x;zO zNhiU|)=6TWQRx>S;3A9OKQ>3{hj6^OD8+q7#f<=E=|BZyjn|xuQRE@>m zU{W;-R<=&nLeBio3um>IsvMVHma44i>B&~h;#G2SP*I#KQ&tgnGAC_&IFQ`ZRg8Jo zH%MqGecRx!G3lEJD_f^;<5u*A+*8nHj#md9DK1_I#e`SGcgjy1x1Gt)v9Pjrel~2$ zkLF&20dsiHhr`5$XaBh1(cedK9&R|3oO5Ai>*UO8MGoEf{iQiKzkq|pHPY+i$-#KmTDT-a#u8+aMFo5{_Ku(EY-TJ|}OckGom zdg=t@3EMhCVrV98arHS3-)Wz-CT=^EpDD1ib$(jb9nHN0`Om%_@{$!a-s*WF0*s5waw z!(rl*6xYl>pZob&+Bf8m@v_}y&fwhhNiuaYd#-xGsGy| za3(n;U}fv%wA|a!+z7F~IXK(EQQ}sgxb{@_H$lw9?PhY*4l7&dW@f7yJ-Gp*!QhE;t9q1WxEp59i{hGwC@8 zR<=%0%N|GfuHrAu*|`G_6PKO1dYq7(9d5@BXOeRZtZbc}om!1m-eos$r zUWTK`1u7F)F>*gsr;P`lg}sRTqvhNE->i=_&M~nPK=yUKRtOM6_lZ;*=vd${T zld(00#L!H};@TwBUL7(8H(QGjrDhVWY@M3c?UDA%kcH;tEPw;Wtw^!8M`2fm?2enx zq-Pgc**ZO&v>N1^w__+HTG^bR5*#WnKXHA&w&^?_z6!YUOoDQ-vUP%5Zf*GP!cZ8x z(ww2o;b3tYife1b=RT$AQrvtdMHj=$)+uT^P19Wg@~}BS55QsK@)OrIE#&Ht`*6dV z0E;?}?5(>NO;~m^`COdDz%EO!;-4!1juWCH$+E7Rg z&7>#~Y+*6^Db&5GzC&2;alGPd0I^!TAp|qWVyTqhz8LS*aTQ-0B^tQH>2Ik}s zTG-Zh%s~DS_sH~=R@8RBxW}y)`|KpaB0QILacA8 zkrf{}66t8M=v$iKdbEhfcxUE*^q^f!d!>ZBa)lQ<>Y5uBKC&Lc0E#;D5-Jiq&*ZyvQ{- z*T16O|NqzC{HOMUYhP_bx+pFtDHqc{*@5m`J$`<txT+CA&S9UYbeedU^|iU*jgWx0VUO zBv{!qP7XK|9f{;fQQwI5eo5XQ?$TT_U0#vO)Gy#kWsB8vsdt6aS}ha?SC&Q?n`G5k z0EdlRHCo>{8(uZqQ!N5O8>!uK2be_d0xMf5O1*D3NK`A7%H}AQ;COLSYQ2EKKq=rk zWvGB#&SWSDD_du%byceLrpuLV%c^vxIZBtqVdJ7?T$OYIphR7YJHRCBVp!QaQR;o_ z?hlqRzCCPC(gSd~xFogSOleV+bdFPk?!ygd5_B)DY@Hx=GsTT=psFja(TC>fya&gL zi_XHRopr!t%FH{s#Y|@2f|ac^qpv!;@~xn=@oL6h^@c)XXeMQmtB%fbO3+N)a3(?1 zVdW5lBCO`g1wnV2AcBOPB|ZnQVR(*6E8LYSBP;GPu|h0Mu0AHwWy$eNvgvZBJ6G%q ztbZI2|J1Z4wzhDPmC1CuoL)g!C7u6sd!=bwVA)HvC|Qikuw0Zp&XEXRrwUzsh_WEu zdYx+Z)SmUI9GRytA8C&vR_t}dJp2TYsa{3${wkeu4KbO=?l*{<`?vrw)xpNCt> zEO_TS%AuJ~a7A*uCKA3yI{#L|FND#CD@u3Z5gnH+iqF0m(}jU^YGcaT&c1SPK$G*` zBjw!ZDarorxUJ0W-vTRp#>s)^W=A5lBE-IMJxzy6y4=;1R=>*dny}1}l9%E5a4W+u z(I{~pr5(|WxS>o$o`aQ#FCw|3(nPN_*%*;Eg+v@pG#xw)5XluOB2#cfnTSk+m8~N( zBczHf>&}+d@8vBthhza9A#NSnEpi=kT&0-oj+@HFWEWW3Iwsnlq*yARkS&*#Qc^aj zqyz_uOUbU$DDga{kQ8uBnULgQW$Tbk)zuPRA-U2Vk;~!ma1q%#8X_T8R+TFu(B5V~pF zQQPnQqPyqG|8wGg)_*^C^%)^alqR=fNT3 z0<*U%F#69Oo{JmIq~#n~**Y!0se53IZl|9*{DnCycfbMSva-OC740VuZ^zALl5z{I zY@HO}TA)G-{k-98=BT_3M~I8cUZ$vMKWq3RZZDIS=U`>)tc3P0jnDcieakwl8}}`1 z3W=ea?U?p04WDV>G6lDp$;>2J**Y_!Ba!$dn}W+ib6gg{0pgYy(~(HHOG()sHWot4m$NW`u`U8tzMTxrhB z<#3d^yqJze4WB79m*O@vnYkENw$4oG3|ja3!H3O(c>oR(7Z}qSbjW81@52pd(sD1X zY@L?SzJ-2r@I!M}-h%_gWyQ2_(SB<19o$?dDR05b)=8NewlXI^Dbv$eP&${5*D#(F zZ73v$W=^De>BT*<%iI8PJ*MN(Ox$87FVkUV>%45#f|qh`x$e_~OU$7;7!DM-!f5Vm zMxklAP02X`H=9Y$B3RivIU5f`j_z}Ur#o3e8PZa0&iWw5e! zb_T0DnokJcXpYVeaG<#8#8h?kpANhZH=9Y$HL$XEayA>J>V$nZ@JVxgo`9pp#pfWy z-GaeC7x)Lwejkw_cHTfi9+MJYQ;rMXJBh5u_ zP$#VW6yVXgwM(qp<`1(FArf^d-=cWJ$ip!1Zim%UY zN=^&p(8HIqhEDVkR$l!^*>$7u{FW-ZSUr9XLjb@e=a2w6}1JnY_FKD_iF! zw2$$9Dop8PHeB0y&NNd<49%R$w2$$*P5YSXxYTqzEQhx^%AvVW@Qxeh3+ujk_^y2M-*WS^Fx~LNk{9u~ zY7b>l3N(jKK?;0c6CR$!?Pl`u46ICs$EO^L(5eypMK^Ooi$?PcVqMunpVDuwxsEYC zQ-nku-8-e{K-zD?^mrdntGiD7t4X-&On@fB%GLqea&UmU)8&rJvK)EkbAdTUyTbwF zjzml1qp0aWMQIn@ekMvg!phcB3Ln&)wWyFyAGab^rWL7V&Qbx67?-7%pG))gt55(a zOgY>ECQO~MvUQl|4qlfErLI(^)LErh^IvXG)1`38xHKIeUuE(|fZ}v9?g1003t?sJ zI5GO99y-E3V9wEfaICl-#n>m+U8exui<`~_=x$i~(*TfWSbNVLpm*R{SpcZ+ItA!0 z+;k>DZ@|jd0aCui7ntIE)0IlDtEZIfP$p{|u4_D5n<*rQX0moje1ns1xDJQ=wNe<4uHeOEk$u+)sPLYq=@o-n884{)Hk)Wopa(e#_vn&07eGtv1itZW^fjlo3yJg0>1iJ_dJZsec3LhV zZjM{d#AgnyY#pB#eU4_~@K|$hj)r5z9kF8QbMy;_N8u(jfjJyj9?rmM77EWb2j(0& zMhOC=Um!daH<<~{X|S?&U|O63(k~3&ZqCdtaG1Eve8zlm3SAJq8Mm5=%}ucKu*OEa z5cr}wHqXIfN)nr}1;A%;tC`q51uI*}W_EZxT;EgIEc{KGYCMygBqWArCZ&1h16{jm zxJ~C#6LGVd;EacrL%@k}j$IywchA8_kdO!RZ;pC&Qd;4j#5S_x0uw95f&9}GK9Ik# zknPD9tKw{3Ht?z0W8j~fw!X%5AV2FfGH}{kb0Gh7QF)dJ@{e>RLJwt!9<3en1NmXe zIt5Oa_ZyZ6@=t=prp<2N0N(5eypfqZ3| zF#wKt%p<*2-BW!+7--Z?=6t(zdN-962 zrWx}yLP*5Xn$zOb@|+^bk8qs=^a-41_BIEsY#pFYgY&vDfYi@-%`+#ceaHyXTqQ0i zcQ`?sqpq9dwlizc99Y>pLYyJ2Lp`NxIM;O6Lbq4EG|KD4q?;8<}9in9g@*C{~H;HEPHdJ0yy4iKjXi73uj zMzJZ=jVEH0gv8KH#Nw<$b>AsM6LH&_2#tr8KP?EU!`SZT2<-v~i(7{L-AWeUwTU)frjA9Hbl^GA>9hUxLP_^u7qtiqwgFz{Dv7D_h5D z{@`mvjbMt85@*X*WpumLoT!W8sBwups?~v`XhgX|pio_iJHdqNYp}9)sJ7!nRmgT$ zQ)U27u`l{OE<5SX;iFIS*cdhVcwK~o-pxR8&$USA!yb`1Sn4X;vO(@+8b83juT@EGn35~ zltJ$VbB>n5vEp(R;}T}wbqY`wH=PO4@vyRWfEe4j^d!l3=KNd(hlFHgJZ?zC(imKT&MNtx47v{fF6RCtplW7c%@ss?8tV_ zFQ?Uo%Mt4vx7eS+;o>sX@}?qe;^uizG5Q#{o{7;1u(EZGHXD4_){*Pab!3%JsNI~R z&4t9!Ow)9SSR3M~Kl*XUm;R5jw{lpfll6aRG|4ofe)`d``nHXX5iESou?d&+=XcpIglF zxfu?X4SbgOQhaX0Eob8MeOTE#KAZt;d2i1=1)%550eS`w78js62e7*D6rrbZ+nEUc z1y=qvAk>C6>#RdwO4uCnSdb%q>?DzEgzO#%*UJ zv<9qf9U;apTCO5GZFL7^kvT*Ay3x95MB9kA`v2rFpWfDX(!iYjK?~d3jv2@w;{I9U z{yE(JbENZ!TaRMgPIIF`Y1$jkIroy0Jz-_*G%@x<3Yi{dEpnMTN>w;iT!LcU3lW}E ze2&L0XBML(tZW@0#?hiewxV8gbd5Pb--2VstrUPZ-@tfsHb+Pd`^lN(J4I+C+;%2H8^Fq+7KGH( zAxD`bbT}L=ZVifYiKvc{=6uMZxa~}Y4uX}fBgAQ`OI_-9HD{U=bQ&BhEgb&ho#r%U;E-`?8iLxSz4PG*-VX)-E(h z>1%MfxG2SV9MbciR;B;Lt!HBN6`O^SWG24}{=K9sM zwCl|_p1!RuB!*`C79&Uv_bEtg;N~+ynhYyj2Z^yrDJH<$ZU24EN!l9@7`G(FxJcRb zpQ5xUZa)*H-C$+wC@}`N-clu}sYz9Hl8%St#U&}mn$&Qgf>gxKXM%JbtZW@5#_^Hf z(lVt%`j$CE--JWOWhlnuBf@iv&tliUswaeK|uD4tg+inU;ADff(0UR+dNinW!%K%WA{*61p zgy~DZ6qXyX2KR@o89!EqO<{SKNF?(VP)$mF-}L8 zOMT?qHHVvHbSNAwZb^#qXq)3ZMd%>hb|ymm!^+kXVjOL&XXc&IIUjSou={(DCGBYvVUI?xe>EiJ|GF;{-^! zPAkwz+;k>DZLqR+fEX|DSH$hbWp(##J9C7#hNH!;K{39w?>bK*+6p(G3DK6YvUP|U z8y=OurPXpeqn@G7m}B$>I9^mV`OY5HmPubDISe{iU{ z48_<^Yrm}i72I+rK4-(q*70Gq(;|rKSF!Ij=jUf|thoHd*bUWPr}gJH+;k>DKY^94 z1H@QT6r))03Ce{2Rda&=0SAjqP>f58j_(wq7jWB|2>l&a{&XPJSIj5~t-Xoylxz(l zF*H-MSP>GwQ-mhtwlfi06;`&65aTNBYFUI)e--xL<|OS2$BbKyV!R659|8*0Znz6f zpmv6ptpl}w_zT$SrRrT+$D8w0ghRyTXQBBk*TQ3p%W=5HOkBEQW$U=iY=H~?tmik) zdASUZ5to;JV&FylJCNqJ#2v)WZ%&gYHs1vS-%!#=l4icA`ed8fUGt>GtZZi{^ zdthbj$g~=gI@GUreqavFzu^#Zfr(>C>gb?D(!X$vnYjEDR<@2ys|r)>DyX{?8_hAE zO>H0~hGsSuM}?{TOp#e1x0#8|G+5a>GOfB8dM4vgb7BsHW5g{nada`-!x;PHCNqKg z46JM&m{v7LL{IHvzGP0!7vUgriHW1e)P1HkW(96D6PbQk**Y?+kHN~r z9T|048ndZ!>pN0N4BysQAfp+U+Hjkh$o%)yhfIrO6iai}Ww}aLb35YJ=HP6FCt+N! zD89g0Ocw^usf{UTJNwGHfqY@=$hO*qbTQLi693eb9jL`{jKb$RtvFlamNW6$3|6*Y zaax=SYy>e^?9Y;8rC%^7=omO!+|eqAGl4c5uiBz9ru8V z)8Ala>o_r*YkD8+8k-r<$|ehmp_!G%*j#JxVOT2O-=Dd6zjuDraIO>aVnbwz!aFdz9TmUOu2WG?Yxs|vXY`(Z7OF623 zzd19%hQq{V<}>CKE6;0+%{{o)Ol;QD{oxRCi%bmduke`S@)_J>CNBHH%EKBL@^!&4n&Ywp4pEZ0EZ2P7 zv>&&aiAx1mwvJ1S*^>AerFtCayXL%n2aXY!ml$SCb(d*<`8IAc6PT-DW$VDS>R^`l z_RLcTq(7Mx^EezNE-`U*Fm<0PGLPXlGm&`&RvymCbQVfv-*V&@#!YXVkQla2uj4aC z=D%=aYfNN5f|ac!)8Zl%Cw%%hzqc|cXUicYCx(km{H{}gHp5M40<;ONY#pE$eNAT% zxsdc2b8tQf$A~*h#n9K(U8cYsiJQy><}g^npnc!>-D_aMr#Zq5Ryc@0VJsoFGO*b4QE;TVM^*KIMWU{!;Ok|eA%EKF(Vp{zW z$k)x0xd;wYqR0rJDKZz}HZzg=Dy(cBnHJ}0auqR^QqM&E+MJnt;3#pKiQycL>okSt zF5GA)G(U%xtwYmdwWg5iQKsJiGAHJraEQ3X#IRZ;Jf^t3j$6#c(SFL((G@J&1c|9am!2$?^{a8 zDLnh&hBM*W3s$xcPpiSHq%P2`FsG&;4iT4{I0mPZW__lDTg=3z7gn~8ON(iCq0}{R zE2W$HjyW*jhJ(ZfCWdLY<1?)=SK&4@k+}j^9`4BWD#$!;j?80lkP=2lbI|h<+-4>+ z55mgUk!jTem%7x0o^5lDTj2k~G2#*v!?uAaGMa;)AK@l5fq5TRwhqij;oAlxdg+c1 zaadNVGh3Qdvzd?>nu*h5^L>M+-*kA|1h<=s&TLrOIy$XpPYra`it{;hc8-K2#jQAT z%$}N#Q+N);4QIl02&`-!o)*`Oh~Hl>lP+lP?mOF@o-^Q3ap{TSdJ&)J6rWRZ%bEC` z3@d*c@F|wm`__J9j?a(aP+7o7cuw*80d6@HpYOrS*70dQbUD?Bys+?hb9(*;M~X{N zJVTe~IECl0xZzBA{tPQyhleqA(VMYW-O6~XwX%>Hnx;9%p-X!+);Qd9CO)HKW$XB~ zI8)q{UY_geQ#UquHb-X%I85Ba6T_Ke&udzBw#BVxVly9B9@f~1(|r`1ZgXt1aF~+B z#`T(FvlO?QiA@StwvJ7UW1&5Lg=((1utHhhxyYQG3*b0$xryOeXv1v^&R21>nc&o5 zW$WOyXpzNfw^X&1Dw2`v9&>c=f+NL6Cx#YTI!@vFIc_);o}a?X*5PSUb&A=pbT!wn z9!CGCIXbVyapIyAL)B@xO~H8uH=7C0OR%zaa9V6fh*b^kft+dcjAvHs3W=eaS;ep& z(e#_5vlebQ6P?vzW$Wm)s5!l*N={RAK4VVKK5(28tT_$0DL8xKW;4Or16H;UPK$$F zy`^PJcieBzOa%@Rmzfw2atV(qF1@(LOk8?kW$U=KSicdM$j%qnsw&8Q+Z>sz;4pEK ziDCW5^O|CF1#UGHn{U9%*0E`EGDq|J%VXxuJOamv%S;R>bLuWrU>?LxW&-mYSlK!- zEhgaQY$n%RE{RQYrPTb_9Gj2eNO7@=VFE54r|`Uw8_tC1U0B&VJT2x?MN?3Bpqpv&0%nmxFsisgX)gY z6q!SCo0-TQ2rFAhrbTa4$#to(gP&ne%&BmUxWvTJ+tgjAz?_Vm%mn5{SlK!-EvDS! z$_b^Z`H?v?Kf=nx8kpnB2c1{m+PL!_CnScZ^Nj--;WDi-qj8g&z^nu-TL-4a^&}PX z#g?+VUAcofGTXvY;?|fLt|xJwrqImCjb=hK7gn|oO^fTRD^;<{oe{4vbQM%|vgYV4 zg=57xgZCSxSE9dePR}cFq`36N zu)!c5r?uxL+;Ap5&%?^r;Te4B(p*!#?l#5~t+j;2&`h-A8@lwj6|at4&ctUmSlK#0 zTZUgd;Qa)fZ{e%2kndv-(Oz)CxFu+b`Sk*!R3sHQ7n*PMjH*m|D_*?=jTgRux z3FJ!O(rP)KQEw!8#GIW6;W%;GiQ%n>hTF96{029h3C^!zW$WOy*bc3d+tfcYXXbr4 zL|kTK*bWsQQ(WG~EoS2KHmqzNmloThB6#X{=qB45Pr7CciJ_Tv#jv|ocbNh+3pbew z%nVrBIxsDcbcs=^_XMRaKFpk$L*O8BD@+VWx*VS=G6&)|Gm%*gD-VLqMI+lrwAKIT zq=7m43#PZVb>Eu5Q2aS&AU|zUTid3m4$yy?74{DkW`_JXE*6TlmhAKuGYUJW3Rf#j z)A`HAf46SKK?@zL4sri1asM3d{yEb5iLxVnrtF-E+stHV zIjlSgJCuyLk!i6nS}lw4=|AiH19Nh|2giy_P7M2^e%C2L*W;!$0lF4e4gn~O|EQlC z+4xZ}n_6!nB1p_`N>m+*2&F|@aiqBwhnZN>w>1C1QKH064y(m$h5W;u2zA{l-(&X9 z_UAI$finl{V}e^?KZJj2+Mh{nK}RW5ncI=Brc;?hx>Ct1{~=v2r&r9)^{;66|Npc* z|L67&*RI-xbTQLiDi_l|*@5m`J@kIr91PxzO7HzmiFX`{WMbZWEL|8Qx+lgl+lWXC&F)Q5aj&f*%=j6kFRS|wvtrNVS z8iw{%dTAz=>**~7eu4W4iw(P^z3_03%N4~Ji;LpTyK`z|%Gu7oa&90`Q@taYYM+lJ z>3iT-GLyb5tW1Wrog9he=va%;A&Q{VKUaiJhGg`@k_KlW_$cA1)bi&1iZ_`S=EIC6kX!VC4`#BJ{Dc33Z372okat zUM;F4(h9dLGP2^WsJ&U;3egJpk504|9=Dg+!>Z;=#lTSfng}IUaJ9dQ+TJG3aHe5d zpy|@I!!JioyljVGbR1c zsfCV(ja>R#;-+_=eR6s;4!4h4>qa}up=nOADfSIwR<_Q`OiexMESGvx z9fjU><~U{4dEFe8SKt_NLD@Y@LGk%YNqGskl}XC;u(EYhX6Q)iD-?7EW!)W&yOXtq z#L!GxB6YBx4Noa0tK*h3DOn9xwob`(4JCzKu_B6zI_m6W4#{3{fVjnEmng-g;V5Nf z58O~DBfG-N!;_IxmyVH&IU~JrfQFV4&r!-q4{j)vkvyzCEE(y^R=T^&IrZwbtIQd> z0uIoSGSYCAGV%@FP$nanz{=JcnWY(Piq2ORw6ozy%sF`w4icA>J)(>^erG8wzrl@V zvhpif**Yt_m91Q&6ray=hPdh4>Jek5I8v8BC?2)A%cWF=(JMQVbF4&HU6CTH4C#x3=_LL!cqdYsS+q^35Hc1(dxwo~7{ zN+QoVt%Y01EOV zd*F65^S&#rOoq3e9Es2>5c>fq<+43d1lm*HO;3Hr-0^+cRJx$fr7FTkLsoj>NNFp7 zp0ctxTp2VD)1IgYH<$@c9#*yv&8C{F5`-orzQ|IoDD$kV%(=M&4i=Z2mhbP2-hhrM zDmSjr6rFG2HZ#$=1Xi|=&Srz6lPmUT%N2ER`Vn(>9)zRCWvAuE<}7wRrzt$Y!Hs6Z z^D9`{Iy{5do&I#8FRRv_kIdP59}X6m9rL>5`b^Pz7q^*-&fBoEb#!LXx)a*pY_hX) ze=}Q149(0(a}H*(URXLxA(@36%7kPFtZW?;(EER$`v|iQmzMX!W2)bV5IVuk@6~E)xn<^k-Vz4(!0lx+ zuq&)ghd)Omv^vDT9igo7G-2^pm&IO0Dl5KwNOmNInTFW(!okuG4Eb?FCy32r18h{k z=>)z9x0{Ji9#*!F&*s{(rMXb=yppX2=qll>AwXBa;o<_+@?!~u)SU)E_51x?&nZIR zz%6GYbP23%9ii<9K}cLDS+1rkeZ9Su7D&8m&wr*PH4|i*vopQ^iubN7+67$egM7;h1rmI@Fvg)qM)nySVvG znBIn!KNT?bXEW7OSqIZ5yBd#ovxUUa%&_8u$>%>=D%A~qaVLA{up9#}qSlK#E$~P3%Ib1WE9ev~mf>X^&IvEZa zm!yNt$GCv+6r&Sy+nE?Ghm}7y81;(FGnH292j&=k4-S|OjOxBqjIPIRXJT|MtZW@4 z<$x=xM$2;*a!~QF=KTB_jue-lmWR!Fs{vWZX$sCCaif{w{2o@e4vu~ezqyvwSrXUO zXUnN_rw^n-Do|It+MO*cBiOd) z0L{m9z}yFkp#r&1Q*h?uMl-?L0#>$Ofd<(OabuV&s@Lxd#r>*dC-Y&BKv6ZcBydej5cUo|JF2FHs_P|HuA@%kUX>lC6d)|C-{4rv$O{sF>Yy!VS*oY zo`SS1ZafpDonU3_APv$ZVad$MJR?Iso^$-Cy$%Wgr^HuwhqrAvosM! z@u6BRKv$Rp^bI&(T!3PjrTJZ_5M6?s&V*lc@K)XxDbYmE<@ zbMzZHWL%C8iJ{F7dQVaM6>dEfrC-9z)=?Uy9#t~ws`yxMs zM}F5SL~rA!Ga-5tR<;h2a?6LhYSf4%S-PIRhw&6`mXH{lDcb(#rARtX0h)mu&ID*G ztZW^iLCz3~Q|(I&S+R88pCfy(hnO>TARI7m8H(WyQNVYK(PG?oCPw?g%GNO&tPZ&t z^_G??Ez!y544nu^i_1_Pb*Sk$1!y^LI1`{gSlK#2JG5@B)z?5$?qZR;9r8VMoUVss z$HnP$F$`+6hRbQ`@QN+fApTl?e$7RVrbgy7?vCxZc}*v2dB8kgy%o7 zvUPX{Iaeg2DCQ}Jw0b6OzBxT}hm4*W&J{KNrub}u+s(vhQ&`zLK7*_fIoJH8#Nw?u z7ov<^DRY88566o;cEzwlJRCAEJ_dVYA>LDzp2e+aqVzPZY#pVL*_L`^fx^)03yf!5s|kr= zH``L(rtqwSo6Ur00<1i&;ql#2pun?-IXt_a$kI!ui&rZ16OnA13m4_=l z&G*Rl7c%si!;^<&l>j`d+Z3KI+-xR19k8->cs9~E&CMukE@1eEIXRcWf#Q2<| zU)%`zOtBfjZDwL~KCC?KvC&+(@Edb%egy|ANo@2NE&LL!nYff;W$U=i*3Xmtw*)A}TyIXywQ!uc#OxD& zcfs#6h30D9WF|CM!phd6nW=}SaWjAd%pc8x`8^yXE-(wC1JiJq!ty9?E)$lAVP)&E zgq*l(yk#490m4dq8+X0`gM-DT#^A&a@tflFAKY#xJ|Du$!yTXI3;#;dnQM;E7D8fZ zCQUKm)AXC-vng&j6Q7M?W$XBaOt>4rLhS_ypEqacvv8!irN>~x9dw$4a|CWQ6PzWm zvUPAmdYs0a{Yts{vNJ2ZDKtOCO=d!KBdly4nvhpuL%QmpGbyz|=n8u|Ink!H8=D>8papD4F(82g! zrqFcYCNrT)!^+m7*+4%GH6lo^IJv|enE^OTTx9l+J{U=dDKO{b1~Y*<4_3AgOvtIc zz_lLAMCn)N%={7#6qgx;Q+WZODK@{rZDwL~2dr!zo3J|5yvajh=52Fk-h`vXWyYk= zG##eEyoMXh1m@fwMrr?xuqnY58U}fvztRFIe(h_s6IWbqmA>tCVr@`dO^_HS? zC2lPfmCIpe>!^f$Kb?6A+waZUc@&NrmmPyoUWd6)VR{%hp9#|gu(EZSLh6pV1W0q~ z+W*Yi`41c-E;|Nw$Mcq=@*!?56P5R1W$UPfY$Ax@=`LB@VqfEF)TTmWXr@sHn+Oee zDJ&b~<}zW~5LUJhOUSziB6?zllwPX#S#w&BfP=)XEC%l$H2tNxEWzz%;&L#oY#o=7 zJtzN7V#>naS?0u?4#$a0jKQ9h-(?ETDY(f@XikEaL!im#FQ4AlcGAF{{6P!b+Kw5> zAL9O5;{G|@{d1)A$CG$wt1t$53kh-gLM z(){PfifBw;)Yi7?sRQ*`ULc~=eQW+g@kfMot&o41lb;syFZo$v|8TL8tc^J|UF<0J z44gSof1I0(-@(5y?a!mOsH2pr%oSe`OQ$l0`prwqf5?=I)pV|yEzcF7_-Xh5|Ft*& zslDvlSDTP7X1Yt|V!9_g(0!}N&o5VM@blZK6yM*Jc*v1RCiW9%h9uZY${N8n0ZoeD zg;V53?7619Z^IGOW;y??&gQLYQ7A@a{X-N(B zo3>30al4uPEP$1*^P}uhDE!o8og?2MUT)4#9~>zzJ1vi1aMLI9xGD9diluT7sXW)3({nW(FD^X?L~K*qQ(on93G+Os3|)y^&SdCvSlK#5$_K6V z4D}UrodP3e`1-v$M32G&<3iN()^ryTZLh0B=J@;vjuaOk;}OjBnR4?XZZngc_h4n~+$e_!z3LO*F>mo1&zj@%G#nu=E|Ev1&`$SB+*T$h zPr%APPA(eJHlnTmKklZQyI34ygH!I2x_cH8B;=Cy%kYMZ=aIC+-6k`#;(ik=#2)Ec z$?lPkJF=Ya?adXt0(&u=FGA-C+Mh^m??HA+oi85I9a882+`g<~SzrfFvp+gVSc^?Z zyu{1>(TyC5;jm@4TB`1MsVT4&`Y^|u!*;swTZ@L<5tgdZ5$S}be(nhZwHwuon3pz3MHquZheUXDjUaU?>= zqtGH0<*ZceBOGg{_AHmvD~`-nyTcOnG@KwZC_M>>Oq=8U141W|p4yIKgOV?!?Rp6&ZGVt7CPRZ?Xc(|188o57h7oJi?Zow^OB62gVY#otlA&6wt>cZN~=8U`u$A`;^ z<{nY*kkcbvrI0*_o63ab8CcmmBw=-gT%xq*{>HPNDMDgsW;-TzM0eHfB-~OaA`@X{ z>xhKZ5zQoLfjJ|)!|_R=j?`VHbz~RZR3;=l!phbm38^EMsyY!anKM#=!^367ppFPn zDIz)CQYIpuu=21)gv@|1H%H`BI6O%pqMQC+j9bb?wU^RaQbD91JFKS`?IL+WwPPueT;k{u$!gXY@95N#by*9zjCv2RYxLp^C`j2#>sNN zu1n1JaAG`P<>{Ag;BaYko8M6A1X5F*7q*bo{H*+*jg8cXZ=Q8>gK-{i9ka}}JIbLs zPH=L_nnJC+&dF!R=%sawe>79TDHY zbEAeh3!+*`?l6bsb~r>_NJ6LEp`%8-&r^!YEx4sjOm2pitz)verjm%On#$FbdaM^l6Z*3Waf(cBL@7&ofB6qrf4xlCXt!pg%InEq_0S}N;+Szr##?r@xj8W^9u z6qsFbbD6;G2rF9$Ml%=c$abd1ZC6TRDVcLpfWyP(B=m@F_<-bjN%6?xRxQE-#hY5{D~KB&WIX$sDI|tw_Ok=NV4HQEq;O2fjby^H9;|E~ zjtwXroh9*-MYf#E7Bi&|b<8=~9FhazC~*r(=-K}8F(>FOg=GlGh`QYXjfn)7lF z93?I<5hlk$XDKXa;>I#zISp2}4vVH|$yMCTzm(m;+s!e#1&$9FlL$Ra!%Ygv&A6FN zKyHGStplQ&{fNjlZ-`SMdC?q_=inG|A&D^i@w-Yvc?LI?3CdHjvUN~2`^H}Mn%^E& zV3~4=@hoVPkQka-P=tMB)m;kAMBH2^Fymom>%eTNnGMxv%hgFeauwY@37xo!OfWLA zvUM;t9g6redR1J&mg+2!GX`Yp}9)P<*$+HP&Yv z(IcBZ_nBjIFB~B*CcEHuL^?_#xf?f>3CW$XvUNx_r`g2Sol6U1i8j}tBPR>qG3Vqh zI7nPhBAjLm_)1ZE1Gkll%B!%lbyRfq#6_jIv`m@n%skY1t}|Uo49#38NhN+DSf zH9NVcGDtNI>T%3YRKHwh0gM`jTmFK%gB6k!PJ>+LO-t77rU+w=0=rU31W zo6Q7hZ&=wnK$_Pzs-;wCj(nH%1an@N!QtWZ65(|X&r6C&6}OU!$MLZ8FvX)FPRc4H z&~@f`Tmy$^Xz{3fN%8m=ZY2|sZ^Fvf@zCt=h~JesyVScv;o}eHeEbfM50{S!`#TLc zDImYa&13@d5Ugw+5X}Kd5jinkERf5;Ml3PzVLyQb#3dxc0m!DG6p@c{JDG@l04rNZ zM6Dn+u7dndwAWVDr05L79V_$^>O2SUCig2v@7g+u7VJ zoFYibt9&+(dI^KH!o4ia$cmLstPpp^eVptaaVzgtD)#?BcV{0bS5c+^i6|P3B8X%~ zBH<+xhzumrXavDXAP{*CMj{xRo1UJTp7eB2x_c%sf-GnRAt;g%VPRRL2%;z}@+OL+ zDB`k45yWL>MG-_%l$FJ0mlc22FEjUcox0P{)2DCO%#T0JN3;7-=egfLbxu{?x|w3h ze2uTva8KNN`sd}$pt=uJnH}A+!8Ke+=C~_vq*ac?yW&b!iHUHJ*!22$@hZhdW^HO! zkY1e;YsXj7kEs634R4IQf;P?hlm{*_It>pf{?k;EXKHQ@tK1rwYK&4QzpeZz!Q{7@ zRu;+clBz`KZV;PVvCEu`v8KZxm|-Yy3%iFl1BGEu+$v5347IrAPvrAt88%9~ub3)3ma82zIejrbWWO?^Wl5nMR@= zrLmkC=EEd}6Q9Ik20uO!hdpRz?>M|FDE5`y)51x56pp72L6bu4HN-VD7#|UDvjaK%K#Vef6!_V|2JV<+il5ikGLR{}~KR+z+;cusv zy+8a{8kd}N!%LT|3&tr%BAJ5mAn^Iebq+7m4+?%Ym{#_Vz-uZ9gxS)X5$5VS=uV6S zs77cEPfiAN_~C*1U^cBB149eT&*2JoZ3(jliEtf#sMUVBG77VTePL%;uy;JJU@m}e zT)ZBlId)D)o8GPY$Vsj?u7+h%$GY`ktK5X^)&o_E*mdjJwaM9S|GdF#!c%CD$FiAz zEcKsAxL|z=?UwV&4xD3j8lKFi*k-i$9J@ti^|6H?IJuY~8<<-ztSZMo;0}J^By!1B z?Ey!={1N@W$(?4z%H`-gcsrfnH<6Dz_K;Z2qmINV9{O$kD8Yw*Gp#Hpl&@4JVt@Z_ z|M~B4|46!5W%EICeJWiv$*Nn3?xg~f5jXB;Z7fMpr-I6q*J znqSe%-l>V4`>5xX@o<^`J~b}88HslEDl)Uge(@v@mxf3sC%fnO#al zL9vt>H@hs>&fYS6;8J6M|E&X?%^xeb3{)RRq}6gfmYe9u zQvacbt=5gSTh1ptaJA8Ccrx*=R_!@PTCI9y^|6Jm)(!mFzzlbNRXO$n`)RdmHbmNx zXsh*z8L_f{eweq@*=os09ouTfJnBe{;-Nppj}m<7575eDTKjQTA~xr?z151m6k4Za z(0p0Pd_ZL|E50N-^;9(>I~s|0l+2Ql*aP)(ghb+$rOyuhI6+3bXl3t=L>6o6j8r_$ zipxJ2==qpWyMs;^u^Yj0eAHu_|Bii zrsJDzd7GoTP-u_W^{GiqKlcSV!Jk{>FIO`(~*J)<)BL$P-K2_z|r{2MJn!RJ(h%9A9mur@rfh(75mhrAS zmuuwnUm~|ViRT}QSdefcKW31G<7nmj;KGUM*s4TqrfB=(&FolY%)MykY&sQ`D%sPj zt6ij#HA;5V)+S&f*6S;>a7NDZM*Y|6zuHmJ3#1dPI-Y!?a^4PRrVjQ@J2f zdWauBh|&YJvUijYY?htUK|WPUP8LQ}->;tDb~F-PH-TbwLVGY84P7F%13z>Sp)Ok4 zJ3?=3hEPwYH!#~>sdQm*D3@86>T#4y3-mnAr>#SII=wwSIen0D9m2-}!gUa>>>aMR zqHy)*3PIV4R$7nNnY3{zTJLW!S`il{SS$G`K(J1umA!+te^am=S?Ur!N*B{sp(wql zO(<33mhfE2j~j&Nd|G+p!_%A1_u7^BoqBlgpsngKJk_`*Jh$=V2I0AxR`w3hq0KT+ z?{Gd{Hg~+G>UV-?dTR5Uy)y8W9;hd2`%s`#?a4;5UP#Cu=VJjO`xUM19kO@AkPYXX zU^e|Ub*s0Vkw~W13)+mCbVGu+3m**#+N)`0@1QlUqq2^vaIqe#MYL6D=4w+NRgGK1 zb2vY45S~M6W$*AD+$>9(%Y;`I3OQ$Aw?+?9p0*5y=#=*4rH1$=Oso0vgD~~e%HCmW zy3u0H9B&EgYCTU^(ypOAwP~Zpwm>3vIUfRu)Md1?cccyh@>68V#abi3PY=|+v}Y(# z?`>OxiWneq`W_zuh|_myW$!pO-M2G8PjlekIomz2hv_-mF%+gY?b}7emni+2A3liE zpJ-+8C?S>8a2!jsPFHty`xuF2I=c2%PGS5KroH&_gD~w$D|?6Opk~utF;l8+;5k;r zm+4VDkv0rXODDHyj*CPuK{}2fJqXgVw6b@QX2yZ!JR*0Fo}II3k5G0TcgZk^D{BEu zT-Ngg25}jomA&H6gC3mgX}3^tl!s63&?Q3G@T#D&GReR{DTmJ4Z%Is{A1w(0r& zctKb`LMwZRC3er&m>;_u>({3x({nIW+BANb4`9^GG z;1Zu#^8*L*c_ppv9iP}W8{=Z!menFXJcrXxq1i{dW)lrtqH`!eY!IEd)5_k_8L#pQ zxBINblh?DenzjmMM_>7baZ7mm`Ei5rWN2mY@XU%^y@_n_S?FA;N9S_dC={Jzb!#}0 zs3ka;@uLR8xs+Cp0jGs~q{6GHYB$ofAQ9d}vRA8bdxxW_-G-zZ#ot=JU#v0;b0OBh zzOw5Fa$Jk`>sE;luf_Uh zRicFplG=YS)_#pya*=rzX~bM}Q^?0Yxv6KU3;P|7L^}%m=ZudHk89JoFW5#Ob9XQn zX~{aM7vn)aFNGIq?Z8I?Ce5y@atnO4{Wc`Xn#kQ!(c84<>p?k$x7fKOB0))yH=C+J ziMSz^^9F|lg{LZt#a*5GhpSVTPtbXoYT;N1gtkf z!0Pw@R4kFT+-ZDBAY-S}%HA2X-V$-A_A$mJVi)TXyO4GbMJ$s%Vot)&=OY3M`v|S< zov?*e7V8g+J*EC)How}+Wq0U7yNxyv1ud66XrVDOquuNX?6On4rgT;QG2h%d`Kan2 zr_}yfUi;(J>L2LmqQBz!SB$Uh9X#tIrY5Pa;%_;~_gmOKsmJbd+By`wfzDu8u|-1n zD?ThR$^C*>_RiWns3ccP2RU<#g#)+UQtFCr7bB5O?>Lw|ZV_iBaj)hh1BrVjt?ZpR zt~n@WMRTx7kJ{n1ZD?leKyy&BL^5_L9}>ve+i7L*jB%w~snAdplLNmHW*W zVSgdlW3>qP>T&xX?H!8S>f~#-F<&HY-{Io|Y5Nwf?47nb5N(cS+~@Rw{h7841?-IE z0CO+j{)rC-Wa{)uc*3*`u zbgfF3F83j&eofu+?6ZzW$o{GT(1Y~TG}rZta0xS)*Z#DdLc8`XZct_ zsyCt+CHVs89!5J|$MDq1xJ|K{ikp_5^P$HgL!NWxC#BLWF~FRkpIFl?2yBqzfQ^=O?> z+l8W);3{dw3dz(*_)tKm&ZU(n3sdrp#BF+}Zl>*;2uwN8Mtp@21!U^Ww6b@mu&yxN z`nM*+$Mt0WiZ%@;E5WWXG(_gCU+@8eeEpnO_Rbe}zN`MCgKJ4^msRTK@YO~lndUIT z^IcI(BxA4SLjoCl1+DCzG3@+9XsCOE>u^12htl4msVu?s55gBo+uQlLK-%6)D|@Gn z%4n|TuGMw*;h9j)jWv=@I)5?HY<$l51e0BXXwv79SBv*f(fp?}Qx=?PJ&LkFn#I z=8dAt&(~@+|E#C&Pqc$5ZEKP{G7;mBB<~M=bRc=Zqm{jrhplRa2h1(l_DZXJ&OMDp zGCgO4s~VvplCRhE0fBt&PAhxo%ld*~%;~SOlxE>|oF1=ZY0uDHmf(dcV}3}wj^^V5 z={k~D_D&b}#`l<;?g?|f9c4ehv-xAC`LBD%{LR4LaeuMXOt;p+RwKE| zx}NOFLVhGuERAnXRh45i-|Wt% zKI>Gii;KulJ(~EA&=YbPZ!nnn@PkAIArT`4D+~EhKvove$|C2@uS#?dDr@Q24b|w% zQ&FBL%9-&hFJ#QpuA#LT{{9k$R@4sJQ}puTfOw^8W$$>srE%TYiPx%JkX}6)!v1bDSg9V?Nk1V)hQ41=#U=)|S#HqL~ceZf95<&m9Th5-30SLpz5eh9A0R5}L3?Vz!MB3B>GbTG=~h$WrT2A-8@c$XRebsE6x* z+AkEY4*K3GF@geORtt860zBQKpK2_ z(y>+BU3au`amWJgbUkP*X!p>Rh96LCA*D6iB5_;JhXvxcj8^uJn{^m+eB8!Xi!9bI z(6hFYwhm>jFOdRm>?b(pi3IIDJ|+;fb7*DnpdEwPYU3>xS>)ZKC+{ZOOO(8INs>37 zNfN~y`5-|QZ=jXEqiB7wWW1c$u#RN0_n4l&M``m=_OcydueR7IVS9v+3WV)pTG=~n z@5J+-SW&Wo+qqBOrA{*v$@C8RXTMq~>4Y;9x~Y6*Aapy@%HE+vw%Y3zjC;xLFg|Vs5LRxy`hRD09hd zy^rUPgzpkQIuO2#X=U&5y$i42Bz#$$y}R}7-9>wdvNx1uzH^x)(Yuom4n*$`T6t2V zR~jC)(%v(A^q!_YoS5htb0m6C@xg)UJxMEjM~_$_87UN3WlQc;ZZrDT{pub@BAI?Q z(FKwQS0rrH`KUnHcB7TO!)9G3<7_3O<+7F7mg*r}LYsyrwjhx?HR^_hYcU@U2-hN7 z**jd;mk(p%vhTxMtEZ|=yMF?h9bWl(tQQ0>l`79>1gyS8uR>ha>B9Hh$YhcZX48!~SPR(2?Y+?MF2 zGCg{%1Nv#9$@6`1+tD)`sCDm<+kiSP;gxG=@F9RGpI%jty?Cf|SHxHsEI5sc+_w{D zGY+SRrV+fDZx;BsC|N1Eo^OFH zIqCCk;Ys?VI*Gu?-K)(Jq`S=3oLh}`g0Sm3S>d~6VKMAmi zPjW7-cp<4en2!ad>dmyW_pAlh@9DzOdh<w0}HI*>B0I9 zZ5av{emaQHTXj1mTfgSR0onQ`t?ZpGFk@wky=e=q-E- z7Lck}(aPSbnuFC_z2ffVBlS?di?$2RR`{31_-tjYkW9Uk4+UiE9kjA{rmTBh;?}i# zbA_Os8Y-+6D_cW)wgze2P`2=Uxm#c>v_vvCz=s4f)<-LQXAGPTd*wdQKkDK72ih+b zt|Vu}iWicqPw}yURBfS^Cl6JH9;?Rs7d=(qr~R53R26z8Ro~@f0jc^nt?ZpD>)3Sc zd{{JJ!L_jZZ#`E3MH_}`-(wN)|~LO(AsZM z-4*U_B$DY0lU#`(^+VG2Mm`>pt~b!i-su9fR{#2;f{oV6dbCcU4VwsAt7?Yi>OFig zAXmrG%HFvG*GRJ^*YUp(>B;&aZ5c{dl53=OJ0x4{_;5hBhG}K*Y=Jo|*CQ*fFY3wq zJZ%_CR+5!g)eOni=lEbiu0BI6d*=#VZOCPcb^-rydaQm*`-Nhaa_*g)y zencxz7ODmdJ@y{-%kt{l{Ut^snc6)`sw!Scs{Tel`%NHK|3@o(rwV(ssXHI!LYvrJvO{Yd*7q(b?Z9&~QzQ#x- z(>Nx|TB9wJwO8?BfvoLBD|=@RJi%4}L`xtK*}O~7**j_5(43a!39g7GlCgL2A%Tp& zjaHs?jEPsP2lb2%(6&t|#$0b$_wgZtjP=mU-Wjt#_!e8A)h36r_lm7a^B?q}eTw!D z1#NYLH$&8u*_bafqix~i0%`jst?ZpPZq{_XcKv-lXy2u6LqY4ntm%IH`rCX+AY)IdGW44ZV4#f=rK1~bDwzb+K_O0zLlMg)U!6JM z=>8EO5lGm-(#qZmv%VnMjIi)6W~&c)$r^PZ@Hg5$l(fMPkQO>4yMX`WBLj*1A6nTv zaooJ=c+LA@J!)?@63Mij9hf)WZ+joWhXgYACR%yYF(zL6{(zpb_tUna>8vA+x!(PL zA0HCP*eSHKcgEgAb(+17SHM4}hwP)YZzyDa9hfuSZ-RfAj|rsg?`dW4lySQPqc1>P z#o4WT(7sArhl19DU4c6+42`DftsGt7U4-}w7yK0Xk-FVV{0q2p4U>pk&b z>xug%?Hfv52U1(i>*D{x#{^RL@3gXa%DAOk_gmwyDXQDfR~d<9dVvls)yBR&z7ro6 zNZQM3W$&bM`ONhW`8)NTy@U2`0_C%qSIOVT#{^RL7FyXmW!%Dsfs6&T@+4!-@qYQI^o(txZJR)hxnDE?Bp(vU*vDyQ?~H*TYN#I$a=vZ; zT|H&rrj0`>OY%bv4W`JAfN%0aft-DvR`$*rcZ7TFRcmW)<3IJN{gL(#MXduzxW{~v zwEdos3#9G0w6b^FxNg(^Ci)vo>TdH5Mq<)-o3SsX{~aF{NZRXYW$&bMeSqV=^!Mm7 zJBGFmO=%tI1Kh8tAH|0RGWKp-**jy0Q=3oL>)6%|x=xSVFzq0U+nVIJp)7agJX++V z1Ia7U%HGN2*3#DH3VrJ>-ae=2?K8A*C~qCu8>o6BDf=frCXlkLXl3t|adYT~OxgbA z)=%`1{fM>=g{%W}XvGrA*uU~2fsFltR`$*qc%`f>h5b!W*Z!pArEE;@`X4?R zkgLDY%HFvGFQjrLtv8p|{pA5hBANa&$qT96+3HPvEFe|;(#kPZWd^P?=Sa@pGJD{} zqq@3QZW%ba_Qxr;KbF`2IJNpmUEgiTQ-cm)x>LcbbSgVI)QHC?^muII{RO{9|AF@75wSsl@-aRT5R{M7$|Bo+ zxGK>(qO2F6oJ7_4T8f#T;dI98F~4EPTUr(H+4-@TjArMr(XOF+2fywZ&O6c2e~_JypM<-9o8)e*)>M=7OZ@*L)NpO~0g-V`yrjtO_f$ z+SJ;DgvZKkUkmE`x4}xWwb?$y>KwV3kw~W7cppylXrOj=Hu}Fe7$BzIJ^2tolwV&} zj;+r+HV zRU%A$HD)JQ;@hh+@f|xD^ko`;^HHET8jqBP;d!*p=oEeeob-~!)s_@RUN zo>f(z0LkuvCNxBT-BB)X)N^qIZ!VbVR>-iu+LawEiMS}Zms}f;?t8qHH z65Py2q>l^MXNvJ<-EWOa$_)1e?K7I;PJ&6!Rim_0oFjBW@MHYoL4qHxD#zxy4lcM^ z4Xm^!@)M6{xm`!pZ0u|#k}3I5Yd0Ga69gsG_%J|9rqaqH&+S;1=v;%)^j9{vywuxk zf1T$DGgf7~IgEA;O*i-wE|_kjM#yE6g?u0&R10Wj?@%plHfxP}S;}R5viZK$+HAh3 zu-011&FT5d(&nLj;irXIz8XD|sP*zOfvBZvW$&n2XS*HKVbBu{m9rz6R4~$)8Y&cW zb9*e#uF!L~m39v04F855%9+Cu3E5^oAP}-kXywTW**qJvd-RaqO*=P%Ae+}CA-jtY z2!!lTT6r=-WUB=ClGuNuC z{TW6gnFjLowl|PrwIGq&gO3A5YC5eviI5WM>Ucd;OKHQZ;7g0V1`AR`!n6o0=|3^rY?et?TqGT|+yCvh?1z&v?cF zIn{0B0{|hqnpU0+5Q#<72lWu$PdnuiqFx6?+xY-Mi0-46y+dTZBjPB*GlQ!#J(Xoq zYn^J!I&}s9BJCH7Qv0`X#%z#T=>WpW5WsO}8GUIYuIxX0H8Hn=wE_ zG@B0qglHD6>>Z;0o7P8JSse8|bb%hD zjkHxBF>+?3^Y{orjLxBzy<;@Hc{Va8=B@hZ7ClEd(O#h(;iuZseY|YN0-29)aacckZmWUA&sz>-hK&T$3mAymNd=q7K zKS~@m*m=FWg_~w1lBv7fzv3PGAd#BN#{nX>Bdt7%kP@3Hhv|`8NE?QxspODyZK5pT z;{cJGPb*I%q{JplR*zIKZJ2+gT$?CqJ`ND6Gihb-NFCg?EUzT|;k@&d-BvwRn`z5X zs8+Upu^{S%ocu1~BLT6xm{#_VRr9r{qFgk%TaVLSv{fih?O%JUI3O{)laBzz=nh)h zJ4VeH4Jszuiw4i=IeMD*3gxK%iw0E-BuG#3A%Gw~Nh^B?X>QYLuJMSzwG1_5gSyAt z!$>64UP!d2^Ra+v?M5qmN9&!<(JBY!Y&zvQq;FxiRFByb+CVgM;a@+1 zF^ly@BDa{23q)=atvrd56H5(i^~jZJ11BDGuBC@Hd|V)Md0KfAA~(8FD3H5GkK8ue zz=?xg=!?v9SMza!$X!V*dq>W?o8ED%s(wpec&^`?Pw&^0ww?A3C2dvP*C&J>60rOD za6rKBrIjZiU?P>hs0Zu?+P4V^WL_@&P86?dN<@-FVJ663H~4iDxj^ z>isM}91yU5Xl3t!HQ%V)Ybky#?S{jDK6vV0FgS8R-QyiiT5Hl z>XAB+Hq1X#u2uYV_&7kM&Z3pQBV~R5C%%v$dp*Fa<8RV~bt7#X3Ko9YoF;eU0|Fu2g;w?s8NAlzI9|U*57%PaF*JWAwk+X3Wxt3I1cd5vTG=~P@Un#K zuzgui)f(C|l&Zv*C1TFp=lMuLtX9*?-m!u=r;B;}4UTPksII0BL!nA+bK3YIr@t%t zI6$N>r zMZZ0FhMt(yd6&U2Y-aHdqn3z?cp}(Y!AAwMvz%5IIdNH4qH~|3gCPrg1`1|3&f1l{ z$P8EcHM$FE)6hwl_*z(Nkkvhr)!RlsCJ?dnXl3t+z0KPEj?H7Mf^xb)(~~L;o7>?m z&~Dd*b_;DC3ff@O*{s1CiQ7$lWFT%g(#qa(LyL;;bRlnl$l?h-WslL0p_CD;`>mz3 ziXjrNNBMw2xE`UEy~8yR&1F5=ps&~5Z)v5mUC&X^mpdDYWXkydq|?}_DH5`2d{7`{ zQ)y-IklD+!u@h!b!RG4-Jzs~>hM@_JI3?Cv0yBO{v=;L5fM_kCl_w8cnXLUGjGP{= zEN$3?LCg3d(dy;n0ntj+%HGj>2RbzxEBjOBqWK1O&{xO@Icti%LeJS&+C7xBp`@os z+Z+kqWaYl$yk)IE`i-NnZQB6cUO>>V-t z_ORG$tl#9dOfgj`_L%=1EDUDEYT2`T+@7HgL~$!6o!T7!Nc5iO;{(xqidOcH-l6D} zn$2g+*&vtQkV%z?)2qem+04IJx1BSLL^5sXnxw%K?nvzR;G+Yvn@%fx#|~aWTU{*J z=Yo#cleUz03{7!~ub@>7k#H^H0|Mb%Oe=eb>j*Tb4F;<-snSSKDqqN_@|iw!L+6P7 zwU`Zh+Sbw*qO=Vso!6WWN&L!ugdl!vXl3vC*{{jPR&#@aX;IguGV6w{p5Zz@bJx(m zq09{=&)ldj60~i6SRiOu)5_jKgLeuB3q6^XT*-YiGW*`1_-r)O*vQH7`#Z^hEkUJA)&!hS0rXH@KJ%7Jx?op$L#HJ%~myZ z^v7#WoZWiX<`{`&n$UdW6K8`p61drXXdrO2XywTR+)z-gEPS|EJxT(; z*JzCdZaE(s2;4GSdGY{Pe<9X=8u9`?a2sjwCJbG4&34Blv;PS z;RK*HvEHJ`?k3tn6uWZL6RXQ03Ez!;fFOJ~(8}K7v#+CyZ5!&|I!;PHrf2R^+BlRs z;zKyq(AoDd9uc%s+|K8z`_yShBAMQy(4iDJ>WxHh zDjyq&+>W%ecjVwD-ukatuDu6P8=`)NQ6sM5$Zbp~=+tNFsO%A0vq1 z#k8__1mPv%`s`usb)2`nTTk9yw09_ZiLb~tS|fqGlMf99?habnJ8+B1oaZ=QXic`y z=;3>s_7R0|Lx<9y!zKyhQ+${ph)>eW-a&jf38FY{Xkj?x!|GOc4qPB=u_Kw=oWWIBrLbP(; zT0MJZ+DVkXvpSUXoJPsKw}uZCgfUMmdxsHz1EOAA$DZ1}Mo-{2+CG%P#NU7r?nvye z=A#3#yOLJ+jvc#e5p&|{em!*CY4cF%I<;#t>WxJ1K0Y=OxqE44@5sTgPmlhVN6#)= zQ|*g-=3b!PLzzqb^=aE23ElI2a3FNg(aPSTgI~sJ@OAVTZIL(UBkIO>wvkAtu}%DC z9H&DPzgc{QAb$JM%99Si#v_duek=6&EvGF+6JMwBYjjBBw~UVv#P38}**ku0l~;Kg zu{W2sUkKZ%2k$)EJQTc6Re7V{NaW7pV*`;pi&plI9DJEXeL5*;@})x2+?Eq$?KiD& z(qnfcZ6JzW;+IJ{{Mj;m*~`18bXEQt`1}m>AK`V;H}HXi3|>zwduNb6dR#6J=hH#i zT+C{IT7!CLaLSxEd-}+ zRJR>djYKkSN2j)R9X3f2cjUtaLEM2>_6{O^EA{A1i|Ygk&vCq2L(d5l2-N(nf-y&*!OzI zX)8ACLA!)@4h1cj^j2-u7zx|Od|)7K7t+e!VS^{ohVs}-Yj^2syOXvKr7iIZw80sP z+Z}vlAa1wO%HDB*Mfw{4-?L`I4_h+ znNsW*2~W{;eG>hs&@6fq&UH0P`^r-pdL5E*P5F3!@F2lUtI8AM6NCpgBO>yhz38_G z&(^cCfwvd@_TXvlW+P&Ppkyr{21rSnRu*|~O;w_E9~-n!v5Q|>cdEXo)IYq+T%w*c z{|8p>_60L!6h(~O7F4dDAvGDqt z9Y8FCl4%6aZ2zQK zPvvzpBwR1j2y6o3dVyB<4wwC+!#Hpi`cgxMY^h|fMR!b)bM=&UCq@}@qbr%ga+WI+ zw>f-NAa1j1 zg+jSM<(@$=(!+KEZ5|36@wqNCw>5eqQQOGJ1fq5xt?V5&d?GCsdMk&EihWt>Z`%>-X+L>j*td zhtY1KscA*qS&ChvSjYzf!nA-^_70Q%u^Bnl*-f~$xSG>bm8ES%sS4UpRnsMjUOpNS zuQaVZ3GlL;ZVRs~^muKhZS#kh?S`zXHuKSdcwIs(d&jH!#!zFMZNYVq9Z0?WWp->sdWq&(OA^aJ7G8wB3++JIHHM#*ZGo1EA%dHe z_>e$uj;EDHE?iob=-df1>)rKu!0Lw&db4KRvhv-OLO#e@v+jq@*p)}g{+@Oaopp;z zCa1AuWexVoY4~hDJP^GNw6b^fth=(BqBk^LHs6&h8Z z9~B7NgS4`D(5&tA=Aad`gQ*RfV!_UEJ6))rU0-e_k}3W1Td`EQjd>%Xdnq3q2;CG~ z**kPcVy)#^*)p8Zt{Kjx%x5V}ne=cuJ7VX$x9Q<~3vDBs>+mleY2cF{NeJiiF@g|w z)5_iJsJBhtR6jd0c{%!9ez5k73e}wBxGmsF@cbsPAhwd%sL1; z4rHZ5I%^i!Mlz{VIDAW4Zcz_g zfi@0>E!lKeWVK7z7m}Rzn+Fo7zCp~ai z(FUTx;onkgrTcWbBf-0Zj}8QHE3NDuyo15T-Ja4=E?c&8+rR2j`vGkkiW+|1ODm|= z{E%?n!^Z={bvLa%iQsZfod2VT>o2rr69uk{9}=!-`FKFMo}rZ|4P2RZLqXo|Hs7>K z-EHn`B$DYilg(T;KO|f;`FKFMX3)ys;j-@Pj;+TUj%Zo4<0*Q^PNJPd6WBnaC)gTn zk*FQdhXtaxlvehR8hR?X*PP}y7ob~^{k&3|j zmUUHVELi=SU?f{IXUVKt@hy6~=JL;DLc9qzW{E_sn-2*@Y!0pLJ$Ip1SHEjnHPG{Q z25s5Im>6q*NVrbt;{oAXK`T!pxE#x>AJ@Zm5pCH-fy=$DdI28~2-ikh**jcwzzw17 zA=a$;bv;6>;}8y`mLU=CurAD zwvv7Ke9RJw*kgQ1AYzZw%H9#PZV-ws>IVxW8OJNXulu;VW8Bq9B-1fw5?x0fbwmQT zGanHM*fd(%J78}HC&r<`UX6ISo~k)UPys6fzqX=U%Ap_j9aS~~i%AJsw1X&d$zIOlv`3=1l@AX@Z!@jz9X;z~)UmbMsJFv;N0$46p1FHy>rm!aCt9I3 z`XXVwn~w{G?Jio`J8W#8GubUwE~IMd&dPIt(KGif?I6lrXYyQwJrccV`0zmVo~D(( zqX*}?@h+d*_Y>+)bf%F=rV~v#&o%fWVVl9n1;Vxmt?V5(@T$x1VxhdyUaLJx&)D&_ zV`yGmmFQerwL_w{ln)0)YYDCF9j$kOOC8m#g3JBIOsU^=rP+L+HGQ6~$7}=b9*S8$ zQOtxj61lZ}XdrTBT6yvyS2owKq*LLQHWqSU&?9#p?cM}I&bCG(cMTsJh}dD0;_ zcHfAF+|TsLJxIGZv5*_HMk04V9~y|M_X4dvS&v&_{a*Zuzoa;|Gy=J26`$jzpey(9N7w0)@kl>We&&Gq_s9-Q~O zJfR2gG1@s4yky^8Z?Hw8_9!0~h}t8x^5jF!@jAk;pHz3UI~$2)I@u1P=6)+-8Xp#j z+EiM3vZ3a@^W_LVYKPIzO{lCEclFCcJ}eNm1+=nv)X+`*`b^=zmLsQUElXR6vX<;7 zexomP3hm|N0%1$j%HClkt2O5(9ardC+e$l!veuC)H14jB&3srOYM0Q;lMyv>Wyd{w z)b6I8n{cSPZtl2?4+})?PFmSJYH#6|LL7&EpVfo*4DA~VT7M^&KHT?sJk19MV)hiR z>>V@oI{11;GIn=`waPp5QgsVD!$>64f+l+%yzPvv*7o2d1A&`PD|-iytk#^DdmOK) zZ7J;>n%O#1t;OB(v4jr`L~SvxJo!*_tgUU(qqdfIZi1oaURx{kVS%Wvp_RR(hF;E4 zpDe`1AJ^$IyM}fR#Vpy&8OAJ;6X!NQBoMKyX=U$-k(JumoflT6_Mo1$`)Tt~(mGP9 zjX5KM+s;P@0(T#+>>aqba~vy3i60+HROdw>lXl3t^k>}b*UmAC;uAQ!@Z3XQg zn%6pVt}SYg#BMns9EjaATG=~xM{!f>sI%i;A98`7zm2q!D1YlaF|RsZk|3VPM+t&> z4z27RMD${Zu?eMiVUqJQkz4cx-b6cy5}5484o-U{dN=anf#}^pD|<(;#T?jhcZStl zJfem?2A3p=kML1~AU;ehdj}D{Ew26}cisK4^A>eeJIzQW(`qDpTU^u? z3EEUXDiE|CX=U%AE#j&^aovHH?GDpJw~#gw&340`sQ83K62Jv~gdl+PX=U#K9>D=v z4pwJUL9USROF3@$&Fb;%r7cA9D|G@t%O43}nvV~J?@U_RJAC9cTP_Tx?C-vB)g!l= zHV#FuBhzfv6$#oUd{iK47t_k#K_gF;ID6T<^`zZJJBO0ikrO2~TO?|C@?n9f-9al) zHq=I3UnY7+kJ{6;a}x@+nk^Ewr}(fy)Sjf3Cm(8#!%H(RQ@5#m7>Q)s)Q)7e5!0@^ zz5+j;4+}(XH(J>{YUoEIEA_9{lP=X0wuCkeO=ih{B(ma$%wdc9Xh5(Q(aPSzLQjxb zjg`gNT0LWB+B=l7WKWP-#z@@O@PUE2s-NjQ4iP)v}Gt@=|q=jq4dX8514%eaJUchiZyJk3(N*D5_OnSJS9kEOP zIa}3D>NHG5U#UmNgrm#W#Hu6 zAE(s*SYG?%)aoB~iAQ(Xp=;nu^Zzxl@5d^$P74zIjY<4wZ?Q0#DrL;XoKM^H@i+A(f1Q3l zD9KA(n~z;#%c=Hue%K(ex6sN0*e0mVZaXV`H5Pa$6pDkTqt*>&Oh=l@mxJ7vjaw?n z)_x1W*F*DL+9MR26JTial_0HU9~pT4*?jvYqnY3de&`@Lk5!cic8U49&+c66IG_m* z-Kk(zI+Yz9Y6RnTpHf%%yBdjPs{0k~1tVgCKxAh=2oRBJw6e%8Q>zl4W6An#xA=v1 zuL{cP{#51HXf1oa+l;idD&VK>$HsoFN6>zudFK6X#wm0`&Q*u;QGh%xq?IQ=PkqJ0 z@Q{nAf}W=w?Uyf}LKh@Y*;*8r?btP?tMU)=3qwED(n}lV9V~0TK_;qf-W&)pHMEPZ ztMqJLL0g8h^?^3$ssM&!NT#0Q;{cg@npU0!Ox0>CSDxDU za&@6T(?}%K_q9DwMSPG<&EVqznc9O^_Rf@b@Ih8o_4fh8-pA?yPtt>RJZ&4Atj=un z1SrgqbS>qB0qI&oD^D7_!cNGd>ufz;8)(}+(-oQ_=~~MN1JYHdmA%tty%-dmyBc~S z3$QQf0lSWN4h0N9R#RD;Yr0V0T~A*Pen`fy;o|`r+eRyUXUuxbF_y7tYh)qzGd*Gt z(#D~P;YUv?#G-ac!tUq80SVhqD^DK6B8`$o*h{Za7xz<)L^8#FQiMh9kc7QRbAYaz zzCbHa9>OARlSSBEJz?FGj)IJP}Sw9N3JA z$Qgm?`I#+xHa^MQ`-*J7oGIqbS)L0v?O4q84i~dq2A(r#(l+g6HnsW-=C1}bTQ;56 zZZ;w&2ueQAhXGP@5v?rp+yzw$ZwDphudI8Od47fATrO)(px-tlRUVZ1ChZrRY}yah zm<@8`{5l^72-NMgvUi~NZ9~5yVA#mz1VJh%JfH37~W$!Rqo7IkKZghh-rV9Uzo~nPMZ9}QTud_j^vfYq)UByQO z;&lbB>>aPBYbc`|XpWlvM|!gUm39mz3qM>+ljSPSf4~O>VmNXN{Gn)=c<+ zdb0k9whbjKv79yLhRj)i;iCcZdX`r9j+b>JK7LAc)$0dbsc!z>WF(Sl{#LfVUawDw zF=hL{d?X-NGihb-Sj}zP|JBWOSMTrBgLMjR8k)0GNr4qx#Gk~+0-|+1tsH|^3mbjm zUSVy&rv(X*dxiTp5`Ic1D5m?f`M%ig!cXX#-b6nwlxci%qcj?*RqeVBsM8W|8h(rq z0Yv$uRpp7WX=vS->U1WuWft8x{F)w;TX~1UeM9^-GzCe-3W3X4`Cvd?{+U)5neR(g ziO%gFz5_@(qb=rez8H*Ta;a>-C$rA#2!3P6t=voeHSHdniB`k2D+gJ<-e~Ye_6EP? z;{tj64_etfZ&vH+&SMRRTA;o5Dm7@YF%rr22R#Xa)?kPv>{Wa~AYnVv$}xnsP>6-K zTx}X|LBeA#H^WY><=86jI6czG($5Lao%n4^rA%4WZ;e5VsrYDq*dVw^R+VEbx6Vzl z)@h1UG7XkQ>Xc~7Hlin@#9IrNZ0{wKToWQ9;R`l~_y9mQ25DuH)CO9W2$Nck(8-n5 z_O_B*!F;NBoc8oaE0>jB8=q$;}bGfcScT_#njBR+VEDTnBIcn$r}D z$j>~QQ*1giQN$kHZn!D0J}=ft3Aq@=*rltz2eZ<=1Vs zp!4-;9l}2dFmK`K6Y;!Nw?XoB5FZA}(}A?I_pJ5K=JQ~E!Ki8SI#W;BO4>lQaKb-7 zgcBBPjAZUKJ}{8EQ)y-I%*}(DbEmS4^`KoyyM}^>ALO7xi_K`~^U;8GeS}typ{s?K zG3+{PZ9@wZ9+%Q)S&&!iy;3=w4sx+eYWL{5zMFntDA&Xk9foRmpW)v$m{4aX+#J1& z4+8}H&Z_c6=s>LlN2j>GiL_tQF7z2aDo^tsgVh|dp%4a*p%Sq}K=TwI5D3kaw6e&8 zk5?u9b)%ut(O+J7s$RpShs{eU_V(zEtJU4;9!4UWZWRBjd^N;c>O~=Ia79*g)A^`C z(srYjCnITD`z4j7deWBA&Y?43r%21@C25QKs6f&d(aMvJw0w{s6r`=ylUAmkn@FV9 zT#=-$;iCdc%hSrHq(seZ-4@lRQ zwDM%3D_tlS(}hg0wUB$ip04e*XA^<0Q9mSI_wn(7blpoUd#B6ZA&9B`(}fWWtQYlQ zy+GTAf^`PI`4k2WmixvE$<*_FC?HeM(aPSLLXC8Fk#qh@-9^qe63KLt#A+>%Rn-ki z)+|06kgR=Z<;g^rsO4Aa$y!c3h9<0}$#Qjz%lK$OvQDIxy_03Vd3Q?q`)ybO>o=?N zg}!27e~@jX9AK10M}Y*7daVWFc!X(~}MCmDES|WIaMVHWA3Gxgp7Vn2!b|>mgd%J6YhKV`Ysn zBhZ@mX>}n#)kq{$$m5rz^UGRwJ0x2>^5KAN?LaGgXA7*is%AP8*FrsA3ux2O#Fb>d zHD-w9Yd#+k$k!pXvUk3~daGim=oEYPaHVO-P`Hw;w`y)kvd-kA0m)iPD|;skpB0CS zg&u3wbh93F6P4l*}9Nc_Rbc#lelI$$d|J@`=hvb>EXJQ_6&t9 z$(_VeKO|ju@bQ3j-9{^Wr|WIlK6U*#)9CiBmBF6YL-rJH9SYe%g8M#}Et0h-`LICN z9;cNj8Ed1PwH9l8Y*Y7;(~U$jJ!A)18?{BUwi_Q7$l5NnvUk?(H$-CA?(08bxs|;{ zkJ)0{H8iCW?@@+vgWXT)h$L(g9}!5{;k2@M!ro5JoMU?;Ryr%|Ia@<}hjK<-Ak`{o zW4=h*@_bw%ZL4Wz@3dJTKRqS%yJ0V~{_Aya8Ew;}b~SAriduj2Ra)H6(Up8qAZM4; z%9D&U=LXVtJ!kjP#!Vp3;`Wj5<%0q_`yQ?AoiqEci}CYWb%k4OC%vEt?RnZc6tpDY z`KV|4x+`+#e2$L_B<;_%vUk$BI<4xdV{>WtXVh)yEF+Oj+u4CSZOj)*+dh0;AZ>fm z%HCPWwdh>E3dit1y1Cn0!cfLR`yOBw{knW9B#Fr=jl;9hqewytplrR zqqfMbb`~EN$l7{ZIfk_suCoYl#Hd|k(1L`=8!@bV7?+#eh=etElg|u&J}!}lkgUdTlnFF5Z_c)o(Q*KSZ^yie2HB75XIvOJsywo{(?7P z;P)`XctmUvpghV40)p}gtt_(L!&QmS-F#tn3@)MyLzTN1gIuaFQ%+@anZb;Bhj-V{ zsyl|AjYKjXLm#}{hU4Y(M9!ENEA z9Hi2@pj66O|0O6EgY^ezN7i>o|8Kgh|8sXeb8p$SQ;<*h7mE2{Fterq*1B6^k$8Tq z{NDSL9l8dtG$ssuq$<%F*LRv3^PH-WW0%yTiYKRL%l)ng^CkMh)a`m~EY>g3b~&Hz zz!gTP;n8fGD|2MSlkAqUiHCU|KRPhYT~k$#ea0QUdHoH-he&A~t?++lhRpp8#nXO} z_tRP7%cp%P{j?)disybmKThzuZ>N>(g9}soeN~Cr+}lFx9X|<7mw*JhoK-Hp^cpoB zQ;bAA>T?OlTX{H4gtF>+k$!laKrCLMl_w+?`SlhSbM;tsPbe(%>m?R*_z{9w%%+uN zuxO!%49n2kT-Aa^n6tLE%6B-5T2-VP#krbMm|}R*%Q{*NPdh%yXNQJ!)h|;tRK#b| zKPzX|wCNa4MLZZCT|@2VD2vy(N^)2hk5naMOQzTfv6W_I{26iga7K)MME^uTqWVua ztc|atJ##+gfs2ez!}Hk`TP;POX{11Ih_XJ;u;saeA19dqwpNv6A9)9>i{=?Iyrgs4 zA*)9Eiy4{{mS<^$&`j|z4J?&lWx4bWKUk2Hr)g#Hoa`0HNg#^BD`-Eb%M1xHvW=YLje#{^>Wm?%g zHE|V8udHCcpvUDp+8`7cRRvQCR&sI;KUk2HZM3p?PU2>z+E+C*uJrOVJueT^Mxnf@ zW~FG*lAHVaL4(|Er%z7NKC-Ww-&Bsf(4%rXZ4f#W zsVbLBu#%G%{9r*&meb1KIeBADUsM`02jQ)b=psER7tju&pe)kllxnn+l#TpoK~m16 zmA#V^H~*B@3}-SM?D^+*JuA1+9-*wL=AU}Jl9rqJ@q)D6NGp4%B{r{=gY;@EuRNh= zvifbXlEmlOc%6RH3`)N zmb^^k2MqEul~(r7OI&5^xT^99Ju8RN2BC>XRoPa8m7FZ(2McntfL8X-NnE`$oHu(W zVh+mbQOVLCp{S_pm3q9AmR^3mAT4QH**h(9S!E=fS!QKvUN{`<zKmPlguxoQXmbcK4r5aZOt7IYy5B)+4KrEj;Yo&5sStaC554u@AU|hkf_3A8_Q@YxJ1! z8D_-FlbfgWb~=yw%16DBeAJN`#Y11gj}m<7%W38M;KB)ISydwT_uuxTy{{K^qzn0x zx%Sb!i_EZ;a9lu}gXVz+EF85EWx=zNA0kM`d9<>3GWLxjBULU2`O;9KBz6k)jNC%o zgfbG_PQ}a>-8DwSU?nX#@q-0vxsg`(PK!H_%(L^z6M9A-qs>7XX(^A)b9|)eQGSRZ z8IRD)-pO$1k$FAgPs>`C+4Xw$T(h&0;3{;Kk(TmEG+3EOrtyOXX_-nZd#A;nN9Nmk zjQ#`-9R!ub_=Z zDfxJsA0^1gQ?&BLM%t%_{W!?Bh&2Ze*~cxxfbnWfAR5hP;`t?ZqQ z$kFTC24;7zR31zX51AWX?Zx-&^mtrDJA~p9dqY#);(H`c$;dW-oFF4t)5_i%*ax6VlzNju^U!*NV={b&Vg2xM7QuG2paFC+sY2_G-S~y7- z9!9GjTWLWeJi#!#)h()U6t&Y)s!_Z`GYWGg?wrmZiF@TK;a4sj&cz)^|Janf`>7(su?5xj_MSe)#scK41r_#fNj<0>*V+N`O=x*9BG>x3x27nr) zm*v)7{OCc9?xdByV|3s+`6o28G(2c^d(Y}AdWLojrRb!#Qe=Xc5IxNg9)##ATG=~9 z`!|PZFl(>>VH=|Hv6^gPxzYv{fiSZOlK;>8s3-9K>f0tvng<84+7& z*Xi-OhPKKBJ|=QGeQo1M4&rk)t?V72aawqH2lk*Io%?BenavLxgk~14>>ZlD;xo-)u+Cc8IbBc83fdwx%{V^H#HJY&vBYIL zKVlGhF7F*9gFmcX3H4;cjJ99r2sFyrMHvFvw? zo|l_wi%?$LkzZWPeK+zW264H8R`!m|IQhk~%=eg{mq%%jP+r=QU);-kkMKhVfq9r# z_72QA`K460U*g^Q%j!01nvqDR;%!5IF%iq@XevKq5SJZkZA~e0U z0~gokL4!8)!sBeVi1=zY2_GPS~%7jo(!#>25Uhg zJfE6wb<;i^MeSgsY7|FmMq$pU-q_*usYm59gXUd=%KP&T=TmQ{e`U^}$fhMt&Zh>& zVz6GGO|AaV-I>VX8qPX8E^quws~m^tQomf4h&_@Rd$6qi=Tcu6p5u>uKtH1&Q2los z9z}hSw#@mA2ktgH4UcD2>`SMSCmOlNF&blil;IK7`}t9Vsc(B#Ire#X@Ca(;GjkCy zA_p;}$4{r+s4lNxD{d#;Aj?n}G64mfwq z*;{50TsotxtN+%4&E}7lTiSl?^bOAB&>gI@zr@k42W5_tXh$C=L3yWK7Zgd~ogylc z%KmFMKT;5pS+ufuL?U-vMDt0IF4&Bmu4iNg?GHMQ9Ijx*geoCf&JPuYWErjO9g@fw z6>LcQtsSWg^ptF*4MHh7LPtrz#N<4FtRN=m(8}I1iJNYE>}9`O^pM;{+k--)nQnR< z%Y8TUBLxw;fmZg8NL(h#_vP&S3?9=%@+fT(3W+9@RAQBxg^D|?3|E|(bR=2;!iRy`$~ zX@gKoG<8WOR*A_a{8&LuE~b?yGA8zvbGIIoyJ&+tgo$Iyxsx9&h{+wavUf}(7nMiX zOIBs8yJx8&Z#Trx=wW%9wh4vBaj*ehe~m;eGs{!_h(TnYq?NrR^CtIF{iuQ2{79x~ z-$gy+E9%~74>Zdn;{#L7_Vv3{&NX^+w$XN>tg z(GXnB}r&Q0ppX||C_rgc*6Ks(Q}%;HB1BC-#y>>ZJ~JW?px zD|jpPj4Y@9=|mnep~^h6j2|ip$%(YGcSvGR+4f}m<`n~b@ouA@lk;ecP);0I{i0=U zJz9y%Is9lrRL-K6y`vKOL`QV3w|@Gz^-5))pPO)Z4kxLvE^ZAj2h#W#I zdq*Uu%Q42;$60#yjHGFQP(~E1C6!PmBxmwN1tD2UD|?3|t|D1CG&tAFB%Ae=TtXX! zQlhCyDzQpTF6PGyVsas^JW(;}%@xEl{at!Y?xYRs04CK~B_?<9V+Ap}jaK%K$$su_ z!K!sBXFL3~o|dO*pHNyHw?&}~C()24G*9wF2BCSJR`w1}Or6pzzd*6a&FXe%x{*kx z-BHvjl~5%lyYWK>A=!mi_6|u*OWc>XS7Mjw8Cgu*gC-P3zhfemh%Dkq3L1Uwg|;Uv0z`1R-%&UM+>5|npXCX$}D%CQa3Nq%rX+mG(U>vw`!~slYRKHf|%?@D^FZZ^5O;N<$6q((FUOjMTLopRbp}? zKUNTv<7j2?n8chz$(BqDWS=iMPtVCYv_mK-igPHnU?nJL@q-0HSx+l_2PI}TC6~6p z8hoRkk{f7yP)Zc5DJD{h$o2e4K}4>lmAxYp)9d6iCHqpqNA!$5O#6c}qUd!hp-M;| z;)e=C@&K*u9g>*$1}n}v7g46(s;*&oG!n_wu!{Ev!+<3)JMaSrf$5@^y#o_B@f7R@ zlm&WH=F|3|Nkud96dda(hwvi>5jluf_KrwQOPnk8%{|0gWlQTJIg>UBg+$ToRAZHy zWF9?u7p52VZ#Or#-0+zt+!Vee(=GC;acVJ?!x-h@DY&ys} z?t)vaCuR|C6PjTZS6xIRmdG5=j~GPeP+EDSBa<)KcX_SRBa^3X>L4;EVu{RZe#9U$ z{j{=oWa6i#YL*cP^{>_wb0zH(N{nVPuAWw1*Xdl&4;TdIGFsU?FioZ~jZdSdRS zZ9<7@!?fhQf$4kvh(Tn&Lo0hnCgzOoV6ZMbC_dHuydIb5Xp2x>6lZMf(aP!Q&-`dX zRQ^OOPgqpUDL9GBtlQNs(mqBanHEWdN-bK6%3l0vK~(mnmA#`9b7XRGI9JXN<7@|nJ%oE@p8iQ z_6Oxeak8Zns)XcxeyAWMAEA}KLlV<07c=SXP_bY(pRJT~haQ#NXqQk_6wPuNumt92 ze!w6wU!j$~0~6E#6f=WCHs2$z(RfnN%j2|3C@+fsXDnWc%dhzHg1G#GR`!ld%wg?f zVOV_MaJM_u&Cf1IBAMn#aag+=tHk8h{8&LuUP&u^$0Vj!DP{Ze)&#UjPs!o5KWIWx z)GC!wB_xOPLj@suJFV;;l9=|`T!mmUlGih`nzjdJMA06bNF^fu{76AWGPJUHL}K$u z-u`gQm3l@lr~N@0QRR`mwq)2~}p2@9;wf zA^8@q>>ZMrt1?RFOB_XeOYk{8CV!?KLNQTXl~D^;g7PPRuplUZpq0IY60^fo8eUZ{ z25I{g_C8-%H#vJ5iDa4_#SYJCxDu8<`Qd`Fyq;F}4ogf4TNbx8ov7#JINBaGr6@{R z6RAYxSbn4+B1hB8-Vuo@VU2Ni344~Fk@d7cC?kpzwi2p@WP~3o2uX=n_6|wRvYMH3 zhBjEu@b!91uB8n^DN!t|Rb!Qye3l<8h{>mE<%x^Qa6WBe@{k^r2WW#jf{BS$V)A2t ztRN;oq?Ns667yA#a?x1l{wl`~-%yvaT}C3AGFI_bj%dgdn!nPIb`uEA|I*4a&}0U# zn$gvD_LkWLCmz++wQ|eA$+bUDsr|9M_Q$E!Kk5>X?yy7Gz?J6zYhe4AE03fFiT%bT z?yE`!no)dNKZ-AEMlrl<;HNJ&ZtSwOtLuPsw^Y2m)VR}s>%eC7hp}|`n7^1kuxHHQ z4D22E7h8?wrm0KJiI!|8UoLIgxTW%MtUZns=pUIgpKdz7r;sik+!K_8R5}-wN*U|F zqzn17*}TmZ56+IP?~eZ8b&vg3ci-3$H|-SU)BS~FJ{Zhw>A$s3(YIeRO3{1hA9h{h z-Z6<|suG=f0z1u&dCb*EGd*?Ws5_@-%l+;LwT6CB^@txEi#Si4=6u!zD~(RW1KQ+h z)*Mf@J1$P~cvtfy1(RTZRXO&l&yM}!weY(e|EcdC<3@KXSd~s?2ZwSEKh!JDz)P!I zNP6M(znpi~c^p$df5)dEi02=PSdefTKW31GOKIi$;KGUM6IF@MA#-pnGNrP4jU=5a zl?y|u(JX2e-}joqDgpW)Z5f(CPLY@VQvkW*m$lV*`0;}oL8Lvzn^9Yiq> zNT818BLIOqnpXA>RBR^71%s>H5S^umXgzHd3Xw7sMWUAAjPRod!70(o6B(Rh$qml+ zdT_3#jp`UUV^K?RKFg091n1MVvUhL}jGMv=L*?vXc0;D)51$Tuvpom*0ELaGw6i{h~hoULp|jlU?qdt-uhKBhJFW2y%nu7u}l z&zw(sV5QM%cs`pB9WNh_K2vKWWGu@1IKyqO)%-ZY$+N$z9Q(*SxDPVZ{m3Jm0@3}- zE6uo-tJs(Grnp)82AA<81~IslR;~{&oPa)2m59v|ZQnPu zYN*j4Pq$gJuI_;Z#US5jFGAjH2C2m6d$d((&RD9*8CKY`g!&FYY>=IA(aPT0nH`sF zM%gI^#bRLJ_4u3~ouF{0485rdLz%&$vYmfU)Z=p;?G&1S z#$C5Y@u@~F$vKuEHAv3Uw6b?{nq{A=hpAk4wO#w1rN?JIZ5N79Te43Wx@2gCA3DfT ziB|T`(0-F$lOZ$YvGwz`eIQOj2NNPUIj~S%q)3ma8YTn$0n%-hzFx8VA z3eu~sGiML!>3M+m3#I48cC=lQ*d;|j=En|F^g~+NJ4M!p{gL(c&9MfycQ|KX1h>Oo z>bkkhNF-A?AJZ0mOwf{>ztT^)`L@SpJ9JIys{B(s_y522zrs5}*8Zy#AXoi!h@PT@ z5~Jw&c2QJ~T%vR!KXNby?N2LvC+L7C6Im{sFPT})u7OtS0XmH~3!TM|YX?B1flGc) z`72-jmW*==`f)u&zoHF889J#Qb67NZ$AaJb0}>Tntj^R$X9}v+`OG1G|0_cX=U%+H0$3h7P|WP)p~gPX}3^#+S0#| zMJ@@-@FNEaT16{+C#YHGDHpT$65{20crK%jLg8sk=BWfNxw(`dG|0^-XywVk&9F6N zeNWHLcW9$J&CRgn=3D%rL2kZ5D|_dr*T!B-j-@?9^N!;qNch3{dc2aBqxtcIv>Zt*d#A;^&Sh+OG(4GURXFSQz>Lr~p};t< zSHyt{Lzc{x_#uPL4AIIHmYMK8oyE+xdS*UL+td+e!jL61pXP@QGV_nLvUg_Uju1u; zLRru}poiwiv`;8Bsw0Gvm?bqo{H*qV!=A3}zT-K|`&Mui(cE((*D|**h(9ebU&e5-Y_Vs^{hHv`c7;QT0h<5ldp;%8wW%W*)8V zotU_jSoPaL!W9aOoPIqy8QLwB9MwrI5xFF26+d#2pcJj_ouIf^g6lq-GfBg#Y`!O( z7DquZ(=&7_?H9_B>Xl$e?2@8S@M8xl+C(dRr)WmZ3ZLT~-*@!be2X>+#m4dZYkaN7 zeSYs7{9r*&zD6rgWKQgJdwuJ$3W+ zdLxlc^Q7vxqe07gXm@_lAUCh2mA!Klw>udgRkI4=WA)S=P1}TK8P)D&7_wyMNPfs5 zGw-66W0+~-66^3D?Ao2UEl7lyp=MgW)i4~zF;xlGD2~#M!raE)_wtT@nsnMx>xMGL z?4bGjPtf?$!!7jh%=shPbWD>QxvQ5p$}f{v|L5*ZbaV}OCpvE9{$#5phqrNmyeiSc z)y(a`j(hLaqRM@!m9LU6N|&=E)jQKmv5)IE`f=5N#^KG}H`D$(pZLIMjZVX}+O$l* zWGtU=cMyiz-8}gE@WTtczrqh6Op#x%Dz`vI+b>|A)6|#9UDnaNyMJXuP+r3P3*KMn z-Q5z8540bThz$aipYwr$p!^%HEauXmRwX)jrT6USM5Qx1yVZO3J!+g@X(ZZFx=Wl+ zO#r8g2eK-A1s?-Q(#vRN?p=cxJI z-`yV+drJMqY~H@~vR{u=hIS0aX=MU9g-*!qw2F@eq$))#d#CEn&9hU*%W{zKw-y{O z(=&A`?H9__=?O7a@j(*x2|f;xs7Nm8qcdCF4 zHB^)}`JUfbH+Qc$63H}oNo1(136iDV`5-`+UP~)a29_!)EwE<0WA!W@O`C-#rzBXa znjl#^k`Dr8>0Pw4ca{!rUOAQ0K`zsia+KpEdZJ3SWhhZ+Bv3y^tdLv{@u7fR4bsZq zxdPTQOLDsVtRARO(_W!KC9#%S@j#OFk9-UuN&i4APYRN`H~+vU4@_uX>*Tmv#*0DT&T5bV5?~-+Uw>RsTgRPX?+grIVAY z1MgM0cl#TOWZJtVs0y8sRPDz{0#da%t?ZqugPPan<^H1iP(mSRe<$HoJyh?d4MS5^ z66XuXjF3#7%m)H8bpoyIovF7FOqqtyu^jagJzD3|zM*KP6KMFx(5m|(3HuNq4@lSt zY2_HgS~x@*p2MsixN1QnJPrEA@z2pDdS36yLVhGuEM*J%`15*q>Z!hiepV>e*m*tk zp3P{Okt#PX_&O)ydA-~C;e!z0Tvd)euh+T5RgvR*F}6g`sYQ?LJ*lVTao*mx9@nGj zh}a-F`4t}s$jL8gWs&TD-l{~H>}s@5u4MPda8@6^=_&SP^2{Ho`;8e!BAI@}@d-c2 z$>j9d2UEw+WIMwa?C!x29AtNTRXH}t&F);1i>$i3Oo{xoqZw|go{A;BxnPFF4*r2u zL<|soEapQ1`B+3Ni`;g2Ribks9Ws7W>0XsHU%4I(@~O4v_4dMAYo~Fo8Lje!dztnO zEvT>#6a~sMLiPu1_&`9c^0cydtRkl%ocSrUKI6L5@)|u)+i0^;o|Z#xC(6^P0}`aG z`3OLeuB4T{gEX&6ej3c=Qfo8WzW#D*FfgwGud_1L{d%Id)2^XJVLR6-QNjv|)_r^^ zAX@j*%HGj>Qxmi*7ggBr;Jm2E=>^&;6en;60jsOKtKmz8p67=TBJ>=s>>Z&6O%NK+ zmkPzQSyC)z`YNycrUo-X-pWvO{zY9w%{CIrv}&u`I_Ejh zfSpAv#{kyC+Gn_YT3ZNfK?2?@YWrLKQ-=z<^&^4(z0_~&(fvC8NKka&%H_s-gc8Tw z`4NIR-a;!296P>gxK}u%E)L2;s=R(E6T6W9dp#e&r9DFVaD1Q8v5?*~8f0X{&>eXF z*@WALPw+zr!FjBz9J`d>xdqV3N|n=;$Vzf_DgAZ#sjK!~jYKk4JNAwR%tgckLCDU0 z5FjDbXl0RFrnV{(&U7_Slbq?=e=1_nNP^3Zm^*1>v)c*AAm#e~duWf*?B=))(3Rb) z5k^y+3|UZn3_oa)+M}w<6CkfeR<{-lM@ zj3l9rQ9&-3&J{`-Yx(OH|EkV7FEbL!^a9vrH5^i-KFF1Z zm+*0bMEz~@5fwS46-(4$VDDJJRZr7A{waV73VSt{q{(<7NjjL10VL_ow6gcy1d$~6 zeOBp7O3_}Sl~6JyxpsR#z{dcR^nO~|J4un(&Ej&>s%$Dd>|lGAElMOGX-QP^J2n)h0{0mIDL)w3dJdj>{RhUl5{H{14z$!4E%_?@1n-_U-cG$m1kkNO~q`ZXU1NYpQBW$#4I4cEfs=DT!Z*qqGD z7xI;Ffmlgu_aCZTyVn|tWLmp3q3vO=7;i8`vh^B17?7=3(aPT00_MG*Y;UiH)RB6m z-bH(bW~wCSy^05tq<8W$fF!+xR`yO3u$tME?F$A60}G}hJxqhNT_{YaC6J%$Hb|ZZ z_%J}8`eZe}u z(#^lTVhNMD|B;os+u5K`UxKd$kLB!W$!Ej>z3J) z>&V>8exxqIUt%PZDZrChx2)SBdHNgu)Hi`V{U5FDohKkS<$7f0G*3^{!HLn7L~g2@ zAX$1d9|XwK0kpDrmVlLkT&8Fj;VC^zAE3QLr@18hxrzspr1$eNfF!+-R`yQPfz8hl zHP_8&edFyG<}qh0;K7~w6b@afV?zV=&?@?d`-{Nt+ZDtOG)IV ziU*RUuktZ~B>gk3?42YaFXe;0ysqUpdX|1oyM?lpL|&@7AZhv~9|cI$f6&U_X#!4$ z=QHcdL2p^?&%O4?>Td2eMk1MRE{T)jV@61(Ud0CjGPM(}?42oKeV}rdca`{H_q+5& zy_2>JO;Jg#57cdtJiUVt1LWy#w6b@efZC~)&D-ai2K6uv&|aZ1B~d$7Jdh;y@iBlT z_0Y=RNt)lhrz;Hw=6f=|>r>@SA>ic@CzDt{hQkBF?X4M4A(zp2_K$gBqD|=@NnDsVf%J$Ll|I(xM zpR`vfN=eLm6%Qmyf8=8TN%}pl979qI*YSim`qZvuX+Z+MinIL}l+6ey-zAxRrWoX6 zZzwzHesybkppi(XwOk6Vq4w26jNIho3cAilc=zJ|{IEfA_p2&Tgj;+fr^_9lM6Rxh z-r#ep9*Otz-hvloytjQwM8X$voXiIR!f^tvEV9~rsuG>MxhHbfor|Jkre`>9-`VpK zGe+etVdv6Lp|j)3ZG@;6y_^?6#E%{%=!3L!3_&eSYT>+COL8qpc$^m_Hxn*ukJL{u0lbKT%K5 zGmJzsW&hF8^qj2(7)fk0V1eu&{E$Ipr&pCHKvJ7E4gry0b2OnX)w8gKHx^82C$)!# zNa%u!#r)twDi+boB9R^5szjK`YHUufL>9SX{kUMg`R;t|0>+1pLCQws?`enkstZKsRN;)Cm1ScM>45kq|dw=U&zh1-#`6#GhStS`5EmR znqIJ@HwaD+Bjl3CgM1($SohP)lMSqSHdrrzKn>PQjYKjPc!FTfbG+R=g%1P->&5?X z!7>*PR5O+U>n(b)=JL-2oB$I5D>Oo8tZqIK5Ue@0viFP?S?_X9g>f@rpy%lf+AMSi zJOyeGp&4*2eu>fP{P;nPR?y0m1S64_KCZ{;BHAo}7`djo3;6Ma7;U7LCkaOL?Xv0X zdW>$T&GLuQd`Go(3qO7kqnl`D?-=b9u6H^nwVt$n&BAZ>{5(Osgz|G-+h#KpxSYlw z;|Gp`b6Ho{l&;D@1CP@Giiu88uT9YF9#l7OyBdjP8n-qQ)axK}y2u?4p>>Zqa$1Qw}fAg%wbCsT)D`=Zga*l6XAQntT2weL^Woz_evkxZwBoxnv_o~xnDyfcFzItb4mw6b@2 zB3H3EdaZ2U+?g>{$OUElHH4G&2pvzmg{B|uT^0zT&;SY2Qa%6>q$RYncaX;41RLE; z6vsf$)^oIhHVfsbeVbrm{1T(J{P;nP%Czz%!ANX^eL;`Wb+lRjFmi2zUBizb#Aq9> zJV`JTn_xfFWAq?xmOqSKn_&0z;|DR?PAhxIC~^&yqdKZ2_2InpbmL1OQdihhj6^aO z_VTu^2}K={6WfdQ14nO&et}l@j#A`%2o98LFT1AJX7fFTwbuILTs=$OiLr!zlng1g z8!V78&EZ1;^U`cu**i?*uTdA}YS9^bhEAt#LMOKNtx;DZm*}kEM-HO1oL2UZ&iJcE z6$9LP=jg`t`ll}=kM32!np%Ari8mmMu(Rq{~If%|9 zv~mnOExZdGzD`?vJ+cJ}j~Aar3C`v-L2*&8FSDu`#J*Mg#-FJh!#5a-WEw*-4ORn9 z1+_?{Z`Z~;P{$>_Bkb?^7(kX^S5=+}FWE*X%Q$BuubW2SwLL~p$x*z+;HyRfwtPTS z67fRt@@_sFke4H9<^RXsn}EqtmHYn*kd=glgak-P=r92ipeGvv!Xktu1Of?xBoakz zYPxG?s?*EROE$%g3xc$48G~#hToFYPgdbc`@xq0RSFVaXiYOQa1qFk+pm5>;)~V_~ zRdr7Fyze z6|!L14m1-NSgsagms+N`1&LLGY&mhPJSR(^5t^^Mj9RwW%w@`T@iv89_2IgiEE^Us zGcLG%iin8aNN*7mvFpf|6GzOu+aMINY`GNtIO$1!vc5-F3riOA(_4CfXbT|%^<8>H zkU%|7wwyRnnCi1LXBj=+u!kkk7rvzr)j!FKVWB!du5{HDLj>#Z^u{2;dYx=Jaj?AG zSwb^aPPlA%_Aj*St3$vU6oI2?3K;o1lTYh)oWLm**n%=9A(;Bi^ z*c25TPN0K`(`tGT>pRJFPmBX^t z8&~%i6h#E>LVBZ+plu~vP8>AUR0C+b(I`{{eBG_j*PUd+uzbZf)!=F&Vs!_-El8|x zCtFS&tK%^F%e{UgW0l~hjZ9yq45#4-YxrO5L-sUTJ}hL#xRRJu84;L>CdaJ?QO1;x?3QIdR;M z#^7d^teRyMtgU9IR?lt_uBSa(AGRaO(qXfk6&GxRDk5t0=&eGc)=9RUIBKX#)eV($ za9>wWpDu%}7M8BqCRJ@AM4&!MZwL~obIFzy2MSf46^#vMrn)hgDV0l^lG$U}$NdI| z09Wf1b_H2JEMc)#XHsQE(oNIY82 zmo?BSF4O1hWU_A9%+(#&;L+i$DTxT#iS#BRAv>OI`P~6opHZn z%rA)uS%KapBxDxZa^jGosxNyW*&Z_Bg#kNWdN?TTUD>)Q0F< zrC!Ry`B*u7GAvMn{ZpT?zmsLd5*FKrXrCe?Vz1L%ghXs7*>d8Dp;jepwTwI0Q!8hj z_cs9AA-~cdOLl;Xc*c^ktx8IC5phe=+l9n!8rgE%hjqGezR>upXJNQVZySE zyxEqu&^xpeo9u$YKf1ky?lh9xi08OF<{-^K&d&DQpT_9T`7v<3)guraO-W=t#2V!~yay zPK)`cP`2-7x2jdxy(Q_)^7unokb~vW|}zEZGHibLeeB zf^`Jha^e|l9-`jLmJ9V_35t0myCJY3-KCFKhAbMkGsJzPNUgQJYKYz82k5Oq!u39~ z<;3CgY+ep6=HU!u*d3qgu9SqqhnP z+a+YniNof(iZc|pT(z%Y1&@gPmOfq&lI6nUg*!u)ikG8<2-N-bb|8Vemu&f60+ggv zd`Tau7s+xZ4V0~e2-NfRb|8Uzj%@i|0Ti5FV+gk!Onz2-WH=E_#4|FCCqp?ph(L{} zw*v{(ShD5Bf%1Id8rtP`Td>xX`dpnvRt=k|aK|E1dp@5WB3>uZn}fvbShD5B z@xrVe+Sg{l7l(miVV^!&MY3L4uy7{_lEHF>5RuB$8-hfthio}%Y`K>o-WYQK?LerdOMIn^^+~XYk;Z;7onff2kJXyxsnH}F1ax3F?u_YKs`dX zoH$UPkGsNas&XNS(?9fa`YTy1EKazsf#e5o{9&hGz+Jn9sU?QGDUp%|7T2hEuO{X^niPcoH<;1bVR8hUMsm`O*9?k_JjX)w!A84kS=@vgO2qIux<2Y|Rby zcwf)?6_&-9~Q%5~N$nmJGCytfptHRJxUa`ESrP*Z5iKB$s zme)LFx?7x$%IGuo0kUY=o-dwld0sU{xZX!^4HB;Rk}W3=*RiNP$zdV7$7-A%TfIAD}~23afJGlGmMpZW9<0UJwi4-&A^WXp*I=DDvmw8N~F zYm0*Orzh!ibplx}Z2o$GEd3;tLB#1;dNYtX9Zj~JI8H|)%6)d^Pp!9NR(oMIX_a~c zrG8N#tvp#dELym`!l;v8f+QklJ@h6aG0TxHCyp6r<4g_i1P+jOy*^pjlEuQ370<>Q zTLlrOetIjAFkMZyoH$IL+YLjzKwHM}BI`T)Ts=nC4a*ho@+NA=3J4-1_6WT}NW{KP zwwyR(m@2DQ?#l!}dH$DW zgKLU2p4T1`P6re5j0od7p@C~5f;E-i79?2vku4_<7G|@bblP;4K2)cZ<-#VacsBcm zO_!cZZwC^nWn{~V19dcFJXkMTa1=uZ4ri#E*?P^|7%baAqz~6-vUFIudSaPt5H%4q zSDoG_Bxn_~<-|e5WUh^}ZOUKLhwC=7Tv)i`$y|;OB2c%|+kph?X0qjX2~d)4%0JTw z>c?cck_Jk?P5DWBJCHzqk8C*vD1~#k`O)3Z!OIFJ5&?lKbDVa)Qba7wr5GB80A&#Bbj&;PxXYXdgu&Bv0gL%`=aE>244<`Y09=|Oq}kR;ttwwyRg zp7j}#B)IU)R@*3uUw!>aAEcMaYGFabU9&qdNZ$5~9KA^QAIZ`4WXroaNAp8D+W!UZ z+GsMEh-a)78AqP>iyTd)`;X*kJlXOt&XH3Z$@0-D`W!7Gt2OBP$kTq2qm$_VBRM*O zY&nD@g$W}*=j2QyD40la&glR?=X5rlI9e`-UKICHeSkkq4igsOQ&EG&3TvTf)=AQ2 z7Ysh_w1w_8lG=^T@~$xL?RpM#g0GfzJuYlTfJ(LvN|zSt@LknTPbqVJO} zCk|0ZyWXg?%d8mzes+IRo1YelAz_|QZ zZ8p*~F(7ZaO9-DEc!=&g65nqy%e%tdfailgsVbfkvUhsm6@4&XrmKsb9>ASvg$BbT zfq=;G>5V`l@;kC+A;bNanHaoD0?*ema+d0)im}lwWUNxo+#DF|P5Hg{SZ`l25zkl; zcbf>FD4!5wzqt>+AxNtBCR+}nN}YM z(>z(M45!?+sr~N60Pfv%w~^r9$t;Ivv{{3f(mZFk zuMsuzyw={d_MAQvzou)8tom`=_o^5qJk1y2c$(e-BpgqXEel!gr_97ILs7xpZ0jAU z^vC`|JF$!g6Y*5~xLJ7|MQ-!O`hEo6eI!GBkS&KWq|mMLp3zBj3MLY)?`L>=#+p&H zsx>QX6hiC#Q}iKTLXH)-cSJ(Wo9XQ#`M>owUPy!|(cMQvd;+t)EA*0{jqYpYx_G(@ zZ%^5$k4KTNFS4gZ&Svli4~&OL1_6{jy&*_YddQZAY?osu2Cv8TT(=uWRF_rCmg}Wp zw|NtIs#%X;Pu2^Yad6+u!-pZw#EL+wse{;mUQ2HWlBj;N<#z*7*>a_lEt}neLhK2B zqP|1cD@mf7I*3F)MsEj_s7J__6DP_$Hso)tw;JfomNy1q`iDMDepzZ zM0x@VM2=pgHv!4ft7OZGbL9EBE3B`})?w34a4Bf!OWHl%3@{PT01)Ct=fyaaRVBr+3Iv$9|CW7TI#*JR#~QCZr@m&DSStPHaTQ zQ9reW5ScoH-VkJtnoYKxI8%uF$(B+W;bruJ`T$w2BzrtZ1(Bxr(OZF}>AhsjiPMDZ z@%k#|;9boPeVi^M%Z0@$rXJ6hLFDNYdNYtbT|~B=I8TU`y9??@sb&>|$EZK357hl+ zy|6&Vv2xecK_u#4dOMIr-A%R}LX^U`6~6Pu*}9-$BEg+6o;{)KfL^P%#kn$ z7k!fdOpX(lWZa%mxaYubqGy3e)@YXv{w>&_=x!syeTiA#6?VIL*8L=!c(!$xLDF>+*>VV73LPHrGo1veU?SLO zDwyD2T=Cy_5>hb1y||p2F!DD}8#3g={#p4mosV+be5vEgX?s!c%KzK2Awxp@fzTIt zR{nq$Lx#-$c)$I~Yv9qn_vg34Z}6$jjIbYUho3k0Tv9G=G%Hnj9jm@xzMuU5Nnf7E znYnVdIwxn;j7+v*RI6s-AK>Dlnqig9${cIsmQL^AgZ(A$kL*9SoNSDSgN1v`m6B03 z`+M&f^6=HFJpa#byAR3V0HWltU?v793ZqjYabw}xKLhb`^f||>^};{2bny1S|3MCx zE8C7%oBtnKHfg-`{|+WhPZCL*cg1%4za)ey5tXU5lfvBnxncOD7RFtX*uAxfhl zD#2cE;l{w@^f@|)EEu*olANcl!I9H`5v7H6|B)!oCtFS&rGvszlIEdaeSS=`N?3j* z#}HHbaT+Z`(?xe02~CDl$*f+}DQB zTwh66OB(O|N5GCRGL1!I9+F42Q)r{>CEq*HpnHkTJeM)cp`jkc8SAM*89Fo24_UQL zCeZtQ3tZNmseX{Ir*x)TjJo82L}b)k%@sSI`|0i?!+$T?ve5C|%}j*mgvckTr-+;w zUD=FP>?`<^!%N_oCMGYE)xjo*CCbU6-9pCmbbpbYJV&;iI45F0DVB3)CRYv~i!%9D zZBQnHi73W9k>-`X2|#?n={~6Fu^C;E>SJUxfjk1kCqqRI$pqH z)C+^V7&UAalsf)hs+0aqE&QeLMdP#q=K5Om>f#(<>qnh-B~~49a&H2-OdDvp4D-po zam+;Mj8Eu5KKjYMiT+i3F+j(V1LU@r&+jcH3nqzTC9vbKhSFls=!v4|Tj`K0=pS^?kjd?@%yMXS2eAtBTmZ*Z@YDs~3h2 z7CfV+W`T~g$ogREIEF??yJ}|@-AN=Kr;{y*;Gs|?@H)duOA01MPo6*iXl)#2Y&GdU|8+ze42#m4)S|ZC zdjxG4N%{`mcO*%Vku4`q(s449;DX>n^JE$4Tg%KQII1ht4L3hqT?I2^RC!$KuFUE0Qm9n!`oH>CLqC4?!7}$( z`k?%RtPvKJwi`i1>k~VnIBgY4`5E0;Bq={8TTYym;M|^_tnDLed>?p^d|kVM9R?=i zDPYNSd#xtA;`3#~-RMpt$$018M}{H~EDkwm?ZY&mhF7SMp2gw>? z;Zf_$cw5EHb3ffzBq{fjEhkQjbS9=+FG`D^m-In-kt`7w6t$U{R#Qbzo~OHtwd%$@?-K?7#d*@7GadPrswZ~5r!9+acCo(7griz@5r@M;eWGvZo;+#zPS2Aqu zX|F_f8-;3cVt0u?CMS^v5!K?(jp?~Ou^H;KJSa8l#s#w~!UZm+Yy7x$$UL{+8 z*U(gjZYo==SAt#D%)e<5lV*U4c!o)l(bQ_aNYiw>_eh$ik}W4r)4}1n$;!b+)D~=I z45Xv8^Z{B$77Ck=mTIJ+vNSxX@Ad_|v}FOfyUlGFBlEXnevQv`Y%E3$GM-B~0n zw~{R<&Prf6xFBC}u=NXlSbj!U2@4B#H@MhZk(M9Ry+zXUB-wJ}v>XtcS%RDl`@42E zyc?K^ry4#^sXJmxr79Bg4mpn4OXA)lTizuJ$(D;a7Vv)?LEqGa@0`2bldY_B6Z1>f#i+AkOgEf%SHAKhalHSZ-` zPMn(krPP$VE&rvl4Si59Ba4Ftg?h$=O_4o$X*bdh0N?F<3EfR39T$-;Cr-!VaysmH zu>BP9gZjMOPnHYI%L+=&f>++&LKhKlp8a#el%@+B2 zj_x*+pI?(LC(e(&cj^m%NBC;`-?j(|p(PYbsvmsjv z$W~0F2Al1=Ge%bxRs#a%?n(NboIn-|n^lxn0)h<|nK_p3Fp`<0$(9pmW~Qv3sn^Qg z0F3?VeP69NfJ{*znLJr1EHaWi<=isGtjG@ga8irEy&^F^bbpb= zR!?s*%UrLI%(Y~pu*j%onLvX@X8P$4Bbm9HY&mgeWV?HFrr8H$PN8)9jy^1pkrl$i zqO`lW)l!j?N9dj+Dfu?pa^jRsmh?q%_>1oo>%Z#L@fukfEFIKyS6T04x6qZI&$+xx z_Yuj(AIX*z=VFSS3wxE`$Ht5|v1SRhUHy_eRV>4MB zEE#+q}wXx+I|r5Gktu1OqL3Z&nYVSh)ou`d6Moj zlAG_5E$`agw3b5xX=k^8YL~e0kfjyq6+^iv6PMjNQwt<_keV11Rvdv}s*jz$Z3X6?ewh6Xaq~;>J$4F{EMz*|bQd21x z;c}De2K$ne-dy*>05$jPQ*$p_sd%XgwpgU*Zo0=vYVIUk-u0=;SIeaUHP7o)^Bh^J z!K21*u}ICY=^i7gd75lFacXAE#^2sIug}VED44kbIOG4NJ(3y=CgLfHPgNR$OByY* zGn(!+lARG`%ZaliJ5Q+FmeC$wWC~U_xRc=oeQJ&+%Y;ogO6Ljrn=A5iG~Hb!FGrFs z?~=Uq8l@auiv;(#6^v}~)1$mTFFj z(Y5-Z^po|$f}*r`?Y2`S zR;17F7f`2*Q<;*`j~ zQEO@Eu4_v#xS9T@_LyiYn22Xgr1XuNyxAf@`_bJ-@-vBSIdOhubG}?i*d_s=i3XPn zPS;20RI*aoY@;;iE3{aoW*OaMBsC|KEhkRREXh0!*RZv^8|bAr>vK~lYlY=zxym$* zq|G8Z6}rzza>``OiIXF(YPvIU-*B}S%rm#?^KvU$AuKOyRZX*{A|*G|Jw;M-BiVA| zl*s1l+)0;Ay)Oq__5!Kp$NH!|NtOwViqc%2zqukW-=n*W$xQh~(n$WXtWi_{@+YLx%*sM?05^S)Dy@nN4%vyN}3HO;u$5K zrc$y*$sija)~}B7m+2xVnV(CD9}`qlaJ9|MRIZ>*>d8X z$Ub2!l#Sq~g?sf0xtlBwmJp>+*z87%Y}`qA63NCLWXp-OA^U`_X!He=$8-8<{FBpFYUEhkQfZ1E6OYkheXoIDx(f7+GnXfP2^<*KxJ=xeP=%Lux+ zNLuzFTTYx7*=B^IvDrD~$M+%qvHF}GP1XmSOO)zW-cC0Rd~kdu-BTnZ^T?JHXGAut zDb@=$Dd8P$YxGjl)z57On1GMty#im?S6e? zt|qI6B}QrHMA~YRo-62HBk8%EY&mgyWMkqI+#Jn5xDS>rkLV-wZL&mIWR%9lys085 z-=w>W+tGB6Z+RiBwZlI6lOqqL1h-fWSdKhWJq z^78`Oa^n0PA(`Ko3mHs0Q{UDeC+!C&;u$BMt}??P(r%HUNp!!F1Wh1YPMn~WgrL4k zy<}$0VqYz|h5J-}YL<~T!ls=QRjBc_RV3wPy01u5P9$4SoD|tHx{i8bom5?)mI_%X zEGux8izKE%wwyRIvSV}u3I@BSTlJB-nJg3*8Kq-%gAEp$xsmQLl9}ts zmJ?@2c3>HokbTM5N;g4xp45ludt}A1@F*Qv7TR)=qVLi@M^f}S*>d6($;RI;ErZy+ zrH{=&$r53)Q5t{qriz^Wo$e}~qIen)!YPy?9K30+~C(eg# zo~B|JVakHd@DKlpLuk*k^FR$Eho;8Y%h4#*cePP zIel6TvN%{;l=gz#jTG7VAl*qM8|RWOC(ed!)u3wD+UH!Ef%SHfbKDpn)}F>6Q@R2?{W=; zy!=t0mp_m-!t$b2?|RxQlJWxGS0pJr$d(f)MfQCX8$?KS$$st=B3`f!{~76+R?lxF^&^VP)6aU$JKBpt_- zE$^aqls5(T^H%ifD3is((xEoe=`C*(*(lJRM6zL#Eho-~Y)-!lvb8>LG^~)zAy30szwv#O<&W-FCx~jF+%#8ADF+BCBg!uv@eP`RpjJ#x~oV| zc9Jb8&WY@+dq=#DmLWOX{gBDnS;WsN>7tH~N+(~8>HBi`m#}gtJ8!V?LVeZ%Y|f} zu(T+BLlS7ONX%Bczer*>ku4`qjO;{@S{X>m26xKcsZYusWPPxtC|xh&wo@eJcDkQP zLcTz@oH!w}oWhg~y@v5=eNvtx>x3mmDW?S5D-!cly1z(benhsss}m!+f^o#|+V$-o zU?QISR+kw01&l-K{vwHa``t&3Y^Kih&dIM|JW?N;dGsKRgw4QarDPQPFKrC3nBDb? z)t~>`&fSMJMjNGUZyA16H2WJ$Gj(E<#Z1#lcNxje;bhB+XBye=TM#kq>P17Jm=BUg z!gfqbyKlXX6M5vmzTsgM4rhOvR{`gUbL{=%aEuStBeeN~35`TSZbX zrTdB`99 zNfW?CJmVzQUa8quk(60kn6|-VF@{23^NE&r~M$LnNuuy`o#+-I#6>DWp4 z5=qA^WXp-uA=~9tFR^Q@*wuK!;c&+=?a@sNOvE#~QQGC?YpqDjG`hD)TBeXK@0zr* zOIdAL;J)xcm$O=*mX&0cusKDI7H?}sT2|1#MbfgIY&mgSWG5tSvfz-XoY`%_9UOKQ z3)~chiTw-pvDr$N3yY1?2?_FMi~MY&yN%?hMz)+dKeGErn2=@(#s+3JV^rCkO0bW* zLm!{p$!cNoQM!Lb+G>%WFVMY4(sK*ha^m#JR*0C6aCdU13$EofOTl{=pV9~Cr(~h9 z;3%yS1sg0f^CP;$NM?ROwwyRKp&7^SsoI=SxW{nqs(2`vh^H!6&p5$Wi}burj&TD? z&zoe+iPIxHfrGt(&gq0!DF+=_phBLfPfllS*)?7nOR4+oH#SGvvfW0T>-wC&Q$x1tW^q*$S>DN=Tfp> zSag)m(hX_1NYKS}zmWuef^0c)f&wc`xh=3I*2*^PV&AD959lLvA6XzQGSqKigAH{9 z!OwNMhwdtplDo*36Q?Bb> zt9=ElCS71UQJ<0H$?{+m33Zj)(@c?%MRYfjd>lo#9Kwf5KiT@(-J2&{KL{V()VmZ+ z%xsyspP9%{UNL0I?2q@`Cv0B>XJ+@_pWg<*o!6f~AnXS-!hSG16=G^TSZwT-v8tKo zUdKT4+N=*|og5b|nCSsG*mzqevRI*ehGel!wk)tX*c6P&RLs8M$0oPwhyPZx6xi?| zGI03qCW&#sneGxY?l+Pxhs0eWf$$u3oqi75&P*tr@o#%k@5+xF38(z;9hQ&6Qrj$r z+{RMas5Pch$@ap?-#3W+9T{IKdySR3a<)1rXVi>LwqR7NX5b%S8$gX6*)|83SvtLc zue0@|&T7j=-v^n!_qz!2(b#WQDf*w*1q;7nCI%-0?R%GfGp(&y=fEYS+kn zfQcw-of)Gmo3V<01>cK0 zPe1;hbXBEaOpEbvdqmxU@%OY?AmMPj&qxwxku3`y(ZS5b;2|?B6dBl9Y^Bx39{wH@i`2UeKz&NA*%s^9?%EqKC)U^fZE;#i|Dy{{$WiQ5xR%& zIufC~$d(gFX!bw|mCB{9W~Ce;=mmX(c96xw64dtcay&t9%SC{mrF)J9=ozx*!~r^V zAb?~EXu>G%0%#nVh-c{3c5NGvPe}F|L-!jA&nU9x#NkPW!6Pl3Pt>R8c(O*=q|iozl3y1+vqMMk-3U&IdNn{rvT+;@ZqLb@6o1#o3y*5vJJ7CI8KJ?-@-UT1sD##_|D{ zPmM~&*di{SvVYxac%1XC%Sjeaj{}Ek16h}2zHoXBGqEcyoKDItwso-=O~V3YkOSnl zcSmcX_=9B0q%qE~1UtU)G$f~22odd+x6$>IuZW*Z_Y#@<)-%hY@gBq_(*vbic$N<@ z?zeY?zkS)8;@s8)C%*5a= zmL4F7rN=DP1Jlb7fM=Sd+(*_2n;O?xDMigyb%=<-{SGA%~>bsN|}f ztZHw7lo#|#*+CWwONvHLX|-3xWkmI-@mXO?kb zf>y9$d6CQ^V>1hHun5c;y2D6dMv*Ni4opV~Fy)?1wcK43H|w0JPt5UTnXtr2=6KM= z@D_{6ETVgiMCK^6<;0N*sauL-Z&c7{#Uks2WksWIv70JF(oJ_22}zc0c~^x*(gj_o z56O12K7#;>-Bb~hZFEd8jq~s;7UC#Cu>cKPj zQe(77K-0iPJR=~2k7Q()i}Lf*oIQ8VkiwZ=CGcil%4n ziMP-7kgq&lO7{?%@GfSSLnA$iD^JrTk@l>_c-NgC0H<|V6X=Rc*PX#N5+T zA^P{weMLt9F0y5zyZb6L5tAoUCd4_B`aZo(#P61Hr>>&97Dig+PqcRRmL{UYHIVE&(-nJicUJIwS zA}nL*-XdWcMYfzcENNNi(-apD&97#mD$Gd1IZ+>+?ybByH6DNJV+(sB`^MRd=R z5FJIfoH#_%j8ia*U2<>=`rue(k+9$>W*kpzMOeD&-XdYik}dD5uvDsYSgzBDWjk4< z*kNh4R)l36-CHCqSCK6z4$C33?y1~Yvx;yWXhlxU&O>jO61NOurOtvWU&Y zbeECXJVdsfI5wWG5xfMh*2;aEW(OZAf?wBXW+z!DEHj~-ubPdi$|h4feeD&2d4=vT z5}23CmP3G1n1bcAxXuKRf(bsC{0Y^;ANRtUP}K6GOUDbCOI|d{bID8Lpte+POP}dG zW9mJ7QHPn**F$eEnVk*CT=Pv=O6HP}19xddT9;uymwXH}5jw*dI&&23T(TXUwGbQs zM881}j@w#3m;6DpVAA;JSArd1aKh)3Tha8SKi)pqLq3;$F5N?9!duTQhekS?x#X4- zo*7o}T=M1MwB{7yrF2E5bID@NL#GJa#@y3VA^I27eMLt96J*P-bG)PZC^He75h9;U z_Ur@Xm>5+%GX@Hy2f#B;O70`;gUt+*E54m#x;-UML&b{d9=fAQMD8M6P8<=>$crP= zRVf>}Ea(TP0m8>|!3`NN=) z@nnUtsDy4wZ;wi|sUjwe=&m9$If`sKaZIMlFv&^Em4ZGa7FixFBa$nDFy#tsrwB+l z-A^PSS+eC_6OeAJ)E(?^uG0r(J6WEX0b%VF0og|P6A8#wWXroIAeID>$Mpeulq^ro zfUtIofILk16A8#eWXp*I;#o4_l?dF-(^W1PGP17bb$w8Fl4Zhz61rs2z8vwjR|Mu2 zy1z(ZUM5>k9GIE1ngj&wE|iU$l$g|b?Xk`@FcHsKC-jT$0g3T6SVU$D-C-m$`;sju zj*N7049Hlp#Y&c9R_X(@f~*oY#V8Jrz0DPISx$EsiOW*5<-~Cb>yqkWylmCyWfNH@ zEHCO^5^t{vOpWd@5||6fmJtfEq+QDjA!8TJGX^y zhT$6^#?gI5roS=Fa%ivzaRbD3S+G6(0=zpQP6V$t*S3$RODf#~A%-4GFPSy%b&1s5VOY1FZwOV9n z8{KOpJ6Dk{C(h0kX|E*an8)>Ld6cXUmKMqKB`(KEbIZeYKaqSqM7EqbAA#GW+}zT7 zy8=1ob$v>9k~P9oqFlGMS}W#~SLog%S$UakIfNC3;VvIBJLR*22|jKgrP>hgg)?H) z^5P}caii@8jNA7g5jt*1>66NPbnHBAhPK@N)BQqSiJWU-`i&94MIzQ8on zViDzuqUX~Dr(LdRd{lle-7{ozThA=hqZ|29YyUuSJ!4ewc>HqkS964QDP2tIcw7v# zWE!STm_02N0)8>wM`XZ1LALBV$NQ0ws+!>ah=ZM0KeA5W3n#T{d9hH(3+T;CgZts# zn3YD!>Z=#nRYJaR?|u#qp}knrqnhMua~}5D(T~Xq8b9;$Ni9* zpl8A8`?$a;Ff?5MB!^4r?*2~JO&an13t-0=qek1ACU0y5lhVG{3OVt0y1&SrxRY59 z4gVlcP0#dC0(b@SbQj(Zv120jy%j)6feBiXhy_7%!jAkUZv%p--2xKR=$<2ym_oMf zI>)=oeVK{S`Z)3mDsZ{IpB;A!H(RiR$H1)yH))Aq0B9vyEG$5)#ll$uAW!4PiGvk% z=aCF8CtFUOp~KtdpQeoEQq~B5cypmXMO(>oVJSL0Qi@pfMUFPn-A8g%BU?_Kqj@-v zfGF73*k=SU1GqzL5Tga9ZXKF5jDRXn5QOad(@-!GPstr=#bh^L zWaw>jq#HWq!0NP9Z32qII5(;IIHSv z+#1|wJ7JRcux%Weh-cUqX`kk{UnFS^-G3xWqsW#MCkd60YDRWLpi?_hpQGc+Y9*78 z?AD7EEuwpmr06KJ<-{pUV|uksMxU|S3{FWF^g*)7f?+{g8)?Vp3Lvu7O>Y2_r7YQU z;w)jR?3z^wc5K(_bF`f-7M7z(t8BaRB17Bg&LbJRiflP?hA{O}y##AcLcjL7K1Pp{ z^}=ElX?^6jUnJ>ay8lR$9wJ*#oFq)o1{bW9CF{4Z>!Y-jEEpE0NPD)X03u7T&>Mhc z>1DFz#95lrrb?3RNlH!D9;!_P6Y&hyPK}~6vKuWjGllLnl9_$UmJ?^Dqa8D{JxD9{ zsaZjm37d6RL_$r--lOGow~^c|C0kCMn|4(+Y#wZFw+RgEx9Zcgi7XbDo=B=_Z{x+> zQ=>bNWat92<-{2Ze8}(HOY7NR6F}&8eT2S1)(VTznNcJlPuoR;ZlU{*Bd8{wClON+h+o4XXw7#)$-e9v9Rn! z(sOwmFXo*$>CPh=dV_2^afaGe&C)$Xo%-|~4kqFmYeiBuhwT-bMRyy?&B0{LiF4EL z%QN{Np>y@YSx?ppn|4l*qS^`F8?=t@HG_jeiYqtBs&Yp zmJ?^ET~#dE!(-`l(@ho$%S|Lzv3&1NmhLo?ne)k(6KAGfeIwtqvt1vXZDgIW*hEs_ zgznY3itaa(oKKT2Cr(bgo~pS;B`|CJs6ILmlZC>f6G>0iY`EA{Jw$gL$<8;(mP6Q4 zIF*hcujd?SrC@@eUi1q2v@N$G+zaPaH7zf`uj2(AulJt8Jzj748O9c~QuQ6Ix7YsE zp@j4$iRNyXg5#g>xHid=dV7M;w6TjDe14?fNM<7ROtsKsv7$dxFL1YuBt-MbA#$6` z&yMXRD<+L{ej3>EMW_AUE>1iH^Ga?DT_5==vWL@sL}tBN%yMY32k`*Cz}+s66rLmG zyhrDq3tnrUe72r0sq`#aG3;&6NN*E%Pg?~5*3rF10&q6jvg;i0aL!~VLi0l8$K?e| zrY0${J*;MBGq6``N}d6}4V-@#1oO}F`ur>+3x(w;lKitkl7Eh(yNsk}0oiim)C`<| z7KG;?OP`-^vSe6(BFR7A#*6tUOLrbg()nb|yEsWXv#-{>$*P)cBqmfs+x1D>MwV>Q zND4MyB_fKv?qEk4e67%DXE|A`!OlCf@z+wi*GP62lPxFC zPWw@N!77)m9ted2NhW|u)c?{OfF$aF$d(f)DsW6)AR|@GTs>=MHd&=y zc~bzTxAjqaldKmOrM4FyVo>t6Tx94Cy5~rS{zkT(I77#^%}Uj*Q83{us4`qIRw)Bd zwb1Nz_yO9(vRPmvo?+PsbSHz_2_X`8Fufs2!VV%^PMol5Qo^KrgVyUaw2mwgHZ8qJ zl_968A|+?jT}4uICfRc0lpNZIlF+sIi}iW=1X(I9FKs{gY1fT8yzoYgvcGY&mgq!t;wTy*y@`b`3lVOvFb7tADFAi3SogcQFUk?x<}{JbYGF2e2Q#2aZXawv2|;g zN+7j7tWU~AWR0+-D1Xt{YOR=4zCrgE$;y9_E$`Z_2m|U@^jUeCtkGbxA{$fxp6)G@ zmEVyq@7k;ggQF?awFgK0f{AzrN4j}MHa^;i?k$p)y~&mnXGK1WmhQD#t`EvmvOw6R zqCAQY+hens?kbX!_mC|oPD$X1L3c&lv&SS*tJL&Sxqz$^7L_HcRjsGJVzpAD`-|jd z1KD!oyc{mAY-L+X0^r=D56RKg=tI(s0RE{v)K5fX5#)viLO3fa4mB`i>}*93Zy@oTiO-U5@zyawjnpgQNcF)Q};w zKi+>~|E&Bq5QyIU^V{IJ^ZN5FER+0|nk+~bIY@4M`3Z8}WXYs)&aVSIzVI{_wd+{j zhz5?3Yqrt#lAj@$rF)4?edjaFq46HXGvp4G#@lnSn)eX7ZQ!=%nP6AZHI*JBCq};Q zFs^OnJ*^cO_%z*LBmCCu?su`6YTjxL#^)NW8 z3C%-fsj%sy?RTI9K;v(75J7aR@F`!m*B0Ci9>nvCK0hy$ z^}_PAO1Zmfy*1vZixB;u?m7~p-;pgR4pCqdK!8Y0K2uWK$!A|MK`ZaD@U;CN6qkJL zza>Jm58Y)XG<%aRCk{3_(g)=Ly<;4j)UcjQn^MiY*&4_hybDLG$;$M`QK^;R%-;Zb(CF-t&zFBYC zq69ci8@0L|dln^_iO@;v&}m1NB_YzHge*uFIY@4MJ&O`#$)s`4uLC>2@U&l)a3dO6 zlxVim_0qE_LH81w`p##TL*t#?qJ*o3XPVx(C;@J3&M#j@*HpeJ0e1Y6Z@VbbHu9d< z3JiRj?k|#oPmwLV&hd`tlgvbDc8GjYqQhTUw_s^b&ld`T!Pvv#pe8U6k!8ZBinber z1^|Y)Sge@7LH8Jm%zuzA@AAl$wgixQMIV`$$ubQlGNmmdGQX#Lj6~*lWXp*oGgY2t z3?aKrIY>LZ>5^SxS~?Fc6Vt zk;QaRk%+v9Y&irGg%K_vBs*2Jf(c$Rou`@(xfdrf6Ix!JpyLG$)z26)sQU+ZUt`vM z!}M#&Zcko+F9RMME{Zvi{Lury|iJz*KQSL+vSkDC#Bag1VUzYv3^*+FXnR6H(N_A{R&Ex!?^HOW)yi2a#axPPUvl7}KO+ zWXttZtr{3gFVbh@D6&AMB*`*Y&mf}rc3d#N*m3JaBpz8J|9`K zLRdbIA@kujQUv6Dx|2vi&Ldk+91wZ_*k}~$W-xzj)92$VvOriq==sBGqlm|+={_Ry z_!QZ42p$TfO+H|CDqRH=eAxVD)dGrp;f$lSytquq3m7(+2lunPVW$<19@95){tfw! zlD-a&(*_tgx4x_s2hXh^bz00l-&jpDg#MK(!+Z$+3uYp8s1;gNM?Zv~=$~2^12lA| zb~*hvSukmg^RIv%UvL@=#V#=r&A`gG(>^z+@Im#PbPtgU?+wLBM?QQCY%gX)c*dUI zk@eyFA)f^%q8LGmA#c0An7zQVkb7Dx1pi>VugKsZM7AvSb_c4O;Qfq)pjJQgH}d=8 zHiUcOq&zJzex~CE^meZf?tZQb^E&4qn>xeTx+S%-npy@uU&Yt;ZG_NzC$PS zr}Nug&Tn6Le!G|bCQXZtSvj*AvN62Fd78`oC*dzRLVkud+sNMts@k8tV};CL z(K2z3qKU?+f>o_$teRPLV{j$26k1v+bU4mY3QHj7R>5D@eG8ry0ooF+M|L!yC#e0P zqEsHW?^iW(AN+?-%wv*y)Y^(sstQ6s8=KIhJNOd?sh?5RiG%%1RTHsGJ@RarI?Sck z_4%^(ZU@JO^r#N@z%)Ei5c(ZemAKGvshS81&HHX_9&7B`RWB6GTE@;rzOI07E6?32 zsBN*SdssbV>27JO(O7Y$mCv{MKa;B)qpw-A_njC)TIr0EQ} zka1k_bz;qGAkTZRW0+c6z1KoV@V!@rocc03><0&g{a{Ae4_Ig9zPfe)t9x!V`sP=F z9iM28=Bo=26kgr+`tq$)HNoGNvsF#l?~2o-IYHEVW9RF50dH(&aNpR`bM4AqEFrf+ zGa@K!8VB==eQu_!ZWVHH7FDLJP|j|s&Y25kJFNXd_3C3y@`7Hasw(dsKFv&o7Uq#x zi}JqpUPsr@3>h+Xi2Xl8!7LpTO^tq>H~zGZTT+V)=H^vqEoHw|zK->e(3l9{S97yb>?@d6=tJSUQ#R;^ zn@=~Fpuk~|_7Nv}U;m)0Eq`BMP&L6h+rdmk{$`IktpuL{6bgoYDYY*OdmR!<6!QN9 z$9)nv#&-A~Ds;hn!jrwTkl4D_Ga?+RY9e;Q$1jBw22-mmrajprh(0ei(f97KADs3+ zSP;HbRW(lf;i@KL7k;`o=U63o?kr`MQftd_j+Br6wXucazz%RD?WVqT%MJKb+Hpe& z%2}$4@}R6zH4%GI_E~F|;2Zx_3gt}@iROH!cU5CkY@wLc!5_{eA&v-Ys_O9oT%c+q z_5h4sv3Pxm^4G_v{9YaK)OM0ztEv~5ykFHs?2>mb?&~v4IcsxjmYtHaFtL#8E>~Lh zkY!gZMH5b&wY!JezQpuUY%!VB(R3?qyOp-xN`qTGR|VV>64f_U73V?w4^bbBCcGo1 zo|KVVRj!#`IIdB^zBS{w~pjfu|N zYA**@*n=|gARlXzq3L^6Cb-{p4}J$f2>#_=Xw3JRyAfj6g%yoGZ!{Cxa*(xOsSEn*&{7?9pjSzRgFXZ ze|pvaRe9fxClgg#S7Wl75 zSBy=(rR*P@kI3I>#~?oi&d5J~@BCEwtubd#Z@FmBsnkpMeF2-wl@0d(MfQJZ!y}u8 za#ZT9v=-U^%{J7fuyn)IvcrQ`TF&Ws0dt8{+f`8EbBW6DbBb+>ORX_`T19he6MS2k zva9QLFvIA}*N;H!qL^G<U%g+cn&5rnFPMqwJFoWB zhkMM51a67onCZiz@N}j0#kqakku7ZHIeKpQSyHdo%0)IITPbJFYBhMj%*@y{oz&qx zoK4E|hYLi{(ARakstHc?RAwTSXw}3q{fx4aOTqrf6w8|_H=(9>-n{)=e}3RfU+!KW zTPP0fu-!<58)@c7+I1t{bVCTrQdLDc?2A=R#2%D!@3pFR1GfLTQSn6~A6pd0ceI}C zgh8B)?NQZ?%brs;5tLn_%HoBZlj#&pa4+KOW5%tt_d2Cclg`Iq7i09@&78)?T4XUQqeYGgs{ z`}MWHSJeb({B9>)QSUfA(yK;mpx_J}V2Kn)t#H#@E_IG+_4L-NsU2VaWUw!KCbm#5 z^oPoxjJG3{wg(Y*so*-7cAZPR&ItkhrK#?K0n=hz7U4DR5j#b_@}Cg*uyY;9h3-m@y7P1rfTJsJMK+wDc37bNmqqh z?)s1UN{EAI$2CqltOGn^bsY03T`Q+ukJ7eBPFYcfvJN~FLUkaxr8$5(K-EMrR0@>= zFD{%;PQe8C!YM8kOmHupNeBfK+=~a=52IBF9TWJyNxIoZ46AzkhcsYpMssyPqaO{yk>VN=Lz zc4CC-@&9W#Js$b=%D(4R;A28qAa^?Gx;?#R*So$K@X2VR-k9giiHl#dEXr)M-GCJ! z=0=9OVNZw;xWf58)qwGse^=E6kNM-OCfu0+w^GcNS42jiRkz@qgqi`D=Xm$hy%|xQ z$2)PpfIr1IJ1<$NenVA29>%{h6AA-&Wf>3h>Y9b?$thq7&?;(PWf)tK?He^S*1T5#ol zVJW-H(B0N^JsvNIsA}F;&ugWJOojj#r zf_o8D$1MM-dRc7oZk~D|`qJ!(L7^35#l!845*18vFaDxBR&@vapH>>| zs}7|OU7XFD1=IeP6l%PcD`9~UdVct-k-gYeXV@B?alJ4a$Qp-*Zh|Zp``ndE*z}vp z8=D85>Dj8v4@Yp5stF$anyLvm_zRT2Nl-2|CoFS6Zih2!a;c@lw?to#DA4 zM2KWpu(S2ueHZM%N_ltezpt_3xV>k-!w}m4)y+NdjTM|v=eF0(f7X#G|9xApC+%N; zWdHIL`oho8Tvx*+)Cx3GV> z6@ERhKmP^zE&ntabvN7}>};?zc2k zmzri@(SqEw+N@+v*xFP%?aWlUlv=)eov)021KJhEw)^SMt7v~Fm2)4R>1#gPDi4^B z{-&xgPe*@YCPLFu_#S2DEI;Nn_{OH3tBX5a_B$dHS@R>nj(`5yKBU9*P+@>D3H}SE z*M$o?ftgScQngk(#65Q;wR%gfw_IA#c?|0|;R3FDA6qQlU{*?jQ{Ik=P2oeE$DpKJ z?xdj?hy5zx4qGF2-4V23sIUEeRTI2an&X5o>S>1=OA6(Zv#AIc2w8yO_q1Ei!nrB_ zPkYaeEj|ZzFi)IK;oyNC8}3P(c_M^ny{fMKwOFTWBKFYCZoWUBz&ItC|RgN}*=pV_qkZDwyD2 zjAIQ6-F=|kbB#N@USd?(-S&=;ebHAF+!-4e<2&HFEcW(uJ3BkYC5SszL&u|kyCd4* zeXKMI6l7mEvcZIO=i2vU({yqN=*adUv!|y+H?KXRuk3eJO>m+gbAl6f?=%%cz*I=p z*vUoR_Q^#}DZGmkJ7WvP0d^qVNVI$i563I2T5`}|Ry7fOI3_mV2$*4#hGAklt^#?V z*82d@4wrvCIG|Z4k5x4hyZo($1Ru`#ZIK4xsMrF)6B2uRcnB7#>c`)JxvD0DAyDY0 zc}MSbI0`1X7fwg7V1j$$jDHnOa4-I>Itq7ZSr1m4VppzWM%%j?OmPFn)@aynxbutR zzDafC;P0msM6LJp0v#`47V^98-p?2&$PQZyW&W|P?KbvGm_0GM5+){heC)ca zcXHA<0{JntGm2Ts1KZ6?W)RboPpS&e-`(#q6QS>Jxaz7e@7`;Tu7YWQMzEw@f@(N$ z_{U$O(Ki2Eu;YJ=Cv>nU+aC(Fo-B;+|E#a*pHxlo*ZC!8BJ#XBVJRGgRI)K|eS7EQ zdQxX3TuZc{*wK768(yBV0V1j$`-FQ;qq~`wC@GSVL7(wtny+&PBK8oB zU%h3meV|{e&+0P^aA1P354tlp_4n>@ADnJISV)3*sH(<=zg^V?T6pCFDLVxW)(KO& z@}^P&PA>8(|HBxSw=WTZ2d7&P7L@M8V*Y=0u8Z6CA~=fqXAj+C21rywhnCc<oLHCjC2mopQgeSYLqDDwB^>(MBj|2)|7iPm=N`D^;}eMQv-e_y_& zYJ#UnCx{BK9QWc<9WP+&d0V@w=TM5&EAe&B6E#wBKS1!X>6f4}QOqynHlX`}lf0!b zs!Ge>(&w3p(6==DNoLsk8gf6~sJW47n|}kErw@y%PjaOhs&`EJEg<*fXxTmb0n}n<$53thzj}&TdF2F+ucr(q8{K= zj`Y4Jws_Ew^uAJ6QI35>)kN$;X?vvieX&IWaisS>s+w`x?@~1plwF~8<<+l~^At>Q zF9zt;m3y20oHfhV(b{gYy5LCP+|ci0!(jgoXXUcxK-#I6!2uyR{#G@ZoQK~q6NA|M z9OOGs+IPrztD)ZA!F$Y$t9b43pC0Wy=)2{Lp!rbnN3*1TTQzK){x_YlMcp4A;|tDd z@KI4y2+D!qhsGANMgEY1gRQrNeCYQ~{Xou8H4%Ft4--zC&K3-~v88)U`{Slp#1^{4 z#p9-%E+NjFUaqP%&vZ*wO$39b&~5Ra&&jt6Cb$=a-19A*>+AWp#70P1&j$_&S$Lyr zFgXuZW@1Qe7k}P?!|Mev;MXhu%PnOJydR4RvxKNIu$;sgnLBlRWp?{vt>Bgs$B8U;dRW9 zWbhQe40=?ix4g+dw+ftqvu;{W_?8JI3oI#cOmh@9jhPt4{(IQE64cMWVrWS;`sU|@ z9iL>4;T_J?gv#e6edSJ2HNjt%W0{G_msEzq{-dmab7VI>DT0MTsl?9H1c|e%`tZzr zzN(4XB_0Khc23&$k$hQfGLN=5mAOw8q`pK|Coc6xswQHWTE21OtFbBFZllqcRaN3b ze^J#$P-ultn)mZg+E*~ay_llf5VxN{YH+tZO`O*`|Jc-G`;_dZ%^ueG?*1+sqMBFI z+b4#>b@aVvrpu^W*(&_Q{EShBD@j@%{D6mt{Z>_Cj@xgTiDditJr+dM`MeHoLH6%M z;gOn^(c7xx^H=0eNBpQq*&~*ei+xtX-@_joo5&+On$HtDo|*bG&rmfHyUZbd{EFCw zZrjH%SJjEzQtQduU!qMZ-k=Co&iPo!}Yo%~A!k&QF1#M(6KwN2I#ywPs{aF$yrF8$)PD^Mm+&O+DJ%)VpZ~R( z+B=LIpWW?i5xl#CPV>4v;{5aB=P~&@wA1%sha*a9(imyMnJ<+R5PoT6cm=MNt62S# zUgD7s_9Ca<7dZ_tGW^+jk<;)Zr`;Eso$s5rs`lx}_NCqSi=6I)A3HBH{8bYU^yDwH z{des1UfCh9&iQZlKQf+=NCS6GLySALB@PL*4gruH9Xb-iq&b)!rfMRXc_}e-yAWQH zIwgvN3GT&>s$Ga%k&YkS^XfaBv$l3$0Qa-C&d+r3$AvDWt8Nu?_7V2Aa-Z)dX}E9a zjga5%{^2XjS^sdS^V?m{Z(nzQyO;eYeMuUJIF)Ko-O8EOIdj<=Z)_$Re1hqyTDNn6 z@qjhzWvUGE0^ky6BD6-0ympe0E590zu=yLnj=x52H?I7$zIU?%bhnptskOb6Q@GUfchHmwO7X_5uy17Nxp!H^iQ~9)8GoxPE`Lvd z!%WcMQ{`3ok*$N(y!FW*3nS4s|2i}$_@cHRC=7Il!c#T7+qc{67yW08d%2%2+T9Fb z>gz{l#-`%9=5hG&*tGpvLCYEXT25Cr!IR!pW+L+5W$bCizH)`#gBH|$d2E{R)zNyY zT=J!=dhyqPv8svKC1+RNo@`_{m~aKqsZfE#O>{ok^RWrvk*kzvp=_SSQk{7P9 zzdJVNC$jsU`J?5xs^6)q92fr%RTHs`Ki(GKo`aQMW&e}dq~DuK-+ZuK_#djO#)bdB zs)^Wzmk-|l9-H9p25+ycs>FrfscIr9w8F@X58j;0RKW!I;!V}@1^2=kUub#pD;+Oj z2>F-6oe0`%uD$)JIUD5Px^e7LkqmRZJCEjO*tC*8!_!qLXE(sS4{Seb&S#nf&h;D( zE@_T|j$|h2V@TD5MC9q>{n2QfKMm{zhmdEN>o5f@yWaX7efid^n&2<$S*j-Zi|PbX z>qVWX;|08^zZu-`0rs2MIq%riDHWq=ZYozcq}IS?*Wx{x*FdA9nDyxl-9<1j)7|tT zQ*HU+Lr}7h;7V1oc|X-)CPLra=;tmZUj*C}jlB6=z>ZI{@Gk=H(pT=QswVg=`(D3pupc~Cvsjv>Y9c7KLRZaudnffPnBZPqrb>+M1@!heD6Q@0#Ag#qjE)v8?ZcX*|$2_DoH zswUi^no2=cUQ8M@*Dm3jo7TMxN*|3Vpoj9ZO*Yb+2Mcx14t-zoA*t6stg0-J?-phv zv|fw6mXK%Oo1;-Se+Ag_iPrWY+Z*-eyH3>ve?7LVn&6q&38Gf!-KgUQWZvCJ4(fN; zquH0a;(Gd1(2NMG((pSD=V$8n7s$A^^q;DV%HPi)F%wC@pZ|zP*8GcL2mgNlRbRf> zR88>r^Ho(7{QY!-sP%sSK*tMsKPM|qSgKY=M=UirnuT(oy`jK>x3sjeT&UNqGHk$1 zmCPEO8mTvrqV}!8&N(KU7Z|o;+K0wBx2+us-%U0>f?aF2N8m@sz92kf!PWyGl#-tI z2yjcYNT020f}?ndstLD}+E)nzBZ6SI9|EYH`IcOJ z@1lJj6mt9GdR6IpDqqJ;B%R7X6pgm|JlOHQHEm0+&HD1yRZZ~sr=n_tr*bEVTB-bO z9WNl2?=!e>@%|^GzS(K(DOxM%5JXjK%IR|g*)u}|MK<<^7o>H2O} ziTT@lCo>WHwnjgZJ=WcXS557_`I>M0I>nzvqiz1bz>fc&h5ca8jRn;-d#bQA=7;)9 zeqYrDe{r8+CL$k2eIJ!GkO`ru= zE(s2@x5F6rF&g#&&N6eUm1lUC%XZ$}|1n=2_FoiN9N_##IJwrSrj4}gN_yoP>DI~} zLCT(4_>wP9ABZhZhjy$gr)_ua&)1kcY35Ga zb|=l;f!74w5rXtSRfTyHd#|dA*n>1LBuFiqQ#q@<+pL(SEQ{AQU-!l9qp`(neptL( zo~1pW*&Y7Z#n63NRd*h`EvhDB58b|O+Rz@3!qG~_lu;aGhYy&X?oPo3_hNwRPq`R5xK)h6IUA*% zQLy_&s7G3_3$W4f*CRiQjg3QiJ;J@QOOlp1Kni#xkn#i7FmqD=mzfyEl4Q~vH~^vf zA;u}qD!}&^z80I(lRMz)>E@>x{ON+Suj(uNM^zJ?{y#XuiMrGnv()Ui%RhG0iBI`` zj*YA49^2tOH0?Z85PWZVvSxL?m#T^Q1z%DzVbNY9_|Y*6?mRS1@FP{#;<;mCZC(N?|?FNi3_dpaSuN;z}$fcq=vs)m9mtTZz*h=bViXP8C> z4qobogW}jB-98!DL?dJVWU%9V7aDta6zm7Hi+kM%3mw2}eLYvIn&5B83T7hmWxL_a z*<$7A)K9DqWararQ_;vVXovh#1*Tkg37fc4E6!_$Z6Z-C!cZOudnPczjn`3R#)yDrx}@9D4%`Nm~ea~(a66IZSdD0`!)9ru?ocde4z{(2Tmxx>O2f% zR87Plh6&E@Ar=ML(^`kao_!Hm7+VD3Tpf0H7z;r2(SrE%Rh8r7&rvmj7GJqM8P5)r zT3s>w3};`WPy6+;X}`B~nw0m!g7WKBW#h`9%}j)sCQ&a39cJfstK@E5aJG1^F)ygw zn;23{oO`RSEZYF;6MA!OLLbf+L|ZO7H>@^YN(WpLLQvNaK}FRBhrg_9f)^PM2wFu( zOx=(jANL^QR+JoY__@?RR&I}tm6?nc$b@Dg-SWjD#^Z|s$rn_^!{5_eR84S5VhYaz zq2XB(ILQ5p*y1uRJTA5qLO{NwswNM}V^|ZPnLcFb5c_{{Yl3qCw(Cypk(nME8TLhr z@11!iw%8mP9vjCEAv!N(r41^|qw{-J6TzS;Bt&=0^_+H7uF(&frY+89;Q$`HMuA15 z^~+B#m#c8o2Yh&zTCsS&FV_2?5J}12I5>0wwYjIuemrgrH5uH|EZ!%on&9Cc&rC!< zh8p2+{r3gn_-F!8##ANYswxJ`H=oZY-;Zf>;CM)Y!u2KEC~NmRn@rgA67Mi z7G7Zp>R$Ua+CC-3sMzBBM8A!R9(Fs^6v)DGJX;xVq$%Y(p+{(rWdb{tzUqdKUD-7K z{PV;Avk0%Lu zhlFiH66FxykXxDF2I(Fv`^v67e?x9|Lbmsc)?$UbO5t1y7JW&xCloHQ40aZo6i(f+@Y`Hv#KU|o_WRzMATC=6Fm3+G!^h3OEmI5k(7-R)h9xS zTB?>S-G%a|aPf!1^EKdoJt7yU{y`8C5^&+eb+Mltqp|xF%v7?p! zqmBz>W98@$?jBqO==RvDJNCWB-Hix;4J29Ga{cUKIPrAl{hq;V_M{8Ea!; zY*p>J{Aa3~K+CV3*Y|HGa94dN!NaLSpZATDHpdo)DIHA@+!!zq;4^jbKx}kef|?^8Y3_`KLBd1ZcWo zA2rl;K?ugLRF&kx_=T#8*n_dp5~m+y`$?N}_`)#sq_`@_No)XS6->64*Lt`RfVWlE z;{kY6)kN$87`vp`%x*}*#iaE@V9k1FY|8HiXQ9DU)6J&}lFxugYu4=3RZRpXR~+&> zpM5yJw}J`o#Q-A*hKZB+ko4x~`LDQ$NV^P%vCq3_kBJv8$ zJrafOl=by3+hY{mJr2crr~vLZRkb*{SE-taUvRg=5=+_#V-(yyWhtbjy1N_R9t$)62&{Oc^u*=M^%=g$@r zepXdGo`=p?H4(e~N1kEUc6{tQI7+;372v#TI0U7Mr}J@xk>Y#Dq;sg3#TK6h9pK!d zaHhEJ8k^B*y5@WmW~8}m;rpvDQPrM@?;=$bv4`)7bIgo;&N0*ARGK-JW=^rA#=)sHI0ccks_B+f!u$4RRkeA* zzNl&<_JGY?3zvSDD+U}1Z|_dA<7A(&xO7X&D8gEP0k+}?R^OhCEl>x;woum@wpGTC zk9|;!>rC2pMhMXNRMq7H`mU;p*aNg58+6&-k(~?eHPKbhe2wqz`Acj;+25H-xBDb; zAZ;&>>dD`k`Kl&j56R>;2JEqJg~Ps<$NrYym%7f4Ef)L28tg`A>50Vw zE*xr_nygP<@Xc89Z%v>VQb4wRHvH^!b}Y~2D|rBlm{o(?#?!rs~9-i4)&6w=rzJZivuiw9^Mu!LZ4GqU8*Md8UVLB_ttfg(PxTKu917 zfdm3kYG`*Kv(uPfpd!7C|{-Akn^*XvspFW)&)~ZIDXXAZ$vpSXO`J!f7$oP6evn;|D z_!Ix;C#$PB?b>KL|vgVApEHbxe&8q(d z9Mg2}8Xg+y9v&g@UZwigM@;o6^7XV%y(zV?Y*uHoLM(5V#SvG#T}d{Fua=Sr@A{ov zmFBNKVw&fbM5?PM^0zh1;)pB%L@YVGhUqJZy(4MWj~p@8pJdmYsA9k3 zhnm%zD8AY(izBZ1pJf8h~R`qV|XQe1g~N>d~Ku4c6*3V&|1ERqUu z;&DTsSooK_2^J#7gZ$&4<<8yozRCW^+kI1P3(&vuA3I{*&%g2I+A8v#Vo8XS7Eb-S7vwR-d^xwu_TEbk~g) zhfQ*IO*aG04r7@Kw>8T`dVhbjEW+O3+msEi+1@{GU1`k)c;?tkZ*6X>^!AeTXmvpS zXy4tYo(`QH;GORnS=V&Yhuf&~uAaDZWnuEzT3^(xhNYih&@2n-=flmi2>ba{P4#or zTiw}PM)vKaIklOdHeA>8O+jV1>h4dpsk`T}R=d*2 zAF?bm_q}bjScTVFFXyMo?(#tAUbGGs2kCFs0)$e{#K-*k#XqXdrY7Inc#Js+wz2y`OQ!@Ehgs#3n9n(3slrt9EPWjMgga_ppl@1-uza%ouGH8N1?Es}E`HhJBl z;{$kRN|17sK<>iclE}O|OWbq1_E!($9l?yZ<`g;6!}d?kc^U z7yIOgExthQbYIyXEt|u{NBvHWPG7XUO0VI?KKXI=sg22fttsFwA30)*Jx!cmhgM1DDYbsEb+x{~Sr)R>dQY<~WToWJZE2-^iIt-5 z!(j4m`Yan>_t7Tj-&1XESh_ruiX5Kf8dDwqn`Tuli`1{0Wg#7Ygj79yO$ld{yo$v4 zPS-jgzUT0LYT`}5;z%if&Z0FXIjC9{9n;t7HZ77N)g7mjAWiKNq&rS(mc^0pj7Ssd~1n6b|74*TXC z`eJlU^~KFctS@FRTIco!3qTz~0;D?Pre?J$9kHib7Rioi;zvb(mv~3l1PhVk(ao;6 zkb-vbKW=IV->jj0vHA{a^i?DKC|C1;j`XhfjJTZ7k=pOf;t|%+$AHxi)MKf5ZnNV? zhTe0UWg(qD+AIt1^pVjMhO6CO10(%(wGVw_gZu*j-V!Q8{uewVBLC5!YS&hm0*y_nHQxxjR0 z{V_%pxZLYGXAkFm9cTFyH*71{{&`NjlXGqkS##Rs5gcRQhTwR!3uz~r@1nq|<~N+> zX^1@5JcH3ONSkEt2byH20F5_O5lk>2MC3U0IH04=<2mwH6rW%ofJjr!e$Mg*M2<6` zV009{UqA&ajDComn}-k_ zZGM7ay!jDwPBw!m*I|AFG{L+NJQtexAj?VSXB_zp1gDsfBCW%`4`~z3QC#lHoMjeA zet?7P5OkPlA+5uVah4At7;iogE~l8Eu_m^1a3%_zXx_!>nH#kC#+#2Jvco(Z!6fq+L>^-v11=NI#}PTjJeSMeg|w+=3(}4@Cm=Y*d;{&9VlF^h zhq(yBIP)UrvIAMBm;s{YMU-%)!%{=i3>b#=!(0nEfa|!TgCM-^;;sIrtZX4s#0! z_i@feoVJ7`Pv_wI99+mk+`&1gaSds-)ZbsT# z^9KYo%>tC0Zx%D_KQglpE`A0gCz}fy{ep{s8Icpsc1E8;+C;OH(cd`uDVn*&3?Xft zxe<|*O&{0rRc7`b4lY7uhdCJ9Ge2mjB&`3;WT&%tbt9ONvwb1;<$(PudAVXmm33*5z#%Q*NQr@fZTy_T~C zoc0%_b(oDDxr4L3ha;~A>M)N-T8H^M7x*FUy+6dQv8Z%pgv<`C_*LNHTU*^c|%=2n4cMS*cWu7N7 zm+c(9f@?UBgX=lxw;3Je;58ilo_Su+6}^{p9_HXJoaLC%{Msh1n`_-zRu_ZuIK=xFLJqKxZIC8 zZJ2{MapWNmHgT|;tNjno@-~iqI|sX%=ii{n3FdK(e#2>3bMSI5elAzLg0q~-!Ht~d znH)UCSvGTUHfLFmwDIQojK0JK zPOf$>=iG`c6U9_oaHGTyq|+daN6%UIK<5U$Z4PAuIglT69;cZ zmhomB7kH3scr*uRapd1QILrl}$Z5TZ>@a&d@{lFl zA{Y2Hr=7&;VrKRO1Rdre7dVz9|C@t5x%Qti`d<$IgCj2o>M-x%;BlOG4F`9iqUGlI zj6TZ2XCTWl<~b;Sy!lVA?+Yy8^B8@abDo6axZG_VJQZo<&C@u`I?i$y zf|Jaj5joCW!)fo~;6yI>0J4lT!;DVm;8XV>TzrVp4>_oDu%FZ3 z$Y?SLKVY5@BA9CyFnSXQkK*7loO2onyAj!8b^vvlpL3S~<6tSLy_eIz#r4hLa^DB) zFz@1=ujRCf9K0UEcr%}K{s~#=shlH!%vqKpZM^v`v;HV^IhoTw#?}6dBd_Af7jVuO zbL2}nco_$0b44%VU;{_~lj}Q-pu>EaxxA9Ie2ufbhEbW*UdQNLoc28qzQk!WdD@@J zXba~&m4m-?$6d?lmt1Zxqf5BJr5sG+;9s2f21buy^c)WUgCo0`%daY0gMVLx9 zO-5Td_&x_O37K)0yBW=54gNQ0`6Z{lpXcrUEZ}K~q)Ex>l_=L?KEzp;qg;o%fFoBi zm)~;a94>beSM*6PFpnc|;EMjq!FVn(fr}r_!RI*V*SOkqIm<7(qSajPd(88%T*I{- ztmmB1;hbX}+`wtm(OP=k;o|3U4dXd@fXm&=1>V3yyqL?a=PVmIxQ(-vIQS_?zL|?Z z8o@-f2*Jf>9kNU|ry$EDGYr&eo&a>3c_M-rn17)SN1FpkJIOo=<))aG2sWCV5KJ{s zK``F@83m@A4*vk}3`=CKG) zF>gk&-FyYrPch#_u-xoJO&aQn2iXYWF|wQQ_WGx za-8WvaI85W!3pM*%w;A^KY++Z<`NFNkv7FV2sF`bLzaoAipcTiSBN~?+ym5MhB){t zf{ErTq;;6dl5`9Cvxp8k!7;^Eu-&n&KDzcoCy$gnDIQcrm;xVIp?VePBasd zHqKlPG{O8B#V46PK*yPRoaH72lg$SZ9Bocw$#CZjmHPxDrSi+U zZ@!&gh}i;iC6T~c9|8F&$j3lF4)O_*Pl9|3mc6%`6kE%Am0M{Hpq8CzDp!9cZaH9c`rq+ z0x5y4200UC4UxdwnxUE5Z=k3-Aagur-Lj7Sq8Ek}+Ajg3m4{{>N$snhKOaqw#G7Dr5$UKlvkcA+NK~4u*266_-N{|wf zz#7IO#e?@#)Q>*vq?m2NBxub&gg6sp?4^ja! zAh&_^f%Jn65DCl!v`m2Sm8VkFRUq3ywu9^dxf*0A$Tc9>g6tv^SW_*E-h-%nL0$%O zpG~|!?A#MODe5GUlR-`aIThqIkZB;(L1uu=BoY`r@PqHPFCY~Z^ z(?Mo{%mkSQG8<$L$Xt+lAoD>wK^A~41X%>Km`Gq?wm?JIK0s0HK+Xa=8{{02b3x7n zIUnQ#kPAUB0=XFE5|B$lE(2K)vH@fx$R?1>K{kV20kQ>TE69}~SAlE;*$%P;oYGqztkbq#L9MBmn6J*$1*8 zqyl0i8xFOZ{tMr0gF2grCLfq}6JjPL#xMZFZ{9*}!M zUIua>$jd=q0rEp|WC@yzd_yt@;@N|3-VTw{{wj& z$lF2Q0rF0ecM%D!5e(wp`g@8hgX{(A2I&C_Kzc#;f$RsVfEbY5K>9%XK?XpoAcG*c zgA9SxK!!m^Kn{Q$1i1s`5XhY%j{{gGeDjRG79o6kY|HD2V@N7KS7=g@;s2kAa{X0ALIofF9i87kQafx7~~}&cZ0kX z$m>Dg0P;qVH-WsFNMP-e=$NS!I_MV- zg&-G!Tnusv$fY2cfvgAF0J0He6UgO60&87HS1g=MQHwwp6A7%H8S&T7 zqo`dVyNLt_hG)cg&ZnpaAPYejfh-1DLL{(;X=Hm;Cq+FPGzgfjk}L86eLD83lP3$g@G712RS=Ffe_i+G7?{)I^X;Ad^9k1(^bJ z9LQ9V<3Ua!5?ISPir&41qFxGe56HbBF9W%cNMJ4J$oA*cDe5mEe+Bs)k-$7J{DJRZ zPEi9ORggiD+ld6$oQ~ort)!@vK~4cV734IKX&}=%B-vJhku z$YPKsAg6;Y1z85N9OMj;6(B1?R)Lg2R)d@gvIb-=$U2a-K+Xm^2jpCk^FYoAxd7xs zkc&Vr2Dt>}Qjp6)))NT~Y~g6oibqn^N|03`C6Lub0&6Bmjy*S1)D0jvg4_i12#`mD z+zfIHNEgVhAZ3ufAl*a)1Cuv69djE+O$3<)GMNZXnP{o$qo`Xzxv^FAm0Z04#;;wz6bJskRO0N z2=YUaAA$TB%TQTGuE3=R@*K5S+^9`gZb1q9yqBmf*0 zAoD{{rp!M9`6V zAPYejfh-1D0&+UYQjldJ%R$ZnSpl+=2u-eVWjef+-hg~Qk-)%;1_gX(1x0-h|26h z-vWBT=7gb35G-DTVEPgS8<-#%!vw)9CJ5#+L9mkvg27A>EN6n=P6jQYdnp{VCNx3s zRB7*0=-mpz%qHbvZxi%Bg4a|+W!Q>5GV*1K|wGL3WAML5R8R_U^Ns3^PwQv5e31ZCyjE;g}eG~*Uq#)QM1;H>W2o_2~FjWeI%~BAImx5rt1e#9an6+XGf;m&r zYK6{JXpKU!Hlp0~C>*n9M?o+<0u4|&X6=uHV2Bh1i=-e}Pl1l1aLk%f1;L&w2!>Tb zu&@e(sZ|hcu7Y5E6$C4+AedtX!7eKZ23kR|)Cz*hRuF8rf?&iI1Z%D!m~{ogzAFfZ zUO}+<3WDiZ5NyDLV8aADgTgUu%oGHxrXUzpf$sV^a>BA2A+v#gG{&r*H4z1?Ya$9Z z*hCa8vQgBSHO&fwjaCqhwSr)^6$JCGAlPvQ!JsP$mR&(G@d|>iR}hT8f?)j>^x*xB zK1<=4HAo|k5iHY!excB>6na=8SlChS#}tlPQ@bG8+y%k-E(lh5K`_S)f?Zw^4D^Cv zsTTy3y&%}`1;L0f2-bW-FzX9~eP0j^{eoce7X;J4Ae;dR!eM|QoC*lS@qi$l69~eA zfgqe52!e4O=ou8!ZbTuN%OwqVb3w411O072%E5px2$pm~FsTcIZCwzI?1Erz7X-7r zAlTmp!4NM9XA3}AQ8;D~83f_9K@g4|1mXNa5Dp>);Y30ZjwS@*j6x6&D+J-xLeQ0= z&d#QA%pPALjS9)&_fVTKLp_zL=a2`K!0D+L9)PRAPB|- zL9ikSf;mAD>#87_Sp~t~DhP&GL9oCIf+D( z2SGS}5QJk0K{$^Pgo6n|IH3@PqY6Pdvk-*C3qd%=5QO6lK{(eCgaZyiIO!0CBM(71 z`w)af5J5N%5rktAK{y`~go6@6ILQT?OW~M3(iMcWT|qeH6@=4XK{)mmg!5lPI0zPm z6JbF(8Ww~zVnH}87KBq{K{!4ZgmYv;I8YXZlVw3TVitt6Ww7lc!FK{#F)gmZR5IB*w)lXpQlf)|9dctJRn7lhM! zK{%!tg!6hqIJg&t6MR89$`^z)eL*IuT}o*=HX9hv=Y7hkX20`$15Cn$@LGXMKbelr(g^;v< zh2R|_X>gMe1b+!ZaGVeX4+=qWr4R(43PEtL5Cks^L2$Pa1iuSGaKI1*PYgkD$q)qJ z3_)5d`NILGWS`boXRNPot2Y-xY!j4svoDd~pQ9DMt{za|FRnM-cpV1i^7f5IlGU z!Iei4e0l`IxknJZd<4PWM-cpe1i=AF5ZvS}qL5mv5FF?a6be}drtCkTFkg5VG+2%dq0;36mpzJh|_cLX$*!ZGWBBnX~Jg5XUF^j!+atXriZ z_*V*oqop8tTnd8gr6BlV3W77HAb4d8f_tVQ_-P7)!=@m3ZVG}6ry%%p3W8IoAb45< zT}3xbcaAUGQfg4eMixE~9GAF?1gBnyIP zvLLu93xcn*AUG`xg7>l@xG@WYKeHe>HVcA>vmp5R0ezjqG3%2CG=*Hy#;kLiAb6<> zg1ed^_^kAlkis$RHYN!EV}jsFCJ4S> zK&MbRW}UtS!TU=P+`t6E{|)Fj3s4S@aDw0wCkU=_g5V=32+neX;58=*?sJ0RM<)ml zb%NlM26Q5YW7aoK5S-Km!COrb{E>h@K;f8mOcDeSB|&gi5(J+mL2zCY1TQ8*aAy(( zza~L&a1sPhCqZy|5(M8TL2!Z+1aBxoaElTI|0qFlloAAwDM4_Z5(FPAL2#xL1g|PV zaIX>sKPy3SxDo`IA;Cd1i=wb z5Io`p!8J}0eB=bdSxykV<^;igP7wU)1i_(B5IpMy!NpDxeC-6m=}r*5?*zdOPZ0d^ z1i>*+5Ipn*!BtNXeD(yvc~20$_yob7PZ0e21i?uT=rRh&thbyXxXlTI|C}H=(g}h` zoglc@34$vr(9sl*S)Wota4r=DFH=EqHx&fGQ$d{y!4p-|;F2l`zNv!Xq$&vBs)FFQ zDhU3og5bz12p+A1;Myt(KCXh`>?#OeuY%zIDhPhCg5VG<2%fQm;36vszOsVgG%E<+ zvx4A8E9hK>;8-hZ@URsGS6e~wxfKNGTS4%`6$E!&LGa5JbeTf%)RnZG`xtGZke-he zg3By&avFSR1;L3{5WHyx!L3#he1Ug8!=^IKm2oN30;Y#tMRutRVOT1AURgG3yj82;RYh;3g~x z{=$ObI4lSr#Dd^TEC@cug5X>%2wuj5;BG7ke#e5~fGh}}$b#UKEC{~Ig5abq2;Rzq z;I=FX{>y^k$Seqc#Xx_5IdldGV?ppV76g}LLGV2m1Se!c@J1E{w`4)^PZk76WkK** z76jL2LGWP~1ZQSJ@M;zW_hv!xa~1@LXF>3M76cb)LGXnZ1gB_0@QxM)H)%oemlg!a zX+iLy76eynLGWq^x`)Cs>s}7@KG}lc zoGl1$-9V3~aLoF53xaPp&;|;}?6+|Q;UhVM@UL_zj*FZN9`Cru2$LGM_=MwzqfiIppOkjctg-vJxKWIN)O#_ zO#e)wuM+i@>9a)mBIAzHi9OZsfpR|;F|#_s=!8n`+Q7~8^wG&(-TNzjJww63;hPVS zPNi=YRR=ao%*fu+iPgO(=pM#J4CZm;=&FXJMn)%h?=KJR3u?izZOX(Dx>+W5SLnO+ z5QN$s7Nl}vq`lT*YJ|u~z85hgqvN{=2W^3?t|I6ACy-LiHu_I1#O$P~9p)O)(aE;) zR}Wo1NG(2oIOwO3<_!lsNelfoia9QdSwFOou-Rpc?zYq_#au`KKiynUlwRSu!3Nao zqoFvr&E^HvcBd&5lh;Yp`vJ>FkEu~V^#zAV=iC_#RcrLQr`v*M%R84<2JnT{5&AS9 zeO6~V-Dp8UNwOT?|F#{&q^1K@{pfs&w?!%E`k|pReL*-F-e2vZ(x;-djmzS(D9vMI zbzqo=A$@}-<}(9);`kJ=z}}Bd?P9s+(bs^eKv&Q3p+Rq>P6RtQ6E~}D@7IpmtmqvX zupcn$s*MZ|R)>aZx>%MqpQ7f1XJ(10f}P<@F08-GzybP>V#w9U^dvA~_R576hnvf6x#Wu@~)%y5Hv-0Y<^S?H@_z2%X{fkSdik zVu*XzV+}5Hb&}a3mSHMq#1J>O6T@&scTxxU_EpO{opEy5zfLyh6|z|5VL>fQOjtY7 zc*5%Ziq}$|7ES(mg38351F7Qpk}k(Q1A8sKv~?a`em_D3ucy)-c>C1OUN@7HZHb$b zBiSr1nOiE7>r*^RLIqCG?8(V?Xkg+gNoGlbw4zTy8CJB-rb^CJC1dr8TJ2Q zz+USw+MGKS)G(2=mIW(^lSj$X=_Ev|Obi%1in$$5X2oT(lMr!f<)D@nQ`{0FQqkh z;bFa`%FT7l#VwYyb}Gm5PQ8Koq`U0X*CJU3-BsF51b5U~slB-)MSNB%Vn(@^HDHc~ zDmYmwW42Qytqwb9Ssk9T^L5#{>7o+5k%;3}{q)K=|H?%3v{D)9t@?V=&QqJJB%dV( z(tVkhRQ!y&LA)rd#)-0uBB_ien!`$V^5IC-LOyGM1~Ec&W&S2ros z$Kp72T$Dj6U~Uv^i=}m7$0K)Mlv9;o5XDC2J({rdFpf{i5tx~3qkys3H8@o5uhJ)4 z%h*zSe+cYG!IL*qPSu?(^CNyJ;ALkwTPjz?=-IAx3uxn5XtR~b7csk3b=mCd0KI*i zwfmlmK8tfGrO%6_BdyyWN{l`3wK%KdurQ8}IK=%UT&#}c_@pd>d6ui19)n57; z9~|-T%x0r$8Tlhs?RJ?@w@(UI)Wqs+=e13Z3f|8J!xdp6eLTC|gL#oNnCuFZ%&7FW zB$*niEunb3vtY$1ODKNJlc^EESl!YM^PsIbzLYG_luu{++0dRG&I2=y^7h9%-y20D^91Yq@0G@;VT`Y zibbu&myY5UehK|51w-+JmF(~mgV~Dd$;(X3=0onBSmr)IrpKLPt77}p z$UqUB)qMP_3rdsHw~0Q8O;* z8Jp=x&9Ho6KJSjK6%BQ{wS{Ju;D(jWo$lCQ5-nYIei`h-;>jB^-K?1EVVAjfTBe@7 z5!1!C>&)Z12S+CimMcStN9Wh6xTW+CaUffTgt|gg2UKEU6Z#SIMiu( zD^ZImViiXuvL1)5p$ycICt2>u9mn|!#1%UQ;3xz@aXioDoI&|ltkfUQJ6kO-VFtx5Elw#5}A(=GxK-L z;~t?{`I7ihvW643SMCUUVgad5-1{~ExMsBcLKUWVcvt2l>;S#;Zec)7m8$60A9o6Mf0jv{BVzIs7KZLl*iK9FoW7uZ+aWsN?(^>fk1Fpse4 ze2I^CNQoyWYh&OiC&{aLERy($N4zq~b3o!4SjsT3__GDeqMzu+JWBX?8Ga32WcK8)$rsI;TZ*L3R$P>>*+aS^?|jj@2sw_ z;P%F=TVAMn;GC>&UvQ*q1Lst2!$+((;;d>rr;DDYDoxb4qL40`x2lo)j;u}%56xnI z2hOS5nrL0Y+LGF&whbJywt=&18_n{;>cPfUS!|YD)~Y@lD?{aGrg^ck!n{?D=TnVC zwf&XeCc3axXn@A-RlVm?y-ik|`$H3Y1qgRlEA(3%+1q%B7Sylht!ktZ)KrDVMo_vw z>d)b!k)Wq?pz%f)>(7{dvYmHShZ?W5SUW9iUEkjDVX(np`Xcp(tW|w$_m*oxquYw5 z1ttji>YA{XI1)91ud3;+p5Oqv2{l?*k(HY{tJ>CC15%@v73f~qfhXKlU)*zu96KxB zT}_UXwFNpZQH5&jT6(zK*Jx9Vj27@!HJwu-&(~Vz&W3xj$ch&6RyCg4-|+T&Nda~C z>;3gw@?h&f5*h?w)t7*9i0abHr!DKBr93Qs;;%ojEN$x z0$)|r*)_6~)0g=gRN-AG97Uei^fy{$Ne=7aiUac=YY`y-&eQPpeL?1PYHzuFxH?1< zldFC(P^%7=2FYWbV%LWF@aXwjPp|dMy3e%R;EE2$yKOyr54Uw0(*x=H)QqWHs-z`Q zeRN&!Gf1PX#iVd$%VL%y$&|c%=;6A%t3rNxo>A4XxaDCQp?gP$15)f&ZIC#UO^G~E z9vtjD)D@2}S}gEB1&sS%8$rXZAgd%!4q~tVN4DOQY>`#dZtW#!vaXFgd1$w%HEjEd z8*_E*jZs1>`F9W4Zt?w`G~5f$Z@|{pWex>X()PwfXrMaOPj5KX_$`d2L91cWlLKgX z>++{XRZR)vbUJyj_0e9lJ%cCNl3i_VNhGOii1bO6e1s--JNqOSHM=SNqj+RGrOi!Y zQB_m+yTfaQ+?M-#f}SJOnCsg+!XjZ+bGqH;90(jPN zPd@PhSBhJocb1pSMt0-pqy}AXL3-@5$A>97GL8Sa>{^l|b@q2z&e>lLN9NgLK{*;98>ur# zNbzs)71XHaD@l=g7J0;UkvgNK)hqjqvY;4^uU_f1OB$m&XO{&9X?%=&&NMG4NpcSt z3kq{V!xJX1R*jQQavIsn{5`*Mal#W;B@Oy1`$)2&YMSV$^jRg1+?EAteB`F(pz#tP zYPQlrjgObOTGd0Om+Z6Df*sVjUYs-5zBYN8Q#P}sP1xw&pRkJyQq zGNj(Xd_c)NtFOARM(+!G`_aDd9c55*&y8Xu)g@$i-uI4js`3k>*r>dx4bz~pIKC8> zi1dCPw<8>k?3-%2CFYhLjGW9x%jQ|36Rn+^)9?6m&L| zsL+-}qH6KXID2kSr^?NB%f;G|Nt@_tDNjAEi<%kwfHsMALM;SqZ2VJJSXJU8p%x?V~5L3_(?%XD`WN0mw( zdhWg$BUL?()DfiQ)~!^1P3}WZBW$H(Hn$|6|8R0wV~3MUW2*I??!n|0ElTP=l)Q#U z3%!3FI<~jcQ*BdeB$4X+osFE(efm!3u8j@I(NfU#z!!D4*zd7ON}szO zvvC_`EppzVj*|M{*%tj%1EMoW)r6ZPN!qj` zCZ#WOiW-TKRz@^!J?mpnd}J0Drzd2-h@qujM^gT4ThqQzNTvVYWR4>>4~lq4Cnmx@zhiw-AlD#1px_l7+1azS5nE(w-+xYgCEj=>k0~W7LAJss(fCZsOrXnU|8; zhfT?%+A&|^qhGy5QyhDjCCVA z?|h1LN_S26up^67-Iei1FJh(q$NwPD$T0S5k`r5J&PIb@0;)3q@abY8mab{v^YxC zYdEc?j!sJ1>@>0JOu7!Ti7GK)vU6xvBvND(a^{Sq{K5uW;AY--7O20DIAh%L1nG*PBo`+p@eSmkx zX|R^m=u2A;8su0K0iyx<%xD1G)5ux1YVYu1--!1_(w@gg8C1jPMzK+|6OT;Jd2EzZ zm0u9WM&&(^ONsN?s6^C`8LAyPAnrnz{_-7`XW}u|p71+)lr)`ALL^Y4LCy)klUZ?D z>?A~7Jk3g+@H>T~mfdY11I@0efek+mb`Li5G$^Iq_2RPV6|}q+BK>q1Gb{Ks80RlV z^(oyp`ZSnk*Vxlwx_n!n2GeZSGF9YPJk26wZQ4RP8#p*g^A(L1d4froFNFfAj@(U= zy?vFzu3BZ^Kr~D0JRhW4rxwa0+sQN=NEi#F#JrAD`f9_q+i`KFe{Ihh^YIu?$+R?pt~rE_5+QaH&cmlyAn;cl$b@H2-9pJW+aOe@>)u0%r22;o{}-W^(d-J z-;?##5RuMj+BYPdpEQs|=?{}8d@r@|=~e*^Ha}@%VNzl?`lxtB#f*hfVqT9rNT8J{82H@J~eNe{E>+zQ37s_=6my6j7>d7thDL&l_Ck0Tn(A; z(o7pQ-=#Tt&3Bi#w!*}kO8Yz)TKZD!%9ZgvZbSDqIj&+6RR1+>LrnL8Y+ss`%)feU zbLMIrwASP=ts{ieTVoc)Jf#(}Ag0U1-6&~Jx|NM`WO9X5T-R;;%XBjcnXvhr7xho7 z)3v15v?Bf)X*P82IbL5+3#L>m)-dAGfZ;t|UrOvE*03}iF)oDyDRIRb7ME;(m?q7P zMXX_Qwec=k3Cvqh7CA7J>;=Yjrx3sMK;F+?`~5cp+jHnJT{U=)TPXJ&+E=mJz<2f$Iz06n^89JcUes99qG&dpdS*WV&8Th z(r5M3MSxlLT02gZAu9eA<*hx7zR0_OAKfYCliQY$GAQNGjbfuQmN1(*cAzMyD!(9# zjmmrUpRfZ(C74fOJ{Xxv>=2p_4Q2WPOvU3@oI^=6FOH5xNi@ZN6UD}5a9Eh);AxEg zZbKZOW#Pn#HEzcXZN+ctwp;rqfabCL8DKczZBJ{x};H~Pnw3Kq&85p@W8(hw zguggV?B>$EMYbZlxpetVAMM6=b7{sRSdraay1Z{UcP(XW%$Aepo7xB!vE`)M&}U{N zQPjGz8(E|7j#l$JHpVpfl#oTtC22MgG8RUOc|E5zdSsoRw8>ps5j#YtppiIA)N5GO z;&zBM`;&Y|`Uuo7nHKFy`2EGK4{q4^5Rs^wIy26m-kaO~FmI_+<>)Km;dec#T)bhD6)o`|qLdHJ zZ=?7A_@RPM8v3jLjjesC2-B6+bKF8{!5!yTU+K<7X^;4chYH0dFiY*8)@)XapP6&K z$qnJ-&qPCoO*$|gYV6Na6@YB(0!6EN!zZ0=5r!*G4Y%W!9uxrV{ zH_{h)++fvNxC;)ChJF=kCs;RI$puPl>vxEgMBWzIWuUmx1~`2gKxXceQ=O9I%3LSd zLi}XLq!-*m4E%fG8}PaYD#g=o5bn6Zt6>gdX*%b zGQYJ@mznz{oW297Zt;@mTMQeszQs_Nn=8zDO$>5dvC_=e%D@0!aFBI3enS$aO)GVa zmz?UATpKdJKv0*XtDG2*G2IoeZ!R&WNXLbnG{6{ zO1BuX`XWK;J7!(c$9kI_hDo8*_r4d`t4}P|fIUOOU?0BtOY0PSFSqN5Dt);`0kKoU zC}B6YWdUqvNlt$}WYfsNUV0s=$v%#K1Dg4<;+k1AfteURe%Z(8S@dPqIu|yD8I)${ zs$#SVBu-PDgP|y=D!(9#jr8GphE5y|MJ1wkoXTg5{OoD{oarf>eGU`na2os8dOn;I3YxCQ474;|_X?&uB%z27;t77)o2vG|HU)7oDi>Zy_Q zzxVnld!`lVU=E>mdtMwJX))0Y&Y4!6RdHAtM@Jky{g61*iifmstpFTb_MBmk&=R6SkGVqa?d@FqE z`kpdCrRZ4#M?3bIevZbC_Y%Oc>>3Ulv z>Zh#oQqAdkZ79VIRclsRw!GiStijpFFU+q4ou>FNgZ}mu>Vmm>toJCcYl`;4o`Txh zWR4$X^GjZA{OD>j$B(V1x$$FbC^CMyj@0;} z9=LW_t37b-u4a0G>Mha(*Y0Yq2i$6MdVs2Fwg;$&Vm*L5Qa!Np>SzHj)C~)=W^v3$ z^#y&|Q-9ajw+O{Wr9;lBTaCY0&WV+nx2}3BTv5Nmn6+x*8hY(7esU_)bZ%}JIO%~^{_V>q`vC{JTLsgQw8d9!|IkM8~J^NP< z{GBP1IfiWwGD8A$mfZrGS4G>qsn{VbarZGJ!ZrY(2o(6`8==+281vooE3OBlhp_pBLlDVq-oZh}F z-nAMTXt2%8>QoxDRn?ulZzu?Q@YTEF^aDY58>nZO=hx@(RTZ9B#gbm`YobQG?q;ji zWvr^agg(nu3%bI2P#K`X)mVR?ncvhjdsY2rP9Ln+YL&g@(Ao5`vZjIT_Gee4#JP-b zOX;c(? zJ>={9IL&Rz={v&`iR}qX92KE<*qw=vEk$KjAFs1*v(Lxj7jrX8siV84vV=sH#_UTD zM^)8|1C={@<4~lE`FT|kC&fCozsjmX@2@g)CH7ZjrQuHgM&vwW$ELEeFsFELLJKr? zs%vBMWpI1;Qd&o8#0}FPemEGSX>x!L3W_c6sEoRNjVMgXfsb4HIV%;O7iFXGQPjGJ zDuV@<(XeLUFBy{JnuVpR@?5)hsE!QNPZ*!KWvyeXLDW{?ueGf)#Zgswwn`pOU%sCF zod_G~40k0-DZx)wcHX{VfG*V>sZmGP4)yP?_SOGgs;AI2OI78W`(Wy_brsd5wL*CY zCw=E2Vx_8BzrS4TvRAl7JCJTNYSy}{1AXZ`5;N4fE^DOb@K!=xQ1Qr6w8bm4YWFeK z)%FGZ?Dub@rU!Qn79K;H)%uvKYA+4Ec&80mBO3x@Cw54F-A+kIqQ%zrrLdG@X0!@A?k@IT&Cx%IKwP z<1#0$DL(1I_qXZiIaQOB>S}1()&YBDc%8iy@N#=tLM-T`hR!ICVr!+0+%CsUlctDp z^4DV`rirr}s5RtiLsj~*bUIaZQA%fY+j2quwj?W(W~}x% zBU!-Tf>TJa4LmrUPH`Vv9esMTx~;gVNGp<+Nju!hom;8DCDYK7p=!COyIdRIwZA+V zgdLJG!u+}2_7oUlUMA9{j1lH7gECml}PsY534!KwI_xDl9ei`ofpnZAGEJ@Gz0qWcG!pl)qJzs8wM*?7>ue!HLpc z$x{bYnZ-ob%r(ST@0ad4NEda};ZbX_^i~z;aivTd-E)hIr0$kEVob}oBZ^Tcf@A19M5?>R+AwUiZsGgkx2?3Z|!mDuhWlWW-F(abe?>wv$6+m?;R+Tvv- z4Rg&<2@QHnX18)jb$Dz4Am1Ap^f+TGvz1vT8g69n)n?hV1uWO- zsTj+;cMIsGx=LHgR=Tq1)%WoEN(z$b^D42mUgASbAMsF67U#sQyU3VW9yrw1n|U@M z%%~D)qa*QBiEvZZMJ*Y~d{Pu<^;$9ze_+P$C@D!R_t z^O&S+bGA_uA2!L)R<&(iC_sfSBdwu_v&NY)rzSe*NfIAb8naRroy`^D+Ee&H_El<` z=6_*HRXH{ci4UuCnW@U6^xH?u>5CV9qpve(^abFe*sl)TatAe{n8KW&=X5J98&yFl ze{b3Mwa`Z8w_Fta3t9esblOCR57t`8wvj@e?>r-?+LC6eD!xQjOxF2E>vqn7vg+1c zRrP0v)ei;aq?Bm^5ymw9oSzDb54(pB*T6?raS>NR?Xn)TI6Mt)K81AaoLQ!-^YBzv zhf}#yqm$<0@_^@ioW7BhHACiZMlseo~r6qtlqw$R&3rm z*7%e@!9+0+M<;HBIaof_6~7Tvrt`u=Ez297UaqS8u>Wf1e!BV*Pg8~J%e6>gchA`XR6P9OjX;$0fG-g7iwDG009%ld^5LfWS~aY zKbXgZeYnFrv@6reZ@ItNuyi)>sV3%fXL0Cchi!PrMt3dQlbuy*<6USYEa79_;s0H{ z9VFA$%9J%PFT1<9+l&)dde=y}X0|(rB`vRxB62d8($%Scx!Rs*ln<0EeVD6lkZZl{ z2lC{~saFYjWA8v0*_(qd`^qZW!m-urstpF+m0mJJhpAZuHb(+d;Z+4iEh2#uIw&Nx ztL)|)u&0d;aHUa=*=W7YWV|*f>e@5cJS(fCk+cYYJH&Q6nWELIIzSuUF8ZG|Vh3mZ ztlpqh8`6UyU#fKdN>^7Lpgrnv7b~Km@l!?Yol*QHA zx{c&b9o#Xzy*yCfS7%^`Rc#hx0jz79GQ8evyPO!?SvN3awVj z-Cd+1u5kcFKa9+PUK2LDfZs1SO5_Hb5BKeu~?jJfn=*l@Luhgd?UQi7+daDC)Z z5*CVFZnCXh3GUQl&!QK#IFq{);*!Ck-~d`(?(Qbr3f*1XO_uviqj_2a&#E6u;AgF> zKM#2-)e*8eu!lqO&UTJ96H<{^sAj6FT!)=;!?igkn`CVcKUL8cPJ(a8Uc9OHWpcfr zh;&@14kggJ$ZX1YG~W805uV_wDm)*F{dWvBqj1lUs@rD8HC?H7S!=wVbt+X{Rizi8 zrLd}!C8Oc7>1q zqw2+mc)Ny=S0vtPNu;@IS-zo6ub1qgGHWwmy|f%jANGV>^C~&TwJwrRPub;U$7Dxk zc1Hg`Y3a7|pT8sfrCPbG;j zDL&B{@8tRaLk?cbk718teaW>L(`xj-VXA7XX%Y-HNMwFxb8j?fPPvv|Y@I<@0nwqS zujH{P$;nZ3ZIRhd5z3LcuH;0NvT?q$^L1G~yp$_+%bARuQ&B#SS3Cl<UHgGM2F(nc>{Qp%FSN%)CbC1c>J3iI|+|O0_V&@Tfn! zg~=zBZDcZI#O@=}+da0Gv&uvJ4$`T9dVQwOJq{8@8B{0Djbd%}QJ09Cox6RaoT~hS zC^jk|cZu*w-0c&UU_ODl!PV_)(OqNivl_KvB3eLcQR6RGqjMU*{O41k9o0xwLeGq| zryK0tW1K2C*DdF1s8v=RUy|~Hxy5bdoTy8~d({$cwIWECsL98vCeNxJEDx6N2-1sH z)ZbAC)%3YhY}8+gY3cNLlv9;o5XDC2%|=s% zeEfWj+$lm?A{Jj&OXAEL*%t$ka|+FnDNtCL&ZU>J#^<<&(#yk1D91lrzS5nE(w^Co zykwhYWElbzxJp<|RurpC`)VcK!{DD8c707}jg)e}%W`gSwZGioNAJ&uH6)(?(3mbpr}N?h}q|(XB7L(HM6#Vq_@}OX%lx7r*rAJo18*Xm&g+2 zc9W-cr&}eJF3?Rbm%v=9*J8S&tcoXhpCasUZ&X%!WwYel(*auww(-I*v|zpE7&`kt0*!Cd=0 zGEnWO^CMp?>`Lb3Q7!3o5~7Yv?1XHm@k;MxR$LZ42@w}htL)AtjxRZdm|I{bMDAR6 zL7YMBYJb`LlwzN?I9W+D+bNRn80T5bQ+B>C8w)C{Y2sPSE{$+^P3>=1Y8}%tV)1Ik-zCui~*t;v*iO_RPRUl5;G=I*3K9y8%rvk;#-60vx`%VJStAo(97?Lw8x88N(2 zJqt`5s(M}cEz}%rGh~2)@1Q{8q zz*o=?%fv5)+_BAphE?8F?gKUr#y_;@Y#^YXON+Vtc2XqG6RftjYZCDX7> z`C4fE28pU&Gvn;JeUmCT*DV)InAtZ{J}_@lV`;km7>`e2JFRW1l6aOBNQ>-D>vYL^ zs-#Eg#I$xe1m=Z$G0NPQv((tMC!~(|@%d7xO3st2sAK`Dg+pN8>ROa$cUK1wWm`0#|1`@wrfZai)6_Nh+1kbmXvO)pmPN%ND+MGwYZu<@8MI+jlJB_YC^%b)weM(c} z&xkUo$FdzpyaXmo&2dV3nrf9F$J0A8VV!~bW+dqzbff!uI`W91cRWj=UHCB#M+rZ@ z(H(Mdbh5|j&gbchmI==ut#&RC&-S~(Go_}29BJ&HOF|aRO&_?i7YNxZmG(E&YbxX> zNN-ZMC=Hy@i%O&Fj7Hx1QOATsFY-T6{J8SaqeRsV`nsaHt0#U)ooxYfsd97Oa`AY{ z{OOVMfqB5nYxeN&z}Vq*w&TT_rHuWD25}Q;jqdV_*SNE|96UQ4C}sy$*?dPSj*ip3 zc7*Ua?GDxa8Bylkxks5)sX0z5kIoWvFD@OJhoha8Ro2F)ltqV{Fp|Zp+t7^a5=`9L zxsUnNGlYJhG2`~X;@zd|r1^VeL%pqwhbTiz)mztbgZ5T^xBImq{uQl@Z)H-#R#flu zyRl>t?X89#UU<1o&oZq*(*Gk`Z$LN-({idtJ(3$mk5)L(=_=DD0PSqYj@H}Zil#*G z)uQ7T%yM6KU|-uCaYOqWp@meX2147O7U}^jQpbeULBvXR#2`|iU|GK%g6^$#Yl)$~X z_`0_;M0Sc=weJ949l?hW=qj7g-KO4T5GV>HpA_IJvzRy##0oaIxExE?ppbya)qca7S)lD4$lcZE{o zUX7Ht?sagrO|#R#WTjC8?jwf+x*xAEabMOE*eka*%5$Yu4cb9A&$I_$vl=6l0&Z|< zwm7{%Pz_(j2+YjrT#N1L89uSrrWZTIE;Basj3{%iO)pt$j#Fx5`rV6!O)oATm>VOT zo~@ibzU;9`1z!QEdCv~)>8Q@8I%Sbgv-39H6z6nQ=U2Rz>a>WLr-6ynQC*IC2Bs9X z)!HxJJGinsU9S96cW@QR?%E_bF&i?y^mTRj(W~x-7c;4!M&~&>qf;`Ll9efqMxxmJ z=Dau8)o)wFqQsRcQFera#;NvU#qSJSNT|Hoo7Rt~S|#4L_y)O=L0qOo9^G_FD_H=W z>%2>fbzWAbO0?^QsVlw`Yaqvl{ns z@5q4v^M!>5;HAYx%dAxicZq%8vGq3BnP(Q0MylcJ1M^h1OrBBTm}g&KbuV3jOJ7Z@ zf0`5Jbr;CZ8?U?e+RJzB?%I6q)jM`yzGG9@#;bR1-g*Un%ga4J%<6=YC9O*r$HWwv!Vo$Bh3pN7bNjgZn)7n z2Mya)9xiJ)i#mdll2;UvAmXjGn*3BmovKO^6KVWe4OH!K^`+reiS{#bg$1BnzK1G% z$sd=RzpfD(!rHVNC~}y-BKq$W0ktU+*3;=VUnbSO5N9`{hqyi^#?`X&@^33!(fBig zO?A%3Muf_!U5R+RhP+;!2 z&zfeuawD0+=Eqbo(fVcm>p5AqX|_`&{lMn<*L%v&*JV8qXbJy%mj}I27410Kcc`Df z3G0*G`VJvc$vrd9o|fA29ZHp(>z4CKY#(&v_>z>Tw|}&*yGQyXcQ$vs66u{<`@qfcC@Z?k7fLPfI6*yUAI%-MVj* zNce~#71vvflBYZ=X&FrcUsCADDcqC_ucDdP-__ek7hCbB(~g*eoH`*%rCU^nX;?^x zQnFel)Ha(+um0UO(hjMxoozrWw_cA}bYnk#S+fnwYEUe&t2W4mt#JeD zQWYz~xEuL0sy4{gpuXICl~^0;0%}*84UPEt?ofDo7SmFqIwi|GN+d?^aB|l^Uj;PP z_1!_Tij)*Lt|%}+h?Xk*vkF^n3doE43})(+V-?=ZD_s^pN|`D z9Z3<-u_CQo+v9KDvZ&88uPKZB%-&Cu7zd@exazCa#||@#Nh|DqcA5F|rO&=(t&sF< zH#H?a)f)Ffp7d)snQa@6VBJL zzF27c3Do3(;Y=|vT>~fDtNZCo(PR?o?ju8UCz<^`GSVuQQ$x%|)sXtgs$aagu=K!6 zj|6zxC5AM*<)Kb>Cx9wUh?P|Us943wTgHyObKRCH# z4XHY9KNOhCnf;KM$8jxr{oqdG%znt4!L}dPwWA*#CQ2uT=7UqXKtDLSV-2Y~7jEhv zt~;Xa#w$5Fsi5MtqTY@JHO0%3Zw)C?4!@M8P4r&>{)3fTfJt6p`g(ge!9+=4SNDm+ z(h~1ll*sLG)#;mts)N;$`uew9)s+6ZuxiEXx_uDV825v{cr$~wU+QI-_wNnt$Li{i z8}A+{F0Lf6y9bJkiRQh#h&Z2L`h}Y}@2)Gicf3eUag ziEMt!7j4_MdwV^p?;3a1xTEkl>Qy#aDADUG+g6&dY-I6^d^TJMD+3jL<%6y`A&>s7 zUprmR8NTh3ttQ1#wPwjSx+b=q{P0R*aL~@r`y1%BZ2q)%*7i%ReAQuCzG+NeglFR-i2 zlRmMrD=NLax66}0YkRk5JMIqN5|n$^57V16xb(W-;xOv3C&fpNr3>mU#~wN2`LNnI zk<$edqbo3fC}788V`_#SD@=6lSWC9s1BEOlaf#I8z|rCHfl>?!jSro4b)^;uRYqo* zUK~`Wm{+m}ES~MEfqAJKR_&$BH|^Pq>L?{!Cpn|iC0xUYNH_Y943(`EvQqq4>>a7} zv0JTcC{_hUL3+=jG7)!TqI#ky6mo4N%KJ5|rwL%}|B;-~8nd1BOQQ@mvAy^pRd!BW+C zUYuyZNE}ejMXSVJ6B)CIuGSA*5pz|wo)KRQlgUEncV0h%kK()*FA>F~>OEiRxk{Xnh9 zTg*(=v1WLv+#NKgu)G=Muv7J{pai*R(Z7Jm;L2OTEF;CcWTWVP^rA~Z-j8?0OVzOS zKvCBEK~wj@0mXCqcDsey9wZ$tle3q8s`Yng6jzjIzJXZ~y3%WbB&6^I<=dvr^n~9~~rZpl9wLQcr-^ z5jk9@GE6r$s9BdwVw)VEE$*z*_!|!Pkwv2g-kq*nYD+>!;wVM#-W=X7wK?>P-%Wmh z=;wr6Pa_JZj?R0l*4xpUVkl{EZl&8ZtB^sE_YP`fV*7{0t>wW%dNt2Z&G09!5yh4Y zG~v2N$66-Ok|V6@g`H86t@IGop7C;dvr;P&l$1BNW2`9lGEVX?ILRF+il2XsJkn8n zD`P}eC8FouFwlVLj*v?0*G6N5e#`b(?RyoiuO@ldSmnx`5JE}%h<1#RLFi#g_~L&3!aKZ?7ZuY3XAOssI+}$JIBJMjgEyxNV^QXo7De>; z|MiY~n^_Ao#m&2o&fE71PMPb#rrm9M=E!@?#w%Z3t?KKYE$T1kDjnVM?l$I;sk1F? zWXF?)?PS+4yTMiSf<}j-RIL>Ul5Vq21Obs>`_$C$xIajI&c};=K#!O+C3tCoD&w?+x$y zp>pJ$mwd}2@ur@Xr_bf7L+Q&4m`Xi257Vuj^y*ZfTw1-UzTvb08`q3_{DvVq^y)6x zhA$r)stz3<&D#Xl=Uqy$bE~2^XJKfnm3xC>vNx5x>3yTZzZ3PVrryu9Bh+UQ{;nzc z)U0@9@;24>N}p%IDIk4PI4yb*`8BrTn%BgzB*nKVdQvzgdViw2^rhMD?S`(L<*Gn8 z)Rk5>ZZ~|?TD{miQ6=@q=2qLlLMc(Nhp2n$vn4$(-8GjMHt&(6kisLel(;uQT)aC? zzJx8^)s_}G&tg(g;7Bkf@^uiov3scMS4X2EZ?jsTK`E9>3HwOCII)W^*r3zay`Jwq zWo`NESK0cCk`zvfepC1z);3%~m>wK0{(frFl-Rp!BYSH>Yd1Zn<;~l9*Y7F%LXMS5 z3EDG!uswpovV>Gkx$zErwOMba54Q@m_lG9Wc2Pj{N-`EYFdfmh({7Vz z(hUsp7S?@;qzN_!JLNE4HF=I(D7{~{?>gH(w6}C;qO@n%ocJ86k|8i>L>qnUV^HKf zOM{icfW8(GggcwVqXoXRlq}=!Q#Wnkj~;EI&nNT+2?z14MJ>UQ6r5-JN#ri+8dZ1P zI5J2#^y98(`z0nj1hf4u@)>vXOOE_}MIz??^5%0YX{nUNTXbu-Tc1n!^~&Npyf|ly z=L?8hl~lWT1;e3WxxNqe*(&dc=2Zv@OCppK_PRZl;r&NI+B_GC`VB8RQYmq_I0=~W z!5xX$zK%?fr)yPGT~p9No@{uUtyoR-HrDm|_>JS+u)&J$S>4rv-b!)%X`)h^)Om)g zL~gsaOVrFN49tbQ<0y4J(8v7IHf$l8uoW5j+Z(E z^9yxb$GjT7)YH8mUt9~)`+m}oz2wNvq-0;x;H>WMF_U&JEUVv<+YNcV8DYcZp|?l0hFn?tMlc5C7-eph42jI^A0Nne;N z_8gL0lnS>NoWI%ZM9q1VBD=hQzV7KAD)$Emt3$Wh*VV$CXmWp4va3)(CV4x;Y!-Ag zlt&(=%B!rom;5F3?|#g#Ly4JpjG4`%6w9DQvo<@nMu)H5bP`ZJ`??<IBP#Gu>9ojfVNtX`{)7wXfw$Z=ZBUn71 z=@N8ePx{brPH=R|&r7N7lEk8vWSzl7)Pq|&3l{P(KdT#VtM=Lt+nVH}T6tc*RwheJ z`{2}_YF{$Dzh$eoRq4{GO08BMDAb4g1+%bSnuluDIrUnl%SxM8_}Zj1Ct4JkoqAdx zD5uXlqG?HKO3oQk=Gr33S~NK!j3!y~3#uYQkpVqk<07>4AeD*Q+* zMnl%-zdjdtqF>WXZ)de;{L(U#_VW(M>q=K*fmF}Y!ET#H%=?|FFCxTI0$#&9XvL7# zW-T&17BVnDjXsuc$6_ZRciOQiYYH74Ru0fheboW_otV#A^s3|LaL3Tn%eP&Z^~>Ot zp^>3qvvJZoE_`#y(6DOpaIsO2P)EwPY;v}jvUzU|PpLD5l_-J+OL6D^9%7HLtO+25iP{UYzG?CY;q zdWv|@@oSJM^C->7Of)8<4Gko6+BbWyKqit$*-P@)y&;tvVJzTmQ)Cmwq{t z&M7vbv-NM8DEW)&pDT|Wkgb24(cgk)y9)nwWa}S1l>Ei?Z>x^Q&(=TkWl3Kt`oota zJ@IHpdQ@FRddlaQenmq+bNXd>_qQixquOv*p&el)K-`SwnR~)8YgS7d`Dx2(iRX8% zU`vueYB?>*`$b#1i&6*sMlwxLj^gP@Z9%raLO!Zj&Mwv~kqB|OXfu~1LMam0-!IE{ zmj?=Nb+hLOc&Jtso87kRxCPm>8~GB_2WE(EjK)4c7P+CIe4t$Ev!9NS&FIB$DDW1v zPn%_PqcW)!abkcAIo&WJ29yF$49PO?qwdxFt@nbQE3!fhKlmqj(}>NpL?m*T{FSS* zusxXvJX#Ph?@*$ict}^mZ4QNNS!wv@L6-e1Ln^LQiL)sbr$rUzeFrH+n3QI=k-esi zZp@}@8mj~3nqD5-SKKWsQ3(yIOB&FRr)H(4U7ie$dON2j%sWd;kkH1eCHFmR z>8kFoRCmv40U@EDo<*9am+6@vjWnaDS1)f>zT27aWxvdI8QUsZmNEXo z1{*NO!U7qL1pe4RvweUK0t7~2%#PVt0X}i!o`~~{IC0;5`EE+1`X}pqaen8XbK=B_ z?L-=PL4zf+N0L|gg>GO& zWgz*g5a&{>jm8wUsZfTr$wp&9SM|^H{^Q@ZUJjSUC6e-4p?Kw6zy7i>dg`gqJh^qt z4<4EwjCnUg`2M@tjlVapPnTMPv5b#Qbie*)-#r`CJXe@`&t*SB&8RJrZJLA!S}3Ua zPq>psJ)b_?rL-Sxi7Zp4RWgCFpH>C)b{x|_N*12;kPP_1K`t7K?sCW+4Uc3Q+NHS{ z5Joz$I;fJJHatRlatL?aGQ7-u~i1iT;OKdSI zUqrCBv8o{$g=zRSi1uE35bv07{G8q8(=SjBzGto)Y(9u$kS9H$WWm|rmS0p1`5=h# zk-?;LIqvL6Z@uIG{J2$A{%H{HB|3%guFPIUp0e6? zw|$6G&8f|MNf;3SBXqg>fJTACdo(6{`(ikmWA`HcI&~9sP5ARq zgJ_?4hn|ecyV?2n&kPyo8o0E`;DxQ~KMCtxdup94rsugcQuIjM@UwI!!js2Mk~U^w z1BqV4x3v`RTD=Kg6U)d8lR>Oyy#k~x8$%ZaomHtv03BCScBBpWoT+27EtAkc}5 zp<8|R<51e@AmPrddl$!i@J;L$q>f+46G8Tu({F&z@A<%Ra(4ca{-bL02KjvPX)n#1 zOpA#wy6_-j2w(g9Vk$}-i>U646kQ9pNj_`a`^66)k0;~vPmG55#*>p$3Z0gPbbY$~ zQD6s}e%)-E0)wdM^D}m1{%JU`W5#|#rjcfqMk0RpirNR z{viDl$noNb`$IbZeg74z(f;v_`nJ?5u!AqnSf{`s>e^DLfUxWI<J_A!Uq3#++ph-DJ(}Knd!W2!5*4F0h=kpHHJ=n0NA8u%;_{6tX zbm)4KrTe zXE_Z2W+1l#NyFImUfC~q=i`!lX`ry7Mt10J*m0SCJ>F zOTP8k>nD_e-;-YjALNcUVt)v~CvsHvF9ZKvJ3AiVKQwlpsM@(B$X^@ zp?4E>5H+fhB+CJps{T&UV3jKD1}@iCfp9U@TEnhOfkd;Pf|^wiPiY)aPo19R8+cSnteK(# znRZoy$W+!$5d)X&szA6**Gz##vlpSwubhpKADCSY4=A`4m5`PoGt4LLFTnUo{P+h+1{x#+?K`}0&^b|em{u#s=fyDE)7Qy zxYCjq@rBM0sSKoD72;f29w&KWQ`DwH1(9Mukfb38G+kx^p1v}0cNAH&vOjPsNV^^Z zxxC6Ba^yB34Ve>vP#miI`#|db!|L?>h%P>;Xb)@j;6?LFJ&wpJA?R`=EtQ6rG*=$m zH9nJk82H^T@iUZ7#!e~H^R4PX4L!#eb%}21Hlh_NtIpW|iUy?HRRsk_Rm4@qz~#Cs z5H5y#NyJqk(d;I)n45R`#;hJ!dXLgk+?`pLihQKOA_ggMTNEO0QoCFezIH7X@V#SE z2w%etyipK-Kd{hZj}L-}uZ%C``ST=(aJ%GEkZe5yTH9rg+y-P2HpY^qT`CS${q0bT ztM0~Q`%WnymHA?jdqY8T!PSV;!0sT{5Iq@{X&zPG_p;YKpj;Z+T|I|vD)U13>mPvz zxpelxj6IB^GEj9@h;uzvpifbo3T0@R1p0uk>i-WMYKi7QR(oPesSG6*;#Nsh)TTmB zmo%WO`j7b`im!-U1B&Q9xe`81QZ3mzF5Bc%U0(vDpQXZljg3HMXapf{HA0HoRH*4j z2K7pj>`V>f?6g1yn(RZ7 zgx4f&ueh<458FTvoNhvqa5B`}z!?I-Jjbg3Z;~3K8G^ks#j)-I7lSk#{x=aLQApQN zj@?15p+Z_iibqxdZU_c4j-VBwx2%Sx#}SSOw2*N`082f@9wQ$|WL#t%p}81J+2e@F zt*ZY#_}Nvt823>Dk6ovXz;|L1{eD7Ek!q+fEGLEp&o_|#zfjzbd zO+G^Jv~TuQ>~)$5d~tNIk8#>#L+ucxsEtZ^Neg2d|)kc+J5TRCzY zkcQC7xK44X>bF7a<-zeVKiwhoZ&wI1uLbg4WM$aVbc=9s#+?s(t3jZ9p1AC+$;lsOs+qZ`q==V6;&f7u*tKvmA;B zG}u)IQte5ISN*vn1}@iCfp9T&O8RpJ^4zNW7HGCc6B@T$WHkf7%i_yH7B^)IpuAR8 zOKu1Oy_=v7Es~ZDT&nsXLkl=K8}yGU{gX!XJ@@Ppy@Alu~ZD{z;SG7^LRQNMEux{hxzgN}23HqL|c-!nQzrgW*J6uuCVSl9|%{AtT z=`~I;8xdnvG>?wL@8NqSBSei2@5hA+8&B>71z2@E{46F+S{}y$FL)pY4*TI};Sj`) z<8huVh2IYXL@ZuGn|pyKck~LXJ0W!TR`pKr?9mD3Gfakqo?phZ+9KatIt2%Ezh?@u zXp`9EcAWK1VE|wI+9|~HwP2%YyF2K>Qy7Uw|D}%seo15F_@eZ(EVXxbk3iuW^y`$6^NpVSyg~n#K7gcDiAJ)xsm{{Kw_F#pn2bkOyGqQR*{AmusjH|4ZhwPv-Ob?$ z&-PP7&$3^C%$vCWou8sanmztFbv=XX%%$hB)X4yW!%RXa%zml&M9*xSf&w*&!h@jX z%^Wc`k+At;i7_nHj$8^dd@!^X(@758=)v9SGvnl1Mj z!_nz+o9dy*(1gOSC&LZac)RiHqU&>%*F>IA6Px#Ri3HRnG^ zP@_D*s{T6=1D${rjfW51?Jm~E4AiJ$JbV^G-$pT%(!@q}$UaB3h!Ts!>f1d~WCx;S*GegYKk8 zHOlj=>c0>AEe~mEW9h}~Os){*SPSHNH>TE^GTfHN8FDAw39qVtmtRS4MwvdQ_g#=EcB?E}O6W!F z*Was$D|<8mYT^!e0#?;?+)3z!*Wfn;R?-WHZn5X>K7YA(%?KdSsK^j5`Jn4X)pV4@<@U20b!rhOm0b zV+p8+u$oj<{tT$RQf#|EhxVv{8eaM4=(ZjKxkhS_fXPISb*;v(Yo_f{h?@kGiTHoX zvufJbx(hBBCw6)rH%TGzcxjUIt28ODg&0^>lN3t8bL+rlX6Cqg*ArLeCGY#j7$lDjyMb$eWo>Ya+!Y~m5N?~{p+~S$$>L=H}{7BrV#+xz2 zhtiAFQ@Ul5`@&mlI{|oJDt!|jC4xRU6@Y;9Os8E9Rp9D%MkyGe*LU(6wPv> zYlCeQXFu&wM8f79^(bZMeDbJQ9n*5?Xgo5l&JF-n!sw@KM$LK=v}UUk)p`-o3e*2n zEBT^R^6Y5*4qvy`bN88?(oCy;A;Ld@I|V48`>5^<+`-7fQR&t;S%TF>!sgYc9mb{R zb;?K{(0x{BV`NVj0?*@C{YSr*mXx>TSMkJhUm%o#-;-YjZ#2lnlLg`VRQ2l;Q&^yF zcjKWOw3JTlu%Brnlt-6{Oo>h`kB_UG8u;AMCBnzhEt%eGl<4w{5ZKvF| zlmMQ6zy4AQXv}{Xdn}ebSs&owgk+%lH7pb56C?8M%Nr5tf!EVmCcF$ovaaEGI$EPU zUNPlILD#iWf8_SzEhV}8Y05#OO%2K;x9WZ@^lpL<0vEd<;8NAUUIrSz_4Ro=N_R=w z=|McAR5YLoJ-FcJvJsqX!(E}TBt;BduB(EU>Pa>O6-eslYeBQs>Y;i4GzB%zsrAJm z$%caDs&KRSsuM?jY6>KWTZI2TcT<@eqeYm!s_O zs_5A_?#g0*Lg$s~*KalhL}vCi;WoRb9lOk}>cNoq&iPX3!jlm63C>KJ2`wM~A&4LQ z)o?UEJ)=7U`xK!^_swB0TO}ogTDg&yii;#prWR6C1n|3^mI^DZ&b_cPB4oNH1JgWM)gY02|M>B>=bwWop*)~bA;IV@Y z!vZB}bTca!BPSKcy(Iq@26i^bXNnvRm3L^-Fs?n7I9K%->lm{^S7p=6{fWH*?1Q~f zcxC(bf0+$CPb$0XlVPVT2UEFWX8`53kHgLk?S`EiZ5Sh2^=JTIhN}LD-~g+``~8!X zzE$h&yuKLZ-%yZTd^I>Tuset~gioAT^Qh|oOGowKAbr2i5n{Wg47Y3Xs1zWT`vuKH z3U?ZJggV@|DWgE+s#oeN*acfK@{vEOUGTP>(oL#+)nr09oYMaW7n3vE!M0T3mQ$b? z=D$`mUmx@bM|A7IIRM~w03i_g&x9a;bIi#X^z@?pYIR(U4;+LoV$Zi(U$|{i6rzO6 z;%-2JEp~9_Mmf@x>t9hJv)V6$872SVNPft!N%qy@l=E zMS+%~pf5(*6{J;m1G|IR>9T7cRlVb7_v=zOs7=sSv*+PTY1%@w+6RyH4O*{MzdnP? zTpx@llfk&UXR-2)qagsJYym7ci(2j#O2E^&R(+Q6hG~*TGC_DgRlNrlyAuXvr}VIq zr3`l{Km`)TA!=ZdtHrkUy>^+?O(<$r-yDRZl!%Xv#qfI(;5NdEKZ11EA>? zEqptS^$x39$9jPhvYTH%125`v^R(ozvLQC-c%QUvh3ot6qeL-AxLmLf&(ABI}@daI0m{y;Lok9sRY zkkjj}N=42odMgC*^LndN;Wwk+3MqR3Ts=5kcS9DpQD&*j0YeBpyk9>6v+>eN|DlBr zODFw@pb{^gG?2WNs&TPf_DHb2bP}269E9h*a+3Vu4!cn1pL$4kf6=TSfM!? zwN)BcM2=Pc2((;3qQ^05=xJtiu$6=WblZ|&#dQ+rQ^N|O1pJ=-DtJSgWDqC_&!?*2 z2YPHA(GJU)p0F{)9k-)E0g`NopGA~J71fRcDR9^iKMMy#nWP;Bh-mYbdc6O0!g?#E zU;2HQnb&Kdb?s+Hy#IK={zbao+%Os+E0#1=*2th0ra#csPu!JXy+;F(3v-8(dlX+R zwteZ-v?ITvAbI0aJ&J+dL99_JNspp=RQ3NV{>6gOJXtEDQ z;wg!*sb~P?!09Fw2`59nBpLwBbFAt&q|aw9*N&@)rJK2VaNd-IJewMnSCSf>Tj<>c zZRnA#<^h+g{?|UE;8x8VY#+bCV_SYP$8uZt8BGMb?CBCQZBj`pV?t8{pBuVF_!z1s z850^MHS|lMhPVwKo3sDWhK|GW@z{nMNM1cj8%nU;h9cI`z-U9lgH~Fh4P84M-=oy- zqe(?sMaPGQGn-u786{ZvW>zdFPO3^xzcL7Ld?qUvj)uy~^ecl(&AkfRuO8AtgMoQ3 z71x|E2B|g_q_yS@><(fLHIkasJgWM?Yx*Phpj(uaY(#oCQPL~0L)+wDwSN6IGE`^Y zE5+4!&N}8&Fv@xaDuVGO?0A^dK`{THhGQ_zHiRlGTzVaPsHtpd~_d$04+cZEm`Jg&vx zThvR=M@5Y2^fw?XtzOW?@whxx^~E5^hJxgJsBYH4(&#dL&JImUu+}`P`U4>Q&TvFM z&4^A5m#)>|AsJACCi_q%Moqj?4OM|0IMF(3DvGUMGE@ba)X-N!gjzct(}e)W>$sCVQ7`av4|0!{s`3B z&b=X}^T}Oy%r~ht_IaQJsrI2r1WS}tu>i<{(@iK6PKJs}EC85j`4NbCUom{%QjPD@ z8a@wFtTd!~G9Cq#N)|~F9s<#6ePF4>K_g4 z4q}6tQT(KT)I6&C*Fa4y6|Ris+p?()q+S)`Tx7L5kfJsf$`F>@T=<=aYRxyR`UQwc zbjou`=XBg5)HBM9IWMHeaMa96K@Ym8#blMM#d$)$9po6``D|X^;$TUylVd&as{X06 zYsvG&HFvWEjY6$f!~J|y4w7wZP_Clt=PmSZf(|tm-7V?oflF2YF5g!CiqwtcFve2^{z)9mD%=2lF&Kr86u8%aq>7R#q8gxqr6UCzYgi;{ zfSN~D{}{;bUfZH;_X-CMxmg7Y(7?Z)7l3)is!(Wi@UPQp4u&d8C`>q2_1}gS$G!9Z zTXf&b@pyE<*QawHR+X?^2_0y5Jt-_ylDc#y0RXpKNuh8vbWJW@Nr0X!T{8n3Q}AzH z$@0Y@5e5GM$*WEIo`I#{ud#*_iSKD1^Z)^blMT9&?*ZLkVrOLgeIlU%4Ym=OE1`TZ zkOGJO@N-LjB)%6QQWF=@m90LArb)(i90hzaNU@Ro!fG0 z8o^iFxI&P7Es*C@^U&OPSs89i;|z&;r!xG05b;(0cfsqok6)Z+$xji1{CgQZ*F#Nz zG&S(Kp-WmEDVhFgl;>B~tKdt^cdK(V3!3Z06@naVfjrkk)klWg(zsyv*s~_}5%E?1 zKX`eYZne25qj@u+?{W>;97#Li24&ECW%~6$g-YJMKN(;6)lrKXD;7z>AUpAQsg|UR zsCVVEeH14fMJRn^ZxcS}K{b*%1-K@JKM0g_iQ1PMn6SPBvvYsjC3 zYyJJI{t!6j23-O)92_0n?~!u24iq58cKBHgnN)@f*MSr`?1!I)gP}?it^>q#s_K6M z-nHzySLT*DDK{}!2okIX^1KdI6U%U08fOTdG_i=U>V2^O%K7-TXYN?>-VB$5#B>LX z0CJJl-b{|9TR0Wc5Sr^N{C=P~RP{0V`^sc|{&UO)0hXFeQR)b2l{!am12RY#qgf)g z;!xEikb3v@!kvY08%1)xAsOg#4a>xB6UXQ1;iC}J1FxsCOn4b8Cg;Tv=Xufq61x6f zS&UQ5-bst_x;C3odbPXR=f7sK$SY6lTILnDb(A>7YX)5no>l#?pv|wJj2~2`c>%9E z2?5xDOMVs0C$-4-@wF(FfZvl}1#f7>!;SF!fgq&LKG@XR|={AE_JH5+~azDWQk|ThnHk)nO23$9^wi!@(auCel#^1UI010OEbKXRAdXrCf7s&Uny>Ib9?4e z0BrJ4MFVnsjwArxdWEm(euJ)Ipwr{k?ybQw-AF;V*|^Y4TY?UyD2#D(s||8cYKN%xLj8ST+w!C zp4{T1Kw``@8KM14*X8WA^ncV;&YwKqF86&*;QKvaH`m?G74BEc>}~SnEvMu@Iwu8v zH@FLOyetmf-~t5z4-PMAszz7EHupvQBHm8wl9bTi%o_%Su|zxCKNK zfYOFG-#SAVxzVkTq!~S;;ia=U@gims0gUNPv&q<0{4N|7Qj_%&;qlkGlG(b_@q9TTYcJ51H-aX)agr5|Xn z2zZB{xOwvUM!7rCbh=kq>fbfP5JwOy1M@HU2X@LG4}e@DkgvF3%tuB2l*yF>V5xs- z4r{$Ihhcr5t8j(x_OTBqd+x3jxG(qHuC{lDK)&LBX_4NQ0${mMNpM!1_tv38AYXCh zFIx0oepi|US_C2h3PiU{o;$~I7cN=f;Xt5h;A^{5;Ip+XJdX;I3|L&3vg3-<@XwBh z_ssDEk2rEtV6`dbb|Mm+uuW7h!!|VM=b_)!C4bF}g0@ADA(NO-p6Kd+okkjk8y1*qfSi z0MYgpgUWaRan=k_0fXh?N#A^gjWu$GKu#|x+#8PQe7aSqyl^4}09$cykC-mW)ykzQ zfR49XA87zo3V_w&8Ck+yhu~)AivhB9JTQ-)a_vwV5HBCodv%sPY$sO;YmIzJ$?i* zcUPP{XhXMPTYlgtaDfD%>!XV9D<~vQ@)v~wU>j67fjM%n{(3PWb&GKt!AG7j1a;;pvvuhm-z@E?A&- z4&I4v)+z27JF!5h*B_SMl}c8nvMakn(2uUp8PW2w1z=b9#Q@o+-zaI3F0+#y`6TS| zFk2G=e2c~d)HxR)MBq+V(Exba-SA)u%i6g@Am8>Uv#R39SX4~}@YP8b?vqP&WaIc^ zfULQr@$}4+C8Lk-z8pZylX1(&sw)KYm6)EDNX6}tO98M(0ja9&S7BJFrW`;k#l%$q z6_?Qqfc3L?`ltPe_A0y&aSZ{$mP=RSah1A4AYY?xt&mKdsL#4I)wo(`}(h<#bE5swjv7p=qZbUBs# zmdO6kWwDcGr&k#%F^lfiIUE+QM&@ZDP=Pe`pmoY1SBOKPR|v>~6Fq2ca0+Tf^^yZ* z023|05`yaOmY_=60(5mbrDol)?oRqo9^Wdj>L#Q*u&xj2%8Tmkt@7ws2tenR0iCKg zXN%m7xD)_OhjywYk8`LDh?m{LKr7a8<8g&RzTS3@klTR}0Bormnjc}2s0@gg=?8OB zl|^!eK)z1D(5+(jvNnq(1OQtZjz;znmCeef09c}BSIbbW1C;^s#_>h(9u3y)shpp= z3IzaH>8J_KlB^GLpzy^2+2YeFw8=W2nDZm<4;2l7{dt;)?&(w88XRaEG!p?_zD>zn zW|FA>wxa>CKZ*0uJtsx!I%E6&X%1A)_X8oYS)mv1Y}vUcxfB4)r-iCy2Xlo${uOVV zE8Kjv^le;EUOS^ncA@$Ce$tl%|CO`xv3=RK?iT6G$~E zsO2GC43I5#&8B5V)=AL-_=To`mM_lUs^00HJvuq5D8p#b+`?)x=>DTyWm_~OsDvt{Jjc9)Vy`ME`5c-^8AM$>{!dqki!`7ML+N^(L6 zOqSiwwuR(riz@_j+Fd`R?VG+id1=oF8g$E<0^Z8XOK3WXsf$$D<~T% zp##xxx@U5mM&J70GiUo*#K7(<9+7U;-6q4+jV6TO1}vU&W!1w$#SbG*c?_E4YY6~s_Z^jlqmpdA8junKn{_U2 zd-FgD0JiOZr9EwWU&mgD@HL`{0M6N~4t`jT#`L#eSoz^-A)ivTz%1m{_U|57#cG0_ z+CT}6*rca!pO#V%rsERbkoIZ<6bDC1159;-eszsmY4a30AL&RE5+f6-|;C!fHhr$<|LffIdIx?P717ceR*4? z=l&1LfCb&7=A@Y++VdF-lNuP_@FZ^Z7~;6)x7>Lcw7{&fl@8_>FJ&uD3alErAf8*i zlw3dy%x-zXXNmrNZ;ee3EPp)CHa2|#-Oj5byk!J#WIzS7Zu7%8Js#higLn>Snh4;_ z4+@8mcAfqeBPcQpQ^G{DOaj&dXk#eiCW%?}k!9QSgHz$2^r(|#A#pJSt(cYBkJ z#dL)p)~|mzY`!*2(&oCgf1~=z<6RoS6qcy=)El2SEh2#N{{2%rbWTel5BhWfjfV7=tlYn*guv#`5p8zS ze1PAY@J`T^RU3;VA6sp~0P`I;8y=9H^vcttY+RV`Q3iQDA&gq0sAmtQ=b@ynVp|MI)rb$+*@^SfvLvL=KtcXdF#sk~dx!1Pc&XIivdg&UMj z4ifGk(mLxA9~ySlb`B{App+2UtQ}6qr<4k1wQXJxY03e#>a!Uw4Ev%l2FTX&+4;%T zyI&#=fN%2ZevfXvr41K%s zfCp~X#=Xr*M~3Lc485~SBZW5Md05&8^6cprImzwe9Tsk$^EDDqA#Naf#w~ZdJQL*f z-=u+Y3US1~EJ+|S$CjNg{0=s-~jxsLO zHB%tb>@!ej9rY?V2HasK!7x{p<6-p17gT5mZEu(O87il5g(s4T-v0{LBARsub1lN9 z*wO%?xd!SEO|9=nh$JG@0A#xE*FH>{Br%`lYOZIr=iaSc*U~Q&x$O(@Z<`C{I-~bCIx4Hx>$@& zyh2l;2c}DP-#pvK-3^riF~yC`-;uUZ(Agi;zU>LUyfA4ATO8X{LQr7gQz5&4vD2O8 zDpejYXd#)Gp{ft1eQ*@MlKOnEQ0dZpaIlI!$DWG@K7bW~V87=JM8e$&XE)pz!tVzK z24bP#0sT}*wSFV@2@y9jhKlAX0<3U5Efs!2&1m2xnx{z7`+LMQcs|z_IcYS~@0~xQ z4cNBG8L4#S+?K^-hi9Raqhvg~(nO&5o?1OFao}lkLI+G%`)4IA56^uuK=$uW#{I(q zl{8D7mgwC0Q$k>~9ZS#077Ny169Js^qDQorWAD!LBwYvqwlz4a25(W$%-Bwv;ZdZb z0q~8%F`Y0Wy(yjyX|!Il9B*bBw7~3XS+5(6PfqDE>M}bXPny)ga7Rdra`B=EPyvG* zQpDCN%fsp!w7~3|5V%#(qC`CC&M1M=bt%4R<-}{7IVrGODayf#6kG~`P5!Az_eYr{ z3m$hx5`eDIwKVrkzvgdoDFB|ewlJKBnV;spgCYVL-w9-}eNkl1E6*($V7@YJRg+5r zaD(V+*dR4ktPyrHgBF~l1K{8-*jmjvO`N-$=l+@t{mr(*E&Yf**v>cd;M`(`#S9z*MqjI-I9GXNK zrUNEBRM_6$rCuTxGN5IYlQGQ?if+yffC?DghN9m1o=Y9Mu;Ty^?+f(6bc;5|=ynsLesmpao`kaL;9GO>?|%!2t6n9|!8t z(wrqlrg@ z@AJDO1q^OBkCp+2)tLQOJw0_p37$YKmb>FE=M%6lpQqNZ z|1?xVv&LyIInoJcx&@=U{r8y!+Jv)qOE z@|to0?RY7g_X{m3dn`}^gWaZxUhTbCxM_lixkv^qmd`5t`fXmNb%j8_c6LP1%-H!- z{^|l>?m<=k^}f<-4k2xqWYOhN)ns@=QNW#tZ@DB32)X|H^&b`2@aLYWccAB)c|2@x zRkDj|B2aNpmvE)XB4S+k;@PoZSk%zc7@3M?A$ab%S~ko zv290Be1X^DE>Rj|QEDploU8i2bWq&#I?6ra{Yjmf!jj~zP_1YWI1eN4XoBXvKWXs` ztuD6gWJTNNTh%|TTjZ>n;QjhfHQ|u0HQVM?zy1qiV{W3)w(L8Sv^0o1c1s`c^v0(& zB73Hsp`8)y#=1J7!&UaH*}mOzF<5!SL+BD#%W-%}5GVk+PJLI8t_3&m0OX}-ApqFg z@E)JBvA)Lfq$vl`CZDinTGd|zmDh~V%n=+-{hmCg z2L?+S^{!l3(I)l!bhg8#z!p`BBmku$DMJTzyQ{qf!vhbX0tR$shZ)dHAf?}#n=L%> zKr&zi-P((Jqmm$5}W{MqeIRczob{ch~-t)IQF_iP)EC%EA#I zRs9K&og=1Bg|n)XXK79nO$f&1h^b4NO|DrIF*O4Cam3W6!q3pwh?p8Fb@pANH%GCy zJ-{`)^zfx-!J>qXQ)ArrkA4#mA30VhI6!X>Bwf zxjQMXI_8Mglmlp`_#xi-;8L;i{>(NeZ=!J;HU3r`M=EXOFQp|Fdi2gms^;yxpX&C( z@zm^>oepz4zM<`O2pWDl-6ft=@~|X*1>nnR2ctkrCBSuMRK4RKc+JVZseP$f?t8uE znj=$g8{ev=By*)-KY-}oHhQLu2Zs;%3ScsM%M(PJP8)ssesx@aR?!uL_8Uk2$>ABL zsG7Gna%UVU07wrT^xt~an-sq0Q=v zD+Ka2x_SI$Y(EFe?$DGcAj+yQ=;A@X96;;tEYRt3%b^<~$YG_s(>bCzSiC>Is^0)(`vA}c2)2!|^!1pwXh;KIE_*$WZe8*3tf zFPA>Yj^GMCc~$=@2##$Ab4Tok=Z{*icEj&B+<&2}e>qsio$V`km97vZ zTMOj5`|)7ctC-=oH16em4S-u=_}!hvX}(+4zZc})?4Q$+o01^yb3`mdBmvoX;_rn@ z;;890h_t}tTKrvj1gT?n@Q!Er{UBnb4!#ZA(Ax0}#X!y@$EF-4+0>xCGPqTERV?&w zf)2t)C3w$0{C)sjs`?*;2J5a_mEI-s z{Xp}m>OU&GSw1=+^7(VNWwKtuvio9`T|ru9H?TX14KfyG*F36v7wo?5>cx_rhw!ct zj{|SaVDp#LxO)3vnW1_t$1PO1ar7c1xL(3E?a=r_~ z*DfWeoKqe{Pc^5c1#rzG8OV4I%S6JYLbzk_6@v7@>uD?#UcvOSf;mqt{ChY>#@=txf@Zf20x@_}d7MGmw5D7F;QCw(S3`R~colv>Fu+om?*YGcXaDIM z*4{lz{p_95^QzUzzE_F;&LRe>-8P2JF0XQKXWkeV3i#f!D8$Gw=Yzq0JSAqK#U4Kf z_MoK%x;f^A7TV|@)7GhRN(l1aNJ~Z5#39u7P>KM4x6@MLXXu{9uM{bIKY`w4NoI6O z3*g1EbQ-xT#CfHvNmz>7R47C2WD*w8RsEgNcK2oBVno+ewboEd2o}AOmWoBoHIyQN z-|e(i_!+7uHIyQyhVFUKta)g)`PPvOSiMQ#+|A-4MlJwN=b#F z(pn(T>sbwP92MZUG|o^z8RA5IRsUBY?`9LDDFcnInfNBl5J^CWo%p*{L{hP8rWR>| z$F=yo@G!JVW@-`Rc~$jK@hiT!d_C^m?Vr=}yu)7c!6t49Km}6mLy-uUD5r*PKn|R4 zLXmJXR7{3#023|$Z1GCkrL%p%|%+!EX=W6vj&oyOLI<_a0fiBmutk7=QH@Gbw zAU*JU8q0*2p<^<2K%CUm-v@u&^=rXWnMGZZ4CK3pWg=e^Bb2U454@hnGT}8{SHy{~ zKN})_h=KNXRS*N^+0irxHqhKZb-ZYnGZP*m21Xu+UTM5YcvbZugLbxib}}B*eIZn!BSs+pFGs)@v)9a`cgA;VC7axvN^AJbw3#ZU!jrY3|(y zyc&CIT(BnXZ>K9(uWH4}P_+U4-NfsQ<64h0+C=jrwu z$mMelS>W#WZ7=ZiFU}zsW!)U)B4k9d1()xQk4*qC%ezAO z!UkOp{eWJ&v>z_y4VXXyz}2Jn>t5`eCj9fgCJ;UM>60X5 z?nR>8iRt+#OIBX2$w~3+588u`FHRw?!RCPqHdXykaQG?X)3yOiGo+3iP8@#2kUDM_ zB@=67NS*KqL+Z$5`tUP~?9EWse+YD18Q!~hZgyDgEL;i(T#tZ!49$nZn$-cv7m(Y4 zG(>054!<9$Z&&pnmnD84G#|`5X!ducJb8R)#^G{9uLsH-G|e83FOH9gmYZ@15-335 z<-2rykA>m3?+Sr@gI+xy4vvm1a{-vY6DR<yrYJtxZVAo3u@Hc&>-5alWH7Go6=6aE zu%*G++~?y?oXUXM-DX0wJnIV_1ATE0v6s06B%V&@2(ocR*R+i34C{&YAwMD$3jEfv z=pXzoUyP8Gibla^RA7iN2FMy6>MdQN!amiM189SPEPaY~3KRfbbw9V*&ldy430S&^ zMFiAWv9QtC-@c&Z)O10FWpnmAA@JX#OAMr~Fn;OK&V}(APcfy1iC2X0B%d;f>=>p z9?6B@xeE}>eivAFc_IQNlRK8z6~cGd0(q;v8E#ACf?P#;Bc3)jp`YDop8c`+X?=9} z4+q69R<4+B1m@za<5YnZbl(p@bNvzrLlIt24Zj}*h*d2i+#Qjypxj3{7Ru+ z-7G^S0olVsW!zFPj}!|$!a`-_VQ7;q&ZoSp`pcmXZqO4wbjcq*)*30TfWe+*(1Mn? z3zBuu-Kx5!Ifous=wbc(AAIP8a?g@a*^Bm@MA7~z+LHqjm86vHwKxU`cBbv?+@nfE6?bXm4r?#b z2a_5$)?N}GVeKXIFqBDp)Ks3T{%UdG`L_O=D~$W@%JkW{{s5)t(l^|*1oZZ{Ca~fc zJH9~+j(>}9WaV+eG=A)!HaW1o(Y$ytjUUTr&;qlU3<9?9Y*+ZZ~qBlMe{7`wCx|@&>KIpH<%ZZVis<-jQ9pa*LSXe)5YeUP0rwNe~mAafS#N8C*zCLc4#C4=nmZy zOE;iVpWr02>XHKvPyvH&$~tvW&Z)BSyd$HD68MX=z!ed|Zyb;5B3`+F=Saw{vr zo^Q|sv+ZMV!zrpLA`h?XUn^nC&p_RH|6=3@w)Vm|n?w_V7<;;eEt>ZqDl=141D_kZ zMEDp%ILXY^DADhI&2WCc$?S;IlAb)Cbu!D;9CiEkuM>On2fupO*|UH3m$rlMS9d3L z5ByinxQ3eGbm*Tq?~NT`k>f;u`aYQT_6{bW{|X(3&3e4h6I0r$)x3G+LuKH4iznUk zH|IUm%%Cn4UzuT7Dd)_riv(0=beW@v&G>HiOBMJ_^WUD)e5cEsdA!c?9G~Ti%_)XWe~m=yivcFLu~t5FQbQ6+D@F zB|GRjGkZ2^GfSp~k(nD}xY5xp%pxtcuYF2-?(12;6%cruni2w=FiW`wE!{KZklYk*p}c>*KBemh7h1_2MtWjAVAv+8u)I^0=x9W@DeQ& zT8_el7%Btbm~)x3IUhrh1Nx^mdUS6G=N?-hwz(5zR{dI?WhTGh&IcR7C|hcI&%*KCUeN$J>^0e*-i#t7aovX6z7EjD z*~3?DZwF}N?%R4wW~tjgpX}y@h&aQHdpQmH!VAuGZdh_EFW}cF7?`^9bF{LkM`0j%B>uNhv={QfKg!;KFTLAGvRgI`1us{GI*u zZdt2YaQB}QLhUbpZ4FDa*a2*>PYv)!&O1#ywk!c zU)T95pz|KR;&*c4GBfSlD|z`gCxzIwc3eGlpRnqb^Y5B+Y5&`@ZvlR8k2bWQCzT+6 z9_t|4`^)`2;UInWAQ%b9d|OaU76)qDs1EGBEo#APvb`|M2^P;!xFh z^gi@Fv}i>E6&3*Uzno zDDA2c=fdg{M}pc^C_~hA#35*sRQ!e|T|I73@b<-E-3!?3! z6P-I^MFZfqCgH?#UmpK7ql$0q~l8q`PokhCkZj z%MnC(i#(#_A4^~cHRS->Xx`i&n0JM8s1FnX+-rWO1fc%C{=iHZWzSFOfQfwl+&nC< zzkc34<$J5<$Qgj<=o^4x&6t7mmU(&0jvb^CTHo5=e0iI8FZnVPmuqF2n)@0}1RAfn z67zvPf0Wgg0-*Cae=`rK_PHY-OIpMrU(T-ZsI|?Gh=JYCgYo1pWz@ANR1M~EK( z3xsfYdbiN+@kGuSgADGZut0JR)P&W*?jSZu8Kvj7-0(YPdb@9l?B5M_K<|Xp>*|!_ zTYU4GI}@M+P3Ud#ltHc#hhV7^MGl zA_;tF-Th9-Ma<{axkD8KfUVFbygdP759U$;Y|>BEZVi058+BlsP}=igkqvd0{&5$c!0$*Bj z$AHXwWxH`H05%={ly5~6fNq3~!Ys4%gf373a6kM^_Ak{l4^C1-&!(#Xg%7Rud^4oO z{&~N5{^*qE@w3j5BBYthzYaltU1m_01-K;%0T^IQewFZ64v#_!_&xbm@YBPiAjE<{ z2zsm?mT$}9)rF=Uq}bG;yo*w+3l@4eK^rP0s|&!Ts(&^PRR-fxZPkJgwNwbQyO(l3 zc`mpbsyHgZxtDSS?&bV(v}C9f@m2j7eTOus&k_gMXwT=E)kjFMuj7A5u^8$f{rtY+MT8UXOrQsdMBuAg4>MI8^ml zfYb}F1K)54kt4e;Z9O^rr%~P}Rs9d;Sh-(K9G(?Nb==;YaiW&P6rY)eS}`fV8nvf3+0k529PnAnN96jWZ1fLvka`Z;nNkcP5}>njdb zeH(&vJ}WKU0cJ0r6EWzN&q{?|u43D)H07JmN)=zj0Mllrfqzv`pca=8={7AZ5^$(@ zg`h9>Z4G&@p9=LEZcF0~`IAr|@m2l*puG3mQb1fG${WaA<;`$g8aG|uh_C81kay*n zHWkY=RW1dI*CQYoS+$ZJxeZ7|=%ke>4pn^wt%MS7>>Voh3Reg+Q=&~no{Ox!BEwOl zO~e@jCteZp^!hSbd3BDojY2>+?K{omp9_8 z`mc$+^Q~4iNq+B8w#1W}S1U9~uU1@gt!K^*w>jJC25p)3Cv=T@dDk#dKqW2@WTc*) zV6Z0ym)vAncwKz{&a9aAR-CBK*<9yJ0bFR?X*qORRvpD2s)=FqFQLk;*J}Ia>G|Bl z#5Fy(O;jlkr|0fw=Uk1yM1JHlW!aZUR<015*rhhKE|~;ysr-jI<9;Wb#w&65n0P{A zqPqOqw)?VOp*MO}?@1@YlbM++>$`u}Q}24p{d?v7Nz;nfLM6BMZdq-+hiScY5N>+! z7V%a6TS4$khxF|b>17y`41svG$iE!~Qt;UQ@Uw6*6iE_60z|6e7l1aiR-afu)OM@& zW3@N9EsZmTPR2qJU)BF!Gj@wf=}WYtWQ9cDXrMB&*`KW`TXt25bAfq{*V{Wqxpn0h z8}nj8P~#w=t9n^Rn*8zgvx~d*G^TwEE=O=70GYSsR}mp`6tK`tOL}`f5F+gY6S@Uyrj9d@)#MLqT$9Q1cH1 zyMtK6p2_?}^Qh|I0kU6igM`)Ii5n+Uw~24C9F1>;eHgFq)MC!5LI;R{{W=+)4_Co1tcs+m!&tH-6ODkZ<^*ipz5#NkwiF zp!@az1`USR{QIY$WvQ$|373LGwB|2>yq49HPL8A{Z-q1rkSysa4pse|z%ehkH|d+X zb02J?Q{&OqiUjQy{V74g`QMj$g2Rce2wNBBgg0+Ic%44q}K>uK;IA zsJ3UaVqt95Me+)81{EXxb7<0w9qeKCpT z;bGaoYU&XoyH|e3ofL|iv~dx={$J2*(d30&KBnJDQyawkNtoiTJwF;r5#VvR(^BCV zbd7GDyhNTNMekeC=oUFN#Wi*l&QrCBm*my~Ol12LdI&V%L8yNHhoB+3MFKNp#z$l- z1Vht8L_^*lkyD&o9QL2l4j3yXjmQB{JK^AfvnQ3Y+1El2TC2P|8I5sU8fQ3BB5%Z3 z^&i#)+xZRv_UnHKl{5dTM=!jbg%meSS``cLTa{2kCGW|vf;SA1(}5j*?F)#!o6xxuZ}*_3g>8f;Uu1+))rxb-xbu zm?xE!HCQKSXmUSuyQ}#ClY#8pfHVY8<^zgDReu$9LGvVqdZ}X;X{*$bPRht_Ku(uh zaUh>TsprT{^-@PbtJILw>ZJzcbg31Gs(vqe2;D_*KO@b{*jx(rydDAVQaiqY+y>+f zQb!I|{cj=6(i4w!oo;5U?P?IoZb*=1Cczo$s(#{Sz{&dTXQlh~9{?pbC)Hp`Z}L%o zGPn0+oXpd{NCKv$U4DS(HKF>7NDDl!#ot@PP109HjOSI=zX2Kn4YKU>Tg@QrKCU_Q zZjXFD36^@=OH4s_8e}z}vFkAzv^Z*!_s@a*Up713JCsTrFDRi-(^mE{1C+ zlV=4I&3W5cWRl&m01<6|1lrAI&IGW(Y=>E>7&mG5N}E86+Jv8lgW-0G zHUT2q{1wn<_G2DRTT!FTM10*=!tkeQecjKy@0OjHM!4^O+^dR)G#brd3eF4AT2FO3m}(Q4M20G46E$SpabHs>`e^V2G;(qW7<$IpIP^=9u z6-mDRnD&I%BcQc5a^yB3jTV~JhT=fU^%6O~5ToiotHSO`G&E%{Y!n6y+i z852st@5!%%HeZ`@w zKL*yP+$}rU@QBV8g3N1yJQrET#tcVU&8-0^iH#9o)qhW7Ia_&&Zbqf!QK^u>~z$xAri0gEpk56ma|IPy># zNV_V;xv(noq^M1WGDJ-xPe9Z4^k7-HO5Hznr$1h_oSv-}NkDG5O0A)}_-f@L(gF{+ zN}cd9lu5=n5#xDP^{+~FqDut%6_4_2%5fk8d3NIO5?Yb~rFF7-T+4aPpi{!Ds(%r9 z)bjA8Z$9J3eXlD7J=OwwUMs2vWVkJjGo(&hK*U#d5BlDnrahOdfjtzcK!bfKDpZEL zJqE~u(@iK6PKI*HE+oJ_$EyBMK+Dh@J{+5KdFV5U2ILBThJf>`GWv{^OXxEc7elu~ zZy2~$^*4gQt@G<>r^n{`TOMf(0qC?PzlxcY)}uz+LJ9ai`Bm_SD#=J&5K=?$2R)Xl z7c-*(w;NXo-(L&ld1a_}li{{B&X752HxXae|2cTnihF#>6qskpTnZAeM?fyJnkDDR zZ9p1ACo==Zp{oBiNWDeZ6uJ{hJ#oThHG<_(G@!w*Dv)YV+(xwnMGRc7s{-L-=#;br z1@hdg`u~8wWMz0pmt--+L?^BfE(JN(BcQcDa^yB34cU|WP#miIZ-Upa&<$&LL}IDA z6s3-UR;hF3HXx@)3CQp6YtztN2{qb?w7}z9{Jq8PlMz(JcwThjIkac;`r*ht7Swn> zm4X!H^#aJ1P*I4<07+i2kke~Iaj5DahEwc3%u%-%yZTaFyR~V0RE} zh|aYaem~GWs`{6K7j2M-`GK(IL_7}&6rh3gWChHX;Hbgz^dOJ|2lpfsatI>FT%}|c zJwQCCs{REKHOU?B4M)TC@;aRmfFxV;t9WwK4XDwBPy&8Weigi-NHTg5gy`|ppdBoe zp60xWM-Q$LzP}d8^J-9|hYaV2k^VD;Gh|Li4-sG0e-`b2IzAhox2=x~0m!{2zlz<; zb{9&(@5!%%H*`qsE(o#vzl7GXTHgEPmh6i`h7ASDt*=_Lf!#r@A$`)4HIJ(P8Q?Q( zbi2dw#O@4uwWTQs>D>cP0hEicR$DCeZh|%xNLE{bOH~iSi`M9J;};JrbGpeIH07v) z2DNHnp?4GXbPa$DJ)#D6KnasWa}dq#))j*6lrY(l=Yp$to8c&7GU5!8lXe^NRsG+B z#oa0lud3REHkKihfb4D+MniKA)EFYt0uQ$elkhOKNyZQn<9Su}AAvT!Tv}7&I&g&` z!&)HEHBfbs;kGo+kUFV@h_CAZ9(~3w+i(C&#tuH#Qz6P5$Xn%gRDh$KPn*vWZo0e? zPx6A#Y|sjPd3A+H41oe9*bYBSxK6^o8ZiV?;IJQl77m6Y$%r99Jg2Ju3t;^<+Vcqk zFsT3^HGMhAv8h3MHRz~mpm!6rp+g!qHJ7UXCeUDsE+etrhu3_m3?yF_;#_LA=9{86 z70Qq{S@R9(s{T=wl$vf)QYu49g}7DH6y*Y1i*F>71~es7LJV1>Ug$-N^p>>j6-_xv zys1IC)XFO?^lpMS?3{Q7aG}uvv{FAko|enRlj4R5blKA-V$h_y^2myRa~G?RCl;R@ zxR$sjv_zXAR_(CYQyFNpD#UrMD6daZn+j!!ocK~eSM|E&pZMM2 z`vcRDSW+rONrkvo(iF9+P}3z1=&JrcXrHvtJ~l<=p2!t~thCSGkmtgxo-@PIK6}I& z;wC+3#M3@|=&>drByV{r%dB*QuI%?r~7dX?dqc2n2rHM;kBAv+m_k zx=Fo9rzCs*$)x}2tT!IHy0`eTF^dTKz|Ym{Zqd_Y!^3jB;15!ciCkZ%PlwO{@)dXo!0_+Zf4d0XSgkmGmM<{{}E3|a6sOrLa^YG6_tUs zt3sR$tHyvSipKOl9@(8+G6oFjs{TCP?$&9Krg#7J!W^;s^wEYuD(3Sc2!%byJowt00n`I=!vmTpV9O2KwSY}f!ZFk<>>LLl4 zWGDV!sBpDj7iodVwfMX6Fzl49*F}uyRn=dk+s01+tT*D^>Qdj&b_Xgk&fnAh{j(V8 zXbMShlodzSJfJ8d$z)jviF@4Kp0VrQ$uA=hY03f+Hywxt-XNFajC8LPSGehV_!G zMJ)L!^&E6vc9S?O?D#G*O!^zW)&hC1jqVat+?K`}lBZo_z*qH4x-mT`&qDUjE>2JV z>)F&Pm7a#>+d0Y*ss3N3o7vtBBN`qiC3M2L4aNmab#dVp8E%+VTW|M9640=*XllV#|@AMN zYQe}yehZA6R-C7{ERVTTk8C2?dIaQcLVH7o+y>+f-Vixd^{<9z9MbyaJVIh$mP5jK zIDXJ*5V|J;=Xw}veJPhPR~F z_i5MqXId=cN-?R0@&BwFGp)0n)4`(lNxEMZNeG4AFKpV}i{t9+ zIJoe;UW4QQ*;#dV(02=6bV29jd^o!Q{mJ3^(HoxC z?k)bp?r=2ao44sfvi7eXWX!#qx9V5Mw0{19UjOc(H#|8#-n}(1quu^FJs5QN;=Cd; ze(t>JgYab#=;i+8zB8!INXmB1HH(wGubo?(=CdHnODBs<^3`)o!XE`WzUhqG;o!&# zQ~6nQtAn)}=IiGcM}Hfn`o_hL^HuXpLpJbIRP{CK8$aYc8J;@_uNlZ|YX`@}k&9^k z5&KwH9@08z817Mn2clc z&P;ySR@=L&E^ll^v%$sgl>bRfA*&B@TlU!{$ibl{nVNI@W@O1vNq& zIi!;Ds5$g=C8~7XMnqsxC)7$s+q>o%pcCKfxK^C7phl<_DxpoucpSL<*4}Zgh`^vu zh+Mr^Zey1h7gTvm zsWKTpr0XCi{`k|CxYwsT*GFUqrH&J&=)R7tY&73`C0eo2pjKK}^m2fIK>jCDT{)RS zsnevc=uv^u8J#NexfEBT*|%RweFecmy%4y^G)tdcU8LwZaI>_aNEjEKUTNg+cwFFw z1vT!9yS;sdmGN4)4)*p0RJboHoKe2@l}-RY(XAehyr4{IA7|s^<~pz|Y4aVo50(}b z2?Lw62lfh4C&T8B2R0-tC=p%j!J!*9UtPTF+O@pApv+L($$2%Rm9oR;qN^)$uTOT{ zQi8;wQ0V`C@fEk2j>l?BW>6{w0O~&nSJ>%y8~|8aP$WzW9?)*pRd)3qPYS%a1y!oS zl{TBMRbg>KmC$A$R4zsPC)fN&$qY*UVu@@G0c9zly;Z%_J9~6;Qqhjkphq)3ni*YP z_&(`2-c8X1l>b!sYtdx1qwyiF{=d?VS|TCH{bt9D&Ozu8cO-PS%KY(82bV$KZ|+9k zbUFDGZaK3%j}PL0s3URHb>mOT^6M4I+>sxPgy6@Y=yqYaYddEv!Jm=^)z4i!i-ch3 zd-p3^>ZL>qUPSHDs}hG7&11Tq3}J)ezpWbwH^l{w-t2hsI%v>Q1k6{fKi=tDN07Ip z2$-&Ie6s81=pgV%x^WR>{rS^=q|))YEC}Awd|3$z9{ri7pyLJRAbv-yVOmO%U##El zN^%gtTkB^_$NfgHu=08Z5x%3%y;M@Dg*Q818xHpGC@$uU!Jp`M5jY6k(O4^6^?jqu z)!rcOH+2&gljYrS>3mr?2>j7*1h&?3-|TobD#+ZC59bTE=S?nn!h!y*LLSOLGF$c{DO$!9iLXq zvR5E`M*{#QBuM{e$7{yH<{br{e3AH*T`vv?kvkfq8>_*eq}91jSAjd1IbZhuv|2j- z-1TcEB>45|l=aXn(5ULBTbd%c*RrbLEyt5Mar}1ic!%0Er4-oe?8)O>r4t?*sZJDs zDaqAlW;14pGcBzRe|4LMm?+H=_9AOJJ~Cq}c$ppKet+ZTL@FeEhn={)!%=_o$R|nn z=+ceJ_;hOGcZcA2Y6nWFCr3DlSeMW27+#J zRaZizk9El>pn5*k7T#xI2EqLsE+bAMw10pO*U?qcrl-szS8(aCyOdD=>tHIDC_WDe zS@}Os62;34_%PWwk(BQoRTDc0WiFYDXZ*x#EKj1dtp598rw@+Cqt8~8@#0nY^Db3& z&F4X;_jhEb;)&H(Gx5j0JXL)T1IatZfuyg#^z`9#?SUpC*U{#iVzin0)S)EyqQpVHGdvhawU9;YTP( zphFQCtYs1gr28oSU>_Fz38`f#4aoO8{Zc*!csUsttYwi1w$+w^%rWp{g(mreHK;Gp9%;#|P@Hz1EKplU)*$Xb7w43JxF>dD@GV}0pf|^I^ zKG77EGaTmmOcXcY>79p&q$Vj-HbooN?JbVt4420L(G7#or z9P2l~R%ISO2UfJDXHu;)=ifwZrbx6UtD_Y1b3e5?G`maX#3iMZfc&e$4% zmG(PJTjM`5GUi+1A6L7~pF4i3gaW@jnzDo3p$4B>Y$;)ipk6C_9u{^%4vH(3asQew zjT}Cp8@$IO+V5_bH1it`ZF;>%`C;7jekrnT+ZQqU(lTW}#4st7J#h6=sOC4@Rx0OY z42zZdykbsnh4spw>?z-`jxS6nobx-`mTX&onsSMeY zW>F2=veoC)Ajk=7gw1if74@x0y~$P8L|cNwe0oGdL6LA&m@aVO3yVv8bBoqU+xgl# zHHngfDxqDRT$NXK*Djohw(wWxO5F+XLZziK<)zFqlI}^uP4UL$f#A}^(Y9Ub| zp9;=U6^=%oJ*qAosU2!erC-;B|}TY=kBpl0)iC>con$*%jOVB@xoxfw++ zbU?3l*6{>k7x&$)r+KZj9;QPnvo7V0F1wN-XxlNV+3McvJKk^)LUq+=bSbORNqpSN z+F9oigw2 zWp5jj&nbI&HmZ5c;X7oJzzIKXjy==2GRxV1?$K@B6FyfWeTQxnpBZYrKH8q%qq-95JG4ECSg^f& zOzTRd@6h(~!LKahP|@eS>o^&~`e7kVJwA0Mb9?EA-bGWQD9IkEF+6z&Ev0K*HYUu^5qm7<3+%u zw1(7+^;c3wpU!s7E<5-T(<_OgjNVbee~!Cof!y@EtmhlhGERo_oKd9=AL3Sw;{)++WW{y(^47 zZTHvD6bnM^)S`kip%1t}sru6&51Hw!Sp@2?4``$W6~ZfAO=0iqLTTGYeKVORR0zll z>V(bS;n}_6Xn1}#om$&w?|hnwn4m<6P(xbDxtgA#yC%*umc$=j(Q;Fl;**RZei#)E z&!|;j&3vG{QIQuC6bQqL}~lqd1R^Pl5`JC+eF58_|Vz`DE8>BPsO zb!@)l`&YA4-(mA55yAE$1()>dA0Ad$G_h$*!JR1_hfz?F6VwRna#TDV(B<^>*3Ff) zgYMSll%(ydjHW&iHIoIi4y}7tNK#NG_6<#~T+!66!@eO13W{Xz^|`<7EAEvp`-a&Y zGl@UZN{E=CMCbr1cwOP}wYv^5$O&o$hoUEHhd&AGLc|0m!VsM9Pq>oaySpJc zNeH5cm_(Z*FVeQdm5AS6SZ$;P6+&-4sRl!O)`x~sSE5CCy>%266bVgwQl0dNGdy~D zxxmz2lMZr%8ev*A8DCt{Xtuj)5z7eThiMUINq?@VUpWy$_z;O`E%HhlL3fdeBm~iw z-LEL~s=MiEIcM+e?aBF-7`{W{Nkp)GSVKLdjoHF|or^9ab+?AP4~)@CcE?gEN3!wSL8XTpS=>xch_C9j9_~u z{>5nUIWIoR2;zqw=JN>^{p8qT)}n$kuXc4lBpgY~uUMHg5FexmLSF0aAV?6h?R?)% zL(~H&6Ik-~?oNCJG4l&1=eA{b#N$<3d+wyo1t~kI@#HMW>;2LF<8HRrgOnZE(g_81 z{#w7QL2D4R1J6u{sjoXJyEz#U#O%PD*@*PDeplm&AZ7>FOh*o{J1M)_dcoHli$@*hi;9&`2M0HBIpoWX;<5E!R+0& z(scjrwa$)P1YsBNPqOnBuXc5=A_%$ocq|>;zUD@e-MVZCmP}7fywT-JiD1pPyDMf3 z3)azyk9C-s97N48HJx|5;H83=|9W=`yFt*!$2<99hgZ8gyd9;d8eZ)x>8DE> zlj94ok&GP=Zx?UtPNu{wJ3CwvY}tWVW~V7$@9q>uhjQk}CcZ_VLFhKpFTN0}WdkpG z?cPa8n?}L7i~FjR38Z}W{-E0xm+yZ0sdqi){ykniM3HPD>>FJkH3?Q-yc4y~mV64% zX>{wgi!XqKaA4!th9~`Q(iVb&7k67H6G-`SIXlv=VcV{(nr%EKa)Gq3cXyU07A92FIy-L?gj~GEX9rB^ zy2?%umIPTBUs{QhL92h2a&Nm0PaV{Ka%ALnlCh(sBEg`GMZ-0&)!nzMyQ*g<^GCfq)!lV|zf-5GPVICP z$RU7!(REN5CZf$_5aV%|htz1rvygu9+%Ocb?c$*3r$iDv!iOgZa|Sbu0JHH zKqFd~m|$^ve_}n!jan`SA^R|h= zk@223hDf0GdyNbe$@Sye-Vnc5TEEW9kP*bkw{R!B;I{r;98VDrebCp!-j_b{HhrvPuiwK}5R&>;K=(GA7!0~G zw|H;L$=4L4j=X*woB_<$xwok>9l1AiF($^kDJAI2^ASEjBW5~*`kP)2oFoSXjjUtm z#TyDnBg08(h{Eg5SJnx5GbF=vJ}P$Ac~QJw>~3dOj*$$x9P4^F2nAPRy&UwHYZT=`q{VJ^L;>Q6GPc8b zF3-X`C|q?Rg$kS7c!X+mpTETBI?!0L`^V3pdtSNK$rn|-dwFIZ+tY-WTb@V>Y_CY= z;uXbgMEXSKyO!HuNm9fHUsjO&CEpj=;f`pA7FS{gC5dKzxEm`VN<~v8b;gs;wiie* zuK+2NPEp0f$$YatNY?ZBfAT_WrKl>XGU)`>?%s4fYH?Y&(>C_1y^=E*mxBk3E2eE zo)Mla=chinxkApV@(HpX<5ApRD_Ae#psFhMW-6NC*$I)e3s&Z&aDwU9`Ly6>AqNG$ zv_h^ixdxI&-72yok_ADs>w$PW_LEUnT9QmUM-}(q_$bu_OZ}>wE;qEEZQ7c}^Yfy6 zV7mSEJ=OoZsl9zXn!|x?@s#=gN8)*z`$f_L@9U~^MB0_PkT_BM?Pb0f5oIPsJTJ4n zF8R8^?>Z)i)fc1W)FN(2gJp;9f!cGh>ElA%UDYHHR?dJB&E2U1?Z9Dl^JS;h+hHvm z9mq{V$I7t~xOZuAaWDKVztvxobH;(mWz#EGcvCP0u&&>YXt0Pc68&;41n%vbndH`| z%XBI`u%?f&EkWg2;+_;&9SfAeOy9*4Sf0rVjnyzU39Pcl zRNIRCSCUrf1%=}P8SB*;+7Vdvaqjs=LjmTyYHPHewnjU7a&|3JDjQlQa{$DUs#V&l zAY#G?>{_Q(Y<_~ImAbX06(~)mptU+FYE@{atPV*o6=GDZWlK~_Q<4pW#6|Qfj{-!0 zGXU_iSr|*;Y$%i?BhdR&gCX?}WK5HkV$)KnkYiWCi{_m`AF6nGul#h~7 zlBY{{2Fav7jKE7j(;khd%Z{KgRiweC>~zV}l%y@`@JdK*#GUzgdeM?l;N_EulhJrG zYr|+LnBi!3nVVFqzW_O*!y_c*fsOL5?xJ9Lr)s$<+iqK`3u#LP+YQ&5X(XeIn})z9SDt)#T z6@e_9DtHL4=49D5aHWzA)34uD30MTQ^y}d%l$2POT0u3kgvcyiDxqmLH_S_Kb9D+lR(jDku7uC7}h4?%l}d|G?BQ$j79h%YZ| z1WW$MNA(}g+j^z1)Shh8&+y+%F1m!+4Z085zw#xkhfrFqsCdPvN3>!*AtnP>! zfb#Lm@i#wet&dj%B6trAIvxfBrE;s+Llg}`x(}Rs^#1%Pw7Q)N90c7Vi1jnHC$(6; ztgBcE$|LZ^+Zdh%TD|+M!68_8v6F25cVsz$p<{w?Y*QL3uztsX3ADce z*rX3l<_|_52ZV4Q2#mwLNYN!b0yV8du_ zy0EykC>R5b)f;gNiU8j01F5vuTPpjSDGY+`WYIvhpYmUQ?OG8of_^UyjMg3)_n_Gn z2En!uBI}QUOK{a2O@V`;+YhnO4%8j$mhh@~BP9@m?~poh?8g?XH|i=Djxz4wP1bj( zOSVgQ8NqtQ?s$0q+!f20cc-tatGl<+)!m0NF}uaxJT+L`eO*b_!C%r=Vsj}ZWA@pt z>@G=;tm`hT%}UZ(wyGOXeI1R5$XkN$t!&d!8MYJx!F7;-P`_A7bYN(4|EEt-O^DptUOgbAYF+EGmBw8s9qP#s2IV-p=z%tzonmMUznFNCdC@3cQ4da626`etu1MHSbv=|10YG={? znwBYg(Udmmzsp}ytgb1Bfof_t_f$Vrw<&<2Ve(Zm)WD?G3OhFn7BMzxQ2>GKDenI~ zX?cs!WZ~%2G24PiMcpCSHkQ=Ga)f-FIK)yYPCCEtc%)#Wpq)sgWZU`@n#=3CLNbMmD327ZR;;Hn zbLwLWwN?QPqQ8CmBE@0?a0G84E6N zEm?4B4XEfWwh~2|3oQ50C5`pUUr{fm7!j3D^6u7>1(gAHl(T?xhg`QpIw||s%(PlHnA|V9-Nkw3SIFh<3wp-jY4jOH$5icz3^(2q(C1 zPahR6IJ5>;K~wn)4BEn>~cadLy3BVBU3Ba-t{Ks`{=vmI>pDc$gx~ulRI(1#U%%)7pC33db>iUcD1X7PY)rh@9PwopA4LIB(*pVi6&bHSrg z;9y*sYgs8_1jl|a1U!|J^21+H$`4PODBq&| z6eMF+ehR)VC_g)t1*Ij$rXbO**c3U+1s@i!W8KC+C|bv=W`d#P3`5f1T>C6jRwcRZCDsoroo%^46tpD_fUp3CA_Zv~{R`Qe#|caXkSX znHja`n-jPp^M%WIuw-wm^~X-SiRCs(@+hP@D{F?qU*%Wqv}Br4o0uk&^PaYwMT#S4 zd)RJ6ixggzD5+`6*3&Odsi5AGXY)lfmJPX8kAo77Jpg5A^I2fVwRoL22S+r#Dvq&R znU14w2j1X)&1GluEfs1|IA(ai4hoT5Fm#xNj6Cx{duu-So)=~NCYP!uhsb}WuB?E0k>O+zpJ{i46pOpP*i3 z`LA#9^HMen@e+DdgWdwxz2h`UID+^4C1@fh6s6%M7qQ_XHUc|4?S9r?8IK2n>a4QU z?(K^^%vNU@2@UC{z$;;!6hCf?4wI0HMQMSzLN+8vyc7@$k`R&p7Q6$U+(5SF$KO&R z5)x_&S%hQZt%PJ42@QEF{xqJ!N?PmuS(s2>g$Kk0@4@hFJH(o|j5yVH~nLj5%;;mPgs+b5`X2qGma1mK?28!T4qPPbB z(3<q!HST79sr_L7FWDhEdhVc@Ki~R+tg$ zvI3hW54j4AQ6gkzsh*8{^M_=q&WPm`XO{htB%To?#9t*!_IwST&9(6${}h$XY4zJk z_k)*f$&1il3+|4{?$y1)C>s99YG}Vhk~$fTlFzu5L+Cu_~0$7 zyh+iy25dI@{Zd8)^93nY*%^j0Jf@JK^|DTT60GA< zz>bt-nEh&GWJk8N;aa1N31K*txf?WFCBbl0Ns|hDkxmNY#lDXFHQpS#YbFGRzm$_EuGi|OlADPhT0XBPGWvw!iGA#w{F-0`S&qDLzOI0t748`n-JaG~01 zmqyS5LDmPeZr~kKZ)qfmb*{#nF}?hmFrP5i>K|C7$m{o z9#~_x0ghQih0nS(;gXMKj0pEZ`es99gVdyi0%129LVli(lhw6(dl*4Yn}1tNecQ?^ z9P6#UQ}Be57@^bJkWd8m{=M}Gol733U3-lZp}k1o z5$#J;e1o+A8W%$JmFYv;+%!ekx*uF2dnqGA`ivwko1vx{_d*n0lMbQ#VEVkQDQb%U z>45yp_z{IXKot_U#pSZHW@#X)Rw(KQDMEdoQV-lV>-ij{ zS3s!{nw#k}){BKLJ>8@eFWb&p)qgj-<*Na0TIE9siwOug=wLjZLpNa-ud*E}aPeos zwR;}COFfr^^cm8e%q2!t@cP0x6MhA&|Gt}%_v3(hZ)!lhIIvIwMYmK2Fo8xDpx?+T znzD`YbOkoYJ#?BfLWmgsx>_TIYQE%DP1&g|RqM}|%7Ad|vL{Ycs1D6#=7Zc7qRb+6 z!e(xk-+)!K%(5W8id-s$?aX{7TrDig25~3zm@MHMu)=Mat6s$pNL3WP!U-}kM<|G# z#0kC|TqpSC0TbuXrIUl^(f0+dZ1$--#dklQ;=4_p{kfywbg&c#lYC`|AdyO3ex%Lv z<$@A=#QCuG3e$W}(#S-g^{Bj)2y?0rP2@Uf6NxvV_i_H*wT?5uUH+YF9CvHRfp65c z3`_*f;-GCa$bsoLVPGK!5mzw?Ome9lVhYx6xh07LBXHiQ9}i;I8#@gXI_J;1t{qW7 zR?VSH&0z2b@mCv+XD}Y8!WL&{SoFx)tu^wM`7Gs(XR*OTpoVf!h z;5*GPI}6V|TkBC5XBjQQgk)h74I`(iEN8hHH|vcb&N5nzh0e>(d3BcA5HD@OV1yS! zBoD+>7e}rJxqu~3QlU8q&R4%7ase%pu^_yL9k@CKb_qBQY}LrPfHjF=LikNP;{^;} zj>aP}&SfV76Q{KXN$Y`IXBn_eM4>~NCf%ghyYwxTu^_w#-DDM39z_jNv+gLm=UqyK zuuI};uhS5@>)oPFdME;qizEI z-G;~o^iBj5!mq!!IT<%aE?~|f4Z;kr%5AcP8nD$)iJX7?&Mgny!v3ivC;dV9AyM>@ z2FXCU?RnZ%of5FJWGpBzs68J7ZZcy*c&(2jxJ+Z%P(^7yf9u`~a2|x)XcV8BN4WFhS9~zN5Mzab*|PYA63p-9f&q77(&5M5b}XB#YMGqW)8$4j~sPxwnYj*$Rml7CP~!Mjm#?O86Cck&YNQpk;HnBW$8a-SdMfEnm)j2fuEwKy%5FJLx4~KO zb`&3~{`pC|e`zOAdq=&Uj;SEnw{(XiDQ(YE4jf|bs}=SurQnuJBKwrA&o{G9zF>dS zR2*YEjk}AE(=H`z(Z-P()@xF%MaVNuISrC)a6&*hYO)Ml-)(EpiE^p7TUm^Q%-nY? zXP>GiSlg|*; zm5#TzgkW&A?nhb*kQ^x$LU$B(qsbi3e{M$`tL@2nJh<9vON=FyY^kaBQd-NDTR8-l zFx+~nGu%q|`($|tJDe~NFIk2e0g{JtL&kZxZTo3$oU%~m^9h_$!T4wvDD&r3 z^pX*5--5%Uqq);?prypDe0%RWD8LD$Soki19cb@uV1_%N&!y(02tK-xBH}MKA0@+0 z@@JLBFGdY?*{tuBvMih}6*=M5o?deGGeb-`+|ObzvHBSy6BY>_GYIN}Sx-#b+84!6 zc!>o-Iim(4IO>z<)(e2Fsiu1s%~2dX+F>g93r1V3^NrjVb?HNdc1DNf_KfR4@Q|LK z$<~|5U2Qvm3`Hl|OqPZwsTr_NGK}xibWUocErZlt1NAR;cHSN63_dA^l2({5XJfQ9 z|7M!fmE#;uw42szIUMU2NrL3uFr^r3#6!Dw`b!OiC zL@EK2XX0WlW!#~O5@&t%nPZ7lXb_sBr4ueqm{Alx8$&hc8H-Yqm$uI$NEY}k;_;>J zvt%qtPKv8b+2fFdFuK8dpFU6P9hC=0IFwE-ltT^hb4_tJZ^okzWr_?xAqGp1!Z4DvgWjj5R1UZx^c8$zr~QJ^K{AS? zX*(LM#w*k4{JEDqt_;<_S62xpbcyIbl(dZts=HW_poT?*_Jfz?OMUTR5kz7q^9qYd zshVuXk|l-K8~CcpDp+B7D(d#f;4L~iyOngDO%~d(z^fz()~X>TlBuUxqIqWxE>;~c z91patrtXZb^#Lc<1hoh;!g&NIbGfY)s-*9Xs=eD(Nf2DaFrq7nrrji3?ZNDJljdu^ zrMhB<3Qi<1hh4W5tE{RDfQYp=Tr0|QcRY#) zOe|I$;S?-2zVNyzj=d0HshvR8`Jncd_9J34Kn#|;> z^}4P~MW>ZRkMMtGGD_x2G=R;v?fIg!?sjZ+-5j^x7GF(J%OFR%kJhJSw@zTCJje_@ zbW6+l5QeWEM(c5Vw$WvmI<-gfYQ(lPG-=-;Z?lD0fOZDaY!=U$J1~zxk<%90HdZl* za|se1%!d(F;Ah$(tx4k62W(X)E?5z^Q|Kwi?S|cs(7u)6M3~Noi@`i;nri6&o+L%M zp5f6#4^7(fFmwUNTolYG>q#_aZPNv4m_oCr%n0k(rlZcyb@BBv%h2R0K|=lu(`Tf6 z+<>|3DwqYf`aGIM5n^>#LxTZ2fBUs~m0Y4$%HJ3o5a)4=-t+~?dh7GJD>mFIb-|G2 zx;PWGnf6=H^w2JgV6F`!2-46!y8zkU5NRMsa{6ql42W-ffI-jpjb`dPohea=X!PKv zhDIH9Ei}~Vr34B2FHUVCr>}ki3dCkJ=8!{{DCNOaDMlCm0;uG4Gb%Bt5`_qlprJtv zy?iv}5g0=lZ%OSSx1)anY~hv7*g`H{Vh`e6%SMMcbgKwGfG0CQcd$cvi=y{<0nDKx zZ&5HL7VvtZodyR&bOQ)INug6D3V0KFDs*%KtRVC#XD-iNRnUQjhps9pPofG@E3jej z-XLjW)K@PR4b=*QA))`q)L8g6i!gZ!gY6f<4nj|C<*+1b5F<(R>0;D@jr3hM4RQhW z(9lQ{p-B`WdKdF~J9QQ2;|h0hRvYaw&hcufcacMuC`DYL)Yz1#UPFXlUnGhLPU#Zr zQ&DR)P#EMI%g{4Kf)io7(Qp+g*{%ofBdELxX@xIsBo|<|4v;ptskt4Z`55YjfprNtcqXg ziL0s~gKg>+`>vO~E21ZIc8>swG}#VakCJ zd_WQ$vtwhE*$ft6HD#>!3shX0YGm>$3%aAh;L@k8lOdF|!;pvL@qDe_pf%esly%JG z8KFYxN~4~Qd#oopT}>VWMy-<}l;f;^4p9e7cglW`pk;PuxCx&qTzew99JlWJSaQi} zKvn`4HA%$!x&Yf2Bd?`chYPuaw-Az&{Xrp?d84Bz*0!$Kog5=Qx&$}R**@0oYq4S6$BOZKHnhR z`d$LgZIvBi6|fkc(Nk3n&@xwLuZA!rdHqJAgvkPSTo1-@2}pD%aq5Qq(1P`#TLocK z3zQ;JgY<^yu))TqlB|HoFahf>UIk&2JR?RZzfR;lEX5eMABd;p#&g|zTD2B&NsrJ! zE9fsq$*D!$hNa81xU+EGPgMb#k^j~UHY*5|`ESxB>Npk6Kq0U(Hg=j+t$--oK4;zS ztste9@gY1-^I)Y!$(Q#*7_=BL|fV;4V9?X1+(E7Nh*?J&!otwobKc>5%K)+f8ezYnQ*wQ+(SHO_jvGr*m6{NHbT7>m$)2&(A zgi~lU<^r1{pI*8srw8-N%Nd!6BzeiMlzjMUrwfwvDS2%YN}7H8IQ(4Hg(R=dOo`3N z`czKS#&5kDxl*;qOTNyL6ajH$g*wO6v=Xe3tf-*`l^;=nIMyg{!l!9PSRZRtOA$*Z zw#4ag&CGA702nacWmX6Gl4gpdFXg zzEf(XniF~5%q)`5x`|SqGpD4I4nMVYp-5{JO`F0B8kld=DO;Z^QKJE4qe{fI#nB;h z)~4xZJLqDgG&dzVLR}bmGc!|qZZ}b?bLOcs(ht?PI%o3gbZQ6T=dko#4m#H(SrM}q zC0fn|Jrql{BuA*fI@O4nA8MMp^+`E3YH-1g5I>U=Z(s^cxA34#oikd5uIP7**^(ya zN_5^$^t)AlL;-J>ib=1Oh)1*Wl+Bc*G147rCf$Y z3A$a7xu>RU!zS&55G5*kAk|tUb5FWC1f4@yi4n@;AX#JPrfCbXK1jAkduWg(s*uNr zvYW#mq8mI@J78NJ6^cX+q7cl-lXmcZ6&IoqATdH&baXCEJJ3Y$E@wT3AidGZVoN=v zn;^}Z<>vGT;0eEL=)#aThM(7)*s3j8^95ZIZS2k7(5kY~&6cDYwEw1&A|^a&q+*sl zgRYD*tKw75?Xi~>gLX?ZJ|q{1&9pU=W6)g~Ijzg4xr@HBq8aqC1d|ud*Jhg2X7V+s z0Ub8eayG@!Xe&9R;&d))*yvh&;97?pi%6FyPWASjOYh4d_8jYtzI34&Uj;A{D z&(!0b?xe>#9boD1I5Uai6cM;eJQ`Fu#|ediuJ+sN3O~@!_%VQx0@|r?WRsN?a!8Z) z8G2Sp7aYsf!Mj4?g6rwfrEawnnXQ?;(`#O|GR!nvR;S~|78@yZCZA=XE4YmnAIScD#45aAvjO@lR70lN9%5mQzjA;gyt-z zsn#^%Sz7nWomi?I@<}Sy&m~Jz;gC;Ksgo{Qk_rbwvf5oDQ#iS0JaoTHB>hh9E@*d& z9LAJu_7}Jqm%Bvx7g~?O#3Hm-`7RMlIi%BIeV2%3;sxD?F5Dn88ZQQe#KpcXWoEvd zcQz6>$(;5|Jdc7BIcnPhvQ$xvAtoHU-DH|{)&{ZDDOZ-_0_KQ>P1xMO8V!eGv*eiX zEJ4VG#Y%b%dQj7{9wxBN>sAVyFqsNhG-R>oGBR7Uo&~aHrjsBPhw^EdxOUfzouI$g@I>j-PFjBH0LrG6fu+a z3PaLP(ukL7JepuW>K?^YiDnI+yynkcvIAqk4It*DmREm#Mi~JU2==fk4o< zE0yad5=dD-V%wB01#XsK%;uLmXY&|VnX?K$y|&c)))-imjvuPk`$;Xk`73p^oTmcW zeuuU8_$PYSn{Y_>!~GyDopv&uz)YxjNyH4S-O*IZ%ZZrgfaPzTj5gxwybY7Q!v%BO z#!d&pT8q#65!PqJS*H!tTsjAmZQVf($MZ~`y5iQtGh)`mBi3oRQs9J**yd!Cc50Pu z3xLrATQ8HdriYcLtrUXmI}AjjnAm zEAQ#YY9-y(D(URCx)pVn5>(dqP;FU{S_@oat(t;Nu&GvJ#>G$9+x1P!N zBfHKHYDS4r6_b(D32HWj?I$Cv5|+dWZE;Rv6HcC<$=2r-;)i^6(Q>#a&Ey=HPY`ax z^J|`PjvpwF>_9Igv^%IX4mhHhW^qc37_}(N_$<7SsFMy~mL)MlTgmD0&XrEOk(@SM zE#Zm?Kc(49JG?6*c!_+jHt)UwXEd2_y3f0d57qHSZQlJDPg|Wcsj#;<734DSo_?Y= z2svsquu(wMT>YYCLbpgP85Gb}0zf05T`s`cw?- zv|D*BNY;s~GV)#wLszfktgpwhXPvfUd7L=;xc}BiZrO70`75sIW8r^Z;i8*pI*m44 zsp#|Po?A49OW#wA_D$_=ER7S%eC-%7)@4PRqyr`QDr2;qywNfeC%Joj+1%=qgh;u& z(G^BPvAQ`L406qC85lX<_Y!9$Ad)EM=4iCpIEK-tu)J-LP%ZC;ODs=4d++?Y7nGYH zd0Dl=9hsTzk4DL40k<$i?Y7(y)fB-Ri_AcMO)*JT7RiD`%k9!4Nn)Y571)JEIt8}6 zrvukgml%pg%30lha}9V52T|WXeq@R-Y}@K!8?!rC2)e_74r<^LELtnL^OF~LC;jcL zhf(4oNbiWxOkh)FyPFJWzLa@;4WJ4ff^!eM0Kyl*I+ny2RM43hU&xiiaTG zH;pH8l<&e-u*W)Oh9e>9_Op8lqe=eYb_IC1*09193c6wXJT&^ z^Y%Jfn_?l_+fz6jRY7@m$^^qfknLZv2H0QD*0H-33c$gXoy9aHcjI|&gqkjW;*+Nftqt~sa6CdjsRr{l?Z zQPx#hYD(8R7X4Ht!LdD!tXB!S)`n7OE|z-PR1u3-=7nDB6|Ra{wDNV!AQ{0H_&T+Y zYb(JelHA!bn9Yan#iSd}Yc&u>!+Qnh-crO8JO_r0!8~ch#eUs(G@rxFNzt}N%bKvr ziz)(^C!ZiZK7$=uF^v3-VU!A%nk_nWKS=jF7W^_C9C6%#E%EzWg(JpLkIo~o$0=WP zCAOWtsK^1#e_!>%d8sZBl}$=2r3EG+XD9TO)0;~pam9aAgt zC|BChDZ_o403cNv~{r$e~Fn8ZTa&gj8yVh#)>75Rc1dCzguInu($@ z_@zlmq+>cdaY7)RCaY^+m1>TtxSD_hiD*@psx!XSTEA2Q6oPSACr-*1*)PqoEYGXg z-wXpmwbPq(SKZ^(eY;)$T)P^Y0{4<=YHv4Q-8wB@I_;2!=A?^lSx8|JYt zWORU5G;6;!i55peknN6PTc0PhukIfp2!d;8Jk38e%rYCY!dTtz0fL66aax>+PgZ1O%t&v7qWU=l)@m` z?noos9&7%h-8)OG#1;WVaPCTm(W;*+q`I{+3cuX+Rf_q8-mbr!7&kjGP4dY06}o=NoG(`J-I*C{W6Y%Alo_U2&I0p7NsoUA@yCV>!q2V}G--PI_YLQ_7kG{HBwQ@Q|LJ&$VUIb&1LRtD4mJ{go9P_ope_TiNa90c6~a68-caeL$| zW2={q3<*KFZxpY>8tV;DBb3#9H3A1gw;w7SpAKI2R!#yT`1ZjL!{lPnp1?uS?VOCu zHVr!zi|XDdKp>d*!Z`g_7%2DSwN$U?QWyl=E`L43>f;U!13`6Q8g~*{6$q}1AEi~V zLoy@;A)LiAgl#lkU!z{tOQ{4x@a>+$jVqo;3aj@l5Cp-sYnH5f8XBo?Zwv!LwG#%C z{1{sGS_2>uOrR-W3xDcpYDDK9cg;=}+`;GUu+=~X7>KU+z`-Ta)Khz2ePoNHAjtO3 z7AvqXzvHPZQ{C4PI0(9(up;O}+dV)an0B#MN`639w=iR+)NaVc$pe01Rj*GG1ko1Y zT8ugu9v6ThxDFw%i)4;Z#llg>{SREGp0IeO#eP}1YN(sQHf1<2B|VU_>=xbZZFT+m zPP$iir%1AF1$wsUL8b|7(9MP>=RIwgtQ1GG>TuaQbcaOAT6A-c%ps+M_2^x(xe@Mt znzV&7a&6y1n6cIFu(1H!AvL+XkzgeHz9Z^JL!c7p4`VtA%lh#3)GYxKoJTOa! zU36F_B!cx$cEs~AfrGNV11{SPEwa4Wm~~tP^)XU`)UM>@2ClM$3zkDBpg7*R|3{=L zEk3L`D|a2XU<8i)C^@V+=Vi4a-9a1D?P-E`?WhnB&8T^ri78mCjf5>M5`Og0S}dlf{tkW zE(w28a9(kB+~&q2>$GHb(gRoousj%rJqcmj=3ba;s1X~1ey`9qoJckUJMnGa=GG{8 zAVxmu{IH zpD-uFtxH5Jg+lNh%DOl;%~wJ+HyhbQ%+OGjS;ydFK$)Q-DDO}_YF{wx^iLEx1m_|4 zU}e$k6|By%&aP~Ly-uEIXb8%KzPx#9m~}>sBp8D6fbfldWw*Hy$2v1w0*i*wkAE(e zSPNmELw-PbyBC8F1s0;i!>UW`3uT?wUByF??gzKZgKI4_yH0D9LLvALO1ICK8tas4 z35H<24^K+$w6kidCRUzaR#(;;O)#(#==Z0Onb+5b)ptq9dyl2gz*7!70)LMOuV0$3 zxlGBvCN2SSFWj;KU%TvAJ%^36F|I@}W9Q zcrrWgaa)%54&~Fb3Bz)PFnM@~F-TqhiE@Tx0UTmbr8j2Rl|-f*%^S1pCSNcE2?M}` z{CcLYz^wT>?mbsp3^mD``@_>X=AVYnVs$N=c4uqTWVD`JWBJRIlm5wM*h$XBEPmM% zQl$b=>yG8+GqbY0!!R-yp02RnbET_?J&-x!pA5n#IkO5;u=0L5E|`+IsI4u-PB^Vh zrr~RX0J(#(DHBHIy1>;y044~VFj-5l%W0qzxYvKVQNR;c(JZ{71!y@LYK=#7DS7}i zKuvh8&c?m@rP_98*eNGgWG+=s8Fs>{H(z6SRgVYx^Wgp(od7zaBEIZ*%fOz&Y!!+Vfa9Pr5eKVZ0ulry1KZI6{Jak3789L zN{FcWpM!#AepI%Rr@9Q1?N+@~q0c4Y%?w8y?yU@9J>d{ekvI)Qyye^Z)xM9V)T|3< zRbyMG+R{LijA_T4aq+Z%jhvAKh34**>Z!H_TEbyGj0f%0F`mLbj9?J-jBQ`RQiH}q zGb`uXGVzvyo{&2UeC)kaOPQIWS&b7~rrJWN1pQz!nvJJ(@CIh_DjTqE7hacD-6}FR zk&QoK%O)2(VYhC+QodQgR-JHvSaRAPf0J9$rBXgJE-W|w?x|ZR|vYhBz2xEncY&o?JrT8r(+{&D(Hr|e+Cwy4r8bZkItY8C+trDP8i2cxI|DvUxJ=7Lrr*e;KY5084Rb&KWiZa zutx6gXiM!TH#iV84Z-COigk zx(qB}>TR~?F`LH?oI6&tw@wAKr4bHHJK{53ZL{27Ezm_!f6^Uz)X0PQA2 zEqLIpSh_IkCabB~)p!(7+5WF|F3oB>RD7gPm>kXK#dh*EYfP4;0$`%VJaaI|s?yh$ zNs=50LPt28&~}^~vywn2MvmC{6;{a>Oo-ewjk}A28lyRR0e?62Ze!B%w>|3uC5Ls`wVo292}*>QI$CJtF`ZrjZ%arm;5&4zH2#rHVY zNJ~>ES!*7PRt0cDmO3rN7(|<}oZD>~M*5AKsmd~peVAg6T;<6_wpuO2;BPDWYRV@W z>$(iXB7KszR!a#i5;ZdytDYX5$PUMAZ^Z3rV-<$2$Ahb_2S_cXW-X3YFUcZBc7(hR zm}H2_XzQiMXe%A<%^1OWHs;YK!zcqx^61{c#%5jtky9U98JjE=`S=56gm?U!MM?c% z6Q*c*$A1ki5y!jb7c!}%Iu_ZS)lyb_J1kOc0YG9g$Gbi2aT|;DLm=)^#3$q7N(@uw zqtbg1D{ICF=kYY|k6+~~C8A1(nDAVwV zS+|WlVF}B;^rpAU#$mM--J(WnAw;6-`;rlizQdyaXl}i%(?U{K_gM|XSftoefD#7x z3jZaLQ|zss%y8!8zu5g0fnWDiMEu3>r(`&Z{@W~mF$&nNvf4OkQv_6`gv0%OfX{I= zr-jI@99yl+vPiK-pb{1*rWbv!&kz#Kce0p^yw*pE1a&kUB+P3JX)spvEH(y1u@W99 zX7fNUq&Gi-ArzQ#^z}wQl4>{l3dixr(X<^6R^ydvbpG584#Tk8x9ZScl#R#kLkZis zfI1_11SyQ<+2ud^N*&QFf+ci`BVz-{5nHMf8*yZu&uVk0yNrTiza;AR$KdtYPFA}M z&T9AjZ04HW1;9WcQXrW&UWw+NHP}f#UN|iLa2KAj>jq*+h!BoF*g|1HY~x%AGHP~1 zw$1`zhrx&r=k&WtwAzDiLKEg_wPnKHB3gn2$*Z_)zZleAW|mb}%Uj(Av;aQk0|!Vn zkx8NW0DQt{$_~V6!;uUu_r{}ixBJFs3->N}2GML5&surICC+A_W!7q-DnsW&m?rQP zcJt@osN$Jms2V?|KzN-_7g@k@;;_`EJ(-SS*+e51$skZR<`N>D7i(a(Kz2OsLO6t@ zU7Bgh`+*qe&>?(b&0R82q5*8*Y|j^+b^EO~?p0n^OxFUjHOLUIz4htXzRy>q77Eq6 zGyH_n>0z`Uw`Ut&wkNVZidXS^xF%YWP$e{%5aB%FM=Z5t`&~M9Ox0>psJnnx#)7cx zLr*boH{{xc^4A0h!fbuG7|fHVsDAa-&O~14f#SlI6&;Y@^g9mWJK6*h0O9q z3xWdAz7Yc zi(@3X?;czoPU%()!C98WsFpHMgAr;$Yo#Cwa@Y>emIx=a8T8|V*^SliP%8==TFOQ6 z7!3xO02duC;S$Y;)PWskasKVsZh6=i_D?NcKywgBvw7QoU7#b7jAocjl=w*| zN?!Ks1usrs+B!nX%YGf<#mP(C2eIB64;I4_6iB#n!PXP5%*<-I(lK>d43IG(wm5@j z0x(K~*Brya_@@@}$bLJtBZ{oFSxx#lrp^{T7)%J)xI3E+><{*El%KJ)npSsAy~VNX zd>XOHKztZ>$_M6gBKt)*jv5S{KO8&ZGw3DI?Qvc6P??t1^ps=jaPp!;fw1ebr9?3N z8oWZZnnHEv#laIsF&pY1SRXCpC^E49aqK3aMR*4|Nd3V0Ea(EZPS4?fy2`m@H8SFu zdW#_^d9$__M;pluIw--*Pmpexgilz-YnN~f%dzWxF5MP(4gFQZCrYjgZf;g%Sgz$K zxr*>u!&$EmtW*k4CrIg$@Chrp^m!wW&Lq||1&&(GS|F>7#vM~{3G{^1$|MTk09l>6 z<4OmB6DI3op+F<8P>^1r%7Ad2izi|_ecaxNt&a_K)NE#kiOr$_$JAT7R0!Llcx5qa zBrmP5hOJ7Ib0GX=ZbBZqFAQ)5(ok*^DunHDvY5m6sxj<^YozWBlbeJC;n$sx=Qo6J zwyn-1b+nBZLMLn{IG-bLHg-7o!clf+msShM98+%@GziPi92VmScTIxyR2Xu?WyE5d zEMQhk#a#1CBS9E;=i^B`{J?II5{A$Tn*^r4hHZ8$PIx~u$gD|*pYVzsYORBeX5_Te zrxv3GhTGdPY(0xR3wAnO@EW5R!r?M`(0tptgvSIpcAd|qJ0`F}#su8Y5*>}FLs)(2 za+WCnM4i`F&JsPq(yOst0uzUI5>{u4;>*ec2}3x^XVW6!9 zTQh6~nhtHNl%=9Ff6D4q4K`cw-`;Mjd%d(bHELJ zwx(+>HLEhL7UNi_+aj<<=AbdZ*v**d=g+|eWOp%$tyc8UVtV4vzHA}?k$7Iqbmw5S z+ib>J00S{sB39@E4fTYxp_ZgfjMM5Q?oyzpL1Okf-Jb+Ik>^+wx!j*5K2qx;<^H52 zJk2^;$y0#rw7Nej#iM4a34vs*>-|Yq5=i!1^%t#@HM1El^W-2t!@jq!akxs#m6X*s zRxY6({uHRl05sBc50KsVA?Vr9li57!u#3K~bE#{T4^?A5snj{yD|HMuO9hP9PIuWS zYMx}VDjcCZ%z2n?UFo!w;bd_66;`!fmgaIv#E9*h9GBz^j5%I`TL;Gr`%|72ld#}4 zjOT0PF64~W41-hJErFb5QQR3%r=4+ZeP^nZ%&e3K;3JR|KKFOV)*F#4Qn5NC*(q(< zmasusbUKS690P4#W4ai2mM2zo!;VA{x5>r+01+p7!MP;#0Il8{)b3-rnaz64yds?d z^_hfDb0=}?fLEjwz|uHw%4HbCMhffA1{V((j+=1l!ad5vI5-)r^#)FgYNfyln;u3s zkU0U$jf74ZvHQ7)mtw8PaT6}g*4SyCft#B!w#I-HHn2Z28qJe|^-2jR^UhkF03MA% zF8H|jl3|Gm>|We-yJc8>q;@=%Uh*-Xrt0N89$1hHu}a_5lC30= z4u(}P*(%wBjzuztyA;{E$L-a4-cGL#w=I!Yf-}>#T9RdzW-AXh&ziXZ#z$<~a_{*o zuIQs3r$cW!9cftIG>0SR;wjsny8)M$f*xQ2$%~5m&-w4G*1Na8U8H#;nXkcrM6zX; zo0~2e?JY*%HTTU{p-^J0$ICj!jtLVJ-BTB4fn`Q)Q#*`luw~*PBG)Eeaq|>2i!|pv z98+vjkVNBfx}PL4!ecRla4^>`)ZoBz5*mj+>R*mCm^bmdg660Q(qjvkJh%SDUKX+2WSoZ{J@ zUeuY7r?Atnn;vip3&&<~oq6GGPr(OjCT+i6CVCXlK`m=J^3#KSy53Mo{;Mrr8p*AF zZOENu-frjCTb3zim907RWSK-u;2`J@lr?CUDU*im)~ZS?Xu$SC(JDS9+ZLg$g{rGh z;2`ST#g?-9$=H`yRvg1XQ0<4Bl5h0$1Fd?VN+1N^L5SuH<_k{ma?aMo22k*rzUI%Q0P1Z`LeOP?n$`Akl+HupJ&_Q8)~O>N`ZMYf^7rP{?yvw6*>Hld^e_Hd<<0m^e_$iTFNTg&XABoUJT z*SUx<$oE?_t>;#*Wmsf>ztjmxCQ;<`c9PF&;V!KQxKH)GqO8u$4PR7q`}*y|%e)o* zGQ0B65`pY4t8UmUEs``T_qVm#P)ah7hXsxkMNCu5yrmlqMVEaCE|L^V&}2%mDt#Re?5kmN=K0%Ygv)^g5`w$Sal>Mn zff%9T)f-$`3x_E8U^z~*GJt)>)7AWKs%20z-JA0cW#6R~tUwVqhf_BEghANw*jqMK zW@h~5`nXux(4+aez^*_b5O3!Y*#L7l&R-@`rkYHpH#ydcEL9xW2C)RuE(OtibCN%2 zV~5G?{FHr{stQ%X1Q(&2twk3G6$&P(c4xZ6hjq$CnHyVZS4>%4GQo8##|0*lv&yS1 z4=#tfyGcBqZ$dloT7{!Ufk=Yn5J$r1&7pJXr2tk^R0e>+yO+b8z@;;Bh(@Mt0J<nxZp0_GRBpC5soMoOAy_YKAJ(3gk=(Y z0JFu4_)o!Qr*<&S9r0z~v6*l;t=n4_SgCLV z>o}?jo($nWsygkT4$z#GVUqY_p&~;wU=XOcrBFw`WVJ?r#c@ zV`FYcvr!u=Rs*pNZH>xL)+V*lN)QC?t*LG&6~AI^XyOUN{T$(9KJEcLHas+$uhnQE%<0}TV%*z-^UYN01YfE_`NmqD ztghwnC@d3HQ-hj#f{^z~x^X-KH=&lvRq2yRxdhWT%vBh3t5MN8&N&E)1P5Xj5~03aw2a^qwtrYXIzIv^`) zQkPFKrkOq+4`HTrwhki??X_<2+6$EFI*esd`*02JMF5q-AW-k(Ij_>0B%Sp^!IHJI z3dWcjEL*r;)HCYkAR&Nx_Yz-YC9gez?XK>MmCkdOK};%~pgV%xytK#dVQVAYDx{^NO%NlB+sxrDlWD{)MtCu5J?zr?O zri$w<#S>_JFjziIy`ZY|t~$;tJ>GmQ1T?S3vlpQpz$izBmPW^0rNJ>^5U6)zS( zzDRu|DBFZkR5RuPA#i!`4!Z8JBxN?Qpix;TRx(i`mtf+Rby^R$7n3e{>+afGbyVss{|RA;$R2;^M|c?1hva15!A z=~byLGQk8DpK^g)^rok$u%v}7_^nY~tGIOeAP8DMIiCMw9fg){r7d!j3Q!Qdyej6a zvf|-nUZ)G>xb_aMO_5A+@d*xXwOEbpt}?-)NhkPt&7-|hCxfd@5$WOyLOw2>y@DO} z%%`cL%PQl-g*XUiUIWQ@>*%ve4U`EcsCeHed)W4;$|?&;ih&T++?SZf-Gz@)mn!q; zTs8s4tH)`~?iIxW;6XfEg}noVWSG<$xvEk<7N8(_`G|G;=46_{BConotBhEi00>IH zR%jaIa0dV^xTmhvua;eojT~M zlnO;M!NsSwu@?QQLBd<48AQu5 z0_--{z*VJ1G64{jcc61WgCkzr<7qbrPoRFEvdTDd4g!LcJDk~0j~ZI6;&5hy2`cWo z@rN5pRC8vk$}kX-O|YeP7o7RtUcqH1HB?rq?#d(+T)agWeg+)N#}@6lW77wOs`MK* z5CkTlZiItIYHm=jGToR;C3tv08=ur!Mj)NED*Do-m*cCpcEA@tW61!ojui%#7Ys;< zRjOkX0MR1vAizsLRtZ$;AgH1VGG3j)V;I_-MsO;ady$ojt5TgPk_j&E=qgWHC0xf( ztK#VD;t4`&c|vpTjcBll>tL*Cc^UwMQsyr!IT4%=(0u+1$pjalj0FXcpl=G^37e^^ z0j;D>bF zVaa-T}X!yPP3~5 z3+_6yQ)iXIE<--SsN}ex0rbi_u81cH`J{xxVgQ>p+p|g3ski8;%A`aA3W9f6cXJdC z;ehY7^wbz0a~!nL1QS&I)~;>$;2MWE8*_25$#o~ev4g7$C$J9A))qZDnyQ_?Q6HJ3 z&NTT1+-)=1wZjiDs8dxtIxvb*g676{GHVNO8TDjyoHSc~kbBOfR^h0L6S3E{r}2dM z`yAvwciDNKIZ}z`+p>6W~i%g)UW3K;YVKX>igczjpyhonC`M`z3XyJM^;U4og#0b&l|e z*6$PGN8`~0@pSARd)cZNd+aGX0{x_b9!BY9Ziqc_Q{x9b6-?O=FLUgc1I;Okh|og` z^oUR^a)-PXHHooo5YI}BW=k@zn{V*5tdD4EJvv5Fz#<5*J7l% zkmMZQ%+HaAYb=rtxb+6_RC<2V>CNW5s^hUeJFa_MmRyIREOMI*%XG6-D$K5dWfCohfv9c&S~Ts>PA9YcV?8X> z&7f7+ngl}d9T>#X`X)HpzI12S{+1kD84`l<;9$Jko{f9+BJa^M{Y-~ut!0@+OMyZ# z?izZ_;Oe%=Fi=$fa+bqE97Q*Qvxews}t>o^F?{czd+q%G{A#HAIl z%yKK4l0J|PL;`~2i~Bb?)%CbD5>L8XR@Y~57S#2(!6wV2a86h0HCCLKOsk}>m+vT= zlOjlFSk(2UiCNY4r70BD^|wberrHwoC`~o1=*@K;njZ6X)Z)^Kst&D8VMlfco|LT; zwn#j~R#du5skL+*1m(W$={$dU(FtLZA7zVhJ|^gPb>I>Oro#I9TI92rBNOrosvUS< zU42OAY@mg%TjpVTJK)H-o`=k4+wW(4rg=ELRvi_&9>JC^E91g)b47xcmos*|Xy zTA>6XYK5nhD>;{4y_yW8Rj3e_T)oQQQtJZc>ebyWiLz>dJ4KiV)Bsl+OJtPiif@j| z5(BWfdKHD}iICE6RzM}<^)ep!N2JGCe3^V^Qp0GJOcrnsCd{3cTqa-efvWTUwEo?% zBwVKc{FEUl%IXvqwN_YFxg>w?w5yjblP0-ljy>hGDuJr!tNE8yV+y^|>$SHKMMX<#Z`LP!>SSf&a$f?NW{o&zN$;GliJwhwwY7FVQJE%9YnT3V(l zOMHry(2%8LIvy;$a?DbmQObR`Aq*xVup;sS7hwmorLz0qEVUwY0dW!v(v)U!-DA9T zt-qx}BO830Qi_z&$a2EseAKEWyygVMNhrWx3tp&ar=v-9X6fGFsw|FpZ1)6ILPQqp zIcy*aR49BFYX*}LkYys>?-+=K&oYrBB{ZZ#u@%$-9Ydc6C7==_hduT&%01ovT& z{QzklJ}lXA{O?vhXx}RKVH+wwqT{1pJ$tETA7wDdl|Sa!g_m&4_KDb58F@bYVUNDL z1na|s4d?ubPp4c$EgPe^)vM`+AM@*dOSC?$AkW=C0?o$KYX~gWkuCG^qFckSJ}#V8 z-?doTot=|iuTcbV(z0QhQZ<2q!ow&4k~Rtf5my;dWhAZs;=Y-HF;QPHw9OG|RosIBWZ z=^PNTVtKs8U^X9?ZC|l+9t^}~j&})jS@0B81hyQD<`-A3#Sxq#KA*!rD_Gv+v3)EX zi?+d^2agbuCzJ5|P}-;AkhZ1g$d^bqa-eLUPz=m7J_tleOFgzwYjs}uByrNZTI@{X(h6%BPJ3A(V4*Jr-G@8O{-%BHa~^8 zCN{17?yBvM$_%YqtK|5f`xOt*M=>p1OkLKXDKLn&9nbUNd;l#Q?JonGhle0ONIW(l zP|cHV>}nPQgkZd{%opK7X$8#4ht)btHW| z-EnY)CucX5p2~)?bo0b6L#j5Io(dvacff9UK`J&sK{B3RR$@z2DHu_gBL;AK9{YZY zIhBeqdQ)X12Bj&<{#1&J=v1Dq$Y10(`=uMeY;?O<60T@EnM3U&``YfvI9a|X+iAqb+gLu%I7%3ukvdd{j? z2+Cdllvn27lq-)tC8$oMLnQUHmM4@gZm6L`K5C<6blm?CnH#og(-ts!pUgL{+BETQ zNt=qyD^1Y4O)E{MpiMh2hT5W~8yiZKH`;|V*RC`r zS;Yb(qRR~GXxVK*r2;}g9nl+tcGlIVtk23$U@v9a($%*!s;M>~n1r6<{ywsc`B{ZW zWPwE(WbR&L4Iq<5RIn|L?~E64Y+`P+z7#~! zCT_@Ms{9raMsVDkK1xO#u+}JlCCO4C=JnMDp9mnSG=fBEq~xZ&f>g6s*;yl87{?L! z$E0gneCTD?al@VVC5K+>Z>mM_X4 zpHIPCO!`mduRM+ac{2a=DE{mq|KErC=O_68K8OFgoB#P){^yBY`s4X`@8gjZE@*}S z@7MUBP5$P0@;@KOKa0h=hxcdaUw!_H{@r^o+w$u3=N`oy1s2zT9aPPwGXgPY0XQ;YO`bN2ZUg2)H^&xKSU>^}{EAHwj5G3FP5$b|)Hf;nV-Z6n5k9_hbA6_|EM- zHH?2fhChVi5sd$HeDhy1<}Aj%8Gk<#<9`N!e=7cd9ELxKF|WhlugCCy{OXTU`Wim{ ze;D&V{JjN?;lX}_zyAu~`96Gl3\#(WTCuEo?o8{;31F(1b8Q!)G-4F49xzs7ea z`2OGG@1MeSegdAJ?SBMg{sF^Z!uX%UueQMZXZv4>@z21RpT+PPhHt_6w_^CS7``9B z{Rm3gjp0@J=8xg;FUIgQG5i{gKLWqc_8*OWpNa85jp3i-(+^;pKZh|-!QW5C@S`Z@ z^D+K*jM<6d&G^-y^hTnqmpM~+?j^TG> z%$4}`b1~*}4F3wluf_P+;P3a~?|u0G6&Ujb{QZlF|4xi~Ilglr{{A%l{ag6-V;FNk zhTnzppO4@E4nF+_jQ>6S9pmpCFuWea_v4#;@T>pC@Cz|~5W^qF@F^HxhI$y{SO0}E zKZ)U&WB5r7@5Aux@ttSm@8@FpJPhA~;Y}#<48HSJO!Ip&<}2~(58&^=!KXilzke2y z|0w?cdVJ@PFuVc7KgRF`zW-#!A zBtCsMhJT0g--F?AlD?W`e{=YGPJH{Nqr$2!) zhw=C8G5!zm&40$25905KVR! zUWDOqWB7j<|8fj}4Z|MB|0UvI#ovE`;s3*@e}unZis6@G%EvH#8-~xq@SPZL;5(=J zw;1!8sOLkN&Q^@sjZc37V}2iF{t&}|!k90_r*FdWr!l+-k|G5*&O?dACU zZVbN@pFRxV{1Eu~0M=*RHhIe3i z22=ib{QXN9{s!XtQvB-6F#LZQ^EUkb>-f$S@vHC0@KG55B>eqo{QYnE`%M`B2ZjTT z@8Y*_#+X-N%->+j*J1o`W6XQ-_igz5>)`j<{x9PD_ds~I|Bd)`jNw;c{3G!9cVPG= z)X(SOw`VZsMflDT!^dOHKVWz@#=I8ad@aU&0+GBCf4>0Z{{w&jDE@u`-~S2x{RuP~fpxQ6lHiN7C%;a}ocAA;~~|MT$ocVYNS3}1uq zJQc&E7;^xB|2_WxK@2}1!=J?XKf&}r6Mz2&{{At1`mOl;Q4pT(e>?vETzu!h@abP; z%!e_&0^@%Z!(W1@P@7@=FXNk^#BeXhdF6{m;hV zufR8N#_-V?eiGxq1ApIxzrPg2S7S^Yzx@&nZ-JPz{T&$p$z8Pcw2!HRw z@GmfY7ryg2eEK!``x&T{@4=`4i19y-7=8xBr(n#_;qPz4_kSLLKOf(}5o2D2zdwrM zGx7bGVf?S+o1cR*cVhT|7=8-Ac^QU}!0@*){`c|ymtxF6VhS(D_zz6}mxQ;O`4F3*ez8l|s6^75o z@EUyjBz!u@-(P^g-+NOHghr_#k2MxS%))spE8@QC8IN~ z?sym_qgiXRIbUN(#D40*m44ir?-S5AD_`sKX~vCVDQ^8j;k^F49dXx z0?dMdxoJ5V`N2op0Ok#*T1+tXlQ)^4JR#N00*>VG!g=g70_qicpq^n+Ha@=mAOQS+ zllo)Wr)*0;6|*f*3}ytr%WYK6qhlC;8+ClfzCV1D{(OrpFaMg@379zZPY z9H9Qu>yHAskD2*~oU+W${p{oBXP=J1*5b}OzgdJR?`3(|uwL&B;7|m(un1;%6WADM zSo_U+Up}45>c+i@-Eq+w4=028OwPBr=6(A_^;=Wkj=XOWsgS4MSfc8GSKgOTQKiWX zLx^tn=6#2mAS5c6e5e8s#mLT-1|Y#3a6K-38jX z+RW?EVtJJrc=5L{F~7w&622&|js|&9wKl6Lfp^~th+kkz#rhpSDyo#mc{0(Rk?P6$ zw0i)geXE)C&ouN?^znC?A7fPrP+{r9TC_6Ab8V)1Xt7y_@A7NUMcyY$vz+%~i+RSI zrZTl=x$x6hnV(`gf)5J4wljG+d3jK;k`fk*W$2Z8-%#5&n})ZZ1afzo2u<5A`1Yjv zE#ia?>%%deLvPl5ugSxS^2j&saSt+avd~(A*XMnW^%$IjC@!%gdU<2s7ieDGsB^ws zKLlF&1=A?elgLVZ(U-q$eu?b@EZ>uLU~$3!qC&jt_hudX=DhDvuj+R>MG&p$EqPxf zU-j$!QuWrnZ?Sl&-~QO}!G7}V;Qde8pYuL8 z?y#`4w<+E|y#nukWnS9mMMS-*GapakK3zD4DIUR|idJWm{u0S`-vh~g@BofUz=;!p ziI2ow%j$Bx!L2ihX5fRjN)l^rKXeq+C#imjrTPf`JWbSGR%nxGs}1!+GHL2Eq zV;E!Vrpe!23A3_nG0hIt$=|W`9|Om4Op_J3Un3P^?r5=M0BY}yCo&IFz(1G-%pH8T zsk38(+p}bKM0E7erU>&UMq3fEv3GU~uRSI*K5EJ^Z&S3D0gD@<;UCY5g#R!lnESb)YHzpHC4mB+4rbqN9f$#4189 zZswL3+e`ov3%DS5(2cu9$YrLGie;MBbK~|#+#%^d%1pmvm6U6!k2RC8Xh(Tg`Z$*Q zqoH|(1GZti7_X*ptXAb2M*0L3dPU9WTj-O#rJrw}Pc_r8SPK=|=F?3H=4K_U0+3^v z&omP^PrJ8DoR=%uBaf#@t*=GUezm8O9IV9p;&V-L=D~he;;^qCf!hxS4!jyUje=sH zWs2EV&0bY8IhE6MO+i~N1hJL?SZ>woyN{d&m*_R%jrHH~#>=+wa%N*pT5_#JY4X%H z!qi{Sd_CeCndiHi`Y#t?xJfAKjZ6}qFf$L#a2FM=blM3FtcvOtWqlEoWw=Zy-E%@y zT`QVQ2AkM$V|GCu$R-qF+EDfnQ2v`ut_SN2??H#8tvk3V?=7ah-Sy>Zbw5gaE0d(x z{YUG|k`|TL+B4}_pxC#W1dn(W3KijO!0vBO{ce=`4pXL2qCzIMoOcEnN^31-`Yu!G zalhKtoh%glZd2?Xe#I(o7fSqkQ=*4D2y!wqoQ_$V@Gfg(D8X!_2zsnSDGtw}hYT5Is_d>IJ1X^mPS+yBukO{Sp9;Qtx zrg)sS{iG?iap}!Ojph?mzsvM2Z2aQ9r)gZ6-i(IVw^x zN*qd9F;!&aE#=_PDP<@jHYM1&-uV)gl7)${nTgwsF61RXZRh2{x+%b>|DP`)KMO{t z2%FA%p$NUMLq(l3g;cd8s2WHWhw0DF^ldsNIV5DY2G7(^35q#wim|D(mx!S)5ej<1 z6l7Iz&b4~;zrPCV&9}e^k88at5^5biO6yHb@vUsk$i3b)5;f{gO#N-VrO%hr4 zpJT2+Y>Kg}{>#PC>L2<1m?`Kg3y*!i=&Zxa8JghJ-vLd)&5)qd1XxuQYGSRU_&?ed zV9K{LsH7>d(tKg!Mw5V2c9;q=5B)ZKW<()`gE?`Ba&|E}M$=G}kv`s!lJ=U6%){iI z7-^L_N;$x!=#_X)%^CFwO1i`3V>6yrl0&k}%_e$K(os{ARgG0_aV z>QpXDy4#dwGw4vJI4&vI?Cv$C?Q^YJXhBMWMw%K%1ekP{!P^pgy2zY{acT;6uO4Cf z@r=(Yw5MaZe+3r*cH^mV6Or74${G#E!y+V5wTeaJTr zkk6mNhT%vf{hZ|~w2qQAKAWYXHzhByNTve*&e&$mJq zpVCr#Ue%OVV=blUS58S;sf3EU(oE@vR_y4iCrsCOwQ@>2zia#EWtK~IG&Ge%}E#FhM_T!3E(Jz9<0^-v}j;P-mMo#Xx6**I?G+B{x5;zci zz({qs1`R^2Jz7HSLoAj*^EP5@Cw7qf$WTbNlRQX$d`P5P13aWY$x^p&xxL)v4|4y^ za$C2ood`nevqK`)x4{cTA=OS0!S!X9+Pcd+$s)wQ#$sDf>Gv_l_T;h^V!-NYxpydBgpx| zl1g6z!1$N^ReU`8ts~O;!IqDWnH8D&74xO8T6eUg4|=X;J^Ts45$*h->Z$h1LoKeF z8(0l5>^PF`)c?F2r44Tp5mp;=PE7DNi`}l)OakI=H;kP2+dkdChLA6j+76;;b7lEE zX+yUB*#^SzGQ#Pz4Ifu(EI+<411V?JU{G@p*MXy3V;%Oi3v%x>a{Z|wN8~0XJJT@8 z{=FufAE9ePwtasFME^k(%^T<%i!PK(^4ZeK@uA>RO~GI+Zck|-`3X&OgIJ~dx?Q<2 z6hgzFj0QJB9*k+~^6kZPh<{qE0DsoC>9wg9sARjkWUT1P_B!;RWBP;XPN8%;Yh556 zFR~8aa^HLnLLGA8GZS8_;ne9B*2kY*o6wiy`SKA;difF=k?xfb9oC4%+aZ&r*u%)!1mX9a zuPDy=w0rvaWU)+;&m#(|@u1N}Bg!6gt*!nNovaf(R(sf}bECz=Mpsw97~P=u<;HTa z*Tp&G1d)3O2aJ|9MUjm;fV0n*_V_=RysRlcI$U>P$afinqvze(N=H>1JUXflMwe-f zaA!rph)}oQCbZ_ALKR-orKRKMXB=u@%x9<1%v5}HU7?Y~bt(ZlhW-6mVYd`#+1@>E z3BY9;h;#nMa#yBW?yU7>XN2tzt6M5H7Bq3j6Bs{IhZ`WUG z)GSZ40Z*PQoVH-eo~IGy`wRgYYRBsukg)-0Tq|Ub<$&gqA;|FzS3;GZ+=HQoQMwMyy;+-}S=kr!3!RrJycg)Z(y} zlArDC}pC0r=JlU5upUFgi@i}5In(xbG} z=$vv-Y9>D;m+y`4K>%P(B4D6fE)!us<23+mBPUZ!UD2SAJ5RqkR2h{PF^0_AYXm6! z9qsB&R5V-V(hF#%t&Zklj=ex!=LhTqo=a<}A2JFCH5;~qJTHvgsK&w?F>7RD*qvty zx374B@J5yd;5B{>9{=^ zhoD%LTc71FW!D4N(5P7>hYxz{7Gd@tYw$)674`wc0%GMZCbo7XVjgJnIYMl8Zb6@z z23w0^Al8$wc6Z4aNT>1FYe38goq4qo+m);C5mRAf8HNk>>KD~L3`y8+ZA_=QAn9m4tXVr*Nk(6?8 ztI>xk(>WD9c0&qDqJ9RAQvi7jV8bVg!Deihs z>-kd5^>wIHXhDcsiN)aSf>L=@B=8PL#41LFzv8rN8khYY{OV+m)Qaq{+hZ-RNMegj z95rcIhr+r;;!btij0nF)QmnD}R0qCAE7sV1 zs&0+%b2U<|AyRZ}Y|Ua)tYO5EHMY~Nv1XEg?iqG=$0R$FN$@>Y>m`u@-7dRug*I-; zCBZnOSyrNrV_NdnH=0x;28?4d!5yFB*kOf|spF$j0N4p+7;IzG3?oq8BokSGV)rvb zbWhonr6e{oq>!WRZ6x^J#vKZ(^5n6sXBXlfYg_+QhJtHl5VM8?*F$4W+f*HX0}Z9F zOQ;gamSA!-52u);_07=6P3!P6isO%U{g)N7Aah0KdM}sS*ggWjEpR|$Q#!+ z>)`k%|xR)ky^^}?x^HtZa_R%DywV|0e4P<9# zqAeNbW_QOe_SZzFS*x1u@$QC4UL_PF;fnDkGJ7|qd!Y0enJLeYbeD$ z!YOSY8On6$i*iS4oBzbJ9UvhiTgb!*`m7Wkv?XBed4a00s-q@2@7t1+G_@gWvL?6~fVm7Q- z+K4Qa`{WfI_jntGJ*Ek>#%8~j&D2km^G8h%_D1TYEIH=J8{_$fPB{W5CN#Ob(=tzK zvQt{w$exy+q4Io2lcjX}usw{do*AWtT0cJsX{Ej%`BJIb@Fh*!CLBdj4-8T@P5vr(g(rfvTr z)Mgvg(LA7ORz_^Co~EN%zjx%$(&SEPu122Rw73ZC9i{2ox;b4zUrMUQF`8t2&Z>J_ zp_Hu@;%{I*4~Wkn=}sK%UQ;h#U&1mQYh-IHOE?NmBj2~1Z9Kzis{*kAoG7q_xv0{k}Y74Mlb_o%WXxg!w8EDVTl0aXNx$<1r z1VbnK^OK_dN>{m+bU7GvrqrYyvUnnChs2J4*&&X#8AsaH8V@U9&}E8iRCAR=Z@lUR zYS(DOtg+Y?hOD;SSCbdN+;anvb-gCbivKCHYOcX<(j+BTu`6GatDgI+Vy)`Tp7wGv z3W1PnP31Zj?wSXgjm_6D?}c|t54$Vzt73G+G?g;ic>#OyHk^DWeBcR zd5jKM>trmU4#~S)5?9Q3$+I+)kk`fKXY{(QaIYpV(Rq8z)oP(#?)(qESkge`Mh?aM zHJR3$L{wuL(7iQ@Remd7X@9|61F;p96eM2NwVoz|go88&BjPBl%8>_Y z;pajwT0@4=Lp7n+!k;D-ok@&k9wWnh>h-BC1Rkylv}S#(z+&0FS=Co^x#cubS{IK^ z-quyg=R3^v4Yg?3IcRlivb2tA$->93tXbsrgcUSlRzj=Q5z#gDSSL1uUr`fjWoyYI z>+UPBq9n9PSrgsBZ-U!nGi9u@2QLvuu?c)Dno#TeQn01e{`hhB3(^ao6`0ivtc*Pd zv`q*Wz4yfpwqvn3)tZSx&I?BUA`zzkK+*TD&Je2k7mJJnp$!Nz-6C795*syLnF`^<4|-C_D?j={l5=Juh=%^vt1<5^;KP9HO; zM7xbK2P&uF#Y*W8%P2rld}+vSTVue$<4-DNF|i$0kIUF(W1;KG3HDNp1w{E z6-%h}>`}?9B(gkTq|SBe7Pw9>*W?RCaKH& zwwPNg>!q=!sQz~|myW*E0RC^yURL!(A;F?XqL@!KG1jVvygAk>hisypVx`B0`q>ix zEb7>o6&O7%-X?|>pFq>UlQIkRa`H18G6Sda&Wfs+6m=!h{ zL|mkbu*}CI{MUFP=Talb4ZJvh5LiPNBHGLH(K7m0@ugW4Izcd&^{^Y&R76tx;iU8Iq+cF=3U+(J^DcUY6RgFX@Z9zz#3BrEw|*%9N|>{5*$Y82Sa zh0OU(thNeEN5G1$rhryw&|(24XJ-aXcDcq0VI}0`U@rKMSnF3T-`mtLb13^tI-ss& z6kMxPjoa5#VHAYsGd6?tA7C)-7@x3O~Py>t#tW=XJmt&3c8tWR|y+nb#cuZzP>H*1vO7xjkoKr77=J5A;qduM%o zU4ZSyF!;7?K8=P{kh)DHW%;%ZxMK-1(>7dX&$kJ(JwxD2GECbR1)pDQd@Nt`Ftg_q zO26jHdcLHge#0oVog6PIn~imjJN-tZWwo6TT613EbuMf0+D?W2jA3xx&T>z-rzp8W zylZ^N)#Rk}pW2m?4+jYK@=t5!5%nc>o5o`m&uI|UMRp}*>Q{uw&K0>-HW~oGdR|O$ zh;|+d+;DEzAVWK&d`2set$iJRawAvHY_-aoGs^OP!#uMj>*JEFIwION5%A~$LOSyr z08?xcUH_~iOVUC$lQrL1M6aW;Tf-wWOTd$rrfU)wG9lf%=LhyFX(i$8QZj|(5gHEP zpgbILt7%9K`8~M7C&8!#8Vs#a_ZHcA?pSe_20#D~0hO)+*>oI*FWBQK4P~qG4S0+O zKy~VBf?D~o<1`q0WpAZVHom&Yx{c?bs3BnS0FmrZr)WrQ_aY><*6A7+{$V~UC+j>@ z!-1`bBaLTkNVGuFoD|HM3BVT^ zh=xN$m&!fX5t7AL7k;m5u?{8-_$j#R{6g?P*5e&YPeT5lkwJPapS7(S5!k)1v9rcU zvq{dvyk^FsOIf}*K5D4T83jG{ZFr_#bwppOV73*9E(oG;X++^o4p9&KKa<+Gu{NCNBc>X73kD-AtI9_+hu}LJ!65(c zmRkzq91hiaPb+QtMAgOQ=aG7x%B}19gogStqcFG3R=TXKk`CBVx=}^Dki?o>x{%FG z7k`YUdvi+#^hX9olnT-QK~U;zf>I1wePN;WF-un{d7%F=2$`j@cSbOfnxT=hGD{!y z+J9wMFoHFBnWYNbl3{SFQn_R@(a;6K>qw24m$i9uIR!k2!L~`|vr1n)uL0BjHKuG*7rD_oLiD74sNHpwD%evQi~cK} z-JApp`|omX;+FSn46Xj_VXmDl+%{&{^7^laYGV}oZx3<0U*lx;Uk7p1!NTY(mhJUl z#>{g7Ss3F^RW{Y;x`QKAj;S8hXd#{k>3{}2d}m>|-F~FWTcu5e?#R#}74X~fVT~N( zQJtIxn7N#gI+2|j{VvW>>~;a<6o$aBa-qcE~dS=lccwjf9?q>-|c4Hxprn!+i|eaRcy6;KC*Kq=TB_}meaV{W{JyRwUbcUoSo7)i-#D=2$+R>)(RRG z%PcnF(QSmw)B95R@ytSy=NJOBRBLW8UrFO)nZ+vKJxZt?#Fg~S;v)`aM8L%B+N(5T z5|?jVR+v=S3wtMg&aaRXZ^Gb0a2k`3+5)_5s`4XW}6~Vg$NRQFgI~0T)!B z)u;qxs%(gNioT!~HCuw^+>>0d&}RP3nB~{{PGaS{j?2F%wfQFCW?$U3RZ~*x0?k|^ zlPk*M#*iMwe#gWv|EqUvf^l-*egOc27tjQoW5bQ>9WsstN3A^qWu- zTx=rWYWjN3k#O0T@4iz91&e74cAGl|sEhNC9aJr;soHVSs;D`Z(d6&koP4;bZK~+B zOno;vYOuVfVe{rRVE%ztbDVQUP2^^2BBR4*opLWhexO{L9!*czohZHNYl(W(mi%#e zecQ$R z<;#&cIinNb<`3})YU0!Sj3Qn>iJ=0jfK4AXmG-qB@FtQbMbQWbNRzAvVLAzU%+L9C2r6L-cLom?>C&-_! z$#2OCL;0$Ylr-^U2VoR*>=Qno=^QX!%B#i^nx0+fN)IckX-ZnMl{wB8Riu)S)>hCI z1Dg2VTd9K)FH(bpi-9xAa95I(jP?cGP&RAsmC18;1#_7|p_G#YN!gklx02JjeI@7k z5R@IIDKp3Sn~ro{p)xZR^e%E@EfHpr}Q_)hJ2ldeW=}b-bq*hwO zksY12H-6kFn`EtnNvO-&n!ddUudk~j$KpCNGDgY4v?QhHX-ZqKWYlxQ3k8z&ov-O@ zy^@i>rYd=nrgZC;Evxw7rJCeD1}V9rhg_~{n=)8!O_}a0O=U|7jXCOR&UAOmpm9WB zp%Q;ChS&d6Q_xam9jM6mp(sd1F@#d5Yc)+~8-G${?JAbr<-WmiAlPYDNz}h5QwS?j z->xydZS=l-?>%<%KACZQ?>Tv&v6IJSM(;U!+=TIt*wxI;WPZHX7re7Hq6xthBvq+Y z`g&!yxsNqqf#;e=Ae~p*zICZ|hy>!-G2-2Q^l5XSx+U8T%`w(X@Q}5>k>#8+NK5a1 zQ98ekm|t3wOhUbjKEQKRnAAVU(5l#)oHBNresfjqmQA!&Xw5b`B=5#1@ExfNPD>@o z4E}0H#!XnDW-C=qOJ)hi$!JOfvD>O*w`jsFvg^xStI=CPzjkcBgAwXahSOH3LW=}4 zqab4lJA!xC1UKWxHTkgDQ67+!N*do?HL+>wO~^MAn@oAECVSHq`*zRlHHW&Z;%(k7 z1*e*iE@#Msq7@m_LJdm_9`Etxp80fh{p~<<@^PH?BB0eY*F0KEOAqWxb7pE-TZg&T`$nq2ogPFEs6w=U%&Ptu@;%Gg-Ox z*HQQ@P2mAUr_fx}k}a0yVp&psou)c%`L)S5b$2_!tT$?^((=OQREa&sckR;|&~}Ta zZSEVfYVNbn^oqw?%au@gyQXmB+%#g;AA`Q=`pj%iU0UAT(3-M%CoA-liDb-0Izd-) z-1II@<)L#^!}`LWXf`JSO1Q!dD<)NMRE34_(e&>*1p4b+#hq(Jpz%IU<6N~Vk_C9I z(nEf)sY{!9Hf+2sRWxk^Ti(rO-&s6mBa)O1gsn|3ALN{wI9w9eIVX+Fbb%AL-Y?`YA#XsXPukV#YX zhArxR@qv!NX*%Yr0p;AZJc=Nw4CqqPN^7ISV_mANV?Blj9uHyT6JI89TF z2~(mbFP(tG2}7>X^k7pxxE#2ILk|>A)D(_utw*^vGz#$>x6$_06s3JSR9stfuzW>s zOY=PMgl)z1UXop3mglvYka&{Yq6?&)3w5CARkOW}R?J$=5PW^v-d>3h)vR3bDNohN zopbvymsZ&CN8{vo28hxu$R~V@&oRI{pPOI)dtF`i4GLcV|Ic1@vOyl58qX01Un5dio3mFK22NN zRtd$Na$Re?9QE~vo}I?X&~vQ2xhrkuyrE#Z^rvjyiv;<{YxG;pdR_W$a(p&25p6p8k1S-R916oeiv}}~(Z#YgYIjngg!dhJVr`ZKPQ!-g=#83N9>xpR#zdjquAwkIe zftDR_(>%epXdRtI|41T#>f@<+TP)*&3>{R;*@89&I+S&4|8C!D?%h)zVTQza}i4 zzPCcldPa-e@@bm{d^IMWih7u=h;$aZoF>`Oi1&w;v`_a{+4Yi(L*XjBNZ%SILaexw z_Jy?$ZyQ(N4mb%rkL)kkkT`~Hn^x&$p=47?AI~;T8%a~dN1K=BGmt#V<-Q^XUAr4y zQ&dH1<7$ec;JZ5B1aWFJRaKIFxcpJJd^C0_8GJlHM%9w=6a=lcW6mrk}c0;ooT^a*O}V4&nGLU zEuA!{K)2sTT$i-(e@&`NvfQPtEp4i&YBPN}%>yqd+odg+G^;|l-c?+mv`^qoD@(H9 zFIit&3Z&{wv)#31yR>;&Gval--N5xo%N(0hlw`A;Sy$SuRn@hRIs)HD)@pfRiUcPP zf4^q>X?uEA`t5y%qP*ed=Uu-sqWwur%cDXxEs8ca^BDeHO;gJ~KhlK6nzj5+)6#O2 zL|W>ZHS2jm(~~x_QX9oH*Lm~E&0*%h`soqmcn@isS{`eHc?f2RN>=}frXy{QQmsv* zu^!jNr>#C2@v`FPFL>@{PP2YTzU5gnkVclU#I)5P3-DSuoQFXA0@|0tM)5UGhpCFA zVPQ=}+A5!CjIb7gwH?umX`<714kw5v&P!^78+p5J6aXM2bg^s zO+lk>+dzT0bO}An4~HJ5C05k*G@5wZ^|5a(1oM?OiQko}SDSguAm7HLe4cp+*$W(iBiUo9q)1Y z8F5%Y9j&vtkXfvnBF7_f36a2SB%0;h#)}no4nJoOW_eI;z_#6F%YAjAP>r5>gE6lp zA{#fBptHHU6*d#|+37R)&UU1f9+G%x3MxnoTTsO)Yfwlnc=(U>N5nqO(a8 zB6L2tw#uj6S+nkI0-rltn!eN7RkM6lJC6t z6N%(rWWYLy2bn{%C8m(iK1?K%EdjL7;xT5CYzZRqMb&$})*IPtm z!^H4a$LmbqX^DvvxZZ1pNm|tUfSIhBTqlv#TkLalmyd{wnK$S|=G3|X-723lmt;TP zCtGp{-p`3gvY#5T&fyE@fICeiACb?B=Ami1xHasm$FC(BT(=y9vog31923NtHu+-Q zSIo;7R!zusbC%A@=FA#MY|0clW@kZF98ZqhRhLyiuq78A7Rw>@gy^6%*xf}H zHD~`5$a#YF`rgCb-1NiYHojP{lxzFCPYr{wyI z2CF|1E3*ufz{(QRmfD_=GPe|)?U60?$dbZj=N$>KdxF@d*vt{5+w4!w%Z*8n&0K-0 z6@HopyBV${cuzSt=(NIfRL>N18MI!#7ny}S_&Y52mc4D|9>waf5F4`~l;9J#6rI&y zn3dUu*o?eXoBxgFuAVHHL&e{znr^z{7z=Q{e*a(|Ztmy^(n7;OiHVy#Y65gF|6(pF z@vqJ$y)XZpMW&efAbCB)_3clnaw%p8T(8<^%wsvHx$){xr2B1i#r_#G$XlbP8y|!6 zZKFD}^43{@epG+g6gix|MYL1{2|qDuf-`WoDN0!g)dAAZZIrs`oJP2uel{phBRX_W z7cwVzx)E}!+hII>e6Y^p=dE!V;c~dLB@QFT=p3$Yjl)Qn!!<2&7@5G~ zdgidQ=5A)-L5XkQ}y;SQqVE^RtAA`v>D zJDE?SH9VKNn`k7~B*`D{W$h_4qN+H(<9?!%XpIqLA`!YZ9%Md=*6^J3VWN>(lO)f4 zjJ2o8h^pdPq|@<1SFt9c@f5nh3!^pCJzJ+E)zITj6=utJ-0VJfPVv zUq!IS;W_6^#6h)#Cqn1*D)afC7BR+D%Dv@2*A}l64?F=Lt?`7m2%x(DH(0+qdW;QE zH98*g7BNsqj|i-Dc!xQtzA$dwK92VHNW1C_0@L+=zY5PIcZn(q6u}Z&fp7Xpw@lj)O{v7M*oVmt93UxUGqFt1)Uz`Z2T_*zT9F}U0gBQq_ZHYtDK>L5Kaqz~r@3zDtX?Xh{bI{FcUb@{apY0fB zZvD0|orPDdMr7QXbKNy3krcgk)?`-Rl&4&+#!Ct7>?%{9tgPHyQy#BtpnTh|g;KUM zbF|FVs$)wv3GXu}%3s573Nan@8NprTlcy>~bAlwQ4McYFHwACJ31p`7nnt|LC42E& zLY7+Lb$b(k9$fF zIE=}pIZw@8sIAl~%VN^Hk%)<3dxKFrSU_5UgaG*p;p&+jA`g>YnfSJQM>sP!Pwe!^OPhdQt-+u( zc$+W@d|0Ph?d9h_QCV5@s!8kQD{ZOppD=telUsDSQ)lqJM&r4RDP8C3VlJ%;y1hILG@}+Zdd!^%@tg#tuGdH{9g}h)lMBM>*IZ|O1CLFnfPTZEr9i1#>&XNc z8iZa1UN>pHQ1!rAMaF%W6>@vC9(*mg$R!~6Wh7>&xZy&!TW96kS3iLV)mt^HaH4=} zntSHF>k3SO3}gf4vp&)revjDkXw5TUD2m;l)qCeAH+1t z@5~!(AwFymDz9l&mW-Rr25i(JTzXkDTG!%Y=>Vk45crRgZO(u=E%jH8kmWx<=%AXA z+MPYr^B)y9iD76jN#jCJca>zQZSPWi+G;PW{Exmb2UIbZ}A!sitDD#l`7y<~rs}Snj;B>3SeAw=X39U8QC%hI@ zVQVuCJ-$$qQE&D}AW3u{_8s|F-F6 zv$&p~2l!dBMfLLSHn|L-#!FY8f2TQdj^ zR=*LiB)gX!UjNm2Sy_*QTe(ZfozHr_tS1S15hG!Tdimb+faisCG>UNaAku5Vrw2a7%gf7KU+l(@qnC_VIYmFnD(Z+367K-z;@9SnHMovn-);u_l)uWV?DWl*yxIx|NhD&RlEYEQerJOM8 zWZ9nQFs8s53|Q6vXvr29T25nQ4OmwB;xys%Aj|azEFbYOBZBto?=V@0W1AH;Hg+!_7CubcIFfjtR1ossZ%iRig#F(2Gk*SJ~U?jW8vk?Am&?Rh(6 zvW!8J(=Quyy}-SeM#xHXT*$1FF#3W$*h_L0&{qr!DCKj$cdgrqk^}ipk5GD>rTdf^ z^e%(Y68(8||96J+t_?I^mR~8j1CA7Ozv9;L{3;1~9V4;QTQ4um)Ya+vflPH~j~u|S z6ms4x9Pqe}HP#!(Gub{hG7RL!Rt`9Y1YW#np#fR9a{yd*cTXXJ(=mSGXd_j1KT^l?~1O| zwOroH_iVr$X41PAOZM_Tf^5qWM6euQiV7VRbk5Z1SV7f=9DTSD+KJoAi(m?96oa5e zisGbJM$YFs#Lm`;S@SXtcw?{7`z}}Bo0la*zsFF7+5C)N^GaGrAzpok@y^pYT47ef z-P$e`4`E|?VKxbwVI&fCxr;t)zm>knr=sR`EuLD-K0av9DFQn1AX*vomVH#%Aq+$N zN?{4R3b`{ia#s6lz{QRif=jR_uYD7tOEVOnTL*|=1mDO)M}!s6)`(iO+9dFErwQ33 zSR>+S9aMihjhpT~O(~KoL6+p&82OgXsPi=xJS&LX3D}2?SyyDH*oikfG>Ul>R?`gh z%8W+%E682!jx{gRC|cpq2JC#I@YP+<5wceK8a2a+O97UV{&A=AwD`c6^|I zsi83Pnv0;|WzvaD@*r?eIer2U&}%g)M&90vJRBe&;LP<=mF&zU0XJv@P)TVj`8tVP zjiVVIbl$8%tiYiGk2^tHVNEut7dR53>o62P8v;tv*aeEWX%rD@f_})b*(V9XommT- zA?|_+z+D*#my}mL0`ogtwLtOL8pU8&g@E!iaVj9XmHff=#-}*i)KfO zY^-p5&u=vtIvZfp37pRMJFR%&9im0f%gT#>@!1>H>j4cC?1ZmFWJ`BhpjqqTBp@Hs zkQmGjHxsGxFc#J65e*laqPLRI$q5KH#p4<*QYWuX_T@9RLQmd0umGA*YPcXz7Mgef zC#lWLzNYE0<~J&G&QYT4QO*#(`AstR3C0FN zBycSGG~pQHuNp}^h!AX!885eFYxqG#2X4c_V6{)C>mBh1Yc%Ma8aI2j&&A9>Rfy$S zKHS}kZVIZCQ9+dI>+LO9YGzysVok8;CR&sP&9^n0nAz3ia04M*pDDaAUfj(`v%q56R(<}>K|*xtt86_&Hk~}<|O9jC0Q!$RE7o1$+BX_+2VgRW~hGPQKG^{ z9r;6{_6qlWM4Q-!blhJUhbFC6W@hq58C6QyStr-7k1?5DxH79kvhh4$ zHP2P|$^Xn^i4z1Mb#+ZDf`BYx=Hx}fD5C9psF2vNQ&~E-f`AX2eU9|Br?@wJK|qB) z!!Qubl`EB8Io}yt2gD9+K+FfN^$Q_(>%ondRaDp=48zC3Tshjk0#1i$oUD(5R{5>3 z6FT!9LUa&W;)vuU7Gy-Qrr6hGU8M;!8I24EyC6vB9LSN^3ZMURJrT7mJ`DPjK@p{R z*#VT=o1hd!?z&JYwXt-Ck_Xy?L1=|;8L!K7Xds&3fK^^&WsN3;dhbRdHj-Py8%=cF zR*ZwW3SC)gLdV6sHDXo^x{%#|F0A^w=AO9}&`bt_QcqrX14au+u+{Vilw8PeR|=&I zS-M9_0bRl%BweL!$vkE1n5m?3vXU+jbNXdMs>t%aq)S7U83n&WS+dm;8ZXPQ779WgHsOl#aUx8nLDkv;4}1%zu@zx{9THji`Wr$)K5 zy?-jCKIZX)8<9}|VH8H0Bl_g3xv-jn#p@?%>1iFSTAnGa*~F`c+!#Y%*s6mj@wSrN?YTJhuQC! zVveV{K4^e^p;YdzW-4;ZO}6NEMI!_nV5+9b@|Yy>b{C7rU09>n0IBfN3`Z3skQ|_L z+3u&Yh53WttRky72-Vd&Z}rw(ld)?t*5%oo&$`WbV6!}J{>%`q5eLs}$txKwjqT-nx25qlQc(Xk#7v zneoTnSsT`Q;|P`lp2T2m8w=04h2xAl-S{Ev%AXvJY~Q`~&|w)gv>iE0`I33lM$8gRzB zVvmRl%xc7j++^OALxpX^Ftl{IP;3S~*)PtH#yS%?>-a3=;Sga>-IMMx z@`)N@YY@<(KRr*_zQexm4FW0P_ZW<-hLGsi^#rFnMdOWN-67v}bJ2;c1*Xcx_u0HM z@wI}r3wiN&soam)h zq*R>+nQ;4uc){#tjhU7DsmRyv5rT8L`d&(vjQyIi$l2v#40G*4Xb3QTO=D=~>>g(9 z1Hx@C5oaSHl$=je)f=1%CU5!M4(Ov;rwG^b0-RXtkFTbR8J40;uqX2R2E>V zFlX#av3vj)W&j)s2U~O2PE)kke>66hBN1x#2Zhw0tiy989k(~*Q1hO0e?BXdP{&aJ z)u>sCq7NGNlrZ~*HF$}l3j2&<_yTI37l66uXq;f)pz*Boe>A?mHp@l8k6X`2tj7qn zw|qr6@6}}NzyV5MYm}_%f(Fe0R=E9x!=E=@NQC~Ap;)R70l~RI^UYq?)|^J2SNq_A z3@S8WP)$|BMt2JB8(BBbfY~N(B;yvA0mlmY_sOccHwMhF5w{Xf9eTo_gz>xFq+Y_A z0)C&tj;Y1K#?FDg98)i(F;+~iN+``1;#aYm5=@;eT$|R}?W+kOAP{&xn%e$_Y2icxt(y=Tx`Jx0ybv>uw*}{_v>m@ElawPRUa36H?VZik_zZ% z2GuFqX*aC5K|@M5WGOQ}8(`@~i9oX$gznIeb5i!<_}z-KcC(4L4-r~|MrGKVW-a0) zb|J4jBmh5UAn0{f%6+}ghhWg#tN}fSWgioISF#a2dI`X*8Hhx^*klBaRA`6QE|XD}44S1ikhclnecFB(ZWi@MCU+oivEu z1`6=jUrY5aWJCJZOM+g)P|O3{^OaJ$uUIUEUb4a=5)DRcLCTtD6Kdbz3B9EfOc+OY z9k(pwkc72cw+@5WIE|K-gxP@6j|!vnShAOd5#)S^z)*60tB~t1##ds3(FBc=Whg?u zWX71;tixN6&~bM$4k?$jR~5V_YP_tJ%Rzj0hj2QJ9mGqy7;_F|u$tT(younr)Sen6 zYc<)!tbDg{dY3h+3g&*$`CCnazK0?STGDLt7hA8^}0g zS+URx>`>kY)Mlit#8R*bJ}n!q;ezozrksDZH(I`!?P=HQIG={FT3*48dR{zp@536k zd=heBM%Ee1J{F}F7Hr6naEC7`mVcf-%=1mT3dGk4g>8aTr>Ujnn1EC248Ii8nNohhUaW__pZF#5g@EfVx7NwWtD+44ve!7& zb@IAW{Vhd;ReiLxkC(m4cHZ`t`P4T@l6MP-Hl8dOXyiMl%Ao|=I2zdy#mAe7;JmQ1 zk-g)x-oSVVT{6VB29lk%GNT@ zOHoIDF35*ULf#L#u#}58*Wozm3;rwUXEZeY(?$0Y{H^x{zO@ENG?gw@kln6khih2T z@gE8zqao1o#{_%XN0)ngC1o9BBVnTJOiy%LX>+BOBJ;L2BX8ObQClGwtYcXDjilV! z;9GYQQmzY{c6+21BVAqVIMc$6xP??B-gy0hRHsOrc6X#78DL%igp#8DcGA8{GgeQO zHSK{&H^#KO?tR6-xazY>`KHY%PZl=q(MUVSV&90^oE`e>f9Df_-BiY6t7BpXME0%< z4YQRyEV}jAQgp?#(i1TbVza9Z5Axtvj9JO_-ut!gfZm%c%ApH+^iNLsbeOBJGIAM` zg}z|k`Q*YTO(UXRN6?uJLbjWSG@qMCKwE1d3<#F^{3k;0CmK2I%8-&7`C1VjZ9DD* zDZal}+!-q4osV^5QMj*uAp+jh1Yo)ywo^u;lE3*qs@zv1VmYmHh^A)0vf09IS`HK2 zs%O!+OdSr^D8Ny>di%^IG25Rl6wO6Uq1vtI2<#ILhOeXDl2sJ*8GITI8bdBAs1$4o z7Z~UHo<)yWamjawuBaROf252{n zeKp8@{}Sj}O(%Q-P_x0!dpKiF<3dw47)BR-H1i-^8|!Ybkwj>&L(HvMvNj&|x2oyL zBQ+G30A$yP+wre4LvKzahWgaXHCcG)Aam$`kII0}RMps{=glXdGdF(da>=bxe}E zsa7^1&=D=S>}=Zp8m(j?wbT`d>eI>wWUV_xFEG*lbFF9~R*FVs=a@LYy4G6) zu`<02O?r)S^OKUrO3@Kv+1VzHEue`FC`j3e!ua>4?Dm>mB<1aenrT>bKTah58$oQS zNk<+LB7#-!5H!b39bVAXAS8#NVqSJ5Rl5tF(K7dOW*oXq10t~sf#ql;`k|i*V73Op zoFN2M%&V%ds=Nu|6Evh_iW#x4DK7|OwH_sjL;L0OalUi@-=yfZT2c6=y&NzuECihfM7JMvv4to6ki|B%vOXcVv=!o78{<8>)~x>guI%O=v)MMsLp+p&#!5 zsFXci6N|DkWsY0-kr$=x2u&`=W|WoVBlca5-#2YHe`4EpTDOaw^|%y0T4RC=c1m&) zlJ5Se6kSV`3j22DqLSCYD4imoH1%DJf;Gm8!)}Gj5=j zh1(aZVw5ONy7Lt&e2`WcrY`29>yU1LN=iPc)eeS`M=YbE?g`_dk7z;>!%R`v$eS3; zy{O3!Sd^ou1b=Hf)W0>+Fq%A5v_-Vr^x4OxY)z9Im5sXJ@h?f)9W=Q??aEzI_j}*8 z+YGHJGE1S5?T~M}k?7j1QochgA6O$SA1UblvjCpdcn7QS<*tI+1!4_R$2=*Bs~aLp z@yk08ns9Tmh6qVPM;sjXc|!oVYqfAlS%byl&kEu*O$GX5JTJjlW9ipK9`h z($aOT(qrC|(ywZz(ba;xw2RS0AFDhk#pltAqqfp{%rIRlqZNhetUPw@ho$5wjX+&!oI`GP zrxcx~2@Q%K5${^)xJ`=gpcO?huFCC4m1snG{st-h=`_V=@VaVWySeK-N)`9JUW&h= z6-V8yWcs}8q~wcQNf5U4<7ID_qDyOp(GEhOcUIWO@82S2H%KWflk%|a>&Co$Xy!$7 zQLC5;C~o0nbE@}W3(!cMc-;6qs=wdQ4*C41QVBk>_uY#-Q6 z4jWrAcrCsYPV(>6Sc_(z>nO9_x{lxlXH~|uA6*nqaS>Ce1Q(N2*>y=DwutC;YD<$c z?UYEP_Qfsy?i~&6_=5d`sJ9HGtr8crGv&&I(42VI`(zgdzmqR|(faUD%~JA)re^+^ z8gvv>bc-nM`|J8r_+az#%rA^pm!Pn@9K9qPCF5!ODoY9MwNxD=A{|ScPpS8q&!LGr zMs%=_h1U@sYirb^dW?*8ytB9z{+&iBs>eu0$Hf~6EU)Rn>XE6w+y^I*`AU}1A#1Vn zRWEFdyI+=C{nUKT^J|4&6P^zh3njC}o-KCe+bhxilXwa2&tjQIULa3y#p|(nZ0l~f zFKYd`CtE7?_6ccgs~Mj1ImOk8*{#P{9xjVm?zoy5=?Pb#hB3DZht~PZ?3*~yUB`h* zJw0Z>b>!YJ8n60?>)u+Y5O3@#M;XRqs|)HSm!8%KtI`0uZtI-V0UHXi?0)venu5ns zR$#+wy}6!1_HZFu7&P1MEKSR`3G8kcrY(rcSNU3@S~Ce_sPUsU1v;+_)ijzfB!ya( zr!Bpiz#eyD7#@NR8cGm2ObUD3GSGEKhu4g?DWEKaK+e{}JsZ*Eucou6ZUYJQCBWZg zxK}?f0Nuy?F_ijwpx-mdt6yT|T8~YGCU@LQ@->Z*%K#yJbEPJ{;Ih10@{{U1eL(ubZFmrfqvKQ1a_SbAtG*! z6!7;L9Au}pc(D-#7uEW7w^`)}b`d&vv0QkGMJHZY0pcD; zAgJYK4PFKY2^HC{aw#4yK`XD(vcg&tc;|`2@c{N@FRZ1)4`w*Jr+{RaQk3a{XSc@F z>Yg6vq#cFc*=!K6dupij7=^qlOl=D#NpUmg4(GmjQVfpMHI7I&1Gh_+Fvl3Qoh{;> z-ft`;&oU4yy2TBIxV(fdfA*B^JJ7(sq_M{ijeva$KEJzg--Y!exsM&Tk%ZAK0qteh zujL*M* zgKSMBi>Nxi5}$EF(E+Wf6;*A(gWE|}df0Kjs7jDth9D%Ff_bv^ER7NRMvpn2FR#SQ z(ZG_th~_R+qBciqSgUWOO4!K^8f!CGuWvM#u^!8SMRE1b40+uyT0RHqV>Hr;sex-T zYzZ^yzRFsVdBr}J0DPT+!NRhv{bZ~G0_2X<$XSD&eA#k9UyT)N^Rv5pgPaOmh+*&( ztauZ%6E$YmkrqPz!HmC4ape)WEUU?l$^}~+aLY0dRtU8C)q&|w(Fj_}u@2p0H(|LJ zTf$3@Q^4yo7*xZ%WR&Q3dIPFD^zj{p>d9;vk7^3|GzP=*tL38XmXy#Yw@%A)i5rT~ z)W`;l$PydO4RcPKcD7dB@?aBCY*5=aQmZ|fnCHPNY%;@w72teH)*sBgIew7>K60K$ z4w{0#AKrFk1J~R`2=2~}jC?Bg<3#8rh9bqmGPPMxGcndN;rSX%Yi6J#kJ(;m4zNMI znL#pk7Gt5aCU0+=VQ&UsZv>lOq_MS9j1>InorLqntk+918cDc}C18P6>3NrGWUXZd z7cy~M;ddZQ_m&kD&>;-MnAF`TC&e>GSi0_`^laHJDy$38TMMaC z+#=q*K|_sU6sjU$<}>vp+Dz}e8a-?Jl?0wVLU_*MWg&0+l?wlw;UFB6Ey<>Avgh|2 z5KaP*93_MwWD|LWQ{fLY9HT|Gr(Bjpp-Hy(wLH?sL zQug{mXN;WHA;^0*BrGMHqOx)|j_lp-Et~xdVd7mnN?yvnH~G~9+JLe1zyuMA>x_CkCww_ zWO2KckM=XHXqs-0rW-U19dRpvCnrU(O)hFx{))q;=*e19?6oUM(I}5P=wK#tTRJH!0p2h9J}0vy#;W!=JpOC_PKkFU2fMZ-~eK$ zd&>0nQ5q#gUqh*{q;5irnXRQ@^vc z`n4&072QEb-2{eZq$y(RXuooBe~Z4XyQL(fRORc$%fs#rmq zjG5|GS$D7Ik#>f?8<)7PB?$N2>P`)708zoY`L@Q=r(Jfbv)4C?$-2a3o0gcQ$(?p} z#9`xxLV1rL-aww}x?97B_BQc0)0QDlk_J@c#tI^0k1C}>G||#4DzSzI&cI76>V`Pk&G{H zx`5lr3EDj1QVdkI#R&&8`OC~0*_1X9cm)HIdxg; z+Y(cq1DKz#%flVaI7^p4P5Kk_^K|LBrx|DYgOyNXinReV^Zda_Y|IEG>VZE?X?J4w zCeyKs(*)@TE{-nSSX72bpON z$;5!gFBdX9u(J{w53(~ukaxBhN^)zTT)pg=r$=LC<-~+q^;)6z2iD=`#5(R##=%gz za%q}Ft5>6CwVDl>dVw%{hW)`a6hWS62z)zN?wx60QGk}KYJ@D`_Cb%IA*8lr4W4hS zupJqOPM(uH7HVeWxOtz3H5r1fZXE^ZB@#5|4>Ue7aS*6H%+JmjN{@17y{&E<>Ip`{L~;dH zbn^lz{ZON1naBnle}(Xw!u9n`M3AWr2|o7~+>rSrjf*{Zjmz(IoKQK7!=FEQ^$_PU z0!fx!VI^A=N-t`Eyg;$+fAg|j_GzswdbAvlD9RG7UCp~6 z5X1tSRf14!5$XDa6x}+xsI`1N@Ovq`lvWf5F^5px#yR^&0eo#bf$zdFh)G5CfSYA`J zVWTZBvVh~hFSV2jv@c7CnfATQ!!2$bG?Zel9Ja15!y@U;62UAXh}7*x*~Krr*}O&7 zCvO&|D{B=%56REWXNraC(ZcA`#);3?iX#AbXM5xdX8&HI>30Zde+>i=l?OR|R%_fY zh;bSsm~WIi>@O-e{zgilp_Rr{CDXHV!+IstF4q9d1E_KdhHOjk@XYXqp?H`k0$EO7 zgu5O+cD7*38U}ezk0={3*Pw)FW5W)6ld0S!4F_|`Ev0fZtX!rSZ$n?!T-5o#)>B{( zv4;Js>$8Seza}50WrzDrxn(6}v-f>c`faT=I!dtRPo6so%m2-k|Cd%CZdNZZyVJ6r z*xG2qGM7t3>x4;5^vM$`$O@r#0;5=8&J%9){nRv#o3MLd&J%#2GZ4NRe#h3X z0$$IAepi_{i_)(U-jH!tBF)zbzn;J?PVpJ@24gVl)h87G^}}CtaW6YI6R)s^abxkk zTnqHGP(xH2w-%4#(&%Mz9sGNa$1}pIK|IjouH&PcsDTGLh9R~F|BB?Dxwvm5AF?Y$ ztVw}#v-0OA+_^60O$rpy7YqWidP`_mGQY(TZ*ft*$@v|IS#2&ERp=qO&G{8B?X|g& z_zNSf7O|5%+yT8Do7Za*f~>$0tMBpE(HnDlZxYLxHp296aJr+#zjS&s`#NdyF?%rv zO&GL#;$_vVFpTz)B;0eoIzz42q3PL4WQNnd)*;BL46*#nnqy#AcLSI9{L4q&%m`~t zNtg>Bz}5D~lmy_x47B>CI+2{s1igN#!tP?2^t^yZ-Vb9v9-81o=wEZZf_T`yyh zXS)R86%4d$#1r4gxx7~+#yrUwO9xMwpX2hL4#vF580({5(nNb<_8jk{T@rFJMp}JT zCNt62Elkt5A44opOIQ?`mksTCS^{u>23p$80HUlC zY{?)`TLN$!2EvExQCnSN*qrU*<(bh^Lpc6oX<{Vf5b8Z$+VVs<)AVj1h*WCu=?u4) zv(uIpR%N8OoSlYVgV9#RRTn1CV~7`VRoM9q^DcZzS=Ts-!Cv=HTHlz!$c@Z$PngLdQQo$fesNcI>+G}$k@jfGL`SDI0JOy}OLi@#Lvi9ZxaXup~pOVti;vXImyr1cK zK1GlR8Dh5ry*rp=Mt&<0rjs$24!l7aj>CAba7*Uo>0rz@jIm~SDDOQ*gm(@XVpsQO zcZtwN8EUl+J(GAW8^LQEf*j8fM}zme;<`+TGIUi>_o@Wu{NrqT+xP-?%UtwC_94-O)7Y5q)@?HY{ zgt__l@(`af!tyLxF!A0G9bi75XEA0LV>}(v*E_sBx-)Z9bhwyZ8DqD*|6b{lT-+KWX8DDTkJ>A^6By+AMFMal1Fd@bZ&Tn2-5zdQuU;ywmtj_< zlHQ@bzWW@r^CFdwdy#Qgt<;x$Phf~wD;0J!!>p0efAse>wt+Vi`iL_U5P{!mPX%Ae zj6DC=P**d`8mZ`!;U&1ZH&PK~X@*#qlFb}pu9*Ksc5FwUw=wmsUz@!IF2lmuZ0i!F+=QHNbx8woc*P!SeP04wIIx5jPZ0tmKy)Q=-7!lDLP!t zD8^WMQn=PFkHm%soBfSw+Ju>Tc~TN`Ge%up`VG?yBOqUI0?Xe z7-(JI7J@3+a_Uqz|1VKHk4zA4=N_G ziqV6vfV^igeWtS;9y%tnjxmGRA#bRdZ~fLWWhmK`l?=WmdVDkOJ(SYz;{xEmFH7HL z&<64jnLxn-L#jZr{=uwZ)Zl9%3VMruZg)P6H6(?aoIF3DuT

L?q(msq@V84E5Q-vlqrO7jDmb~!MSkB3JHy+wr5aTR>ES0b1rTGDSZQ8?B@*zKCI zO%n|13oGG9Sx4S%P2PxRNQx|_&W~#1nz5r1mr&g&G@01Zp;gyAdi2Fs((4|sIK3{> z`|4P0WFM`GdrZW+!}<yKJ!kQ zbvO;eUuEIj528tn@~VRnkEY#_{rV8emb0NG`;DQI-6O{uyX4s}$6MZF**g!yCP5HV zyzw2DKbUSLPY-9hg>!xzT*l;sX4 zrkMM-6l;9W(lHxWdOdzso7o$6k4Z~P*gsa1HY?-$eu60@uoW}LWNX=dL|&A_LE!Nw z3v?!RNnt2eCdYqBKgmd^_@5Lk(lyA_U%oX?E8SxZtXo?e4k zOD(#L4Q4uvH6%G*x(0crFJsgP!3%G{zhq( zPi8rdlElk`TP-uTm^T+C%er0E(h&NY2z8q$$<-Um<%WWW{}~O`P)Vs)V=dNqK*;~n z$Zu{s)P!*BvmvB^!_t#7h32G3pHd+HJ4X`vxv)(9?GM5iVBvGY-Tv$c@e8x~q~W^> z(^#MUAbl~GJ{RQeuYC}|B#WO5^46C=NMDAf&joq=BOk;sKh)w~r(BW6C#|zLZrJeC zkM%haby%5|j87P#npfg}1B9McSHus)jZG(f74Oz+HyP|yn3eq=W>4T53{^+n73!e+>)_xLDAHmX-lElXDju?fAC?@Ip+lN+q3w=H?4KZ3Bq?8QsMELC7&qu4Mml9Hg7`d(AAIb0j|)M5H_IP<7qHF>LHKkQK6ux$&j~?#iKP!djpNfn z&~XIom<#j7M}r`|#=-~hnQ|5+K1l@e14Au7IuHc$vsnCGG_G|R2-1&Y>4RVKpff;F zaSW@N3;&^$KhSX;>ll1yt{nG)k`sqRiFL*YN={)Vb7d{>WDj(l&N}AaTK+udOja`Z zaoIb^gIb(Dqzc>vJWy~RD;WHk=^xyIhVxm&;2WEd>p;gvtYh%C@Q>+0!=3C9gf$GlY5leL$65H`n^uIoYvWI{ z^uc#2=TcBu=FdYb-ntDG;-6*lgI`MN$UqQdga!1^JOxQz*jybA3JCM z!1>s@Srd5eXb5Eez?HREi?Xb*sMZ;gu}RE-DB9dFss|6bLjKf>ivGx`rcbT=4ZV8% zN>*q-!Dx0r!tOitYOQlE(0Vd!J!I&$^1ZE4ei|!3Xn2&{K?thPVAcB%y=pTnjJ8xk z?@w6oFxXr4dS_3d{9IN(43&27e}&$keJgsMJ7J;sLe_ie&^NMjLoBpk!rF%+j@Z}6 zLhaAL9kte7vQT>^s~rZ%=Bs6){OWH-xd|ff6}3=)4J#jp;VQZYHvBvY-Pg13_M!Li zNVj(dEhyZ?6q-sktTR(im2MSz*2cM}QVmO%m1>NR51%Eb8h04>&fdDF+O8#q38}`N zMm41xNoS7a6J?a5^s{Cw?O%Nir4O^xriQO(l_p;Q3+<1w_U8Ixljb%D zGolj|(D+Bzm>o(Z_m!&UN=;%|HQ#0COPQX0d?N)IJjDzSA6^E9=t>L_c;?$CU_HJH z0?#vnq@yBgL~8TygoeU_XN(+d!M<-h z4mg@#H_V;kp{azqX=Mq~?hT`shK8i0%&x_p{o^qITduhh_XyepL&9$FL_@tphH5HU zG@&NJMDM94YAW-vHY+%d{ef$zrYc~`vK(t{uvL72*(#oBv5&}NO^s$PDNL~4r>gCm zntHdUK3gn0kB`G0KR4Rlv9zgqQH!drTPdLSi*HG-7tz0BwZqWP@+@t(QjoKQjziCL z)VE=2$%UsmYUg9M!{A%y@U{KL1C6{OtIjktI<)3nxpJRm52bR+9M*KIz6k3d2H)-| zbVe_@quPtJ+5?Ba+8qVwU3zFx%y>Cfve8W6icr{krRO;2Dtt*l|Ic>Zq>m7#R6~4mh zs9uLv4?~r^XZFU&_+jexS?@4Jk3yAGfsI)6Fx0r%;WzT8tali?QZZj~eQR@8d%)0# z=^{tzk*s(a>f2N9aEGO>SnV*>SN1UZv)FA}@h~J^rTmOqwzKAi=^a@2F!Uyq`N+92 zCw}bAnunp4Wgmz;7VpYxn_9MMEmF&+EOL)nr(6J*H_JFq#m6#(VF)8L`!uaAp@|Mxn<(i5H^-IDS(WIZ9ITadt(CYZ$LQl-K#XOdiIAIUpfVY# zsU@@~)FhawqME3wk-izF*^X?lTxgrmWc#}^y>ea47SYXJaJfFC-d)HVKHVc+-7~%o z-7*zKy*=GWvhKZ`=?P8QTsQU6--1f7mdAbzDo47FdOWLa>ML$DhV96?$>K@FsVlz9 z8y)3T)-`02A>Y%U@8~F$x}0$LW7arimhALucNXhPyiUL#eVS=C(G^{24^y5qjLHhW zkNk8vmHB48fR#0s@-$;cSud@*A6hSFZB3=5O=&C1oKU`lX5}LCXbiWRIS)e!1iwEqal83|H?H9{t&(yO{9`t1k|d8R~1Da?Po%aAtZd@;Ht+ zk@^dhnKn#hx}{BoMY+-;fA*Bk9!95A{Eew}4-*wR`d%w!i?Zb;Q|ptbINZqecP27i zk!gCR?4}X_VBN#z96j0T`AoIH!)yhSXB)blS3i*Q|C7ly^=)JjVX7x9y>&)L(gw#T z{>2Q2D^Sb#zkH^{i>$|`{DIPZ7Ur|%q1OUJ`CXw+n% zdk`ArT4m+q=>klpsZC9T2vN#Nu`p|I?h{AZJZR@cy2V74H4$p=69>fDQxW_kaptq6 zq3g_inp?Wyeqpy>TX74n-pZ`6seLI;>61tCddr1sRZ;@7>#D=3I8<6P z5AXO5x&|w5ZlRzF3s-x}Lt8^6DtsTCpw6a?(kb4%<~7eVdpHIDw|ApxmO$grKvTQBFapsTp3Y1hUmk z)yy*U?)W%@+pnoXx^?x{a;|{9JtOD1-8SEnNeqt-YVulVwU+VL?zj1t)qCss+keaI zy*2%vSbbCThE_cwS1$JTl*9?GhtM!6jbZ{#O{QBXP|C?GEqITuDmOIeOWv-cF-)YX zrLIVlS5 zE8SD>&u3>8+zDlgl{dA;v{mK3S+{o`!Fq=!iwM`;I{oflV*-U%Cn8PE9oj+y;j&jb z)1P;@=?^fIrml)`ln8L6cLrh>ExmFgvj$$UmV~oCXgTE$E+AJl@Ln!PE*hBRU9Ov^4VrbiZsyQd8$D|E=7idnxD_}_nK-MB9>hgz zM$bg9k-4|qQC21QW|fWZ2@;WQy941^w#{m%Qg29FJp}X9%?ZT`@8agj2yhGzxo&X4 zyE&j$4z+g);VyVMn6K<`%=@>BUidUoWc{0xV* znzU;|rlqbr;zPhns?AoDb{-q4I-f&)BkS|$QCy`yTTR+oz(myOFCieS(V2n5lwGaf zsa7kB>pjAaVzrLdrkKO}7SykEu*`}#QfXGo<5fpp+w>?$v|5X7Q#`(5{#zW)stvF~ z^C#*Q<9(Oo4cPQeTCgg(Jg#@G9|vwyrLxjf$VsYK%L49^RqID6w^FsNhV|B95f$vG z2+Jy%Rf^Oex>IYGCY>rQ{e$x(6l?vQTWdc%YpFi{E7eX5EqN#wYDe1UNoE_XEl@3| z9Ssm+kKY^ZVYMk8k7U&S_i0rxr&{U7<0FgiJ&DxMADDiudL+KU@jwxJdd{dPtH@~w zTXojri;B1Y89~);ss~wVv<>s3tu|f;rSSW!Y8^Z21ut1~;%TIn{?4pqSIq_M-hdI- z`lr!aR)aO@k_Ni7fQQrD=twa|&Hv_R%K^GvZ#K(yM?JS?qc<^+vD(_yU#ZJ=brsO2 z9Mviz)F*0ZLO6 zxjhHA%DMIDUvL@`J63o{j+}#?37M687ml5Soe^7e?pJW&eAJDbGL*=<2S?5!a<1-_ zYVAr@P44Z*p{;sBkS2t+7wYLk`v5Pg7jM-I^7%+@&I*rnWc#{5O04wYt$IOLKoRZg zD-n|Q-mS9GcCd9gwgdMp6~~-*(LZKN@sL4orrjgDMB1TA3zopmN(UiRQ8gf^=mB;igc&XVeturuR z!kM4aKXX_e+-w(Hokj!t#4Q-eHL4}CxQa@#lmkT#!y?T&Scau6!6JJ()k+AWx+rZUq2a*Tkt!gs_q$9NV|( zA%c7$7qKs9%D&-Ia#xqrU_&fpCO?r-MY`wx&lcbG43!(KJ5N?pYfj_=zu0ioutapwxU zngbk>06=v9$tSyETs0vruF0eeQAaC ztkwquDs(AYWxNW@0JfTgB`Zy}G%;)fXlDn|Y?%PoaDb@gLV-f$-K4@Em{6F&>s3rB z>p4nf7caE1*t057AWhpS27)LR;}Q<>iioPJoQ%6asE;DH_BH=n)L>pL#9-}_j9)WRvMqJ=G(Vr##mFthcaWVdB}%3<9_|lJ5@tb z@JBhW$2msSI+Q5!v1<&6 zsKC)e!3kUuSod?ReWJ>v9D)}p{KdJ@pe$`D4N6p(+wK4qh4V7tthO&v3m)y5^X7&M za4y2I=H?_TO~?%-smMPJa`@iNj%1>Pk9-kPyZ>LP}lXNrQ^6R&j`w zy7CVZRAFiyCZ+GvA%RL!R&$J$_NdgtRWoFdHb+>TuA;;CQ3&cvG1hR9sLYaO1@Vuh zl4r}PIO{pmX{n2Y=i({%=@HZ=94ebaK~Fl|b45s(aipl@l=@R2>$DTxn>k!c$5zgs zC5)>$M#?bI&^`NV4iS}qu+-Y>Fug`)=yHIl^nfKm3$BRL8<%T2N=j?A>Q%9)j7oAH z$4D7wqyy^+;d+jcR#%fF^1-fz@?MUTvV-L9{gn=-B%GT#PRgq9;c&~`%#l)BAL_hV z!$76Em1CrA0w!TYjhKicklV8damu<~?%*IP?P6FnLB+X?BVCxTo$-+{lfTMYQ*5o9 zm~dbdY}sEJqO_-XbM(lB7oETseEp^sFh2PXB<`hzUSz_{e0H0{>iakcprrI7$L?ls zd;~%w{t)@H5lE!xNARXwt=ARHI3$2|3~k6hgu@Sl`3axGh+2abadzKeH1nTv=KU6c zE-i#)Ok@Fm$uSm0xS_oLJh0*0ZwGfc5eB`IJ4EFM!Vt`P943uHvWe$6QO-ZAk8M)~<;Vd7sBnNZI%>hm3XV9~ zh#;yQB2^jWvkM5I&H*dB}_fZQ!&73JiudF~O)>rcN^ilm;Z-;cCx0}xey*&w? zAgKcr)t~jgloWT4a-0CM`aSliluk=je>Q>}*B$YF8u_x0N>o=XiZ{)b)any(I=`ZT zKk!~)l)ixJj-Wwd5)MSn}3o!Df1e;Si1l6^D&l zkQB?4yDf?PTI9~$Hfq6PJOZ4wEp416_Q&&KY;xXW1u5}f#Cb>gS5LXuz(Vz~Uq#$c z;@qREMm%@8`2`yi#ipln=24L%o;jEM49uqqga{`eow*hk{?j@f!wRGntE=>t0dLB#u7_eBc|WfkW*A z?XT2)Mw&=`E(<1}DokI2jk?l=MvZKG?&Rh%ip1Un5txHT4KjP9lwlFMv}u_z_TpWW zsL_)ZK&un(_b2}QWXT_P-0A%H=lmmERAET7c?YGA1_}R4&OEZZ^k(h^2LoJx_>7Ha z;Q#h_31*PPq$q>v&=B)OIP>IXVD57`=bl{jRy*8KPolp%Q|6ju4rR%FQtY50$zRKv zM>T-{*76{<+;AJjt0N#CAjPYw1~770y29)z%q=K!DyjjDO>LWV|g|t0n=JIXG2UEa;AGkG$U)8r3Neu2v<@KVH>h7m{hV!RJI`acCd*5Dvow) zWqD~LvDyy3V`fOYx;=IIR5xn;6*4T1j1)m&Z#y7tDu-~4$4|m+-*|l_?0*r!4kmzo zS!u(qe}g3uauT-c!P&8a@7%Q$6#8S(@0SYAn;s*J!Q!G|Qz7mzSs20mlQ^hQ9Fs4( z>61TqR4T@&5s5h}KcB8|G-?vdaNa|;qv-9ke7wYu08NTEUTTiCV6}C)tc=R|IS$EB z)JO^m7X__a2YczYVt#>RF1PctXcrm8J8|IjFStx>tcXW>ON}xW^vfJHJ4;UJYW-@S zXiTBs;As4O+@wZqRmLXjm9U8=Wj>ZGpuu|I=79Vpx5Om`z(%#B#<1^kM81TmUqn{p zf51`FM>BIx|1pQ+E8F`mP(%%Xf@ATWe|=*`)a+kyu=JK59 zdOMpDqLCv06Zx{P89($mo;6ZoZ%%QQ1IxC?;W!IAbqOy)X~7DOa+pje$QyZ4__FBa zcyO7XV(S0maOcN#lF*w~j~v8Zb?qW-MydvVBd^n6Tm!vpIHtl`Tft)=FpsDpzn>$= z_28qCY4K4JC(Obz6>0J|4!|d3EHsG+#ADLZjj?Rqa~-)~(cj{+}L{N>}wcP8X`U~v;13K%smwGbSSqBQu+{ao<4 zVNs+*HkzH9V^`T9;E-|s%>IEcH4Ho)hdhS@6 zVYw6@{sHZt;$UCl+f6HO`zbyt892nh{0(|KCrs=CZ~IPbVorJ)XZa(m|*`YMDAlsm)JGAXA=QDMHHA0XV?+$py^ zVqTp9f5-v(8Z8UkdnJU!li-L|>HKlR_zA~|%RBVYVu%4vx~W7z<7j+d#-c=0pGfiL zUvmC^_6fRxM7<`pP>SyV zmxJ`#ODEmK&uAq~Qj?GV5jpEEc-$y0%1iws##Qn^@lvElGS`K_aHKx_JHEceHV)F( z|8c%aq6VB?2nP!mE2G8Ia0?=bV(Wi!3_eZlYujlKM%ts(u8#r$_LJeP4F%#~93oLM zLWptP8m$&%#%17G>UxAEE%%7yG@#AU?63)E-sfPL?5mF;Hb=I4Wk?c(fH6jCMd@3b zm?!bdk;-Uz3j%rNY_1KyV4=6ijIc4!wkDC|vUyR?IMRU|+hIEj4mt50W#}$>gKkAb z+wpS5W%HuIM&TZun6AbS8KamZ(9RqsNwa__O2Up!(Jm+oo6kWKDNF}Z8_(T2N}{6R zJ#>+c|DG9vG+`0&NTsz3^El%pqem$E+B*jjw^a{ME2P@E9|z&vhI-e=QMn|IN_iC= zETa_WK#r4S^g=l3W<~iZN-D`fHVEUe;v14p+M(uza4<(m5^nK8V+bjVdJf~PlXO>o z)?SWK0XUKaBx&HnZoR_%HJo{pu2RU{kGqD{&@mh-N$nO$;M&m1R71#d9E9%(>|G}W zh&kw3^lJ1Z-Ra0y@72UjEk!k~BFPbq z;-w`oRDv^k36dB9BT><vuj48s8AB4n<+WFq!(6GR0LE>M+I=CUX8 zckjeFR8ghI)@6|uMmbOtm&Bv~sbj2~pu)K)X$0!9ihoTLQme{*m(tu+Ia1tOgs1>v zMp6q^=TLnnyQvm?34LdxA?_j~i!?d=B%^0-zCck{heIS8J!=rEmez8NB;ziDLEStN zz?A}B%)yd)aR{asAP)DgI}0;&lO=&DX_ z45nkNaALEXJ9#UIN;0nVp&CutZ)rfehNC1&82hII0Kh6WGx`qBKS@mo{>FUwyEywK z(NSVAM%k(dzndc^=^C`)l3u0Wy@&Hn5=dbAMRa7pfny};-s>2ug5JkLl2}@RsO)dy z?33iT_^kT}kg?tkNfIs$sqc?*?n!#d9{0&giDel+$pI31K5T9)4pUxKi4dRW z?346nf&dB^4YK6%XE{WY6bzgu#+FTej|aP~>ENT8@1^ot;-vaIcoIYN>q4G@|owc&Y!b563F1B!P&4Ady-ehCHDoZeF7h@dC$4 zTo@dZM~(yk#(|P_-l;I&C=jMb_4NiXa*)ItiyCUa#4(bLouz`{ImbmfwX&?IpkL-t zeRe2E*40WAu$|0g`i=1pAbrHpXMbt@2)a(Lh+ShPQf-FJ)g=>sitZmJRP-Sf?lU>} zJ|iq0nrDbpvp8pdq?k6lgZI1{8^~=)!`fEYeR?f_hn{ zZ~I@^8*(Ttma*K?DzVVED=vy)egv+>vEI>Y#h>qJrD7a~NPTUautf7WUt-rytPUs0 zqxmwUxW(Ij<9Szw22M_p$8yNH$#*+QL(vv;oVb8yjbkX%Vh*(+raI8tGH~KREf+ov zKK!qX6(5cZSi$$Y1LKl4o$ZV_>fRgIJoVtr{gy=E1TmQ3#&uJA;`kn0g5%!AE#CyT zIfAJXIM%GbQX+H}ZcHwpP!WwAw5=3hvI+j5{R zibX(5ikZ;1<7jb7D(hmc3mayF*@45v?fdvV2+c8&m#`^`NKF^7KMW0 zZ+M0v73#>`aKb}M2cnT3nvGSG6*=_9t+NxZGtg zh=^AH#B5O_8r@SkN}5JDsuet)!=zCe!VJSfyW+MOa_KWUN}4__wz1s7&gLL-DVAQ= zH@11pGsZBrb?0S^VQk|r;23FQW@OuTA;(Em=}m3gMI0iHZ<*VeG6zZ1p!s8?h}tsB z!P0bugVaH@(t#y*Fn_2u))fvHH!0Su-mrGFnmK>9y{vQoX?z*vH|wd%angj!h-R|G zQTC2WM2wW$rJ}s0Xs6dfCgLUaP`tP`pCJQnc)b`HFNfn9!Y%_bei=`&Q!;6BjZ#nE zJR3nM8+T0Eh`51_1yYcYXfbVVhHz>=Vug*$qcj#~B!-)?PPtryW!CDN3@YSIjv99Y zf_(`EYCAlLoDgSm#JK*RJz^P7mB3;K$q+)@hNE4OiB^L-Fxbr7fHPK#%8ojMp39+M zmnrlpEI@}XpUjiyap1V2oV|uQ)J}Op!N$H()o*s?P;baYox%JAERbq6=-g^gr)tdE zjl*A*Ej&yP#|cp20%T*=3RCq04i%Tow|5|z2*Lv>3_iOrhs-AW0c3O)J%FRe9gEpl zL8EHtt2kyh5f@5|i+_0~J%}S_X3mZo@=y*Lcc_THVqpm{Yy;tajUzZ<+_0-RAT%V> zu}~DykK!2VS}xH>8d~O~Ia=IINbeE}G_6HGmLtV=DSIOsTjGTrC2kPb8-+Xi;;bQf zD|B+!5Ip*x#v#%L`sk>;ghQqC=-6nxl%u8VO#@m~lwHQL($${G=z1VFZ8>6Bn4@Y0pxg&(~0HUbFyjUArK){*>ue6E<9^^oAYXRc) zrI+Dh&N`_n%(8!x1H>)oajMP)EOmoZ&qF7y&W8lVpWvui$qD0Rlvrq(a%9S#IqvH- z$E`Y}?P6=ZGOA+F=h$&0{$ynq3*xD~yK~HynU}YTr?MFeye9|G-m}(fCElBZW)~XD zj#v^w`rVJCWf#)*=ITHWmSNHA;@%c2+5kt3%cJz?t|QLap-pjw2>~9=0ppe(^$A#+ zgkyb_7<3rN%Py=tt2^RSV=CT}9453k!;K7N#8WunxtX;TK46j8iqko4 zTuQn>?N(ZlMT1?Kiu;_&5wr8w3UpP~ns|1;a5b&3x}3vh7ep&9aGY>WAi2$X951`5 zRxO9ev=i6`94xyAuyExZ02q8X~gMI19jb=Jc}nMs{x2G-fXn_XRid(sX$ zSgCrW3@~FjwOy)kxD4H;KBf-asvIqDs;j?92D*f679FkOt#ioiI@kb-N6oXLTXQ-< zYhv9txoU@lW>^>fl4=eAT8^2$cJ<-Q#T+!db{|g3t4xUNW=XS`<_ZYSuMT)Q2h6U; zr?d1L)$oi~D&m!SBG#NS*s&&#Tq4A`a>VRn0n`mc%W(~d%ucP1daJ?;`3{blU0c-< zrxB4x-^IbQs~0d5JrqWyN?Y}A4wzlUX*%T!TxTTR2g|Z(S_b@sxuUIZs;SF6Ia+q3 ziWa0w#I-q85kA84vI}N#Jy5#|7fUPk;2w^covY{*3LoQO*|`dUsR{m1aTWG8yqBqved@J=~@(?9^)_>7)EbUzRgiGC=8oR{T_$OpfGyK z`vFJEpfGIi^v8L@sLuQZhe_XBM9r1{f`g@Rd;>7U9O!qb8`VQOa`CNfzr3-#!29n94Wn1KoeVpZA5Ufnv%FJ za;)^FGEOuPbENdK$vnaAaH#Z!GEOXybENbwp+2F!ii4!DOQwnB8V5?>NU?Qzt2s(~ z_l}sRZgZ^kPG_E;Uc;f%_gDC|^m-1H-bQRX`Vx+k-mmppgUdKb7DdtK6yKZ+iazap z6-P-wVlhlNU(IpSCo+N^j%@a*%hA$z8GJOBak@4~FqS;Ij)SESLVn5g9Ln_^D>E&! zl*4;DSo(!Ie!;?#fZ9F3DM!eNZp+OaGBcI32J2Q1mcBb-T-tFvM@k=d_4&;^I7s@i z%a(H7#Zl5XhkOag-TA=iOE>Q0FzLf?^V5zESQsLmD18u&PzZDsPuWmT z5ExES4l7)KvH(d?K?&H&0#1HX_~EwfRKwFVNsuZEqMnK|lDibT5OprZs@#PbFEvM6 z<8WE(TdH=d!rDyGnZ;PB9vQ1?3JYg%<>;|H{-qY8?+y!A9P-|-DBNV0rKzqk?kj>k{}mhU*&w!Q_Ijwq`9 zwyMh5Rr+#2KVYWo5s!s|%Qqvn_&ugY>mEfPkP!;}fl-0hUHiTS2!a*dfTkvkevCq> z$s+3r)sFU`3pWrfBkMR1D!CB`hcT5rZFF3e$ci@SK-@4iC2Y*!w4wY>d zhvB3c2ktF^%faumZlcD&5x8qZ%YLkQV;lC`YXx&8zm6CX)7e-@V`m)6c#1>8jB-GkI}#&GhrIN^vB?nt0*xIpzB6~hG* zJBCP}xf@uXmRNjB^33D%&;=fpu$k2cjAJ?U0ap7pBCx5yK(`}&%;wt0CkwK z8%NHi`Qy&1*Omg8Bo}Ysl4#Xr!G;nyYt zDzOKk$i3c>o0bV!99*gynF=@v%b+AwtjAz|fkq?)4n=sDO&PS-qH@Ixh0P;W6~>;h zpr|nVmXt{49mSMq9hYM6N|E6r)ONH{ZPqD0X)C4Te#ff1vo4IpPjkQ%y_-+YgAuS? zECqET)1vh-r*Gg0eJ(cY)4HqJzZj)zwOp->yJpCBPev)!q?Gk!YXT8q!;oT!)210- zYgm?W_#FLUxKb-MD{ytOqJpJdh8!&bxh+?LU&i5c^ucnyu}@@);m*eFUeIcknyt#{x?!w!{Z@H6ksB}G-B*zYdpVKbsE%bXgj1=0y=_W3P^^|1-|M0A09zWg8MakbRY#4Pb zmm<#!<0-^An!24!QnSr%B{og;pz01TPX6X$W2?Kk6xONi#7Z#@vF_%AoXfh3T+hj5SPMw*+X)}u))~pxfuC} zRO6WJOI(ut6~c#Rk8m;a4`QYf+Sj=t`RjuZ)E?zxmmc&l9_Mo8-!U`~;(o+M$-lao#&SR9g5>X~Y)JQWE`{}CoWxN*Ze;f>E>QkaWG!qu z3~%_Ne9MzujQp*$-f63;_uq3Va!h)0Ej-QfbIdoe;{SoeA7ndd8FOH%wzj19Ip8NP zYKXl6NS=}Rd1*7sCwmByv&nx(>6HZy)@z5Y0V8IS|BBFTF@tr+t`B%W<~N;@PC2|4 zmuk@8x$&%b=GY5h0RATjwq6VqboA5%RsIbeCBLy=3=?wGJ;zV+w<3LKqcytkSl9c$ zKqLHTQ-o*!Ghkcy@U$z{8MXk1k_KZB<&kS1aniJRDsqq1+*V9;=k+CaFR%!WZEe(; z_41)=X`Rzloo=oMTH>&XpUF-jw)241*XEKQCT8})ki5OtDuj}0Nip{fjf zO{WZyLMJ_FGVH@;xWG1mSlhyEg8iovS}XM{rxE%v)#!s9+Irimt-?pd-Hg;XIb=F8 zwODgF$ILv)Iupar2u2xYvh39yIdcu`k#&e;#$JgfH~O|#t>|Wb?R0?ZB|V;lT6Ykw zOA4UjMYQC>i#TfLt!AYLGvKh3sMJjj!nM=nhxCQmq3e#6I_DKn;(C?sCO_L z(+I6~A6p#SI-l34@0oj%lU#tzdmO&nS;ubOG-B&b(Hl8-=8bPqZq_2biGy1&J?_)$ zQN6t@xCnU#y&&vroxZnBzXV#)d)xF&pas3Ra|tp}5&2#i*%N#xmm#kRKpn#CH<_`~ z4E&#a%5Sx`w&zBUo%s-ef&Lc< zJ<>W62j?`En#EFe%o%Q~Q>yO=w$e<5eg9rzsi)V8xX^=(%(CBxB~m5?tydmY6QM^W z-9LnKu-P5^#CI}TN+WI^+88A>^&1QvRWe*^m&f7Mt9nOY-v3c9jD3hrrW05& ztR_S6>zD7Xi)zQ?&2^7s2{qn1t5A zqsWSI{0Ca4UeneuJjmtAyVim{a4?xVGx;zV15T2&J1#GwTE;;waB^L}35V7dC+c{P zk7B7Wa*?c;F(niU?w)K{N>$joU2J#CtF*mBU*Q7f9ZXg=>uQ(bYg`7H0nF7-6Qxy7 zu{Ak@JE@EM{gTvw`)@9k_4?g}mhukvD>~Y?&Tn!_@{YBzK+`Gef$lq8j=cK?be|~` zHk@IVHr3~!Ousb#aLm+i`Wcs|m9wRMX`;JNzvMF6 zXRniW8GM;oFX}g36zk1S31f^eim@~GJ1$P%AukX|>r?&D29reZTKzAVWO8~uIJSrN zM=n<0A<#FKsiXBLF3q~>QBtq|)?c_})`yR#t6}louK(k5O;ZqJy{~_8Q7)by7M9zd%3KA=0~un{#>c?#V0i7?rf;1`{f# zpEjEdHBF9$qn^=fMLo7-TP{xCLuKD^-k}MQN`N!#m7(%>T%>90JJLm}u$X8BM~I3{ zJ8+q%siAAbdBAk;d$CG_T#;|FnL$^UJkq;7s+}fTT)wb&pnV!VZS$`j`wdU@nQhjNs~DCdn1UIK6yhA zBWG<6M$wg78~bIuc5o5XG>0KDo2Ic(!`p)U@n*a;47pV}3RG3~k=%0jb7p;tunI0E zsZ1)Cehr7W-U)?efs0#;i-Mb5&a1S?&!C60wFis72C9ef;vd8D?UQr;;@5F!My1t) z+$poeanmSBAVjTN<$|2R1+kxm=u;!DiF&;~UNjlzL@q{dhQa$7p_|Ygs~8M(3KztF zO@O67BI@Sp9Qs`AA*Lm?p-!I3VXgPr+15#u$oyc)0tl(&)fMH{3_3G%*(eQ>imyy{blLs5LT6BrLh9 zQEiS7sNWjkxGzeWul0OW2<^;a&fHl_-VxH)GDhx zP7$VlT28qG$uLz*9WIu2Cnbqkr51D|VbzAC<~7!GF{}rt$;4>Y%M}Q5u+JB6@mAy9 z#ax(tb<(anrB=JBt>(RS1Bsz6>AiddiJ`6Qy^@QOtA`9X>!p!0nx!>fYG}jiw{l@} z4RYmrwKGw};a7Q;66CJof>_T_B&jzLM#`mjakN>VfJ?0*u++4}Oy0o-vL1*h5on~< zsA^~bzH8b=U}kyuG>ZT$c1qd;$@g#(tmo2`7$Ulpas!vddWBaaNucWrSx}{(ypPL} zt6SpyMpZqD`IZeJLPu?7Kfpz>9+o7sM7^pC@Ifv>u3ht!;@Oye!A z?9`ZYzRX3L7Uh6SBBp%5$|cHIInh~%Z*Wnp_g*HkQ?uTFjT+A$;}Tdeh)W^?rT^OF zO{X;u)kr_d=G)UPjelB#d36814J3_uT>XO$D~&e1{_%#DMjK^6!KJZY^ODGm{i`YB z2HU^jGFh)NOCeL_nETgU9_uBYspRP~^!_cEE7uX9p9?mOz@OSslCVzhGaE({!+88z zE=jJ9rEeYFu&57)pXZ`XhoczA#4l_(NwlHy-?${!E5=e(YSznpk;{>5n$vd^^Fa9} zF3fZ|iebF`@`jRxMU;)#!91XP5^ApFR^LF{=y@|P#dNrdc@RC53uC>?F-6@mj-_XD zS#q7b@y(+Tskh-`Oh=z37|^n?GMCGi~ z6PIW@RTVwl-jxfMYnsMa6(8#E#s#t7WRar2$B%dmT&P@^LipOjWd~79Ar^3vro&+E zdZVb$67I_dnT~ecP`M7+Fp^C24E(D$lq9T2aS)dz*I601Qsz)DK(6g~T%9?B%aUs% zk5`tXxCFWOAYe6&X}!?VT#Q^NsSK6%SS~`YE2w%bRa(f!$yFnUps{$`MPSk5WG=#~ ziF$H9mvWqjNHa$}wKA;)y}CVh`BZnn7OPfoPN*y3mHt)v@b}z7qC8Em^mMsyrzRSlBn$DGgQ)8MF%0%Y5h^-DwGX@@O);kRjd_D)Z zUKngw;z|wrTCmQDW3S}c);kL9uwivQzDTDRDf%wv4}E9^^l<*ro}GEA9S&_hQ*Ebk zzgr#Q<>S+ZAK~n)IKFig)K~eVeZIy;u0eJzA-amPv%6Y7z%U5;wq z@v=qrw|yzby_VxzkDzUFgNDiIUDt5|tUEz{3!q(ndOgR^tMF!DdoLHj`k?7P3(sBd zCJt`Bim^{{ljq&c;SaG5D=j#Axje3~+_@DvN=<=vtqr+pt--PYC9*-d9m}9J2-bbN zzCa_Ig*y<6~p(katFHOYGd{z zZrEuOL_13DryE3&TB$an3G#C;h;;&|f71+CYUO%IJAwUI(<(x_-fWiZ&ZrXop5!82 zn4rR2I%v7Bo>cUEj&2|C`mUvhYVq{63!r)7AGiQH#;I|L&vm%$UQIbY$7RUT3Kc$b z`}4F4FyX)f8tR_Vzj6VrGpYT@0t`luCc)pi1UdQvNx-!5PcB1_eqad6|K$y5xG5LGdWBB^zUcQDjLp*)8$uFeE43Au#D0j2IoZIp08CX^IUy-u?hz#R0z_aQaawW| zU*#n@-wqBF(v-9>qN&-zGtxsfo27LIumd<)-1;fssAj8#2ltiWSY1eewmOXlBp_Qb z-O#9(#DPhq(^qlexR7E8T!!Okg5%n8(MJ%#2=SoY5Ml2^yWUjRX%XU~c_2EKTD{RK zHer4XCi2F@{xl&T!4c0)?K>gjNJlf`QMtl39C7I+mF{Q`cXImD!AXwoaK$F!9LsUy zmZsSG=4idstiS=AeNr zl1}jC#Vc~a^u>dNLSZj`6E3gO;_)y?J3V#r0yHh4I29F8$n#h zVU9~)8a{Hkp7T%MlaCoOyqDu7FNa~Ia1-aBJlL2=2sd+x6BC;va%6BTM_HH{#W*6k zog*Y~aDqOvc_eU09#G~Hz+D_Fxg!UqGW7iK<~YgiW9;$Y#}ShIS!7TD6C5RZPl{Uq zh#vl@IM8boJ2adTtadU!!?~w0N86cbNhi-z$NC|TklY->Sb>d9KF?7WCDu}aqK!zt z#4(b$jL{>JM>tH1qL@b@U*{OfJAQt0oB7tG93*)a2|!FP_AL&SJa+j&-sK(Y=;^y0 z=lJAKMz@2g0FQHkGn=wxg1qj}NjCHFFKIbQw6eT{(LDQA4TACO(0X?5RP_tzMdVvGQ z=6gbQsTYh2HR6=}1ay#^CbYkCwAgV)Pc&E!8{zLSa;QQ~pr}lg#I)nH3n0M!=?W#v z9Nz0=Eef2<82$wqs?p`xBs_UkA#wi?xwELUXADBMw9aXUjq`51KyhEAmifq@Uu%Uv zgR?w_l{&8R^<*+~<>e-kk297#uIY-!@Z%^Ps52?9@FJiS5J(N6aq~y^D0p3ct<|Wv z!ucb@JCWmMQ7Um{IiZ}wQL-r2p(7EcI-TQXQ7UotIhE>6j*>;G4vQ+)+1cZbIF0uB zno5hV`)>YZ?ggVcB)hly+M`hd~u)&;o%X^OirHz3UeFXBLH z{oK2lKIo5-fyx{uu06FeP_@;b(3)<78s$)N`+{wtCOXx2r3lAWj}+-(b9qlGVOBV1 z+^R7f%%+2B`r;bcEiPs(39QP&;+ALHfZ_a_Gg2I>!?s!2sL(0HO{;i$QJ5ij+3SoT3oo4b5B!>$QJ4H>~LaR zqANL0T(36Hw@fY2TRHor-AA9j*797FIe_N2@5mfL^Qd=mfTaFvXkp&XxyNOm;_MsM zvb={w#4SsSgXr0!+`zHolEQIV(JjgQI7rf_(z*q?g<~ENH+rkoV6812c0J|{H^YOU z=4=YtwQ^k<_r~^G6fXLxjfe{k2%~_Y4uoSn=hh&6gh&OdARHSRpKGn1xN?Qd!^?1U zm(yAmuG=BxDk7^x##l$_qolz&6|N=^hwy}1=a_N%b+5_?j$l>P5pg~lAvQT;Trx8W zVx=?|^m_@i!yz-aC+w{q!+k6Y>{!Z*ti0DF^9~!qyP!&`j!fNDTmG2b1OC2 zN~09@a*mm?=fdGF3gVR+DxFdFx zBg0})&9?90(D@V^Qfc9R2~_BJapbr|<&qbgW$_69-5fsSiUdg;P1*0^m>GwuhF+6y z;E-_(AQNbLwHhqm#{uJx*GmA{s@BK!rtTJwnz1!o_3C7p2PO~t0LRQYEVd@YGZYB% zgB&qy-A;~Ro1?_VJ2`6Hfujj5>Rk;C*%$@)BOEv5(B$EA%ihD0GxjEkNn&>!+4f@` zGvg+25{@j^0@5e*2X)H2T|do1Gq$T?Av5XtvmALM+tG%Pj4L@-IctiobrTZ~thFio z`$QH0{v4MkZj(tL^~yNr`2vTF9nIU1dCF|8^JR_|w+g=V&0`!cqmr?)%(ppIMkOy9EKlc z;rz)`b6t_fXmA`%8&;Erb72I#H`jG+?Xkd&2HTH=r7d6!?&HSAcsK|(7Vtoh85@dX z3fNPb0~{-M8aoCnx&C-#Yj(i9LAwI(qhy0MGSf23S1?lY|?l!c?f5^-~@xDCgPOVHbvEUGn}%i*#x7;6RRahxpF z7}@&m#PPCl5JRiCD@TgUblMus)Y|RFp|UU*Yvl?YCoZFETO{7PE#N>|=+4xt?aQGu zDH9932XLUcA)B@GOs&|fI93)8!CJ3_I8GLJGPPQVa;PlSXKbyG;8=0{lj*wepc&fx zIY>R#-lPn5!EM}5j!2$-I7{NTkvkjC#vSk#jX=xtmGzATu?8X3 z;cHwv52nVXySsmNGU)UvIG(~Xo#%b6B@WKvET6#>FRasfF*CN3EkSEwjoc$q`Q1&lZdr0G7eahuiVxEyCM z_Ga5}#zEpXyjXykY(A5tB-ND3*0VVKxI=ZqtBr%`|H2j!^>%k*#Rn% zcyRouEF7xL{te93KseMdKOX!@%#E-mX2CDsy$x5whnpFp4TIb)Yzhn$&;+w7Z}8(o zxdjH@sTWb?dAdwf~&)bDb6u^zFUaN?Fqb}vVZZT-n+8m|!+}fU{4orAS*m$Wh`>o`}~HE5pN_dx|pP^{ucyhM|0s zqwE_OBg8eZfy2E1BhXR!4BR6q#feyF5iImNEhq}}hwzd@C0@jKk_DG&{=6eW#rQlT zvA7X8155R_1-dO&G8W9EVebX(xb^6ALl@^oljdJU3)*u z0|%}m(Q$stabgE@R^^ehA!MDObCB3jZ3p6r%Yq2yR~#jSqG%QNNe+^}D6FFXo};8M zN~;}ql}KMt=K`Wd(?8?^qSyZCI7nPa-oGX|XhT=*32pNu(9TN@bX-S1_LgCV>DRII zpft>J9r;+kyg??hA4LS#AjkPi4-~(hl7{w#^DW*D$^fJmE&(Ty?{bj1G;@4O^b$Ot zDRWKoA93ajVtR>dnxzJ86$^)w&;0?qh^N5pq~w8zT6{lPL{7!gPOU62MJ9Hq<7DT| zkaTr>>hh^>T>c^uYOpjiQUvfKECcceV6cxB+@c1@V!|%+@%l)ZzaXG9O+foG=|@X= zUoaf}4QJ#!HRxv#4wpp2<X4I)Inmp0>xA6AisOTlJ8&< zG*M|6iweN&5I~((=C#}!K_9MD8D5VNtd=J)#{^u)i>Hn%<#+=x2Oq83mILSJ749X@ zJ-L?PTm#RC6o?TH!DEzd0RW;?8?9GIM1FxxF~&i7%Bv3$*p8$W!e#tB?tyRKbjBr9 z`@2_M2@&FO_@g^(37i&NbxwqRH0!3`4WyCx&zRx<>dZ}NjDKqUQ&iX8-{9NThc}(E zzx&MFfO_c?nYzzgLh2TG0(IG0GIgb(zIY>0-=T26NlGd*FA0`k2Cb7eRf)?|}Li z<=e%AdiEcHdcQ(_yP&q71nMees&m)JGKRLxTF{bw2{?;|jGSs6YA>P`5Zo*7Ie8x&&?XtWu)43+gV90`)qD^UZ?# z5|;NZ3U%vugi_r)f1?@h%gbckLj-l7Gl2TiJ5ERtW0bnMkx{p%c)i;FSzVynCXSg?%WgB$_^~wW*dWAym3hLYT0qPM7^;$vw z*LMK-pBKuUZxGbY=fSu84a?MT3+mrD0qQ_Wrk-(QDD!Sl0OuRuAX6{CDWr}T;M?aE z&X)@6>3@N554uSH_F6$bWe$A%M+NsfL4DhnKz*A+yOn#M<Wlvs z+V_hspnhOX*7GGdht$v3fVxznUM8r=uLtVvarxUf3+iUefO?-JQ?C-#9}WZcL!&bF zYC(M`;+~=4b_Mm6Do_tlsMiYWjw^wByu$f9iF!6ruUDkHUQn-kBTx@gO7vbq?OqDh z(-rDXg8C;HsM{-2eN<3SxDcqz6shhN)Xgpj>V(31*IPp?Tsj5RD=V_D-XN&k-U!s6 zD%6soe(xL$=a6f;0Sl%UD!9QPnxy<=FL4DgY7(?CzYu!X2c-Iex-~QuBpneUOSP1Hc zg1TfIc=2+D^Lqt#CVu;A<=c-4>X+{U>I;y95}beWp%C}BM}WHSjWYGu8ug6|b^klm zZ$GY357Vd*D%3Y<)SoHTibnmNLTzi*KPuE0H0qg`$R*nNPF3a$6zbL*wX9Hg)~Hp5 z`eu##IfeR+MxAx3EY;i(t5O}HQ18>Iw<^@{Yt)An>Yp|0;|g`7yHwm?Db(2-^=XAV zU!(q2p6n_`g^|L|JVa4tD_(&-HlI`H1 zk0{gw1+{P|aK1uu`_+Q_;#{CEZOBqRFQ{)?0o3m(Qf=|k5clo31NB6O^SOfhG;VIV zSSha~s5hSr)F&0rR|@K7bAbA4MXK8b_13*WgeR_$Wqw#tKff`2dq!QR{zOo}aT-u} zQE+G99hT^Z+kkq6QldQsbqK%RR{8coLA`4ypngn|`4U0B=Xs#MP0>d8-Vpb;{{`xy z3iS>_z3^e6{_A47M5o;se!J7_fclam)i(uoqq*?ny^3%AkDylP!?%A@WM1@%kn>+J z1nNZ{8TTZOT2`pv(5PQksE=#ZZ!6TZKB?lqYEs6%K%*X^P#ukWtU_ISzsmVJg<96A z|5m6qjk?7eS*mp!b&f(k>QgH2`xWX78g*c;%=ySqtKVLvP**>oQkSfgzx}92U9V7o zsZnoLsDIX|_bJqWY1Gds)SW-0O7$&;`gV=Fk5bES7F4>4d$*Qcq7Q#IEEd ziasu=;f0Ta`b$Bj>!I*!L_u{Q3^~)0uXt&OpkDY;NDWU364c8CmG(;GnI(cc>vQ3^ zw5bWVc?s&Sf=b&waKn1VPDNK@Ha5^SS#dDnXgy-E^ zFv&WGmyg2cW_aMgw|{q2I2|2Q)xSGq(-~Jyx$`>EnEu}T_YPo?MIl%9V}dj8+i^GBuUUzDDINqYW6>G_YO=iir}KQ29gPG}Uk&;KAj|BdwgN$L6h((_MA z&wnXB|CRLoE7J2vr00K>ov((HRCjK1Ic)oBd8Yv_ZPwRfM*e`yr`)S&&6v^M!arSbs=L{##OAG2!*8AH z&V(r#k1aUnx`FVo@lUy115EI_yDj|Do$Y1&3o?Vvy;XNp?k*&i;j3B8XuC~eDPCOb zp(;@B?p}GeU%Cz^^=btTqdsLHskI4c2Q; zt5~h9at5JRF2KJA@UJPid@iVDOYy+_H@ylXc2CX-(gOlrE`TBe-xV40r8(WOa2|>~ z3%rJY0O<8u0+pK0(mJ6_A8s3j!ykYvW(gNg_cF-22#G%cxg@<)450>BdPXOYaQ8wl zC$|V)A%*wB)ZIw60Vj@-_qFQ--d|Jh%r~I-i3j*^|J9V<7xFbN#8n&_4oO^(LErJr3w%>Vci`Cx+@>?-K2!AFrsKIy2fZ?#+Yoz? zGq}weS-6cSF*b}SzQ^0W4C^cYfW+zCMz9avCIEReg5VE;q;neqqPR@}bQJ>O59&XS z+jP)v0=MjO4(_J?la&&m~snefg8<6;P9FEXYdWW)oIzmdx+p( zulL+5MQ;Ix4y2@#1#T8R^swCfuwLU2l*GxdBs`FW()hriKw$g<;AN>iBPbDh$jaa^ zALasd6*6H+0Kij|mlU@kd%i;dnsP5c51eE(?~mZW0I?_o2#-1V!?@=UOETa|mXSnv zcfl%(KOpqt#D*Y_Lo(kn)V!}3v~fz=#c+W@{PDser-AaflAic~gx$nbvVxs*5esb5 z@@$bJ>X5jiJXkZuBM--2i`4^vKy?>pRR*aK!2mBtK>Pu~Ql@~SVPK$_A}Ia<=vnD} zkM!v|U@&w*gSky~L(fA(r#RnOzL8S9RBW$nIHsX%NE|G+Xz}X^zDbd_)EWR24$y-s z_s{5&vz2G~r}zfjj5D$nz{3R3yu$NLv%7=^=(BX_or?HWLiY-^9R5IQ&NW#s0p3sv zMty(>0}NEIS1$K*G$7NUd1Px3T7x9TB&>0jt>`@q47m}eBDMuXDv$9=QT`asc~(ku z%KXr!rd$LEi@w9NXgOp4UL4TML746q*c#vu6l-NVyUL{^(|Qj=>tY$*E?U>5Q*&Eq zZD7f+o-f^T4w!TEQj7iy{{f{uDV=fypeYv-z-I6DY-aAe_bdN#%Q}E^s+XYyXLU7MLISo0~Yx z;tV(IrI9l5FVe`$>kftw2fT+8t@dwnIsx_8*hvRZDKO>WT*wYafe*ktY8$b4~h;`TG!+}lR zGZ7kp0D46x{@bq0z8eDFkA5pW$ak4k&1bn(D`I#i1;ZZ$_y-K8mxHg)4F9Ho(tGHm z=7FMRc$5J>9PrOaJpVN3*Ag%$-wcpE6!)*#Wa1B$AXN(;@YQ@WcOTPQz z-vjjbl)DFd;4FH@f8_t=eSm&wo{6w6qzdiOOeT&=_1TfyUTLASskDCl?!w=iN1`A;E?do~JP1Iz9{ zjjj>cBY4G6DSJ1e{>5|2j+w2ZZn$%rW{bFv6!A!x)8{a!~{@ z|18h^nfQMwbJ!VY*dDHXGe&j%fx=ysL4^;Ih2h~*Xm%{CyA_l)LcggpT0t2*p%7I3 zz_|E0F#CSE2x&V5C45*ET+s06q#3H41)FkF3b6c+p5-gqLnv`xDi9&NkD~4I2g)~` zf$ar=Fg`vDt&in(cR=e0s@JrfYNRAJ;9i#aUR>+3nb+n7|AnHSm`cyVC}PS*_F%m| zJ?o{KFcP9upcdl0pGF(u4+x&Fdl?8$KH;UO{N@-7;(iu^@CSfWWf#@5h$Mgv_BjN@ z9{@Wkjpt#ZhGfnK^e*4#nW(HdTxol=0R%IEe@?l_VzaT8^u+&z-o|)gUP5F!HYC0w zu!jbocChDZ>8%s8_TmF7(G#4?<=%+a!5=8c*=emqj6D;rltB(cLwOqX9s^ja>OWe6 zvwJAu)4!(NGcLsH@BI<{7eG=~{}9Au4@NmUgX$l0C3{HXyBA^441YlIRMlUF@T$KI zR7N2D0iaY4rUHrTFN2LD82$iQn(9wHhh)w}RQh&!kI4nOM9B-HC7X*#5#?X;Y{r$kLlb?F99SbzTWbx#1 zufjNkKTzmKiZ~OAGZau(3K9Iyh;JtMRCJioR^m0^)M$@vv;=p{#k!G14;{(H%?tB` zLJSyQ5mY$3Ob0;WQ>8`%WCL%{olrn& zS-2EOlAKB+3b!ITmZMvRmNV!NZIi0GtAx!R{R?&qEyL!{`y==-fTU{fLJ*HVnEE2m z)Tw&AAy;bdB=Oy+Fe2a&2%f6BQz5+OP6m1gf$#@_QpH;pNHljc*s}@tlK)g?gx;PicNQU> zCkVJ@-E+%Sxw8li&q=v*JZ$$Uj5zoMMNE@BGoTOAGl(qS^hG#~M&-LTG`(km;02MV zOcnLvRu*l-%zqLjPd*OlQkhakyTudfdF~+#0|qfh`BIB5z$$9^&89 zXIOdD*;3}_bsP{DZ26WfY^ihiY$-p5$rP+IgIHDZ2MXk*a!#3f*gNrC8JXq-AA-R6 z1Hh@We2QH{V5!wHfFF+F_ygdtOVK4#u!kzJt{eR*bYar)m7WVLQUGkKm6?Fc=WW4Z zwJFi6i*sa9s{3_XuVeDLTg&!f}2m!ZTkpwf}2Tts#ELkr^%lq}Wc zu+HD?VTx?N2nV7F_yZ!mA)S*c?8(pkC!woRq2GLqX{zQA~N{ct)7pityLQPAZ$vHJw*3I*aqSclqp>oQ&Caq zU18wl&>u!<`~m26ojWtM5;{5jM-d)>0RDn>ZY?n4I{mqyFF??;z5_))5vP;krf zQfs_4T$Q)RfcFMZ1Gm2C0&wfOoPf_X7UevG->Nl$eTy4kmSRz zLs1$bA7Q^jy;IXVG(+&!iiask_$#zxB45 z1yO2eT&B4#xUTXTpJcm*PvhtLFoJ^*|F`GEX{2&}{>LHEH| zA~^m4c*?=3;7x9fe}*B7H2gR^F{U!ao9I2MTo?`%oT#@Q+Eeb$1Nu(}a1tFRm2O!9 z@o8)IVfeTAS!x$%LU^#?!oSVHg&B8pVdbfZ=Wc?=#2?UVn%tPed&vK5rLQc~sQV<@ zQh5>8m}<1Ea4XhFq5IS5_-j3UnrGF4`Y802kOn&#hpkoUW$-H^Np2&kB7qu%ea3;KMBl}xe=O9 z3%3!3E2+G{$w{W%RZGD$X339&zvu(>fK(HH8n_1tR{w`*^;BU^<4u;9o_SdA7qJ(D zKTwoZ$p?vb*lu_YmPGMEzk;Cn1E8teNr`m`DjF+^>H~ibf$;}`(`3>Mq^iO#2NoF)6jeTso;$<9Xgj2=vhz*F`bnvZ)6l|%0&^tJLY-bk!s9sL||Sa72W*+#tHlZ zZ%C6jV#t~o$e7!s@loeozp1)JGDj(4N%0bBq3MYhgpE0PUcgRKWTJ#(N=#FCiDHDE za#1L7i9I}*$Sj^p@`sH`gdCm>?qUoU_yg{drb`roqB#l47Y>6^3GVLbD`=i5Bc#f! z%Y4IZ6!RBpjK3ZeI6J^+p)(00JrBhU*`cSbNYit94m=!;fmEy%HoVf>*f@pFEPDAV{`-em& zLMW%;h#qooK7ztRZ*NxO2+u`U=L5r<7^!e1fqM)F68wR(uFA+s1c>G(NC@2o72qC@ zZi04+P=Bgcmv$fogFYGwc*zxfKHxtO&tQ5jrdYN&k-Voxl@akX? zGq8cY6b) z)FH;e)AJY<1U%;43_?r;u)xL8f?uwq6hwfw^VBiG87G zhJSZwp5-e8RdaYxM$Xzwt6iy$aYbxzB6YVv(f>dz<4{keVEahDIpQ<{G1Rr zf1$g}N&ZHrv;2=k1!F0X>WMvGUo+4im#jUorrul?n0%)wa(Cxb>T3${p(t$OJp6D7 zVUO$y3*O<3HR-mTfl_T`pwq&ecsxJb!A$J#aH{yI03Q`r&_{qb&=U_6n9a&?2d}vD zVP-4Oy0aI_uK?5DuGXw~Q1nLNYT@7Andcy>u%dz5I3aLBLnRyv>eNsH{snc#tAPcq zfrZcyd~>)LVP)T6sb0Ui?1s1sws#zMK=b5xN0GZyN#fKx6jTB(rb{s?qBXc@G2ne(;J~Oa){4# z6Z~g)t5eoB>Ja8y6)Ke#heHL2L#MjiE{3z!3nx1@#|w9;oTGaSvZh&~qOPlVngjJU zwSiU}zIVpf`OJ5TexbX|dEUnb{I~!g7s8JLJhDAPEqZ1Sc#nsLSFFBsB)z+H04?+; zeBy}S#SZ)lI-2D=6u6GP4>I!hCQ^6%!08H$#RpKx!+Jvng$VctKyx{vJ2xm+07u?% zT5k|3B;f40Z-)w8`UaFb^}0yyej)d_ejl0vsWq&R7M6Mb0jvwi8oORX^9y@Rx@H{C z@vjf8aRzFRGcqvlR2#6JEeObga`x!;TDNfC_`1SKy|Bh9AftlEs1Pzb4lBUvz2%{v z2gn1i>|bXP6N%t2TS<%I#L)NEHu)q#o1 zTF_xwX5YGd^m?tk$MPU-d5j86kWt|zzmG>=x45_NhU>KsEL;|~*IC12Nl|ZSR(2@osnTW%wF&-h7tS@}B6kq#A%MK{~70eYg(}(f{x%NZo)ryp&Bb zFeb9Hh%U`e4erJqV>Ns(Cv@kYfGZ0{( zL=03B_KoP3kUg>MTA+VH$nA7dM>Hs|j9k&m$f-!GP(@ONLJ+mVsh zg1;)31)e)o@NOmbMhe*UxOXBSQ#*cSEHl3yF|@+eqPZVMw()IsRA<>UKmZ^LuGr%~ z)xVBdn?7Q3HB&QVS8U@X%>=76~$iQET}rMa0sF_xj!Viuqo6fLaR4C*)! zAx>Xy=WAo(p*@Um?L1q50b#A0#*<>( zGv$5%_!@`G)tej7j*lZsRC5$x=zcl$F#Ml|5Z+#|N! z#xbtopn!S+FhHI6Wg4Iw2Tl>+E-2$*t=_DxryQ3r>o(fc?lz0m*FeH!`cX@(Gdxir z=~NvUFSROTklG@h%wf;FbCw0K!bpi;jq1lll?eQ2pwy`N5L*O)cDFbc9BbjyQ&GLI z?nn4xxP};dr4rLw@}uso6TBA!=Em-2l(a$vd?Z6U+BN2l?yf>xr_ex1?SdP-W>Jzr z(zyj$M>v(JQK3Geufe&T(4Bj(_i|xH_%dj9$WR>(XhY%|`Mjtk?)Kopk#)k<$q=l< zDgn0#aF=#>LCyv@ezm2{p%tK)Aw1aK4cQuf))eea(qgy^-PPR_`N^JosHJ?qM@p>r zK~}nNnwk@nRHC^0xY+Xw_W!C19E45RQy zsacwEUI~1dqwO!-91hw7BoFDcnnPXBa>qbf(wZA23x)0=R%wTpBoLrF`UyZV)!%| z@CGV7GU38wuy7`Px;Xf>uq^l#ir$Y1LGfyJNG+n~ z13sRo>>Nplq>Qfu_>`+*nZ4UAfM%#vE2HhbtWwn<5DcuTw8t@v4T(>uR)!=tdGG$# z?|1h7MoV6vq0tR9~$+flmu)FmVcnJp9 z{!4(+k5VQ|Ybz6#^{5q^BE^{zf17#`Sm0o_cBmBV_q+Qq30Zrq1283YCiGntrZ+RM0|=JAy$kBD9#2C;=m(ZTbR`OhwEyeKzId`_Ss%0%Aao-BHpSvWDvuyfGub z=H865N-UKnUijWY!<|YMYg=)+S}(8i=DLGt1KzVK_j_w_AfrF-ZhM0Nap45|7&{Pq z>q46lJdRL^JH0|E37%-N{N#uTh?pmVcueB$6eLP?a(8}^G!fwr^CzvsZ{GJ7mZ6D6 z$I*bw+6UgwK29~ef4y)PWw-Ekz&){VMJ<3@ z2nn>>DrX&JtJ>vp5Wz3%_9jwydx+(bNW%{xJLP`>&?oc{U8!Mzv+N8&ifp_-5~z3% zd)}RMs{d+XiT^4fvUn5c6rNX;Ly;lfAD}bST7l5b?}`4_bx|Z%7S8I_bEg$ z8dVuy$MMG{sU=u}>1AUumV{5H-0!~;s_NG2!|v9nLMVl0I^JhkU6kd3)?glch%Ntw zQuO2bp@7s5z+bRbpaW~ja6vdpj0?iWGg@6M{sbiJu%aS0odztpg2hh$Odw%xqdo0z zbB_8N;GJw+r**t?2WFfmrHW0EbDNG%fa%}hnOwD%{F1d{7GTE+a!oaeBm}snc+lMv zd(R#bO2)gu5p_i^S*cuhuqhz!oBMxtH(%&I2EL~x(^v}w2(})rjCK5#-(E4dRv&h^UZlJPVAhSf>PonHO>^Mc%Cqil zT8kd|I3QW~SX88%)5Z=pEEcYejpJ!wWWR0o$K7qu^j?I;z}|}hDd&`|Oi6u*5Z}Xc z|A9>yZ&GZV$B^9+{7VFRDu+AcE5Lj9BAEbk+x8#?Yqg^Jf^Uk<4Z&XCBxI+SFr16l z9nIj*L1H-ESA)4c({IOAj^pkeyF5*BBy$EH3$a#F?62M$OtZjp8K!R@({Mp@NiBIUK3Dd<~P^rNdE9@A+#H0@~ zTY1)8WX#lW8zdC&lAb-@RphN{JZ3}!8OU0z z0lO>2SeMd-;yD~XJpmPqcBttjZ<#zL^dQmfGs4mD{?WBUaK?Jl(!ZdkI#!-`^S%>ARFvE+fJ0MXCp76Ib zP`W#v1Fz$x6ef6|^e)jaba!7Aeq0FpuMltG z z)J^c8-Aztfcs5qVx$IT%HK=hn0UEq9$lh2m0m(1SWMSUGpZXZ^ms^655y~rK-|4<$ ziC|F(=C%Cgzci}egQJeDtCc1y<$)G7BmvCU>cj5Vi@lc$%jhK#UpmMj&;=e^MEMT5 z@C5!<9(T&CDD6R#?-WJu?z9{}q@MON{IIYn_z+-r=kkss}LOUlfp^(iJ5z;13P<1DzHPf3DQ>lv>$19o{`p_w-7&BtbGF9r9N0-Iv670 zk}8OW?##CRs$7!;^<%P9Lx44_O4xRZFpGJiq{vcy4o=5j)Ju9qP5r-SHaU}~rl*a(X4 zjwJYOz+YtSB0%#mkLt6a&JdIJV=S7D^O?*K;(!Np9*Sxa_>YIaiM4z zMGA;GBE(Q^c0Y<7SnSzN`HaE~>`Dk@iTCM!_^C0_?5TVnl--Xp1rcN1Pa=!Rh@!GF z1`JP<2Z&8n=n&_iphAN<;8ky|K?SJZUJ-GHb5OlK&JQ8yenP@tO40oaPZc}pdiu4; z{Q|O%uKMB}6qH)3(gl)Pul4R%kX^6Jy}KfvSAG4dJyEaSuOlmSMOOU@d!}j~b|1rU zSE>c1Ebz0)OLR9sh=#R&kgyOMcXy1^WYV=uR&{ z<=-WemG?RHYF-9#cvI@t=%6%jSjAQw7HHxx6xTKnUI4?W zHPa(?d8T`qp3y=KfrKO^xgi7^0(oHxTi6o_1OiD&0wg35mh3N(ge4>p$Ro?k%0J2f z`_8GlRrhw??%UHnvZUWnHGS*WJ>NN}PMzATJ_Ra;hWwByFQE;al_U_@?<1q11RR7m zs64D8i9TlP_YY@;>SJI^cRlG|0eg}2!U|3CsyN3mv(O671*DdYWr{6j|Gr`^QZSHebwr8+| zz(#b>qGRzHv39AU-WO2K*< z2>Mz9EjSw4u4DIYh;+HQu6ZeQW?eoyS$81&G4m)G_Un(LR3Yg>l{7eWrvHbVJNGp( znmj4JK;dk45RqA$ME}5%H%Y&k`XQ|mG*N^Rx~xx%}oKR~R(x(Qko?N)>5J!9rk>=BPV@mVG!Uv-QviXaBlVy#BSzJ_@PEs87| z)Wi4|cK8bLgM_|C;nUUd)6tUT<|icwvJgQ}!hgC|TByP=J3R7K#d*PVN4qAukCkmc zI@y4jEs}6T5?*&bJ#8=q7o)D!Aja!dj9{odmVC1|oOLo?_*fmpB&!eV)Ck-?vA25f z5GAHvYgQjh#EQ1QCq7w!r*x_5t87w`585kH@(rA*JkNT1rv3sh&z;2_rX7nG)-Nqi zkX*WxAJeV#W2vUy$3PC;UKCmD%E`K2&Ms(cvysVKtr=Y+P#vUudn}tQ%~#zAG0Ezi z^@LTs6h9cFj29PIOQpbLA}b?6?qL}gLv}$ z{DjoX^f_4>?zAmYV8U{sjF~s_e0m08q}VQNy5V1p%oU?Uhb)QLvh>D_nIFB)Yujz$ zLG5bEyg{5mwx~QJ?RWNkucJwU>5HPxn@J^FE_~yvhn84;YSleO!n~bC``iA*i#gS1 zgtKU6^IfFaYwLaV6&SUWc%SGiYu+$WHwusYB* zqFTo_hXR9vc@gQt_{-!%Cm9EI{YOhcoM|4O$5MCBT=ydSms!L;=|?~e+L?ta4aLCx zhOQqIyiKuJ$)->~%pc1KzzQZI3$X%cuOh7uV)E`k*rZxW&=(-#xTp#!S&V!MQH`6k z_M#GC0Qvk$_AzdJMWE($-Sw;n$dvgKOEueHp1c-7f3#|pqSHRw6;c@pv9FR?r11DN zf1TUW||-$OZL^#gJ$8G^1h7{oXFZpdT|3T35p?Z9U_7PYl&2FXh^TG5@R0w+ugitw0AChzK zbXS+eTfHgUn*)a;5+waxOuU8ZiTMl>Zi?K?Al;;zSEZWQvTex#ZpDw;=apeyig2Uu zgiM%=ksm#oncm{FwTFs)uO39czk=UqbHvYL^nR`P%*dBl^Glx-(RPub)xyFcpI*yP zbA=(=F4FI_dNr6oiGH$+sURq;nBHgiWBkU;Wm)K=rlZi{#+@asd*d}|Pm-!Zc zo?O?E0?NVD!32_euEUgAFCbjVSet%go<^>Fpn@tnB(N1Op7Yo`=qim5#H3@VXaank zlLBkAk!UFgBc-wyD6qx;^pzq6yF~>HI;s6X+$?u~2s?V`$42d%hOAJj7tG6DF>-K1 zDw&nTzN5bgWQ>U8eR(lcHBd=MBCV#(&D4Icdi>~VKYHAFo#9*AHhW35K-^%@U52#w zni}&H7^<4DrwcM9i`_eH0uA4F&0~3{%Ed*mlZ&^@=mc5@81V~;QtiQvQ&~O~52kRh znnIC{I(}lJh*1dJY7}Sh*>l%k^0PEzxD&<^!<{f^@7=Tej-?ZOj3@S(ZgTGJt%e%JcstzH}lipb}6)( znPXV_NJX1ENvE0So0FyJ%+55i;6ms$gpSKEzo@Dd9aKLk%a&4;l!D9(wj5-LHBL-o zLF|#ngkDmmqqZ)RD=cv<_PW!#RnN7TC(DxXKrKC}MUId0=@WINM zf!}U!w^}Ev3@n4Id_=P9_I>;AsmRM=$+lVz91(}Wk@XSDs(t%*?yAU3kbP3T>f7oR zmC-7$7;0czTK`zmYqOEuO*Y@aWVKBMh>LA0b0qBrXf99eYfOM^KBid~&lwipZP56TS-O=KFDif;&?`T-868nYGzS9PGC3;GS(aRcs;<4+g3F5${Yk z=diDjp(TA@7?qrNV6wUYWJME{C%e#|pFCQX(2)(Ja1av{R5U?(vaQ8ga4VrB8%8DP z?OU7$x0(QCgUR{^SCi>vY9?ukW0h3Y=Y!cDCoB4LS+v>rk?!AV4!3c zW1PB<*;M^wLDyy@leGsW5f?-uEv>F3@i{i9J2)tae;n~_WU_X@yv3n1lBj%+n8lf9 zy(*#0kuWMb?^Y(LXabPEtyD?D0Y{hy!lW-28Q)i(#RAd8Xe8&OEa0`hZ(@m)Yqtr7 z$^jCs?A-&RXx;V@Eie0I9h)_976n2ldl-d1-h74K(o6udMO9+fOKgV2=0q#D*T`Q> zdR;y`S+`viV4b@r1Vl-L$M(KXd!B2{t2f~OEdOA^E)CN_y^Osoa38L4uFV zt8VrLHfvQSbgB!ZlJoZ7gH3c5O#rgNq-ei_JlR^fugbs@UF9Q^RonL+ysaWH%jd=1 zNp)NHugi;kbh2*$N%d$hVR@dXXBJOjE72m_K2p!D@)60ZU5LjX0K5djU~IXc5={L> z75^={749)vaqG5wDtrM_!`sP?p&6iGBD{unl1q@WlN&=jxp4>vrWz+O5#2hnh>2zF zNbQUkAM0{Q<^4iMYj0BV=WO(m2sLd*>TD4#t#=*G z50U0t$mgqPk{+yetzjXj)U=M=uaMjdTM3sVq_t_~e*NnR{hAQ66>d3|N%dK|U;a2U zzbPuy>XlS(i8qtIC1QYxm0d+D)rwTAmHT@uKu7;mq`xUrXO?4GYCSZ@S@}7VzbhR{@gNV2klp73!_~{ZsV@NA-)Ox;9h4l@nI#DHK!I zYL3_+i?CXck&2(^Dl%!-O^_6!qw#-8;~c5D%IV8iKQKA1xE!Is5Pi8ysvJA4b}IKX zbX2}7>`0wN5`OtbkwmC%V72v>z&A+XY}P~keyA+FF_UFCI+nggieZ-BSdujA1FTZg znx%4oSUWhF3>uhAQ_GT_mvqu*6 z9lGwJuN2XpyzzIWJ6Y7@>-li=!n9izCp@i8pA-DtA{gL?@gi{~)(CDhK* zhvb}FB@%Rs#$tQvNX=3;O>~uo)+!&7= zOxg8vF4NpNy}U~^G?I4(?V_Ew~;y=s*n+Co7ST6O+2!G_sU^QYtPf9({fq6D7rI!aRK-kxUFy#)g^vx_qe&52_;52!sa z<%;t%{&aL(!k7prnJ|%`AoA_FuK79(TSbWVOP5sk3aPt?@ zJ$tsXgpEY>$mFCW%Ad(uH*eogq7Qe)Hpo^fH8LmHldU#+bxgT?cf2DrNKLg6zL;Bc zKMlW>nH4#h0hZzVS*cZ+A0TAT8vHh+p-i}z8iM&@QgwE)RC1{am>&~z)&hbo$@ge9i&8g+?|H9|-59VB>;D4N9f6;ytCYHnRZ+~(7_UGwre z82+U>t)(?1Miei-ODoIN`q{>$dzC(5QIoDOKZ=TS@KG%X!P4%&x=-1b#~}U@Pg(Kl z`e)6nAN8OIKZyU5-SKLwFpGN1kcSkJ%&*WU``bl9)3F${=@e!@PUflf4eu3a7MJt-kp*bWq#`mK-{PGd5jkq)$|AcIHF zf?dre*mnz2(uFn(Q+91sQ41-aJ+7?h7tJZ=(v~>x9jeHLt>d&J>NS^fbOZ4{z&bVNRrI$LqX1K@t(f`{s#d|_52HFrh1Wc zj?4DS1ns|wR@g5p7+V;O;B;y|lzH%{0n@+L=ufK{UFvZB-F#mIn;CG@9zqLqUKo{}cN<^fL^LKCp8Nu?3!KDSLxhfe7=^W& ze1&y}OaStQ4bixwv=={v<2Ph!*bLT{O3vERl<&ktN#rgLB_7rKQRiQGA^Beub9Qnp3s75TZsG01~V;NxTHA}Py)ofvDDrkilRa`yl zu2~bS+;4wibb~UP$CCO=XNXio!DvaZMr&eKmHXw7qxVG8J6El4IBH@b3e%EqxtYG7P}$&z-KkZkfQQ zvgX3Xgw5K&A=3=N^qWs#rt60%CwNAf<@#IXngO_e(`m~!ir-|LyB?$veTO_V0MBnb zoq3*~Y0gdXh7Zg5cgZ*dF#h(_nemy*>rn=HMF`gT$gF z;rn06Hv{nfmeZN<)&$RJ$JDg2{qJO(0oXpROJxgt6)n%-BhL)L^J!fw$+O%EW*Pr) zGS1+1XMCY;8zGkQ2j33H8G!MhKb?&mj4!t2cxmTP&L-;&!20Q1S+dpF#(Em`y`)&K zAlD4Q_37I#$+^JQWSRk(K7D;j*8i;~&kVrx>rY$D4xHb5GR)w#w&%R(+eEGzoYq|D z-QGpyngO^zecK|vKJQZU%>aDA@w7GSjKjN}EHePh?>}u>*1CmjiP7+zxDS&W^UaC* zdfR&Kt0)8m2=UI-R)}M0l3);`F@Z`4N0eb#q*OWAka-4R{@rH;^O>IfwPc?G*gvwY z12eVBbWlY#7a3|f`w2Ls6QsWV6ptks!0DZO(kx*DNM!^_Bu#cQUg7Io1)Hazi^AnVX z0c82W86->EeUKb^1*KpBDSqt?lES&M3ENQb;H(M}=v5Sm0R;NhGf^P4Dm%E-)XDQ2 z%ERDH%^)WaCVeG?UPpl#oWTNR9Kp|0AO;ZV<7cSF`7tNSqc>6{1`z3^XQ)Ur7A4ZW znbI(TG-pz?03|15Xm6t&3?RoZpFz0-Idb;(4oboRk}OYWIjtX5gSrP`@H}h&Gxuz% zKoW0O@1_t8AjBumpzKJy&rZ0kmA#K*F@RW|<>-gzU~BH#b=?MZ>y~HL!ovL0`lRW1 zU9;jH=#3sg2OcXn=AAH5;_|FoNP)EnN^tZ*e|0%mEo30e^gaCt3%HS&Cu&(O-NmsE z22juP%no>HoKUzlUW4AHWbL!aGy^cbJi{YnVcPd4h3k9CH3M+HJaZc3;5zM;2+tGb znZaqT>7aTRt`C!I2H<*m2HVG>=}cuTd^gB91Ms~(gY9GDTdH1R`6yXt0G5|$t-@GX zo}b9t^?hWU0oY!idH*r7oj2_k8D{{-muLEXe2n|1rkKj}$vOkDe)@WCif`MN!u0~V zW&p02XCh`C3Qt>-Af^*B!u)YE&j8FX&qU0)na?y%UO@I4fc<5eh)KD}4Lh!#SlD`8 zrsnR#5}Uj3yRP|&D{kj22{38&0Pnq&0T_{x%-#P+T0BxOEn?W4;B`j zMTwSP!DUknpq^!F?xxUXo4e@;j@O{MD@?zNOfvw}%j7sy9!6l=H+O~W*N|%l;Ch)F zVdLO>VZk>IgzwjpZwBCdnVJS;;JewviGmZ0bDVv*9^hxmI0G=gO#O>7FrK!g7 z&kRm$BblpX+r@&dScUI5lWzv#`}8f6LE}-lejB-Fa9W#o+AqT57;D<^Ama?c_%d~j z#$ej6-6*<#H(6$Idg~fu`>}0d{C#Ac0T^GV9>zFyEsXmfhOqvAvd#dkpT?z9SeGue zaQ#7Y%>Z04Qx9Vd3imyXj3fLonP&jzm#K#_X67^P!H<%C24H`AdKixT+CthiFKn>C zVOi!b78WP5*>Z`!jPTp8x%4&YX*?b3!imW8Cg^QUpBmg=+(HQ$oH1G8 zcSeW+w^0BF5a2y$L>8nie&K%~`Dbv(m{8C_5(%D32^c_vUpymnAZ<}Mu$4(7n2(*2!eqJ@^Av{x z#5rwS<`ajT9o>d7G2h0nw`q=IV7rFBoo!ZhVD^2u+Z_s}5bC*u4w~wg&2ce>w%eW$u z0eGKSR=_Pd41-EDR}hi`AREgIIWbW`+~LtU0$d?5gHr-LHI)KyCNKj4Pc65^jpwJh z465ifWZl%8N1MUb}=nZc=$c*bk` zM&dF!CAePGk0UOFQ-Ry^@;;Hc41l}rzGJR^JT>Vj6PN*jm)*2*;E{J8Pa`q|AUBuW zdCbpujy9)#K5rv91Aq_Q^IK4CqTST6Ea~rwi5&J0Vly};D(@^FPBZ&vA~OK;vRhdQ zd@F$&oQk|&m|tv6HIJoI?8P>>zFxdVa!at_5lJj0Pw)2 zRijz=;W~Fw3hG@%Ww89HJWkT0K8vUffV#|Wkg3Ko*<&fv-b-8tz@1!P_cgU}a?UAv zg0Kt#JG;!VCtLMdTx^uJt;1x1!Sd&FbGD9U6{771Q5gVrnX9ShLSwdr^GhxAQ6e({ z@}cEb_^j(m+(%3X%dg|sR1+u6iH=)DWw89H^Nl)A$Q0D)6O{o_m$@8uj@Hw1v_Mz} z%P(wTOvj1J0I17c0e5gp&r|~&s71>!ATR>}KY75AMZ7|&No&TEdo+6T!Qj9xLzj!m zc59*DY&GU(=plXTnhz!zepuxraGI}6%3+A7jfSN3F%)sX4n+*_K~v7+Q|qG zk25bAK%T|Xf`dxkC&y?0k|7|_Sst6sY1 zV%$fOZ0LQFY}l3Fkm2U^Am^^}aH6#!k$F9g`-a&Q7h1oZ> zFs(*s0XK%|h$%Iy5mnpic-4EM%r%*~WX(SLrlLup!fhj?b`61`y$`7NhWD5~a`bej zGASYtfyCym+*Qf|(!FG4>3Ta05qO&g`bM+EU&KM}n4c$848YWnK447A>3Z{+$e3xg zjw~ESKUbK07nx%K=3e%|GuN4$X)ZY4-b>yXfVbVlmdh}!YWiR;Uj=_ZOJh%wc;O%w zgk*a!>IvU&;YhD^daSu6gzQU@-58$jR9^aiAEIA6N#K6bR+^x3t{; z@G@WwC_SPb)qs>59Tyk*KgfJ%0O^17^x!O*<`ot{Ocoh{#aEmzEc*5E!sAEDBLndG z)29iKhv(b%smXe0VM4|hQPPFgUn8pw!0L~mCamg|iLmz@WRC&Z`-#(qJv+A|41R(P zG5~|g>B68+!U%uAP5u~wzgM0n{54w`O;t0rR`|Q*lEGL-<803~W*W1N*1~bDwJzVY2tMkXKYu+s7{89C*vWZ2Ju&t(o;^nM4 z!lJwJ9qn%X@8yFU(CY{p(;Sx0M-XjQ^qX9=&H$Qu+iA@17A$Ob7idb}ev*tc0OM~z zof+>e)EBT=1}hw`%72HPGXUrH0p0x}N@tL_wcvNZqVU*=-g@dE4!W_AP_?)Ec1`Pp z9CXXXC2MvdNyR0BWDhS%Tgjo!d{4_viO*_;PO*d?^Pe)zk!RutrRFNb`i#`V{&5SX zm2p~IU7`v)_dQ%_;L>!u$*NuHOD~suUr163L9VlZPjdQElGA-ZtGTz93v(7e&B5=D zNwgIM$IW9fvv#W!lQ4L_@QAFmCu6gAvA??}n+x~%!cG-qwM`c_Jh|-4=)~XVo zIX3Q@ab5zmk!6YjxW9X>AUf0;KwU^E27r3bSfSE+iBPgj2*-f=60xCSv!xb@vWE7h znLiG_9j(t#bx>y?75hq`y5;PzC^Pj33k+V;=Zy0y6;c9V1#~O1qZ+vf@2N ze4md6*t15Ja;8zg@8rb1^MLYLMTC_;QmxeP zeH#~fF;kDIXl4!PPZ>ZSyQFfgfNH2cufRz2~W z{Jd9fLrlj!g669BlbX!Po@b_gWTMlaUYM<)5NCkrs(tR7=e!XXdtMkNPwoTS?Cm2f zJIjEA!f0!1w08gG2sV_ZuU6~h6wmxIt3U=2X=G2A*Qs}~!5a(wX9Q*dV7n7(ys`$C z+avXt2+jcDcaLhio_Y;p-kTbUSdn=WjhCjB#shQYT6xyB1o)$CKG$VSQ-0e&02#TZ z=|Ge|OmnxI=EyBgM_6pqOJKGzTNp4~MlD|%5cQq`)D47U0H~3DNe0T>T>$r3!ZBdJ zjA(EqTMKC4LJQN(2lbInE3Lw{@_zZdXj<~y{-Fq?W{v~t8q$Yp-7_ZBa)iaSyaeV& zY(_Ew_amED21HFOfO-j`7yxQy)5<`3(+c2TN;n40mk~{iWNQKKyT!C50@Up)f~C9Z zPV>lYyE!HGt^M6Kx4s(&w!%I7UjV#qR5J?z6$qAgL@jM(BM4}Vu{jAuAoDWj3Im8S za{Dt6r6!jJ{BZ&@0N}{|q&%QEye#O;3CaMV`$n`qOSzUsn5G4$)&ZE&jWB5Rr47DC z4ot0ZkNy_`M>j$b*fj)#5gr?t5qjEcg!-&F=2grd1`uO(Bg{crBg_E4hJXwJIJyz$ z00Se;fWD5P3;;T^5h~@HvjoX6v#3UBQ2}%3$c_oL=4KW<>I&^c*Szr!FvFDu=gV&J z6QFy>394AI#2->i9J&ARm`+DlT!bQ-&#(o=0FsQ{w{f&nFmH^aI8mhe93dG1a^x;~ z4`kLH1K2MTmH}Y*kLnbyDTqM^7%!zodP4!ySWFVWx0RYCAG#*_fHO&XR#5o~(6N}L z163@TWOs}v>4>M^QCJtL%spx4btC8r&VLTRvQ7Y)n1Sir&)%lu6ZHH zOIP^_`3-!&q{QRSNy~x)BQxKnnHe7r8iS}Zt|%H!#WgEAn8*MEJ~!qxN5gfw>H*)$ zjHQyjV#jE`(>Rf2rrn;Cti?l>4_#AzJDq9zEI%b3^YyOrFU zgppF}A{5g+nGTi#qp$k zHFv!N`MJV9@|PrHZpQ25QK1zQnfV)8gH6pmwL8~x10YMv(<~c` zjcomlW@~&VXAD46NYfD4d^lE^6{fh zY#>iPusm8H+38e$`t|77gBoCT6x_ECy!9>ZK_FxFi5Fg5w< zJTgT!e=ND|ldurQ$5SS8It|y@MB9e;9VYARts}Z>QGa&L!cQSL&$UnK55Vk**QUe4 zD1GGES2f4tlYYbUuG3-^Md_Qf*`8$pzIR2-UwO81WK2N$E6f0=9#G#sidJ%m)_#~v z)zU+2r3cRZ-9840t|4*g{X44n_@qWjy*swk*+`{sR&lKb16s=nS_gf1P7k>@-=@y3 zUO;*j-a9(3!Bup1{oOS$c^%Zg!ae$5fZ92N>OGV~K>7cs%8yU?l~cZ_Dn7|^Ekc-+ zGV85o08~K-d?`?@k@ZBSEZp}Kjsf7Jb27tdua>3#uQabT z{{avm5ifkgkmkEdja)s^#al(6n~*QG1I(H+f?#cl}`Sxs8pS$Ky*oiuiNnDgZP1pp09zj_-XoW*I)HEC7GmoX(5jo0I;Db0tGAmgY z7(k4IA>O5EFzrrk>4iLxkPHA>FsiXsNMGoCVb3Ql1He9W$p#qEt?~E0&J4s(%#&!5 zVk|BmXd_fYggCr7J#CLA^^aZiW3Of<6vSj606Rh()Kg`7P%IebZZ*mgx+7V_sZFYg ziesM0jA8&8MyL}aP+9ZHfIgX^41T1$cwKy@MCnqegvC5E7`MDb9WZQwa{XA5T9eXZ9f2Xa$5%V^M>>2_g2kM#wqttX6QCv3I zmJ3nLZsr98=xl_+fUM4f>cBCeLYX~;V*t2O>K{io(*8?Xv5>bDk^vz1j%013H!(Ta z_!AW#qTz{Iq^2;!*yv2N)j`Wd8-VViYrgP)*xt(YIrs^&?Ad+!xtKE5s-vimpC~ZA zIW@cyDzcEQxP2F)l9+EYQy75z5gI*?YH9}B?{Lu;?Arum0I(6dIgV-y=Ia;t$^!mh z0x|&LtxGmJN3`aCSn6%sn>PhujACx>BZ0ZuhpyT8Dls?r3^?}_aHE)80H-K0x9=a_ z+yb&{ZjN1%#9Yqmo&mTY#oY2R*4(mSR}qW>z(z5*JXm0ES-@)u$N+#Nn42ZajXPoz znm^`6YHltP7$cb5Y@>7Z2<`=tGUOh*<|kz>Ncx9yP}i`b+^;$tC-&2<~)enUl!_7gkk`w5sFtH%3EC)ZY$v!08Wq8 zU5de3nl=2rSF%|0-n^S;Mgwr!K0*%@RCIAPe{{_Zmqwp0zwI9gFv948Bd?TUQXf;3 z8e#Onk#zQCxi*hrYli_jUUK7_)TwVr^`q3aDg<<&u1&jitP_Axz6?X{(->bFqgr&NV@@s0y1;)Q)~m&USqxV|uXl-%Bk zBcX(${{%yZ0l2a5%6+pmy1_ZV0`Ol1V8F~NC9Y(zW5O~%Q$N|5C*zjw2i*ax3_#Ud zl>1@`wo|Hkrq3dI1|a`1v8X=OYm)u(47L*k@vqx+3(Z+v>o#9(J3dL*JodvdpmkW0 zldQfy{gPJnh<aVaxxuB+US%$6-YzooD|#VlWt!jszobMUNy1 z1AvUfiWDR;(=7yGFt$vXNA)Mg>;{r%Ft$v9oAdWJ2*zWH!C-8e0E~PlJb@q##+C^L z2{NHZ00scCTmD8W%Bf4SIq_7|X8`(knX zoiP9}Hv2~+JArL__14LWY3wlALLb z6qcV(!VEz8j!|`Sq`q(zmxMH1bBhZT$Lcdp*0C(*HxY#aP;9Gb>58!^t*HpmP69Ci zknPBf0K^&g#=Mo`7LsNF(st^6>7=0|xwL?HcXu+Xx{WXl05fvYYId;PV4>ccWLKCO zv5(Xlj6;a~FpATdnV7?wy=Yc^&BD&1K^CDzq}{Zn&%|xG5}pW*|~K77h9e7Ja2vMG>-5Z2rXtX*ZDdIY_&X0 z6OaJ_A0e&UVmxe4a*Z4Nb*%AnecXv2#%kn7ODD$d@2+{o7dZvw9+MR}X(G0Pt{zB6 zKSu-TR&4-1G|Ijuj{7zQUq3Rt@ks`5sxO?3!ir*WOP|WYJIRhVX67Q}orMXz=6TVi!T`Mdz$sS87AOd&(Z=*DZsrkXSq;6MTrmJw z_n&I6j-f(a$nx`3> z*TivyvMLOGj0`XU149=Q2jM2$vMmSqcJgSu-DymquAOSnPS^~!^8Y&F834YqO!6;c z5CpBqEbwmx7+g#9{*z>Z0a%z>9@*#S8^;;U!w&&$M z&Mf|45ud^Gs(qn7KY27K`qv1}0MK?{>A1@{1_*i#?Hhz;0NBIJliSCe3wdF`NmK?v zeOkYMe55063l?rZl4g)~5yM5r6MCD80dksM(vq(qt2bvjv>9XW`DBg(n0wVJX0A1X_Dy4g{a#nY`6_Q(-&!3m zkWB_)^Npt=o1tng%g4zw1F-zUQ_C{FT3`;Ap%;)L24Lu?9#DqjZ5t^pFC>!;z~uLz zS|+tN=+)bc$r1ywbk~r+IiThWWessXZm@)#d`f{fnyvbL(=Pt*bWS2%hZdwu!I5Fv5RAd zrVZcQTAafq`_#mA1FNF*7%w3P17PS9;39}xj=Nr!70B;;YdY8&U;U6x(>0&|0y5=O zU@JL)hj#WVcB~Y9UKh`rEDf#rNCz48QO%&+%YGQtY&ojRMLHZNe14ibWB}f7jFy8e zk(zyUBK4QHV7k14`OC#w&e>q&}{ad?Zac{8vS@!?J-PG$#i*F`F%T;%m7RlOvh&l zW`_{6?;IFBPG@qyImgumqLp_Ng#l3PioK!(bdZGmRry zOoA~$%Ua{aoHK!6Ck_MPj9fbB+MQ1G@XSd!)W(L23<+4Fev@Df0H$jo`({;5*>!$L zGoZjD4Jz#DGWMNrO*73W?3&Ae6)x~@@SAMf>0IE#(Qw+eI=~TnYU&P25$^CS>JAH* z!9;iw*X>&cu@sZ_77pab8ZF`a*;F+HsQS=QOvZd~AjV{S7M=>7A*{TaIDB$qsyXQ} zpG!;zz$}=Bh%sK^w*pM@UL3!l=N0N4$P*b45sv}z3fAi_5pSkF2OC~&Imsr8!~jTk zzjdMI27C{e?8tnhF?AC4^8&8s6rrXG#Q;$Dc=7Q-$!g*{mm8&6O=2+s*7L?`B+^oF z-p1C?BHauT833_h%zJ5Brij)7HRynH#?mG-10avJKrGHpagx3*OZVm*oy8fp6GYm1 zVln{cQ=(12h_K%41+GTv^>szhD9AuLN}sDk3z~oF`>uKApTgh$5%^73@AT1N{-I@P z>-X?(|Eb=spfjRp`=<;APA!GpVwd-+YSRxagMUh`G5}*mRhB1}D}(+;93z;Y6K(uC z!59F{?yc-8j-F;Q*s+sX06gD34A3%eRQZ z02rf~SQH~K(02&N0AK~3<5b&Ph~s7E*h#E8Z%$_H>${}Q0JMvGD&?{zpq&@sp9sQW zSZiD2Xf`gejc0N70e;MEspcA3mSCBLVkRHun zc+z?HR}+H)Fh+CZ&6ceD&pSbz6KjdX05}EfdrPY+ijx;?JpmbvEEuj+!>AZGlVCkW z16jmtm82;z_24GrFc?{|0-U^H7ZH#F07o-8=y5UQb1x-n1|U6}!Fkeo_Ae&}17M8c zOLQ91-mAnWnYFX4NS*=6$Cq`d8Q7`$pZ4om3$mbfie5Dq%Fz(wtyBNLYyR{f(K=m$ zb10J4yVK7&8d=af_1|jWo8O~#`q1urmhCkOY~6@)^1ElD#d%nnbW=7084SuHL-&bB*(ttj!lurIr2FAs0| zdss)ZVvl~nTqsy^ACS~9kp<7tEZ8xa3E$FjbT~O@e{*~tJ0FCdf1t%O04D{tpQDgf zy^Gc9s|e+PCS?Yo9N!~gKjO)N)LxN-3TB|t+?mD=WCf%1?rqmx`Wa~bm8jp7mHX`{ zRC~b;l>1IipWj07dsOdFi|al7BryCm+WoMsyqfI|24JFKSl4|a_T;lNjShZbKwr)r zL1_{}UrXu?K)s*|mVTYh&@?*zajf|QOZ9(~Dg#h0D5L3DgQ)tA!ou(yNSXmi$EU~~ z<(m6Zn5P99gk@}p+gO0FSD(Q67iSt(uh#T+*ZhB+t^6S{ldQVSeMDo~9MAdmOSKk$ z4Qsi#ueD^p3CzXEPtMIFS1mIyqk0&Ci|e98A?b&;^jEPU8@5VgObm+~x^V-#dG)8U z8|Ym7l$?7&qk*^DC)QLD?uZI^p?|e`v4zEgjj3wAX=$wvVv^N&>g&q3-PGh|!H1ZW z;NIRUpt)ble!VUqovgcA6INV8(780A1JAvH^`Rt%T(xA*&&4L^?@p6dm<&X&iW6DH z?!_b3xhBql5Zzo5kn-=63j%@?UEwDndqF@}(|fj7`G{oIodl}vR%R{9m5)ePZBJj~ zt5E5a%}kE1OrMjL+ubXCvPQ~a4Mv-mKQoPT6_&mAn#Pu-iYr@YhUs!;>OxIx%S~EJ z#CXjdKZuneST(v6Z1&i~Bc(z=THr_L2lh<^2IrUceB%vYzdXS&3rog2{a!yJP5tP8 zev~Z@n>1zC<~8+;nY!2dQQ#?0YUrByrA(YLc}F>8$eQ?NN;&feQa?&5(_oz;HpLJj zL9Zbysf474u-%P{kug!F^a@hyF;=TdZ6q^bxby5@7gfeK?#X}YYKoKiq#@<}iO{azCV#&u{x`4mv|iKs4~7Khq;c(FMn zJH#=?Ab0MHEH1W+*edJ`F7o-@54)lFMY7>0OQM3r6*ycuaPd*Y;3;(o`}->FZNq%L zxrZlsRdLd7Y=?y_70$05kSe*dM+}%Rs~$*1GRT9SL$ReyAcL?=quIbV|EezZunb*N z_&&MhP5}-+t=Lb&#O+I9qQT=TsFLO^_9s=_E#@hNsvcd$QE;N4Ym}Y7DU)lIF_#Fd zhd{2+@O!u+~YnSy&kzAI^Hf6|t4p#OqofVpWmFvN=e#Yv{ z>Z+1qD3&g%WY~fUbt;xrU{6nqmg(LiS#x+&!icAgn9s7P$IIWYCDXQM516#{m_Hy; zi4yXRvZ!Khm57ClHJU#mUf*JH>u^ZDCadyQ(h^|)oR}po{HC(#nVid7r%L*lL>*wn zw=4;bc9I%hCO5xE%u*Km#Dd}@W8k`K7H&nV42i1BpdX^T=KOD>zBoS@o1DLs6O@%( zxF3SaP(-gUjiE$QP5cK0z?YAS>m|!vO&)bqL&})>cd8)5Oi?w-^*uO^cmi|q?ZtU) zxD%OeY&DI=73b_IZs>iHY`8^9RPJyjD11>h8O2lTkpF*uPUJ7}A3fjJY)mD`r+F~w z6fpMaf?R3OVJY51y>p*xfR9yq?3(F+g6OM*7#^RC=HNl5rm)wRqN#)+<#{S)t<+bW zr<*5`z13-KsNmm)h8)l&JY5idmt3$*KB?@|PbvrH6Y%+ja)?LU$EyqNYT5+DaG}6$ z=zRetw~tpA+Li6Dz1E;Y9#akoyD%`X(ZcA#TobNeK-Oj>leN2SqRO`YyG7f#lp~H7 z`+S3P$e~B*g{Fkvaq1TFni46KYtR#&Z%|SphyJG{S4qi1@FKsGvo7~-RTil0DPbc0 z#>ksw<1VKHpBz|EDyIj>UNt;WO~5wAUL~7$Ew*HGp|Z=Lzy`Ro=9+%gBisd^gWw&^ zHT|TL5wIj8I$~8U&TP!{NH=t6X-zh3FNnTF7ZrWCoxvxxE!ypq%c&GQ;$gK?8qtj) zhKIZ`{xZ36r~616JLJHE7PTsKHq&FJcDl3ba?#3s_27ib)jig1iDiuWo^smIOAXaA+C(^-^uIF-_=9ziQ}@v!Z-U>pdy+0J0ym*w=vC48COxLvLwL;t1Ts_Z5l+v!l} z!#kCmn+s^E+jd?Ze$T=oXCE1_QoW9Ga41}Q;PK6BRw6l1|G0r<)FoG}yRHQ8+N>wR zLg#$rK+ zt7ZC8LYj^z=K3B#P#vjb69+~hPy5lNUF_ltx)nhd_E=7jLsI=bmO$m)*MWf&IsZdf zBA$z`1cJepsOL&uN!D|jCz6ZD7I~ttz4&!~eNj;p6tlD(%$Qi5lSa6GtS(|I;=IqY z2^z%kuwhAExl^VcikhHVno0;w&^iQwSG=jf!)L$R4Ew*2wH-P))ybK5%hi1Ijk&hv z?ee~9lFL!YlLRz9Rk0+*jD!R@DX9~j4T5&*>}(TLWU7-OCRx27uQ@=E*PvM~C*9mh zZdk!FSVC}xdrVgBKe=6AfYgq1q>eS`7jQCbwb8<_c8l$iPPNreM_B~n$^og8%3VsP z5|XJ@EBo5P7|Y|zaipVPv&~i$)y7oa3b`&HovhOlFrTn|o+vF01|D;H62xG-LdN{$ zHE0$MHRdc%yY*Gsv4$MRzBL)Ks=Cb4yt-;ovgE2AGTKww&8=@rNQMq7LEe@$lj9hq zZy!fDMa{%LCM)i?FCg6`%Vo-JeX{Kcoud!QIeY7qw;!O{7ImF-Dq1{@trm-xopbF| za_*fP4LaM)F=NTX%}C#pWxLtRDf){3iIOW0q|Qisn=I+gR;c8C<(QdmqXbVi7SMCW zr1H^|bKD`&X?ChuCerEU>$=kElk4_^bY+JnUAZMCUD*TDIc|%(R=F$)v;y~s4rT*Q zTQQGKu~#^a!m4R;j%|v{E`ETVDjF%u!8NBIZ^@sb1^wRkAt6hCr?=ermkk5s{9$0G*<~XPx zm9PN=^U2!A0%px;S%BAYRM-POQTBzb{G?o7t z5n{F7U|lLfU(uNth%U1gT)|91kozhyJWj4k%If$2s{^@#E3RbSvw0Wk^*H6CjsXbZq^M4FQpfAXwaX(G2!4p2r649*eUPqR zU!w{s>MUhxDj{^1z6QqnR6Nksw<6a&O z%2N3(B(9`s{6R&G0O9LB6e<4$#2A@)m`Xg5xi$U;EdyW`}O zk^)ynWB55G%rCZd9D^E0_re}BDw@79{xZ4n4*f`H)X;Izj{tf@IaP>txCW0vofk$W z=ZU?jR5ZkG<;Xhs0uigTZTJVS>}XF{n_THHFc0aMBzcH)NFY!lfeHvz+S8TYJ9Z9R z9?}|8aJ4+RxI`YqZec;A%jZ>%EUBMYQOs9aP2?PUL46aDvGU6?6qeB6N`2!*cfRLlq=YgU8*Cfte5_W00(nTJ4VA!}Wwqxd~i?Dd+1iP1M=89?YT z&Ho6o9xqwY1`9Y7FDMez-vtiRob`F|SL6>1dO-oU z`vB6qGM$J*J2voh<~-sQJGDm*EDDl^p+7V0NHXuno-&Y-E1qCHGAz%hDxbRMZ+;C8%~d`kS+xT%D_ABk!#Woi zkkAj&u-pY?c=^jy^`uBO{;GHsvy)6_$p`JB^t-LP4Gt4CIA0ePn{X^~oT7G%M_%?x z@Vzb{ovhn7KVO$=X|3Ss`h$hReL=d0L?P4dDpSxD>HFR0w5mnjWhYC8y$!uDk`1o@ zrJ1CwT7uSde<|~${Zxo zxIOt6Krva#QxFVI$=pMl5%cjwRRalv%hYnry`WNN4(yc?f2s~o2kf!^@C{v2>eUxwZ)ACauujS4@d6ihlrnG>#p zRi~nq^K-Gu`9d$V>a^IIsFv9TIbvPN#?l$aFtCnb%WIGpiy>(F`;%=GQ&hwz(J^8I&RL zQWD5!l^2A@Q<0kG2r(!U|kaCvzFn zLU2pTY+ToT{jb?V$VVsZZql3BDhKrA!WKdVM2Vt!z6m10Af6s8OOfw3+aq18d2W=+ zi;G?-7w@pg+eVn)Qx@ETaxlp)Gpb^%6tBjpb{6M&Bb!y%LrbMi9_rZPkW;#{^DZS> zIbcabL9rUsLb%LxH|$k18E4)|BZ=izEm9EjB;5(RHa*M1qrAiGV6 z1bm9z4hM|fbSnGZ=gh;Xo#nTtWf)Ral#>r@IXN&qiOsT58x2k{TNUxKegc!|hjDV= zkt&)*R#bV)_lccWPnkixh}MMzah3R3P~0*lBD3_ilmlD@b%lFOR@`o1K)7HTMQOTZ9}446G}#+t^}W6)9s@=Y2xfz%y6cSk z47S3RhGbTvn!uu40Ar~{2RrNM7bh3c=ELTCk?-=pX_CvC)u^qp`i&%*%K-_n^^_%K zv+QiG;#dgF!zv$<=x-K63LR~@3@E!ez;dC9^;WQmX)IZ>80+%UiHqS8m(yF25O~3k zn9@qdY`SoSeeM?Pyf7+BpSB)yOjcXk3(6(;HuSzoHf)y`92Ru)HXSi# zpzd5kK3U@R#f3J`KA)}6J7sQ+yh&{2M3@}FPhA4=QS^7P(ME1T7CBc3G0B>mf0Fr= zrD$}j*?|yJW5esq=0DYF?~7!EkHhWll6Z+4l}-`m3Kr-K?8eBO#79oJWydt2U^1h$ z0nrQKbXBbN6S$S>bHbk!@(QH==DRYKd$(%xz>A=oG{4N6I=kTyel1%a?u#`J3Twj} z{FU1o>Z-A9-6Im3UnO#>ifYGj_;A;;%0^LtgQ$J#BfnO=lzv^^qr^W+;$bc17fO_( zM$X~HeXXKoKTWdHD#vd-Ek&O>17nI;6^iv)VqIzL6j>4-uT`ErT%H^{BsBP?_~;lDT0lBi zuERn8v1|VDU(nlG9mFK7x2LJe={^*>cSax`}A{SIH)V9ncR#(W285Ijk1OXETiur_+s*H_66*HhINu0+oT+ z*a(=%k+WK4`qI)iS0nH9w)4bDL5k79G7y`I8P%AFljeZDj*XZE7@Sxrp#DfwFU-`~ zj6jaA&9q9E>8&JNlzp+`^?<6&pL9#6)9zzPv>>OVO@9(?wibD%Z933s&kpskVB~fT zl2=9i;~&BmTvYHjxoCSzQD&)SJQ<&%xNRwN5pf0-3GU)%2!+q1Jzvj8gnw@Ksm?8S zj#lU9anM-v2=1xI)&b5-$n=y*V(0Svq)V>ReM6P&_Jh{e{dZhnIp~PVTp5Xh!C(=c zuXg${$i}ywcM?uyMnEHUn3>ZgQpgHDWn6Qc(}RKSIdMY%{9G)~@#0Bv{x~^^5bgN( z5dr&l+nDigA8%E8K$JC(b@^ya(P6RPTy+N$Vg)x60_&N>nZstxN8tQJ-D!qxKe%L0 zj-}(c$!y(DIEtXxlt`I8^njA9T*r|{Pw#r^RqV9{!REms*>s!WI4VrrBgK!)a@9;#yZLpW7oDF770F@5Twp%z^Ju;6! zxW&)%c~#bQdXptrWo@ZGQ`tvCm75(Q@D?3d?_*rdMjqWHn?b5P@$O{3nak@d`X@@R zVm9-@rUP^J$wuWmOJ%Fg;Ol9K!#Wl$0+-2MU6gf4YQw zjx>qRxl6m1+}`a-fxYNtNFTM$;=+_B3N{CGu_D0b;rgEVWc^;7v~q_{3b#hvbvp0K#*uZMvE=~6>X0W!v~d$t zuC7?$6Q8W#ZaWfVqmqr=cURnmM&)a7__^o&Sx5`Ig4OaRRl>Kg>L28gz zvR37?(%H3{1i|cLo32l@YEMDyxwmZq95#t6*HO(|=jKt@rR^9N9=2l?a}O~~HhcUc z(SdTJ#p71mPrjjJcO^r5h=?4`BmAQ-XF7G$r!w6LW}6ly7|aO;iJQoXtBl z7o^=$$+kPp6!FV6Ervk04Tg%eDtv>$YX5p`Mn?s?MB^bgI9ibVX?s9dUAcBc#d&%Q zJwxbHErZy=Pyx29{5dV_8wF;LSkY#{5ap0{J;%bs7JykGqTe(oAX;%&Vx;)KcTbG*`6KHUS?bk*REKifobk4<9 z#j38C5~`r4_Dkmn(wB-^DZY#p(<<7pGA}{Hufw;to{&~gojgR1;%i@J?iD1Mt%svS zot){KSU5Rn4>jatRUW&h#zP!e2QkU&9e7KCL zidfZ~2rMV-d*YMzI~+fiy>e**xr&Z17DC|41icf?qHOXg{#CNc1MN>g0M^!6pE!qw zDUC^7kxOB)+*y>mCKHEz*CZ4|7R5&!s0CzGF5LvNAYAMa@~@MN9at(z<)F+gL!4+& zB!}C=nyw<^D&0f+B}pE#4+Q$~5bdGlc&N`Gk<v$PVWQ2hREOoMXeT!s5*i7~{Y_FS;%b&rFypMi2Gx`lLlW$B~c`jypZc$_{7h zQuOX9VR&UAtLf#DPH|g@{Vds9hUv;ScT1)4U#8%=F@9X6m=>H&T(ZUu_-|(t7;tn) zMK0Iu!aAQvm^MG+q`#=(ZF12~c2#GZ4>&^?p8>Q?X-y5H%4;D}(~3KAs23N##wtRW z?G?z#55-9cZghZxlmdT_%*4n?17}z}i}VXJrJP*WCq;4@a#lX~))y|mj7@oX{2G5& zg1W@~KI^1h9TKa0V>GbiiMP^d={A2zN>T40n}&$eOC6&n`KKgV zj>9jJT#sXqt#^pfNqNIri?Zm4S!Mo;B>TDVSd%iK9=PR79O3Ik804U1&C38K^}F7& zy2U!y+|Az-W}pZ5=i$X1a1D0Lb;XS-@sxq{t&o|F-F=&QrCsaZ{&`&nx03g&=DTEJ zDUNc0<+&*}?<37W6RO8E#`XaPx#m_Ir@F&2_s%Jrev)}f2*UbGb8pSKzW3pn0+>9&!_^N1~ ztnYQ&pC6+w{Kzj#TR7ex_vtq)O4^du48l9}O;-xXDZ~bj3fn!kG*b>T%ieX!%XC47XXR;_-V`V-~ z>lq>NXcFjE@e^V$!jkFl|AgveNp+zAiuc=m4+$WN5Ok?qu0u~-(*b`@Ix*LIL zq?@?_O`>sLw7VheMIVFFZ;ZT2HtulAvA)(OM;1LIS`=K;3}DxgI!eWEaF0);y8%+@ z%%`%I3~OPOM6yEWk?|Jg)?ufQU32r-Wgx@Hpb_dHkOA?5j5LWlZ&HDo9sxJ_ zB~~!J6pLm0fq#>1-06~M_B}?6W%_*v zuxm&i^3JKe(V>C(r&5g4SGsdj$t9auMDwqbO}jB2vNPp)J9kF1TtsIN)2}n^a(&!% z^T^`7tm9%koToDJ;>5}Oc(vXn+U26Is|P1cuHGIHlm3>RM0tS3u;PWpz+H6DO96Kj zo2}sL@p&w$z>b$W3_r_wt1xv*;rrwg>V}_A*iS3_?WbTNI9$k=?gAF1u4s7WV-HMY z5=#Ow6Ju5LkbX&$%b%gIgFBruHt#5anPq%=UWtX>7w6{*MNG?|mc zDpy?momBlywMMxBKh>xm3a$PSdaOZ-F)t)=-?9;#kBUfYv3iaB5SFbt>lVW_FCpf@ zVh~%ZAHfZboW>lM0P{lxDmM36b0LC|+H<-%(i+H*l6-+>M;994x`qjRS3_`O3S#pY z?!50$P$6yTeSzx*nkTYX?Z`%@;5c1x6j8LUA#GGgZvpdgHqq4z(Jwb+aE50dHRol8 zpAt&W&&4L|FeDu$6ZRe(^JsApySG@*p%*RmJBL0xU>K*1JtSN-2itcmB!&9=p7>-v zcadNz9Fp2;LZ~Uause>#B@yt7&JYD=Z8kDl%k`f){@=Ua=xBW$AiZ)0M{P;vtcO1e z(1r1r$%S{j8-?(Z_#k%#S*#1zgIhyP_LdQxp+!LRW+?-^qE;CjD(NMiH6Ta#9i$tx zrBbGpIXhYSd=Kg6&Q6XExAgJ{3(1;;3jT{E7`2ty!th?QY7wcw5+*-Ln!UCW8z}50 zm|kk(a@d=N`3MOY+d#A*fM(w;hTqV*lJ2a3?3&O29s2=6OtN}cnws@`v>)KpYd?Tg z;D|mC-tb9uEqC^l&DbNkpqDwJjU!B)7e*!L?LmUd_M?qSy(%s4gi}sME;t+5Kw!N#XnCk^}rSxVS1jqp^%iVfk3=srO5$N`n}^U&6kIexh9t&$h^NtOI%+ITvax z++(uht^-&psZ*k5=%h!MDINEiIfXmgO3m@3Hf|4)wRbAyWxk?+qU4J0>MG^-CB2Ff zE%)%|jp$re4<~L{LU!wc2)LB32M>$-p{!{&r*5=afg|*9?Dm*vbc80yxY)Okv-H;G zqmy-F`nysFSPElZYfq}?e=1e;IeLj)NxnWZLgzoMkq^B`&6Y^>4RCNzpK07D;JFzJOiZU(#b8tVnWY%Y20d!eTYxYgdF6 z{;%ch;8u`WTi2^YR$210AYMRbi$IS^-z3e!g(X@ir;2BP1sbSn2)g3f zM!`i9_ccyp1t1nvq|&J}Dg)CcmHpgLBBW$G@HQodqr{wEp{RIcIL=zLHHYJYWl23e zgh;$56PK*n%_MqQnT$dVL!M_3J24&kOkA>trwcpw=@oZIJ$Ib@DbBi!PVIz>!*a4* z)+a@xFGY{~IS&5{)EHbXIxvS@i?fHZfIudiFzm&_rgYrJ@p47~M9CHVlnA@Yw_76V zXpCq+I^$Jf#^N3@0N3F$xY$MOxY*G9BH6H;z66KP97q!*BZev9Ei5L_?<~~<9(hx= zUoqC-@0G6RqJrEK!!?^w*o&M;Y+&CJ@(utaS#H9C+?z{Dapg`I38lnFcOrCrNfz_6 zCBBE_D@eaonT~c^dI|;3j$>I3i?g|!7(Io!Bs~^RS17dnnrnq#zSPF{K1B2)#W7yu zG!L&Q^#KJlw%I>|Ws4h&6Ydt2GMSDL+0tODgd1G&qMh)V_O%%0%AC1@DDgs8(&k+$ z>Ji{^BweuoH@YP}Rg^4P%GSmmlU9DND;O1 zonRJaC_bju^BD%Ta9-BDPAJ%;xrDV1y)Tjt`!#XaVMZr&oM6G~F|;y$i47gM;9Xqw zI=L8~AOB$%`|*A2u~a#mXPYOmkkT;)!xYSQ`RHWbUM9?9l$Fn&ft4q!SQi()#v&{| zQ>zlej(6UBa}gB-?i$1%6o2-S6Y_%SyX1lc=_grn<2}h)0MVPVq!u%9yu{&x#m32f*2e8mzDXg5qip(ho$6Xl!MDj-D+|p=+TDnrDmG zik7R`+)a*Zrp)xvejaJ}D?PF0jX4A{<{rw2NjX+lO7LvU0j>#SNpo=4TFtcZ+^0lD zd(j!|#C|YW7<$MXk}ovtvp!IfIj?*kzfL z25WyGArrmn_@(_$XO3mc_<4UIvn)L?k_`@|ayO@$nHbede3HfKCe!1QlWXJAC<^GSH}HK$kPzgcaGN4U-lMc z&3AoIe6s!klXCyQJ&Kps)W7GSk)Hc#{W={jC2O;h$yy!^l3BMigt?{@!FiNn)(OQ2 z$)kodi*q9zGc)y81A}k*B63l|+vK9X;b)nm(zmv7y7ZO3i_t7IFQ?;;`@z0dg(HIn zq*?zYS!B8-8}nU#`za|=Z&?+IOWl@vEeRKSslJs^N<4K#dD=fq+64}&Z>^t_W^dMY zbN#An`Xcit5-;>T(J9Kj{nVUu$&r35Nk`pG-yUwtwe=mj=1LCa9Rw-iMaoGcj)Gf% zomWt^d5=gEa~XZd8B$5;7=pD!qWE7V&0ZH#&Q?@k6uH8(;ueLf3O$yq)%P*#@|K*XqAshR^9B9(jCWcCEA*%X4hUxprP}Z;0s?w zCl@ncY<9CO7JX&vB6pT`o%=xCpUvqA|I+fVK`Vh)k2D9k^(iEc#lu02y@SQ5V*!hfNBb zK1r(EuvAL{Dtf(5KRKxTXj4CxRmPd@;n6NKRW>?UV(FI_CrB>cu7_LS?6TZ-0g9Ws z4##b5p^p2Q;bpjlyeLI-*$#PGWO&gIL>8a-r_Qx!npg;m)ko<&EBeJnuak>!$0dOJ zVFh!H{zK?I+M!5Oh|b*;%Nwuv#Jv^u*#-}wa9V#zza+S1%_$sZjMv}cj)s%~Sh#zz zt?D&ZGyVvAvf;L$%D%2?oV%1gAH*^DxTSrZJnm+>8*8R=z@2+f*6r3-Jya8*IAlLO z4^K>~gkwuJkP>2(x`VUJd6kY_At3gA_27ib)w`TJQ(|m%hs2=e*u6I{+d8%Mml~7# z3syqesvdjH? z$TgtSGOqFD+XDA`DCS+o(U@wnf1E|ws`j^~Z2gSC1=zNrk6=b5E ztBQ^hU|Mnpi|Hp8=dhvGp1@+`u##Bfy5{JwqqVy(ADyh*tshtJv`AW9VN z-zo&achQB;k?%H#15lPTE>!Sq8Fbx(>oc+e6rF90(VlG2@nSe#X<&)3%|<5joOVe` zKDuBrMxHHn6mQYyIr@;CbC*PdOsqeaqrypK=2j(>Gv-mWfmmk5S^#;HVFz1zGdGf+ zto}%K0sdn1A9-TbmDi0(Y93E&y;_ScJj;^{6lQ89zl_x61ZrcCpZg7Sl1K8 zaY;b%2+Gk$Y_G8F2s!c5jO#QfoyePFuaZsd1v$ad1d|T{7ae=+g*%S(WZA(3UJp10ejFDxF}hmCJQE-jq2FD3dO6qt%#H z+rcv{4)S0vSp}lI-i521${Du1pOOpd-1+VP;C!)&%loEDE|-0mmVw>wfcfB-faoB9 zuYOXCqb?IBy($TGtvSHjOVB~m8Wq(vlE5!O*#ayYJ+XYyFSt{jjmsbEFg{*&o#1KX^_N$>xZKo>TJJ>?f@rml|u> zW=X+i`dbe}Z)y&bVv+NV4OM0dTd(Me=lrI*hx7;d$JpgFSr~D89wh1-&Ao&w;r?Qi z{#iKnaB1alOPD!CfT*vFUHy|KnYuZDu!{Po^oR`>VlzdEQjRQk7f=?``X}*#&WHKS zA_VRz;RbrD*gQcN%GtaZE;te?a8hQ5fF+&KV5N#@!HKJKuSuF+a2)nz99shCM5$%G z%wU6elH$U`)I(^u(Sj`yY=9$)&R=IV8f*+jyl)iP6HCwiINE+2BX2N46*w9>J6s%k zbVi^6v1>>kZNZ;`C~$kxg>(hq=30cp=b#qh;3_%LhSR_7-*ltXD4>FLQNi2fqFwXY z($K(-3_K7zbGFLh#&>{Djq@NBh4Uw*@QMu{?s1(Q{2%ZCg-z}p$>~KNk|H9=At~~l ztR_+ZRI1S{7>cricEa{7=K|QH)Zu%vp6aps3^tHhylYCNOs=8UK(2DPlEeH6pBUSz z+@<7TDAB?BA`a^_&3Y#soEP!e<)d*VFB1ksN&vcbU?VP2aB36I2ikU=+W{=NR}M&( zT$x%>t}W-wSo9FdBJum;&xY6b}uK$h_b})`G^bfV50b?7CMw$J9=`C zhh^aiiYm9L${fB>-xzt5Y`i5+Ug4f)yYT4Xk_^F*M>*riaFiafL1K0Y`)9MkJBsS@jD#aWu4C*7>?9oV?D{F0RQtxD_Nq?L2I zvE$!k+O%d=vEJ6sWiqx?3B9fP1%j0Hrm-RS7`S-Mz(1-uzeJ>%@7x&~LynP6Gt{|F z+jPvB;)jV+!Zq$42WZ}^K1T2%Jl-%?ranzo`ElZ8Jzd!{>|I$UV>^_i_Ol&!P%Ruh+>$Q&diP>fnK09c>d!pHFa zmg$-1obLX>kFNRNf1urZHY20p`0jMKuG^pBP;rvGXG6`cJ`GT z)EJx(Zq8}c7sP?;Pxym>g$q5`KBYe(=bq6O?co#$mV5pmi4yM~CvmaaP#$wB^NRuG z7=wTFatM^#X$J6e0x|$#eeAM%+suGoMNkF+-8ZsTD(PAVVJ&hiw23>%A)2hlwKgcf zyXJNO3l4R~d_y1oF9^1GtdI%?JG?^ea11rA(Q08sSBL)y<3>8xz%$Z`K zNAnIsG63WlYKS~!XpAB3y9vtxu=~egjY1pd7-C#bdra*FKx1f9@DuucF0CI!@Bp8RGhcMRgJlI1C#sFaB zaJeB^U~(St;RIyB{2ATeK)9xdBQt-@BWY=A{y%f{{O@4;P-|ZK)iuvQABJ|0KDfUS z<+d?GDF|%s$!cq3aNk}G8e1TWc{=lh0fczY7=;L`+z{?2!Z85c7#wR>E^lxlxDing2PnA!<|#^D8dNVl3Je|1fDop?ccfbGj)K#ju-Iw%E!89r-#UeM82BNVPh z6tkN?f&qjWhZoEMSpy8<_7IK%;KtzvGjM_N1(3HBk^vyc-~~yU2Mjo4F!!hzlo&va zp{Lk6UZ1O2vTCu=~bPg9WgP1{*x8HaHH`2*|4$+6cumx6wr~ zfHY(1k~%#};SIcD7IYs$8342~UKNUrfk|e8pGjZ_0KQ}Ny4e!1IjOBqkI*)~$pC8% z9gv0QjMmWn(KR1h%MOVAwtoOKh7O2>Q3ROcaW%y;bU++w$s#X>c^q8@14uB2%0C06 zzAylLBEc8{Yz!Tc445~&0Px8KWWf9x+2lyL7EnJ%Q&Tel{V}u!aR(cHs+3>*yK6pt z7L09$d-T5mIfk}i0I5*0x*t}n8-qCn)Wz_e6e5)QB{~EK5M>NCV;)S+FAMq0gk%87 zF|-BqklqNhu)jiB27n#CEof=ivKT)^YfS9~Kx3$uU(lFuPt4V)#3K1n#Y5Lz{a~2n z%Jf-(G94#X#!xMXu!;t&e6?ET7^>xvyqKknP%QIP%q<3xW(?J`qn@jlU9<)55|jZz z$51Uh>M5u$5WxxcA0RG0QVH05>qx{B!?<#^QOJM5El3d_ddW7H{ti0jV%B$G56E7Ie6VpePm? z2&M?;`TG(&hFurlg$l2*}S;;Ja~vzK0<$| zP){Ebs%r>msTPN)@0(+#}xLa;qxI6+ciW&R(w>mqM)rhlqAfJ5Jxf0 zf3Qd}K!)5lbcTckIfX{$xon{b=2w_4PGhNx;`I#=-idiB#&4<5%uMh{V``$=n&NGm zl0S&9YBcs2Np#mdojz-0w@+!l#T#HtAT0i@R|Se^zK?mx z0J7W@%flfNYe2f!>gismZj1FvW+;^#(PP}%^#$kdP@yEbDf?=fzH7e40kTy-LVrtA zW?9_Xm4{LQ#0K-vdSB^f;beub>`C$ovo|z!ZNfpu_ z-iFhi7dTRTzJ8J!-8eBZd9;qDijo~^0&HGH0+z7G30xV&1YL6{`%stnP4oYA_niTf z9o4x4| z*nkn>0LCDqiIR=6MKHiS=VoaJ zU8n6!HkpU?Dq80u`D@ByS)lBW=H02;~i&=3}ebnp;3E>0- z8UCSUI6lzN#2@+0F|zB9+3PlY@t+Px-I;YvgSI+z<}~Jh@vJ@y$W}7jN&SEclE!lF z6Ti=FopAX5NL28!r`yb@y#~6nQL(cdvROHe_^b=GwONF5A42(YbqzH zOxj64FX(BNcR|gWS@Ijs6!mZF%hU;z3x(> zenvf*e8d=nQgvI7EFW)Rbg%Y{Tq@UQmBZRdBP>vtar6}4`&J<}uDE}owxwtZ+ zScFMZ$s0ypK(Wvu%;l=YLjRNG;^F_Af-%_{+x`!qy>(Vvay9_}qbPa5`QBU{8qzb^G6}TP=S6V4^rIIXS{K1l2>C3L4OR$jqsLPaIWRU;BZZi#2}Ic0GoXju`%n z9qT|PY5~%^Lm*o3MPSu8Sz7P0I4u>@Sas?b2I)Li!ItDdE7W5Spcg8;+%4 zyqn}TeyVkryjst?Ka8LXqG~a>GzceptN5&#k?iK}tM1DDvXNuW89zxsnZVleu!H^+ zBeC|V=S?fzXpVaL*O~g*Z;;y~Mz)(x-rrMbXC%~WgodD^RF9XGCY(IcggtgLE9B|9 z0-j*04wFfPD9)L^Pzz2Q8pR!;(@c@1HHwr@YjS(I3x+-1OrJrS(216F%BK-a?3Y~f3?EI(17#oMl&p>1OPCI*ZZYsz0F{q{3{=)ZRF}+I6`6lrKioKh5kG9Hp8q zi1PH=izq@tAd#L&NO}@R^oZ9WN0ze=PF=}F(IAAU%v?bQtUOyG$ita3(~Lo*rB@Gn zR6k`{#n^qTS3TU~WWtqF)nniU1L=8e+3GP4{mhW0jzOKtq|lV99=LP)$X%c1R}VJ> zB4HRZiI;8}Zh~Cs(MUr+`#(4g$&csskLS4EZfd%}Cyj(*C`KbwL`9CyksKuqLov5O zru4w!B2@QdzGx7|?88tIEzcTZHaByer!je^Im5O~I4!)2Pu;hh?UmJ`j6-^TPOsx` zDkkn=f0J30KVZ5N4u=Ym0)tF7B~uAU-vy64N!~U=P{%PpG@u>5oXQl89VtA24ZXbC zG=gp=brF*yO_euJ!rWb8$Rs=|rneW5#xCUi?x@%y+`v^lE?+8wftBvOtbZsr}Z zw~y~M+kImCkI*y;qv}Z8SZbLf3FLZBavi@rWs3Uo@@aj?vz>>o&Sk!75L9#K$w@S( zXvRIrA#*NG9&6f!`4~QP?t3z)y0Nub)8F9rh$BaL=xw13)^oxcmM9fmUk5NU{5;8U zLe~}btFt?@N6^&Wc%^~{fy{n}WyEU(TOwyz7?^r4GsuZoO9>A$0v>sNvE((O!y4l`mf1XD^&3_#4Z@kdmyTdYvg^UU zi1}qB$C`7@yr|b-8AQi>?%1^4+S%?myI9uKTD>~Q)lA*8FRvMTTg;07HLEgyQw{%k zYCu6j;(lKeH)dKii%XrcJS;&_f5$}8un6O`gPB3(zS|L~e;^bMHBk{%epBNJ+*b)l z1GxBvZ`!~b+BfnJ$UfJ=KkM}53bxVI7$n(UF&THW4C2k+A1xgdQ!B;tVG>~9L!5L^7D!>q6Z1;M>t1Q$P>GOJguIiI}_NPU#4p&6@$Bp}hvOPZmf&MAK)^t7N1$p)VFwt_x^S@ zUjj`0pl=o!aSyTmnTRdkL(k$-3(d0C%Qc)Q7Qevj{?PPgvPF-ZExhgYO`HoI8g8`f=Fi5@ zYUR%+bfhEj0tlIXN@NzFxXst<0HC znfgz@SL86E?zY+u_AjZ>_)WOe#_UlLOi1+0BGLG~D8aF>(I7r`Kc4Q|z5uJv>_a`t7fTIt$%!uoh8p8Y?rD~Mp3+1%vJa=8pLAx!FTyY^& z8Q=f4k6t$aA(}^&b1hz>yzh$g;-?a(XUcmia<=OB9II%^G-<4&GaU8V_|-qLiKP+X zGjXmnSXx_LG>`I{QemnlAw+ajxURhlVe&2@~wM(Fnzs>tOU&g1zQv|Ii8CA?NO zHs5eN@wSnzD=oQiRTeXKBF_%&XV%;TfZ~_7oUdtt1Oa;bwdg5+)H$^yYs0o?H_Ay0YIhYB|w4zc^&i>-9Dw|W%zS=@MBQ_mr0-j_jq42Lly!M zD=*tz>R$;(1E|vS@}NR_Ikcebc+@w)E; zZrxjCK+##p^r>=yI0qn?=fJXB4y|MzY~R*ivlR|yT+!3>GryOK3sQgW;s*u+>i4xyP7Wn zEIvD(9ZW#by&W&Ai%*tj_p7yFnd?B*H<%F`(2t*aNQ9A@SqS!Rg3$mhenl%0EEik| z_+0|h05JMumD%tbq4(pcHm3wY#4l%0iIG>VQS>tpg3$Jr75hIx;%Cxl1<4fMLt>|h z#7fmkPMrg&M_(Px16vvpFV%O35F#!g=r97&0H~CXL!ew(KG=~2qXF0%C8lQDXT$gW zU`op59M0p%kGO&upN9`O;dmc!_iN%|V%=%U>Ks-x_0zK7w|d`qW^8 z07ac4iW)bkoR&MKl!qhU)$g2-mZt&ValPU!03xIjn0pY01~B8MeY3#iG8%!p7olhX z6@8+4ss!LAJ4`(846>xI_oZpRn3ResB!5 zcUWPo-GHYb^k0s@)nWZOJ#ayT{1!xh;|8-?;_-SoOIF9E{+%hJL5jv53eE}?^mHNI ze-MraaN`aHW`!HkU8?Dz;eC8ASd2ry3>8g2MeNbLdTV_E*7YCoTK!o9p6 z&}?)CVAc_3Y7dwLXNpje;GkR&n0xelK*LmHsH@IFdT2mAwFfM~1o{iWt|1r=z*2j_ z0@#T90>Bp$kOqK>J)rn=+6&zG{T|TlAyWLD1U`vA?gXyv;t8n%7VQZ(E@$dpPlW3B zH@mWY2|)3yIsCKffdl|rd%kFGOxeuj)0~OW!H9o#JSRUipgpEXO@S~cJMxxN_ahJu zfW`=VcA#8kHV-;2Y7@a|02V(ym>P>GIJ_{fptM}p;eN~+hxPrh(5se|Udq(<&xD}% zl@%H;cBCOS|Y;Yrx+qNa~dHkQ*9AF=nbXdla7FB9IM2(f~4k?+n|1 zovz*YtE-+Rl*`ZGZ6bX*VQByxeHZMEsJKX8)QNi2SD?vIEI=D`f@_K(@e>^!so{-A zM?s4F=wL_E*Ms~u+1l~rPSVW4m&wREt1CGg@O8^`*eB~aar{?nAKA-?WOE+jOjXTwp|M3jI zb*Ew@&;hCa&qFq75XP8^b~=#bTyDcMnK#KeOf*02Y6N|7<}SFhPO-ZbC$GJ!V>y z6o(#QyjavlJnEtW(3q1N$v{qguIW^Za5R7$Gg2qR1=7nQ7YIoM$oSRGSrI9`-2aW# zos|SIO3SW|SCARm$zrCSd@N;W*4zTXO3N+>6BNkqn-$3}cddIpKNj^kCWQtul$Koq zNMsklolQ6zz?GI=0WOza0QqD>(g3oo?8I>+@c#`hJF^KGrAI(}Gn&4O>+g?-;P4`} zOZ1D-^z+|i4r-?_9s`gmI)~0~5uJ^hOU>+8i_DQ%ujC|$25nQi2Q}2aLxLRWIs(xE zXv~pLS}eJ+a`g-m_^A?&C0viT4EOZQV2MEpZhcM?UF?x(C{-G$^4 zsJ}fItxp5?rTeJ>L`3C5eVI@+fGXWj1yH%HJh+<)N5j07?5F4!uk)~ZS9hecB>C`O zx}O>h&0{!22y5xl?5D5^{S++#O7~L+K%7HW$5qr%S>pQqmnE;xXGPP1dg*@3hY(4z zQFJS*XAp=6K&AUBA1D`84t62IXaH8WpMqC>=+cI9AKg!J9j?oZ$s7>s!_G~&(_+H; z2#5(50OiFb0GXn5i0Q#qiOCSxV&WMT`d2+pV`)IWyqG))BPIvbClC#Q%8SVZ^2Fr8 z)(A!eu+m~$TWPpts|SggB-f?Iw7u2Wvs?V1spp?YF>z6B6=E^~;v8Z+y&^GL;uMo3 zuXeD8X{r#D4LJ%5&M4yzM4uju8GPIxeRZg$D4wvcT zFz+VTZ{58wZwTC*i(=t8T^!;#Q*;V(%!4lcrHjK5Wsl;>s$1BR)4+AQIDFS44!(n! z#MMs;Km&kuad-fpI2_2&2|@#qWN~zNHu84aBH{o7T%Mj<;LAPpO;9dm>UW+r?m~|2Ko8f^If#LOlBiGp?Dx9Eb{BJH-S8KX4Gq{_ zwvlXbfIDFG6!>f=9~$uKZy=vRa~XFN;sdR^Rhnc$v#~57mF>g+8U|m@VhdT&Y;11k z`|Z{c4;bUIgyyy#{Lk=dlMfB}T)c6)SzK-np;$v=i6m%1Vgsw$kkFG6el8SWN6|Uj zMmjX0vw_uY=@hD`OExrMbLEC-$klRlaR*D=HPXeTMFU#X&mu>9R6GqZQx9Bhq=3_q zoM<*Saa-|faGSJdzm2=7wTyO<4Gq}5aN`n3HXxx@ZCVRQ0Nqvjhd zq0{d2lf3i2l~vr%t><)Z-mBZ~a&n^qx9O+grIoeSa^pnBG}H4)g$7h!uz@MGRQ#g@ zeYj-1?JG%)2E?w|IASt%u;%ng(hbLwt4WFmq&Bci(8p1({;Up62CpS28gP2f#x+#P zX{9|};#~w<-n+<%28=dP-ohxXw3m?z4XC_$qZ`LiX>MuFZ^PUbbLy4VHQq$V17O`! zuOvMh(0lprqPMk=muM_BF@+m0ML1qZjx@WW30;phz6oDLdNjMC2_3z4n(+1HNCS@3 zpZl?O9vrJqIA1yPdtDGgWxkO_Xh7uJ4c40wnNSRGAvqe5d+F{Ww@x14Mus$CxPgbA z!+vWX6P(T>W<3|Lb^3g#ukJqHNj@~-vw?&6jy}G{J2D*U0n-qB7m3k;n0!2BigQ9m z{Wk0dcVb1N9)H&5qN!E0b-A~twLI+^HuLLDJ>qUS>vI>JG~BiSnc{&bdmfkqE6#9^ z=byi-o2i%LWYU3!4RL<0-{*wXB@D;wi=C||nBU=PP#VOswJr+yJVv|UUt7hAdiF^M z`W}R)0rd1|@N8J?99G$%6`(gYF){B9n@z*vUgSUn4$rD9e8#-c8nz7Pam1tnW~Xk< zV!$U5oCe_2pK`aYIc1~UfHy66n_ZmEHi6F(n`Wc1hyAw2K8e^gz*e<4dS}qIEv$?c$wKrU94^W+EI-)QC-3FFS|YFW`DqYOb&fC?=^F=BRkWdav#Mh8=NphX73=Gy?J*w^n}C5 z(a3Qz5bfv^C2PFvV@n^mtq$>)>|1C z4Z`~Bo*kCyQe;km$?#&&B-n)dc7{rWP`|KehuXo1`R3b$X6urUP2?XjIvPax5C4Be zhf|8UF|F6#>c{zR#z})XKfPziX_!GhgW&#pPtBgZX(=2V{+5B!Ah11lLalFa>fl5~bI@Df-o`b` z;rvo_r8Vq#@NOVoeqUysG>G$W_S6Ix;|wCanGw<;!aepJ1tT1^^;~9bD!;}+X%Oh& z?#ZbP0u6Hc4TeaA5ck-_Ki=Bh>@7A2ol9{QM_1vu85a%W`skjTI&;gm4(PiKh-ObN zx|Oxz8Xk??89Og%kCDF5Kxq)@NA}dr$(wR?;(o+Y6u8OMRd_^NJqmY}>^k%@e3)%Fo!t*uF*sp{v-?k$ zv-=y^+m3LVbT`O)Eo{#9YoDlD-Q1_~E*=_ad;?GBR~r{EQ#2Pl%eVu@gmnhPqCr?2 zc!s;Su-t@PC+)F}j%H7ej?*}IeMvW*$=wqe9Sx%UyaR+jaPv0^)*47B1g7 zZ55cwph9*SRJO>VvVpx+gw2e@O3{NmX^vX}d+398!+(=6F{D9TZ{RUlk=r`=v#qbA zO|8{cOne8e#rAM#bFno)bRm9+A<`hk4ZJE)eTXiB?y84Q;rAFH&7K}#du2;|VF8z_ z+(4@1`vK#lL44oZt=&P%0xT#ZcI96O{9^`8gMc@18e5>Jj~HgVO{M68?UrMHnIJjvC$y54LoCB zPi*EEDV?-`V_-B0Y>yrnuZU?y?DVth1+Z;zh1^xHaZ;iz{jqoYA|8+c4y zy(|Z7TX3Va?MZ&auxJq0242RgKCI!6-k8&ny7>0uD@AD#=LTLPu0GC7PUc)AF zZw5z$;9j_4=OhcUHO#s@np)>b>*E_YB6rs?)9aT%mJI#izVyf7Q1S}2`>w;Ds3BbJ zNW}Ed3636Z%y@P<B*q&XNRZvh*UxM1z>F-mv~CY~zNkx{91!tkXXov$D24?BIG3 z?k^rp{~oczUuEhid=>moTt?b;_}QUHK3Mv&sr$x)W2t>QN9|`)`@=HMCLMwnvF)?^ zY#kHfWxQHOgP^8=0KVvWoq8+&+&zfo5qU0&(16I9(@L`7xKUVNFN@QQYPGZ4#yzub zGeqe_;q@PlDg0HY{skWiRY#)kb{+m?T-vqI$E4YWnwlMx0F&Rq^LW zR7<#NdYM;pbc{!{gP}n-r+@yv=z1Ml6@MNw*|fHbn`U{-kbcL9A$CU+qXDt$->+3f zDn$&s!Ce!&nT{bFn%&n-WU~p!8(}lujl^g`?CPnzr^=gY(~iz?DP(pmnbB-y0zDeI zgK5~l1Xq`J0`EySG+;CR3(`uq(b||ereW7@hq+E?I{h0b26(^DJYKBLqF%pGH^0u*T_1(M{Lu(%*Zxlv53{{- z!h;oO=(|58eYcvr;yfpl`fU3%n;v-tUfz75<9G}+M1u?sHV)m>t)_7%Y0!Yi^EQx% zd;6}ugF;kbQv5h_q5-GrXKJ>^*BL47&qfooNxuz4-qE1j=4|qy0gvfNE(=hC2j0W3 zxdg59WU`?Fo9U+-<=L2b6?yIQG%}$9lc}FzH$?DBEM5EKs(Jc1Lg=?CthV@uXxz`z z#LEx2PTQlz{xnnjos90~Vx0Heb@VxSSmape`&jLpea-Z5iH(V_cy5%AXZnll z<2+94g`$76uoJoL%rhtx^pIyfX%OP{bC0O=byOey8;_9JJ?V7pATyfX&kVxF1D>z`ZQ?06 zGx$wNUHMDo2K5wy!2N8c>`5-HDZFJD^s~^tI$j1CFoyEonY;%Zi`nU8G3^ zn%C|=nlkDZ^ZYWBqXD^B{??EyX8M(6NduPG{r0dNt?27Wlmle9IL`74!NhWJd#bFWLR< zMsxZ;5~Kma=})0mmeXP{{HLTt13J55y65Ob<|uzbYBZoW{WbNCXyQCa`E8|C*d=z-c#3);MyS7nuf4^*Pd_0j=lku5LA8^hGkF0i&ruLKe$igBwRq zgH3auZ2HT*gvf6+o~Lqr1xituXz)0}(pn9B1r~_?-KK{5I8moAMXNrwh> zo^kxc`?bzv?T-<` z9pawF4|>)6O0RlPeFKt@-*6DloyJzj<1fa5-8l#2_qJs?(My?n{1M>2udM9a_gwDg zC7q)pe+Ek!Mul1G=O?iCGED{+dAlM zUFmf&_Uj_No)9#EczVSU#c)1AESgHg=`9XdT6j~O4(HDaK~rfs0#OX-L&Ty1RyF+> zveUuwjgI86=$!`MtLeYA_hJw?5QYXY)%0I0dEI}4&S~Jhn*NKsPO!7$y%Z*I|m;llI`r-s>ti)kyo2y;nO z7#Q3xacO|tt_^po)!DWd0$)sEnp%Ok;eBNIx?gW$Z5hv3X-y0XOaox^Rl9gCa3>sie>WT7XHuA*@y~Jsg_{LwCnybU?&(xpbjIO!>53ugq|E%`%D*7(=K*vq# zTmBy1&tFLQGx3g%;o95-~E8AQB4!^vD8JEWV zATeoxIdR4nL@+tNMZU;?xwR9bz^AhD~Q*1N#&KX#hBJf;mIhyq}t|K0_25piCTMyg!wRT+mqs zd%cx$lKebjX)4UxwpM2a7bd&N89#TT1$iTJXe!KFfK$xc-x81pfD`9sUL&p7o+03v zBL6ahX#hO&TH6f3J$%~8G~~^6Pg7yS=ss`1>rU9~Hhb}(WbSJOqygZ>`TGp<^zmMU z-bx^lZxDtCFqKMnj>B?Rri*ml1p5DkDHIAIR#XQ|<@n4T>@Pc_fu#^GCQ9O z21D7MsUO~pH!0v4XV-pD&@&}YfbTP@lgS;+Ut{X~A2Riwn5z8G!bz{$-dbp_;{J+u zYx`DyF7p1kB&eyqg2!Mq>!oT||6ZyzP(~mc096>s18g9#rhl4h19`wgF_700hz3B9 znJ$s>j1)5Q2KuFe--!of>t(|FEfRk-0cffr?ppp2>6fM&;-fA84g%0rL;PebnLnmq znreujJR+6%5P${%({?72USt!`dbo@B-Q$9IEt38o-P6E*nVF0GjDw;51Nx#%+=It@KY*vXz$yL!8~! zlz&5)G$mV^E{k;c;!|@p@ICP!>vdXL`{s-J%t0(a2r#s>tGx+A1CTP)O}-elg*Sid zR@skEY2dWXbW@xb+vPxdr-An}T@r2z4GwD$p1AzeVDQ6M&`~;%@x99sSZ& zLwt0id3yrTR72cN)9ysSG}RCvovGc005oL*`1a?eHcp7(MMvnedbn_@ zNh;X{Vv|o&ImhzXI7zkTA9XyFdpGxIg;OH3eM_g?>hGM#iNpaigGtQJWh@$g3%m`A z2Hc)8aa>IS@lvE)V=K{UfHrw5HW_V9FpBPJ;C|v2OE!SXV0dOgwin$O!&o5>4R9vj zp|uVUZYN*ubq0f8*UQK%ozuYi#H*7tIWLAVAPNmoCKiisk%nN6(e%V(k<++ii$!*4 z>gAhIEcZt7?%MBcxlsqiCKgNXSpFKtvR#U0T0TMQjk|!)@$6A(z-8hnopT8*FmQ?# z%;PiD&8CU=e)LXLm3PiwocB%iP6O`~H98&lEo+O5yje#Qb$>dif%AzI{b`-!Lut|v}$XK>9Mq%fV+8asvlX{w`+!yoOsLDw{JJ@J5II_eAU?VWi``{DFWQw?qX zwNyjt;cRGN6duwOFSKdk;8IUIsga#lJ$Ez7Zyc>&kFi#>5O*MHKw6 zYS*|;$#~yN?=igU9GK4#f z*(*CnJ@RV3x&1jOQkJ4{!7T84nFVgEybah=@g@>%b@S7aLK?)kppQVS2~Xdkz1gU`FAao#;D zf{cWJSQ2h-^QpqMp2Zh21y8-0Nv1(G=03#AAY1)@Yv-mhz%L~*4S+ipX4J@fh>p44 z9|!&lg3|!}{3K}?qiVPfo2@>yl+<5R&AFcJP5_(Zn3t8IN)1c%r%`X zUjmFdek=i#DY}O=KQGcWBXbFlqDY^-diVuM2@NQl%l>5njQ#?cM-hgGnNO6RmwH<7*Ns{>L`Vm@dmbffAWbKEiK zc4X@4%b>}lqx;O}f-kDnoC2tdny`Ree<^ZJJggZTIpq}FDY)u-4o5VIY$dHbk9jXB zIrbAn-~%K;0|FPHjf2IynkoVqP6pP>BZ4lB6^pQT0)FG&G?3u%sNoS0neg z4>-EG6DOzrUZ;tNSGRVxp0PHk*D|$jGn)3me1l$=pR$iI=VE5Ga4C=J10#^8>%H-|rG+?5-1kV|T|fm{)Ugf7ZONM;&j32Ro$tE|TgUHMI~6 zZW0&ap?0!2q(Q{yJ8)G;tc57EoGA!hMnW_obVZGAlaCcska{jj(SX#&No6w$q#-*u zQ;VCe;DbSgl2OO7yo{>H%XZAnR39dxF1NO~^jpzWrok^Z%`f%vSopS`y4vhYrW%~t zAK=!#MYN2$x?j{!;CM!8K}5BjAk{KvB3uSS%hN@qBUGoeo1{ThW6p_{hLnmZ0G~x* z8UT+uCsrCbSAGHf@dT#<_<2#4r(!n>NcW|ba~T0|%#qv7fV?Y6G|Qz-y|oR&?yGNr z$?X4tds4h-Nrn?3==7nY(+ev0FCxuDQdclnGzg}uqHt}OAC^kP=~h%%5t0UwV~*L9 z+fU+i=RthfYY0mN*e6$`N(S2SF&;ua8kGQM%=By4=oZ>TEk*pFsWX-##J#yF7BFKb zs);ZH0STTZ60E4AY!K9h3q*aLNufa)6^%GPko1i?+&2kF1GtLR?!)ChVh;HoLec>8 z36;nWzHyDfNI{)R$!R?RV9e?6nU&CKZ572~AyX$TKyv#maM}C^s4=HBQlSI|sykm) zH|C6bs(alp=m>N)YK2*$K_uqgDrKh|^sXB%@AW*uRRYoguvJZ`9sqjMb2(E3g3>Tw z)o2gS8(vuFQGFr}U{qDX0O3bJoCLX&sb>s1XC$~@_Z9(N(VWqGC$u0!l8YkAsyYlm zI^7%Eh;)SNOdcc9AgYSyjDA$Q5=_4s0zZzxGytw>&Nu=b$~4cbI-B4$0Iz1wXtA|i zJ)|}zo687z6%Et4JxePV|7YrW-v6;T7sUdmqG8&=2n5u*ChDwcn6^Psm@W|YMRp`K z2&1AR_kl!?Io#h6js|cQRhS7Ml+=yXX{|BgwhG`2WC{W#1qPmKPY3p8hPMW%oM%|sg0u3UmXqXP5obXKZsoy0a z4FD?|rUSr0dKUEF1f^lVDjBAUN%2{PE2%!GiRvmCw>0CW`MmBAFujtg$6dr>+O2zw z2(O}H+Ip8^nuw6(t3;C3br^YcrZ@B=RCi;CL4&9&8m9fIykXjImZnw55|{?S6%ErC zL1&V&1~T=dz9+$H0A9^7ZLuj=AL*5pY%U|n$=60x=$a1-B(uZ|A4FL z)Q*D_An5e1qSJ~_?KuBhF?J z09(ze9qk?O?t)Y#Z|W`7qfrT9Dw;EPy4#HuaUb;$d7QmBHet?43z&-Lj0Q#^Ai?*G z1S_j369jq=^45W<9qcM-5Jp8KjtRr-8*{iz2}c9C%G936@R2#*aekLxEw-bd2O?8Hr=M`W6WaMm=(>MS6V~dLZbT*SX@w%>A|4k zHrX}(2kdSt8kq#c(GX~8_8&#F)#Wn?mNRG%Sy0t=%qI=P8}kfKLN$&6I|qt6W(fX zhdG*%4Rd-!roPOZy$%Vs*;Rbj8hgdreim!AXj}BPf zhSNwIgja2k9smbDx(B}x;b{P0ZI2$nkEqsGw$E9aK^2J2X-gCXoLA->g9b0hF(Qw?pvNQS9ev z5bau}ovlN1lZ&7d+-^hU4kSVYB0Fm)GEx&oGIu5!8j#sqW$*8RTy?lDrXBW!9O7cE zs0+p$M9q{(FJfi(jg1>_ZzM>PT&c9Z<7n1s8CXoigRCG!y z1QR{`knbTR4InF;sD_Zaa(&qA2}=XmYEGbP?+qX0_SB_O31BKZp|onx334G*cUXfI z_tDGdKR{J<4b(yj3UqjH(P2erbF6zU!#o=G6ppbph@_&EfB}?<&;vY&fHVNCXz~~U z<`VQk&nGAi^HoWQN#_j@;a=3ANCOxZbxs${dDM$>mEeNpNbGzh7pk+29TQVd~FAS?}FD>`pdgv~`6LeCMJ2GHkJqD@}`DO25f&I@J5{tvi{x?Tq-K#=ECMV=M)S|ss@*?@Qx43mrkDQ5S9k8)yxaE_lA%06w1-41Ta-~U)$xiOoQ!sHR7^< zsF{nq_NE0)MHklLO^(G00SUH5f>l+N34#f7fv8U~DKrS9qN{Eu46Sq{KHF~U(}be| zTvclK;_`Y!2l-h-(g3oW3+o85k+6#_P zRh`Z)tiVBpt0KaxhG{P_BSaz!n(A>nMT3y4>X-_EPLLjKpRhE5t!kJqzy`wfpw|dZ z1L%r|X+fqyJ)9mz>MN$AeBw3qgI*tx2y3ajwM;!{C&YSSzQJEctQ8$`IRDab5)_hs zu1L0`!_5FgcWQ2ngsEP_B+^u;9|xh^m6amGb=wW}%Lz>b=!&iyI0y%wi`VTl@UJ2~ z4d9<%$t=?$G~ANGdJZM*DGHF4W;mZU39^}1ymUK+e6YVMTmy}Y251jM7z0#9rj0}7ifl(xn&;`Z@g zLU{)|t58{d;jk`eoZsi$&cDnvoBPU&{U2}@9ZYGzB4GkS!fy}>S2R0v{zbfbNa~qP z8V!P}XnGlfnO@j~yoiuAfUIcF5<+?+^- z1JGLuN(0b}295$~F3SM;Hw2~ua5Xm?iu*=@@@^{A3I<43NwYm~r?T7iVy14pqNOQo zfRqJ5RwYdbDOix^UsWqj2O!dv0CZgHe=}J$h^H!PhHyrjKIjh#N(0cUq#1&G()5A< znZPsvu1K2NeZ$v^`mjh-fGcg+VXyCQKD{R}v2N~xefqOGNA)+^HFu+8MRQcaa5OSS zXlV8eqS@;583fCzqK7P~>g^l?Y0%0Q9s777?&!x!*itg^e?)j1z*jU!jllL(k zDbRpIHFr#T3@B^h*?VA_X!UuD+X&4`>)MJ2X${xJw>Jjc+B=$qoh$fmL%%cMl)IyJ zK7`WTus6rw%(>sp$#3vtE^w(T!-fCNRtLMU%jz3M=Et4s&61w8c=;AyQOsv+U zF{=E6Z|Rm!?4HND*E){v6kK&M z2Xh)EIk9_=d3O>MRmXl}2pmQNG$4@JJ;%H|0=dRxKQknbBncXjNb88~@^#?`CQk zL4c5NFG7xADot`Now18Toy>I6AcA;@pAKWX;T-J21fv01{OWT$ST4>yN9v&jq+xzy z{qD?o4bS`0l%2=`{;Nn*uRGt8>*xpvi@5IjEJ$rXv*s267rz^Lws;(z;6QNq62Zk! zrY1TU$$9ap|Ha{urXn408nEXPa z(}lVx1!%T5`i10QH7BY{=AmS0Tqkf^GRK|AxbQ{H0u_Xb3U{ zda?*KKB*}MVP)#V7ff|~_8~NgEPg_$Jgk#!5&TXBrvZ3;PEj5l+05lzByblJpaFqr zmhVB0n5Yy=S)<|80#;h;0aUcpmlae6V@3OtRa|t$2ZPPWX=Htl>zVq%7O47Qf0JF) ze?U#gZ?BuF@e33L7Lq4Z?~~k;{bTb-|<1n+Z(===k~i z($Kk@N8y`&h=*F4A|7=2EYV&3;3O$3(VjySBy|w8M1v^e6RA`% zr@0F@Wa{P@L!?I-k>=aENeeaKgy7@HP>Ey&8-neLVB_O?qH{f}j)b72Rb8f&1`)-_ z^D>};c=Og1=!*$W1L$YOW`_yLxtfY-T`DS?$g;)LZ4ZX{uA9W_2}`!y4)C?lgSL(` z+6s1YtCpAVh}~iQ+|%@};`@_ckt86p%S2>l^Ii1s>&)MmDdMUh@@Rktp|#58+xMQQ zT(-K7M1ww?X&=|XWrpuAPX29ghgp|xHshb=kasvT9&F~8rvJyx^y5nme7-NqGJ%oh zYb48MhNGfyn_+)@riiDGW;N3wocL`#(+SsitN&)zgs=gLVcTeDCs+S3|J-=wK9H46-TAqY3=Sa7y0-|h5{HmE zm|#FYZx{KLIE2idntsfWLj41WCmJw6E4lH-B@z($ejAgJH&dxZ4BIP%&ZY7=M#rpV z>iU=KMA&tJ*~LC`OV8gZNa}M;5)GO#db`CGUA^y???#(n z+HBiKH=nwJ*^)N2JIY8YQWPLM@RSR%_F{8pz-HVrf8IL^ zc`iNXE=Y zZNnqR@jnq3>d&Ya8pOMrsFv{{4ZRDhSzeAyhb^JLL+MDO#^xe<6vqT~h<9T)7jc`C zmWAic>Wj_4aaA}kGHQ|Bwb+lE=emqVOT)K92Xs}?7ZPM=29RebcBgq9xdt7;e^P-~7e)%{ zy+|8FYro&x*<9%@nAgO$hccATaTAUOUIHB+HVC)s4c=c;kMUbKrx+~Z+jGU73Mw>t z;J0-{o|7!~5!d&`9oa2B5XVo5>Cg_$H|#p_$!;eCO1{cA8j$qP0U3c;&!b*w0GK*G z5AhmUHDfJiXfB890JLQ+Z%;~9X%J2$Z${m&>M+8E4I01qYD$H)FPU$z@;+m}%YD8b z3fAqM(>slHU(5SC?u6!;i|*IEnr@fpmvSzpxtLQCHaS7qcM)M8>u1)P>n->fw*CL_HkAdI+}bO*o#*|DFwyd|98Z>N^wN6C1jp z6Wu3Y){i-NovV+UDI%)w2-NcL6N!p7)aSeBxUJyTsDV|z;+FJ6zZi+5e=B9-q>Y{ zo7A`_Ql~H@Y$w+^>GNASS;1+jEv-R5Q^JNhZphS4JlSvvGvc=CRrfcPLGq1VjKBvM zJY?rI$xf*mpzqifliest>O;&D4WdZB-N_F^G6j&$xGRA+9 zTn}4X+0Q4Kx;g9pIE23w(>h>?S)TGidd6>Wc{u8;Hp)(~VgyolAdir$H|wXn5>XYHqjM zZ_jt|9C2`vZZ;Yrf9Wy^Sj$`M?vVSh)aNI`v=5~e{*mYGxfu0_FSixsd&Q`C~4Q~JMW7L!kM7TVdDuZCP5 zm2at@_~NzpTDv*ythDjzAvXZ)t#f88?)&A8R`Ims1?N!04LR2>akHuV~D3|oY!K?~;~*#hbsijSF(ruf_vCxVJ``kk7FehHz& zG5PW`XWs@(y&X+{Myk1^-&$S81;)sEN&aY#KbkW?3eHdd;+3d_W6>I@g9*RWKS6_y z$76kLt}~cSkt=HDby6#fb%Ob0zHXxNb#q0nJnS4`V$LO4PKX5%*GR<&B^Al{ z?rCnCvhDzK+G;18p9X}}&xcyVI>+Y9wFhz;L1+MSYHC+Pe+_A5-Qwymm{rs4aGb7F zIj6GF+1{}ijP({&9=G5@XWm_TsGNGS8|^w&rhfzi$xlC+lR7y8fkfUvEqPDBuV5rJ zoqvC;V5!gW2#^MWq#t(rj-A|$9{ha<^z#Iz0ciS6-FNIjz55yb{Ra3(0@DEaX{mzr z{Wc_r>~wO?s83O$MmTm45Yy{SAXj@kr2EmUb67=Ke8A@*qfu_LD^0EdH2vP109245 z&A%6EreAvq+{)nKHVKM)0Q(IZ@Gn~fw$WGsfg)Y=sRt2`25{+T2V4;2wU|Rbgpf3V zOuo0qAvzW20AHpAjV`Pd(uWbeba|m|zC9+(IOqK$C~yCPS{9z06QbOpVJ

n$kK&|R$tQjX+`z!Y&a7ylZ@IG;LIC2U~ zX9(}X#|AkYi5rwSgFPhJ#?}09SQN=u@_k1H7d#ZgUf`mwMOx-%0QYscif<%qnt zvMLV=GG$!Bq?PxuAK=!xD8FOUlJAzYPNWwn2C{W;$yV}FtMAly7G4zUD&~g<%#%;z zjDX1W#BP=bQ`ZoR22iC+%w>ch=83*wZDSbA{*JlcZ4S(9sBUP{p&Y<^#a-Wc2y zG2krYh>`7PllS)|lYIYHj0|q{mWjp_C6~!3v}4Y7I*U65QJukz(jcPL`>2Yp8+t?G z)&s_;&SqYvfeWpfeCk2K-Ge5@8vyj~_@hVaO5S&R%!FTyu zF|4HyT9aWsS;U%8Sg2dsMbkhay~HkhJP#`sN1$*SoeiO$PSr@B#-^fV!Pql-?&eNW zg*}JI&6!%@Rnyx=_Lz0wt@!Mv>2Ka{&bVaD{`fzWpB4PlM1>pD>C+rK5>%e&cZ(*Ch4^07PEV@DX@3zJ@Q?DpMB&dC5df4Stm|2J&el64;3G4JJDZ_giPcm)r~ zMR9ZCE~~@9Q3Z7#_>-KI1akiRO6q*XznAo2U#5twKF%2%P3bxhyxX+vjroHO*RAYz zo4xo?z+dMTeDLRN=;S-?rQ6Zh3B2P+PXu~ba7=$83;z!K4? zp1j9MW{PYehZj}sXb|JpQloznz$!y;FC6|eaP@YIVnUN& z6P*j;i!|*%9-qON5tdIhpH$SRa$;YZ@qfI@|M4b!Z3hp8;4Ge;Z08H|?S&@2U8Iw# z1K-EqBeu(KZTilsm%(lzFGL}z_luxjyc;;^UMSMI!c9G5Gvr2tCb}vnH$P+5rne!i zaJ@_C)+o~OdY|r~V!T20V;kI#{3>~;yU@WaQ=8jc%WL?L-}usnqzLHh zEG8N>`zJQGm?p7{7aHaUyeUOwz1ip*Mc7?%SD=|F^;fJ!Bh{IN*P9}-Lwp%yFzn!3 z;rgRR{@YFXhWdPOttV85)ywNE9~BKh-5m#0`mT>$a|V`rvg~5 zS{J!)33U@^m^6rf=LRK%^BWnw3uL}TGBh9)f2gqXROmLzuWl9y{XGfMfKc?-y-N8s z3h19_12s$;Ei$#=!FtR|oe5Lks@nMZL zq*|$U^zzts z>b>~YFWJ}8Any3p{i>VaD*&I!f076dh}1bG723jn<#LnJfmVh3FOs1FnZ@;wZW1T8 z0@(`0}G&0b4l1wq7fe@vG+geman-ayf2&i z@vHkW`80^T=92Izn5mJM2(^hsXh5XqlJJOl(;}bD{Yi!fWa=#me5ftR$8DhoUyJb@ zv?}SQmT-jL+ln`W>w&_pW$KpqqA(83H~7nFkoa}e>M02kRLJe5LTZ$!i&ZxTJ8ic` zSg4aYU7$e&#Gg;Az5(>yO-iLm=Va2M0iEa8H-bA@*DiU%xP7LD9!yF!ptM}uFyc@f zZpq*u$;$Cm3mP?!C!MV=%(0|d^kSyYdNaop*@5xIEPzIh<4I0K@KG)IsC_)iLA63n zpgMjvV9!Z&O}2J?og+$tgp^4@Wjm?RAO$s!C7nYvuu*1JIDLXZ-TH9DhUUSwOr82#9);u^ z{AEz8@hHS$a(X93P%2N9QmL{34si2g$(uvnk)oj40FAnw6bioE_-AIWBl_4T#h@;VQI6SRSrb-bpev zAXDFjOStI5aLAik6;_l$uXni_cY2pWW5?}RHL;Y!1!@~@;q11j}SxB@Ccad>q8opfkGr`8D< zF8Fuh&L)a%}X5;?%FdyAk`<4q$LQRZ4?fhu{n zR7s7OhkaOGCU%3gg!&ZwN*Y98W5;b#-T7516ua4w`3%X>fJ}`yjaXDiCNCAc%MkiJ z3DJO1eK(C*(1u+w=$Eoua;bvD6qC<2XudPtx$gac=69QV`h%OT<>pqr!l1p}=8f>W zVeF1M?7)jC^bQ<1y%ptibaY?7+4sc@jcWZf_f^prhA6EUNoifVanQQFY|8{qpj%D7 zgkqvWi(I?Gw4~f7kb61F(SY1bHke#qeiI13iUesu@UnH!6I3CmhGnyv$>eK9yc$r~ zvN&BK1nCCDCqYnl3QeVQQOuiD1s^_&* zJx{B|t1gV3tqw)qgZZQZ`3ow9;g_yA6~XRBFdBd*Kl|>SM#c@dPg+nNM?e|?roMT| z`D|bb@}nw@``1u>p#aWKZo~do+(p0G6T$Vj;;E0tUZ#%x6V8)bc3m&(-%)LksRB$e zAhtgeu|1^9oQyP?_?_2POfp%YadR!_;9(r zPnu1y*D`ei&!ZohZ_vx~({i=%0}2e%@uy{L-}mbB;f12wtPYwo)nQR2Bfk3&NOjmB zu!+(;GWI8akIZ%3Cm;4|pFGXr83D{E7hdGjn(BWDN(0a*#pV>V zVM2+>nd_-_Lw=N66p7@bh@UB)25c~B_wl)(!W);R>(=|`>^^kk`kl*}y81Ox=^a~R zcH2E8PRo_ec%niGO1?>y96tq6vN5#O;v58D9m+n42Dy))I<0~N1+ht*ezbvgX4DZR zLIWc4Bk&4{cvUd5RgNMV8jy*e97^ZXkY>Qcc}BhNwcsWrH?mZWPTh|%s)~$3D0zxA z-2#SlczYoQ$3{G4T7MqW!`Ae zOsP{G>$0I2@cl865)xB;(>(MsdHKdq|N4=H9Xt)h;~ ziF$i`9-p2sh*~xpQD6ASPSpN(L&p32@}l;fF%Nh(2e2XPUsfUNg7aL|-VQ-jKW1ua zN{ia_?Udz-+S_fQZy_{IX;FK=9dtgPYUO!9G4MYnJWW|qd#;VBWs4OxGpqhR7q$0$ z>L~fGy)MG$aObKyBz4>7^tMcGe?269cyY70MgEvX9-n$3eW_q)1*n-%&N zIol_Q41XP{dJuC;gK*AIJX|P5gNNqu-kDCf-N)+;*v=A~+6RF}n=$$AR`YB9K2Gi9 zy_ECY+I;!PP`;{Zw&UfLdixx9*DF5A^;r^|R1kY^^QJ zH662@sq@~61n+NG^CbYCmRd|6kN_Zgcah{Ji^KD&3)3>z0jQgpBpT2@w*uN4LPnJk z=t~5m0nizVm2W&YLeIxA=PnU&pF9g`ce=gRL9^dx0Nt%}-CH)!xs91>`~hbnBirq! z{O?Q6LSkeD8=^Q~M3FqTjyczAj72F;t?jTC*msetIExZ6NKiqJHGPM%s9 zeLHA3cx)>E#K50McpAW8kf__D>xOLD>?uWyN*zZj8)bPr0iArZ(qS*G%@+jCEqKX1 zuTmT;KZDBkM!OCUdL0CkzltzIKp-LFQ$)nc^Q#fhp@Q@9)LnV`f(C(_OFdkz>wI1;A5|{?Ssb8WEa6P?xFb}3!jc`1nlvnC%yCq|-kbo$; zB~#z#%W86^>Wy|C1oV0(O0@(85=uRzDy3S_p;9$-9iIA2b~iMYC^dj9DAfb~2tjEo zQEC7hQK|?0F#^+6p;Y?yltrcSEF z7yB9U4jG;+GE6>+o4XYKdEC|BOa%>7QJ%8~FpBeG_9F}pVA6Yvy#4hdh&=$@SVHO*MQc-+HmwTkCh){bn0)vNKK2&spesYt!{() zOHMPBzjQE4LQo;M1(93wbb8daRz?HKHcn=B1*3!d0KTbXlL+ z*34%4w#7TS<+|wl~4VvXeWyL$0p(kJOhvNjS*c+2mvB zt*zlwTTV91Vx~Uu22ME5np;3SB~LhW5b+LmTr28Go^a+ab@F}g>M87)Xuvsn!dU>2 z31NTROl1aB=a6oi8f}sv#zd-}?$3&$26HRP~YVZmo$hp`qX*}4h@jQOpUk7OTu`68Eyg5DKq%*pgNeEvF)Ee zTEJ;%*p@q*n0&5e>dt&0=>cwCFY4bh*~z!jGXe`H7)b61B)Q4=nE6g+#4{*@p#GI3 z1Pz#{-eYDlBw2YAsrNH8Y$w+^$rtqK1Rou5E_7DpG#57TEAeyOkf}>DWaN-wn_hK) z!_1sjrVM>>!9#XFD%nZz(2G&oa z?Q%s1`*69y?8B1Tm#NRa1(LnvxZQeB%qfMOK2I4>R0u)SH;SfvWs1cGTxbj{@5p|^ zS1(|HM1wF>?^Pa?4v~U`=C#fs8S0Bv1v4_P-IK?WrPcsX_H?D^!U~=N>Y~>=k?$%! zz^&^={ku}*hz}+h$m&-mtI6Yt?^KT?c7q_O`)~$GgS;gl)L5T|>8;&tpzcd38bBpq zskJ^GRNgDuT?X#=2uB0B)DhCUY+wQNT9vrOmGwg=$Wd3+`zuRRe%=w?9J(4H3lgJ7uX!eJq+2o1sBoM9PaX%0S>T>o)G>A0% zqJSwTw&NfgW=B4+%^OzdME!u$u!)Jbe)3Gfl3Hlb_w#oHn5{UuXtv^$&%C4T$k82c z8%`M7AES|y`^P9Dfrk!$E;>k_g+#pv0?4D#A*+92=4lXA{4*Cbq~1AqeT_`IMrcXE z>Z=5&0eI=&U=%#>=*AKFM-rd`foCSp!A5-Nf_Icmyg#GRt;j+_l~y=D$rVw!+nTBF z8-0c6J90w#wkj0vyip7S4~6gbJ>A%)6&`pG6z=v2rg|oGOjCuzo%1mYcl!2 z!b4rb9*zbfua+FcBQ2S$#qIPivKtO}qjqez#^obE!wFuTywd7+R@avCRnA^_-B)1w zKi;%37~+Wxtt(l?EeL-G3GHXr+yYu@ir2*XzEg<^1L)+wqLcX1P4)5f)QjH+>bX3w zr9td*vDQOEI@Ey5^GSsURHk^DVijr7gGt`W26SFPIy9gYJqJ~3!!!cy<5@FSp1`lQ zJP-$NkJ9BKi(Ns)`mSeZ#iA;$=~mGj;kWQFZ&<)qDwL;zwcClMxcAvGb(H z;zvW(<4Se;4WS;$-k1jA@2s`1yjZ zo1;e99OtrRoKiud-jM)rM_HCzG8gq?rk?euoXwdvw*Vrw&gKM<(@J50I%!Lt)OxU! z!qjr}MMVy|^JS0G`A9WNcKODZ&=QtNE4K*cW+uVpSK9U9Q7b2cYzP#_-m z0_(%d6Zo~4$C@1Mki;6Ml-u5C%L8jd1PdTidwB>EVSw@&Zcurc_}P8?ZJOFA^5Q+Ii+E$H%a*aKG{qRRM{$f`!L-m)nU zEM)47pG9fxv&d!h9~xkauke(Z9vcFJjiR_xilW|5!A7l1!bPs0!+8S@qONyx=MymH zkkhz=G-yDh-n#T@c%_h2xr$V1sDnC>L;#7$2CW9w^H~HU#JY2_)NXC>3_9k)SGSg_ zr+o&+aA3Z{Uk0gK>(Zghe2P?18?Thws8tgIvYt}8Ez%@PQ4=(1gj%Qj4p^V7%#S|Y zc0*`|glItMiaL)!9Izvl7meFzNUf3-4M=rstQ?2ia7%{4D_BFGenF(xUUg}(iqDnk zrjbRwv;E_oYMC{+03x+cwQ?fD0G0C=shnDmL~>Xu8{HhjK;40Aph4{QmT#T}uV8#C zcP14YP^opQRcH^dRD3#jB^?^jsdK6&Y#Q>P$;z8qAy%Hiuem(jRmmlNfihFC{%a`@ z?!b|V*$g5zmxm=H3{W2L+mQ0Gu%ZmRTen8qle?JP3;N@UX8p<)JqLzg_3p+Br!E)sr&y+8a<7x9yyiX#?Ob^#cnk zO5tNt3boGeY^=Pe!^Ep@%S6*4-dfMDd*C8}M`2%5paF$i4}Uxgx$GT{14x4gG@|e8 ztmxRcb5g@$-ax5Sa&?EUUt>Mrxm51mb8DHp`=@!dk#F#qL8?|gI#iaRP(da9jZ{Ld z{c(V-#|5`Vc&H~(4K!$kT8}myu$$aVdARL{(341r283!o+Hk;*P+lxBlA-~r zI*&FSZo@4Z1~;*SJpF=5t+VZw-u8A2Z^hD$V^=cu=r5s+4sh$$DE?KFiuy4hSW3t=jkJdP8MQ%!7N~VbGeX1^P)O$&q(cKbwce#LLdPqgkkT(n zi3XIGYdluBj2d>qWayi$om{kFQR^k`)s~#|#s8VQiHGQWb5Sh7<2O@Rq*eniz^IUa zkqU`Fgc8R4aJkO$qew7Q zFO1QkHLl#q)(DDcgw~Hpiw3mfuM@1SC&{rR(=xvq zO^f}6)M!9$t=78AnW4b+3O@X#FR4&S>Qw-#>Z8sLLE!(J1gGzp4N z_RI}?bJ&9qV0{QxczeTsF5Kz1Hv@O9%bGh*Y1jZ&CV8Zb0zK$|>+HU4BkEybUJDJ|-3S%rM1>g& z`p#0&wI1Eup(2M5D%muGZY%Xe&dq4hCL1!m6-b4(8&LaaQlkO24H-)c)JCf{p!YAN zM+160H=s-fJg?7y%$-=4R`;IFH>BOrJ8%G&4kH+Yv4;b&?7_3kAN0rIaA)4B1nxF$ z3=U9b3?^Na?C~2o29K}^DmU0G&8gnP(Simt+>kLiAfdCJUk$cBPw*Q<^lcKfm1iA{6dl&R1EjUI!;t>~PBza-Im$KU`?3YyGN(5Gy~7(42ZNJ4`) zsdo$x&|OKGF*w+1sC|djXh5yru_Qou)Vyj9eqiW*kMw9j@6tNQ-~hYl;yXttl0lSqShWGLm-_9&5{?o(-L1Ma;nq2SYo_kX7dIR^xLmkvu zDuir!xbv(B5h9Rly|I9(#p5e(3l6Zp!TY%mFK(7C-XC+&s&)PqA)6_ZL*)#la%vsv zBlxa}{C3cs)Ol174VvZJI!A+XwDQs#C3gYI(STg7W9c|@VZn_O+)RQrAb45LwdbMh zGAtZxQDLgjn$$Jm{kryptzmDqDR2M6(%iO8J>@1IY{`oLzqyShYCYI;Bm^GC_IxR} zdW+qK&eMIGgW#*rQ5rM|yw-y)7r3r+Q%o~_QC-% zVS`e6g_KIY@(7@1NOGHmiTZO+`)SY)_0A|9a^a|ni7~m*sZt*zB^pqwcieW!j*?eH zZl`IfzalLf(7L$JLUOCk{qosV=0Xd}RW6HCO(6ZkKvvv*(Xb}n9PH_;3Od~;=Jzl|fC=e*6Cy7m(&o7+Y9 z*p0py4om%wCoU{eTGvZy)p~p~rtLVb8{H+$)Cru;(4c*4y%}wkfg2-i`4uy7D9({0 z4Jf{9<5Q@+DZebo&^(DWX+ZOe8i%vdhD5oN)8;_$x;)f-S-Yl2g54ll>oB)Hf2Ld( zGj+Ewa+ot~ZUIDU9p-W(!T_~+!v+j-r;cx7S}8to!zR{i{t|TEqFJCYNi9d<=QP{5T{7C{yT z1Z5Kt6hTpBM-YD?2>ib9oO^HGs;+r+r>pMd{c&Dbb0fz{K$cCCCPz2nRE!*Ddjf5%chT}{v61-3Nw=I3oGKa z6hTve4rE+jM3w{DmsZH@DTJo>9LT5|^3ml01HgP!av=K&8{ddw(q?k7(?h4zn`>uj z;Lg}gxawWVgroB(vtyqR&3gL;$LD2@4TT^jexfN+bGtmjCs~m@s|w6V*&NcKE+R%t z73%`sllBi~Qa(;8G>{T8TBmCl%-6?4zC&uRY-;7*2DtC^D+21gMuc|jwLU=Z1ssf3!d%jWtkK<- z%MYoLU();te#T&|yT$0w;qeyOQN6y${-hg<&@blR zj3li${{yLN)==FIuFhYB0m(|(;J*3o(%^>Y(BKAtlcK>5;I+Y}3Pj7UG!1TnPQxTP zIX2`sFJ;$DgG#7-KoYR|cFqn+g0HNQS5OEIgw)-<1Z-YN(BKANTQR>)F*FcU^ME8E zYjm-xicNqWkVu8>)CM>B8G|umiD!V9&h?i!T<6rEoxHm}==E2--HtfKAC1l9--q1T zk(~%XL&%jI57R3MQF$%(9_Qgm|^8%!D$HexnimEJCMy4p|&m}4n| z1|lM|vZ{zI7mD7v9fi<9$i|P>no>uj$ofd;KoEmz;%?Nku|H~!&6yuX*l*k2#%KE< zNH4EH*p*cI5a$3?1p`Ds5sZ$OllfXC&=r7It*uD z@|TgGhV{DPKxng(JZd3`J=X<{Uk#=dexC0PI&(|iw!W~yAC1iyxV2$Nb|U-?A+@*N zo{5R1^oZ$ZqP9E7CV}nGD7Sel>zD?Gt-bB`WPS*tZMQ#fMZAL|Xdt5Yw%e0=5m~VN z@2rq_Q3wr$)ZKP_u7>|)S+A0|J39;Vh(++t<=bLwd0888`7}2F?`;VDL-oM@58@}* z-K=_Ir9`mzG}z~oF-f2Y#WXi^Y)XRyM%*qrt!J|~JS2Ys$!S0yaml3$c^25AfEQB$ z4Fp_Kb2BbHjgW1b!EECSgtgc5O20E4_VsnK_Vd{M^1Bht+udRI2?Cx}cbEkNlo%m> zt%h{%!-IfJg4&f(3T!^Zils>rSw(7Xx$^=(M*%btP?lvxe=~U~UPIKG<-!>3@l>zk}A^cDLE-&A0bU?`6--$eFRZ|DPl5 zkItX;$NFcHGht6!MV<;mI;?3rM65~F!YiqfbJqCgBW`u;Tk)Ux$ehO*p+RLu+}cy0 zD$Sa_HkEWCCDA}q#H~H`Ny_r5Ox7ioMFUwI-`Z1I6*fRijL+I=Ro~pe1aonn#c{-y zX*_s#6qRK9yOTS;z3suMxzZjiuZ~)yj_p|V^h|JiY(B?6=5{6DxRW6Y(=Ouu1NF#N zZOFStR_<#^i?|H4S#90+e*TH{C-(E$e4RbXc6XS4f`o`Ea0LlUjoAG| zjopahc?C9!4p&Mkw7HCdK!c)2>~N?`t{p;N!WEQ20|^n26{#vA%Z|K^D=C8pGB$n_ z)08S2dCosz?EAO_@%0-I*N1qdB`$f2CpR9h1V28xGi+jx)(io3QD8WO^D}yWMu5lW z7hK*vzEkoQ&rSfb#gD1HKu;~=RVWhZ9hyKl+#(KSKTzTmaiVz@S5;`>qU$zpYwPq- zqcg_m(Nh*ibP7^8*@~FT7=BNRz*gb3~ze9@{+{`09qV;aO5c5}|s2B1q{#^L_^D zL8`a>x#f%PUVG5$mNhZQgd8dsZw^7t&bkP|6X+NMvl0VV)W;cxTEiPw-euLi zIa*$6VlmtQ%S8GT$2M z(`zO4^cXjD9F62ZGCZY6P5T2B^PI|QkdZ4PV)Cf}5Erg9gxG`+GwduX!@`-5woqd< zwS-BLE{n_@>BmV*1JZVl{*y8mqBBSQ2@=zQ_>!vesmL}$b2LYy`X&OU{DOXD61MmA zK}qfAzRqZ=>HkI=e*4u7znbx1jm=H>K%66d`e=v-60# z7pp+s0_5_QeEvLQ9OHi0oNo{3Fzm4%gRcWZ%-HW{TpRKH+o4*1$^B{Z>+G8XD08z? zSLYZDxD-1!6ovZSsr6aDJnaBB7~Hv^mGJl~reg}&7|~A?8%( zj*ngUBljDKdQ25BnU=l<7XOdUz3+uIIfNh80{qMxz!eyw{zwh=N&`42m{sUSo1JX9 zXdwAf6&fxeHZs&l(DmXEz*cGqx~=8iVN1nh-#VS~In2P03{UA%P{);ARv^cl?m>v^ zI7h3a(wMh^Ev-#(PPxnlTs5VEA1h6b0%)Je+NuQKSkjA0N(0hLW8MJTlV+_)@U10& zJc(&QTxHA~AUF6qYZzF8=5dTp37a5LDn{vGn2*xI&`0Uj$DnZlU3N;30`iJcnj;?@ z5+X{ks3l5s*fvW2Ips2+;ar8LdX#!-A22RT{Wq5Mb0npy9;F`IlZH|1zqQ0)ATdql zDD}vQ(g79<-KdKdXr5@J)c=Tss!DA@e`VBJ#*;Y)VW|3(K3*SpJmU4ZiSxlJClrD% ztkTVSjzG}ZkRRdO(eSO*0F@C)3>UvpR&!SlS!htQJ$08%h&7tmp+AxIG@!3E)-U3h z#C7o})&nO|0u3ZwSz$a-gm3s0S(vk;%@V^ri?$%NDs`_zzLmfYFs1lB;};#q=HuVN z*x~5>Nj>&|#)PXhTbvM~vfE>6d&RXf*_m=$cNKOOt%PNF&4!gmlY^lUj?PCy2Fy(@$ z((1WhO~Sq00x4ydQ!_Xvag0}Bo{En z9Oq9fqxmP!R%lSB(wlxF!zmB$uGPU~TCU{ght=+!#kHVzJ#_RY3D9 zx}OHx9zCTt!CYz$=7;+_!zBy+Y68;$_&2HmciXK!2k=x8FZne@rU7#Kd_U3+-Tq>e zFEU(i?YE*|M`#*ASMu<3=7>KeCQVh$zy)t2CJivB4qbX_*jZfecd%H?&^3QTSenYP zIj{aXVQBzczWy6oVXUl`?ke6BE^^;WT$(y?;R#&Q7uZG0Xw6^b+y*n=n9uA`4>AnKvh!>x2I-gAjZ1H6Y#k0<*&MBohsq^Snj z=`C1=&nF-a0MDqPu)R-T8!jqeNKhJpHX=jSS8c<8vJy)IrhKqm9(D zp2L2>jxB?EFg;HLosZi@bx!D%v{2|?AE`zUnTHUa2I%G2e z2~Gp>@{Mep0q-m{+ub4ZTCmR`HVv@Lm%uiIJsKQnw)fAqSDatYB0Nnk@cWiJ-FE1i z#}J-|o{3MVT%9tjcp{5r^~_(f4=4@u`1Weh&Tjpivj=1Ivrl5)d$>PdJN!)d6^ikI z=-3Rv6%)DhInA9%Oamf;-NIu677-lOXnw)_D`=qW;T0g|#t1>Y4VRZ`fEYbsbDr{( z&el-oyH@3)#H0ac^x$d&bFRN~z}>?kQV%CAO{K!Omsdu(D?|{FBqB{Ep@P`#cKF(C zfjx$>G=Pn7frIGLj{bndyDjl(fEPXdoABqtpugOl@2=pj5mx8ziAz(d_{814y0Fm3 zc4I02FAZi!uc&(<(rw0>| zrYa!TK*XC5As`I^r;jBlT;(GGI&;379!_8y08iiF*;nF<)H8@k1H|e3CP55q{w%`M z05*P{Tx?7bPNVkxu#FeR;q?mExsM?<4WJ(!JEXG64VSPM>$4m}q&BRq2QE7l0-Q1L*F16?OaFW_`zz-!b z4S=KP?Ipn7{t%hm#EN=nz8S{GBS=64f(v3tGLr=J?S2?RCl?k zIb2;?!P86HHiMk~LDX@Fg!!2;5R2YPX zB*id&0V!xeQN9~6s*?&SCQ{+W2i@SM;wPGpTZ*2>Cu7S-izf! zxh^#?AIIj$hhTl`FnhFi*jaiSN_TA@RMD_3b&W1dMPJ=fdeMc4p0$?SBVH~MX*;qL zYdbFVUqWE?Rfzzd{YuNOc(wN`g*lbG^JxGYKa0#KEl=JL36 z*q%1P>dxE}W_ru*_m zS!lo#-=*jM6wU#1E!forrvZ5UaAXoZ3`uN_bU{BycpAV@n@`j}T``f?AspC zED)Lo(9zf6wCsMzNeOI+urz>;ANds=qH6h&M7&+owZ&Z`(*QaCl1?6(S9Rr#&7nRq zX)5@4)F0v1pc9?ufY3Bmpv#-WRYKDMdfK4NPd#!@*-v;Hz{k%H@{U&cb)xzyB%lGo zv@x<;+M+y_$TUEnw)wUrm7GhSL0lT(PTPEAdcS~;dM^K-O-LF*J|OanvTADNq#fWu zJs42``sT2*aj*6&Pm^(fZUh|NI<&j(Wjyu(w@>KcKR6znyZ#ezi4RY$9r@_&4>omI zNr1w(NWn27_>fKrqHCytqgSeTql2Yb^V_`UPlFnYZg5H==lTxwcZo>@%;=fLdYHIL zMTEYVpfsC_&Qj2MY)lf!*AtSavd-Qjhj0S=27=O5cIdE!yBq}bkBCWAStu}_L;sYZ zG?j(oh6gM3&BUasEEJf#Ea=+^N>c}@EB#*(lm?*DgO0Lr!lh2O1-wPg>U}q%X#gF) z0&*~Dea(YKe=pH#fF3iyp_y+l?!x`m7WQ+5r2%a8rk%2QnD6ZEa6Tbozd%$PpjPUBusg2h zD(asJN(0bJ71bW#E+f(TWkS+ahTM9=d zex0B+RY9@1?GyA{1f>CJ^!4|$a1u~F);b8P?-HA)s%ICLeYgI7V$xK{?7NiuAu(xy zSt(8z=N#mZ2uTCTO3A;-y`r2ONUZ*Zurz>;Ua}~wEeqQW)AeTrr>W}N&T?zf3ceMe zXg~wZ=y_L};LZ@cnK~oaUL8VQ8sJuHuR0jrxyI!%g3?q6l^ZRk%61Tx2B4MN>&_6N z;F{K>h)M(0N+H{wTeekoEFozCS*acDwuf$3b30V)c%M zqyc25n8JHu|J*4+q71JG(!)n9a7);)+x1I*}aIc1rO(zoXEqD&|D zR|rf4;A%18fSu%DB{B_=D~($rxq}78U_SC|gr=zrTJC+724RNKG&T4`RQtaCR3g*V zB|00&pGIgJKv(L|@Gy$b@~Ufd9zEVX$(5V?0(=#4SU%AGn=_)~Ks)OPxsRi9nP#S<%n&XcK zy!4uz<3EMiG{BC1m{2fkYy_XJ+7I$VQ}GH=e3P{wTMIh8+Jq;X;S$hE7>N24W3wP{ zzsj9kJL=KlPf(5r$L=@^arAl<@o~Lr?mxvLrSAqR*>n}+;1vf&!Dct$CS^uHrpUg2 zO59;TkIgwh#AUbb?r?4UWAsIZyxewLZ21FV1w_%iTJ-4qzypkvf@_WnjlZhAWy3a@&Os-18RbNUH}^ zyCy}inq60;d7(jAMh~(kKnIJs&x5zZ3FZTdNdwI3g#xpOouXLj5YPt`lm?*DgUm^x zc=SuI{0|{44Pc|M{!G9Qhj`_=yJe5J8?AKZp%|k4;iRCc;$qn$+FZajO~E{am^8qQ z?s1B;=enJh=5h-U9@yXP^#_}ict8?{$b5sV z-oPZXA4g~!Ku7P*nSfp$4ES!3-FQq)8_!uCjxY=t`11%)1Ni7cQxV?oaIugV5|XBh zquZSxo_2=kTk_@=c~p|fy@c2_z>e@23-A*NOj8T+3Krij@DmA41K{X~ zT}&w6-x>05Gm$z=L>eGQPxgw43;oqW2cd>XQpoN=L2eS62FO=V(V5GBm-V+N%cEuG z4g*(|-6W&|VY4z}$yVh_$~Gx!s?-P8N|rd26|XH3kp_rU_X~>H!+ckCktO%-?Gj$gh7)yckwm^8qgx*Bc2>o&;y z{rI*TuO$Z!IHE7^6;4K%DLob!qWhL>fsgO?X6Csw_iqR8bC+i_cakH zva~0G_e$c?0Ixzs46y>+avjX?5R;}7CfevBUWsCB?DvRC1I($T41?^srRJV}t-+#e z@P41TG{Bv@s`T;+mZ5R=w$sDHxw!TZ2u%a%==)QORmE;)o$m0B#HRs%^xY#x{OtCT zby)tGEHqUdkMI~_cL$zb;m4VOMqC=;Mz7Tt)jM2240#JtX@EL)3(Xrw#2Zb$6GdwC z?L?*l^3**ek@Z2icojjDi^1)XD~ zby5-&`<^h@A*4REJ!o*nLdyVnPPOYZy;_`fDR4dAC9fDoQdzdSA_@bgCq zP6O~tb-2Q7Ti84tV1JC*G*yM;(SECV?g-Y8`>Sr`^!Eg(0r=F-6}^H-$lx(g6AAPw z;?n^C@@eNzijPN=bJo_}hbszLM4n8fe;^kPxTapEBG(Ad3ZL(|j_vb=r2*_z3%^_w z7x&me{~`ft066vXfQ>xR_^(%h%RaK7TYviB-$JEUfwlQ#o8rI%7h)Yw&9l-5kvBU<%w+TrD$f<`T z+;JhBBXVlLM`#*APu&6NW{wp%_WuDfX@EKPQUWk@!^i(2C=EcTP6~PCJf3HdRnMO5 zR(?!i8URn-H0zCh6Rq1%iA@9SsRv_iyx;hMoHfWTOGw)a`?^<-7Mg5ts(RQ}+}40yCMs zyQ@TZAubJYr=GL#U2b8gsdU44Cms#(rfzkm1q;TO_arC{K&Kuu+29Uf??qS|z&^&V~x2ru8qK8D)C6|TCQ>j;>C)=m7N27BcAhI4&Cj(@k^*qnVFpF^FU zSljU!_tQD2zRCJ=+_EQvqtDiSYZ;f*+K44$n(woIXiz`#$y5&O zRx}0phXkepaQwh-0=T^&tKN7<;=ayk$-lu713TgP5jkkU5r3^}f`h)ch(94B4G^QB zcay6txu)dKpr;z@^FLPbd?}1WME1`}LIaZcX~cwVd8xYq-ilAYq5)uqN(^4kZIvEE zV4AAH*{hP(1&0xs2Eg$HnF$y8SJ%3i(<=H7qSF99eiS`{o_oEh^~h0#rU7*P7;*wy zdkOy{P?dcwv1x!E`v5Z+X~Ty9WR;$VwxZDbL_ff++d61a2o<0s(wJ0cijj z9YdvnT%N$|S@1M=3;jYu(^S;D%V`}Gkfx&6UGo!KUrK12ids)|T3^dz99%9?h>fR!JtSM%bTM8xkBo(AyIlbD0S7vti!B%rC_nt8lrZAl(Fz~t}| z@_Itk06My-ENGt}^jBoLP`vR5BGLeH+JwVvi?CnDy7!L=NCUv=C98tO?r^m1y8@B< zr$nUz>a;N-mv@>=?bdvgmoa*LkFXW}X2R0|KKcQE1<^fj8W6E>BN`3RqL*k2XoG$S zPXm*;pbF++5R(R&(N~rWm|ULW6Yz0w3~si-E+kwZDLCTYq@e*#?9+UdrJ?^>7hKF< zE9hOK*XK2sQ1r$2?m}B9exA5Az>QD7a>?^; ztY!-87l}#()aW_oI%?-TyxCe{zeHFXz*hAyVfj{Y3;h*B)70RHcE<_+Dp6@_@B>hB zXNLIUYlNk#!4H7Nn3NCo5a@3Zng-BSkMH-&6WZ=g z#&sZHk3S_mO?~1qNX9E6Mf}f+P6PA{qNf)J6(5eZ*pS|uE9o?#s2boH6nV#NBQ6ba zt2TKnS%hyVEDd0zm;BZVmM6PpJc6J!0F7SnUk7xEd&{$i|7ar9)ZpD=zstL3B`}U7 zE)8(2c2mQ>9N04!jwdQj9e&t5&vw)zpFm_9AXjaeFz_7q2N;7{>^l*g2G~{G55*2W zeHWtB0KIB{$UYaV`tHP~0dCdibT8IVeB#}cz%+FLx92iH-;2OBHTXGqCx*n{eTYs2 z^s6d1brzl1Q}?v@HHQb5@r3t5XU^VSVr$@jWTXM(S&=L9`J`{?p&v187G2Acd&yur ze$ffT(Y9T5l8<9^^j&4qNslls&<_wEzv$#a6%8Zv59-J~zE|`RG9urNy+nAQxs0B1 zI|AMj&dcFcYTnBQJQ}(-x-#?dWw`GrE)8&}m5o>V4sbcV4E{rervZHQ+)Y$B@Qy*$ znJxYYbnd37fEAtJ%dK8#Wff~Jm{`lqEj%$cU;YN>ZAazKtsQk<@HbqBjJ}yQ#37mD zBQ8FzaS`3U7J+oWhMTz*(X4S4Lj!fuLxFP8eh(WcE$mH%r2%a8?07v`>>a{wRx7;z zK`)yZ5u66#(H&MPIBxId^0wX*A=oz)n+Dj`oV<`Z`DFy9sq77GBwOZ{ra zYBe}$>n&E|h~FVB4Pc|2iBc!y`TE>!XDjdbh)Yx1!Gk`ZIxb>=pP)1VjUIB9ij{|@ zThu=wDote<;86|jHn)k3+BXuHrn=gZyrN!E|Cp#WK%Kr(lg)qoS}U#nY%vA+&j?Hd z;A$y>S9UlbyoI1Nm3@m%5`h=qPF$MGUf_$XgGT3_1f~IS?4tz22y27~*0Y~tUo_E4 zM85_a11DWW`$Ulbx#Wwl8w(WeL+DvsiFvUT29`Ow+Q}j}#1CZ+ElK^-E>+9KD z=b_Kc@-dY(o2k_t^c+T}f~`tTlZZ4xjNaUkL!4j5n<+39aofB3fTaD+xh33Ng(i(| zHM>bd1Cr?NG&vFlAmzybcvA|t#sV0ZFX-*|e#@{#1{yF#Z&rz6 zz^k5|WA>1P1{~3Y)f|WH023$oh(!ae=#`ryR;eeROk^4$M-KoGh8%ccL~I&hM|Y!n zY(A$>Yc34zeFUZf@N_Xp7Gz+nhpC)+_!>ge05W=vmecAW2aEe~?=?DS!M&EaG*zW$ z!SHlK(oF4ED^;&^X28!PFb#mC`>LD|R`4LDcC)>_GID->4l!wfIbD1yCTWUU{5)dQ z06Tg`tVC~s9YpUM(P@A_UCy~%hKjmxA~Ma?J}Dpvs$WEG8eqqEx-5T##>VUp^lw=| z8U6eqKFdUxbL7+5{Nu40MIEXKYloiCui5eLj2%aLK!rljd%E_#@xkdOaf~7tp6z2% zsLgzn7qMxeYFFe4MMO2UP*OtkV7eAwJ(Szv+Kx-y zPZ{aaV|hn!z00NCRcjtxh>6AN5a>W|f#Uz>H4H zQcOG05Y+udr2%U66mAj~w@-1lZlykjpfuNySML)))S841l|GfAG*BA5?bRbT{3k2% zat3HVgrcAGhi=qHCmN!!-Wzdw2u_XH4!Hyt>Q0I6sVtC!APT!0h0%?p6T)5!4GosK z_=ZP?Gw0J^G@GkgEn0v$hX>K}Ax$i(xrm@N0Nq3oPJqh$h`7^LP%kAaO+~4)UD`># zjG#0CJvp+MhC>l4wpPs^#)zxb=;j(%Uq`34rGYr>iQIz7D_tIrFkQKdIGb}H|W;pg1R&VqL0j!~paEC9SVXv)Ac04xUzX#&y z$lxdAwIeSHegNIk1MUDt`#^#tmY%P%G__z>{@m&^w|=T%vyE=0fxP(EA}f~o!NLyt zaCj;;+lfk36%`N6%TSLXDh*KM)2T$Oi~>aH(S)P{Wc(V>e*!USs>&RWTrk~^Oa?7~{peMPC zBs3s-eCh0Jvn24gKI$(|)FKfLh#oa{(CnO-u<`Q$hJoWM7|2hmQiSZ@yC8^Wf{n{} z;ri)u8cxA^cPjgPw)f==;E~?UpeSW*$c$k7oCaI7#!|{4P!c5LR6g@1<~a>Y)2^8^ z48;lJuaKAq#GRUni{Uvz{#BCGfc&xwftmr^ke$uWSO(k7712(}+qZUT$YzUK|U7)wdbN$j;~;MfXHV2CV^Wu%9p7-YW^-i(r*aU`9+60mr z!FD?hwhE)bBD8M;!!O2$e5TFDfCg1op$QC;OPav&YfHRDVj2)vXaYlIPh1SounCk> z?;$x2$fs`tLvCpTPs=xfLUmh4uZ#l2pEG#orXTwjAEDu6dB#3lW5z#Q#`a>(C3nqgk$Y^&YhJ=lIy5NR)l-l8i{Mh@ zv+nF{_B0dWJdxEdZg;=%KY)rSmpUMPW!ow1J3IWDTXq_DJJ{c`i061=lgmB{2YYHp zPmRs$W6-c2Q#k8S*uP}u?@ljH)gU15uK}@|o>CgYyqi>oxkDS_L4&eCWs8JpFI_6< zj+8?KIZxXnIaz~QD(TLYL<337WeF69WTnV$SpHcTj}o@#e#|BpyY4H9xw3Zuj27%3 z1$-EriynoX**4^7`yWWlpRQfS1(sC#kQEQntY{@G9UDw3m6XtYVjlHNgVL3^%{7!x z641uIcdq#~scAsHCuwJhd*njdMTf9j zPR`#&j7L$LKDPWxUtm9v&1cU?KyP=4*{4YF*Cj}WAkrVFk-l#$oguSxb&l#V``EtG zzzx@KxfH(a$JLe0wD%(WCn15p@d%neV;E`c#PPYI*(lzcQ! z8N7|Wg2yt0eDp#_O#fIZW_Rd1OeECN`IG)w|BPd*m;qnC zLdS;EkYZ2N6nj?cFq(7~6D@aEHJPun(WQZ7o_EX0(tfB++}9|M2I6kKWyEC(SSIir z6i5SsPf47HIsS${nzdmq0cI{|PPzoh0)9EQ>)<564v1C2pFEHwHJ-#sP5y&>mbOZS z@*~-nG})4;yDvR+Oo}TWFu%s&ph4-Acd9uNe%;YlhMA!h8pi2XRfJpW%C1p6Ij2$% z4dWtl+R!mv9&p@?%n=`zF_Ya&eE}c3$5(+#f8`Fw=7`gfB8U6q;3HhpOW2GZHSA?NWq}MOF*C<%Db=^x#OH(Udn6L+5I(|6Ed<2On(Gjt z3c30Ax4QMM_)n_Cyo-uxpeTKF z5-18X#l?pCONya^n1$3y(jVcj9vhYBI;Mt%Ca9BV1)gduErvXb^_dS~R`8=*2uPk4 zR>0Vh99ePm7G;GiIJ3eR-kiW{r$Nz^XGJJMvmz66Ckml~kmSh_3dxco6LS}ep@Epx z$pF?y#ypl};4!GLOWjg}X9*V?aUDhfJ**QnHWY%ie2b=K^67o(44aLaL(ENV)@k5|~faLb#SO<~L?Z!z8LUF5;^?u{0bQf_mKd^2O;bul(S zWtVt|@-O{)JeCO0xp#2v9Fvc1)-8xiMk;o;oW^ zg-Fe_{m`T>{f!m7n__7o_P1|Yv02x7Fu`pKrh(wK#QkTf4)+qrSxt{wpC6J`=KV~5 zmsyh;bVF(%FQJP^(&D-5u*>~rJkMFeLC?>~`58SwHtolu892V|D|a>r#3mqlAGl5d zR4f{RPiX^?yiHw4hopbWcdE}kjNwTGSKWL|)peHo>kEA(h0;K1@>Z%uhHs;?v@iLU z_3D`vO9QdbO`P;4DjIqYSK*jdvo@`)wofwQZ4OOj%k`;4pwsJ&@Z74-HSOkTb#704 zpnmmdXY}mYyyHBi`fanHyD!3X7J_M>d@&_c5(rnBNb;{}k|%F1OI1jUPkf`=OoyRJ z11G)k7OGv}v#%$zOOZ4XnY{BQWggz^AVozvjWM?obmh7>zzRa8s zlEr-smC1*|dzM<5pf?AtzW7lOXK*++-#Y_2d_-`@9q`x8+Ft5_%!^Y+NZ0Rax+b5L z=IJF*vs0?Ze2nuy8u(*1aY$w44gEMPH6ayczRMu8wdE=(`5uiu1N*`Wei)k%H4rh| zWlEuel;nFf za#FH^Rv>4Ea%dPAsj~$Y(g?W!mkFZ5xmESj_CqA{UIaX9=@sF~z*z~$B+Jn(<-Jf6AQ z!{fOZ@z}GyZRwWz%?!So!8bGRo3VK~_r%?y{7XGQ0kt6B_rH!ui=(_U2R<@ z5_+ZIsz!4n!;l7Hn0&@sD#QbMmW<2o3r(#!RfMEINs~JHxI9m9GugRI)tE0Zz-SO)$#>V42y!`FkoC`$MFUyM zS8GaSh1pq<_GL<=fwa^!nM@h-kUC~1b|tjUJ(+qozFkNsUm#lU&*Rl)cH0*ZW@OLR z&mN6jJKP`ZNB)j^mV8TXC<^ZqfEHxgF3qy!D+3|9=9qPnDlxa_VhRmBk$g+-gczG& zc}d$Si3XC=Cw&+(TmuhsD=%w1Wzj&^lT&wgmbyWY;huGF9Aw~_oy;nUWEZ~4r>6Qo z6rWUl_l#!M-*BV)4*6P6*w0Q_@+nYG*w|1G66*|2tmM<=9J^+gyp~7midxK3Y>H_R zFv)j1OvCMy?%GIBQSf(vtRi?9B$LS97&a9VLggV?%XFy$dz#I)W6?3v6@m`cj1Bp-FlEicZTz2x< z<|rf0T)-UFWXQ#S@{;9nvXq{iCQ@8PXyP5k|*k<*s-WXqBgfE zQ70uxz~xV?Dsvs%f10gG)Vu<}>Y<66|I*5PF6Gf|MWW^vczIc(=6_%%-av^oka%t4 zM9m9m*u(6KDAT}PC3%|vDf_789mKHT-HW{qgHEfrh!?8s{suY8&HVP{*qpi(xq95h zd3!4Odx}oJ$G=RpYDC8NG-H$R@h=l0Ia~Zfm6>ny32ij+Q0krOMG1H{394DPrst~E zEHm!3UJI3&d;x;%{(LXHxI{#ZWB@3v$CA`~??)PjgQpb?dP0U{*V zNU|iJVzk9~r>&%OD2WD=k}p6w?vhsCePv~xPgyjOm3jffQ8(~m zRwGpc$LwcrF_L}wCSNEXwR?C85i%L?R~9en2|f^+FL}AgImoS}a_8Kk{ta_%CH2_4 zC{lGH&z`G!mV9hl6d<`4o>WEVF&xg*z$?kuu0wtw;F@#cS615ND2)cvlF!vbelIN> zVTE5?dFN3c4dfk2JiZF)8+yQw&Ii1?o_T1aJ`3~Y4d@83GUl7l=XpI%lhK{wmF=;4 z`a_V7NBf`2$>5lO#(Ye^tH&#FLRA_P@}-)P$s6_w1)7o0UE&FGml?5Pr-5UVkMPQ6 z*_DdEIocy@)gfc05M~eUuP)cWdT$y^7i$bx5-z@ z*3qHaTjCpWrg=G|kOr zr0d%>U6aqawYa{o2z_Cm!0@4g50YOHEC{iAXzvi9Q_K@7hX!)ekJNmXNXr#uTPSIk zl4u~Qn>xXSxRI-&w=#!Z$U;LWB2xRqVSBjolS<`hCoiq;#yyQ)97u@B;S3MQ=7kp^ zU5*IO*aP`ByS%H?ictkfl@DpE#9T11Qg-fc$lRgq<{6yS(4f3A&uyqGK+|GE#zl=j9cF{P4*@Xl(iNhq2RG8Z%+eF(Pd4#7QLyx>4zeYvNL z*H7#nn|J;OyA6B95Bvq=|B7_v%8J6 z$GmV!0}sTE#p@Acv!z_pPbrB8l44dT>yZ@XPr0n0Qx*+mMcm0%NmTJ;_{x^}5|G$y|crq)oEZcw_Z(6X*S@ru+LONmeFuY^VuIcB^ko zZPlJ+Wu!8^Dt@6#%=_5})1*kUBBx&h&?GBQ>djfY$bumcO$uJ|w{6dnf_nYBEgO+oOLJM zUs7Dmo6t7ZEKQ0ViyEZXv6@=7H#(D)l34lEs=}Pc(K`*w9!{75;sa-io{-3F{GWeS{{Y)ZG&GR%N7`R0TDv#QZVaV45Ux zT;TMPY!j>SwUzW|ltcqbwGRo`^-tDY6@Ox7y@j%9Agk^nVUZHM{1)UY41?MAR*W2T zSEiVRbQoHU--skzZuL4V*c&?P^m`kwC5JygxixGKv5R!Rt@|HZ!x?)xHfQiY!y|$- zJaE6Ju!svWAy*Y)ss`yb6P;dlQEP{h6wuMIOhJ$u0r@mY+|dTX4s$W$kQ^K!?~7j z^=o0N!=9Ys$+795%8qQ}eD0L|J@YMM+h4tcRUfkMp_+9OTixpwU~|uVO#pLqJ zOZs(6qS>mv3M5VDm6z3^ESfFKtJ8wK@*LSDob(dj2`cmw_19?rkq z9p`d_%N95>HeZta6m#d+jtc*V!5{H3vibz7CItR<8u$@+a@I#KL7ywWc*tDD0SXPg zvGD`!>e15>9Wt@@Rb`&dD4M9Chz(U$H1+#KeOBz;55NQBL#t~2_f>zt!PFH{)U3rPLA5t0(q$O>517!`>!D|mbxXmlH z;SGMqkdC-9wu-lSS95b=&|hv2+fQC?_vUOf+~*fF{9?v^F*d*8?UT31z-aP2cRG*7 z0z^DOrv3t`R^;XzH8*ce+G~hI@+A*rZ^Ff@&b*cbNE&!4;#uPLdr2A*y%4XJnlFQu z`FhHvfy|fQl71ZFF#vdJ(?O)Zfl_H8^*I}Eey-P{$Z6&Uo*IIrL1x=@vQB&hliQ|F z!OPH^baXX8TNSdomC4fcN&G!$}iYsom(fJ z@*vbdqM;sf+rcKvB7?5^)(YRX(QNJIF7bYs*Kt@l^SVXUAq@((1-xA67T!N3FHKtB z<<@>FujhRed1=5KaR=dM{XA&5@RHI|d$7{S1}aQarLccOQW}s(++DR<(qf(dIq7JU z(s`G@m2@;o>9~?B&U^>yXh3&qooT2|{~UH-3eUU9Lz9MQ!SVbhd1$~Baa-vogJXWs zU+J%oe7^q`*=SO-`Ox?v*=SO-`N;Sive6`AYcKC^&(C*yi#9$!N;Vp>)gOloK0ZE9 z9vbjGzV>(r&n{b_PmqWPL=g`g*kmB;%b!Q>X1miHt}Zt*_LUu`mi*HsrvZ7yO`)46 zABD|w6EAk{wY!%3v!td;;^5A_Z&Ch{L^NrLvXJ>F648L@3AKkz2SnIyD2?R5kckFN zm(|ZCJ*lPoS5nb{YBmv7*lGVe`Dnmbf2ZvRCca_*PtwsOrSmQGH%Uj6l+HKJ-yt0h z=&r22^61RfUT$3bUnHafVg2LUUb{7D?cqP{b~rA{*Vdt=q)Ad+!;v4K98Mw{5S_o_f?8Z0Ho^(G`LN9Ov&r{d4IacY zVQbKAbr;*a2Q68N?aHYcdunXn)x+HXn8Mk$W6qVIo#=j6Q{YU)WR|tNHNth}`6gy2ZCwAStIZS0OataRx`=XS zEM;LLDTGfXAq@!YSPCd7obR+27qAv!NoPq)1JXK1G3$`>tyogXCi!TR^0hmd6$#&N z^3i~=j!8s$`M|e?NBg4LYb|my&yu%EP6P6E2?O%ItuCIDCIwz1Ck;3w-WNY*!szU& zivb5NZ!}j1eRR*RiuX_f4HQIdl9^J$5?l`I{$L(wzBmX}}+`(|St&POrlk z%yh27+bis2`o#ZFCOZw-({v0JoV}Ue7J5Wl8qlU|t@Q2QQqFxOqyb^XUHwyf*}pH^ z7V{di(ttHxbeF!s)+)G`3TTqnuYEqSyna^P{dCgOfHqy{urftcyNJ^8mj`dYs z@-jXt>T}3S1J*j0Udo&7{0qQr^r2%QgLj|X7LG(Gm?t%OgU^kPP2E^&cl>U+9`uKQZei@l*z?`mYEP0f( zt>;&gp9cJO%=^kyE7u?X4k>9sc~$l4SdOuwvmrnE(YU%jW+-LzqB<_g%Hv0LdL|#o z=8@OPC0RYfC0YG|!q#y~*3&5ure7E9^s9~qKo2fcpzz_UER#8w^Jp5BrH-Z4Je_;S zrBL0DR5YNvyoQNop2|OLP`K_uE*fyv(bN^VicdY0_%L@QDNPd6iKjp*>77YR1JXK@ zJzvt|!+gZKcOxZDl5!TGH=;>l?m7n2Fg%ov@;!TXKKihB89Xz;e#|-R`V9_8K*(H zY8dpbL+bC$w>Rbs_1j5JQ%}&AQ)f3OOWm4xl9Xl(NO_S(O8Op>(rf`KFSQ8i`$$TY zux9=3MeYV7rTze^X+T}WT)ebq^Y_I_iT|3kG@z|vF1`+}-t-`ZA0Z)4%5sLAyw$xQ zBP|VRBOcDZ(Ez@@oFyBTZD9R9>1h(W+3oQYH-CzRG)W0{d%Y0;0|{vo5@Ly=#U*GV z{5%P1Kv=_7%F-HL=-^?k*+QxCev!O1;H}}}VL2}ry)hZICH)c^X%f1YFBI+Ka)K1` zDs+vyN>Q_q@w{{4Qt({bW82l-p&xubF)7E203XG`gBRQ zqFcgmlaMAUVbB76kAyTJd}95>JsFF2PPL``0m*0*R-r6x&SBNua{doFX~3CcSj|pn zxxcsF+TX!wUNZ5=q@)354I3OwBXylAXp zOCa`DTg_3wxwk!MoqX#B@Y8_5hQ+;u@~`%Sf^Q=+%@!0K#bv48tHva{wv(SGWx-cR z*ecM+7KO6zmA*TK!HP3-R&w&zxPvx{}{JxNZJu(W%_ zLCd{JNRyN>7_{7ngft+$qVke|=-ozmVEwto#kq;KvAs34NbQmC#KKk4)oy!c!}%+I zKQ^D+jn%Bzqws6n&f^LA;Bob7QGBe=yPkIe*>|tZ7u5iY=k-s0C z=W`3zxwve!w(WeLsK<>?i{itLAFa!cL~g7r{i5m-(CZJD^=3f%G&W~GFQsD+0UgoL|DNCUze#%Os$T<78m*^^}5`9Si~B;ngN!S`VD(SWap$xfks zeLSA2iLu}c`_#~_4H}`Dnm*ZsitOO4$%=tL; zX@>RV*qkuS3)l8&?XZjG7i>XlxNx1(DG!>EZ`9U=WZ;t3cxh~}zuN6~l**jR(FYBR zQo|h&6Kw3{={xfqB%%RP4Q*9{XudP(%q?}>=nIAIv1FqGTMaiM6xbG9%ge4@=aPvA zOf_7MFEH7Q)wWa@kc$Rf)vw(uRYU)?3}0t11<_r@D%ucR_2-r_8F~Kh3QgCTux;Nw3x3ptZNnoxbz!{aQrxGA=IBpiq}q zZvQ-I!+)|oKV{wJeHig*o{h%o!}g}eqxkvQJm)u&@TXvp!P+60;27n8Y#o&;LKGd< zc-VKvqi5IP(Gh%ED!YajaoESQp9_BdJT_}jMd)w0UyawcUt+(2r_QUvQyHaF!CS|w zw`#ad6&8rW)9LMP4@ONqieq_oWN!*)`ONv;X+nci)zOY*rIJ+Zw)aztme5>8G8&Lw zSUn_^3$N&r%Cj8Dz=yfIs$mI!h}CEe&-8II*iv$mo|usnWAlB3KshRRZtbW`})B@P-euMkmSoH;E`c;q#=APuH0e20zQIv8|vfhiVG+?d1LKl)Y^uVUFWV^XD zTbYR*uVKQC3HGQn9Ca`+)S*~*JT{NI5)I9f!B56(M_v;A07b81Sth{OAsK1W%Iwru zriRT71qPk-bb53BRo?MLI`agMqG?d3M2vI&!C*xuydhr=E*T);_ zrFgR>qXAhBt0rX*om<8H2g6(8Ym$#9Enf$FQG{OL!*67Z@KLWdnBYuSBJe82!k>{nUpl? zd`e0mrX%vvB=srpCAC4ikAyTJOw_F5p+CJ*r;BTI5~kOXkp_&HS08g{iP#7l9m{np zd&OdpRKxTP*BbHc%mdPn+RwOB_6$zX+~L~x$Lo(ck*#5R7Eme`I>1Y{1FYe4d4MjR zUmuSSlHMUyEigVZDV8e9FdyS$%xOhVKZ~ zpWz7z6HiB!+H~h<@YKW^_jH*{7f`dumwlC;4Ii@z&qVC6uSM|KP#j{Rsj=|1t#TBb zXXlZy?4rkfj!8}fS6sKHlJqq>leMdkGGCxD8VGydRtn3Wr@Fq^{+Z%vAa4JLO=IQw zX*eabtiW0SkWfaHxr!<1V?L~5h)bW2?v-!0B7HjYK8sf`mZl@VDiMsc5S%_8Rj`Uf zI`+0I9fS9rx$5+l<(y^ylYvD8SENtJP*Qn1dSTzBFd7I;pN@gBgQTMu_Z^C(fw<)9 z$T!2;U=PyKYgsN&M|=-)>C(|Xvd((WDV)K1=^d%>n)zHh244l~m;t3t$Bajp3MdZg zcx~!*%=5|^$~g6p>_`Mxd~uP^NV6h@OY9ZQ6jq+|9g4Kec} zila%Hju~r^jyS2kqYHQQoB4Fi{)*APTKl-7@Q7(0sp8~J?qP(zYmtb@;VFgr^Li@x z+(L+qxTdqo0Y-_)v7sj9-QCoeScz{c;%CRYhpI%cX5Zg zfx#p7l=~8rA~woyQj>p9xW-H{srj8N5G_Xp(;PW)gFuLhSPrNnW^AYcvGG!kjfl%N zRp_)y_U=%2bAPreG$`+|_Tcnv#Rk}aVP%{`88na)@xF=5eh8Y|qLf{fLIWx7y5}IC ztdW~=Fc8d3m=%o2AOw@;gB#D-d|KP z-|XN;E1Hz~5DL)wfvt2e<0#6YNtq9UjLCfPQjVn*nuPhlvA>&ud*avS@&TtIAXz@x zxB5bb4D0z|fg8Ee%I5>lWch#th)LEzs2Ej%e0W>pd9b~{E{HPX$5f5paig0X5hG74Y27AOM%Bgr{6yytMe!@98j#l>tP2QM&-7^xR*jw77tH-jiL`yqUQzUBZ2Mi?;lCb-pHb$Boduh02^}?s zj1B1#%KxUJ9Px;q3T)c?I)3Fgr*TPw28E4y;bB#J8{7pE526Sfh^T$}%Ga%*1_yy& z5OO+&&_KxUy4z;Q)$odJ9sDapKZrq)r%C`j>#zzq+W%$T&FaZh;KE&-hX&8sPb1|m`=KpL?fSqPo1svYr?`c5-;Dk>A9ptA<02QM2NPt^?Pkf%L2MA_Yg`%6sv(2MP zm;eENE&-hX&E*t9lQ01S5fcgEg*=HuXwoGB=9k4f_(hli8h5oPfPb5y^n?CrjN81J z0NIJ~GrUlH0(d4J0+AjGaBQLk$g#-~$e+=on~$^2qe+nfp3ILvGy(j1E8-IrL6af@ zJee1fC4m3V3i&jJ&?HCz&(-jsEbB3-{X*Q;K4HaMxTO5@+ONNT3WEL+epHLn);?ji zgkwW8g!tVw#A{z&aRuXq)fdj(i!B)qidOrCHKf#l&WP_rVj2+FK4A@svmnmM??-YP zkk>t71xq7ix+_CgA_!EqH z?RYvOX^*8;QbO|;Ha;{cUF{v9E1i(~pta65UnMmS9b5C%kIal5$8~>(j@BmFuB&_L zbG;YeN<6tQXY{SOGybi(H=lm1Ti=TR%qq8%-*Md^W?xObSr?^=cogC0V#VnwlCd;n z(TYHAXrMlCOI^wKc0F~f%#7F^(ZDm$tU0RIqi(n_X06Nczkl^H>(-pk`12K9bS$S| z##xp$Y^_aWPe9ECfHX56cie~A}BPQWbyW#7sd;RY7>hGmG4xbtu|-Dr+f zyU~F9k4a4f>e?4Ga@5)AFQET3($lbBYYutRGy<**7|a?>V5>iLF<{Wp#fPzZ&D9dR z{0vh5$0F9_jAhNL!hGwK^iO#|xsLpP)j zLN}v-KIv&#uXTqmXc`hU>gB66bV&}j+9#xB>iO8k9lKXN3Bh})oF2RXK^$>k`Q|!m zPpp)P-=4;A#G~q_Wby%Qi)kLjdZa-CYoGr50t#&w!jAlOlGA{^_ARY>@_Z0G0S~1B z8VK0K?b8v;hv}GW>_4!ywYSBdTv-v# z*J?Dk(@|+S2W2%KPGM+J#@V{tB_V29Z;EftZ?aCEgTYyUQ!J!?yey<0)T|tj&F4Ay zJu(I-2-Nm-wYK|dYCCWM=CNTJ#R+CV>zxKguKk*1K&N#83AQ!M zoS}{|PoWSR2&w%Rjxr%Z%QhkAsT4y4F$+nuLF&b(L=cqbdgetj7HjWd+`U9Q=cQh7 z=+?8QipBZ4z>5bT$)eM@d$%-B!?^5UhM7q$0qc{*tcvs21$Ue67vG^qdDx8!DQ zg`~*7url6288nbl`-K zWj+J~w3C>S@eazMNtq9UjLCfP9(fm~&?L+U?4f}Rvb#d1Dqfe%2Mxhw`CvCwxP0LL ziBIwdP@fMtljVbMX-Jk2Dn=C`AKsQYAA*e}E)ZS$%^4gY(4@?VKtMhpyo|FbgC=D@ z1TrS`!Ap4zrO+hI2W+YF`QVA)n#%{AhJYkvhSi=vs>hF*+=;RI^fGb+Z~5InE&#_48$4*X#Dlm`Yy$>|0!qV~iflHPj?kg+h z(Ud|1DYZYrqSPPx94W{-n{sF%r&II1B2=S!QXu~zGlfy=qlURsyH|R6RC;@uyY?gX zWY33}`NrnF3z0d;mwn~Wh8K}2xc2qpbp)$8q|;|Kot{?r1brP|$*Pj?RF7HXK%54y z*jIB1m9XMnI8vRt>wQ+rrx{SL@`}||`;`*5z7k0MFg6e3e#UL`+5QKI)PAMJkt!d8 z;a@ZuYF~qNL{j@%3C%}1&ZJ@KYOZe5Gy<+Ku|CzMV5@yWYS5lv#cOo-;VI7jeNvNp zW=7A9u^|^#dUXDzJGOtu2B3D|PY6>fsO@iPZP&g8Fu^F*o;#}=%=cOUG$?rO%VIgg zLT8%$&WiaV#n3>^wRJa#IYKWc>rQjuTR}gfAQ}kTQ*(CY_!@dN>%vfC)qI@^V*}QG z10}ULeFI!+(}dx*JabixO&?F`)fVwXd3%`W1V>=AB8^lxX_Z19!HjH~{%&XzuMzF%-VQ`Q+tt*{%`Uv91`&En;HAfjJ}`agzJz1cPRfdJD-DN$DAZ? zoQfP9#p8{KkcotOm?q5iTkARoQK>f7WnRxQ84VnBl1Us0(H&7rA1io#@6_{c+>r)~ON5=lvB<*ljUnuU9 z!Y3xa7@J?bpfqXuU5Rj>hVZRPS}R;NB59wrl}T&KWytD0=j)Gd5YL&%bL>U~uWU`y zhQiiK+DzW%lt%-3Ta&b*yn`fdChNCSymlC+>MOWI7)73E3GA3$To#iGr(EPMNd z-FPEyaP3Ub_-kkTUW7C~I)Bm~2bU(=DH`SpabrU{$Vj6Z8L@Y@4wtb1%xO^_ro#xL zLG2`IQgfs-g~?Cma^G7~U5cWCsD6SmWRA0;N7>~o){p5hj%~~YF%og%*S@W7UuW3f zaJ4J=?a8ffcdpwX>Kz&GU~E3{Vg&Eu{y6vu=R~}DE})oNj;cV+?$el!NaH$arT_3H z7f+aL7#cJveZ)22`ef*Xp=}+hL(H`lLjy4p*L-Uell2V+?>wD?XduXJm^fASGz#o{ znKN0aLPNxo*wiAhSxcIe7Cwy4i=T-!*(RUuf1rqKUWkzZ|M^hu>ifC0zO$%RY z^DNG|X;9*bb+~%yH61b$&!Gq!h=^F4uSGYA2Ana|4Ic~^GZBFNel?EkF8ulT* z4SVN$^H7SQfrzAGABYIU-V1pIh0w766NY`Khp_joV;lAwcL{4@cc<4HbgpR+q{;V3 zV{_LxA^~<}C&JHgMZ!$%hxs65fd&qU*up$*Ti|K^ zs9vYk{=Aj*HywiuN>S2BDTxM>y2-M|vo`!E>yp#Svkvigs zvAN{s>@(!E{SWjB`wT~~%*c_qB=0jErKCqzYV%2sk7-cigsoMMUXvma@fnJsfry0d zL{0<_My*Z{?Pnn5a}+|u`cIYxBy0q%Z7Z^=Pnch45YV9X2`AJOGF)2Z#55>|24WIU zs3*iA8hv`?1U-y`Xdo!vgxcvrn&jBu&s51mHFXWGVxvK?-@_=YZ@UYenXzZa=1gAg zIC`!hp0vmA&p7)?I0F`L$EA5hQOKiDX&xnwnWB4i9WywqE;8pZW@zAyh}|L6j&~-U zq3Z%NL&<$-Wt~r1G>{ds^P*l^VS-J1>>^5|fwa|x9Z|rHRKwA%3nuHMPcq>&#QitW zlyDX?k4H*Lvhl;%{3EvkY?IISKhP%}n>l)AMk0Mh6DeU5J4y-HtkmYt9Fx>A5 zmW_P*JT@{ugu7ZpC|7Z9Hpc~R%&w|TS6L?IAKEO=(S%6L|jM_ zG!T)nU&x8b`h`HqB@{x#`cD@BBy0q%Ka+kzPJlOIW4zGOi+cEfY%YBkg8mSGR14~e z`2;UZDdDI5p{=TwQA;ShiZZb*1NAt08HI2#}Z-&jefQW6a$ zC7kjH#9mU6I9a_}S*KAJ4P-qzT>@pi4N=IaviUeRcVxM2smC);f|4Wl8yfow7ZRj=zA+4nZdTa%(V);N2QjYD;Ycd00W+iw8pudEmCySj z=oA7ednttmQs&cT02v!$O`Oggu#pJrgoE0}L2JH)`z0kH+`-uV(@T*Ghx_B;BjhB! z4royNgrhmf>a$b(26x(uc^}2lKup5RH;&bd z$x_69Wd(hJf@mNp-6cOq+HfB%``OHuEL5Q(VV|*dV5P6QBA>?Q>fdIcp$G1NNJ!Xc zcnM05{J1=MpW!(rIf9~_?HnV}pwI~uG%rBYB9w6iWzaxI!agG}BTI--%F&cU11ahH z3}I}9yq8Izp=Usya0JmAX186~&tvnbS0NF$yTj}gq$FJZ3Z$q6q{E`7L&EWUz$yvh zN-a(>|I6l(CT%PhMQBpwrTibI&_GJUOA$pWSz_en{DN|5ASd0W2+P^Xb1yJGe0)Mc z!d{{~?`9VAX>2b1UG@@s;Qoh%guR59pyWu4y~%qC&nZa}6y2P{HjxH}PS{K21!zKq zGImi04P+$jCGs+|WC*1^kWy$MC0#EejE#_YReA|M1L}mUN?rFBEPfc9cfSxRuuVSO z|3IH`RmssSGvfa`jsJwJN{&*)-=`cF2erj7=U*1vf+<6grLyeWeq+ojO8m%@*GHbVa}d*nYrM#N*_rd?T5Hl0S3 z9|}Y9F;)IQFj$Rwz zK*W0}f(9ZIHoiF#S>qcBc^`$)u>O-Zz9eh}tiLObubcpH!p67P>fyN=vSOtl$L9K* z*!bEb{{b=*Holn*j@?mkej2rrDW;i~~_-pkAhq82g|u5|KdxZNFH@VB4G=1sqa#M$l+vrmwcaHTVl zq7slYf3GQ%u=NO7C1G5t#R=x;97@xm=n2w@=|WixTJxUgqd5Ek|j!B&Nj-S zft++JotCqa=l(mUh>uSQNZ6DQJ3ZZW%@1Sq$k%e7A)oDkpiel@aP-QIjQEmfM8YAa zqqOPZN^LIV$eIQvPMVO`;o0mqbG^BOB4{8YVMm(tL6`#G8&^^Y4eLMIJcBwA{GRon z8TlH1;7xdKe7MpY3_A-4nxi(KJ1s*icWy?{;okilkqpNcPiJTBA9HVN$}VhDs!Bt) zd|R_6;wg61E`zwzhmK<87S5|8a}rxk8o1>8bldL=RM~0)5LH%h#!cv6OP6lrG$T0YV&s-f6$=B2}ff&dJX5;g+X9jN^*?jjoA#Wo(d)9P;c&{g}pll3i%(&+2QvH1v}?su3y@*hy_*^T?` z>FJdh0e>eA_=psro=ieLEU!6})k}kNM)WlmsWr@V0)B%6XdoaW+bRmkLOdtpu@pfA z5gWhPW;zY_#hqH;=8g<-7i?g?IU>gFcI)BBLGFHeG9HCC-<(?=j{3_@xA(QVu-cm& z;k{)N{rts@{$j@cV#fVqY))E3Qrz|6Khp2lrQswcqWgB_wH8kcfb6=DX4lJaDK~SD zaL~$7rRH`VXwblEFW#`Zt=(sQcHaD~t;$&+GP6Ertju3!_)1tDwAv$XAfBcOX0P6R zga60o=iEGc2tTTYS%AJwL-PD`tlsLqEctxi`+HUz$)<|kYQr%6_w;A&)i50mQT zahzYN)^!H0?#VpF_SE*E!}p}&L<=3sUU>6{8WTxnVEcjhhUOUOx+ zu81pxEN)&-I+}EJWP6Y;-K$7P1GYI553UToM0-oHXEUrfFzK zOM~`sso!;p|L3Hn0cFJ9u+yZ5r$l}PZNOW}Oatc2Hyk@|g18a(@fxpZbD&Y|?Vn!V z!H6hx0o;EJ4s3d(i(fhhx!JuSR+ zY|z}@9%59`oX4bSFWOsuF`lj04^RRPB-GGrPZZcn$Z`HPIcdNdu}^u^3A2pC?rV1z zm++qK7G4gHr~Zh$KSEv_@TLf--h8{ax{O8sk;|Hok&yG=gy*p0BDMDq7<hnDs^_}*{&+jxGgt3b)vMUm zRrSHab$hhv7Dp)Qe;Oul()LNoyUYmXbOm(-f+}c)lCsbbwM^<FU-C!f)7@-ToCcng}*55l)bg;q)VUYnE!bS_62 zOm{vzUKP4zi3e?foKZmMaw4PIx6!bzzy{2djmE^VC9nZvE1-)oDQY>yChlxt7| z^NXOSMReYpiQqbHfY|0_m+bH$!`O!r5aSk>D{Z$F^81lvW(@5@26)=f5F^YD>O+)t-=m62psnGkyDlR#n1|u-P2)bR`Oaz|^ z9U!_n6~A=fD?>Ph5SU;5-2Os_?%B`*qMK8bYj<@qY<~?KAhrT#SSGpC@8DthUH~6( z;c(+7^NOE_8``qN@Vyv5V1DuQ@1+~Qm%#^!Z%&DAq_0OB!q-3u zh;U90wXdWZw%5Z3h;0jt%x39R__uKUi#FCeZ-N*Q@ti7d_mYE&=Ubrz=9j8=X}Mv0 z2W)`Y;-7*B#l9ANc4hEAOfZa&knR^h&U7n~%>d1P9wskhtEl7s<)P!xv`gX{l$~8D zrKQq}$OSv)Eeib+wer)Fs)aj_7>9OnOpqCwHN^PI=g$g}yy<%P5y#$GUV%gFb8Uu3GWY zwQR``_A2iH#b?T}J&Mr3@G?UCBWMB9PI-_JMXRY0cfxXzeruONtGgN|-}@jnYOm>Ugr7w`rTv?c*wV?Ve`K9HrHeFU z=+3A=>@~rpDn8)_ah5sv}yG`yg%|K)+WX9WCGoD*m$kvEi zG?LF#bpVP$e9M!j6nzb6z<}(FkO3l#Zwhi`f$;*uFGC23@a_|PncK{rn$2}%f#f!r z&G|qC(G?QoQsXl|43po`SZntZeRh9Da@SZZcoG}FJa(q_*p#<6ww^vdU}Lc?2FWkT z13>Dd8;cx?HCRCPYp4KGMOWZCs?1&i-4&?P0P-c$T?A|PZL;~2+y!sh%vb35h|hKJ zEE(&D|0rV}tw{;Jjs=R~%z_AP;BwXdt*fFdU+FVNf(iw#MtpKdQXY`>DMRn=7&oKv zmhwcWLj;H@x_S)b5*o^roe3Ervb#k42|M|a?}wXwUKdbLbyi(H#oIl%ewVGM^x15- zw2Gk$sHZH64PTCG7FJI=_0Cc*2FdwU9)Q#rP)`LUsi{2GBcK9ARX{xzP~~jp=^hOo zK)%HLY87Mou$Nptr5g%8-dgAN-0q6{Fie)-W~{|$S&KhJA-b+|BsP3mYfzN6T)?&o zM6QWJa(glWkotIQg(S{e8Py%20z?&Wt&l3PRz`Ox=m7F1)>;a-W-{5PTHjg=GKC)B zKRIus(X%Uy`sU*>`ScrPujAZR`axuOkGGg7vn(>%t($Y`u;ljNW`M;7m!*m8Sr9j!1!)V5V)=Bd@M|?k}s1*Kq0Oe zC37~+Q+^dnK$MF`CZ363V8uM`H=qSXJNY5THtg?$uBD!^srgI{nHfb)(SrfKYiHc3 zzr*B`*U5-S^Uboy~H{%dNAOHQ}3nXlgr5kK+>a&Ye-?OmJxjpB0xmZ zr6?rI43?370Wv^jv4a7HTFXLyF^)1huArlPYzo&72KX>cuJ&enZ0583Ba-MIn_msrVfK?R5^y2qBI%Gt`({Wf#}`4ZWH z!iKSY*l)sFHuDvFd~xqJ*3Y*!6`zL5citj%9joS47yhq^q9uBTXrCy|Xg&(2aWu+JG?IHTs{|+l z1sE-)@kS$=EZIFF14LGU(L%D&Xc^(XAp}GiZ#0D~qh+E0lQSB33X4&FskN`QWJjWg zY{A|bCb#5?=P9{+?$Z4qM4S`bzct|pA}p`G_@CB`(a$1B30&Q$MD)=xF-@*b-T{hL z^b_-mq=7;6)YpR=5cS@o6Le(I5Gu22o%}BJfao6-+X&-V7dva--TAnF9ur$v`7fp? zc(4)J&4L|3CNBF3ew*7gjD56BZE82v`d>3YY(5`4#{3ce7T!mWr5`3R%h%trzMhiL zK`i29Oy!%!I(aYiP}XboQ%aV-M4&~6IvT)LmOeX9DaYUuq z0x~A(fd~R5=rKoBP*z;VL_GvifJA98lg0kcvW-gVg4`_JsC4GmI-{*+A6-73D7TDy zc8)a}{OO#HzZfR3{5ut+6VmJ8qY`Ed8_dnxb@Gh10HHz!=-Rdb&9O2KY186k=atZq zyq(GvQ0x!R*Q;q}(6D7iClGTfVgQMmb4kvL$rqbI&}9e$Bq*6{p@GyCnSlLT6qwAa z(lEzfhuPrOG&*jp*FEo6K{?i5_`i}cBU9D8YFo9g<<0iIztj*7uDW@qMLDZA? zkoSNhJ;wr?7hsD;DC7Oe03>6M4Q*aVRv@M zX)wo1JL5H3leHn)7f#TN5Cllj9J^l`Zz?EPY`jm5bCQ=L3XrJzb-yxA6rj9?McdM+LIva$%kF&(2EY5X}C2{Am&&aQVGKZa+QYr&Al|FoTfC`SQ_@^lVmxd zNYAk}NmompOX?A0+oRg}~ks^&F?M zgCht`QLxtwcEt0yf3N1@ttjBl6BtPhU@`v&3@Lwyk@ly z#z___Q_jq(eWyH!En?)%IUBY}nJMd)e^6OE#vH!k{wOi#_*l@>4-=SGZ2Gp?%<-|H zr?llIjdgMxvL7J(=jckG;Mq9DB)3U`q=pDUBIa42h9ZJ8k)_6;BLpD-=T{g+SPP=x z!~NEN;+?1Mwa>A&z1i@1{|Aii`7C<=5bZgdz|jvAm}UFN&foTq(%POV8t&v&G8#~f z=V|+p-Zc!Fh^rw2kcfHOJ`@qyJ`-{cgaG9K{A@2my|0z#!DFoLxgp*;c51VehphR7 zgNQDEql&;u*$;-f3(1<}ELFyetYLx{6^dutLNUkQb)MK3jgd4-e$AS1Kxr_?S*i(A zTrn9HbOpNmfCSBPmTH2apva7hItEdIM9puOD$`WUK3cyd&!7;629}a}_WS9y*-~V? zZ})tY3ed6koGt%X66QEAH(a*FK&}$=Vq0S7_|zliw1p*$dU65|02Jx@jY187&8Bif ztdkd!?=Ia%J;&OU$l62AOulEA!{pU(rS=T&&cum%1ee3KCC+JoP0widTwP(hg3d(BF>`N!=wuk~GYJRn6Mr+;= z@#pj5m*lmk_RM}kM`VuO!SvufTavPq`(F1U6{Hi>uZQ7hNt)x3Amy~B2q7v(m)TM@ z$4+UE*A}9DawH3MN&zLn1@jw}j0>?Hko5jAAyJZ>BL|S2InF4hw37-SjK$*! zO&Rh@VcC<5u>*h|=HXM%mo}!h)cD&@#wExABx5f1t>;T+WaY$v<)l0ZDS)Ij=TJaA zT}>Z$yAy{oLh?0=1a3?%xP`IA_8pNwc-W+eyOp*(d*7jQapjS_>5ZVUZecBZ5dwz^ zid0g5Y)i@(9+ekCYsyPLxvY}p0eA$EN4C%*Elf;i+KI9rj4VL1Hh(T1t4d4B%@NjF z%}y>Q|A&pec>=F&;Wdm|6r~4RJ12KKsf};&cG>vk)kb#9UIn7IFy|UAYM3BI?mhbd zOwP=unkAMlUTGB<+_M^zyI>GN2HCDPOn|)GZ)aTI_2O=!FOnDV+$}KFT z*uEPAKH~%*QxoyzY2-bi=x+W5b!PTjp7m6+JWX>^KXV=_eYk_@jR))x7VJs&3+|-) zwC4Ib4e<32`y2oDl*8^7u|XLT8zyL%udZu-bx9c_jM)yC1y*J9|8O9n)Ot~ALbLjD z3z8d11|<3EbEq&6C!uD)-0duT+3l9;BOslNqO%r!6;sA*|Fo)7N##_@JH7BM7>~=-K zCDfl%3~~IpyXP{r)R{(|jkRX4F|d1m1=rfglC7st4sYeJlwNZgS_X{x%L-9pJKYwx zxiqRHoTius_pFBGJ1l+!6!pztW8c1w1IAkL*|FalbL8?vGUhUn)7VY)wqAChhsnRw ztvKFaW}hTtE(5thge8{+?qw}7mw{Zs=d#}G><_e4FH64z^Jb=O*baouzy?A5~J`Y`zt-a9e7;XmuA zbo3hY7{=zrSP63Aign;z8s8kF@nCw#@+aRV^8rPAWe#1Fl&@w#?IwXu>L<%Mz-56; z_PGq*oP_m8ud&=%JS}vBzc)+<^h8dzKV3*~`#bgY4#_k}Z+ITtD?yYT(z6bk%SdTb z;;@)=(L2sBmnT@!8 z9ikilb6ub3T!&aOR)QSzi22tcF8YBtd=ex#q7DJ(TZasKsUK46hlh2DP4>BZz#d@Y zs)>OH4sYfqgwz8%pvhNg`f}bLFk-9(dElZW-~k)`&;u?Bl2h;iFlP@8G7os_3v(VY z$v&3>oU5D$8;g7WF}AAk~I9uttc_-7soC0vY8T=oRn@sP>Q`PR>@+0z>AZ}pq?16|ufxa$R7 z50i5~BTt+h-b%0d5BT9;1q-mG%J~=CoS!muo;`x(aS&v(+|T zVm=I$=X^DKLAXLYqmY9Js#FG<;KV0a?kME}Nxxq~(v5GOrF<$SSA_@=(SwR43JjH! zT^%w&WU(h~Dcx%1u*vM?Z*h~!aRnV;Pj&nD?Oze-q@|z!v#F=}EXVRkB=Pl>BeCJj zQ6DR+o^k=(dJ4HF2FYc-M+HcId_5JCq^9yz?}iExReU`aQsr#r>D~t&K)%G*Q)0td zKJ1U$dWstg{oL3hveaBTt=F*oh`P_i+Ac4iH`RAZUaxuwF=cF_eHPV-M!Fj5YhmrQkR4owtNIqPsdx z9s6s0oaWOo8Gc%(JJw$KzaqL@Y-N!WSqeGsr`B=N)pr`QFYCccC?;k0n6_~dIOJ|OAQb*7VU{OgS6Qz`i-M1Y9mJsiX( zFjY$S9moKY#SR7(salp^$0;|`ypA{10sBB#2cZm;6aLAVNgqWZEW}Kfzy>Ze{dQ4i za>9+7y!hl|`pQ5dW(p{rnNp%lAOZ?8Q$Q4$DJ6RjWIz#SI8No@FX)E`(!MfV$hz_#&AW01Uuq6|oV^q?X~lA6jT zR`PzR08vGE>vB{%TY0(SSX_=xFU znG3b9=C6q2dsm*wQpjI_YW)@8yYeA>gZXGA52Jhoia>nJl%q*4mXa+(28b-acasBumh{mujL9)fGyzK5 zDa*pPKD#xMG%#qM`go`TQSU7}K}~!|?3$-P33@>Ev1d1j5x3^e&Tb}SlY3)g>ng88 zw9y^E<+WDFdRQNZ$umAi$B&zOq+tGtB)a40No@G?Xv2Cmy5r{qw%$x*kUWxx3y}Kg zj$e+%c`>7U3{-%qqC0*$s=#|0-Q%GH$d|~DA8a+i=1cN0ESBba0oLl;=LySe-KAl& z`YmfMeTGDTim{d@vEj>F>xEg%sb`p)#US~83O!JawE_}vEuUD)A3y~ZW37NHv{p)Y z6X<|KtkqqTwbHP=&RRCtqvt+W7Ok`NcbL5Xn=;nXe6%R}(GzKozy>Z?J<7T&x{vCG zW2#hqaxGFGko4$@w2;DDDkHisM1Y8*hbtjbW~hwp`j7!4i=9YQsI@HQN8%=v;|e-@ zbhpxL>cu>}Zq0ojCb#F=`tklU`y|46_hy8aNCtbFHCS|G6-LIG%yLdT+VAmNWSd83`z2 z(W@GB1g6VN`N)~pC8LRO@;%4_k*~!LE+&(Y88|24e-Qvkz(XRtdO3b?=G{5E=i_N_ zu*^`=-N4pbW5p)7J`9s@e3EV;H`NU^e-ypw5r!wR;mfSAw`Pql4nAPxQ6tyHAo((x z14w;zrJW23Kf74VvU%i%KR75eFHjxe2KIj!PbJXUx&xiT#xSRwED}fPRqSi z?=ObQ&HqytJ0ZOeJ}OFQMW$zqNLY?o)ZuY5nAHSf-@IL>Zu%M7KFU?3Bz| z&qdHto(Cl$%ILa(j54rbo^}8&Alh?cZRmood3qPM%dlf+6fs42@LT;>$3EmYpN7dV z|3hXx)?WC(B8q<6krG)7dGMpwgVFurG-O-n5h2TwoI{=fia-HYPg5#whl4ar&V>vR zS#)1DAE(fCS?ul)At1uoryYh*cFRKl2wrnO5J3S(>on}lU8}E8!{ik6w8LIN#7z+u zU^GW$DP*+I7G|_G3UWXYjpQa|1)vBNV6>3N*Ks6|NwefnAOl2JfYCy-&}bRqE(ie; z#v4uH%4k{Wmph|zM+EUbpuPrI?u88VahSa8bE?yhYuT&x1F?y3Ts@g(k=wpu-Bv(n z!3XW?H7+en@?dfVP#ogBSV4jXHCsUUQ0M^B70`<3;uTshpnMpVfGA@ZW!j9F>4NaT zj_bT7#1TD7(q3FM{Sy5hCU5^28SZF4S`Ea zNsqR2NMY- zn0(wUZ!(_`9b^88Bzg?$No@FX)NwyC2@_od`+!ZoW#pO|Bp;?s15zJ72F;N;Q>BTO zd<-f;RM8b=jw-NKM)wKm0P-cW^AB4sNVQ{?D_O3`7ZC+-XG?5#rAt3$cT=W1PJ-Iq zu@~9g$~|M7OTx~`hY5@_-ZiZ8qB}GB;8Xj#2pG2Ha;gA8Srt7zoIsdaF-QA3XaUi# z6q}4Do_Sm5sJ{R;AnN-SU``vjv1mFYM@A-B$En6Yj$efF?P}M~#KIQlcM11c)fU(g=tGr=?^+ zh71r{bi3MJsim2n+z?Osye=Y7ZgF#4?{!yhadU0r_fcj$M5hb?S8<3Qgqjc`vJ|q_ zEv>DhXFJl6ZS|H#BN-V8h=vLbq=mLshJ-Q_S@|5sV`q*TOd!`y|)12G`tRsl7v4?ZQ% z8P|X7$X^dRAoAEf=Yn*mo`q?*F^O?e@(9f9t>n#9n0q^2yP>GJs;-C02YH>_Q!a2T zy{dCnq6A}-4Ws!K@1e>-jI0Qy;-bZ z3OP`qdlh=--i+!{&b{0hXAxZmlb-H{OK)Cw`@HX$T~~o0Ea;A@_}#A|FQTgukXuF> z_xaYiMRXN{;B&t9@k`!LCl643is&kg66Rf-(q0NJAlf3j3Zt~+o=vGQgBlQZ^sKk7 zWb55t=Gc_zc^HZh+OB@Ve@?+{9KxtZ7Um>K-`!*x~8N`5y3+pR{#N*D*$bShrAo8O63JN{*ZbtRm zTy4vJaYoNkuQd*|);8>V2=`fs-u{kAkp`OMMJX zgpy}b%>ar0dP_beAG@pF|jM!i>-o$%G#%%7j_i)`U*CiBR%+vIkH!;!QY0ZdCH@q z1VkC#xgDbn?3kxL4q8C8u`B*PYt4UfsreZknHfb)(HW?9w)H``t^*#8DRsFp=q~7T znEWMc|4$0;m<#voLWV+la?2=le%+cgy6(ycZ|s@fvTVs+$Tpw|w`8HGvq09O*%yxX zZqNdvjUEbRp{KN&O|vf@^;u8@qP~CRtZ5c_O&@p58@sWRWBM9)#Xx~)qU+F3bEPrR zVcXWO?qZl+i=`VU_%DaSM@2Kb4)x(eYPn?79~V@IhJjm?=3BFu`LAq|zBPQk4I8WEv1AsYm_%2aK5SFId5&eB z>2EvACqM~^GP=_AVW*UtFa1}J_9AEj(Z*JqK4_ivY7OH!ehW`#MiEo=_;|g$-^5LS zhsjwVml2QVqeT%!ujF+EHgGxbhSqt}&rQ8>e2|JyE~4oIB)x#*YSSjPnoFhRDG&i7 zDxef)M4`bv+0!5cL>9Y}S7{|%`H+7fN0}T~(9yFyI{V`^9q(WaMp*2%{VMQNql0 zdD2%x3WzjzcE^RRBL$5~YlU~4(^aw!bSN#q0|_3_qD-^EQE(JZl&D?tT_D!TWYi%(#)EM`}M4j^A5 z`*X0>f~fo@?y{M$(EAhDmn<~~jr!o=dh=$~^UE8Z#X+mv(aXwQreE&b==7U|`ciYb zp$VtDcG_&{ivMP6JM-;=`*y*6yI{T@CKvof2E6w4AGq%(1E*$u`T@HXHLIn&6utibh3p8;k=`s0%YrMlUrRzwxxeT{Z&DQKn4wRgyw-;+a54sW?DS0O4@Cil;`SbL0+4-*KL_2=2F zpWL&UEo_t90iWec>SQpWs7#zG+CE#&u%wwtl#+Ea(I#Y;bd$%oOU-?)#mOBF^UbbC zzpl1YUf5^KccZ_cOZ6-E4U^maTKRQSaEA;3YfA0ulMB=KC@qh&>ESk;CXWfX8xPw5 zK&**Na?P%?2axuOyNPUrrPk>0CM}dRKCO}q$d{2cnmi}46{3!L+!5xCy<;=y+H~@+ zq|6C!a$V2<8(B1YHf8(t!vsR*(uFpcrgRdwkoB29V>p*l* z+$$Wd#(dh>?wj#I$=u0fzZjY7;Yg0M`C^;RYqOQ`!zBb6KIMDMp4@?A3Mh)J6PwA+ zY&IqQnz_H*CFX9jXt(mn8G@K6&%_WmHzud~l;&|WMSd7(GsigJkKOF8Ve+Y?WP~e^ z+)Zy_B-P|(`{cQVO|yMmg5^|hzrg19looP^xRJ?uKFgKdhP(w7kI60M_Skf|s~I1g zJS2TgGA7R_8+}>^Nq5KD{H(NfS*B*O`9sybN9&g6tU<-(&!d91K`I+wZL{HwsL)K; z1YJgG@=WScKr*NFt~O6`8+%h#_j(Po)(1Z%ctF9=*aJ~uX-kmJ*JKpWh5``9?PsbE z6qbDACBF)9_?(+PN$MMemfc@YK`(GIOdj_?vc?JNwfSg%he_@@UVbJd+@kt?jQv_3HH#Re+pEj%aH`dp?y@6U> zg{m6B?wIAjUP!;DwdLz!(*L<~={kq`MfT-*=;Y*mXUj>?I36hex4M+Ke{b`4$^=Jb zx=@Cv>#!P~}tg$%EMB(L}}JjT8JJ zv(Be}CF@+zM`2;oZ?doJ!PlYm`$yVmLa^3AsFQ*I$r@cG=;`g7(N9iMlnH0 z@>{g@fHG@6&O{TG1U3r34UA+od>kXC*)>tD)Xmt*UD51(qun+GV)Oj0ANKe4?Sj5F zqiOqX+T;H!t;Dsb|G<1VIcS_e;{f@vay3mRQS#2^);m)s5I6JAVL6O(rvAbzNFGAf z1CTE>xn?RuP2cDR*|y%2RV}DbbY(P%PX_=bLGl?aL*`7+fEl~VE9)EeR=?iZ*J!mH zd)oFfj&3fr`U~kz&4&C!?zqa>eRC`K|M9})ooj7NH}OG@$-!Ndq*!KI;J>W}CNG|u zDQKJXBhj~f$q&hJK(Tq?Y#BZha80pO7At2*QZ@N9c}vocrQ?i#U)4ML?Pk5-UFJa@ z-HZCZMz59TuKj+2?_C?R;J?>cm+7_Z9_}ap+ld5Z|BRDMo5;4(IRNchn)H$8n|nO>>?7H=HozJl`0-B~;%3%;x=!^L%6Bn%vIawM@yW;zP4G|y1PPe@lq@6_^QkuD=#Owzi`bEdE*7{LCcpP1Wz`AkwfSg%M+VI} z`U|NngYxE>pPA&Ear74knPy8CgXDSC$N;vQsl<5(n;AjSM@x7gJxj!BpxfYSc6XgvPgeVJ7wOKghMDz6MGrpVntz}N`OmPDg zxuuyicPwr;r*(Tmw~81iS0?94|H+xidy7piY1rtGPq@497WghV;r`VhsF+@J z+Slnfqk&?F87JHiBU9a8$&n$hV+}FmSmZDarif4Z-m)i;qQnD=;%pP{Q^K#g`OQmc`avh1sW7UaoRmogEAg;O}FTck388Sjgy;^-z2pE-VMA+(}-w?L%6l> zk{z6jB{z2Ci(zu~ca_ywpZJ}*of{&U{~~FVcMsZ9j!cqfRVc%6XES`t`l-#zAIUf= z_#3V_dX2TFj+b@OJu$m+=)`lA`Yy9QiWsHVT%H})JkVy} zjEf{jgSC}G;9AR*+>SN}Pz>%hTO|+#S~Ij+ZV{E_0pylVy&$<}oDFgD(n5c&DQVk> z#^&Av&r!4}sI6zmeU^WmI(pmPsq;hgpDB2Ei^?@0l6&YVT9vy+n{kt0EZV#_x5*iX z9Oj+BZzGx9lI#N%m5Cb>Y?m+1K@qXK$0uj9hg`I2noq&W@BD1as|_>kZ%oCa{W9#; zFnJA2TTjex@Hyz1+35E<1sy;cnyKDML#(mmMVR}^8eYq1`^-@qXn)|5 z^@D@1Zsz7O9(qMp7*`p)?`{SEKccNRp$9=(Bf=~rKEfJt#~hks2b9znY=WeS$8J#7Vao9LbnqE_o3T5+O*=(M1@HQ=Ylhu>H zw7kjV$ZkN1{;-*f@T9=U-g@!XGI32VCfjYYPe|XW1Q;Df2AR)Su5++p2a><|KV|=K z8~x*R3hs-E!^?AK>pR$#nj}$A0;EMIc%e1H-l7Qt8;tT>?&NJ40gw@z5k?pd-dlnD zzIj&tZl-OBbn*h+U~^$&V$ayYpY;4;?773ISax{o=xuvvq>-7igFiur)6BT^DtFgyE-__q?@}InIb2J|(^&w{|p%*veH|_gd89Zqi8WP5^%bZ9QBCfG&q@{8Dx>>4bO8A>se#%iTg~LP$@k>%ahA<| zg&tqrrFzwLJ>Xa!CO6_m>|^bP|0|-&ZOS&|VTde+{PjueugUY5vxJ-)%ta$vARhol zAigq5Q;Jm*c19vdv*hNG0V12+PR<;syvcm*ZV4eE!q~$sO+<{%eCYp*&zuiL5Z@p! z*#nDoM$$031Kru9`DjrD@eQISuz|~7U$XX!FCk92$#pM2c@2pVNP2vO7*g1}D+;md5l zv1W_!f_e3(5=&!{{DeFJq&~h2mLstS%cy=16(FkkE?7tv*ej#^6?6dk659n+u-XB@ z=X>&Nyk#?Ap~qKd3fXnR_@qe=mi8YD;i`^#wtqzwUzvF#OCf(<`R68q;=5ozWLueK z(MW!md3Qh&h;P2~G^xd0nkByv86dLwIxI()H<>5=0|)^TM%Q8R8JqdgucX`w@;|-~ z8#G)UrVo0k#gy_f+D*>XVf;}n;_EO+V#Alme#d$&z7BH%TZxh} zu?EYio(vTrs`xrAqzden(LEJ9fP9Iq!xU`I)|b%`3gP04pZ><09`nA((0wG zXgt}&SyS@xF%teFdQRz_i3@q98^*5otPLxAEo`RVlxxjRB^r-vuf{|EGd=)1)yt%>)zw_SFc zTu=TJ34kO#G_qrvk7MTW9N_~ox%XONt-=a+yQz2R`>UWRbYejh=Pm}Y1_LXH%UW5Yx#j`(00r_$;CgY{Z z03>7o9A%7`hcPLyKnfr!%LSE*j3g@;+|!N$Sk>jl3WdWPbHszuy+B_)-8&oJ{v3|{ z&>yQnoD|$iFLXvV1z_^>u^9@0CAW++{(fux=uYQI+`+FvEAtRn`(?Ts;&DA(|(#ITjA|=^??p&(>BlDj$IwJ)?M0Y zH`%|!o&(|n8UOV#Ir}7~$e%w((oVjk&JS^+P(a+9#Ub77k}Q!*#n6_DClngr%_F+Y zZt=0dHCWZlbZIng^#4-PPXNXG>6H*BxqBAtt+jQ%&}DMy&PW6#@yXSYxYBHIICXbH z9Z;PFTy6B0`dXiPEE&&2BOr~>tcb?$ido>i);Qo2 z@?MAps^i49ESv9xI-ol0f(*VN>Hw*GYBe&r-&$GgwloK2O34Ee2vkU**5GIEdk6vn z34B^bQcwcd+icurlJNhb5RgLqN`HI{s`YrIZPvslJFXX@4wU8y`&;Zq1iv087oDp& z>)tq^7jfq-l=xmmKw|sW5UCgO)*^ZlBY~R^b(mMKyA=M+_9D!2=f>4GCIsnJ{MW1%d+-i;hUavoWhoLrv04@H0!J+3rGWBK+0WC4;@Y-KlP z2od@}mu3He5;jdRGqpbL<$3rp3t*j;zKo;qp& zhBTmbY0b6u!NGdFwO6b8O>TY~X@I0%RBEa%_quEKrS`h|eNNkF(FRCcxn*E^LuUvC zsrGr40a6w>+vbaXI@21~XTFm>y|&oZZgu)fGM}AaL>N%Mu@KuBX685B03xMr)*cQQw`v&3wi7U6R?RJ{=)vg|U$hyto0O7qG_)Q=DaNL0D)<@wECH|GYrdLwaUbtZ_M*IEYlKm*_-ExoEF_A~4AJ0S{pxDOMx*6MHW^=M1O^_7! zaE-VN5eG2}-hAad)q7aeXl?tP?0R&7!~+x1OgKHl(MU0ot?DN9@K;UeI4=u z$-7rfH!n3{jZd~4HMMiqj!Ou$UHca1FZ~90Cop??srs^qjyv7_Umo1KZ8(f>zX&OJ zao80}HfYqA1nF^pq!3diWh`!GGa<04SzOKSXf+54*d*?fF#C^3q$V1bkD<|O_pf3 zn=|5mi8w&w;?@ads5-3?H1e)^f#d-d%2{?~GUAR!98jUO zvzz!Bc_$zbsF3lrkA_RUlTim$DDl|k!^yic@_-5@p5CZ->aL19phAf!b=p|KIPdDn z1F9v@=j}C-2S{GrqTa&lJpbm3dH2|);dKxRNaQf8TU@wE|N5xW`8((Yr1Lq|(wV*D z=X`ksv;xu^HxXKRn)2qBNzWUi5s=2`Rx3SoFYg$!e~4H>Vk=gX4x}miM~DO@vLYR@ z#U@YrOcLG{b%4}Wr0<&b4sV7yph8J!cEUADcN*#dsf(K|Evz^%HCImSHGBv0RtN+n zFm5WcIDxHwEsi=g33yxd0n%5I&VTc~jfO88w?iHvc@-%d&EB$0yT3pjP$6*#)}6RJ zA`Xzaid1>c1M9wfcslBU3fbHw*$NX@dc=v$3*5eGW{*tZ6pxk3c{I|Ed}ebOP&P z^YI{L0@bl#Ypt>35^*=`0I7?6kXl&Zpw-ti^47rj4(ccbq_85rgO+A!d;`1(c|euq zbW4c3V1ge*i**xmg5eZ0SMaCuCg`%~#;d>1iBM_*NKy|1y zftMf(OGoz{vCOM!llr16Ui4SnkS5J8-F1-m=yZ3Fg^AK9l^vx#X+x}=ldq3OJRtEeue$g}vq7)X{RDIa(*3fk>&|3fgls^vUt4wAX5;47UaO-mmQ12Q z1@(Z`zj`OAw+*z>{xq}$(*BC7YiG(`oiZc*nFt4Vf@LH;-Nx9cAEF-E3CX^0H;6XE zpN()}CkRLPt({-~8sUJ1zpm;=?`z(rxl|9z=?jn#NPguTq<&VjzZl)Xj?mrWzyRa( zm!TVw?#j1FeQogF4_l;Hq8``@>T!8a{cBJUNPXpdj)PV0$*|gOYnIO#=kv4+ zuV+&6s%(Nv{!PRIP#j7aZ3MgM2BVGO?u60CJCF>NHr+OoM)g0U8j$J|x?EdTz1D2k_czTUZfgx~IH_}F zjQo!xACUYqYQZf!hAlFEujQYR3`p{us_T=DPQTk5sLkm&SD1aPuQgdHY*PJShytJ} zym2Q*fww744E~K606Q!OeU_A%7<`%-0E)q5OU#4yZu{Uqo~if zY`hgz;px2z?c^7c3rKDWGb^dI&E$@?lwU?TAmNvkkj|4grJ9h!-#{oJp(Rw%ZZE5B zKHT02g^s1|w~-8#BRP1g64)ZR8;W}Fucb}Domq~0 zgv0|oA<;EjPMq$e(G5s<IuKpT4}7UHJtQQkq+#HB-i#1T8d(l{A%b1q`QP! zpY3^lIUU1a1KEINmoNpfP1$DiX057DYxQd(AJ_?QSgw}5ARX8V zPS?vZzHfdfbOX{|!c(8^^;&eEp-ymLK3E?#c?#r`{tTi3C<>MDcpcDkKD{Aq?0#2- z13SSp=Qjs_9C{CQ1JeEMBi|maG&{|n7Tsr)=kCsg3Fvzx6_C`IR8;EN#PfX-4M_A0 zt17zJT-xB&Q{&_Zpcs(i5+1MlK|w$Cgc~UIC%EFF$OR;~gc@VZa>tzUFoXjV9=Tmy zxQOR)Cm@8sW6!nl5vIAGkiN^v1SInXN8Z4j${b7A7J>l@F5$6dyK%7D3(ae9Oi0-- zLIDXa;j!fwgpQ?c56OTem(U~KisZ&pW1a01>WzIX^>v-ob_+kLvw?VE2Z=w;i$8#P zUR0VwZXRY?~4!(NOVPe5x(b>_BmgQW}y0-(_X|Y&xbJ~k|HJSlw zF5$(9tr!|_Y;mkklYd;Y;MI9{dS8UTiz6xq8q5LDf)x7=XM!tfs#_W)oC_*^+tQ8xu@3%W;)yE z3wM9QoYDKx4M=whZ^c-7+tEEXh4cYp04N5pFQL!8?UdiuSW3D&4BquZ{sH}f^uKjS z=-<;AEUxM$tL{ejboL{}0#Gc-VZH4Pg|JE1fRgKZSNc+TXDw$}X>?*7as52I_XwSKuxuB7h>Y zGb&L z==QW}ZhfuGySFZ9zC>IA#pRtlA}*ZG)M~W#4orQpvA8!~GyN4}0w^Xsqlw$w>-tf^ z*AWlwm;$oa*xRi4_bu^iNj=;6-4yq45gS0UDPdvK4DFrW0HCfOxGNXmB?^F|urvA` zS_0XuFQx7F_lW?Y2<(iJgE@mCh`|qu0iYPXZAVm1HU=XZ@nfO^?3ie1r5-hGzIy!` z(ExT#fuM3)Znu1i{v{Cr6oI$w2s_!8lIjj>w|iGD{f0;Yip0(sjhc;vHL0&nKlb?n z-4!3HSOAK}&gei5v{#AQBZf0raw}MmB`$#CQo@^NGqiQNUegK42PD6Y)l=PmznNP- zWo}HE3A-{v0SPT*_0;A<$ELoniex~N%Xomb1<9)$do&`@<^z7Dc6BrZ()|1qYRN5V z-rHs$a#tZ<6TN`+matrrl-tC=yV|!16Zkp^1|+zI7lO7VxXVhqR==;FePE5>K{-%e zEgxi(h=-2zqbT)mj z@HF%T(qBT~cKiDK-NlwU@2;+Wn|%-cR>T6>A-OPUHyiyyJzc?aTl51vOMkkW<#y-? zc9#BhWy@cnACUeM=54lH3KqNVjkS(SvbHaEU9vk813)n-VM=-XG3YEd2KD7$cTM|J zp10BLq_0MuPD}vBq=e^o+l|Rmf4!Z))Ose`ft{i~aM0b+4(tr=>Pj@yht+4J9gy}C z=DxS#3~&M?ht*huX`JFru<2aQw{ z?SQnGFsZOz!?$kk{IZH}U}xCfOuH}YX}^=d7x{qXmvBJKc9VUryRX?e(DKu(9n=F- zU&7n#+f~2b@YVZy2nQs52MkO6Bh2Njnja7YKry)V$j@wVKk3~=ShHOUkDc~4{l+i* zi3*^olyKI}tWnwM1le&uaR7E!b|@3Z9sxdrr~o@8J2nPd(cRU8{-9!dG;shFhZ44L z+ODN~-NB#v2JLZ32PD0Obt2o9Zf4BW1DLWmVV_7e07YX5bf5=X|K*zGC!rjW@)A~7 zY&Qc?K3)J05eZ;t6o5f@z3wO6o{n@t(s#hbzb5_H>g-1CJ4F|xACUeXFwK^0#x6lS zAnk9jey?Jq)6xuQT`yPkn~NLlo8rpwbBG79GxA_xIEs88+JT*-Js3s45bc1pm#`~T zr`uZ#m*1G{36Dl!j!Zx@OIT*Hsm!s5p|3(PAi*W4&{Bp*nsqLIDXaVKL+ugpO6ne~)CK zx{|dNveVsYw_C2*eF({bB$u%7!B$dvPqwq`hfxbuH-VR0z1HGtyXjv(`xue|NiJcl zhOH!UxFh-}kPAp|37w#=$aM=Koq_)q!9Y3b+t;24i>sR92&%O7-h^81Gsp!bw}i>@ zRN7{8$LhBKKsX@bB|I?Sy6}xoudz?Z-s+6ura$iXKM@Z|{L_#82)5rGG~a{0+L!n2YyRZgY>;*?@?DcihuT{ z^6#M@kopojL0ePbZXV!=u0sA_Bm*T$9%#90f6!XY?ZB=vlD|8_BR@qlAjxIaZJD^R zn#k^kk^`?;i~IudfW((Dvlyi87R2jlM{`)8^UAN$4(tT&i``ytvD@@#uw3C$(hf*_ z2^*blFWncr{$-+LkPS$736Eg5DSJbw3;IUMS1#0>q#gFq`dO=%c^S6u8sik zb9PrkJg^gzJ$D}ERZtG>1m$Z@tx)v~Jbw%2fRvZ;qyGRElz49HH^EMitL96W_DgHj%0ckH`Af%_8 zdK=fA4f$qmmwTJJ>-q~-WC?J-!$xNA`|EWzqK zlLNmpNqVrTfNyyChy?{KAJx+p)dWy1A6J@~u-KR!I1^bwxw0C1??!K%vBjT}b$4U| zlJ$i0Qp=R6oUpSI21wX5OBAL`p*N`aH`doRpVHS9=6buqn|dbo&Osy~kxwp9kg~^?r)*W*ZE)DMORoW{0I7OPd8%9^USDc1 z_L_EAT9cjokq1;mo+jpV^3F#dAbBNL8b0+l)-@>dmBu5`29)c!R^J}+>-_d;Q~^>| zV)>LR4Q6u69)~hO%1Z1xI%QgzJlLkB0r9 z);{xMyUEN;kOq{TWLDaGcfT{)bI=7y*Tp4f<;Y05Zkqw$!aom{fK-+^s?&R`+G4~v zPA^0hP`aqL#sDrqUxFw=qDt(cDW%kPT=$jh%TWbLRf!#KsZyQMZutKHtB?gqR*4O{ z&X&+?OlmaMr*+x*T9g4&c8{3pWH*ah%g<(xP2Be4ioQSMe%BUeko|9m$@!-!l6xMb zIph=1Oz$efcP~ziCDA&fn#OXwI?PNA+YU6VwZZF~hiHjWT zr3rv(XG%FE&JS3OybkgJ$%}hTnB~vR@_Y~)k@gpr)vi%>DR~}JfhweAyRo(>FK>W6 zpc?Xe{k**W$O9zr86{ULyLc|Srd?%vd5!0z5s=2GmaS21jn?blkrO1) zyxU}dI81KvYCU&e&baN=~a=j;GaMBMm4~+ER0U zu)4q1H@lDQOC9zCqydr^H;FuZXt+QT+CZK#xY0kY8 zO+fjY(lYoOGy&2S*Q=V{P4-A8XQtO92#}z-$;Ajk{lQu~%rRBfn@|NvRos-o?5gZx zdD_i(sc!afW}T=@w6`J;ki57}ab}mttfvkw(}9Zq^w%+&??5IXnRkonFzyF!|Y4)rmf5U7hGFpJl$ffjhLG&h)(s)@JF{ss8O>o5YP9 ziH{tSc9^-LkzZy5H~WQ;u}zF~l^6-21c;lr8ljCA7!bk@rUADk6dEWjbfuyG-AU zN}zg~?hdZ^N;@b8q_kock~x~*CFps`1ghuFR!6T_8*dH}2}tCyTFsDlnOA?*>D-S_ zKsw{L8!5cvbcfK|cMD9So{v~SV&gWcnwMCuoMAniQTqtg0+mf#&B$qAT_g6E7q|$$EO>Smmm_TV5aX|($XwH zOnMGN0ST?x5ZRvLuGt-z@y|mlAgL8=^R3j-r7uJ*Ah8vz=G7wcQl|0gOOOdjX2tq@ z`?S?++8n(coj?V3HWxFGz6zZ{^*ow;tJGxvYY_`b>>H}p*>_@D+Pb&7zurH%w${|4 z1dHy?UFY665CK3Dcu>^rZf+*3W*gdc`qUPcX)~*lOC{{V<6D^RH9s6CkGh{`dH+Rg zXth+r-csZvmrA4>Z19@Z-EC)eBbQ2~;ZB`_w7&>u9&MCtEdPz=!hm8J`IK)~CE+}+ zN%>Es36Q49$1*c((k^t3-od(=?bPe213enmyqd7xxZJduDl)bbTIOK#9rL z*NJ01+Gdh?B-y@*JV5f|9ut{VtJ%bxQdkc}RkgXJbT+Rx!k-V5r@UO1#~FGYcIcF| z8=cnrhTeYSnVzD3cA=^)l`4{stw`ct!3-mDxE0~K-({6bc-y7HU3o4DDCTj)+c5A* zZDD0&a_Sza1f(+V0b7wO*+Ii4<2?}wNMPK?#Dxm%a$LBRcyA;Ek{CDqE?A=8r_jKVGo0V#}|nat(i zVb(?Dem5aTAm7D5K2{ZhtsT zUU+{w{J%Aaa_G4Gm{Zc?-{HzM*x=>y*A_7`nT0#e2HV0qpza6^fr31b?C%%{RwSUr*V6Tqy)@US`yW$@3S>( z+#Vvipr=);*^jb%HNEE|UE`4+pxDOkA(DoCxLMikM-wE4b*#yeKSvxOadA8AWW4xd z%Imw?k0yz0^j6H_GDg{7q70~tGWL5j%I=IZK+58t0%XY%lVv@p%iLKq-n_lkMup6aTlpIqE0RD8=(V;W8e+)Dkc zO7SJXujqa5v8s8GK3A`4D3YfaL2Uz8ZTo3k+pZN6==6GH?%a_ue$z^w;|}^Qxu~9_ zs3w478Mkv{jF_-iGC6QAvH;17+mJI#mU?#le`kyPBMOkH$WD6Zh^bA-w2a%e7D##! zk^o7H><7n4vi$~hHMPNq$-&(y1Eef&zAq{VgS4un2#}(vJujW0n)^Gg(uiBK7apCr zh59Qy<8_#P$oTSqZu)+qRk|zHuLXqhyOX)2h-%x?;;V9#JJ~wAq!raS>mGh)HUbn z8G*l#KtKWy73rKPf&C2~C~EZm0s4UI=+hxHnZBE#50Jjd8I-_WQ5kIJDNN%13E}{W zdvY~0*B<_9)a^nYP@$w_BE^Wi1>%6}BwbKy{}gpVb&{?>P_Muw-E9yDR7hM}pVSZs zR7c!C_7XQK_veTMB<|d((N$#Y+(9?Y$@9^ugO z_p>LHGXE1d3JYXd0`*+3{~ME@aig#x;Ast;|4G&{aCcl(Z_D}%K(UM)g?XmKv=aU& zV`9Qln8|_LAq$YKxJ3k>b0%44g2)K^3j_fr3+m`C4g{SW3@ArN$__g z9gy@_S6h0!+1PtfhsdVM{yww=(*Bx?Ywxbq``zV%8D^V={{Z5F>N|Zcv&%oA8mPYN zz$hO2CE<}8z8MHi~LMZ{2Tb#?03`p{et7(m~mgaM42Bi5V71cb}!h8YI zKy{rQv@BmjEl^#xL5uPg)B;lbf@&Hf-;#VC!9axt=UR|&AsCS0O}7m!ryiz57qlGT zMKK`757}f0zFon!@zLGHLGPdtFYamd4}a2BDt{M09VT!5zDD5}>5Z8~$J~hL(xHN z&|It6T~0g=X@I0{`U1s#rL{V(L8|MS=mN@5GA%31CD{;ZfTV4@USY0DmK};|O4YLw z21r;jEzNAM-(_Z-bb3R5Z&Mo^t?GPr9RuH4-x$;zeQlYrsKro5@LwYskl^PRS_vGk z=WHUC=8L&Htl)n0Jg4^s=mn&=n8}-{1lEBWZJj%+8By(|W~O-S%~dGF!ElHJV5d`T?BMwQqRcqh2u@=1EjCq8lA}V z1jps;TM-6SBjH$FlPk0DKp!A|#SGA+D#Z2PMyI)1qw_8_1JYc~Jjk3hXYJ14A{nTL z4f^et9xAGB_vPn3=mVs$0=1)7&*fbDe&hkA%cD`z>neI-g&w6VeER(p;(%(1>(}>m zyX+Tk8s>jN93XMU%$&?v7uuBT_nSS_HyoHDLw{pW_T1Vj{x=i@l~vqV<}VI5crDeW z@uyJ?Nb#ooNX@?h*)(n~X{Xti1`tl{e&AvE)18sn` zZMxU&+|y0k*1Dab%j^92ZBznMS?Y|V@t|t)Q`zHtkB&_`AZ?V^GXxrA-vRs|j=>e~w5%A~)R_ zb^e~*7<8AVkO?Rq;q5g33XMQD5;E1e$}xjJA&+{rL;@07{#a(I*<4o-GWFuor~{;~ z)Q26WkYuxq$Ds?5uJYSr>7v8sYDfkePsin!_9ve-@Vf>wfojPd zZHKRgOh7Wr?;bAeLZwfnI<&<07H^D7Kq`xQVIrpLTn^K6y|uWv&DIpA zTl>cd1thfmX;CAT!d`E;*bLA}TtFgF35l!Pw^NU#wG5zb4y-d0Z;nJj63g%Stg6JQ zb#%#hOSA#fR{j)@(`HvwIEA-HAs~h2cec~nI;ZZ>PzOj|`Q!Xlo$CeVp8wt+seq)G z-)Lu2)!Wj%iEj<>fJ#6rH$75j?j5yESlMJ{8YE9Uyh(SKO{T ztZ%F@sfX@L&RvlRNMiZJ)ND1vJq(cr zKTNB4Z`1)&SL)+(DhbnLU= z(FI6X`8@^cN(a!s(t9Wh0VyoMr=T|*b2FO{Lmf~JbsOzLODEI%++9Q+Aa&)}dS+98 z)Tt*OY&u|kxQtRjO3SZTI$DKeW}LhUTgU?>ulx>SSG%I_?`auMZk@6#(QTvxlKPy| zTe`_oeX@4Z3P@|Iiz`iQVwd1G*VYGq9MwY~AbsUOTNzm*=<<65jesh~1r{-gj3rKGH&+~iD zrHw^DT6sLu07)yquIx3}R9%`0?{>4ZqPHR1t+ke)61xzsfV7tXtix$t@98|7oXjU9 z6OhdEmp8fdIi+x~&-14u5Rky~+Z+iTSs(Tc^a0XWepe&VmpzH`713WI6_C{OM_c{I zKA*?WLKq-n<+q7?32#zI?YW2qB(nUOyHSxokDrf9Kq|{GE}2TN??vbXq_6x(>EWA0 zFGU$3W#zYfxk=+!APtbT3KZPcu1*Uz!@yS~43Mz$8@axOrSlP5*4^|AOJ0XeKr+jp z&hEF)Z`QlLB^@WUlpnUf5uJc^mfw*bd-vuo$O9y={K+RPZ(pksJV<*x3IQpsK<%dk z2I_kb2Kp{VA0U0@4^VwqrqR|@{B*I?WoQJXvHS<6gKqd1_q)*sR3iP1wz1U@??WR{ zHI2dAhYz3;kjC=s?I0cVDt-^bAh zNMHFK>p&lMqVE#^Ga`Yin9(O<-Jc(2`Z}LPCQy~UraU*a_k!z-eF}Ym^p*d#S$W;j zSXn)sV42Y6NCYIY{4Ta6_8Pt?`#Gcml2-nUor7L$E$B9U0dYVz(yga1&7yPNmyiZX zTKVI-aFdU(pbU_*@_VZrY>>UU*Q_7#72nrU2vkF%Sr>x9>;FcCkji)vu5A_^*r_ zKx+C&SWU0F?gyDyMFt=ln;r78<+Z{!UZ!w{$Zz3U%mE(~!dbTuJ8=+km=xD7zfUJ9zKw|Ewl|M@U^=zCO8|LOux1G_W(F(?cw z>3bJbR$Pd-hK5Qt^dVbA7c(2|BeH3&=ar09c|OWE9gcdq`~WBgiWwpoq%W+GO^zLn zQb0M|quIOGD7TTor*Gjy}I!~bq_#_#fb_BQ%veYDeiB6}FA7^rOW>JgW3HExYqpvq!(I;!!)pCJ~I*lKnt&u{j+-nq9& zEg-ek?6DiQp>^+oWI&ROS#(=e_3H;impt&OD;&i?>xerc7?9v%9(ETccx*Iu22z2_ zNgW$k+!d*Sq*iNOG2TbN2U>y3B`aF@=wTU4+D-L!Pox5pTCKSph7n;saBq|XQd-b+ z3qPQVoNO5Bk>3}gK=p*?d*Tm3C{Q_}BR%j3BNUL(YIP1L^t>O6SU_T{)n4U$+z&%1 zAf44J`J2ROog;_E^g8Yho z1X;{W0BKw{dj^^PFh9@CePXSltVxXDC@~VCuu_&WZ_**memF&9_#o1Vz2b(%0uozH z6P9U+7wexz_U(?~M)9#I2Bi4a#hdJK4;r$lO-){>cu!ATtt~dRSDoLs$!I?T?SQlw zvkWJbR9I?f+6P@{>66h7NOv*ahB@e7)Pag5xzl`QGy~H7hN}9+FZS2jGwV8Ow(hpR zH)gpi5dai{*Ht|N%i3FTkduFPzL%C`R!KB-FoBeVn3{>lm``gm=AQUR~3Wa`K^!*NOm!kcLlck>KvML-c9%FwkQRpv~qpg ztPh?WKim$@fHW7gc%s16%`~UuhQB~BAic#r8!J%n$avw7Xa%ITn8!E;Y7MKj(-8_( zQE1pdJrkio6@`XsVPPey|0{1FdkEPM<{!Oo7UI8s;vlSh{>Eo-n z3U`?lUu-vYa(kawDcwtz?pGtTx?$|!$~(Y-VqVO~cG1ehxqOpD??59Ujm2yfQGiA_ zA+C^|kKTn!Kq?FB6UOFo`WBI1Ftky2TK^WUfV38K)<=AbW-0j|)BzRp3JER0BJ}AyVxfaw4*U9gx_AhEMEM zPz~&W#FpyQoJUSYHn1~fdyiZV*??rfrrK5Zo|fqx)pZ)NOY>_W9+3Fg?+o!Rw$pLF zr{r4b2c-YaJ41iFxjd-%S6j!Tfz_F`5v%w2o0 zwX&MefZrn$fFiL&O7MX+2X2ITK;kRjV_a+K&p#bH!`;(y3|}bt;dPC#v?aJI3VH0tYDa*@YX&Z3GQ^?65W7wS9~t}*uQ5e@7BgB)02yM>c|2V?`)m#s&GX#;sD zWCN1@+G=+ZjclDR6I3Q=pdOI=ir3yNyadbZz{ccvMK~bg#Vm%NTkY+H*TdTI9>@nI zznF!8bCcidYYoT$=kB`$B&n+P5k;1qlYlfXNRXLLfG{e$>=G7sm#|9|?Ct5Pnd#aN zLx)WW4}=GTt)PsU#Rw`2B8ZA8Dx&!Ci2=itCuUKeC_dCDKEv<(ZmL_=Ro&GywZE=< z`^VYoQ@76jzMJp4q40$emGCQxoC3&G-u;x|YSAtE8H7!d1=v;NYgtX$6o8%bK}xBC z3aWeibBLP)xKrNSmx~ouw9hAK3V=@eT&L_bw0HbMqNV`ql+W*p+Sd%OA$E!k6qDM7 zDkepOrU2-aw}9o^#De(>_BdfvWCOMy&6Wt80N~oeW(#S1)!(gT?Oc+B0lEmIh^YRPmvw)RbDM8#&=grnYO_D< zgG5b{0n`_nO)DQFY6_rExzDhH1;V=aEZ<7p6u_PGF=3-M+N>9fdg68)ky8M9%B!Te zjqeVErbvI`257zA;4Y%30P2)?H7Frdn^X_^DZ-}60&LvSqF~=c*c5=B^2N<&9kBh2 zo1Y_k3ZPHsdc(w>a0Rn9{|f|50kFwj&z?M3Z?Dq*L`wm*$(+>OENFGB@fE_QNO4Ip zTkyX|uoNjy+v-GFciUelT#6JITyG%yFws(^IB~5L0^cTFiWDcVH>CJ3(Nd&1ajg>p zKOkI+bi>t+*rS9?0k|n0W$F#w-h#|y1Wf_ZDV>aH(7v7jKP7Go;7+M0N#pL=@&5~A zrvUb3ZUafYbJp0+`qAUWOaaU(U3Ju$J9qd$LGTm+pYodNEqXmk&=dfj(gCNnqyH(Q zr2yKLj^(}4@zVrLk>aHFcJTk1Xeod;ncI#MZ!Y{h_n#qP3II;#9-ia@+na3vM!Xcj zo6^aWy*Krrgi8UqDXnVW4*f0b085c#ux4w`Rs>4{uqkbFu@6Y^VVXm<6e%vY*7T@bJCi<`&SSxMT*gS$7rr1S_+^|si)OXc6S6>4i`{5pcBNIht4G4xFYO##p;?VMFgduyU^CT5D% zC$zO>_f~?Y0O*t+FK)(og(!`#Tqcbm!K&CI;EbAz){B! z5HST1r*wGaokzHZU?~7LrL!mNXyZqSmI7!~I;^*kG=7Y5DbftrJIeTR!leM*ln#$V zjxgRy)D%Gd$|OFQW$peLvHn))JwrcFb!9TQ+HRO~>Lq?at5A;lxj~G$%q!FGpDx7r zv)15ii|y@Cupc00&e|*pWt8}WR&z`70m9ohODtVKp=I$L#&Pq~I^5?|t2T!H-+c0( zgrwLwKT=77boz9*7}($361iU@7YcCsY}UA_F;~$kw^U&+lMV&w+>=o{9-A83P=L)B zGs%5*77QDm4Di=2a}D+0T!Rh7>kbn^z|e|0WzP;AQ`L2xt>%gK;^EC zQQ;moTwWzA`wiqlk-_o>9$31o)JnSLx{+ikGMFh-b+6LDjXWqa$b&SFR)y=G1S#xz7F8;E1 zKPgdw(tuZQiZy;$yb-c`<2?ykz4;m$Pz=6+c{qdXPu>%oLC5ON*U5zfToStC%U&O= zH=426(u(|+B=RD#kfzl(4OKh7P4E-|Kj5LiMi~QqM;?5aG$=r0!2XxMXy`tr?hXHc zKq?fVGT@G+A1b5eLUC;chilg33kv+=hH%0>N-`86GhkO`KV+PZPQF}Pi>qJ-i^s@< z0xSmH9rnXwvQWXDF%$kA`6;ATr>gWIsgK7D^4Lo*%_0 zBb{;{-x?{cL+9?RG>?-R1(;>1F;mQZRGuIe3Q!sF^uM1>svv9DJEe)qX1-Er)=L{y zL+~W&P=L-I*{M8JwerSw{2-5L&7L9&3XmAE52K$vQC($tKl3y>QGip1I!(nX(B1r* zWGFypz%!N^WKd|Y^9(6bfYQC$sW>WsCJVvN=Wpag0Y3kpIX*G^pnsAe1qgmVs|0;r z(U$ALhysiTygz6LwJNGd+KQ|wz$!ySQ&qA29n&0gp#Yc9Wv=fvZ|9AuhtaAb|Eo} z{~N>_yyij>+nvNHKrDL=`npIZP=Lwp*7Z_;I(l%QliLKjp?Lh8n?M*M3HeuUaR&(GNJ&Z47p0enzO@5g#uJ=9c&{o zR%jOT&5ct|z!h)wAqxrf2%iG*2kcigFyp}QSV~w(A`~E!&_|+Yx|}oStixzB$U-PX za^M&OrvUH)_aZTYcclGGNP%MT6s$vpfef&ogyh0vQlJ2Z0ehk>pz$blif+pvWc}}W2NzN#p43}s%awYNrVDK zGS@AZ8unak6RA*SF;B{4UPZZtL?}QcbCbrhQ`Z&#GV-9vB9BUKOb;EeAP)-g81R}; z|1B`?_VYZ~SCI(?m}JgRRCP8q3*${QP`QR=C_pB2O&6z(_y)G>PTHhGk;R&V8XU&LYcU`CihY0G;eLb25tpe#;M# z5(OxId9Vw?GcI*u?#o-qiz34%&+=k^gmfrCXTTe(W}HoaXXeMqh$6!oWcf5dPC68z zGvJf+GtMB-wRtDmP=L*Vw=d6}O^1i`ZnC1taFMedou45cicHfn{?2^yBFlODBhsM&odF-*n(@FV+=u!TGNS;qtPbfm;Cj@J$|wAD@}bCZ!Q13C^?ssX zkq!muWNwFnoiD#35eg8=+`_4qA-^RL3h+qiqh~Wc4KU$UojN`;cZBLIEQ0AM64FKMxr^pd@rQ z0o7G+OV|{E{jm(dw$lC0i?(>y7W^l7%kDrX6ksyoBVy&kMqIxbC`M8lk_EdFI0b+Y z_=s3c;8rHcwBM5yC_rJry;^Jvsyi4T*PBfCAqfhQ81N{(UlNUSX{_T?x&6q80(=I% znJF%x!dPJnAD(mag>@6ybX_Yi(7SvOAQ_4blUb+D2z9SbJ&WimfIcH_D$(mU z^<2WI0Q>>3l*BDUp+10Dk_QEN40xeFHV<_sBhnS{DsrO8J}1-c7RZSryPR})XgH0L z69qU8`21PFWiRL-m>?C3%u+GA;*ttQW~rEdzCtP#ppua>qjEZXGp8wXpvWEv<2z`O z0|ht?csaPwiXLDU&w+2 zECzg~N1rvLbB6vJa-jg1Y<1^)WMU@j|4J$pnWbX7^VgCJMP{j(?)-J6LIElnS+7)8 zK4kX(29luwnQZkW)+GLoBtZcZ*=mICx%@O)P=H0YhKcp6_D8&h94InZoEl9tPJBB_ zP=G{6JX#j|cM&}W&=1-rRH{0KdcIJea7OEe;65YqP(2ITZuEZgpa72npK~bBh)2in zqnpWy0*nT|ac5?X3S({!BQCX&`C;;*0G|P$DxP5ujTV~4NqnTH*7B|+`Y2gZfYqS8 z_nGAqZn)4J6>cXP3XmD_iLM!D(O9W4F^&Z|RpvfHLKGl0=$XpQa%ark+4o6up~x&3 zeC1N*%cseO0$c|CO{WMb4TY{*0U`z-hp@10Vgr~_fLW%;B7rH)v&oAByt3&T z)j1ZJaz2;DC_pTmZX6%6K(=i|b`)7>7dipmp6n>HUfJk`8!wl%r)nqiq5!XKdbd@X zl;5tvdPKo|P+(VbqX4%|&#s&GR<(#Dbz^j)Di`A(Bu4>qnI2R&n|al>HEaGaknBy0 z6rh;R<#Js%?Ujjr$%+E3vgsQRG$GF?Aqo)sVkU=?A#KNjBt?ku(mKWCSn{9%j{)B& z$kdHdABOWPPs$7I40$PuP=Lswms0yBQsd=arA7mb_*M~nIT=x8kCA3mEthRZ$CD8S z7!7(4Q=fU%sMKoB$-KYJoj^Vm*~_6uZJZN?`b5cB=1wLf3NRY<-v5|6)X_AbN)8m@ z@X>7al)ff;CGk@L|A4O;joT#qtHl{4Kmh`SKHnO%5aBZRuqJplnNVbhNkr3o4w+DZ zNk+yip-t}jjOeJ5@puX2uE75B5~)#u+JJo&v!OQCYT_JMtvZn}Y$)l; zSee`?z-_=||JiVBVmGgvmet6J0*nT{2stZ8^-?9j$*I?LPSwea0=x#i)n+!lTGi4; zEr;K*XgI}|wduM=eiYz0;2F+L_!SzMT;u48qnATAkPpSx)2%}Xy;?9cMvYprB=*JU z8^wa&`hPKbQDiiqnq{ZZXy(lg4VRJ+MYj2vYZ@*mABt@AF?TgwNj?4WQl7`7N#8CnqN&;6kwIXez#aFw<=Y-6N_tAzk4kiQGn5aw>8ZqpU@#;K|4QQ zuT}C52VGRve7WcKWJUpI19ra8gxOeQs$A0N>#ipkimY<6O56?PLXk}_m=hMvDeoJ} zg#ug#yxn~!Wh`vk^fpqW0HpyRc$^U>OzN==uUfZvk_<&Q%NqArmFtSjP2@t6T`ny> z%6=cYP=L#T9i}rXWVNzp@5u4A63XcL^>4NEM${*r+F*6P-K;h z)oI>FE)?K0U~l$JDokm@qnpvrn$IM$*E4%I|CyH!m7cway+)VuyQlrRdc7-jce2ttaz-hoY*UqE})@#jU zbqD)(QlS8q0Uv#x2^Fz)+?=dCjY%|q-lw}BCM}AL(o&zS2(C7Ko3tphO)Kb}|1N1! z{GXs@eDpscEsFmWw2Z6%QPQFStpOizno*M>>sExv{xOoH0J#Al0-Xi95Xb#bNsI!- z27FR}R>UIx_rD-P3J}boZ&mF~@wxFICnbuEQ?eWrPmmHtrYZTH`cIM)1t?{3LZY`s z`5fU-krPFxv&rWVf0~piGEd34#s5r76reQVBb~Eo)2(^%GbBU-LK)lzpsG^PN&Yvo zqR4c~^ZCmENlFwMr)2d^TW$m;3Q)@6%8V*|#&fmHiNl}1Q2KPj&lIOY8cO)MQ@X78RO8cO#?r9eiqX4mQWN-P#WR$w-)TuUVbvkT4 z=lbqsNCAc!TsH_X^!eELA~lNt6PXw0YJVOXQh;Fwm$6jl+1}~>$%q1s27GhXESmc$ zCv}eOD8Md*Cr(s;@lZzRiIchHMv>{V*sM+E_0HE9k`VF`mVRGbeH^(^fJ+7sJVqV}TufdR*~}wf=d+YtD6-1M>UB;c7YcB> zDMfSLE+=?SA!G_be*a)0S8Mf3@a8h13%MfTbi$?p>;YeA5({?6r2wl)fC2<=%Rssh zi?4>@lTh`F+EaKo8Bk<}!9=~*nz9+3M+OvNFyPBF;uWG&74t`&zOzYOKoS%nG2qLU z;*r3$J`5*OT1z4nATr?5cwadZ)>2i;g#ug#Jn8F;OGtxt5vfpQjY?;`)g%>)tWoJ~zSffp z1*i=88s0k2FV`x88>6H$WHfsTfl~nZfUn_=3A|%Gdl@NEWQPJS->ueK<#I`lLarbM z3Q+jSV29*!b79nJ78Lrch@K)l88B9=mx_~RN8iA34JlB7!mZiJfQdq-qH~~4_!NLY z;5ljB@}ur`R7L1I5}*Kq0Xxm(63_#{KvjMdnNWbqfM<4nGch&#%_KpQx$Fp5?6;B$ z1(m>EW3WcgDfb(V!-Fa`z%!cYW{BWpa72nH?s|=P%lp62wGsIWb`3}r4JB3 z1>g^Ol4@Yaf!{G?x`jk2KxDvs;QJ$@>PD+tFRXLQ`BHVv*`T_RkB}1uI1Tt_oBlY3 zk@*1T zzn9P{0DZs%4(v~i2fZWx?;{BckQney8}Uh$s_UG3Ge70jD=nT)8KO`fHEHkPWsujcNM`T0+Mgv}=>A%#Cma4^CtExMkpO6bh7P%B_^?I@9jH}M` z=j1{GE_V)iG}(94R;=l7sr`yHC_rP--DUqY?8fXjWI~ZuCZ@{&mP{zXBy+vyB*qD~ ziF!fr-{4dE+WU++#MlJs!6N-$Mu&H`Y-$ePWO`t*nDw!LAUDPU6o29b8?DRS0LIExV zJ}}jP#TRcB^MNtt)}%y{VM>9a<+h|m0ZM~*l=VF(Q@P}gFn1su3a}aUI>b!b1P3)c zlM@9v4fvLq8P_A<*k(5pqR22I-w|Yz#PXl{Uoxd?=w)0Q!K}&0<6E@H@YV zBq%^)z(+vilc-H`t*lVaPdLrIQ+6tj@d6H$4+Z!P_w>Q~98{|)d9FoAL0Js}c1I}()L{7~mObWn!M~Yyo%2vP^f$>2& zlxtbAUP!nUfcvf#!mZZ}8-0KeBVY;uPG-A|T`y-^M$K9v8z$^+XtbuLuqmK{omNxj z0zbYd3da!yPXX}nOJ8ai@nNmJxQlLsIYWen?8QeQ-{ z6absTK@q@W6gQ6fVxO1rG6JOl&=id!x_bw&AZQAJPEnf>;T61!Xem;N zw$mGU4bf7h3$5{|`MrQ`qNM=Zx1^_@8MK!7?>a)INGVjy>-Q!?r2y3HQ~+6kx~HZo6>_c z;Klm@QBnY9iUzFOpA_`o-9oq&>4Y2f+I@s@DF8P`jg(GZpSSK~#7dE_@*42ceViyM zfHFn(Kg2tCCy`PBX^Ljq;a<7B36=t2-;kchs?^}QG%@k}3=vYKtavt^N~5$%yS(ou zN{Vz9PwgYLyqfnBDFu*DrzgiXQsd415^+)hXNpGnVP4D!2$dpbNgDKCK1iGtz?mZF zgxYvz)%k}Almb9g)P!oF{;K~Cf~5f16!rBAYy%%d8FRD;_*=wE0jzIKQRVl6e1sq= z05U~;zzfaT@=}KC^Q~ieoNdb^4nwtci=|3V$3ZP8Ulr-o>{|RAI0A`AYq#@4p zpA#tskgiH%m$+KB8d3kNq1yh4!M6wd(qx*LdSR@Dt>%rm8^d+@Y4^f=u{HeBiveq! zlZ+OLaAxwrWMtSLzUOnr_VDYHkD}`aaZN9{MO^DuVmyY#a4C=q33aVH29Z78_6M7Q zd2`-ieW^K#dmB{#<_n|6e5o>pz1Je=eoC+u0GrI^=U!YqWH39hriaDHA+_Do2 zi?XGeRq4>Cun(6yZ{&6K=iXhx;_)QUGp3d*+fW z$2`ncf#aa=$NXnvrU2%Ij+rEf8JFu=O`L4mo*`fg06r&?F@?rEqU#Q3Em0l#xP*WgjjRIrBdRNCAMSB~dB``w=@00-3)dkz^Rqe>NjdGxV=Df62G%#&HMR&n+iuXI6Xmr0RB zFDFI{U`)pCmH%`K=Vx;1#3*z8t}Ud$R`joMM~3l zp-$VA36vtGX}fT&BW+J5WQvrg?INAFD+!b$rD?mUGi}cxWQr6*9&@Ielj}X6Gv*=-1CW*BE48m3Am70DbkD8 zv%7P*6EgU2?w`gi^5tYPznG|W>0H!g|*yhR?IY2pdBY#3ZPBq@LzIhE3I;~ zl%I48V|kwC!4-u3Zi0YaB5Vr4PUa|2ae}AtTt!36&y6P$NdJR}v}(peD1)ZT7X@KVrR_ z2q}OtEp7~j(2P{CB}R($VKi;g>xq#feHcw0zn&N=fH5tdqi;ld0|8P1U^1ITW?x-8 zN1`_pB?V9>vsgKMlwC%kZzEg^z)fb`WO##?vB;og$ zsXHS7Q={^rtNpdfxWdJ3FkdK7IHUDK%+)AaVf9PX?#|D_Mwem@O94AB7xr?>9+w2p z*-SWPw7d~fE)68JZt17iYg0)ebYQ7KB!x~1nMmVEB$omSlgzGx0EAvE2mb8t0@z+i z5cyjobP7PfZ8PO**X5W#pzHO8$y(WIti>^T!JteA6kw3hyw;B?!Nk`L>a_+Iq6PdK z;Zp#9GFK~ZzOtj>kMT?N0(_m|DF8m1yDK(7_)=j)p>GjAMRv+QzOgdF+lUo|4P-!( zo%DA~6O#)4#Y9h$o%9EK?1gP;2A7fn1sG(c?I~4pA+pMV%L$(X@H5i(;B%=8{FMYx z0q`HqM$d&?UNM|k_^&2@3gA!XO83p)cKU9q6&=8}BtZcZpU6xm)Jq%kxPZyjgV&P< zMdq>sTNl=<@^n2(P=LhUnaT=l1BNJ6H;@Shm}I0?#X_+uO*axg1>k37P&DN=t8XKE z3ZVZ`Hj2?jx<7j-u~Pv1$FhOFQLasRBVrV;qet0v{p)3J|zG8>JsB>iD)imVFh4TSRFZ95?SzgqGI|!cw@G~;5URS7&neO*4;-|~3uh1pzw z(xT-by`Qit06UpWB{$nN*&D}wg`g<_I+^PRHXmruANn<-rbvI;4){U8PUIBnPjAcr z`7lvaq(8j_e$Q_cIR%j4neJ9lT_=EVLc#B;cNeP0{JW$<0U9Z95^cBb4+xtAuv6Y7 zdVYmR37P_+KalPs<8#wKM%)y@o$@(tr+fCN1Wy6*DR)IF@U~m_7er5ynWVSev5ylx z1;D3#VO=GC&<*vRUsA$SUaPkAS5JAt<&Yzn|m`Doqe{N0hb zDKdcDcKYr@+!X0Ax3?Y!H!cW_GK_4@U;8G9kBy^U!(&rgOMsENJ5vv7(6l>?D*bxYjMe8LYKi9`(1Y* z%TR$0(~_!W|9ln&3NTOT6xD2z*?YJ}4jo906u_8JA2WN5Y6Li1sut=S^TMN#&lNXu zsRA}`3)lw{HU(fObbvZB*kO1NAzq3UCUaw|Q0L_uTsR3N^WlU|0oVy0YMOO2cPSM^ zgi8Uq2_0&hHQcadoll$;DN5EZrC<@^QUGo;hnYmGj+DiJ5naWVi3|oRg=%T4g>R_h z?uD2~ne11l-Cyns?hjv%ZfyG%mMtD*I%~5alu@Efdx7lIlDRO(Ce`Z*lP|2ld$S*@ zwD~sD#-%`tB;zu(BS{FW-R+4S{Vq{c0Ch6%r_F*|pZO`5a3`(+{sRK10Ptky;+qwC zt%~m$E9j3BIt8F7v%_*TLr3c4qTHzhcKM04e~bhuKp>gjO`DT|vtbHboA7<(3O4x( z{68gricA#xaj($-g1{*WTpAa( z9ETsx5~==YVyDPPsy7QooZk`1pCNJzAWz24y;;l4`odIU13v;J!2gZlDF8nGW3gtb ztjo(k37jGmWxZ9!c*c~NEqOr&MJ7rNuBWeA1F@|Lo&w;Lx#VGU6nB1xTNUv+1WWND{+fnaFo6yfl~l@GRse!Bdt3}=erO$MXC$6H7ehofGJX4 zLPAF4dl5JVfTy=M`bOc;BV-CdPG*bG<|x$u(f9tuOp)pWZH>Bf1WW9DC zz6^~okDUqCf5DQ@Rx9~-a-U2xU}Pj%#Hq?foGTLPO^o?&-G~h2ZzqIK z5x)q;T?*uWGS_|14wk(%BXXumfD{0j%@ zq*Aeef}g9UKz=8)k7w4%>{=so=t*Lv0LElK+mHZ8wR|bAp{>>`CEh(J&^|@96hNEI zw_B1!OG~9H{MiEO(?m)Eq{(bFN)~CYB3dSsvVSIC3gAs<*q1ooR<$%P8dH(L&k!(0 z3X4KxvNb+VcdtPDHzK6~(q!(To_*4GR;_;$B?V9>(|yh!B`tVWYRe`NQUGBxyR?!) z7_3TL5hn$3CiBUj#Blnn&>RA#NKuyitIl>rNCAY2>>!gVIU@g4^)om~N#<+s4SX7@ zI9aMr#2h!7@YC+oTZ8o;SRZO{vr1dx=qZ`6y_<*#Oh$$Q)H~$>>bgWG9KI;JjiJ1N z{$Z5StHjuwD`pf(g=D_=Zer-QQ_Kq(0nr{(iJaS)U?~7L8F!$Ep@+}M3m6Gjjjamx ziArIEO5W!aF-6)Dm+&Dhk;VrSF$EAOaSZz6DkFuCNoS-5UQP~#}X(7fS!|t+sfb^F@LG{CS=f4PiREa zj6Dv+plHqroLB!_#|Z4%tMK6g5MQ1o3>g7NUH8gS*Ck0B?>^pY4hKgDn(jY9*QEg4 zs|O0m9#M&$coyfT6o8hDBdy`c@=#j0ad@oIEaZ#jf;g;*jUmkfPEOW`8KfhvhVyFt zgqalf0OG?na7_t}&ml$%V7y_#$>+ydthK65Y?>1=wbqyWrhKBF|_0rm-XFe=tw6W(s%?7mv$)Q1U^ z0x%PD)g%Jb^Lya-Zray+DLewIinfHavUBqoFIGP(`b zRj|H)W$BR=t2YNc86mprfKDJA_YP$v5V6CBZ8#>*ktxuCSDjSPC>WDKOtI*6eq3e zIDSsB6zNS`tHbye(Nd&0X&X&F0QwEVQluEH8TI^@U@6iI*6YoFPp}jK`^rS-cV62y zVl@q_^9-F#CF9m@;Vf3ExiRKEPld+x^FSoP1DN2pw?0c+;4*76Ze0tKj0khP+#GS! zXEJVGD}rurT^-CnVo+L@1P^kePXYGHxOH``J$f)5EEJqQhZ8yV5MfdPW-{|*9slfL zilSbW>#zdoHwcs>r9i8=ic|po7J*U#Xfg+?5=l|9qAdVELVy%0187q4`vgb)?+eXQ zwdmyW701ci7&Zxryjn@D6u^2`5`DdfFrxp6EEGK#*2fFQX02Y@Ib2W5=HnGvIzHFGMiOwonwIx zb29BbwM=xCGH0=%P#|4;`gT1VGs(HQx$MOvkq+lk%1h0BUO_&WkSPGU=SFPL*#BS1 zh0$WZRGGq7El~hpNz4=}PUcE&3^zgYBh>=(s|c9_kb7RJJ)mTkC!Gb{0^w4mxK!Yy zyS~adM$8nz+|&O&pd<$7R&~5q9^-xhk@jUtWk_X)F1oz130%V)wLjFuV+j9_2jQ zqYMQD%q_w;SFMK%L)BW-8LidU4&mVH5N)e?_Ujs^z26dLB3H<*R3>sTks~ak+Ew6G zBu2y!Y1us&s4V!0`2y-#VOAp(W*JDm|0=%UGyVmNH22Il8}sHbKvhEfT4*}MrKye8 z(Yejq5bmKW;|uR2L(Ni?XJJQQj0E0g^=U(Ao^bl|#Y;{Y8CoqKP?yuXoYaBh0X?FS z29XaXnGc6crk#jJnzfw9lC!Y5lcX9R`Fs_*v!MW5P9u+lsCf~A81`uO5Y!@DG1B|= zi$HJJkSFb3Pf%8J2rjZvl&t-`#vu)YUR~0Ak))^Xdw@o?N>~@6tl}=OYg(|01If7wnJ))n;rd`?w@rxz# zWBYk|t{8!r<-PsVQhWPl9F=Qb;3v@amlWJAJ~V~$RH&npb2=iEVkz~fTl)6SROM_H zB0IG|HdeZqs^d6HhRMZHsXBxqdvQ`l{d_wYe4$p0P;CY)QDHVf`~`@ir6h|=!kKLQx>0VDck(*kK>hn#eqq= zgHz`lh7M(^FV@B!(Rl0P&tarf!AE68?jNRT4=*-vF*nRxx^e{HYMU2whcb8gf@q0# z)d{|Uq&hmP1@P6_5unCLo~Mq|M7{b9-O)ijR{O zDc4bv+$#mnu&T2(CQggLDQYb2R-JKQ%UEL63)!{K(@m_`>iW~%s}NSnlWEjuOp(QZ zQ9Mp4_Z^0>r{T`RzB-;oUCMJTb{<4?hx<{QL8$d zf4l@8%}#TNP;!Tkr+O(n6=-rS%hZ@b(P7c`JP^&aOS9->ZUdw4&0pY6-N6hsCmkSU zQ{fa#JPsm&?xiY2$K$qslEaIrm)?tr{-v>j&qc;yAD=Lf8Da}V6BYBW%Q~O5l~Tm1 zgCo8!jc$-GYpK7x6Ff!V7Nfhvc0FWQBdh`iV`9FW`Z~0})SMh@I5=X(9#0(3Dve`1 zq3m)6hQnDT0&lF+Z!F<)F7J&t1AA2{NAo!yI2Q91jG{)fQWWQVcRbf+bIas=HqZsd<--vCxAvZ&?0lipe8)6tU*n9GKm1d z6y33zvNtj}R{}HsR-GkdcR$94F06@(?hibZY6#j<(M1d4-bvHl8iS*H*O(F63iztE zwEihtkEr$0eT|2`vr`u7@mZP;9nY?agSNBk>6)DjtJ&^-jIPfbdtyu=;YCIaS~;MV z)xo`=2;$bnm(M0@Qw80xGR~eAZSia(vuc?85Tg@ApztKowWttXvrCo2gp+SL6J|V| zXTzFDm4cfJ$7iK4KmITOK5NzhimgVoRuRL6dadZ71FlXe&bu#>&o~|Sp0$-)%#uAdQX@ZWFy&fdOpKFc z@l!+ip{H)T@!sEm`Z@*c`OCY9YKs7(p%rFw%1ln10aR>RnPtYUD>Yh$a;br-J*$Ai zw$s@Gb=%YAWWYpX5A?D+_7ydbX_lGEdV43K$$6SYvWbgHxZkm~i4M~$#&_!+>D{oK zhUYJ{L#>pdg!4i*488z489;hBOta9MbvF5+>c&epWthj}OXj#XU~Fi;Q<|7;Himxo z(W||3cBGGhZqVers1o|!bNuhNeXofL4;wkz7 zf%k^UKD?2WZy?X?h;p@Y(;A#V<2D^M*6-;~ZbfF-?yFOZ1RV zMAc=0r6vMuVBtQ=DD5%DDKlr;ITK(RasR+5LT3UiXC9YqYlJh<8w7~4lKUsd7dc8e zcjj?&c+jO^m$5&?*kcRHAfeE+hUsBM$5CXAzTVGd-VzY;4?TZNr#Cy7pP5 zt=&=Tswk!&cKz6j5y$Aa;b4pKAoZ>t)~G?u^I1J*W%WAjoa(T3?PILLp(Rsb4>HZ{)JqRPBcYN8*<1^i& zyALDKy<%zR7EO03o1JdGl+}&w&)8?u!<`r1e^+qERgO9H*iZtdYNB2!7M-%gbxn-; zyg+ia)sUlAkuGhnbsw_W4!&Xq2BfPw2KEIPLkeHWoEK7h6dSTeG9-o_dS^k%l8cAP z2YcEj98A}jBdK8F%*ZV2Ffd{>&Uuf0zzk#eROUrLWV$%^@yRPRM)o3mi_>K>Op?#A zA!8mF+0PPsj)Ts08o~`CRboD%RG|H$==|=8OPWTKoh6g(m_FXsDcD zY7Tiq#~TYGhgr5+wHRs*7Toh`(m!HAxjZ7CIeTp2zKWL2 z00BngQSEeXu;#m?f+`0E!A*O|#loh#{*c~VjAYz#+V9@SFNqaVFV}@&<1)4wu8SjM zMQM6&?WGWLR2hfYeXD24hv<2iT{c87?Kvc{N!RWd-8!vz?T=52h28Fm{oaT`gzFe# z&qhiP1upDAYWfFtj6IzYB7HXzP*gh;tFJsQ7R-*Be{?S$XDHhPo^?i}9&%ay{3c zArDP$lp|PCb8Uyf2TsCF^&p=^;Pj1h3~PrK-T+^)oC@ZfaVu9qmu=&nK&M?|z?AlL zNFX#p(XMa%UB3fB(eq&uvwxa)?`6uz2H$16wqXKCLK?ogzb}>5bIady=*y72`}>mj z+>?%{5gACNtM7SEJ@@%mx+G{PrfHY4B0;|*6ZFXFAxr1WYM&xzy#l)FqkX;g!oDmv zod$PM2zy(t7C+kRfA%OzIcCi;r3SgT;h z&*+d&`SCg~n8#Y*Fn*|Jw&c{sK@w>ES_NxlNw@`M@e;Mo(X!yvVy~xpIp>Ss7fc)- zVe~#Nrwd&?LkJ%%#;7dbTBgXU?NBt0s?A@~S+?QPGj$(k`XC6MQY=OfXQfd8hTJP4_UJx%`yjC`+TO=Gx zRn47jWm$=JE1R=hS@*vPViqlC^zH#)N^}AeG$Soc7e~BI2VmijW(umLt1qrU%=D~=Qi_VN~8};d(UxRT#q+I2<(F#8f}%z zV?*c-nzgBE*F6R#UWD#Ro5U-6EE4{TFEoyQ`=(pm<0c}=)p$H^ipil*K1-T07)Vq| zt%GH1>BC;J4a^lqe5j@Q%@IBP&{S(vv-pyW&zN^4tPN{)E$?Thr6o6Al> zxjD>VZo0kT3yYKxVdb>ABmF|kOi%37E)k*393{)lDu32?c|VY~-GGTW+#{LNHuc_g zf|YntAS;^VUGl-}_o6c69Y-QFhW(kb+8jWMc+2+!D0nYKXN$g>LYL3(Jf>X&L!KNb z^W^A2f$aXaRfz?^n3XunXds)tM2%o8u)8l~UfU@fGofNKwJI?=x=R?HuM+FCGCIYN z#M;U_r(EMTZ>Yogw%j^y`p}1DR2SfdL37S9wK6WCt5pl-A%tFEtFIk0dqbw(W2ZFkt`U-@_S<%1xNG>1H3WRV9a3YouTx^OHD@{^5eA?su2@P zv3re5e9o1<+>Ylks5rYXv`Qg%d~&+9WLX&RI-m6WxIGRQd+DZlWE`#a!#5E$ny z(ZAc?pTO033aF)SI=4g%B~w6M2tci9ig)xBOa?X<+IJnBf%KmEBidn^SQ#bt5 zg%wj3=}z>h4XyIjZK26o8bqeuZLuRGOMOTQJ#JyDq~hC^Bu`Ygj^fGU)0g4mEpqgf zIVusWK6Bbvth~C|8E@HfiW`+yX}yS1+}Wa4I=;ROy*I~_g+5}A_2TgMqq8pI=26sa zv0uci@9rgRPh_R{)p6y4>YX|x{>tfIL4&?(86Tln9|==ts(ZCS*jWdazc2Rn^?P(J> zIOkp(=M})FBNPg81JtzpD_(iG?O6;WHR^}BaEI-N-n1RZvNVT|?>+#;yLyZs=Ur=h zCNM=!&my}Bo9Kw3C^-m0V2(SyM7n5JEtMt=NQ=0|jY z82-MMCjw(so<#OGL9@nTq4S1j-N%@u9)CkOvTf=x>*bL!_=}D_((Bos_3Ws8xv*(t zeqAH);J|8Kjnk>aitdomO}jT9j~v=zxl*3MfYb6f)?ah-H`+ z(M?t8>vKf|qrhz?n$PLB`oC+#7j8{d8Es8e6j+o0!&-FFiL@q5v$D92Dc;j<>u*?o zaes+sl}V8+QDssslJ(5+5oR@W(aLJ~cPv06zkT@|*mw*KA-OM#jJq2PCd*Ao2xM$zyATzZYGp~l-G{cly4<%dD<9qcg)Nzx zz!f>hkHQtmJ@-J`v$7C2BPTvlHoZD7=pIayG3)q?t+7s_x-nlajn)hGjjE0tu<)5~ z98%Aw-S_b5<{n4`HS)0^T6#DcH|F$9;1ylRyP}Zsp^hI5UN93~s=J!8dLV(n?@}FM z-5MO(d_^L;$1p3rlnSOuWKKuL<>fRvxW{$mw7#mavjaUQkkewpI5eNdlWF%9-h#cG zKbPerODh;jEwUzhDAXl(858n%natm4k6{-hR_+SiDtECat!o1Q1VVKkNzCL4|Z~N9#r-~Gwm`~)0I;k2czmI(L$QYz(d;rSE4QJD4& zwvw6u5^9Sd|;X2BeC^rBD^KaL$S+*mS9$NGDUF0bZUG7!D7|5boa= zy!!KRzc9jnhZ|eij_1bimLQ(HO?s<^*?zp$dI2;nwY87UG9A|`t=AKSW+(9ZuE`;E zltnHe2(;UuBy?ywscXxh-2cm;J+e&XI;_c_Ra+EUCLY0xek2{IqC{9)*pGtBZdxa= zhPv3+wYSGlx!xg|hS?3lj~)=0vm7qZe7kjlhin8(lvv8|!H! z)Ca8=u)XvURe>8nO;vC&=Gz?=AT%XKf(J{!`!6&gQZl5VcOWR(#aEO|_X>f4MM)yodcv$+E?Bb?qB6%03b0vC3S7b@7SS*Xi{RifV%5$|zQ$HQeD z1yG;UFUd{w)FT?*Ep$YqQ(3Pz3i~^HEi|5fkJFbzI!(F__R$Ior@+})lQgH8~m5?&6IxXvUU6`$xKhKvtig4$v zs_e>wDH;s-OXAgFi9M(z1;AJKcfq3SeuWmI+Sg7DY$kOIs66;LfdS>xdw^U}O|!+E zulh=$`whMsY+;|*0iG{fCC>deU-LJys#&&T^Crq7gTBXid@d2~zg}OOnm0c$b`*2w zG+M5qk%nfzT>Mn?gZabrM{tiPmO7{1_ir4N+*Bj^iQOvUf78lg|v#S*k*f?6}^f`5TVzu z33O4Jp)RH92@2Vt41j#9g*} zRx<4_I~p0Y;o(wTDRE=XYe3-U&uy_&%Z8lZhYmLzhMuumuaO zkN)dH$g5q&lfWXWQ0A!gt)$Jf8mBn1PP>c(S$3GrGP`k$^S)k}5kNcFW$X$X%bcl9 z!r<1rsc4(OP%iCa70alV{lcu}%nv&D`%FHozzWMz1y*fn>RlE_nAf;=&$o0+)9#@x zVG+4*wfNl=L@%HUi^H_&ExK53R1YJ*OmY{}jGaGLE$U$?kTLGjG-c%uGFvUl#z;A@ zMhbQ#wB>6$_5FDvwie)stn%aGzU#6h4rZ&7#R7I~<}t2(SC6ON_p&A3TRb-&KYTz$ zKbMa@XCUt3){j7}OHJ#7Mn;PIx)StY#qOg6iQUDDuC;n?Xp?6!a-ro~(hSgLnZOiOKU zF`fRN7F6u9Qy_W5W0tX?VmH772J}*FeCTRgAi#FkX}u&A-=4{TVbNs0uMp@@`Ng+t z6$4?{DglAg(50IXPeQ9R7N(;r@yopVQID)a{l(}}_%#E?!L75fi82wA`_ZF_AaY${ z3E160n_h*D?)o~c`0~nqHSL%TLt#?iUW<`S-g>GmknUx)Wn~hqMfdL=xV#!F2wq8J zz8b3UsS1I%C_lEb3U_FcdkE>3De1Mq1;dL*hSWoDCX^4S-Mbc{p6)50E|stHDLs*; zBGv-=Ag3O1(5xOXeWEig5`~No751$l1sh#@;z%2F6$u4>YXuHp=F)$`aF;q3ZP=G2 z&(%qw|A5s$&VVvLt3Fm6!QDXkvN|qWUso#VdxCHo+vG-*CG-Uim5?v+Sz`klj?Cax zAs##9g;p7NhD|y+X{e@T^z|YP4jo{Og|Bzv4vHywZShlFR&WHaAZThs<2WK2-;#G~ zSD3^7BEu@3zp%QtbOtJNoefEp{nRT6Ra!U3`=9^ zmF`BG;yrb*arA2=j5cQ@aX-oI5O6F2_IPxW+{)CLw+OVRoO;p0m2rB9{~|Io%4zp@ z?$p^)XiwKcr==q2DFPI`#UM?B;(d~$)scn2Hp0kr0Z8uW$x`6*!?5QJmc0cWf{d22 z&AK!`j$K-{s>;blbPvd9L+07E`_U6Xdk^t&m3VPzseTcww$yX{0fRYDk3_H?;xS^E z@gOZ8lxblNZM(jWBmn@4Iu}6gew8T`4be^@am+klL)v1Dg{$m>cT0%pL*8?1S^G=8 zNMfJkdD+0wX~uvIz$I+;EayG*EpO{xRV>*(P)xgw3yJhCnMn3jsK={w)hSMX)$dK8 zmxgfCvWk=|!`3^lP!Vh|4^z`VbhxZs27!6}gn9jW z@EF|1E;BKo<@B(G4@6eVmNVeo?&#fgw;(BVmPN@Rr zRxGz%7a|Y$?=r!Gt z9+(DuEf~i-Cj{>IqVXJ!1GT=HI8L%wYq%T*X@sFGwguLaa-%g2RK=dV=Ef<9dH047 zDabEe8837j0dXOUgD=C?a>8s*m=#x^<%C(30hk3?eM`_Rz?vi%?UqyLx9&xmzC+<& z5P`ePi*39UO2ND%ni~}vE6g2aV=tEUDlo#&A*KzJPGt!7@Ia*X>p!6|@5O?-G30UE zJmEzYl^kD0{CE-Z>+QR7QWHz{vYwz3sE!rNEUSS^)z+2jU{k5Az^GRyH2@uf+YBfD z3|=@^EfWq%5e`W8nUpw4Isa1I-@F)AI_;greVQ-U9o${uH@`&cw0Zf{GjC7NdzCO{zBYxM5lfr6 zYg91USw(T0(YKWfosXxwjd%pykk@oI#((Cnh4#QyN@xBn4R^CI5Ep!+KVi@Bb6k7 zMgaYFzv{~Tt_|BrHN1Bb8+5G>QiAvuLG;n5sw*C6gurX5Ih^+OZxYNC1T(YV(ONx@ zE*rXA4EAm^_TMq~Zattn>Cv4#>RU%I6)1wb>vR8`F~;xL)G@v8@zaZ?_j8*BS1rJw z8DDho6|1(&ZcFcFWBcX)m1a9St60`#H{!GQ4`D6XH(Ac9==@dI0-ch(|bKp(;Z9B>sZ_!g+1N7nBK%5$;nj_ zF*D8A#nc>$i)Q~u*P%v29pBDQ%6V=~zBV(RMkopuOLEeaS$ zVRGy1P3>htE8b{y(=KDj+;s`)qSLXLw__Oy&R_)@)0tuTiEb{WbF;Sq#Ei!`j}_7A zP7bkz&SPy)LO+qHd)~yhI}FZ5T)W9hvbyX|J;J_OflA#5rL;&!d)X;o%(~F14UV!L zfY*Ce{QKyF&>5g@o~gZp;$@5@@G`LIv+Hd7;$gAI^(yx5IGR^2Bb#!YK{KWUOFe)XDQ>{6FJQ`|}U{V%yY55|q&k=e0JT+wq3(-~& zO*6wevwj_L^k-A!r>c5c+<~cMR6urLBKLUupW(ysQY~&aG_N4?{%dJ*(kZUx7cj9v zh8yQ(EnVVMws#P}`4KM>2=ScNcbZF*9HTc%B8#g|t8U%&`qWLg=n{R9WY;5X+Y6SH zCNce|N&F`+k3~6$Nr3IY6siKEW|6Wa0c9UNPt z@pSLZ)Xg0+iqVKQm{<9GF6{?9uRc;;_FAe-l8`SDsUGaBmU>g(UTGrRAX5_UUPi{S zhB5T$jMNuA@E5aj%l9OOEPy zRh@b@&4#u3r&(i%F~^yz;KpokF*jeTsp%05fOmd`qX8ZIkcPL;Tf&_TKjoE&hb|T2 zF)tG*E*O3(tgnD|gf|Pm%TAkCLCpyamK-mrw@sKE{If6|spwEk9bFtaBp-Iz6M_*&bf zQ^sPhnLT4HE6DA!D)b>7HqhtfOQw-+FvH`<3g3V!X~85l_xc1<)zsCL>YlXJAI2KW7#KVi<^@z5>B`L#7oO; zjD&ZCh7C>5jSXc~e9uDtWz60%o`yJW}vY9mN<&f5w_Nm0qcFUBddP{yQh*f`h82fkytewsb zsN2+t2y{TCiM>6dOB6864^_!y0LHg1BibYUVO#4lOUH)}Z5MdV3J$v}R_}{w+L11! z-nUzjwt1TK_B`7#x{upU@@f>=B^_YCTiBzv*5>en9bKPEEze%~`RXK92Q&0TFRA4z z0j)>=icwKxUR0Zb$FdQ%2S{uKO(W`VjdrbPTd6+M8yQV!bLZ|ryB&?3x+J%YAbs2KU`DVnA`lHrSU5z}b?l4;(G2YREzKWB^Sf#M_VYdx#$Sh};UQnb_(Q<- zxmM5Sz;lF4$i;tZte4lr+I*>MU3Q8f+%hZv)BD17$RQjlL*F#*p1BwUsktY}p!`oy z7l%$)vuy@l#y#RzD9)(FFf*q^!4b@bUr|D4f>t8IIO}vI1t{yAd)ZQeK}^b6W~SsV zd}+DV^seF4749J2L=187X;fIGo^DAPOcq^b((j@?b4J-cRjxHfd%*hG)acEJ#zj8w ze|pzIZS!2Dqc&o`R*uB9w`0W5*+yXA*Dr5fE!f;e zwM{balH{#l=+T&++F$zXR?MsRtPj3c%&ibW@21LHjgOP!Y@@tbxe4BDquh%aWtaBI zzJF+PJnz*p+yqn7*ZxknCMLjU9M>e<10;r+c7MQwo%^0FgPh19)<|fnQ(6r-pY_!K zRJwSIMp54Z%YkGR2pJIupKk;sykn1%qTZP+uR1Rlszaj=u4ibp3T2#M853iKu~Gwf z1#IN6#?WMwCzfz^BVCiD_1gLdmwp7bm&v=)XKJJ^-_POw+^B<#2{Z^XYc?RbjhrBI z1i{(A1_7$p%|e|_N36`TCsSVLxYx4`^vZ)*dBr^>5_wT}3=V77kOhvl2YHCZbZ;b- z*{6uznWK%7R~Mm!l$RRTF~@>ySFP9MxjdfcJ;!v(cKuHC^Us_a$#AQUogtt9R|JvU z{k(JR-hhrG_So_lUHJZ+M44pVRMC@$8ErhL$-Trh>Hb)GS^)W^;Q3JKA8N zPb>>?nh`pvYKFzQKcq*$X%?PDj*@>Mw9-E z@$xu!P@qk^dlNiaprz$c&~mSWA1f{tST8P9;$?xAaosKA>QS)Or=2-~h)y3AOD`^2 zqGhp^5#7Uxx|ZF8tm=bZ=T)bfUvP}-X5{ao1;XaMPmrNh(Zul?IM63Kjk(R9tfg47?P7!NAM4LKs-A zf4L8zDjqK}if>EB2}bcfS|8id=4ZPMURQT6X@hle5HvWQv>$E}`c%%O1ZY@dPU=%9+ja1xn zCJej&9d81e< z6<;t4W$}J0E?o-!lm>oj6e|3$sW^e9 z;WzjT27ap*!octJFZVyBfv1c@g@2lg;R|5kkN67){zof>foJqD_e`10|7#Q~{6DCe zQ-Fbg;x8E3@{39#3_M5wa^D~gJl7~x_-&|o&k7jW7JtFO4q71$?4*CW@0JvHF$xua zcPb8Hd%6eyf`PrYLKt|S{^dR-4eVzWD*ORd+|H&fhreK8u2u*G2kT$%r=)>HjN%@t zILs(MClxO;3T1JaisMLf9{xfU3$;Q-aisp`zFitP+9*``W2snvAqlF3J{3_c!(WJExmJiMR_b5wRTAUrMxny5qQYg* zxEg=Kz&TnW44kKbxmAhal}4e$zlw_DDj3M)FBllr3SnSO|8gIf2*!=#38|PgiYKMQ zH40_1Ld6s3A&M&gLKGKig@~e|f4Rpl%H1Kw#I9w{;X%x!9O;n7ngvIyZFIarPRtSq9)W6)DCF@&^;=@w$VWaq{ zRNQJ5%HnNQ+;%>qxE+5Xice^Th~h5&%YB8!c(+lg@SmY#n1h~s@D~hxPAi0g`}8k& zoiy-8qu3}F_Z!8lrQ!jjP!=DgVsEzBU&CLB;_F%=qWFgX<-S3Z{H9T;@ZX{0dN#L@ z;4c{XzE%hW|Dk`mXG;W+8pU~1@gt+SKq`K06w2bysJQ7YMDcU{g(!Zd6(WjX>tF7( zrGY1mLWO^liUZjF{|9M>9!!tr{eP&lqP3Wehaqfj_* zGzx{|ZB)1pQs?dX3#s!itq`emlm6wtM?QYPQG7ruZZV1vNyV*3@lmO`-6%dT6?YoN zT~hHWqxiH`eAX!Lm5Td};tNu7zfpWyD!ytI4@$*DM)7s2c-SbuDHY!_ibtg4`$q8t zsd&^V{!=P`Y!oWFer6OZfqrQeDuI4&6e@xK%P3R={mv*<0{y`#R093cC{zOdk5Q-u z`m0f>1p2#Cs07;Lex1`Qfu3y?DuJGB6e@wXF$$GH+Z%;Spq-3DCD5)^?6nc)X*c|Z z^0cQ`i1M_z{^jl?AMa-r`%6X6C=Qg0gN))}sW{Xq4wH%_jABSC<{O0qvB)S?v_~6- ziuPEeP|?2BC{(mBHwqQ)@kXJdJ%NgwU2s1Ue}Vfltq|N#)xX^3^6_a#ak^BjGK$qw zagI?ai{~4KvT>nNC>v{xLfI%%@tZ18jo~k#n$QY?s-%Cpu6$fEimFsxWE6F&Xc@&i zsn}=~o223rqqtNmE;owTNX5Szg+ldOqfj_rXA}y@8;nBXc%xA$9MeXjaJ5A?kUH#~(L}JEY<+ zqxhs$eA*~JBNg`=g^J=nqfkb_WE9Hi14f~YK4=um=tESzf;_*Dzrgchtq{1srGM$i zk5KV#hX1Y%{{yWM;eV)qxsS@nj~T^}rQ&Bs@pGy8l~Ft{6;Bw2isDJ5P)46J3T5ywNcEGitUVId#TvT zD0Y^L-Hc*)so2XX_Lho$jbcBkIKU`!QZd&k4w8yPjN(wKc#%;YAr4b7{#PitTl?VRMd<@S*#m{ve7aMWn+U; zC>s}3v3CWiUX8zi>R+@%pt@ZDa$h4K|Ep14B^B2g#kErLdZSPluQv*1;|8NpHf}Tu zW#esBREt3McKiiY@6rl^>L&fmeUE(nexvw+RNP_|ACih&jpCzHal27`Tq^D~io2xZ zQ%3P=sral>+$$CL8O0Z*;(nv}vQ&K4C?1rGhm7LuQt_}+d{ZjEV-$+}_l!cZ{STv1 zZ2!|J6x$ygg<|_Nqfl&rX%vd>uZ=>n{V$_XY=37IitQhaLb3g$Q7E?mV-$+*UyVYs z{W}$Rv;6%7e<7!z^?*`{oPM_c%!`g~IV-Dt2eDb`1Uk z{g-HkNS&AIU;6PYs5s&xgkLPfFVzYW{zUytKVC+~4I2>t6d8VnR*3MY>0kQsnN(a! z`>SO5v$aBmKUe>9&y$ZYFp3MMVvSK0q+-k{9I2Qz3Khj#qfkbxMxl&eWE9G1(76(7t--!tq`~`(ZAeF<>SkZ;x$t7uSTH^yw)hxE3Y#O^~xKlxM3aQybgaM z&Npd=h;v&1(vROlMSCs6zg32RhgOL2@6x~Acgx4`HH!C1#RrYzW~unFQG7%yK4uiR zNyQyT@d>H;q*2^06`wJRd!*uXM)4l$z_`yS6z(q>g+ls(Q7EJj8ihjokWnb4-!KY= z^jk)ukUnA*3hDQaLLvPj6}w-C1bq~LAp;)M3Xz~c(ZAfE%E!MjieE~_uZ`k2|Bs8i z4*#m!wgyf~H%Li?bayv`bV)Z-i!SMsMg&AaK%@nvM5IAVq`MoWL_iv(y>qQG=eW;v z-oNJj?Clt9@9(cX=e`GUpYRXh5#cf58R0qLCE*p|Eg^FCaH{tNJ!Zr`c5Xdb6oMWs z8bJ>hlb{ESL(qf8C+NWv5%ge5JoIfXuPdoc^14zOgx8hQHkS&Q(-P7FG7>%pWFce) z6c#!h8+2v0>Z1+C|E8+es z2I2l{wz=xKT#HZ}P>-Mi4G8*=H1<%y|65oS{3Fc`LPbm4Tq|7uoX{4~fzT1qna~B$ zouC!H2pakYK|}i!G<1-ML;gRz94wQ(xnTz3m|xoFM&R;j!Wh7K!dHNagh_xY1g)4x z(9jtK4gH>=p>sT(YcI!~E0Y{^fk8OtBHP@LxV)6`6JP~lC15q-7r1K4Ccsw0 zZ-5Jzl3k%x*soVQGRZOL8-!ynw9PHTj;{$(ZfXl2lFPG1xiFy!pg5rfpfsTjpgf@h zpc0`npejKRQG=khwFz2VkD#>;2wK~ipta3Bd_GSe^;(Vas4We`qqerq-N5C~3AX|5 z2!8`Q5bgsU;USrKgav@r zgdYKG2ulHL3CjWN39A4b3HrLWc!;)C-d|n3;cW)t{q3;L)yL&sghqhfgr{em#!Iv zmvP-THyM|2621l8CQJw1A#C$t50By<3DB6I?DA#??FBlH0DAoK?GBJ>6HAq)WY zCFs}F01s;?$QRf^ndA#>h(Y)Q8)lo^j({%-y8t5ze*i`k_5sEc4g$s#jsPYQjsqqV zP5~wp&H|;ar2><64790Hsp90gn; zoB&)RoCaJWoC91VTm)PvTmjr9{0X>CxCyvJ(D!%G!-XH@g>J)7_6G*xg+8*)?Zo9L zgx!E=guQ?l1WkP9q3c?ycrBBBUA;3175~|0mm?jJ`=hRq`yX9+cp;)-@bVX@c{V=2>}HOnpng`letn+R3@n? zVGt@x+2&5;HIyNo1C%3N1XLhsVkHkprbKCTLDNX54@NyT)7P%*lSY?}wj&F+91ik-P4>=c0z*?CkV1q#j z*kqe4jz`!+(EGP}s6SZ(w#y^|y9`3WZrj`ooL~<@@89pCmjB^$Kqd(|Y!CvD+U8#4 z1jh+_|0xe0f0TgJGD*NWgAj1RHkTg(mk4_QRS&(tk$`J5Nx%(*5OB*j7X_cfUj)7X zu7?f&NBljRB;bKT2zX?hi-DhhPY8Pda}UF3O27-5B;b`n2zXyHz>BMbukM;Ho- zc<_G`qj=cpKc^35l8WdCp(3Vj?lnHA*o1e0xP%C(h)>YOL>?aaZ->M(NkvkFP?6j= z_W~cpM+Ch;wTF`aU+dGzBmwCSLO@2_+z6Z?6JazU3t=1}8$lCuddTblYRe^)ROB@X z75Qy*Kj4f733`7K4`=)rOHr95poBpPC}o?AjuVt2!~&Ef#069!XksM~c zfHnpppsj80Qv|dpR0DJ*)C6=QXku3n$9|EDZZb(lPlHg=+ctLx0bdaA0s0Xh00s~= zaj=IP-%7<0nWSR4L8usEn@fpTJBpA7FouvGFpi*!6Ff}vKT*GyNh&5Ago-J)xzae} zR6;qxbV5bI41y+p@8RWFQZZX5shDdJD(2hf*5F%rAz>ZhN5V$H5`rc!^RRM}R4kWC zDpnbUiq*EctT^KuLJq)MLT5ArTzVt{ z|JDuxdksRse%st@Ts}y62RKZKP$vW&B}4`sCuqef4+SxR70PPk*1L3p9FZF605c@Cim zU>>12U;&{oU=d*eU@>7ZU@2i3U>QMAwbDbEU2@EU_}RGHARKdzZEgrIuO$oztS4x| zCJ+0LN#Y;4W2-?(+-95Ghs!$%djIbpjvtYLg}7snK?vAqn_G;_2M9j_4iQ!Wju3tZ z93!j&oFJ?NoFZ%loFQxhoFi-lTp;WOTq5X$T=kH0t2|i)+;QC?JlRd#Tw`3mO=t$V zLud)OOK1bQPiO~tKYb z0bda&045P81HL6p1$;-C0r;Mvk2;5-4>zBn54VV*54VJ%54Vh<54Vz_54W125BDoU zA8tKCA8r#tA8so_A8tEAA8wb2BRk}C{9Pvb9QPQ6&vBn^cKM)(9{w-PL%9E_LAd|8 zZSDjvpC+6EoF`lWTqaxr{7JYDxJA&;I|OaHN6?lB1Z{at(3WQeZTZ(j+&l7QFJ+Q9 z@x~xL**n|pa)cvte@Fiv5K$(%KZ-%PKdNnZIfjRJPvriXxId0TxIdn4EFqkj|Fr4ruU=(3AU>spQ;A_G}z&C^`fN6y3fSH6@ zfFB5R0P_h806!8I1AZbb1FR(I3tdgnSNJPIU*UR!zQRoeeT7>I`UUohkz%9r+^oPe*v!vZvgKJ{{bQ$wNpiwNlq1&5DgHM5DO5O5D$=$ zkO+{3kQ9)DpwFI)pii5Ypii5Dpii5Lpii5Xpii5Fpii5dpii5Rpif(npif(bpif(z zpif(hpif(tpif)D!|mVXlddR}ywl1C;ghann_aH%VeD?XzXtBFZ4mCSYn!Ww%MAz( z0Zj-^0WAnE0c{AM1KJa`(-E|#3qf1D6SSolL0i5cXiI+&6CTQw4UkFR#9)K)WJ7Ip z!*F>7VI*J-VJzS)!UVu1f>ul+Xy`P8hRz^p==TH-o#WxgO*!{mndICH48pk=+2(%4 z<)wt504oR@@H0XGku?PUN7i|maY;JY%Ostf3_|A?+uT-M-cHy7_?@sDu$Qn8aFB2a zaFlQiaFTEeaF%cmaFK8caFuWkaD#9Y@E73@;2z;V;344=;3+|0#tVWz{wsn${#$}R z{(l60{7A>_4eR57K+wmJPSD4XMbO8OOVGzpK+wleOwh+qO3=qoLD0ufMbO7j>*3^c z`C3RPlYA{?Gzeb{nQU{JaXA|yJ0KS!Hy|G&KcEmnD~b{{v;;vzOA|D-96>`XdU$+N z&i#o@a_&zJ!nv#3=BnXxO+qa|T|zxT142VU6GBr!3qngk8^Y&+_Jj_APK3^YZiMcD zUWDF&zJz{&frLSTp@d<85rmO|F@&*zuLu(WlL(Um-xBnNPABLqoJr7EIGdoaa4tb# z;R1rb!XF9x3YQY}6)q>}D_lj;SNID-U*TGUzQPRzeTAC|`U-y|=qubo&{z07L0{n> zg1*B21bu~vJQVZ)zIRwA`I+0j~*f0PhL^0U{m$pGWt{}Fc>h5 zFdQ(FFbXi1Fb*(*pof@5(Ap^kt(`{D+8G3`{hpw;a|l{H-@~di^6U#_l6Uo^L3s8h zwz;LayqvHC@H1gG;8((0zy`ubz!rjbZX;;RPJ*`VCTPoEg0>tWXv<*_NB#eGz!90` z$&MR@Cp&4IJB7<<3FiP836}s@3D*EO2sZ(L5$*u)5$*#X5*`7b5}pD6CFr?d6Z9W> zN6?c-IAM>fCyh+dlSU=zNn;T7q_GKl(s%?tSV9kJcghP*B$K?*BnIJyCbP{Y$K{lS zRDiUEbbyS6j{#W-Sphi+IRSYHc>x6o1p!3}dd%VkJy47?+z7ngd!9S_9e=+5tKe9H0xKE1(CV zC!h~OPt}j0=NL%Pa||KqIffJT93u&Ojxhv1$9RICUohkz%9r+^oPe*v!vZvgKJ{{bSMv|~n=Nsbwn5DgHMpbrvyhPm)jtG26=6B`Ea=) zp%9=bp%|bfK@-amG^0F0Gd>|`#-|?2Jd;yZkx5Qf-5{K*rfsekF4ra012iBs1T-Nu z1+*Zv1hgT14rov40O&;M4CqGa4(LVb4d_eI2N^)nqYozN(T5TA=pzVv^w9)8`Z$6f zeF8y`K8c`5pF+^1Pb28jXLyLZT|R@EGRbE!+aP=fb8K^Sad`n@Az(3K31AsvIbapx zXTTc5uYmQ04S>yrEr4x=?SNf`-vN6FdjSUs`ecU*`Ygu?`Yb02`YdM%`Yh)O`Ye|S z`Ycxo`YhK8`Yg8y`Yd+{`YiVd`YaDTym=*`(nFc#Q+i?$KBZ^2xsr9l?)H~L_DPsDk9tFZXw_U!W}>~!aYC?f+oiH@aBa)MI4!=BECVW zNNAf&j)263lz=3JG=O9TP5j8i%t-PSDP@w1GzOs}oo((%1Y{sA1$<0c4#-T<#B3f) z#+HigGD$@)gHVyjHkYn$xSWrW5m11T8BmCziA6p1h$|JvWRi-K2BD&~ZLTx|$`Z-} z$`dLADiSoYvWF4x<+J!yCaI`q5Grce=6c{Y)FSi-)FJc*)FWtO0}nal$x}3xNh+Ec zgoHUv#<=OOtUd5ZQjNrf{A6`gH!RdL3ygc^YEgxY|f1WoMY zVO<<~iZ5i6iv9+nVxVoVAkH|LPy{fPP#iFvpot?rY=|rsqhykbu?C@Hylw7RoN)qS zJzyeX6JRny6TkJ4E}~RSl}ReTGYAzkZFAos;CsSUzz>A)0CNeNxWL2w|Kzh+D3eqy zHV73hfC#7Uaw7ypBIx}ec$n#b*+rE} z0%911fLOM2uMcI`#(znIs^MK?q1^ zn`?!D3NEK|oQ0 z-e1B);ZE0bd)0fJwHwcR0Z}1igQ%hkGALz%-d8V1_{mm}Q$gj)2*O zQ-C>yvw(R7Oa}|Lf~lnWSR9 zL8#bhoBJLCn+bCOTM6?4+X$Mt)5Bc$LQnt0X2RR1UTHJPO1hC!&fWt;mDui-C( z-hbCaTmN(8o=g((z#s%XvdxV_z!SoFz%#x?T zNh&@v2oSSPmx(BsmNv!DstH7E+QZo;R+xR;ZHz5 zf+iO9&?Kf*6p~3QiW-E9;WrI*r#Wt6^ zLAYFvkPc9TkP%Repow)o#7`g<^<ZdD*70NioUkFk@dpm{)91rfrRmZ z!30el=3!Y4sTeMkRE#tT6{Br)S@5RE60!rv6LJA25HxX;ho75B#blYJ;#-4IG0isj z8Uf!C-T`J3A~XyE-xD-(j)#_|rDCp3QnA1wR4lU16|NsHFD4WNEG3i#EF);*N)P=L zNyRFeq~aF?Um^c13BTIzM&RRIM;Hy*Ko|$uM9|Ew9`clslHX*Kk{t%&Id<9RqSX(V zcN1a)_7LI#_7ODkpoe|wq~efFQgPHER2;X>HOE)XNkS{YX~O4#vjk1N;GtGpskkVU zR9rC#71wNYRS zB9lx~k<}nnWVg*Vz!`HA8Uu0@ngQ|>G_in(TnVM3piELx#2{1@v(0tGhgpKq6HtoK z2T+EfiRC?fSzanC$Rrh&3_``HwoQvFe+v2k=lbHXRqcu!0H{tF45&%a=sF(S)s(Kf zGD%l`gV5E`HkYqKxZIdf5YUuR1kjwIiLE?j^}n53%On+T4MIhG+uS|8kB)=~fKG(R zfGz}0?Cv3bEve`slT`FJ2o+!0=1MdOm-`X){(&A2`Crn5WRifP1|eX$ZLSkeFoK}> zkM=PCBMJBqcZ@R#0bkkXBHtBeVrrCUV@(eu{co!>4Z;^f9fR<}*0ar($L0EjPXG-Gp8^^assWl3Y66-Q zw6m3mQAOnt=kdqX=LX>r?QCu013D9K0lE_I0J;BcuYXAfyGXB4hxpCS(GvA!G%tCFn6Xct}}B&RrIFY&Hnz-fEkxfXmwm zl>j>kRRFsP)d9N+wE%kvbpiVbdWeG_qUM)V^}v_W5rc55W45{8xO{@p7jTL&0C0vd z7;ug-3~+%k0&s~i8gPX$4seYy0dSo#32>7z1#p`%4RD7r18|q{J>WiJ4&VV{KHw2y z5#R}73E&xF8Q=wBCEz7tHQ+VjSHN4sdcb?aCP0Mq_OWdRL?UblL?P?~L?!$Ih)&oC zh)FmIh)vKhj(8qw`@f?j;RkL)gYeao*f#e8E+-*G2P7lJ0;C|s1*9Y-0Hh`)2Bak< z1*9jW0AwWSF*AF3lSa;+MJD;9B)dU4cTU^vavl#=~c{L1^pjA z#c+Q~gK&Ro+w5{V53l_X-ii3WtY{GKuVkC6ER!6!Dxn&nCgB?d)Fw;?)Fpfe_>3?M z(17p*pb=pnpb23ipc!E?patP4Kr6xuKpVo(fVPA+fcAuSfR2QXfKG%hfG&h>fNq4H zfF6Y1fL?^XfIfr+fWCyofc}JIfPsXQfWd?_fT4u*fZ>EofDweNfKi0&fH8zyfN_L7 zfUgMm0ACXx045P01HK_V1AI&P7chpZOV-`{*bF#C_ziG`umf<6@H^lH zVGrOGVL#vu;Sk^);V9q&;RN6k;WXe1;T+%^;UeHV;R@g;;ZMMA!cD*(!e4;9gu8(I zgns}J2#)}d2u}e|2rmH72>P-8>*2Ql?|UZVOXame_#EHb=Dxw@_k^i{2p25iJ3u7D zEI<^(4}hqId4TAIg@BlZ#emp^p8#JSnF>JdH!)F&hZG$eckXiP{AXi7*2Xim`YuT~y1mXmL|R`@0Jxk31bYiFDL z9G5!~+5;TH0Xh@90J;*o1G*D>0eTYj5PdvM&LyY%80YS15Kc9~HkSpL2NALZh7fWA zh7s}tz9bX?j3g8Wj3yKVj3tx=j3<-2bvU^bx%U=E=>0rU;*KCz#>9>z+!>}EG2XSEFfD|%GKq`X}kj6IGACHiZFbI%=Fck1HK@+ohDCR$^tTIVO4uepU z%QjaLXUs#W49G{Q3MfF(#KImHw3Uh?GD$^ogHTb@Ha8prr3oVeWeH;dJG;yAXOg*JyzD!cF$RJcKw#{Y58J7}r0G1JQ z16B|;@n;XW{a4g#nWW-ZgHW-~HrE$t+&~xr*hCl%*h0|6Z600>kc#axNyRRMP_f%K zHy>x*L(u#8d)U=N0uIO|0f!Ajz){;=UYy`Kp#b0{p)lYyK@-n;NYP#@&dVefmkdJ1 z72Di21Y9G`09+@054cIt#J@b8@IQ#}$Rri_3_`^}wz(Jxcu0s1cua@~cuLU37aj_A zlZt<3l8V;`q2jG=E+XFadqNaIgi96>4G@W-i63~F*i0&-$|Myr3_?XL+gu`?F%BUK zARZw(AOS%W6MLA_K`K6!Nh*>Vgo+flxt|b_lCT1hn(#9qEkP4Acu3MmDl*C>6`2h} zMONEfZM=r;gnEFSga&}z1WnB6VVD24nO`QUC}a>SirD5xAfOmwG@t}w9H10I6U%yt z>c20_$s`pO4MIgF+gxV6hEECE096S&0o4hbSj$7#Hd0YrCaI`r5Gv~1=Gq{jA)y_h zF`*-%DM1rkcV*EI}y;Hup7{kuouvYpov{QROu@f-DHxAo(7?! zw{5N)-t-rQo`8OYK7auPO&siDNPnpqB9l}MHwYCYY;#{DU=(38U<~0~z&L^?PVg}C z3#s^8CaIWg5GtnF=Gr1)Dxm{lI-wI_20;_Q_i)00U(A+CD&`u5iuty=CJ0zaXb$+1 z&kAXFT&&HaeiaE!1NaDuQLaEhRbXFU}2 zzc$awBo!A8Ld9j<+;<4LN|*)slkfxJ20;^VdpP5N>-{B@RNOTP758m(bMYD;5EcL) z5q<;ApsyhK@$^sxbFWDODvOABsB;X$!&A_5%3YA5FizyC?E|%6VrPb z(o!li$Rrh+3_?W~+gx$HhHQjVfE(?lwNVF9~}8C=Yx6 zQ;(KO0>&AHfUj(GiE)Cj2}uEy2q^&H5HxYBhti{^Vwy}+F~cBK%(Bg8LBMQ6cEB7$ zF2Fp3CNA`le5h0`l1VC-7=((SY;&jZ8kQ6E{#71+o-6@B%OnA73_`$K+uSmoU_D_a zU?X8QU^77zfAjF!w^Ff9CaKtI5GsDR&Fw?L9|XOBpNGPOC1Afy5^%^M1RSx=ZNozz zBk27nJ@oQley3!TfU^c6;Jj_l;RF{6djAyAvj0k;Wy|KA=) zjFN!6GD*Nc1|i^~Z7wwe9uv|5o)R(wo)a|jrH2h;q~euKQt{RxRJ^y%l|Vp*D|UZr zKqNvrKoo)|M)UC5*HRH(CaH*J5Gvx>=HlXV0>UsPCL(A+5`z9C$vw>UKkrh=Bo(O) zLPZ+eTv}YtK&XR?j|m!(g`odPb`L*|kcu2KNkwjhP?6U*7Zr*533`7a54|QzKw+6A zpqN1jC}EqMh=5WAy}zu7!~V;uoJ(I5m=vdwKoz^4SgznX^)LnNTOOcGGbAOzI0 z%^kycL_LDu-@rqsu z2o>FIbKP;d7hy9h`VcgrA3^_-fgVo#4`Pr^QZdvZR1CMxO~HE{LD2h0d#L2U6voIT z0pkrqzy#ae*SI{H5DAG>2pTYrp#R7W4^O8^#Y~x`Vzxo3m}8rpi^~fLyHT--paDw= z`j0I0P}qOZESE_tRvCnf)wa1BNL)kE``3BcGeH8@%OnAt3_`#b+gyJH{6-iA*iO)Z zT^`=}AKAalB#CJ{_?Nkt)pP*KD-cMk8d7~vwI1mOyx z6hRZqddTg6Sd^1VDk>U;ib}S*tvKVS1iinShhF|YR+mWvY8ixpI<~n_5Kxbx_c!n` zBK%^INdlS}gn(wYxz~7v7KDblzqNk8z&P97 zbp(7x(EBHP*gjkWCdniLQw&1DRNLGW1WYIB{WCp$JoNdmSRgn%8kxx@(AMbP{I@UX%EYr`IyBw)Wm2smh)JB)X5m~aemlyDMooS=!P zJf#0oDo)EJ73T~>#Rc2s|L=ade2K6IaD}iAaE+jeH#`(xE)_Rrl8V0!LdD;z{}7@A9uhS1iHCv9q~fVeQt`qdRJ^p!y}%h?6J7z{65ayd6Erd6HL2Js60<9(#j+i84NxVUpqaS>ER>SmGD%53gHTey zHuoI@3K3=jiV%JP6eDP2Ne>g|N<}G|q@t`rs3>on>xh7ggwB9Ugl>RO37S~VL%Eq! zQC%jfsAUi;>e%LzBA^~21)x456`&zO6PtL5vPdeL$|Myn3_?XK+uVEvv>_}4v?VM7 zv?pky^H68HRCJO_D!Lkkite_#hxh@}lkf!4oA4a)1wj-0dziIYDh9|T6@v{z#ZcSa z?>OUd!XCf~!hXOgf+mjjFkyjIjFU+!CK!Z@iMF|~5iprB88C(LEnq4^6TkED-hbRP zWRi;S4MN2awz+f&m`lhAm`}(ISV+*s#U2u@l!_%XNyRdQP_e=`mki&%s|b4kFCMb_ zulhAINx(XT5U{~E*A^$(M9}-UdWid-1pFqG1ne*f0lRE-ukcy#CcFjgA^Zo}N6^HB z9!AfQibFC<#ZiM$aojc+2WLDY6@yT5%{Dg<0oMt7 z|1A&mmrB5GnIzzEgAj1fHg^R9{}BEJJS5x%JSJ%3GY`#vl8WatNySTpQ1RL}cLxD) z3HJc+2@e1f{`{ZB$R575q()L$Y2DP)p>R0bg+jcx8Q0@4wV0WuIYAd`n;vn4UJOp=(*ASC9n&6Pwz zE&YY)4Gcm>BimeL1T-N;1vDeX0JI=z zVrvgC{AbZdCaGv=5Gp#@<|-k;5vl+>6RHEc5;U=ghjac*xTj1~(Z?WE^tH_uML>Uo z-ap90lAk4DuuKv#%pe4OX`3sCk7^`A?;qn~%?}bVRwfDf${+-MZJVo&6HFr11AIeh z0Qi=miPJqi^?(0!X;QIRCaL(zAXF^3 z&Hag=+A9fq|7s7({U6Z3$Rq)44MMbNCJESX5CV4E=FZ{- zzY{J1{vcci>?LU80T27;OT|H%q~eG{s5oYu8-+8TAn5(4J>>R(U!Rdl0?r$RfQz=d zOnA+g30VPG2{{0N5;XCqhbaDxw`7uvI|iZRu5E5G&Ul}o_doP-%l}AyB$EU@H3$LE zZF8p(@Gs#k;1%Hl;0-|&-+SmfM=Ji4Nh%^;R|pkRY;#Qz5S7pz5S`Ep5R;&ZaXd`- zUypHRl8OWdp(2rO?iN1l4+(bwNeTA=$qAa6(nCA{rc=oz6=@AZMS9!ZaGWtCLGRD( z;oMpY$Rd*jWH$%_Ic;-8@mc34d+WamRg=Lb8Vg{k2gl(=|vv9c- zp(3CRp)#NxK@%%_xcr+`d?J%nd}&Paw#^m58JiLc1DX?x0a_9?v5kk8ze>gDGD$^ygHX}YHu=A650^U;x&pcodH}i+ zG_j|LPX0g5=_Qj?d|?nO`q}2nBVYjG6Tl$Cr+^^@O&spw;9jZtQYNVwWe_UH*ye`d zHH;$+2Yf{s3HX|ziIY9l-6Iv>$Rrh04MN3q+nhtd3_=&cEJAm{Y=S1v^^jnPRLqk} zDi#`qiXUxrNf5AvkR0$6AthirK@(Sb`0fv>_*o{YSYr?>*4pM;B49nC4PYao9bhv- z6MyqCbDLCblSwLe8ib19ZF7+j@CV@oz+OUhz5dv-yo&s(WUI6|gXyRQDhyBNWPbR5& zU=S)E+2+zB;0YlE;29wk-~~YwUwLS|RVrS~Bo*%rLdAc!xtsXLig?5B{|gYAa2N0a zK@+2U$hJ``V#p*Fu?<2+T-)4o1jHw-0wg5-0!U2I#H1cZ9hHh?GD*cp2B9LAZSFQ+ zLmI;0fOLfWfD8mp%;cf#2C2v_lT>6g2o*VObMtY=T!ck{JcK2Hd<0D_=wbg6sVF3q zR1`G`6~%3HmvF|CgsXtkgzJE^1Wl~qA&#%8D3erFHV73}Y;z|NP>paJP=jy|P>Z06 zbv>l?zq{+nBoz$|LPaCnTpzrKCWL-~W`u!&76eUf?P1y>sc0jURJ1b)6&-AI+i*rl z*a_%N*bV4P(8L}dF8UuJJ!O)LJ_ezpuWhbA0{Rmg0R|G90tOQ_ahQkNhoxe;Oj0q@ zAXJRD&Fw?LSi(WTc)}6D1cD|`@^IUK>rIwPD!w%c71L~U>+q((BWwiBBy0hEPte3U z9u{npin%gL#R7v+vB);J9RZ68y8ufGe*l&dG;yVeaXY1Al}u9ci$SRP)i#$6uVEb_ zCtw314`35P6SsOubxzg+;@1$B7|9hVuT+6B?y{W+QVntrJ{^XQc>O@R8+Lh#l{&c5#j+pB_sq? zC1_#|59RkuMNOHcqK-kRsArp-f`IyjX@G`=8GyzFO>E}jy#MjgTqdb#We_Ub*yh$E zpe6Ul6_p^do5EKo2RlNW~zT zq++N+s2FaWJBff1gfoCqg!6zg1Wg?8A;&LL@s&(cG0`AYOt#HcN5B+9Ex=SlUBGmL zCeHM5#y`a@nWW+egHSQoHg_2T^9k1g3ke#q*ux!v=p`~q;xdDfxWYEq00FBAjRC6( z%>Zi%nz+uxfBtK9y-ZTE$skm0vCYlKm&b1ey?=*?ss77jr%V#C+aLt&vCWOc3HA~6 z{(~N_o|b?^GD*NugAj1sHdnQIxO|eJ_n+}_F;yh_UkQ*&0xlSYfJ?TyeXYagD+Im& zPY);4O2BoQB;b}o2>8o3_Y?tt6J7xB5nciQA!yc*yX#yrs7?Nx**wAt2%{yF9c-xEz`ACEx?XC_prVCdTxzD2|*lmP}F+*C15H zx6SQu6)qAHkSw|C`?EKC`w2UC{EDCQXVpWEET0? zl8SN$p`wCqE-%jb2|@4w)I-@b@>y4rNdl@Hgn*j1xtjQns7ej31b24310y=5+(vR z6TSg#C1~e%4`cl|+YXuJ_5N-U4)KR=t_TA55{d)%6G{ON63PM&6Dk0X5-I_X6Z8#o-Y$Aj3!G36)%Z49WNeMXt$q9J? z9})5cQV|LP(h!OQ(h*7kG7w4wJ|>g{WF}MuWF=GvWG7Sw%$ z6eKhT6ectS6eY9-6eqL+lq9qRlqPfplqGZqlqYlpR3!8SR3h{Nd`jpCs7e?Js7@FH zs7V+Os7)9Ns7n|F_>3?f(17qYpb=p*pb6nyKr_O0Knuc5Kr6y*KpVnbKwH8BKzqWE zfR2QvfKG(vfG&hpfNq3e06hq60lf$t0DTDh?bOf1%gFNm)n6w0{u*QuzQ2ap=7!?( zmxMg{Gh`$oKVUSW5MV5!C}2FH1YiQ8G+-j39AGk`B47%kGGHp9DquRH24DuEHeeQ^ z9$+@10bmZHF<>5{8DIgSC14Su4PY^$9bhS;BVZY!GhhXw8(&IAAkjBw#B+zc{uN^vhwFhg28k_wMg9$(PR_gYf0E&o=i1e!d?d%mW-E zECd`OECw7S`~)~bSOGXi_!)49um*6Bunus6un};Humy01unlmHuoG~dup4lbuorNf zZ~$~a1ZdF@Bk3u zFZ<{p10oTg0iqE81wdmz`q~FCPW6rB}4_pC&U0GB*X?JCd30IAtVGO zBYX%*K}ZHjN%#nmnvfchmXHpRo{$lck&qdXiI5GDg^&}FjgSYBgODGPi%0GuickYkhEN+&j!+L!fzSZ(3868dGNBou3ZW&S z8lerK2B96G7NH}c4xuxk9-$kcKA|U|A)ybTF`*xzDPbU>IYECiw(`)<|A$_!Ws)D2 zZ4JVY%J#O|W#^&lGx^cl3HNt32={ll&Go?L-h@7YeuVyjL4?78VT9p;k%Uozv4ngr z!=c9$3IZk&iU1}OiUTGSN&%)2$^xbmDgdSvDgkB?ssLsYssm;dY60dD>H_8w>H`)K z8UYp&ngSLRS^$<3S_765+5%P(IsjG?IssM_x&qb^dH~iEdIQ!I`T{l*1^_k_1_QPd zh5@z_MgVpYMgw*c#sPK{CII#jCIR*lrT`8QrU4ESW&n;5z6Ts5%mJJr%m8(a2D{AZ~^d|a2fEHa1HRDa03wGj{N|-4Twbe8xVzX9}t!B5D=a4 z1Q3((91xrE5)ha01`wa{9*~d_5r3y9CPV=wAw&ZtBg6!xAjAQrB*X`#CL{u+B_si) zCnN`CB%}mnBBTLiA*2UnBYX_VLC_!jxe59+IiH8h@#PmuewpMKNg;#qi=l{Z?lBUJ z5uO1`5dH;}BD@BaA-n^WBSgTzNLC<327E$@3aCto0jNTV4X8$l2dF{NC#&sYYz%qS zIx@+ler6CJwSjH!D;%>CVIrUj;Tu3R!c;&D!gqjHgjs+#gdYHH3G)E$2@3%o35x-p z2tNV35LN)X5q<{rAglrOBCG@SA#4QnC2RroC+Pbd6ySmUQ88F1d7;A$!VCS512}L2$)WI0+>N~4wyxF37AcI z1DHd2512=Yh@UhI2vGow2+;tG2{8dn32^|+2=M_c2#Elz2uT2|3CRI#2q^(;326Z9 z3F!eF2_FMC6S4rd60!rf5%h~=r-wNHzv$g1lYF)OVGzDr_S)vQ;rn+#VJF}qVK?9~ zK@*R8xa$9F*5fis#VLbOamF?`0Uyyh!X&^2!W6(I!Zg4Y!VJJQ!uNpdggJnlg!zEm zghhZmge8Exgk^yHgq45?gw=pYgkJ$q2QBSc_^7$KBCt$$@_a}5Z>Q^ zwz;GD03!Zv_n!bnCY%O*K+weK9^U!?b~J`eQW4uARK&H-HO0Tf$0xJ^BqX#3Bqp>4 zBq4MFBqMYJq#$$!q$KnJq$czRq$TtPq$dmjWF!m*WFia$WFd?IWFw3QpuF6`l4Jo!|M$Rw}4xIuX3C2eze@pHa3LGLf;Ayyg*C@+%)d}0s+ zD%<8R;X|)NxC*F7xDKd6xCN+1xC5v|xCf|5&_guv&@ii^-(ApcVcZAn9LPkVy4IuAE8$uT;~B**A#5RTE^Hdg}yJqfh|y$SUI zUl1Aq`Vq8Zpoc`cq;rr=(mB*1bPl)8Z9~8a!cM>_!fwDA!d}2Qf>uoM@Yw$!e|#;I zbWS!1ol|UcQ4lbd5DhS$5EC$i5C<@e5Fap`kO(k`kOVM~kQ}gpkP@(nkOr`rpbzqs zhxobW$(G3^Pqxw^JlW5-xg!Ypg>W43E8!Gi9pNls13@b`dzkM3o02UuN#{0$(7D4l zmlfZWy9j#!A0Dn{mViAnNx*)C5OB~o*90dxOlS@`N@xW*PSC_t9#ZeNGigN~` z;(~4NGR}C3a1C&Ua076Spoup;#P|OvAU9=_ioXm(#oxBM-|!pj9$^RIAHwf|hXhT0 z;vu^KzukH&lT^Gg2o*1Fa~bd&UK26_-V(9`-V-!2;$5k@6I&`G$s`pY7=(&wwz=(i z4KWD20I>*v0OAldF}{b{S)?L?Oj429AXFr=&9%iDlMy-qQV==;QW7*VjfX846d2o)dO=BDHKOlE@KpUp#`N^-{RGD$!#gAkC%HuquMa5*0#8K3~+BS0a7CKmNj zyPQ-MlSwK{8ib0{wz;F9hs$LNCjjLMrvViSnpoMx=^9e;sZ3H)%^+0Nu+8|9>I}fi5N=18_q{115 ziq5vVYzXK|$O-69$OGs}(8N9-V&<2MFJzL6{sy69plvP^0tOR401PEW2Mi}@;z$pD z%Sgp2nWSQ@L8usSo7;eZ353mniG<$(lL?ymt%olQNX1l{q~be+P%+asmjnUd6Osdd zAfyD$C1~OT52dR~#X^~+VzEJ}SZbU53|}wH2n_)%2u%R12%7kdhcP9kVvS5vvCbe= zY_QEu!WlOarU14OrU8B> z7eFLJcR&<^CPwpcw}@0kmq{vO8H9>Bwz)b8h)2--6M87+f4(G=Ndl4>gn(qWxwHsK zLC63|Nyr39P0+-29^&|)lIdlVijNIKMP}RFc?4u7Tmob#Tm|GLXks1@?1hdg8eV_7@4GEyg{g#V4JIi_c)PI1u&UV9WaHUiPJm`D=rn& zWs-`S2BG46+gxv)@drX*z+A!rzQdkjLwKHJ=I zyy*jkk$^*lF@PfkO+4;l(SSYd}H5J3wKACKmJ1&HsOSC@zy!lrjhvWo&cT@L`rC+yGP{ z+y;C?(8NzYjH)0NRb-Ni>IR{rrfu#YoUu0H5uh&NDd01LCN}i&kN=(4NG7RhY7i=# z+vc+3!)!^&0ccIg4fvd(iS0eCFC-NmWRi+b2BD&hZLR>$*o{ya(1TD6(2JmnUwA0t ze{J@aNh$^ygo;77xgiJ`LKqGhM$mu}9xnUeKqF<6#4!dTahz?gHlF$`g5E#TLoffY zx07U&fGGwcV5)7d7Xqde^!}M1rug5}vt*Kh9}GgkT-)3OeD%yHJO(TzJOlhl(8Q%4 z{`0?}ev(NlRv3heRkpc>cuT7Zivep0KLOVMKgcAB8$3k!e`9a_Ki2L9%;&Q08~7wN zwy|X2vL$58mMvShYzZM@%$ON7moYPDVeD(RCQS_4LP$smAt8IVglr)pA=$~6c+czl zUgx*&`#zrcc%SEe-s5=YzRu5e{lDk+TmJw5Z;D>P*9xx1My*T_1bjp23D`o20Bj@p z#GMwlBuI;IWh6cKD7Y5;v@)Oca?|?>ivR}*p8*aLmH`eEz5pC0tOgt>tOcAPtOuMT zYy_MpYzCYmYy+Gl>;#-A>;_yQ>;qgPd=I!xI0U#tI0CpvI1ac$I0?8#I1RW%I19K- zI1ji_xCnSixD0qixC(eoxB&>bsu%V)ARXZ@AU)v$AS2-sAdv6`keQG!(%lYO2^j!E zgg`(Jg1^C@wXi-$?zr4Ck~=P+g1h4iXl2@?XCXpIKoP=QfaeHZ0mTWyfRcnz!1IJ~ zzzc*(Kv_a>z>9R$4)~C83oxDV2Vf@QKHww5pMW`p$AFIsPer&3 zJD-pq@Co4=z^8=FfW?GtfX@gy0G|_{1uQ4z1$;p$09ZvR4EU1p9AGV>1mG*e^MJ1j zWdIuq{x;rh;b^Gb*9);?n}WNqcW9;4yDUt!AIz=rhTf~-)_Z#A5}wiGXW%k9K+*ZryYQ zzdnP7F@t4AC47tpD!72mTIqB)3n@coeUOZ#VNM0N{#mU|8^q-yyaC8Z@Bsxa+%%F{ zNJf%aRKX<{)5_$F;Ara7$&>zs6 zFc9!M!5@1&3mHbp$!ISlIT;-l+{x&ym5IYO?n3bEyIJTEApzZGBmp4`E}*AY<|uX$ zPWTbfi*O1MMevEy7UuMl7JXzSE#eehi+HWfMFb=gE(7`zt^$$?K5>wRfnm~Ou#BX| zFa_6QgjQw~0!9(G0Nx>N2aF~7#0eH+hDeKdWh5;oD!3M@TA5dHrY8~n`Y9G>caeap zGLnGl3NB!#R;E05@DZUBU=E=Q;A4VMTwtNPeZzhtBWbZn!L?YTmC1zn)>1-Nz%oL1 zzzTv-TxH=s`?{lDWF#$iD!3NA zv@%a{8uk#bRvs#&b*kc~T_ketaLx2JVpIF$!oWB~F$LG6gjVKx?6DM~44^dOML-#X zPkhlr4*MZjUPjWQl7egTl2+yn_E?qh3!pl|2h_BXWIx(#$w(6GD!9aYTA4&_sR6;S zf7L=h`#x$cBME4x-~wLL%KV8Pv?TcTZ7ihgDFLs`NCMg^xPT5?nI#D5NcbGknXm%T zh2RsrS(w*DT6C9@v%BMF$G-~v*# zGRX*-NEif2B@6{jBKX897G7&7EvCvyT1;1PEoN$E7UE<1Bf?_99Kuq-#{{3az``bb zzkDJiX|YJbwOFE+S&j3!l&}`CjIbWCg5VQZSvX+7g;&c+TC7!YExyvqG{kB6n$Q@q zkxa}TdrGLnEZ3NGNBR%RE@<9UK#f6>C*krHr8MiTJ5f(y8+ zmAQ$4>x4Uin}mCS+XSC@*FyIYX>m_R(&C|lYw<`cGYJ8Y2~z+8H#A@xARWOcX0UM4 zemiB9k+jI9;96wS$^_$DXCs6HvJ=7qISD>7w}sXAQst46w8*dES`^gEq~cN)CiwNw zSy(kw0*c8<0!k{lfakR`x1!wi3xq!aWeGl@yoEY5B(Z{wB(buBORS=mIgNm7gtLGe zg!6!!1fN*PLf&_zMO_(5i~0(#MMJI3LY%f&35x+u2ulIY2tKieg~GF?MN1h;i#7_b zMO&>*PUEKA5pn}M5b^;!5`5xY7M`R^i!L&f7TpwFi(swHn>Y<2gwBATgtr0V1fLjb zq5mXl5hWvO5v|}_#As!r5D-U*2E-G5K$3;6lO?gAj3jY@f=e8vl^KYDA%r1-VT9p; z5d@z&+QQ_K(&8N%NsDm`uEhkc%qU#D6v7z5M8bGLD#0gCwvhE>X^|!)Y4M?gYcX9b zQw!H_CZR6iBSL+^9D+}rXQ9XvX)#|$(qf^4Yq3Zxvkd`D2s;5w3A+Ky2tM%(3+<;% ziC?ITi82MT5OS#wAilTTI|%yyo`WdgxY{T zgjWFj2tM(93$NO@!2uabiystRiz8Z@mIydTXao3>@CM){!6%-!aNNF`f0mK7IH%xR zoY%?}!kNB6C;~K;>;pU?_{2vR zM$eNLf5}K%1l;uCTBOs;w8kFO6WRhY650a-2|h84g$|>nMOGO}i|h)nMNX~Edw63# zOGpLeAxsA3BlyIE7P8wrs*sGNMNtLUqL@~u0!~8-LS;ZHLRCO%f=?`KA#IMdC?_Ln zQ9;4AsHBy79;e|YLK#3+!i#|F1fN*bLPq;BSW8CIqOO8#QBNxqhdnkRBmf!_`T-gf zd}1>TCqI-H&1EDlS}M2}t+g^65b!$T8^9Zct$_9fpV-ktkB_89CmBhLE()$iSFOx5 zI1SwinE^cr*#MygpBQeT(JW~ZAtPxKrQllh*2+A<9{Ug;0b&VH0DTEQG0{TXxzZv@ zM$#f#!L=Bum8pb14klCq3?)JN?-D`*?-9ZQ z?-P9DBnvr4ON+@ek`_}HT#IR1nGf;Cnn9QWm__gbb1Z}`mc+R-lEnE6F7Xqs%vU(- zPYD|UiwWNVJ|pmZowK$}ed5klCnD7)5j}p=Y zjuU+1Ned0;ON&!7k`_NJxE5!%GM#Xye<5@M{7UEsxJdAcmo2n^Pg?vgBWZC>!L_)d zl_`lm-XfF++#!?&+$H$L2Nv$xNBf5|k`{j{xE4>eGM5nW)Gb~AJK$-;H9!V}PYks1 zqkU}3BqM2&Rl&6g(#m{?(~yI30FaCD10XlSC+4%T%Rc<&myxt6q~KZ<(aOAvfaeHJ z0mTWg0ZI~lVrdH{Q>4WUGLjbM6kLn)TA5rp4HXG~{Yw@e+mFpEGLnGm3NGMft<2Nd zK`nw`U)REG_MU!4MiS6K!38wZ$~?q9-I(ClH?uG_O#+(BNCH|axPaDLnXx#8*9j8< zZxG%Cv?rtj-Xu&0bRtXzyhWG}c$+W_(2Xz$5KNc{2qAm|=t)=v2q%07=tWoth$4Ie z=uKD+=tJPbO z_@2-YaF8$n@B?8m;0R$D;22>f;77tcfRluAfS(BO0)8e;1e_&&0QiNF2KbfmA>blm z2H-csM-Jq_R`5G%F4kNn%m-X2ECk#nEC$>rECu{QSPr;HSP6JQ_!96Z!C(Bx7UtMz z!Y4A4yCL0e5AJSAua%jHn=2#1ug_%R9s50$Sw<3&O~D0Z*UA*Y-JFw981O9NIY1tQ zPt0%O)h*JZfQ+O?VFlNss8;4?Z#P|xa0gI=a1T(5;1gf4aDBV9C?g|j@uGrjQ9&zH zGTKd7B9sQaL?{cWO7Mv_EKL1ITD&YHX;E9jwWzC=IfXseBm4|#KsX0zMDU4CEIhF% zs;P{m#cK+#MN6&Bp9pA8cno-*@Dz^X4T4YXV4>u<(&9}SNsG=3u0>#`d_?A!+u$$l$_gVPazAwI$k+e9V;94Bg%Cy8?f0)n)aFp-{;5fl2 zp0rTaeny>=k+k?(!L>N6l_`LLUkHT(zY?AUTqO9!%NB0gx8CnEk`~t#T#Fl8nb9~6 zw+LeacL);zcL_f6frZOoON)mxk`{j{xE4>eGD{Hf)E!;_IpAr+3P1*ePYkp$bCVJw8WR3n)%l z4=73SiKQ)sZj=@;$Vgh0Q*bTHYh^Yepdw)lpfX`QpbEh!R=2Qky|kzyBWY1f!L_KP zm6?TrR|seJo5kNP>aX>J^Cx%-1daJbPDI;kSq2O9XYGpFueldhVKr|r> zAco)*`&#I=Q(DB!NLnN*xEB4jGA|=w0HHQu5aAWT5Q0w}ZlV7+X)!`Z(qgoNYcWPE zlN|x$2)O_g2zdZ01fTf6g-Oe#MXHRX#bgE7Vv1JgF}@8xBs_&vKb?>sFq7aDXIp5q zTw2VLk+hhn;94xu$^;@{A;GU-Y+=z#30NW{3HV&W1uWOfR6)QOgzA7*gqnaa2|jV1 zh0k_Ki?3uPEjB2)7Mrv(6>uIm6Dk9?5~>2W6MW*g7RIlU7Q195E%qw77T;-Q!m-Ei z36X$b-u3g9|n8sH|uC*HBp`%7u@hm54feFfLzp;o370v-{%03H*3z*B!n zVzJedm`+BLm_flMKBJXsihxXn*8o`vJ|M`#vacjDyNo0;mx4>ot(BRGfV>31zJP^? z_8<$&NCJu|xPa%hGTjkSoDc#iN$>%sEi_pxi7&`V63Z#L#PV91SOiog!~-f5d_YwT z%k62aCL>9FS-~aN(#o_(KpjF`z$=9IfcgZV*vLXI`_TQWjHE?V1=pgvR^|#mep(Rx z`qmZ>+oNtHBMEpz!3DI}%Jjny-X!?-oh`K6ECFxHNCLVlxPb0jnF|Q$LHG?2O7H>U z7S7tl2pLIYl!8m_t(CcofIbAjKF&g-Jt=)$+# z2^gl}0!C0#*?|2Yg9b0a#1$iR&%gxFjvUmXWmBq~Ka?*2)CMxaqBgoPh0w+<=_~ zpSat?{qLp49vMlC?-X2%@3k`P@x64Auo3VBVKd+e!6zQKkbF^E{3s)7aZ16pIIWd= zh|_R}@E715Apl2lp5PNNS_u1DT3nKmwD?`YwYaL4NkQUu!ux=mgh_zg1fO`qM%l05-w(8!W2MJ!ZbiJf=?`IA;&M$qLhrJ#S03q zMOm%PChYM=!WKXU!gfFIYnE_o1J~7xr>RxHlLq^h~r-Ew{u9X>z)6k1B0uV(Q4d_kqi7^%;FH4J98A*$H z1=k``D^mh{>_>PWkW4587)bDmLo6))O~G!M(~Lw3wsdT70aPxq^WC zgzJD$2)6*A5`5wk3zrT_i_c^vEtV;`7Av$e=Mb=x@GD?7;SyjC!6$xYq4H1CV!e!{ z#YP3!;v20@4DR|ZguZ}nghap&f=}FK;n4|cv0FycVxNL*v0p3G76Atc?E!}f9RY_4 zKJl1^toGe~Tt?F3q=IYllUAk-0)8gE2slfq2>6BI6E9d;cT!qhl##T!tl(N)(aLl| zz%@cQzzsqVz%7DL{KLZP1JdHIjHJZ_1=r$Ft;}{@%)bcV0-g}|0G_({Z;9zG?6V){ z8Du0a0u@|~%vzaU*ke}0UO*6GKOhIeCq8STyuE32%Sc+}Q*bQ`Xl0ILkA(;)0YwO> z0nZV9VhIZy>=$cE8A*%M3a&*Nt;`MVu^izxpgiF&pd!I1zGUI>9%)fUM$)3Xf@|@z zRwfa9tVQS#s6!YCc!l5-8(0|qqqJx!BWclC!L?|rm8pw8HYd~vv>-GBv?BP#*DYMJ z@9wrTk{0b1T#GlgGRX+&L>L5ki!c=MHo+%$w~%;BS_I2TT7)XN7GYYMFa$&pdI2H{ z24Dz2v5$qggVG{KM$)3Mf@_hWmD!IookTbY=ubEd7(noegDni-FD-`1NLmb6a4kk^ zWfme}G+{Ad3}Go?9Kk2PYhk;6R7;VOw0K{^wfI0QGYbKe33C8b2=f3R5`5we3mwi$ zir*XE zf9h%ZqX#mQfHVacFjXs4A3K;v@atz_$6A?}5ip>~K}do3LKO9J-ENCLiBZ~+IkGSA{H{Xp>Rk6QTE9>Osh zNx%sO7jQ}|^EP&Hn&8);wea$v5^zpN67Z{n3%ID2xs8C|2!8z)3)AhrdR0aea6`cb z+|tSv!Xext`1SWJB-nFsUq%w}r-BRkODmHd0Z#~ieYyt{Q2dSrJS`&$$f)1~0<|(T zaR`|Setk9zf7+WpNJbKnQ^5s1tCe{bJIF)u>+@Uq^``8gfQ%%du!0LHs+Adr9TX$@ z^(8HQdqV!U3!wx8^M zWF!G`3N9dCE7KE)kVuFC^dm$8k_kR>kcDpPWRHVoBrS$1xE3R{GR?5ZQ3St!jD>J} zFO8Lv1WZtH0V!IUKG?xTf?xlEg=V)TV3Ld^V2XkZ_)se|3IWpze*G*9fBqo>AIV4p z<|?>=d0LrO2v|Vy>p!({#D1_rr-iT*UDT+z;c3LztX}__WN&@j3i)M!-eFQowJ7 z<$&J_KJl7`vi8IAx{Rd7Ed|%&j#efK0e1<>fcu0&fQJO1_?Lz0_Dk%sjHJa=4?VaR zPitlFAs_?cA>bLpUw}*mpP1FcpZ04mn~bDI4h7dDmsaLEye)GRN&xZ_o(JS7_{2gM z7Tfn-VHrt_=M-Fv;#!%p*keh;1ii!zcH6%|~I%37HW*kct! zAfOr{3!nzUC)Tpi?25FgEhB01ih^rVUn^4wdu&Lk2Y8jx5YU9+6PsID`$Ss2CL?Ll zO2M^gqm?O(J+>v32eczp0(2nw#7-9ew7*1jmXWl0Tfw#HrjGIJ0RLzoAMBYXmgC-}r93*GKYi+(ba76TMqi$PkMwFnqO zSPvLR*a#Rw@QI@>gxlwacVr|j#woZK6SOj~As~g&3NVrIIv|zc6DM0}omqaoGQzc( zs^D5o)5I; zNA`tHe_5hC)YS^^P}gW>zQFW4!fL>J!dk!v!g|0a!bZSm!e+o$!ZyHm!cM?W z!fwDW!al$rflW%gkDFyTAEQNjVhal#LP6NICHQ-mJ@ zrwOM3X9zz7&JoT5&J%tGTp(NmTq67qxJkkX9gXG5u z+&lLb-1&Q`l^KocM})C}$Ak%hfIl_yJwQ4_Dj+>!G9V*iDj<+B9gvwY3y_sC2M|P< z2gpJA1dxlc2#}lb86YpgpNs+)0`1+k7U!?9f;&4!wKD55U5v01P=c@-P>Qe(P@3Rd zl(n#Jne@Cp(B0AH63IduFiU3*=iUC>?N&?ytN(0&w$^zOE$^$wODginYssK6@ zssp+ZY67|v>HxYE>H&HX8UjKIjR9eVW`GDn3qT~HHNX(s0-_1+0WpM*fH=ZifOtYz zKq4U+(2o!bNG5~>1`;9xg9*I>LkTf};e@_`k%UCRXhMI$7{WlnIKmLX1j2AY3Sksr zB4G?5l`tMKiI4(FBfJloN|*$gMwkMaL6`=ZMVJYgO_&XsOZXTtkFWr+fbc0`Az=w% z5#e*d62c0=Qo<_0GQt|b3c^=_m4pp|)r4;VYY1Bb>j*ml>j}F68wh&=n+W>>n+XR2 zTM35&+X=@2I|=@ya<_%~JLI!-z+m^mwok!*cJ9~848!yR!brd&!aIP&gmHkQgm(eQ z2@?S)2p<4W5z+vs2_FK^5M}_*5k3N(C(H$0Aj}6`A}j=4CM*VAAuI)4BP<8pAbbh9 zMOX*8L)ZkkOV|RqPuLE4Nca};h_DCnnD8AS;E`U(1Augd9{}kIM*$fLKLP>?KLauo z&H=I#E&+lFzXNg*ZUS-w0L=+a04)g30j&rv0c{9x0NN5d0NN2c0Xh)60XhB8C!_)r36lZ+2vY&cgz12Rgjs;WggJnrgn5ABgiin?35x)u37~k}w5#c;w3E?7ODd93;8R05m1>pu@CE+$;HQ_E`4dDS`9pMpR zJ>dyp10mf|_gTA%kO8on5D3^x2m)*;6a?%e6anlf6ayR}lmr|i zlm;9olm{FoR013)Q~{hIR0o_Q)C8O+)B&6!)B~I&Gz6R{GzMHCGy_~Bv;bTtv<6%u zv;|xvv-V|pl|8DKb}1z;qh zHDENMEnp0xJzyN6BVYpIEkFvPD_|la7?4T`1xzA@1JVeQfT@JufN6vnzzjlPz$`){ zU^byYU@l=GU>;!zU;$w`U?E`?U=d*qU#vLU_Ieuzy`tsz$U_{fX##@fUN|7$L+8%Fsu9s#XpkXrQmMCJzAM?Oz$H^0`?Pn z0}c>k0EY;D0fz~RfTM)|fa8RLfD?ovfKvp&@1HHS&Lux~V8uBFcOd7rGP^K+fv^{F ziQof%w@_@6ygNtYpJHEAaEUjxGVfse7GWIV4&hzEUBX1beZmKThlDi1Bf^J($AlSx zfXBMcj{xZia{=iI^8pzN3ju+I#emF&rGTu2<$xfnf912Oy~$GN_Y!UjL;QOf)ETSMF<6yCWHgZ5F!EP2)zO22{C|*guZ~v zghW6ULVrLt!azU`!Vo}B!f-%s!YDvp!Wck3!gxRfLJFV};e9}3!X!Xb!W2Mr!Zbh& z!c0Ib!fZer!pDHNgav?hgiiq-2ulDR37-Qx6a3xswuNDD%I$LiA70VWZW0cnIm zfT@I`fN2DOhG$y%?Yf-uL3oaut>8}iT&>JdOwS{X04yMk1}r4_#Kjh7ca#>t;JPnW za4nW;WiDWP1>rZqO2QSuYQlBE8p18WI>H}-^@RI?4FtcdZ!8SYA=`Wz?~$zvZkyY+ zGPNj1B6z9Lj=F8BNjd`AwN!zbf5Fb72GyYXk|`g z`V`?T;56Yp;0)m+;2hyH;5^|f-~z#K;x`N5*gucj3V&AWih|qKHLXlrOy3~12izib z1l%FK1-MJ-3b;=Q20SGAP5fnHcMI870bKNeCm!6c(rIN1V>&(IIY3522|ys>c|c}D z89-LTi+~_PML-V1OMqO2YJl8?mjQVRwE_7FuK)@X{Gk@HFnzupdv(0^iz&EcFQJvG ziRn^=I)KuIdVn&7hJbPe-=czr+V*^B$F3?XxSmzCGPy8ajgSXWgWv;dSy+-!62HLv zp{{~Utf!S(jp+u2wSY#1^?=5Njew?v&4A{FZGaYpoq$$^-GDZPeSo%v?*Z)yhX5T2 zM*tlO#{r!QCjngurvY6FX93*_=K(zk7XhJ!%YZP#RX_y6pYkXR%WlXu7&pv);zTRB zYY?NAc^A`hgo%K7!UupvLK>hS;X^<&VFq9z;UmCc!d$>m!hFDR!a~4E!eYQ^!cxE( z!g9bk!b-pd!k2&)!aBf2!qX0CE#X1M(8a0`e0k016V`0~98t0*VqQ z1Bwx*0!k3314N0m>0R0hA{!0#qb?2B=I}2B<>#0#J>x8c>6<7EqJ0 z9#EUG5m1+~8BmX~4bXtF6VQmT8_<}r573nGJ)k+^5TFI&2%r_=IG_#TB%m$fG@u>f zET9A7JfI`tBA_$jGN23LDxfRj2B16PHlPRLE+CZf01!ra1c)F!0Ynng;U63tLIyxI zArKHl$O4EX1Oeg+IRS};al_nqLw^hNf0sv`Du96s?h$9OR;D_phZ1T6h7;-lMiS}) zMiUwW#t<3<#u5A`-nGzelkDoRL2jE972K{;wK4&N-Si~F(||NWM!-};Ccrd8R=^BG zcEBt`F2HO;9>82ee!x6JA;1DcQNTh%alj%%DZmoK3xK7Ba)4!o3V;=a%7B%Gs({sm z8h|x~T7Y$gx`6eB`hX3DMu1I(CVodEj?T>$$D z-2ev&JphLYJpqRa5rCtFD8O+-G~fgw7I2CX4>(Oo0-PcE+xQm?`8vye{RqGIT~KiM z^(C#$6HH$wq)T!)`V~S3z%@c3;07TJ;1(eWaEFi+aF>u9aG#J5@Q_dt@Q6?Z@R(2x z5b%^9YDqvkLTNyHLRmmYLU}+Sp%Nf7p$Z@?p*kRlP!o`YPzR8UP!Eus&=8Q9&=`=P z&B#b&=ydP&>m2N&=F9I@D`vnp(~&a!QVbFT6ij_{Fb^LpYIhF-2GHp zE3*>QRR~`Ksu9)!Y7o8#)Ff;I)Fx~J)Ft>$)VB~_Nbd5R_{F-Bg4^NiXhjI<>)se`2u}mr5;6kX5i$Wf5V8U~60!q26LJB%5b^-J67mDO6AA%( z5Q+jq3B>_ngi?SA!V7>%LOFmTQ~*R1Dg$B&RRM8?8i060EkGinE}$QwJ|LOU2r!V) z1TdJ;959s75-^<51~8KF24FOy17HlH6JQ*n3t$4F8z6CfOCYi zfb)d&fD43+fJ=nSfXjrdfGdO>fNO-?fE$FnfLnwIfIEaofV+ezfcu1W_)CKi2^j#7 z2!Vjdge-u7bo%8I1V~572}n=K4ai8y2M8n-1Y{-@0c0f<0|XID0&);a19B0{0&)|| z1M(6o0rC^7016VS0}2yr0*Vsq0E!Xn0ZI@W0!k4Y14lK?BEmAj62cdNrG(XhWrVeW z6@>MGm4uCe)r8G}HH2+|b%fo3^@M$Z4TM90O@t$W&4lBCt%Q?+?S#{SorJT1U4-+1 zJ%o#ZeT2(^{e-K41B4rZLxkIa!-Ttlql5>5fWm~{fTDyLKrupJKnX%3pcJ7$pfq71pbTLMpd4X1pgds|pdw)m zpfX`Rpb8-cP>t|Dpax+QpeA7opf+I|pe|u1pdMj1paJ1yKqJBeKx4wEfTn~cfaZkH z0WAnC0IdkC0Bs0s0Bs3h0ooBZ06Gx90dyp61#~9t0CXYj0(2$p1#~Cu2lOBu1cVX} z1HuT$01<=}fJnkm07Ezfh$j33h#_16#1Vc2#1pOn5(&2e{Rn>mk_q<#0||cu1{0p@ z?>P6EXuv60!kC6P^W(A>;*&BNPBkAQT3q5S{}}B$NQ85}pT4B9sB75ncpL zB~%1VBfJEdL8u0pMR*x7n@}4tm+%T;9-#qX0pV4^LPAr(BEoBcC4^RhrG(c3%LwfN zD+q4_RuVb`RukR^tRZvLD+On4V?lrRx+obUnQ1R)J@itr)eG+_qd4B;cdIl_Fv zdBQ@#1;S#$CBjm`Wx{g66~aouHNuyG8-#U$TZFFxcLlkHF{D9Q6Gs>dh$oByBoamg`Vqzgk_i(40}1Z| z1`|>NLkW`s!wFLXBMH+1qY1MBV+eBq;|TKr69}IGQV5Fx6A7OIQVGidlL%h`(g>>o zQweJU(+KMUGYA_2vk033vkBV(a|t^E^9Z{E3kdrF3klx?77-2smJp5rmJ*HwmJv<@ zRuE1DRuawvRuj$x)(|cN))6iP))TG*HV|$AHW6+EHWTgwwh|rywi6x!b`qWdb`jDI zaG%P12pItT2!Vk8ge-sqgdo5nLQcS8LT?VRP?#_VP?RtpP>hfQC_#81P>L`KP?|6WP=+uKP>wJYP@XUwP?4|z zP?_*4pbB9Lpc>(GKn=nwKuy9LKyAVXKwZK&fO>?jfChvefJTH}fX0NqfTo0lfaZk5 zfEI*ffL4SPfHs7m0Bs3p0PP6B06GvZ06G$W19T=_0dyf;2XrOe0(2+*0q8-v4+tgv z2?!%R21F2^!e1_mB%}uz!ZUzqLS{e=AsZl$kOL4;covXI$P4I4C;&(%6b1|=JO>y| zC;=EsC<7Qyco8s?P!TYi@DgAQ!T)=q@fHH>%D*TolHk5yQWV_3D4M91DTe7(LP@|R zLTNx6p)6o3p*&z3p%P#Qp$cFYp*mnTp(bE1p$=dkp&noXp&?))p)p_)p&4Kap#@+m zp*3I`p)Ftqp*>(Fp(9{5;Vr-#LRY{#LNH)GAr!EI5DwTxhy-jV^agAt!~nJv`T}+m z5&^pi{Q-Lj0|EO8Ljd~;!vO~fqX35pV*rN<;{itrDS+dI_W>selK`g(Qvjz4(*S1( zGXduavjOJ`9|JBB762|0J_TGRECF00d=9uqSOK^}SOvI6SOd62_zG~BumNzN@D1Q0 zVJqMfVF%zbVHY4EqrT7g0@4xo1JV-?0x}W~0|E)h0GSCV09gq?0fGo;067T10CExh z2T&dh-8RT4(n6(OlfZ7Bf@QQ^Z1thT+Ry0s> ziH)=}burzTP#@5g&YZ;&=Syw&<4!wJ&?BMGwrqX}~WV+j5R8*d>;dU<#D#NUojQNZ(p zRwe?|se~xNBtkSGjSvf%N{9zcBP0Q45Rw722!jB#2}1#M2_pdW2%`ZD2x9>Y2@?Q| z2=4)w5K;k436lZK2vY$o2-5*839|sJ33C8z2=f5z2%iAf6BYqB5IzHJA}j-JCVT~lpPFM@rNmviqMc4?~L)Z-1N7x3~PuK}KK-dj9MA!#7O!yvflyC@eoNxqif^Zyg zif|Hens6F$hHw^ej&L4uo^TOxfp8gciEtHgnQ#Meg>V~ijc^xmgYW=wi|`0=hwub& zmyiyBe*Zop1K=Sc5b%hQ1@M><1PFLW-{(02=?J+2=?VD&843QQA(Mp@LGoEq2rIHG zxX+3ptxQo&=O7dZj$Hi-9`eHhfkO=5U=nqIH_{2dL&NP!27xCadRKc|vu9dlr>5+u1fYF2-fH8#I zfN_MofC+>LfE2p*Ua>p%h>V;RV1_LOH-PLIuDILS?{8LRG+OLJhzgLM^~L zf;5PHtnelUckG+BGLJF6mGBg<$aX?{z)r$5fL(;lfIWn4fPI7^EtVy^YOMiq2P|}lvZXTrcVob`wIWq?yiD6vin+@4VZpN_y+KZuodu_ zumcbfs4aE@(h>Fo(i8RrG7=5~0ttr!nF+@LSqUcqL4=dv@*LeU7D~LP=>G{P>ygAP@ZrYP?2y9 zP?_L2QPslrD{|eN<5Rqbg4mBe;f(MZ81HrC3#iRq?< z&Vc5Gw*f5(-2tr#A%Hf7FhE;EFF-qj0dyevZFaJ7zqDMR&N8z9UtlV@eRtE!bjNfE z!LJV^_!Ye@guX0^k$6dO1((=IE1izBu72NuMTIuuv3lE={^#iefh=N-` zOe-@S)1wHZ0b>c{0Phk~0Pho00h0-7fDZ|N6Eg_D?MDRPb}qrUolo#>7ZQBi#RT7W zsfEXNN;Q` zZDAqBerB|kk(~853hqj`)k>$^Tex3I)_1`AP6}@QTUwbenC?dC4hSKH0>TLqfGC0i z^dZCm`V!&+NrZlY0fd2oA%vlT5rmO|cL-wu;|UW0?-3>fJ|Os$kw)-`{~^I2{tSXY z{ErC!@aGcz;m;@d!(T}7hrgKM4}U4aAO3QJ-}*{|Km0EV{_xik{NaCXVL>yw^c!R( zx5_sP?$U43N~gD5DD#S}-+}eJ6x{kfTA96=-cR@*aER~&;3(l3-~{0$;56Z9z&XM% zfD43+fXjs60oMrE0k;UZ0e1=h$Q}^q}w%3kq(1S*=Vt zOjjWI^_2;JMO6#Kn@D0cyyRsCmsm?Hovv$PW;I#=3f4DJaO)dsWnRT}Q-WXr8o{q< zWucxurq*~#TLqWcPAi>$(?TQr@X!(K-%@bv-`2`>#dI*C2cRb*4A6_<6Ai&<^db0+ zID*eeaL`nCl_(>*lKmCjt_EnO(}OMCw&!sO)(=;3>qly3MqzpkVJu(*;a$K)!ux

hs}X$Y%NFL^2d9Ug8883NT!6kOnN~e2RIBD<7 z5UdYVaO)$qGQBWu2)zL@gjhg4Apy{j&>t|6FbFV|Fbpt~FbXh+FcvU@@Gf8?!5_#6 z1i$q(g5Uaw1i$qe1i$r<2!88x34ZJI34ZGf34ZH~34ZHK34ZI#Eo3ey*ICXhe z({lvB(_aaGrPVZTmXWwV{Wh7_#PX%{||I*4lcGD?Y zd&WkGgjNVmN=%H6Ni%Kbne5+8GM>u%Z=vZ4h%wJtm}tM20%asG$)e!eX4A?9VLB(l zug^{JEAm-*t%fA#$4d$+xWpn_nWC63PVnnX5&Vi5EWA@n63gHvFDkgi3R;+ z1yG$(15k@l8}JIjw`f4{p|28rXj6g@eU0ElTUq$no{82nl5^Wu!R@=9R;E3sI}$np zx)9z5bSDG@LJ7V_IKhWT5`1WHf)9-$_|U!Ih zU=hJ5en#*a%LqQ>3xdyBZ6U9H{Qpu$va59pZddEI(&>#BmfNqpO<2E0!L8q>l}_)p zu+;uS^exu!QE=<`X{FQOTi9xUeK~;jKPb5MN3=3WG5sUq1mGvaX~0>+Il!-k3xMAU zmjPD^*8n#Ow*Y?-?gAbV9s>R%JO(_KO^+;{jO0vbAY=q&B4h?+BLo3*68zc8P4MR< zAHkoGf&_m)iV*zyC`Rz-qa?wfkJ1ExKFSjO`6y5D=c5wApN}d8e?F=c{Q0O!@aLlr z!Jm(M1b;pnT6kPf?v_R}l5^Tb!QCy*v@*>x-ICA>@H(L_pgo}jpcA1p;B7)zKro>P zpeG>=(2EcW=uL030P81Dqh71e_-P z3^+&dNA@ehAIl|zKbGGK{#dRN{IT35_+z<4@W*nG;E&}Y!5_H2qT08A_-A|XhI)A9HB2Dk>I!4pWrt(kl;5q zgy1(eoZvS$ir_akhTu0gp5Ql@Lhu`V-@)%i7QwHW zVZ}R zn9CFqAJQkhe{6hj|C+DhLH0F?@gXq@aZ%CX@qY5eKLUG7UWjZ%=k{aH?W1RGpMSn= zug~li9}*W??B6E0VluOD*pq?BFpZT1_?77R&BjO`PW7}ZlY78Wi)V)}*0CrB?ni_3kRxcI0(A@Oo1{a$qb zH_Yd=#}%6p<+u6ot5*5V^odFi5BradpD>#{AyJMXBsw-G{6Cgl!IE4t;j$<+`ac)^ zf(3cp5yV7=$MpQqHEXaYYm6Llzwlxq@$n%8{MkH%sZ92C|I>HC3nnCm_K6KklE#tY z(Q)DN|FOaAZedbVQc6ZSQN6+w(o(V{#6?EMBv(vIjEYW6$Ic zV%p@ivLn*Un7(-f0^XPZwSR&oHKjsWc%RsW;PB*-K5^0E3BhtkfKcpP5xgCt@U^4!2hk#s@47u9rV8yTCH;MOM3WY zeW?9&3;(w}B|bcXH_A(PQ~pkw=U;FCWp--He|@JU_X>@TP4IVGwVHo#V9x(2pw{03 zAOBARs#pCxVDA4YpxWO7qkVw=R}rZxHF2{?hlj++1Sdv@2Zx3vMDOVe2miZw2SeKeo>hGY) zh+ug}NQjM(h>qe?T^m(M+5ugb^BwO{n5w%F!smW_Qz}X$6))Tsr*O{O?f6PIzqmu=zp~Qw-;ka@|_kRg|>PB^~JHFCUHRAe>KI;7QolN+&BqQy<&oU zCL{#+lt;2&;bCdxQ?m3KARnl5J|d!e$uYYsE+jr7Jia2ZVjsD6(^7(3hqZP5Dweuu z1pDBdT^_Ld#Ky=oSnuH2nCJnL8Q3eLkB)Q7Nt4GSd2X<`uzP-cU(&*&5*#NCkZsY>bkp#5O6pBJ9JKeG7y|#fQs-YQOL_>76SksZXeUT-oQ!;LzyUp1tL!l7HVG zkdhr&OWw1Q;UQu2#5+DEyB*m#Zb(ee$k_OVG(sM%Xl$}fjE{V&TUtt<$f#bC(ei)xF8lk8k4woC^?ypYmfa{~ zAb8{kTtMQ&0SN>M#rsGIocIHNVYJU=$nH*Y_$SOK8I}f^A9t2={<+W-)?o zNBt{14X>n)Vrx;I%bFbM@8u#^?!ZMM-u zc{Ls{bZ5qq=c(c72*#UfJL;WsoXqdQa?%;kD>eYtA|ZKuY~M7t95+|y81H3-A@0taWJ@?KuR#SZEslwrecjBnH&4@Gre<}bVYsE;!D*(kOmAd}9D77| zBPbIZ`>I(}H=of+<}mSF>P=w;VA^6|G^#_^QV*!?<3K8W{_u1A?H34(cm+PPzU4}| zqWIebC5V_tB%xSkAC+0QD%0!j*UJ6Z6V#F{aF*Z9SN@}T6$&li{y-D-lRiK{*+9_W zU!99sK@w^%Qbm3MRgC#T)sf|wGu1Ani!1=T7}X&dr6Cx2As9p<7!@HH>L3`uAQ+G! z7-Aq8EW%PAUIkG`uSGF@Kr2H51YJ4=oi_x%Gz2{_1brz4eIo>&9R&Rr1pN>MoeBiK z1q9sy1PvR4<_bac3(G&gT%zUDAOrl~l8K5CLeoS8`dDzs8 zcb}eK?wu=X0JB=qEDzcc0(mS6Yd@>dJUuBt2c_JcF?Oe>Knts zq0+Ox&eQnY@XPVxg$u*M#kHsz4hL`S^jobEA6~p0b+(6ti|RXj!`fAYivhGd99*)& z(T9V}ih7Xlus3`LpLIKBj#srtyad>Qk!2szg)2K`=yISdEa87$$)GCvPCu@1Lu z6YJax&Lz7x>aFc^R6*A_I{*l^89e&V~m8}2Xt1(NE55b6TSbOF;={}gv{Ru(|v3++9O+gd3uEiQEHz3@akC~tFz(7^ST z^j`F8AwbE$eJ$mv*^XK`cwJ!Ru*`&?fG#}UfdbW~+Y5U2a=f5ROY+Nb@cc}3A0waz z3;5o2z}(#hb#BpJaTHB%=Hqa1m6~=LdtI$JK*l_5SK+S~MHyHk%k_1@m_ z$-+h5&l?UtQ0w*D-Fp`nsu56B+>D}4>~6c>#Yt=~;Hw9!L9^c2yYI19FYMgAw77WB zGX7b?Kb>&1-v~PQoW!5k@XsmyvyOjGFD_!J+T$`pIJi|!Qk3>he}bKr23NL%osFPVDq|;cAV9}g;g=Km=|r<$sWif2FgUFHgsqBN z{}Hefo}v@o-FmNF<2kxY5sLG}HS*1gIvCmso;H%nt+g!dNwJHP~1$2McQ_SC?1H%jIyX zy0%oU1glGH8z)aMmrER})aRKkc6Y$256ggSnQ<~lpMelF8`)<<8)p82BD<>#e zhe6lyf_e|MGq?tZW?M zumKD&G=q9;q2AnFpcL%1f<|LcIC_QCmMw#r+AFqOn-6q?-TQi-J|=U$5k1YYxdAea zIv_^OCup>55NTjc0T6SGk!2-0v?b!D*8!U!zCO6wHn#fBHY9>=`}p83wyoYOH~N*Z zRBzRLC7h8O`{C=`$9jNm?107Z->KUU%k`iUcl!9?4hyN@4NF0#8DS_2HXJF4!T^#3 z%*q|n)2|glxS-RW`vL2O)vyz`%Bm+$waEDr!C~qhe12`>M@ZmNo&@h-|DnOo9lsS!%h;!ZTof6 zU~YP>1sRDAC_EWLa#xZNZcb^{AKxbPPU$4ee9OLlG@#q#73>S_Xl6eR@W}hxP)K{x z2u7|M{aLz)gIlb=2>px){%juvQmuy-P|ll!#%{3JB zb32-CxrXBrHo*7WNtxw3w0dG+Kf zBhki*)9d*BE&RM{k6w{~4WLwm*(p3>-0Pt8 zEH19Dte#$6Sw6jda%uhaV#=4)HS17?DL$MpPcE;mx&#yt#o8eOqGWRo9BGD zwtVXJ+S1a>$>n7(_068SmOJ6taBHU*mrt&qUR_%`#m{`hDLj*M+~H1Pj_d2ID{CuD zC-L1ap5dVI*UQO|PMus_URqyXTV6hmk9_!qxj?D9TZhfytZsez85GWUr<0AMzT(9`sRnu+wX&POqO{T7yPSjNk5= zA`cd{%b>9tZgc|YW8h%<^y)GW#nRGp+K3SkQsSdko}$(DlWVIaMIX|eL95<|Vn0H~ ztBdQ)tLvbuwbLh;@aavS$u>jSoiS2Ymlo0a^y2F3+DRhC_em@4_7b10z?4{A!7P`F z|C>Fdw7{+sivs2sPhpf(Yw8;x?mI!N5;YS80q-Z**OyM7T;tq)8{Gxw%P{>n-S3u3 zf2US)px4O;ZuCqLDt6)vOl)y&4f9*)l6-{NjXJ&2aZar+t*$Sv1MfT@zJt}Ja?ura z(82o3%G&BF5b+Y2WXgE-CD90UzXIF9ky-*Bb3BE34iG|$rLjcp)$-|6t1G906MUog z*M0+*1|=O*#oa5|ji*nYTn7SImWV#JSN0R?p->>}uZ(=Ow6c6^5uETOtRH-I9dT|y z8b4Oci{Q6l^lNJh;mPjJsM3eVAFmt-2n-scft(D`uT4N7CAO92m6Pk>c#Ee_uW&b$ zYo^889Gm{~sZ;Bx7EfbWR!@z6(uJ4=Gr_XmIW3-AUs+#TJ+*S`H0IP7lR*25O2W2! zY7v*!Tb1x!v4c|t2@(5-a1^0~m8gf-;i^(x;5=-IlF~<7K{G6shJ!mwyPcqI9ZAJ^ zHX_&--TRBJaM%7i>;{7ZO%m6w2IU~E*3Vf@1`6)wdr`mF-w3TpKT-*sQFj4qKzSS6 z)qxgq`RV3f^<*#He)k7IFdQ6{4sbYhS|wQKrH!ClhpS_83G;$23C(@4Brd+o8!vpY z^!)0Fw_i9DVcuyUE{h3lK6>Ht&bb%fePZcD_5D6tDfK!*IW!+t&$eo3>L<=VxVpQ~ z6j%9Cs|$H=KV19ZLodAVk)@r=6Zr71v?-n}HG)_6N;}$wC~nRwP?50gOLyQ50-bNv{I;Cmsk5?rT^HOC$~3V*ysCG&V+*&4N(XbdLA#| zI`zW#(~ai((^dElPNa>$KJq;d61}UJ_g9{&Z!SOH54bVME9(>`wPrb1B$i~x8U}sLJekHD! zZn$Z^2Vw)0eER^0@n5N*{lL;=>sv4M0V#caK@c`sdAl!v@_p}pu3vvo`_x%DQ|?Y3 zzuClT1g7gaMds7Z_b;8x1j#GK>yZ)O!NW%`9Ascohp8kSo*7P zE7YrMtI!ScprXU_UvxI@<-*&}6Hj9lQ(G-`dwY%WzN3hGY}Q-w$hGe+6cD`d05d3UPjPWRQ&r zv6|++g(WqLrHcef?C$QG)hLRk>#ee&2{UW8AU_LL&1^&Y?Cv{?dBN)!?cR43uBpym zyBAhYG!fSe-ce}R%e{UlJOL!=KkB}88+2jVg)JfBcP_|k_1`u+_aDYSz{!oR0Gbbv z9@Ez}aURCm)`7DX$Tk(fqs#Ro81%~IK3s3nym*r4IpPKQ|G|ZK47Z*`@G|6I-tf|~ zA^vrI7$Ux)onU9W<)961;^Y0nrLKSeY6QRFC4Uc?!$Y*+!O$_xGT2y2T3*vrF@H4< z4mgQ5Xy@BS^Q~^OAG?2l4eCa_-zx>Mf$9CdDs1;RN{J9i?XmN4ozul)H_*AH2yj)z}TzQmQt4 z!>4SwLtxpPedt3VxUe;}zhABtQs_H%F(WROzjud$?Q*m16|^dWpaNi&9Pl^2+KHmx z`Qodl?fk3oWu1?~7a%a`-hzFNLkf-e6=-HkWfA+Ajir3P;-*4uk6WCk4B>LYfF!Ra^Oh@$Ob-wtuL9s=Abs?g#b zT-NVZPpqFn@H(F05$)Nd=MI2W?0#_l-FM3fC4|z-+wDlj#N&N9VxkG|M~uJ3U9QkB z$`TZf(AoW)gG$Ak8}y07AgV!&0GqKhKf*p@yp_1SZrinp>y)AmMYH&{Q%|(Mb-cCI zr7kT4@wme`0Ocu0z-@rh1fPg{#35XnI<|o5E7T8XpRZ7WBt#Bkv9rCZy{DAHE+VuL zcUY@AFxS=~rc@ZvQY_evMoc_|YvOJ(-!R~7@2I`g0=(LU+DjWqyTA#G$GUPm4BK(= z-%hW#R9iN%1~&q!ia>GPn~2Y7%MKF34sjUfWhsQI1MM(Av+7rzf#k2(D%63y!{+Rj zs*M0y2k|aKj6hjN*i>VD@P_tYyyz=h$aw+ERET@{)KffhN8~rqyvZXuj}|ms0Y{Ze z*-&x9cv^?xM1Vlu-W$HI`dy{}t_2U)rGCCX`7`!-6Jk*}zELEFv!T~%*#UWhKf$VK zLufvJp~2!-$b(#UPxEcf;9R|lzRU{=DC!ye!@t7TCccd)tb}w4P#Nn3BXUN)hC;Ix zo&^CKsTF^BxoXrijZu8K*XWkOm6^Q}|9UxpErWPF@G-|Q4#SwlpztWT-1zb?_NaHZ zui|bojBA~rOZ1X6EPBz|hr@UWuXnp>E+PT^%M1@z?w~hp1@KoKQaKIc?15f_4Mm(m zv9~a0S+@!Omyl&rgL?qRud)GZQ3Fv?_sm_Xp#ncb09x5|nxOLSVu#x;1zr8kYak3F?v;I(pkZY^<=gZYs!W4#(s|K1((BNUX z^>LDmX%y`RQ)<+^OjU5c(~3$t zuQb7whmkRSJeJe4V#WE9qCoi}igb)}=|M-0i2je;%{Zcf!#Ps!)Kz-R$c{)mv~}^@ zA@M4?W7nwf=^dkAgq{?rp2*LtzrtWw!%m_0uG)i^e_yQ>LPg*bjEi}D?E|&vO~2Ys zZP)zSjf%F*)G!bSQ7nUM=W2TfX6@11d+eW|uD##>`Q5dL%%2A` zSFrm|Fgn-44Ke^!t5Uy>7*+_aL8*~ixYo|rIu?+0hSs1G4iNg3{61)ZMigJCz=-H;Yqnce3#Vj5}Yw?Q8 zq>Z|~(|)6xecWW!#=*tK9u!17hOCk^!zpNqYlixGa(+B+212Yr$ox3)c$>gg^Na0- z7<)I%^r&aan1CRuj&UE28r4T+e%vP6H#`VbcWJMDXYIQNZ{|>vdTGMb^{&Y7Hgxsd zon|K1C=14Pr1Zu94sLNe!6ATzQ{97&?f~pZvC~soJL=mzoo|&i=LGAmzKWJXF-ABa ziVwK=CkMAVUBS>{!$3)e%M<|u-Q#+vhjt+%a|@qd=QMN?J}tu^0<)}A-zi$PumG1I zEF7n&n6*le9)9Sx!xvm&V$20_8yM}+gqvs1wU0@T(DA~n%3}e)VZYOYzl4cHaNUW2 zZQ;e@-EV*3BX_)d{@C%?UVQ20mtJ~#Ve_8CT`#?K$DMZ_e@9_qp>W5Yg=Po`cmZss zunTD%7NCzn$W%12!*ES3+9pqzKbGPv7!|!|Y zS+(%dP_ zP`kZQcnJFI1`>5a5pW#`1(Ih$&TFCG#WJCohm~UCgY`zEun`v8^tXZ@KtpQiUM=Vq zc7X@o^DtHh7SnI2KCJ>`?;EPOq98c?v2I1OaHoY}-`sT7qyWj6t-E?03LLOPXSR5a zoNZLzpocI~*-EVDA#$Bo?;bUMnf=o$7lu9V!9sA9keh%#ts+_m7d3eeAxN($$Y{9X z*x!5f#z;&2D-m;stR>l*JcXkhmhuod3Lw$TO&;=aRDPHoMEzt40NHIAgcFi|;@{O# ze22K{fx?HQ!fselc6$L^UEnZSTs#iiH0$aXh}EO-IrGe!6UIl^J^Fy!dqM^pIb}`~ zv$*|s-;CYP?~!S%zU~t2+*Arns8_(V3SLEP2@Hw4yOUA=IM!%P~Q|V3Nq=CP}x~UMsj0m%r+%xE`Q;?& zF|y&e{NLF3<4X{}D%}eSENR@r)!+Rfgppc4H^t=+#|wA5XHpTdfyD)@-O;YO?lJcS z>MzYEB)%jB>{m=nx5t089rdC)%IzKwIEu~;R5;K^m?L&ct%9DVW5)~k-FIK%uDd3M zE~ndaoyVvgD6m~E=pllHa=h_u6x(A}?BZ(6 zu^kFg{0mc6Qr?{{<&!>II6W>_w%}8hb0#Mm8WcAI4Ez}-iXl)L<;CcmWN(}W8D_8( z)hjAP;{>nNuvLj)2v?BGrk$rVFm9x2nmYPY>uBOwJH0SH=WoR>q<461@t(qoC87R= zM&R^>GBB+Do7#8xt&t%i30Z3?c0OOCoX@eXBDX)7MhP_O{=8#Omm@LS$P};n>lC;T%6d72aqOoHST%$~^ z7W$xgdBL%=ZdK+G14b%dq+EeWnAPs#tq16pNlpQbrUuIf={=l6?6OlstV)6m(%S7; z@Q12Pa$+?P-eH6Cl@=~Y(D2ylsGx7F-NelV)%RU13t{)<0=Di%v)MRN<|KI|#{xA0 zL?5QEG6QPwM>1qM4g$%)P}P`p#?a!63@yGq3~fIP4uS|Fo!Et7qnOJkifMOq>q*++ zPq~Kp)h48)sR;D*WoV~2?}%w)5J`D2WV#_T3U3PYh7ezhVAI|5$OoQyqVUv%Po62f^URYEKK8`B9(?%WXU;tP z?EOPKg&X3pb%d)I;_AZS`X?TI>d_B8_$WSo;)!=P>cyzD>3ntth6vB$upvMQOYu;< z0%tsa0aX$iS4*>1@whE295uL<32^MFF9@28e{Y0;7P;)WE*c1k!vaDaKJwEM`3cup z8K0&<DYJx#|c^Hu}xh@b$!;*ykMlG4SBa@3+Vo$Q5WHXQcs$f^t5C zw+)|?9@k5cQD061ta4R|!|n~ONKflJ`B1gdK?F}be1Y=aRnn&Om+8iq-*1%P9oLd^ zR!aLd(yju=`hb(>4>1;pAK@^(4C{_MooE-g&E%WQ^*7?A{ROZC`CZRXe0OmqNE$V^ zrBP+s8*J;TV|P_-(oX#d`IWK*;&6z-dUM=jT(B-}jCE2GQ?S7fZz*FxV)R@UL!uAd zQot?o?+l7FJS6w*;!m$}yFlE7ejdM2hIX2eV;Mq}n7wyec$JhvfyXZy`v^Bv;LC(K zk(Qg|k#tLpkii>1a=W2%ih7N(WIuI-iA?^u0K7Hsh{Qa`df?}Q=TxTp=({>Utl|#R z`7#_O?T@s_PTkWUT>2O;qVZlWc5*#<{6c%!uH+{%32PF46Mt<6+wk4VnP8+``HSq~ zxvq?gejN4?&vM)XgqODR0Fnia_1@m0hkP9P_2@YeT1;lMgW z%+NZpX)Qo;k}JhmK8d@_VFPj(JJgL?#kFP-4`(=H+Qtu>Y4M+HJM$PVgF_~0tIz5U z21E-BM0$F?fgHWQIpH^(R+UTvTDEt{G?{RSp200`WE|d0@4oNEryqU$M`QkerRt?M zGW56@w`|VE&DW`B#;>jJLbb*OTR25Eh7JKH)Ed+2@Ht$eW|kkaw&PE)E|=;fNxl~B zwYdxxQEQkR2FQaLo}469m0k%3I5z*nFYUo67CBIL*g{ z(+1o%s!tjgu4n6hc(|P%^3LZ7JL3rTH?gW{8{sB>4zG(F6fvqxrn>FeRQUWaYi(pbhy=kA zz#B8>#+u#J8*r|{W5PxoI#LVQvDNrPWEfp$TU4y|I{R1C5$e`cTd#t>P%F7UZUz&i zV_yZCF9};Gz)ozpo8xYJI1}F;T(}f>yDILcQlPx!Y;Vy0UqNyWXdK)Z3D7$+h$Arw zbR@s`0-;+0Oh4IvQ~a$YSQr`fx?RXEahE2ucagIdCkPm%I5Zf9Ww7o%%+UPFmLanNPq$~V{8Z%jk{RUsY-q^jy-fUl|B)<}kq5T1>( zjSC4oLZfk#0CR8DkBU66p_oi|L3DR#53*4U6lGtk9{!M7+)jnS*r?WG8C-o9>Kczp zJOyh49noznze!~p#ot|_+my1$?Cl7Z3t~g_>KVeq^t8BVcS+dh<9` z3AzC(ia*9(Z!}$X=@sOyK;Q2;YkiaHQE$O32VK#k##Ih(F})!B0Rpi~d(AiI?KhdK zIa-I+d2+Gwg^(v0B+MJr!3445E@Lp%zB>lo7>xFwq};_YuC~M2(kY_v;?}Spzf7Kv zI|#APKR&RorD4pixPx2@qR~Jl)Tr_Zv})i=0pW!>+|`dT5XmR2SGQN8Eur;22Nufg z;PM7(4UAbw=e0yfkl2jK*mbjxVm-*lfNaFYMBPU$EwE9{qZ>7Lke8=$v2`cB5wQlR z_E+ofD&L+ef@HW@mrw0AyVbSx_S4#@$G?6?{KwCXJA5qu^|RtXes=uF&x!x|x$$S8 zXMY`BZz~Jl7IdDssR~vEHFhus*87hNzB@=Q(cU( z?e1X~Oq?|PHMmK&gR|1fiR^PDj-BC;s4mc!N|KgFZg7kl<~^1_yF|Gz@dtRE5c5Yi z(cq#gTjHcZ0l>6KF%8|EMj5}#S|G4Rv_Xs@`p{W}^w9CkP!Y9QZ*DrE%9RSFNvG*@@0U0I`=j5RAxLzT%CAHTs3 zs*lnKOUP3KBWm$#*W*8B2e?-C==L|j6?;&(So^^lM79#mkSaPc1*YGHui_tGnXq7P zR$#cDEG8jo@@jLP$p}g-%5ANjLm*1jUvq_-AjIt=`PBB@Yua&pRB*vTMF9-XWG>PL ztebSI9nkhX4`f}EBL;>l#pB{pWao_g+6cPANf)d9@`PVig3OPHat;gu3elP!J z7IMA4BLbflOJPXbYJ5{7zC@xg?cu7+rghO+I5${0f_9~7#B#{C8ef!lnZ}hmNdI)& z!16eUP{ZJ2=$1}SZwz1JV>%&naLH=%B-{a(Yu#c;g2Y43wJy$_?R#={u^so_dYp)O z!o@~>4RI{dJf1+k#S1?&4d`4izODQ6y)l*EXeR)P?sVMx*u@UoopmFwhcbMk!nx<7 z_B}DH-HJHNHveVfGx2Nneom=2CgY@l3cJE8bsbE5@Tr{-YVV|2oy zf?Y=%xTKl6C+a$?hvr_m((6^SoTUw=v6^-oETl1<2-aLN>)Cn>7xz|oGv4BYHP_8c zRC<&OX0)XQ^row_Z~Y_;dOM3-U2vk+!*eXvtzzx*wnQ&=oy=VLpqlO+U&tO)Adv}U zND6ABz|3zxS3`;s^l)Yi)dFNq)sXS1itrRRL5r;dZYv_4q`-CT)R7*-WFdroUwsuE zP_CAoKVPtaMxswueWGCD%5*_Ft;s|0DZtwS1FldF!v+%BLKTOFx2s%ZKo|Ky_)n+s zA}0#p+RMjYeO3Qa$;9*Lk24dAW51Xj942(y5SUZIhE2mGQHo_9_LK*<| z%K2D`)V{a&eP*Y(ZYLETbx3LJF8<}1^GmR7z-(AsJfK4VvZ^}7dNVkLAJ4IOkfo93t-Vv0UZv` z_yEFjZ_BLsV7l!^_(=fgsDeWyhg7XTGJh%3r@+XEsj0AAZ!h5XeOyyvsk8`zoG3i7 ztKjJ`2@d`zMBG)X4NET=pvBr=I|3+NzJL~_#+j^lQ7c+@lF#}uVzKB$hixqOk;BYu z{i@hisgGM|2G0-qpz0bwKA5_x2o}!kH_#Mez70O;b40-{TwIF5U;jHWslxE;>Hy1Lc-fS}@h4d|=&eK4h^*h5u36#fcnd|)F{LpI2qsx|H9JdSQgVzy3Sq`ac4mO4G&{c*bbChRnm z>)^s=Idi5-y6{0wOg7n_HOnx{lfF@sJ$-uNlv$C_%TZkE;+u!tPLA6{ z_-XbD!Ak~W^d7_bqE5bN&7f>X!Ow?wzETi~k5uqCue7D<1bQ56>| zyh)1-7$Iu8mT~zLT3`vf8Xb|F!@*;|$w*-;-_X*+v%aH?IW+*AJ{*ksgb$WGSsz5V z-CfLZa7uy8A-3D~HhciMpelV+CW5@jo^JyDy;z56MvxF9IV$l7gq|6_Re3;qU5Ybk zi+dsQ7hpr`HY)IL6A@)fI+}Wiem3G9K;I;tW(Z4wLRi~-JS_k6L9vY#2`cPIH4i84 zKHtt6(dmO^+KLGFVk+Rj4`)b+@oJ;9*^`|1j>4D0Y8@%jWmP^Z1D>MNDQ?}mP zc*(wG5xu8<)5tUoP#gl*93ux5^rA3Y8(})Vk+!0`zfuy0U^YIThODp|Cr8@^1q~aY zZMC@c;-e>bV{nBg_6QVrw93UhSYyrz54&nesnvS#2^$lF8scEpl=OFZt$^*j=N7WMbBIG@i0DP>KwbaUPxkpWKhkL6Y6!zf@(+VQS&OaWbRV zvdKEQZhNtdlN!E)1M0PJCpe%;Nw33LVjl3|nQUyRLh0F9P~D1^Dmd1(ES>6su=Gy$ zv}QVEEZl(IQFS2^)?%gD;ox51pgi-w#q)RYQsjZ7v>eFFzbQ`1d>;^(?5tZi#X(5j z5~-g)FuJMOMVM{qkC@~Xs4C|kH{4joquj@PO$3425PZMNi-s`!K-Yi>O(JYqh*F zq)34NGThojq!rFITSc5+oE25=31;6)X^CM{CcdCZNVU%=&W3||M0>Uarmeyyfiy^z z==KVf3C@dDaZv7s?Af|!)`z_G1CA8=5}egudof)DbbPW)@G9|+CJL8<7kQPH30AE= zA;W>!CZ)F9H~FS(S_(-OT95x zO#D(*9&5UHKIl8HE=m{n;b3k*qkN!P46aaMO4CYWq&9)}$p^ebQ41U&CFrIilSKSN zG1Kv&yaZ8|VP(cH)k!n)c7;I)yCDuHg2hUm2PVB_=ERwNGj^I0q$4=^C9MS~H!t`d z(-(u7!K(=TtpS__8!wGx@&_p3)Qhr5FnGuWZ#t@Qdz_f?eC8U`^K}wD zKqv2@GCm$=02lTu{7LcPn{%=UvN0LpmMdg_#_qUAeej%SBy?4KDvsyP2-{Zxi($$x zDN1h+wUbJjoE@oLEG%P2&S(`VW1-FnPx1tEJ~1|}xx-vGQNF#r*Rc?MTk13y)hY3c z#2g!f3l)4&37RqvhxjD351eTFzIi2%gLH#kKuM^M1d1jwHD!J=YWhPAb*58+LcE&3 z+eg1Q>rm57`8@p;4K<4&#)2GdDrmnl9JDj}Q<7t3Z%o3G4F%G?x@hxyy*|wh?%+-R zV!05n!{4IWH(T3ijUx~!>dGKFK<;!+kk-bOcHYmkk}sRxPe|WOnyj!=?^)of!AeZ$l5#>_rK$sRPj@}$!_!Z&kGPG6)Jh7GU~ui>4Xi4SbDN3qej z*)Ioe@bC@ZS+pTkNd(N^*lwG>tne29S^em72M5p!mj(DZyUGur6kkAWow-0q5a~7nX z!iRI{bFwTjLjo)v?Lv3|i-`s3tkr&3*OX61JojNSmLWIY=OB0;64y$3O@Y-|_sg9|Ncw-$5 z)*^%!uYA7l>n(Bkr-?OA2}x7P@Kfl;S4L{= z7`W4tSwaB-O(JaqrPEBEkO3-0(lRiQ+^<6UK~?IgO(Qd4X7diOTk-iI>I^AHT#geV zg;b3q4+TVY{NdoknT)}h$38xj;1H%G>{)$J@1QM28xk}5)XNYgUI$Z>TluD*>_G<^ zQ%+`8B-O?HyZyV5>Jya+PYtw@!CGZ;+cq-?4?5M{L<@R?2|9J?v-8aN z>O{TMi-wPl@I%FnvRzm4Ep=2I8{EE+E-ETb%9&1*XC4Apv7Jf;W$^*una;r^@TMyy zU=`MKipd4JsvMvwRy^}b0qYnJYQCAeOl2V(4{rBjvU^d~MTHcv+L{9?J-jf?3^_c3 z&9@Jp^UXLXX(Sy5iA*A|5tUp_4jMR%42YDii_5nR2i~y1wHJKj*hXXo@v04raX}>6 zpG`7Ky1*X0L#u{y`+Kh0vLX{cT-G;pQE14AeLIW&XTBBS&RMqiA{*)Z5uA#xg3Z?X zf_#HzA&v<@8~6P!$-67c7r?SJS?l8O7ecAHw_~jLCGG) zN0`I0{aRWieZTMcTyU2T#vSgR5%=R~^41kZ$LpOq7dk>XV zQY?$~>;Rn*(5>~WRTgmaX1(R)LsdzRomJOSB|)Y((Zr=}HBs%GfC8|f&UlX08x(&= zrFDEE@-F?{>~D6^N9xrfGhKfy^rSp_jJ|j6?cznN{_UTBYmakElHCL}TM0LpI{`F4 zZxAGT9(_kE*#ntvz{&jT*_=ZhAGXY`v8Gq6Y8J0@*DE1iUS6k8a-unw0!s?PwPl~& z@OV5N?`EEKp{yNB(})|Jh%_QZdi4mUq*&rPv=lrshfDjYk&=a4(fR2&p4wkCylesaf7c!-yejD~~2T=@fc};gS7t(cBx0}AiUffW* zK?jr0x)ZW=lb&cc0ZmPzDt$)Ok@RDlOQP!fO5Tjwbe68UxJb5?+F+^sD_g2SXiRw- zLZ-6o6jEWCP48W`%q0LxJIjeHkq4vYk=L8sexo_-=~oz8O48=?dCy=bR#2Tz`nZml zIJ89TpxQy!0$jg1rXNtUE}e$RIm`uabynT3cyKjtb??8VY=*mLlqWsMW9b+-QT8RWY1t<9eOp}RMc=I4jh;}UW&Ee#VnrRMLoNEC zd)90zIgcmGIUm_n%FA+mEGTFcQ8>OAVM8E0C5g{H!xN~;T2y$6BZq1rswRoiF-)fQ zf#YH^?vtachTO}}4q2s2BX`e>S~M*wxr8?&Ssq4M-=a!S0Z=9YqdBw-sz>WZ@volau*GT1D(<=D{X!kt{y%o7WnXeU@zhi^>r z#SI2Lr~qCrh*MW~rniz!m=C(Rxg6rv0W$@zlpR3n{rHBx$y3cEBBo_#Orc)OqYbC4 zKrRs*!@ORhpE=tto<$;Ql1+*^zC!ozi7JM~g0KnOhBf}HHkbbGvJ?046} z2VRG_##{QtDoJoTpsb7etI0JQAs%N(yfp7HWx2lUwW_T8>Vsh$AqZPIqq%Z*v*zWT z)r5{4sC-nfP$Pv-TsNlN#B0jk7Sj!~E$?Y34X%Vcc;31bSsko1NJ6%WHC*czQ3J@fo@W~Sgn;w=RgP)gNgb~=NWz(*<(-99+3qAKR; zbVS-|9|(qt)PSiia!HSlG<>(#r&AFxbF>NKNTk zjaQ(xL#I4H&z35}WmnmO!U@TnM;)8~gdvBjR|j7=1#`Wu-6%sDiWBm0o4R7?J$8Tg zPjXOUz?A))0Pp6x1Fx1fiOY?*$fxsNtCy7d`j$$|W_s=Xd}lOoyET-s$8nbjER5LH zZ^*gAX+n=k*xU#!JbCj^zuboFJCx_Wq;S#5D$*5yX<;rx{H%?f8+9>cB(XW>9JI{> zyrxs%?wiDBui}?OR6=y%hEWIQ6!|iP*K?C~D&2Oj1$G;JLF#dn>?~%J;g%_fOvmC* z)Y*U>GWRA$R~v0H;|K#7D1-ui4OWIA=Z zNHDG#lQ&O?vNt}LgJgF28tQ=`*h(jABT0p|os!OTvLxq2xkumH;cQK_jTaLSj3eLTqToI2wu!gAVcfOY_KJ5_G1g4&`ILN z$V&p=L$a?ZW+TI!yhWNfW@DWs<~7Z9+ndvNTcrxma1dthVs_40V*SbPMe~BCx7=p3 zua88MJ&Gvp$d?vVayoKQFb!h7Ikzj7DR)u$2iIq)nA%H_^E}2CeT=30_z0EdaJMws zC*=lCj>SvZOAfIl<9Qv0?soe2#BEn~k5#oJb4;Nzk@hCs`T`y_fKF>G}(D^!pp%kvCW+9GR!`xC=6)iP5gBgv-RTRB9XiijmGmHj{V!UlI7^LE?i0(J0Ei0)g(g_#+r~v zvAiyiOulQPDAF+{?q&|WZ+fP!sH$J+QqBhwA9qgAaB!93$nqjZ9)o*d|7HTKwr6o? z3%0ymCUmWe2~xP6phb#OA@;Qom)i1HFYw}458T9USWVtQN%F{ffhDVS>bz;{THE1n zsk_&NMb|+^0&`hHWZq~Zt*xj6&byHWo<1|CCbt+xBeUV>0&jXB`_vLM?`(_KaN%Fez)&v}nF#jZ@ORh_fm}WV|4j(t` zsw6$HsF|1yy9ha}n}%LFI59X-wYuotPIciXSe|BOcRBY2^gy)u<8R@k$kf5!z1|F!YmWzL#S&(!GK| z$I*tz3H48vX91?`gFd|5L*k=V+lU7Q#4P#~-XzG#)lwK0iwYRFYHo&P<*WU{Kd$mrE6@^U6Fi?thWb^I?T3}Y3? z>9bKylC*MhB&zOa6Y=y+soJQw8}PSzg}Oc1J`%Q#%zmi_Fmu#Hg2Di@m8ERak~n(F z?s$8%!fJi+70-HNP)33`ME!2md>N%GF~Zc7_of%*U|-_9CIgdaBdR_&?4o2w@fTFK zBIr27!Mq28N+2N(uXwT%9v_L>Mg()rYh9~8yzCozQeoNboagD!5DGIQk33@XfqD*h zW`Tf8$R-FmD=g#2W!j*31B}(=!@p@$uF4J6p5avj?~F1{S#=j-uQX!Oih(_1jAU(u z+YbLqJ7k8&JiMAMs1p5Vh-=yqd)}#LC=X7vdN8NmpkG_e0awZ8HV z=)c*XqQ=<+<=buB$kV38<*d9lKrAHJ+fI&$$2T*V?IC|ZzHWyL8LE_u#3yo84U$Tj zQulP8Vzq)<(koGTLsRI_DS9p|*l1!(o2M4&S0Q*WSEF-~_5HEL6j| z;wtE*XIr|r{X8j!YWyszpJDUcE5_cOq8xiA zl6(K4`)N6*o@(v&W`L5g-EfnSCV{de22!NpE3!62u(oWacrw>^w^3KAwjG~gho?LQP9ZyrGH60d*&RM%b)cfopsdnpRo;KZ275ZnP#S*VIYMyPF zAgWs<`qV@|g?pb3d(SpCP>LrjtM3YzK?)I4}ke#*$|7 zY~zmp74RuwljC!bmUEQbu-O~ z4^;TZt&L5eh2*li30bY67FA#MgXLVf+>+1Mpd4i_b6HMbye-=*R?KbhOjlzP&d`E~XvHzT}ftO@66syc);C*J7G_jFCxX-&Hh+rSHB!$B+a zoVb^{e596Gx7(R6F>bZ{Tb@X@q20{EOvfTLYd*u{)iJDY>jP&Sm9@v5wYS9@g71RX zBGl1(6=7)oC|lY^t|esOHRT#tHh-9Q2aUfq&;7)7-$Y{nbj)2vX_~Nr;fdos*{aoK_7e3eC?4ij z!qRrwX@#&m;eXC}3vGJ3kW8Lz%WwJ->Wjm{C0bMVUT?}Fij3tunv8Z%VJ3$=X6E

Jvo&QSXEVnz9mjQYmFyYK zkyn6sAecO!60GXSyWYqG_U*I$2AiP(cN2i%gZLHLh zidJjT?}Zm&{O_i&m3YAgSsPGdp)2Y_s*u#)H6t&;w|n>*d!^n}RQV71+*<@P2OGpp z8qmp8jO{EI?Y0+Di3LbKm6w027f$e082qR#Ts!>4g%@0S0srTZ(&RjdP+qg2Cz*&d zbn!4aGl9JVega5UXbSVqCuTgnk1=XrN zPQTl(E!KJ7=x3skxzT@%wTNTqmgIaGH{-}!a-LfC%oZG=;AZuTaWZI|&J%Yyx498T z=q|Q)w$ALbsZ5Nzor^&a&);Aqy6XMunORN?gAiDt_AzQqocTy#+fqs}UFD-~lbJ;4 z&Nz>1?>MV6vElSBHbWd#oUm-wenPXg8AXU1HI}r|IxDB8-#bMobe7{=y3>qUE%yAN zuVygplSe@`Dw%JRiSutdniN#?@KoBvyVmR^8xl#dF?C8fRt_bPj+c5sdy{{|~UmETIg2|paH+20d0k#_*~1Dx79iOMcc z$Z9%YdYR9CpU`LN)J*yGo4oS~HmnSSP9@mkk~T6IP#&3Q?li zRYSaUF>Kej@usb)?|N>}Q5^>lh{|`=SVNmZ$->_Cg#qUXhx6-G!CX zV*F@#iV>ByXHH-NzDT_DWNJWqxv(Qxd@FaFRUWp~g!Y!O%E8ZBNy}t$$JEPl7baMh z;Tftn>a5m!C!{Yvt`Fy`#S3Al1N^C{6V#={r+kECIjj$Vwy{V#17Q{+nM2o~fYi}d z%f_8dCa67vB}0h5p-dYbCEeO49yqgk3FF`wP~G<&Qe?Fc%X_jW*b$^jF5@ZHJigy7 zsA(KW<%1xJ!rnLa8ofDaP#2YunBAy{H2ux1ZhynRWhifHz#8%9>zRGncaQKucWV>+ z%&eiqMj2^q-h-V36*jGp{7g+J+jqa;>JrS{bo7Mv)Kdyx9mk=e#(tQp%bP9sz*z*)431PW_G{z>w)uNvI@v;q*U*t`ev5lx6+UZ*Rz{|u90quK^l##1b75&8m-0kvcO-Y*7 zrDnmI#jlaBgIWifnx5NFDPqcNUQ{{0N^;CKN`Nb`NM@_>odvJ|D_adq_CTT);GNUg zXS|z}#l{^agjbnT7+nt1q}9>Gn;D31AG|-D@B5~xgX!wJ*3dx!J1dDN8RxpkIugWU zwz1dHIhjy&TNPZaufL)bMYA(BTo!SI(1Xa8?VfDdda(Myox-N z#i!k>DKs_#rJ|fbp6if~PMnE0r>`nTV%IvN*iA4?Y|C<}-*5HHlN;^aak+vWIi5$`nawyx+@U^S}UWjBmZ)s%(=Kg?9Q39bMckCH|b0 z8$R?Udl<=rj5m7oy|m?W8XrWry~x|1DRUe3hxlNP_9>!(4kAgclm0fV|HR1#L@^{I z=**Z@DcWX^-LncrNqZo@$Z)C8w*a?YJ#MWC`Y(jHXGSQ9Q1 z)HK6s;?dgT6XxE;gG}+r3rV=vg?I{$Uc7(F`(>yVB-dZEJyYoeB$lj&vAnQpEBJqb z&rWy0TX3%zWa8EBY+OL@Z$uUHfoU`_hoq1H5Tn}CtY=Qf;VPMParzc*MI<1a4=tuR z4RR18Bsoivs6hQoW!!@-Xbz1dcILIzAWflF*1=*gwxl}2Y`*>xp zX z2RQpOi2Lbe2??LMc2zP4Fm{DQ zE!*v19P3g<;WAUM%qw)WR3^u&>7Hc<-F-ef%cc7AirsKsEp?Ez>V65zf3=3i>noMMxY0wq~1IB37SOo@C#ROLCYzitB!K=AOBt>1eXF zdf2T6OL>We51s14x)${+h{WW4;B0$Oj3bVGTj(?wo2nM5BnTMVGYL9byJ!02nr@r9 ztJEw^5~H|Kr#vo_Z!{dN`wnut4x-hLRug#fR{qFI*vJ=0E-6x)sRO3$c@8F=jvi6% z_R}!4M2Fj6WRCYNaWA?r?ujipywZaAfE7FHE-aN+N+v^jhb}E}ER+}Xve+Crk%a2u z;2O2F6gz~-o91S>b0mdW#IlCHVq^Y*w_{6B=o9X=ph%qXA4YTdpxYqj3YG`7=za%u zaxjHoA-a*@m12b%p5Z&yrj1u<`$qFMiMiaAusD2m#ow;S-S?suxA;ch@u(I7hA zR%KwCS{>#TjqHc8W#3w*g~c$_^u$=b@_p}Y9&%Z#@b|E|m^TEM13@Ueh~iEy@bB5f z1`0>Q!M(-Qa!kiyF`1hrA}+zhWzTZ3E^;h9na5O3{Td$?^z8gem*0E0!Qpku8`*p$ z17|gbW$$+kOj{8SVN7y%D?;Qmp4qchA3Jd@sZFf(%#T#UF>Dp$d@uj?)~ zjFCYKv*s^F(lYJ@qDDCLeP7I+kil2x{+N!%aF0<^z8U;>i;{%mhsd5PQb6YxT1b~q48>GF>xcd-sIwFd6kJS1kPlUb6?qE#RRvVr^UsxwKdDVP}s=auLIXALXSy?WQ zQ6;F1&kq4_DpCdN^2V!0CHD;@Ek*5m8!3n>MIg-K*4lxge;+i{#<&bX^5*Z=+6h|k zmKUN*7usibv_9QPaCyk+YnfDpXUS!isEB!aga_8Su^@-mJyB}??hnv8Jty0TCc{dP z2yV{y>*Z~1A-x~-P5_kK2Tc5>AK4_Ak8Uw*Bsyu2zBP=w`OAnX*Fk`Qn^A~j!tF&m znes$-+R?#0J_+Jng2@$UVyUuWPe?!gBQ znBeKn7t>Xl;`?v0`odf?RCmRtqdYpZqY8Le7GxICOiDP2# znTAQ!8mRmx>q1Rq@~af_EVAQi&KCL*kzkNcUwI~~hL}1^K5zPXp8MsDh5N~b#e*4N zgLK7d3h~+qrEg)jv8W=y%2wxZDen*`Rx?SW=Z1>2@r&W$Ngtk)mXdF($sR>S{u*I- z8;9d93f^ey2pG!-5kjH+!cUBK2Io$%36JrLs5rb@fb; zaxZgndD6O^0lee8Ox)>PY@lQ=G&HXxD$^Tg3R}`C=DkXrAeb!wro)YggX^uC$k-Q} z7&bYey|jF7zO^7V$8>WohJ);aP)S11+{|S6B8qPF@--@b2b-)4>`w(kAc}&wSK0_` zC`5>g?EZ`Nq&}50l*`(1HZXJAPG9vhDsy#aHQvDx(#-NKzo6T$?jFPW2y*jUC6;`A zi?of_&*Vn^w9{_U#{xaa1DpwXYB2#Z+t24N!8bGaEGAu_Dq*^;-uOG{njJL5WDo`UT65{;K66Cb8y5s6SzMckY5>2OXj$XK~6;z|nDZ@Ixeq5=7~8n(A&|9DTq zzRF&J0ut~3 zg7b_rIWWXAFrUR3o*y0?T&DKA*g*ow)}Ox-)zh>K?U^$VKK$gFVzV;bs$7DfZx!#+ zc*dc8`hiQ)M|+s$={5QNs~nKdNEh?xHwj2ql0dSejU&s4|AsyE3oo(Ds#tIDwKj%Z zzsBL-BH#0Vaj(0uh*&hNUpj3}ucrv(?P(KFT%j|ce2{>TrG8>dG@Jgv%^@C0?Vt6+ zg#q&;1hbe5W-O`GeD^x1o1P4cv>S6r(0uXf+{|>G^r8;3!6b9keDcQ^@B4{cP0M_8 z1Lw6M>k)EL`=d>AhA09I!lCFKY?#l!o|7B-Y?*ablqD~p)q?tVKl$1H#GcMdFr%%E zeAcTbzxf+3Y9%?tRpz9Gji@an(HBGXnKwzyEWe7gL>Saxp>YYe9|D`I26h>XGhclV zztUSZO7aVf%M!dn&*?qrI3&hj5?iYW?MWxPc)uJT%)iTki)AGk>cCyq6UfC-l zp(Dg=EgiF*ZBFiF8WK{?oxpv9*Tn8LbeK5lVjy>sK!T_5>4L0|Xr z(^F}aKCO2y5K2LbP0|4cmF7CX!Ow4y&yfrzAqLan zXP9ALYNV*POIr*Cpn0NC1AG%6AIkGxa&G}zjy2kR=9#&;uUC? zwzO^_{GdQlD(ZPLr(7{n#AheO=#FSt5M5*^j0~ij12Mg(#~Sqm?#$i ziV&|=x)&Rj(?nWcCE`BKw1^+SsIoBFQHQLh>lVA-sk$bdD(vX~AiaN;LrOfrZA?bf z$39izTmkSbhZ6_$1OTj4M}Q0oMDD0e0AwuZOMv}P0uz_@1i-Y0?yT(J5j9y6s(sUL zU0Db$M)#@{v(lWtcB*jar z*|Y#vs**ta>X|piF%kvjPZNV#SF-nAv1=I#%>O``5@DEf(b^aka9=?j&a^49D_QOG z3j~;T;Pzd!G9P4i|45RVX@_-$QBCdtA?hR$J0b*=?`A%9(0M9RQ=t7Nw`3;rv;KJj_(KFJo|Gx~7l zrjw?xcni4x%>2c5ohs7%#LP3KB7j(l%`^uL(~ai|Kn|<+ajU+$Y4m?-^nf|eo|?h2E-P_F4FMe48fWXnz08R4qWW6^r) zApp)|mANJ?u_VFpKjq;(5Dbrr+9L!lUi%p_F)ng{hPx*>fM$f95WT-c8a|NC8xg_p z=X?(&`00q^pCN(|gd$v#{9S}98HF>V)+d_(6ES=+b9O}Z0?~UQq&6<9Z{~~-Wa}J} z{rjBofuO+^-Jc}X10mlL5q<%APnIc@i}zSj{uktv2XcZFBK=)N!GZ9zG12}C55|Ga zI3eQy4}v`qL6j8rTclgLRFr;>$E@mckw4a@7|ZA1<0eX``T>toZfnn-h^b%Ywn|pd z0S{yz8b}QHT^w#M>*|?XXtJ*F;U>*zAag@q2Kq`46plNJ64)Hu>O9mSMO72%yOkuJ zb!)@*!HkdNwmJm&vxF?E^of}#{^EX{0eMVm`D5<9IMkAXVw*z{AW8)9n$q@vnpj;^ zSWWg;!^S_UFUBXiL4zFY4 z^68BnJ@3rb-o$$B-*DASIfr#s)uWRjdu(H?q@27JkjE9y-zTSA&N=IZPWkX8yF8*c z-ZBZUTqW+m5?9{LZx4C+^t2!2dh_m*zD}c##9#5lym%hhwr=A#D>A`DT<^>fT?{@&h+_Oqzc1XAcB8MQ_ji(h4gw^rsLQ(FM@)+0GcwCj z>F+x_qkW2UuT4Pz20?r87><560q9nwdGO7|#Rq(BZ7S%d?w(Bjb2xQz3>*Yj>eW)% zFwV)hkuE-XU=xpD`91z9N}2%rDy~z4gQF}#6ZgJ^Pe2a#|0|~@fxKy;LG@NQ#${^Dq_G)*>FehL>=(Jt z>4BNI9|YL*1m?Yvmy0;u*G>fB;{-VUN!RtB1y+x+rY8-S3K2j*MnKb(1_3#w@ow(s z^w5|e?Hs4invMQ(b41hsZ_##{9$T!`B-r{e*Ec;)5Rl1{7l7YQ^iR)XRRw>6v`R?R z^Pc!E00CDcIIp^9eH%WWVH=C)a#rjG`E_omSJ}5;WrB3CfyzYxmV4_x^SPnMQ~YvH zQT*K_tSu+7jZPF)Skh6~Nt8MM4CgotGGnm4NI-rQDbc&#IcI8WPYSqy#_jf+5P8AX z!t%Df-!2gUj;Iue=ya&`JS;7cujgF73U1E1dhhcH?Bj&(wVWq}tu87H%=@`jvtYu^ zS4tu|kbi)5C2^GLaBLtW?N`bu%8WbQI|-`I2Dd)~_)mxmuL#VG-uSHk3Af72izk7l z3hc|OUm?I*CWo?WRee1FJs0YI*DmMe4Bp4C@5x-RrZ?Jq0c}$FiMP#(U9A}0KPxus zF*e>j>k07G9uYkJ-mK>}@nWpNT$vfBTbNW}eluatB3MuYA#wds!2TT>fY&LPlMDcM zjH_JAxz55>02CDhYmy)yAK0%aSD8f$0`3Sud5}|`MWq19ah2jP4uAkgIp2TaPR$}% z%?tTI$FTT`U?Y;@OeHjn!EGmIhcv`6SYl+ucm?Av<{>!)m|2i_o zSqRsK?}*tlF)<6CUASY%ZHdrlQDm+3^8XaUxKfoz@-79%ulo$yWKtIUI zcmq0_fPDJ0Q~(yx-^4lkIbjysENIa7Xa#)%eiMQFxk(oA)Tb2$^4Afv-^j^?+=j0S z*E@HDdV{K%09+)B{n922puF6wLan^4jTd|HU{9wW!+s-SPj`S&pRiQMgv$}M2ASzc z32i#6BDBr6i9Bu+kY7p6S~3A43ZH!RLZ3NdWs^&dwV(%H&ddX8jf(2f;qcjTb&M~AsufI#}A>G9T! zdO>4M*!(2%Hr+<_yzJ*^32-`cNop4EvU^;%-?+}&T>*a^Yuq?yOKCo?a$qBC6n2gTsbvtvml zIVd+!)tec4s8J!{ng=pHfYZqPo&(uiq|VCpe*8f87T}fz-kZ3$Gw%lA>E)g#`n&>q z0@}kvsYq4}Swm80`F=w6I7y0y>U7jQ9&5XKp?dFn9@1GpRR=}@hPTFN$u2+4UfL0VdJTxCu z%u`(UtY@T(@=CJm8xLYrs<1Hx++_#B4>rph+AEygtOt0LxmYIm>kdNnx{oH<6b-TD zoV!1yE->q^@ItPj@y$e|*P@(Yn&v?&0r~F_;<(hIOljWmzJoX}^)AZI%lxk7{AOjX z^)5DBv%=rtmdwh$8f9I};$=>6)(vJUTfJIp%CqVt1m_arw;lxZN7}zkapxcihEIho z3cR--1i`4MM+Dw)9mtMEn_8T_ft%EU*fGI1TIEZPs z`5pmY&yi^!;xuO!I(VH=p#AMZ&?Jl()Iiis{X+-AG-Db2%t2632k$x~WdiI-R(<6` zaN1BKW32A0lMXw8!x1-P8@F2Kix4(gUtz|vOe@l?F?uT_0{+|ayEU{njcMrnvh{d*F zkqvo~)0_2d;34Q%S>XM1lHaU`uY#8_eE%Dl?Kj<=XHdMZd8fVT+y<5D{wm@6^(p7O zOt`pW=vGyzr*p=Mpz4c6GSzFjQ?pOi=9~!BAL3N~(t47qx}l@5AjsMG%F(=Ks-GlW zzZNjbR1;MdK0N(?{F#e35@+#(a1gzBr&@I?nSTc?oLS%UP( z2`1U9@wyHV5wKr=Oa$0ge0Z7!Fgw7w7R2Xsqx_2hBr|lXL|o1(&Q48k{fKKg$=S(% zq_V`Ha&!E$WRj&L-9Qff&k^422R>1aV)0-o(|rL-CVMdf&(8J63SeA9LvnT`BuZm^ zm=qQGuAC>Bi6bpD8H>{wFD{$94EK`GK03F7>^SE+&gR_4QDr;Sn}D*{f5YLzxega= zd|$!M+L+s5bO!13wmV-eVx&ZgjlbfFncu?Nae0v1d`IFyYeE^9aKG9{+zSj4-y&UOEv$|qaQ*ZGI31x*BgHxp|Lxu$FuJk4OOB=(v-XCKKV zkjY2F4k2q=N7lZY>*>y6l7ytUDd65Zxw1^ws%d#Ykpgc~Zkh0C@u8n@H-4%HYlM@ApGCCm-Yhw<}K?Zrm$D#2U z*k+TrI+~%$6e)4Lwm&6fnk=b*;4(iYLv~FJ^_My1Jcx29>TKWwlPgRf7Jm$o%kF!4rNm z(1*CR?2|n0(kk^$sP(#f@jK?bC}alfAm3l}aAoTN(=Mu7*LvrBxS(u3cj|E(QP3+P z;liA*pO`NKtCl-`4UciQ-8J>XIuPe+j_ruoVIR(P%#RBhV&J2~3?Xq{ph7ro>J|22^~zuiKXk`^Jq&P8S04%1Sg ziqF-ndx`f%ULbp)-$6cy0EaF>{1fvf`d4iDdV>SKn5jAGoQF(Z+U7=tm3~>Xzq>fZ zPWBK;HLSx{lQ)WEn^V16;@X@=BQv^1D7TeTx!>(Ys4bwsFPTq;AitD*mTkwHuO}IO zYe#d#6|QhTW9)3{F<#@r%4Qjo@{zeuIx{4w1Z}3Dq9Da4^q8ozq}}lka7A+;ZCQ`@ zvAM1dN|Rcf8SQJhwrtroAtsS(#X@M1kWs^WBY%^`_i`rbPdL=bUY#NK<~4{x+Sd_j z^BQDD)4?wjUH&VvZvMw)=&G2s%<^2In>)f+<>LVp&b<@0qkhkv%183?vZ=-}8~tf> z9K-DMqomkuemU7X!sbR;sUScleE%IBAm}~`ru5an|Ir(gl z;bh=NHuu6(h+^-kp~DM^J-q2I`1%zNSwCP_#X?FBQ!H(VomQx$8-Kz94;qDad)g1p z1-vDIYe@j!igGg$0GvKOy&b>JV<->I8GXj*exHm2WGiI9|3C7p>=4#812_UO;w~Jt z*f0X!u*Lp7WRn@h@WmgW=SmD?yof8wP7#=FQ@E0T%hm4wn!_BlcGp6EJUnRTo_C?N zEsl232c63i@VD`#Wcv~)!&yh!FNrY67jm3~UPi|Q+LRG_LA5QGjKq$<4M>goCtd|I_rh=Fn(nT4tplY*t}? z31%C_Yz{6r+mObgyu=eQ@6nK1BWwFHt}Q!HX|~;C9#0A3dZIOInXHt{NI3I8A{ZKJ zFghvgUvjbM=6po7=L+Jhg*+|XD1`${6Vl~mo!Jho*^pfWvN3SfL2g*788K@?w)zN1 z@6CDjxF_DL2MxrDOK!f&OB_2pD|5D$Z`T44S*a7~(CW3^?s;>j?T#^gzKjPq+mSru z8ZjK+VlmA3ou3MdZU)<7sk>8Q;JTE&5C8jI^St*}5&%m!lK4gv)4W9h!Z{%nXnl6R zfq0(x-l~!a@tEJnWuBe$d6hAfi~V(O>bwU=E*}|1f=fKcf#)rZx={muYA}kRwb^e3 zI-TXaKNU2^GgNKVwIlv-x!P#X``Zhd!G`6c41tJ&4p%yFJyG48hW8qYb30mbJI!(D zE&O^WU6_SHWbLx*FW~{s;gy<6hjS&~a~v>-!$RFv%~r$ZN^7mZ0in*<$z@e#4wA#U zGtnU1NGq@F;_r`f0PkB3N$=D|12mSLC47`*kt2vQ*$8+vx*gTKT?nigTOXXqP-d7G zU(vK1bBt#@hZ#H3s=Cc6>eWgK^u37#9W?q>#pGtt*{r+h`ycs^kb6}+ldj#)d{nSY zD=&%bYV<7U^gn);k$-Fz=bx=AWw4GY*sPDusu8h0SA|HJAV16YCz+Hyzx^t zpm9f@o%c@0PblJLD*MXWQBrKSqB#9d!WV*f5qTHV=nEtCH7kMl-tMHTQD$@;<)oTypVkax!dVA(PxkIdIodqWAa(eLHXOcg-h0Qv z`dT6$=E}0A{S0`t_h|o=>&nh}o_?rW80?^st0_VKhx5i`%{kpaH*X55IV`ism1XOK z(_^x}D0Kg4^WHM$h$+LjC*xg{&+|Y1!kW=e7@VtXW9J4kuI!}A>4$5Z`s%-vFUBy- zNaFmc+T*s%y~}pa&OW4Z2t=iwP-nnC$+5GYc(ae)#|ygVp8o2mYQb3Ms59Vp9{;&6 zxX+iGB7_`c^8FSrI6HZIdMtOM-f7JVzL7^I+s8BgSjs}Ql^1NT)R%IN^OR3LxT1ym z+{K|#6QSH)*e|bT`XzFxu}wTf%9-aT_M&!aTUL0Kn>bH96t;G=#G7cE!M2FfdFoB> z`M;E_%XTtPzkmH!9o7ThoNIN%GKx-_+PD{T;CZfc$5AxiJ8zWkIEuz!Qfy_X;H!de znT`@E`=;Xki2HPON#%ba{U7WQo2X~oc82(E?oW0;*(9q#nj(tQ;6=lDA)m{Q$#&09 zG79{1?5={Ja)SSnOF7^{mPZGv4)j*kZ#3$%MGp{r*~wUwj?vQ>VSk4daL`Mr)I0TZtzn82 zUdSb6Cwxt|1n1t|Z*d#4V*r!E*KTv!geQolZ1;dI@|d~Twr8>5>I6HeCBq`z`Y!L^ zb3NH<0lHXY_E;zoK?O)25i8;O&t|{pRHFUhF_1~S;M68ZBR3~vQ@%2BAV z)V`a8W#{HjyRvem#ukl__L>Dy>Q-phu zT1Wg_GQ9aM%&jx=$@y+qGlUykJC$$Y*~+&3rlkyA>W)hbT{GYPQe(v{`(v(be*4AI z3?Y6tNn@@^WWJ^Fr=OiKGsK;z7M`}(-iV)~>6LA(>)OYer_0nxj&P}#39}{Mf6_P5 zWpzJC5_#AsfcCjzZ7x;w5pn0$xVI73L({_QY(gqkb;{*2Zt&F80;pEdG$j=OEvNO! z)YF36;x6(DLVIRfXehSW!Lz9Sb{jeubfH!og*o-!|5L7cTJ)6z#E?r>&1AlrpdO!c zl4S&nbg{(PWZU|Fu6rhsaG>^(LKfT3H&b$X3(M!AJ@{jK$VEdMQ*X}(>OYTX)msHV z55#__!_sUU2vUbsh)m(WUnVx+Jta0PVKwMCw0`|D&Tm>I;+AC8?!ug=D&5-DRPzyn ze9x4VvmoQ*2>-yv&J3@OM=FKE`~vCb!D;7*piNJE6@P<(9-9(SHR^ZjpcP~RARkv| z_Mf;?uP&H_Sd6dOoMmJv%8MbQOjjJD{1)zzH{LYKIH({fTw|Y+ewZUoi|fsxhkSoQ z&36#cwCq;^mCQw(s|f4aDff-?ic&^dkK~sqoY;&yx+uw2B#CJ`rn(B;3$?QO_Y}O3 z&M-?f-~!c)e!8c!}DJ5ce>W?d_Adl+BMgZ8V5Z}Px1$6*%>Xm z%+6Ti6axBM?#vTYqSJt`gec}2-#dApE1wl6Oivf)C9^OUGtYh-PY`LQ@}CLNd#f?W zVK)GGP#`hbz?skuHnZuAz@MCw7YOiinff}BFs(`tYz%Nr z818bS(~4Mu>k)^4PpGrubX*{YB>LH=>Jf>*!l`;+In9k&zfk;N+%azk(*%IC#NrQg zkZBLEY+ph!zDgWV%Z^oKy`&6A?UesAPH$Q}ai)wx~uX4YFwYHuts{I5_IJZL$ z?*dHV$LTp!54AVfch$_Ft#$4tu*b(U~VHJ-TgTYM);)Gs*l0Vh0>YCpw!`h7L| zL9s$GT)*8i|LbDm|EKOM;H0X$IQ{7E?hG|BXyoui_#@bmN42#-}Y1b^`6=eiI3u0$>Jc_Qp?sv_s zI8hL7aUpK@{AhOV@z^z++_iCL#_CH?Q2wS`6KB#_j4{VgYh*~8p3>QIMGQ|>GwVp}F`I3CpD!sb?P z2!ooBlgZ{Ygl`w-Zu%T{Qs#7gH4>Y-1Rv3SI!HD<;jwWMcB4_Ql(#G2k0XAoC^n<< z3sdVox08^;CMg;@BF(RxzD33~=bB^-855-!JC)*#30z&ZU`ccCPSz5hqwsPvN_>Ha zZ!2>wssY9|mzT+3W@Rto7c9Qis*4>W9|51iu;yymUQO%3jJ<^TWUA%zjkD-+nv;*c zjtf>p%!jOhMQdvh4ar^^W1p%Yej3eyg{ksR7GPfm6}1Q>O-SA0XGj zRb(`EJWJm6Ck_7wA4na~qKo`EyH8Wkv&3<6wmBG8p!v$#-fvv+*6{d%&_Ep4Vas}0 z)}DFX^;z*oNQ{JRb``v~hvvYS0<$st5jIDQ!eLu`7)zmTn~!RZP4$e6WsUr?URCrC z&6}9qZbf0UYRA+fNUI>WE!`n2Y7-c+iAVIkH#QF|h}`nS3T*N^+*fmrW~<_gN%68!Y_?gh*=UX$)g02?GR&77*&O1l1LuA5O10k9 zxfqrD;x)iO4HUP^T8_~>x)LsRimh~J0P@2~@c!^BTO z=+rP9qJq==rLHiexgt!)4E?f4ocj}J6GSbFtuNG``M2T&U{!O9N{LmyI04DEc>>*` zftJTPwQG5q_#IqCb7_;DzE&w4z?$X@Sa+;hOLq^org;L$xjpfF8$H*)jpOY==G^xW zq=Xa1k#aHkCd_E=Cp*oP*-Xsf;o?^o@^nc3l)0?5Wog7g7`WZ9CbJo;EsL=z$Tm7A=&Se^N8 z-5(g3Q&v;4Vez4%<{t!aLhEVvZOh#xS`BDn`iZmmma76*qhv2?%={bdzmlwVOXA7q z%w{b77Und2ql@OmM@6uz<9V?ltZ6#Ei`Hy%W<(Qc`h)1a+C_{L_r=hyVPY-C85#{E zn*NZy5xOixPWa`M92SzdLpRHq-|62>vMVQVh;I$yf~AKY%~y|3ZlaMaIH&dUnFC2z z5nqj?S=aK`oCvF(-bp)V@^;ugV9eZ;i@}`cxbN&)fH_on6v0?iK zi&L+biwQcS<~5(DZB#TfXH5_m#iv)fDQ}_yUeq9e%asjQgF)>+ZOuY*Ikb#k$6-x# zn0KSR*2^(&qxxPrbLP?TCYtv}GiPnvT`>2enTw5+M@NdMMo}$p(la$$Rs6(}ePka> zs`*suf-Vk_pg{RCLi?CLJ$B|OS}t}uI&BZdoRV#PIMTr>HQn|kzY z7p4mrn|`tAD&lK2_(?qe;=I3~WQmVn-~m+J@*yXRb;txyIId_93lwLK@H3uJasQ5P zcvQ>~X{Ru9!N*fvuw(gIJo0DxjoxzjUu{=QGB`Xc$nvSZ22kaObs_n%kMmD<_|b{@;Gb-TEocRoTa%na zT)QS(QvOoV{QJwF-71A_MEkl7KvqV%T9=7i#F-N(mKI9{T)<-2nr&Wf4(Kii`y70N z9K8F=>cD&+(5@Elql3Tm%JLw7aD#6~*=1o19J(rH0aLIpG@dVlGZTK|5Q%;m-C-#G zcq}TeiW3c-BoyPA80@&u{E1RlbfRFFq0Pw9YfhxCpOrKxume4!f)f=!_r|&T2HAHi z%&+}u&}oINI}?r&pY$|8=iPvCc_-Q6hkG(S30ZbliI%g}vJxvLr@$Xb!FTkyoN1s? zj&g%3izXgFLW$;?iV!WWDJn10VUuGZS4LY-{2*1_<5=3vF0QQ!r$txYkL$@zqD* z`XsiS8+O@29J9(xQL)W0?w^#ajn~kC)ijM;q{VLz?3}7SbhInO@*PA$4BEFa<&-Tqvy57WcQG6rCT(lYxEUQ^G(W8Q*V)f>&x#y7N zIn}YsWRuaFoZH*ni1^TyUA0_8wKUR9FKH`bVi(AgutEce zaufQa2@6}|aczqj`K(Wlnef7-fR&Ha0)ghcYc?XiLKbF3lzF6N+h<|h$`&7M6+g!m zr^2P9{bpa-7#$rH55T&O^&dmvHH&%M+VBsG*N4-0%*9eE01e10>5$#Z+A88M8gX?O z)wiWS-*S=!JVnd~xcgb$ykvP@@gquAUOS1XXkBDLTwttu;W-kuo`kH}qCmTf!`Ynm z|2dIGA;qug_2yzOhipYl9xQI)&nu0xw@c0Z)5Xh{i&6FpP3o^C{7M6@`?%?jg_Oy8^^1+&3VwJcjk zV+Th)f*Hl?*wz*g6=z06#e)wrgSDBKlWUFfAz)se-sw*NdrIOGP?II`ngAmgyn)QL0dg~=rfmQ}0 z#W$kFy=2tTVmz>30+%bP$`Hd5dWY}~u}m}jXjVvTHMqF`N{r270tnKDiKN7s$4;FU zzFN+ve3(_N18`7yRIqux3w0cqNE8JWmv#kOpUc^BETk(r8n#IDpOrrLi+Yw}h;_Fii}hX9H9s;0i1C-zt3%y7{#z$Ve{tqQoYfMusbw)0 zigvfwhK;PS8yON96QUnwGt|XE+}goy#D|BC48Y4E`4aOvMh@%fZ=HqxZBBaz+FP?1 z601JT<*wHusADRX}BdPC%|4&>M&= z57Y~B6@bnmt|HLSK$U62hUG##h|P#2(%K&2qp31}JOIs?4}D_ww8pf`Yyf!h`6EyQ&LN&tEj z=o(OWpdTRj7SL$K^#D2n)RW|p)3<>RBi&v=bD+^1XgB2g0R0No7wBWi^#key)F0>> ztPB9U4!MCqU%*NL&^JJXfc}A8Akbsz1_AvGjbNakfI@(N23H3Z58Y6pj}SK)s5Rok zfF1(rf$9ONK;0oX1ZWmeIM7L?8v&%?PbB_)hSZ{fasx#J?S;lrp!2X71N0{1Vu=g6 zIG~k4@j!bZHw?%ha>IcNBW?uHUx*tCv=(R-P#XMs2Y>D(SMLHf2X{2kC|G_EXa>;x zKq~Bw0lEl{4}gwAV=T~0pm9KJAon5ACqUzYio?nTpx=Qe0^NYdB%s}pn+&uIaR#8= z_%j86+JS2XDu_Q*@#jCtO#>TY1M~*aw?HdkW9>F0CfV&2~-m(7tjG{hjXXeCP`124 z1yF>1KoN+`53~ll1%Q5mZb6`;&@BYi5ORfq-UKQFlnxq2fm%SW7|;^L6$fesxe`D+ z#FYd(fVfgXo1sw}r~tTSfPO(-S)lreD+hEKs60?xa4P^U2C4`&0`@8aeG0kCKv}@8 z0`vyBRe=g3?ls~ft{TuN#8n3>599}Q6(#ovDh9b4KtBT21nP=3Y60ayTy3CJ(5M46 z0C9DRi`uORv=|!ofrf$G0H_q=8Umd`TqB@#$U$SE-+`I{eFC|rK-Ga>2bu!Z45&O% zbD)wyEr8M@-IhQGSZM`x7iqKxss_0>Kvxmh7HAXV+5u%oTzjBLi0c5<8*v?hx&w6r z$^pxrfyw}N0h$Q(22fGxb_EIo>IQTOHS{LXr?Ao;C;=L80c`~80W=?|C(s3GybaV3 zalL@PguUKCm%!}88aP#DlKAO&*6fhq%y0J;e7NTBzD zMgcVf_Z^@UhWH|-Kuv&_06heEDbPv8eGk+Jd07Uu9dXNnf`C>4RRUTG zWP;o(pxTIA4fHPTtpRF=xV1nZAZ{JdT*R#hIt|?oKyAR?2=qC)KL8y8cN0)B(2qbl z!QBkh7I8lTl>^!W)DBjD25Jnn6{ra6WgAdD;(h@-3iK<`Euif{nSpiy<%PyhpmVUi z3+Or0-3=54x!-`|5w{2E7sTxaN{_hTfgS?w15$zZ1C@ZiKY*qH9RP{~ItX+Sa)*Fc zAnq{GR#^TMC?C)fps#_B0u@D0j{)t5M;r$V2loU}O;|Yzv<-2mfU-d2G|)GQI|Gyr z>7E734Rj8uKhSxgypX#9G!ynN0yRP0UqF8$?h;TYX#5TI1-O@imLTp5&`HQ$1?m8F z4QMsE{{THg+;yNB#N7aD2y_!@I_%v7>H%~cC>ZDtPzRv9K!c!h52zQ=eW1#){4Y>Z zpa(!#pz#oB2;%+&stfc8Xco|8pn^b8fQAA+1u6^OXFwkUJqJnvH%(UYCl)9z&@*t; z0rdh(540XA15k0~FC$PkXk-G~3Zwvi4!O)gSrL~7=r-cA0$l~l2DA^{>_Bmd%K>x; zC?`-Jv~(_@0!S@4(0O=C9-!fn%L~*6C?8NAp!`5(V7UO${}5LY=qp$$1Y|;7VW3Jt zMS$8sqbN{W$Q1*M1h+Vlg18buX@N=tbp*E*5I+8_mIitXD`kMrL9Q&&c*vCldWN|2 zKp~K;0F)lwia>LKDgiYEw=&RqXjB18i@2&lXCU_)P-k$f0X;!nb)ZIw^8>014S%2u z;MM@D0#p+yGitXMkP&jVfsTP&2dE`bT_8PBJ)rE+s1Fp4xCTIvkXl2awTNp3R0Q@K z1LZ+n6QCQ2YYH?D8m|NWj<{w(_=20-9B3ajS^!l5Y6(;s8m)jfBCa)1XP`DfpMl#J z=sTcxKpVhq4^$X=?f^6asdWT80=Z5=A0VzX&_JLrKu^Ja1LzQ}bOkyE)D374xNide z4;tNpwg9~a^gU1ypqxNG2|@R5Abc)I?FED{-Kf2R^21&qpv}!24>S-c8r%S&9zcVD{D1<1rT_&26#@zd>JQxzpl(P_2Xp{&p+FOW1_ONrZWz!8 zAU#kiAQfmk0}2Ov58Mc#Zb&T>XgW|7&={a-pj<#hf!>Ek4A4ig5)1SPxN$&D z!HowBN8B)=p^zI6^fu54ph(D#1nLVk3g`o9yaO~1aqj}1McinhpMc&2!d2hu`#>2W zHwI_`EPnuW0dZr20uVP2Xeo3*1nPsh@jwrNCIC$acOuYNh?@j79C4F@o&Xtubg(=H z=qTchK=+_A6=)04G@y4NHyvmu;!Hqofo1^J1)2%82xu123fM~k+KIT2fCeJ&W1v+) zp8z$1fWm<`0*wXw0jMf0Zvrv`{Rp%lx|@M^0{sNE3}_3`M9BRN6brN!s5$Iy1L}#m zUx2=a#;-tKfVKn81KI(EOK;SjK$D=c3+Mv4yMf+E+;2eN1MLBN4`?sYA*A*@&^Vxd zK)8iO-4E0pa(@8TfxQDjiy?OqC<1YZfR;h-FwiidKY=nr?g-F_kUI*L9q1TPW1!p+8$`x`(}h`R|i1Lzje z9%$SK3WD4npnE`ffm#CH1Ns{p_kpekwB6s4(IR11*Q;B0vp*iUREgDh8AZs5lUQhM<-J z+5+8@KtF?93Mc?^rGeT2l>zz$s4UQZq+1RMXTR0*Kx4tJ0Q4ug6@hRNTdf4N1C}cT zeFM2FK&>EG73c=gYe17AR}H8VP<5a*Kz=|Kf&78S0M!7(L1DEfP;SK40(uQ;)COt~ zR0n7b(x?mc15iDn`Ov5jR0F61&~u=MK-Zw#2&f`ZW1xQEHUX**)D-A5px1$ZgIqHp zf27eIC=+^Z3!sgVYYB7~+*UxpA+9yhW1u!b>7daT=q<#x1Nspf?SV!jjSfKn1L_F0 z9HAIbCb^eHUI0-Z%%9MEe(@j$zPh5`8j4F_5PjS)bL5H}L& zUBrz7`UAOtN1*ulAazXIG-<>E4rA`v=rDcc2tV=TeY*Z6IH6N|V`0ZgI>953q$PAp zYb@l*)Z_P;QIX)~b>u}yCv?hU%e3q$%D5~YuWd_uu7TjIxzB08*^(8$EL5;`@BH|7`Ty>SkVPX~!B2B=t* zjd|_j#i^kfUBYCeBCAZCgE3~7hjL?aD8`sGFkYOI(T9kui*@2yXo4}FJ|w}ILmv?+ zjzQt4eIkK`FugIiPW%i8-v%Bj4z7mjMDE7anZ4j{QX6AtRL5aUsTLs{{&-BNYXby#TROY?iaW zx)sg3IE{0A%qeu@ z^l{=BeB18_Wi%GV z&k)2ZGx-ZdkraMP7$RyQUu=Xp5I;0NN*u2h)rcFSV-p4>s3S!d!qTf7MKIZzBU~Id zi$_J{TxNng3Hi%TngOgTEak!Rcadb|VDbBmaPg^txP*>r&fU)#Z_JDfi*SscPB-BV zu0hGN?)x?06+vUPDw1qDs%$K$JpM)+y_W znn`+7y8l4bYU0frwScH#;vG?bBZvP{zspD7*nSD8;UDKJi}GpuBx^Gx2&5Z*&+_cq495 zKG^*o@$wVzz?~&TO{Nqkq-V+3$x5x#TxTuWW?oMHYoaDx{2%GzeY-)4FSv-Pd1UiJ zCAN8sBy<1HbzOyctBp%Z67QJ}%9>SN6AOq}vezc!g%LIV;6kGC7TutHpJO#qc(-j( zu3X|e!ch{yOo-#B;7O_8XLUHy$B9jNu05 zP31UInAHr*kN1Be3bUO-Y0>UyqOgiECwm~^LiSvTF(xBWLb&Mo2 z*NS|mXPcO14ayhqGKKltpmbQtIm2vgP^R5u9%g@$&&r%SRu2Xx`Ucl0R&)ksWCG_J zs|bS<)nqrN_dD?(PGQLp$;$My7l>DZbM_HaBT4d|zE_ENnIwPjeub!|#GCr&b)wb~ zuT*;OV~5C!nufh+9r0?cI!ThpNw3t2n?%(j$-EVA6LpNJyT|7fb%*qJuV63ufvCMF z_7ZOeSxH~#98q;iuhZ(wM0Fy`dW-H8)s-l91xr34sz`@x#2ZIedbQ&gYfV)CT^EV> zHcQUEN7Oc=I?jAZRDYt*O#F+e!lXBD?0KR-AzsrVJodaryuM3$9K1$UOm{BBZjwB< zh1;kdm7)3izsbsM;&m@@gQ()97ahd?_6A9+kGTCZ6IDn#O_KkRVKE0H%KyD%o(D-BHo^W6GX)kRb}4;qK*+& zpaz#{2&ETR@gL%yBHj>%YY9(8qEDw~&q_nosCT&RSj7vUpICA&WrPP$c#bkCd5Upf@T6r>%3bF6!}FBrW5b`4Bv$waT_ zb4rtBps^@P;yFu_gK~E#*L4lzmHHpoAfCev z%JxC8ktCk&3`#pfgd}PckTHzZ^gmcA*SPwtzlF zT_fJDrGZ3YpG(xsz%E2BBdS!LdPHIWOq8fh2cqtgUZ&{&L}A~{pbTpNHc{AbGAI>l zh7%P*ysky+5``TogYwaL5kz5cOz3UsO%(S23`&F6uM>s6FN4x?Rsc~2N$*0LXri#c zXHXWr-Hs^id5O}t(i4Th{CR;ST8kcOBD7c#W*px6;Z#D-p0qR ziNda*=wktWiNa2zLAe(822t3{GbpS2g%X9GQG;T7-iRpdNQ!m&S#EdiSsIk<5gmz# zT|O~~FI9=c-k?EI9t9JHy-$OZKCV4c*!2|YZRPe`Op+!4u1!4bIf?aB0=EP9_YBJP zJ=}|z5w&9^`^0jh8Wr*5abD7>J18{%PC(xCWF@(fDRY4Ie9okD~1 z@7M-JVTV(AYu&;`6{8dy&&WbldE#|n#N!fn{|w4<(x8Yf*u_Svrc1^`vaa;@HVHek+%rX@r3U6l&%JJ4l zqVVoQjI@U3MB$x~K`F0{Bx)?Bu<6)mMB)8}=+no3AZjOB`7!8oqVUGTptQNVi6}94 z3aZfEiA3!u$y+rS5VeYUeKLMZ6y8P|l(u!a-M=TQNsD#F%TAK3D@`Q|Z%hoz+>Psr z!aEh=J(<=J)s(1yvE0&wDZOb&J|Z68n}}7ydp{9{H%VeH4)~a;=A@S;&t{@>QF_I{ zd6%epB)M$hGNSNSO4Q4j2}I#-l|lJ5a28Q`ha{d*hJ8uY1=9Pi&T67A5jErs_MS;3 zxxl!Bc+V)kg?C{FB}1K=L>Wo4+Rb@H;fRXcB_2&|z@Q%u$Yz_T} zsAa^Po%Rc&!YPIR`MLcL5!JinM&hj}$*EsYBdQkhG7KC~R2SlH8Ml-uyw?-s;E*Xq zRi*US{5hAXZ%HrHsSk;oM0&LYn2III9J3b@uQ^H1_~2`z-Xp4b^L<2JAgWo0vqViH zD-CA;N)+Cg8BrnW8P1JOfT$*D)QFse%Q2tqRo~S>FccQ=nqVS&Hp!CYk zHu08Ste2+!Mm)T=HYoispCIZeNmf30fv9F=v)lT;M1>RY;SX%H8|i(eaL(|?+n|)_ zagrn_kY2gfyNT*clC`TIA_{N&#r$5KQ}01~wXSU=-f*H8+~P8nB1!cqOXB^x=>6+Y zk>pa6{CdDSwn^#r*!%}kI@0Smlgscn@j{~x5^pC4i`MH@P+M5fxqUB1uM4&Q@&ay!=E~ zruXF%6(VZjHEtuk=NJ7w6W2sH;(hWh`^yue_BZG94JFCgd~6dZ84OD1SZ<@qB$>TG zTX~;&3j?{d-xJm1deL=w?!eg(gHpU+8KU-)&G#FmC+Y)|T(c`1Q8*D|Py%z6Cu#!m zrv99js6)gns}v-vGTHnrXGWqj5^sI)vPA76-p&sT6J;bTrl!}amT+E0tT@w`B;GO7 z%lh6;;@#j}Pkc%gPU9Gqv4ILn<|N585ygo*LcDYtIoCMzBYZv}9ZQlGLs6DIMS98w z&Na>=iFvc#ElME|QANr=Aqr<|3`&jDthbr0D8G~9MVxAr_F$pysw zEN^Mz;hdIu-u&ne@o?_Rpu9Jfy#VL63`(w+{}S&hS&3Pmll1;adFg(I+dYmX2dedn zmzH?5e$o?_o_NEb4j^hcQTKbbVk<;dT-c7NtfUtfRGX+e#Ebp14N=*MS8uF8QEiBt zqIMw)=jg;fQPH=EIzxJM)geTkqg?N})QhMK#4Ay5C{Z{iC!Xe;gb_8Kcyku?C2BoU ze@&}SR9cc$-+Pm&t(5wlb~TCWNRrbdyA$=4c$d4qO;jV&TQ@q2D4aMnD4U{M6ZIAG z{w&ggsH?=QGrlfSWys3DAKDUSBHsAy9f?v%FYCf?M1_##$s7HNx=oS?X4E07D)A0{ z5KRQ4A)EMxq(P}#xCik%6R&Tp8AP?^GF;+yNE%9E zV%}Kd;dGQi3F^peu>2%h{x4pGT_MTPHM2-EBT-YM*gsnn_0yP2#OqFaN5;QH)G*>L z9`hbiTZlL6w{euuvXoxOpLwRlnJ}@p-HUTpf~c+!LP&1~S$Vw0KzcZJC071JXA^HQ zS(%c12Jv>1UT95TORXZk4{}T;UT*TGCMK@=yTohMYcg4hCMzYnd`eUxS$S*9M54x% zWbM&2$;!V(RSg(Hydp%E`G~zIl=LF+@T^vl(i=T%73uv)l8dVIIt0IaH7FYo@d$mK zQm;OcJ^4Sf^5+&KrO!8Or~Qpk0BDe?Xyn-9yf_w*;;?5b0VH;Aay*_RO2 zfh6n9pGQ;^vZ+@&pEwIIo@g_FNW8qnyP9hnQTd2^cH(`a9+8!(OACl#>W*JQR3_4Edz@uLq@&PyaPh(~0V-eo537qSD-6Nz_)N zzHG()VH;87ex5+QC6q$_lbp|NL@nyZBg09`OOBpAhEyi1`MzbO*Nd$5S-q90vP4yg z;9AN}R;J{dLcAfQ*XzA?M6D*?!)^14s!6)HI@uHIERr zo2b0A?-EssD1Y@SQSXw?>)W0Ym4&FVh3AMmLR7jg2Z+M2g$zo!%}0p}BrDl|xuo2!!qcu155H9s&-R0F5_OsMhW5WfR1u;!54lIw$E4SK59cg^ zs6Bo66A!=d6T3#UGg7YaP+m^8x=uVjNq%^Wd3lMKbr4$_NGTM1z_mMKsx3 zUMWQ>JSV;4@0TVjo@~Bep(s&PiT7IQF4CJwdc$(El@&yN`fe?foI+Hq%zi}eBfX*1 zxF#}_%^&X;C*Dz_HtgjT4wB@7H);|u8}XLJuxGU;n_G(HBwh`Y?ADXps4+&u~7Y$Y$*a{v?Utp^3LiT}u*mgm}YNWhUw&S;;=S zDpB~2n?dn!QiQ0}B)Ot>I->fKq<{M6L@AWsqGoRql|a1j4>u&LG*P9Og%Z_>B>(B# zo2d0ph9uNxX8K2N6}2 zQmDVQHc=&s7ySAVqVUUPv3q``9#NkXFOR7KQTWZPK{+?3A5kMHg*tERh{{UTtZph% zIf#lX$9?l-O7G2lU5WQT@s^b9Mbwv+LbKnwK7&XyXYsnk+dz^(XAdCi0a3;~-H4h< z)UK*L7HlNy+WU=(SDCDwSlNRp{Bl~n8Cml>QTQdTcs4x2wfh6<`Hj^RZ#d;;LS;?? zzo{1Q3O;U6yhg;U+_)1_Wk|2i&>BR2N$Gw1dOM;bhzji+Ow?%78$Y!(QNNI0_P91g z8HoC)%6mjzrSuLDl?QwDjlW1YitZr_+7q1nRD-5qBfD_yb2!@)s?8v|6|V@KsKLD z=Qf%`yr{(^NU|95=0D&b*OpS)f3_p>vJkc63vSKDL`5&=b{Iue&m-)ECCO&+%6CYw z6j7IrQAFjSe6DN8z2g9-cdK{{;(bDrts4#_sytDJi;N=bQ=+CcW}iPrZ99B6dtE_F z{a6O}PaR3_+uDru9uYNp!bGBmQF@~rM-sJ}^kxrjNmMnG{JZQ2M2#THj5E0RS0`R* z>~P|pAzsURLy4+Eyn)TRZPOC9apFkg)g)?nXKu}OM8$@F#widrt|GTsCZdYH$5yUT z3VsKtkz^~Ps&1c0)Dn^$vS2PzxUa;Zs0TT{s#K!gG3>3lW5b{{DV#u(xGzMUuba)~ z!~Gxz<@RHi#4R8OWoOR`B)N&wd#B-OqE1tKhJ38ofKmtuV9$D!BVI0m)!1~$;#Vbab8-GWa#WU zltLU)*&ee^+(sf!VO%p1?;qmLy~;iHd!jZr;97czsG_;J>>Y@z{E3nDKBt`3xXU@~ zN2#}YlgqG>czc?1&isiQIGJ-DLDbU1Gswyy(pz(uTXP+y(0uSX;(bk$#fowYxFtpG z4E;Qvc!NnVTdgrf6(zlXRX--GA?bD5`3X^5iC61mmfTBvp_%Fs?>tHFe^`yEJ|wxj zURiqbzDBiFqkWvkzQevtoiGw zL^UVL#a+K6N+HRki}>x;Pn6#G%lLix9@1;KgjXJOh+0;68RcvSN$y;`lB`@OYU{nK zl$T$LTJlRiqEyn0t-p#ScN0$+&nGFrAl|$O4N3Ad;{DKo-;1uLeCG3CNP7Pg@BS)2 z>u{24qRku=>AgvkEA_l8i6@);gF6xL8=~&iY(i8$qVhK%Koss;6Q`gSan2r-l`odJ zB3^f*etTmyQ9l#4uuw;$mXeiPpH-lo`BBb3EB8CClhY7Y@Lhh2Oh=L@4)JdN4zf~y z>ps$}MUs8y@EaW5t|(4}ZmLTu{6y3r1$ccunXGil%%l-~L64aw#y(#zbn z3YBj<@wRpFC*Ba^WnKFh>75~Jdg+41TSY14%|3y6=ZJde7N0a+NRs_J1{1F**<2g< z73DLMc%!%Gp!9kXZ*bks#4AA5inrP47m;L#LF|KXPzq;Dvz4aA%W$+5S-C{KEJGI) z^*2$+_w#A<31G=240M zBr9q-@3-PkNrUotzKc{ZCx{o(e-7oP6zO#v(VBR;!&02eZO7}Ew}^M;-cqvpF6k{S zwGEQ-#_S>DyWiqlwUNQ%X4M2^wqWsnZ9eo5Dnu6=DDF}X(FeyR%o0DFz%AwCUSz>a zk6)L}N*JHeUEC^)bNAE54=F16`QZ{_f4Vh1I2@lPish@-{pqq&@e2g;(}x6O6)ic- z4Z`-aWu>h7mh3?K%m^oe3$tO+L}&dyn}fchmXU*G$`%}>0WYoSS@QIm2zO~ zXs$S|iS8TptTWz9i6i8deik5p(4>zG2yod$O?0oKXG@IV7Hxn2L>;7h z1G_OH=l6ImOn!;|(KTOu-Qx>_mY!anel0WLNmraD9l?`%n3s}ei7Q^_Mwh(had)iZ z@j;=C#|MQ4Uf>B~G7rg2zwWO8ooxiz+A`6->7JdX@hfxB<^aEJM-DvJ2(>-l8|%Ep z9JsV(#+?D4^@5`>u?k$7KTPz!0@Q&gr^oMPEqF2y3q3wH{OARXrBNRD$HyLThu1w` z2fxcYsI0XC8YwwdoNl<&&+q3g?s%P+BkT$(qQrml~=TT>?bloJN+T3QYgD!#!U z6{8;|oJ4%7Gd3zle7aB~+S#n`nv&JE4oNT3bVv3>+t0q^9Y=YYhJ!;nidECfiq(Z2 z#7*?MC6wFqIXUj>PEgCC>%Q_{cuZ!%MIQ`~ejy*cBm2DPTmA=`lNwsSYd1LC64diF zGjA*9Z|!s|oXr8RwA0n~w5N4)nA%>st9N~g6OL;mrHQ`Z_OhN;T$=R8d5uH1b{Kmd zCK>Ie&fA`LqHQnHiCk*H{+`Z2;gq!7Co;6&EasFXZc#evTiV6=73=Y%zccc4h{cHQxtl?L)w*QEFb^OEiLH>McD`NeFqoQS_ z-H=nFzgCv*CUjl6EH(bxpY1%7SI}Pg+AhS$GbJ_4pmjM5yq~|6`rDS$>EX#fB zG@55uEFw1RqnpY1RENihm-SGxQZ`cqEoVsVzv5!zKoMKZ)`MTvBaLo9)BWM;UVm6- zz+>ay8(!19zLHhp`FmPMBjfv3g$9$-Rs10<@ksIG1iJ3%DIfV(iDPbW3rL-k%2Md5Hw9bHAOmp z!*r3u9B2MmeVnd(v}hr5WqGWB+|ZB+e{nlK+Z`iawy4ac%)p3XT{Lb{m)XoMU8JO) zRLIE4zzBVCfIcERDkhHd&^d*R6E=Yri@ksJlL6a!C1amqLAORmhq! z(WhJzy9<6N5M$FrDoIB*cVx?OAQtQ5@_+MSV50B5z?^*zTY9|sSb%K}o6RLTF3gwd z7P4!w@TkFqEpB*McJb^&q2#nN6$A?>gt)RKGw9dqd`gWI zx6F)rN$=2^Ezc;dP+afu!+C5|`?+q^tF~*qg=|d`AVvOJ-4QncnCb z#=QAw*{8ADburP$mSNJog{?8~i@PMqP;vR#b`~sI@t0yIb-AojxtA$k zuf@iRy;|`%0Jl@f-1*yYI~m_d;nt1KjTv?uuEx4tnxvAa{NNR!82-dt?9lMQ!Myh@ zU;ZSeCwBPa#kV@C!mv#(ij!<3Y&h4Y#S8yOuH7p9BV$C|eU`Cbw; zMa6XAMhI>ov9pm(aZzQWn6@e=`tUcZO7pFs)xWWGC%3vSoypw7@>UdE5zXGh>r5Ll z6Mf7Zskag}=)x-xYfbv=MZ;s4*8L z$+G{O*ZnAv=4&<+ebXGp!#jERiWeLe!~3zXpd%;aHg0rEbH~!~G_!*x)%6F5M+F6j z%hy!+iWTZDnS?lj@dC$A;H90x%HN6p^yz`2oN^K?m z)Y%b?M7;1Q+>?eu!ldF0eJF}&29|X)`))0qP3q6mC)>F_#o}#soNll-^fm!c!*;;F8K8mInFwv^Uar=UNcGWm2I0ky}eZmCkR^PiG%+9 z_}IklhgI7Xbw>Axi^Tf{?%PO>A%`CJoopOgAM(v(oBv>4q%I~f+)UH-+Su(0A8YWK zD1KB-ovnh=(!*cfn9dmB%mDS^H z$TYvEw+y!qKMxVt7s@8aVD;kNBy|R>7wc^9uY^tN1X-8KECy_zlv8tGvan1&nFV>^ zut0ryU{JU&AQW5a!=qw`@Zg@BM=b+0J9Hg6WczRKm zp39-mJf1t2!t%goG?&w^R&46gDp`()O|5(2Z65%~%3kF~wJ}a+$vnF{)JCGiJTLW3 z^iJ<{;Oo+Xy`p}^2N~^_A`XpZb+y!Y-TmIzG^@O?H#PL!*z&zhI=Mm1viE9P&^mgN zRl?b@W|1qdfzhoH}A{RMDH7UFL<9X zU6NVy!1K=}?`xoE-nVwS>U}j$`>H^59-!Odff=|^K?CK zEfR!@^l7Gx_tnT*?^}yi^}ey@ThIE@^J0{;oD%gq=wGE79-s8)+#fvFDXY*_9QIqmoHYE9r?!`STg+&)z$T zpOXs%&Fh3Trbf#^Zn@OYrD5M#+l^_=l7{%%nyf%q=Fr41=g!N*d2jWPm*w-)>R<1J z<8fNq=)N>gZ1utMxT6pH##33(UfSInN!NAd=#cHVkThTAC-Hbo8iVym8h&)g@4#yOEYJREmGujDmQSWTTZ-F^`{pmH z+VA$bGGE;B!HV7IgX35pxx4L4YuGu`H@tLhRlo;_+0HW0-uwJo$p;67^FFwdR7KWv z%JxBu`=IZC?t`9H)(7i3(g*ALiOh3-H#QYx#Yahk!^~d~HcwJcS4?&qnj4rJ8>DvW znAB!+_2Iok_%rFW<|;{U;c3~OeKkA4OJoIl;9k33vS!RL%^jR2(O0hib~≺Y_4S ztt)#)GM`Eu91|F#7gx~oSDh+qbs=_Zd%?0&(4i9SgiPu{S!JHg!!|j;o3Ar<$Z_I( zcTH*zS#?PqvbTA5GO6ukE1Q3R=U^U>QR0hy0ioeh!vmtC<#&i5$UG(G#WtV2=1{u6ZBmcB>P#l}KUv-+D)MFeT@x=D)XF*cqnBCy%d&aRA2oL9c9y4KllqRV zsFyIcxU^bcBz?q_9sZfjgD<_P_*&-Kyd~q%!gd`v@x$Vae&eM<(huCpq-;{Z@!6dB zk{#Oo6=SD$Zh06snw!XOQDc3=wXZO%nyaVTtzR@Tsej4dY);Z?4ikUk_yxcG^CDi+ zU)HVf<$RFWdqoGI^@=7hG*+0@-EtoEJ+I39f+f%ApzqS)V|~(eX^69myF6A|R7~n4 zpY_UyK08)@D80g!H?WDfN@n_Oi*=CYcFC=+Q?Pm1aH;cH)m-ik78R3PP}Z$4twFzV z7-M{AwGrd9J$RN6`bmP!bIL}YqEg#?`)($m^`s3VOB1(cP3qF`&26^rT%PAGDVWr4GKc2ho7?4(-;SmJc8z&k-=TXaPROJ#@!7E~ zo6Nc95g_Y!OX5OXHfS8G$9`ib@oveBYw#(U~) zBDb#S?AB?vha!yT4F`=ycG60&9Eq?^#iVYRW4h)q*fmbqI~?>dntv_nZ2jq|HFOueqX0dQ%F@+TukAVD}e;=Y4IG`pJ#zrJ3G(iumG-R_`lXpnu_O zF5k!32GAzHR>OsSt(&HokMTY;r*8K(AKve4i-60%=EFsNEyEv6A9iK`*Y-D%0a8!% z&4d^2Tpg1x@5(Aa(M<8R=^oJ|{D5ev4+ebDYGyXmjAo zm1)>UJSFF|o=c~7FDa86FMFqZdd8GwajMLsxe}di&1sx=a^o=AMA=;CA7?sC$$GEJ z3aRB@RhZN%QqP>hB%H&hf!#|XMU}lzR(28><=DMOjMd4TT{25&Ft<<=C9zX}wZ%G` zB6l^Z2OWIR`%0Egmdt#>(y7lz#YD)vjoP~Hd@fx_&Fmqgd&r1$#DY2`-cB>shI zyw{hnL<&1YIWJjXM0x#i87yncdl%0+z1~Z2$yRoEnedC(d&g~A_pWR*I^4C`R~F8d zrM2DtX;EJ9k$D}?_o%t}F>1bWCc3*Hm3;nUh!ePNb2qwbpvs zLEL}+GgWH(jAQCvy*vE*qDh(`>Fh=ejbCus{{F-0ep_yruif3(43j1F884V4Gwgm* zm&?BGzUB#;W{Sqs`BK^QQ&C=D>+%2jT81zBT5sAZYdFPI>?<1Jipsw0`A$?))|mUF z$RRmMd%g^x$})I9Cx5zmMABik`s!E5BV-Rxaffl=Z?eiH-Pg?FHB-;WzP7G@-`7U+ zFH<}&1$oWby5U7T*DIQh9{8GbO!S(8V58UMq_VFKNf*3k{g7Yo8@fLu{qUka-2Ehn z%Yo5no^UUDO*=R8wW=%QHKWUyUNfmi$eg^w73*kU^P6A1#%~N>las4nGYpmYnmSqR zHNE<<*W@INo1NX^atBx6ySeio%pnPrdR6Ap^BW$Sy(TBWdrhyZ?=`-h!)sdSuGi$` z4X??`k6x3L?lLDXo*Bq1Pa)WT_|9^W-|p3*%}?u z;5DP^CoijYK1!1&Z5sS@dzn`LWo60joP6pvIXUGuTS*1IW{A^yP3t`Jnw$*tnt^4r z*Z4^_uW6kTUeh|&y{1micuk$ukahAhzPnyZ?q4|kG{W|Rva~NT`LanQ9~c)HV7)uE zrq?({IF<)ZLq3|Ov>7**vY|1xsmLhty+ zYgWZ~Ut&|ZP!ab$oBR&XCcjCJ4aruN(a9|y)~VQ-%&j0+Nt1fov*U9E&-TAJy=G8e z<28eFC(nAs@1E_7g``J#XhOK`+5V70ZZLYN^qW2FdM&)>i9gP>Zg4>MLC?R*{6|)V z2WH0aUt$}$wm5y~CFUU63N@)6Wb&T(g3moWDEIU1u(a?cmfkf-^nZytaKRBHWb&SO z#6h0*gms=B5We=T8x-)Gx1WPO>jp)=W?*jUH9d2yXS>E;XC7fa(H9gLtMiK0jHgW(~iZwf#rbtK%Q85Au(uXvF$Q#zzF{V&o;qePqRJmWZ!8ariL9HMzP> zh2)J+9#m}aQ!%Ok$V3a;yhsQb9upWHt&5=+NsZi?FZ8xM&&hR=_+H9U(q)plP0HcE zPVEv~+t=&|CUviD81s!KcA2s&*j*SdZyR^(H}wuD?cMtFtId^o#@f!igk3%@{ll2T z8y!>pODJ~~?aunT^Wz24I>ST<(~IxLkZ-zGNXsp|Zq;a{`Py=~+TPJQQ==1U{zx+k zf3+RW+^Jy4J0$A6;d^$YnOpv6-FG#*lc3#|lWrwwy>;8IUTJd&yjvNi5yt#B*4W66 zI&~Z!T^;3&P25N%@pmgsYHK;WnosfD4U#-^+l)~rb(XVbhSf>Uqi}Kuwj4UTN&QIL z*PO*UKMsA)q>h#oi4z?Me>bTg%XFNS+qQ3|Lccbt{xZ#E-cE#D2QbaqJ#j6Y)Wg!W zlSPP~bDGrq&bFBoCt>-Cnw^7KO*I1S(c_HnLctb<~@`8m$P=Y*1mP}a@k|j$cM>P@NA>` zGJ3nhTXSbWe!HB*!pak&B%*+j`y zFO}Ca>$q(FC)p{S3>o$fmn!wOM>eYYs_7&eEAdq2>WpYo=g1^ndR1&vXE+;BtSx9W z3%Z__>(aK9tk{0s;a4f{>IbZnTi)=9V)x+SFrFGU+d)ImI>Kl!Pc<|grd*d(vJ98n z%Xf{G>^p#~`EyuC7?XT3PSJ%*nh$dtdAILkt|n#oVCAZ}*sQ)aAL2A}muSq?9Ah;U z&Ck)PFlHDvpWijowC$m;R=@qTjH@+ivqE##+r&U(_eASzp==kSE@#iOK5@D3Z0Dy2 zT8|VO^__T(HmRx{do?$Ltb?ijB4@X=5m+Yd_)Fj~WJ2aIlG)88tfQ5`&ty_A&XVpN zBwFj*>fUC|b}wls(RP?7bh82u<+NI;w}QdFtGc`0sEAIlbY@>pb9QJB>3Qo5)dc`%a4`s+pn z>!K+iR2~=W+ob+1t(8uC9J4&FE|rbhK13H073)7-AMIZ=ATCT7Ac~?7j`golza{?H zZdIXHjbVW?;%|%)i~~PJyr3AYj|+ZCafkGW#@1q|pjn$zz5Dxx zL5e;#@}Eh`@;Ga9wObU}T7>1<|qmVq)VGj76Cpt_zHbwCQBb%+1Wf z@%j)Q%bV2N(r#-P>Rvx=WI&)uG9XS&g|X54a9vD*J~A#QDxjWh0+ZTB_V!ks7J7T_ zfQYCNofvJBaf!r@Vr=cc70uo=UFNE-)n2Ut@y0PGFh(!@%>9hnj6iM}(#+c#*>}9t z?;>UH-b}_n96c_eMt!TB2rnHet9xWX%^K$Znu<2-SRAmIZ0dH&WH@mT3J46>jfm96 zQGW`kU00Y?qs6e&_6039kcLcZft2TM#NePP@e-Z$R=0LQO&;=6P)a*XbsD6WrMh)e z%Tk?&(vnGCB)zYBGEIP)Aw;K(j?jzYP`qsq*6GEgpgt;~RxNX`Qf|WRTgH@|u(*86 zP1Lhg$|WCJvi$8M`TSYtvtKe!rZHmBMp{6uZg7MyGAH2vF3y%F zjrzU#Gd`hvLS=OmxsVz|ZmIUAMo}+PEvPLxP&k;$ywywvGj)rpnoRx5#!j-aM@)@n z>M>LIS)m>)^k8Z)^YSw_nH64Vk(L~M&A}|@&11=199e~_GR#}RR2T=j=p~(cno~H# zL2c&M;UFK29A&B)+x(8Hg>3UjjvU32k7Wj#I?KTy9C?YUgG~L#dMi2d9}em|Z6)aMh zd7U`2D+doa7{?;5Ie42Rw{g&)gTl=FgsHcfy2in7j%>#%%x0=M^KNitW)A-0$OH~< zan2|!FUc#tX`3WNgVkaQ@6Om$FP-unU|Y` zw>X%=L3JdH0xCpQ+W%i(u+6rlOc?%)#Fr z6l9)(gFiTfZ!&d|scB3N;uL~7$j<6Jm{*M>^KfKNuJYfQw}*p!%$vv5hfJN|6uL6C ziG%uVtPoo%$&rgWax*KWXKEP-%Q?uzK^0cm!jkWBdVg{dz`UExtH#s;4nC1QwvwF{ zIx=;egX1i+i`84P$R4KFG4(S`?&HWEOnt+8Z8#{-k;Pb{JX1HAy2&DYIdU{py_uJf zspD*VEK~QHH-V|b95i5cm3dn@vL^?>a&U#MJZF)ytT2v)oh)*lMGPFdpCeZ>)sXeR z=O8;rzQ@%295m%%FzeOfK+i#Q=H+6&c^vta)BBBsi7aw~d6zht#F5Wf?OTFkg2XhNT?&5$oxg_cl}8 zImpE#eV7`!M|M0Gt4{3rY|sco~iLnt>+*uM{Z^H zjvV=vsYcA}!jWGwb(N_yEMj6xVO|JF-sZ@vOxA5(d_>~lD>0PA(;pb|%(=Q31b zsyOpLXR0hykxV_|pc$Kf#=Ip=?PBV0rs}ffK#ttTDdgbDb}aIMBRezImU(Gd;R#3P z=g2D@nURCm9CT;iFs8OJRhIQ;GF5_u6)bX;(;LhpJDInNdAYfk?lKk4B7rP2o+JO| zpa=({%qz%x|8eABoWgNd|BpqQFjbC4F0;rx9Jz=^o^kLs2j6heOWI_~{!9(xpaVxX zVaeTWGcQy5IC#V&4O!tsj-1Jn9hfS})E7*}u;eU`OyHm>2bq|cg-hFm6{d4=g@dge zY~x@FD`ex~BwMM>K`$05%Rz1y8N$5POx0v+CgijxlDb)l*&{dmi(Nl zHq2|s!BCF;g+;n?WHXM;z(Gc?$n;FL;vk-b60BE_gD6%HW-2F(+~UYzIJnJ`eVK}4 z$-JDx5vCrpND+=a&5`{$QenLWrb=_rh$Gjt$U%1wdUH^K71FUfe>g$i#F1S&7{HQKm@39pTUN*-GswXx z4ob3QDGvCmZ1n)^eZrCDIrx+VzLHoi$m%+de8j;p*4xayY8*L&BdarYhN&7%rRAU| z2kAH%!9gYtuCPKY4wi5vUxBAq<%IY?IF&DBQ~6Rfl`kh#H?iJn)@#5DZ*t@sj_kw% zU!kNHV%}wz4hAuA9V>jz zk^G~5bujaaGOr=?wlcMsdFMH@4@dHkgyqk6)ln?6mwByOau!n`aWI-iK4!|FgTox~ zkA2kKEOLT_l^pOdSpLu4RmZn+H0`uzh#kfzQJO;1Hff-kHf_U68-}Kw%CcKqJYRy*)hc-FK1&5 zHh5iJdSzL9$yj==mvt=%8NrctVq)l7aS8{4tpAM7`i$=_wa6WF$dZSS*jGe7Vl8yB+U zLJk>Y+ak90WaAQcoW&1}W80@}`;3hT**J$EIDmsZ$&P2TaVtB%#zA-z$a~nmZ@LiEyx*7Aq_bE>EsJfyV#QtXpW*tqBy!Itd6JA`4w|3oVd^hQ~S# zZo9$l7$6K-SylK$2gE`r&BB0_t>~@8;DO%1btM8n1%xk33mtq5EtrM&%X$xg=rLL7 zTw3|CqDya~C9)nzxUN7?13iO3^lU7&Mb^(izv8bi{{FzVS7wf@6j9-deq2>lcb z9TMvfAavO*bdIepfj$DlmzISdh1CaE^cbv3`1=ahuknYE2kU$Mp{Hu03uVp5-!NF; z!n5z<53RqoCp@--2O4#2TObT1S{AJ1VV#7(IIMGl@PTU$KoGRmcB5>q3$zz}gZM*h zYT-k}!e@qsVLS^B=84U{X!0nuBua}t(<|T>+ovV0TtV*%og)yTHId}u_AIUsHwLjf zJ3TXW4b2QS=T}EUjVn)CnVBM5vC^I*B4am_myC}|FfzuoQN+f{>~{;>LTvkiu>_%s_qHZVm*el={{pC8zmZ6nxtnT<=>NU%}Ow41W=FhBPk+n@_5PP~R> zEN92h+3{Mo-O9FCILPg6dyD->v*Vj={K$THvvDH_*_{1$V#nER{Km$i90YF~vG2@| z53{ic8+hHx?{v1!XB%F6a(s#%r!vEtY+Hx@zGcT^HlQHrft750$Hq=E(kIM@$h>oR6~YUJmjV2MMs_a<*N?##!vRJ{y=KqQ}2szYW-NLpG+d z<9Temfo+%~q6Y#@^pkBgmn@AZszdQqtdSJj(B=YIlPhPgUC>-a%eGRD;pEDl3R6jY z@`xUOfnyxPag1c!25j4yjXE~YV*`^%^xPF}YhnW$oE)3kDBxJopphdQOES=0lJOPW zpzX35VdFD4da)l`Tk^x?5gBMF$iU~;_pq@gM}}61 z9MRa4aWy+)@`!ACY`dO~8`vmhV;Dbx$s-E6AM?G&#$xuv9+B;KwmrxpF?mFekF)J^er_@w>#$>geqcSeeap7*ILNc? zxPooFuwQq!Ve*KgK7?(*u-_4E>%+!Y{J6z_53u7xHXdaIlSdTGe;nixe&A3xp5P#u zJfa}Su;UBtcr)9!=I5?sqnsTNVB3LgjANsgpWBR$2pc=FUnM_xE<0lKi1;vhM8=UE zvu!5ZFnL6@8>M4mzoXbM z$&Nd);{j}Z#Ky54Qh*zp0j-O0AQ*l6H5 zXRxg=2SMMO9^Z>?S8@Gh z>^GAgFJ;@8Y#Yo$PGnmV`&F~!5A3)R+kRx*^K8T95eaxUJND$~X0Wj#J7V&Pg5aZw zjCI)W0=BKowiw&~W@CGf`d{|DhHX!>?K8G*&LQ_=M@$}3)ScOJDhI*0B{|Mu+Z6We z#1H(4%3wA7E10Q+x+&uPcV%r03TbG|ZnQa5uxRHZk@`#?R-r~pq;2_(wZ3qX!m^`95yRof18-H?;t@(k&*zsg`oX)mhY`chU z2@ZJ*JFaA-9~*`2hsh%%TEGvSz{VGBJjBMsY+S<+l(F#+$1;?SMI2;ZHo9<-CG2+# z+eWc%A2vc9GRd~h*@&_uCXYy@f7tdIKfVha$FuPi8ym8*KZh(~<8?MLc|@@UIY<>7 zw=vN)HZXZaLB_D(J8YcDe&acoRczePjvuq_A`ZDLJ8sLi-t33TBZ~7e_QT{6**<5# zzHFSvev8?_*bN2wkzh;8(1HBUVdEEe+>wo)*!Z3O2C!`#etbC_AF_dQ7>Xsu zA&+C*k?eOP8^^NoJo^=M$T!${nH|g6HibiuWXEmT@f@}t%r=W{T{+|hY@5t}Q`y*u z9UtK!bJ%fvcEku2iHpf2GV<6qk&P4^1NgZiY{dET5Zfv^$oK5{2pd1J<8Ew=b4W}c z5yR_j`<;Ve@`xPYW5?auv522r$+iF+W7!ddS@ghhY=qhGH8wDGM}Bo|JDZIg__?>) zb{-qu`0+p3_?R7^U|TuZ!8S}Dk!=}2P|8MUHcsQ`4rJTK{6G~u-pP)? zv2i3Dcd;>)gJANAqQ-C+8F#baQjP_aN8~t`ZG+kGVt%fkjTP+o2>Ttw1}2Z_x%Jp~ zHHUnajS_y~OE!wxc#cDE$w4}^<4^Pf^JvrpD zZ0paqDf~c5T0l1TWn&BaXmK9U;~p!6r>kF9%jcs*=XYD?qk1A z*l`&<4rkl@Y#Yh8wb&TN#@cKwW22CbFZh9pY+S>Rm^>mOHew=79+3@`M`U2~hzv{~ zk#P?{_Z~mD6+bYS9dBjFo!G$S5k1hG{XXZAm^>oK`#8vWc5Gw=lSkzDHQTOZV?Q>g zvvC1OwmUz5A=@@(qn?eu+3$9K;4*f^%lDQr8HjTIc^G`4NZ#;a^#@`xhq!a?3<<0dvRc|?A{bDW>>1DHG_$3E=1 z13O~!h#c?d=bmA|v)MR_9lv4YQ8q00dx~urvF$9j-NteL$~H_MQPgwUF~uP-XJZRC zFnL5l{^B6>*m#hQYdOdWj;s?KYqR6y9Aq>*V)6)SVB=^GlFxo)*ucCG1*x{5%QmdE z{aS5?mDZ+Vr8AjkJB|bMLlnnMj{jZuJArLW*!DgfH}eA@vT-3hF659gwk={?Pc|-L z$65TqIJSMtw$Ipjkd1Trfde?mlk9jV8@ICKYa9ggLnQ9oY#YRWm>(j?`E1+Y_DeMv zHbxq0V>rgx?2RGK6*OmHpY|{!M%%EHE1L`K5HvL~>|lE&t|Sp$nvADt)8xv!+nS3* zb#(YaA{<+}C$&lgFq5z#ybLo5%{{BbHNjN0vD0GOd>ma1TANg`Z> zFsbIE#$YYHT18J)*)ti|3B<&Suudjecbjzz86@{PX4Ty4vVrFcXs#dukYib%2(jtB6{`4^S+MKXOC(0kNVPXBvK0Zx{SzF$Kk zj&n>p*_VfsF!37XM?l%m`s=S64KLXgv(AiZt;!g5CZu4E6%8PT1Nf>~{4 zEEuSJCBBz)puqhKbW^g9l2hK#OnKJYI7lf9CS(PjP>I(emF0EZM9KdSwOImxMG)Gc zX}Om+*jh=C8EApNE9hgiL%WIIM|WMAqLkneIRi=?(N~(#swatW-+SBZqtl(RpuS@HYjck!r76d7)B@qvdz9 zuUR9qsmJS-l58i}&WhFa)$Uf(Pmt+LR*$J*#}{ETAWNZG{h5hO;oxuFk8iON?EWnP>`jfwN*wbnDjd;>9HbFpvO=_ z)KCYDl%!+ivag85vNpigO8U)Y`U1P^8HwIU$%c|*>EfzE#E zYQ#BKDNcX6eJF^~;E~x3pP^*EQqBbX>y!?-i+XhgFIDniC^rP%@p)1gOx6XfqMjd! zHz{SfH;0_BapnB|O4fbloG-IKgE}p)ia3U)o>6lDCFgoMT?H6gk{+cql)#%x^6lh= z56HAU^aifB?fFzG%?GkHrBf0#z)eeHmzeF&PbPJ{$I$I@>z0v!8oGW_E}d?R_~ybu z7SRd=X8-Ij5|u{J|6$`lHrAp*Cy87vXBU$%DGZ9y=i%10evQ#nbMsiXgh@N zm-%Hm@k5Du_zdb0jtvl6bYMMkv^CABN0`uv- z%WzF98W=xkx*6NqTj8_`WjnxKb+H;z1XEatQ`M+6hE!>G>Pft0voolQ_ zjcPp>+fnF=cn>nyVC=+tUc_1dq(pZf|_b~Mh=BPd0D6~ z7^`hjf~E$%kOa`E<{DXm$_eSy`2!Q|)A^0ccb$^|uGJR4J*`|k6<1XR6Xt7ox01M0 zuJzq#1)CzZTNqxRt?mc#+>AEzI^t`oB|B|0UPE@_FGXsod(oBI+d?+PodoGTCij z&(=0C6M7A{dgF*o)9PW%tWf#7%}-I6gT{>l6T)?*hH1H!QThv%MNqTaBCy+?@|iON zlb1D6<3q=c8{|PH`TjY)|BLE^je+WTIEn9}!1(HFQ~$-3B5W+Dzw=a7v%rExFywpz z_EWNtkl6z>X?#91oZBE<1=wFhS-y>rQVR64EKp}^{-6$H)j{l|ZQBDrRmpyd%-+}8 z7`J>Mnvz_klq4ZbQrVIRk$v6WlIxZH)pC!hduz)`H8XuHj!_!-C}r4GmLYG-__+q> zlS7E#;YY)&M8SJkq*`JeBoIfF$GzT9(GD+9iNZDa>6)dTV(`w6TJl^`9)>mYwv9NF0_>PSq*!amd(gS3_kc9@w)|U&RI6`X*>1ri2EArMgJ7a!{m&^HI z7Orn-q{UpW6$4$A+@H(YU0`z?Sv^3>daaz|(i&RMS(U1xm9+--MoQ{ifYiVXSUej0~TxO6@Qj*^;Cp$k8j+$$y=PF6x%B7f7QJRHv)$6^K z)T8ChE~c)1lGX>BFY^*5@tZPn$;1Y)`n62S{G(jNWpujN5>g|sl0IC?eYebAK8q$6 z=yTd$0B6+gla=H*%GInG?^HuHWp`Q%U@=Oq`GPlSWP#4bk<%_K-;ngY>~sYgVluO4>eh z0hfmA8)zwiG8Q)%FAi2xpDw4kWI>}>Lp4IlJYP<9fqSBD8zt*kGHcfR+mkVhH-%*H5aBfIaq^#F zW!7T)basEueXJy&C1-b$*XQ~VO5RK51n1W~dz=3%NgHL-V(NI&%1uXCq-;H1=j%q-&}kby>R(Ykg>@3`X8@A0Hzg9{8t6a`qTfTt;_KIkF>x`Oqmr{Z* zvIG^AmectswB#vLk1bLL{o_jd`8m)}P9)-qfc=^|Q~!#R{v?^c7rM)ILUcSuiw|Or zVOnm2dSK+jhe|P~$u+Rsl*qEclwgEL>1%mW`dCARZyvd-E!`iPN%t%u)S5#$n~B|>WgKKTRA<}5T$9Ez`_Q) zWWmwYuB+t#PtN|5ox_PLTJ_Utt~lLP$&5qc1#REe)yNxpzpYY&N9D9vwCdgku05I4 zmGt+@wXW;5aI^u7+~YbInso$sLe0ztsN5ac6vk zl6twE>{43c9}6r9CLQ~sRw${j%7J=*xY6EPu+Uu2ag37sEIGqVCWXTdfk|{ojq#qH zu4Ge(2!+_S=2&#Gfs%H(T;Ix}UG1YVot18klKcgkyl7Im$#v}C4oco3a$Z-a z$Lj*=_S9(7W-9qd%IPkilZe+~k+wm+o050~IpOwRnU+?CzZ4A-YLy~vEQ?T@-k|KP zZjDOnI+?oC{zk>-ERUogtmHpW<}aab0@V?hayeefjN7FI6`S8kwaqB$vrW=9HadNU zoDIdnMD5Z#x+>BT=sHs%>teFg*z~1rT+YUoY+P*{>9Of+$wFh(O@(4E6wy&eb-~tS zfq6Uh-Sl|d0cpRyd&+I=02&sh-V{zb#Yu~_9tVfp+4kzNxpwslr8Ld5GzIRwe^tp^ zAgjFmMBK4JT;@Hf%vb-84N(ely(~mwBHR!Tnxo+(m9+24 zg(35_gsJ zytF=8PkZ}Z%5A)o8dow4?|KRJIi33+G?%ZNg>UR)tB zlzopN_ENWWvAnJydO<0~KsnO~(ZyoXNQhSMq_@4=7a^hXqjT)2avGWPu2P<><-*9X ziAK!M^_NQ0`{cK<2n$)9v%SBWylZTDI#14o3hH}O2gttuBjxA`lnyhyf&Y=1G)TP` zIg^pcMgbc|wvisBE+GpIQeQ9AcWphl$8!mPZ;GhxaJ63vZjdGD(mEMRE6T9k#Hfbr zDFrB$1*o(SG@>K#=|-@mlYf+wf0+DQ=8sUhAoLQqu1y zxBmqT>Fe6mH@hfVUz1s}w5N$?Mx1YdSV_HDF5^m^-Ar}MGs6=~{_o`S&Z~Efm>sC( z+(b@uVVK&KlsRV9tfYNOrY)jD(WG;2_?b%H(`DYylWnH;vQ&{uz8BETc9Q}P!kQ-noaUhr4Y}{nV#1aG*=~UuH<}NPI&qBSOj|&-HSda zD9JCE-{QgvvP|2V*CKg!_x4b-uOsJpUb4~D(GewQfBDTSPlkhuP#s=s z$7D*Al6*Zm!L1*4p?J!9WD7XBGcl$$x~L z_B`jjaKXm9E?FO$v&Z-*+GUEH$O3fLj@PYF-IPLXC99Vry5*uO=oqaSq~x{a0xwDr z85os(6D98ha;6u}x34rZEBMw*-i0!6p0nwgqU3xu2hQrSITbM9SNAv{onlR;(QAyS~35 z7eWEmbw_=Bunm2CSZ|iIqmXJltv4}B;W;Jk*7D2UwVKwk)!{Tdn&YFv@6qOG*xO18 zu9GF`RfS_x=zzHp-KPXO>So%dtdVrkviq)if?M-wV z_CT3_NE4kBf%EvW3naNDyp;Zz*VAB6A`-&-Rj6O1LRKne8Yj!t2eq)%;#%&@l4vv^ zpKORH&GG7Wl!DaCY9P<4iiasVHjhN79mm*PO4fhm zHoqVebKXR1@9xX2;=CCGnSXHs@2N zHcyU!NlDr)XL8q;ZzJ#K@qMKP$H@}pQL>FP{#wa-g`CwTeCD&WcKxAbUMQ!wDA`mE z&1IyxaJa6AcDK2=FQQ%-Xkzg)?9)G=(oK*{}q+%YJyzk`gI zE2w1MNPekXYdU>mn772nl;l^)C7l;@Y>eDb$$6Aq#J$oRTI#|<>`C<;X*o(MMpDlA z0(TudRmr+T4jE1=+^As}DLD_2Im>8_i*gxzBTeq>P3|=|iu{o*Q;B`#11*a(drA+P z5?QyCod%NcWaDl&?q%bC+ei;2KS&lDNIq7se%&H8yhB&v+9ORKcOgDcF|{32_AA0m za@8x2Br)vh=oP=CB+i#}y%@P3jW~9YeW4^iLC*C4_C9#Nyn#-FwFgu})WFuqtIZ*m zUzM_4D(8L|+Qk{BZ+u#6+G%l>^H$2d5xU}kQO=C+t%m|&%FrVdx+rBBAmTi=zU(1JSiJ9(~>Ju2q`zXGetfxVP6%#rIreuQ>W7=^z?N&11D@FLs- zQ0-VXx=hJ?gk0Rkk;ZU+l9m!02|ip&yqlcM1@5z@PFAv>DzjqNHdNPX@sg!jWpAYU zd?ot=xsXesT-|#08YS~mnYnk{wyiphvxevj$GG|Vey387L2~~0j-_ZU+s*>?wy2@4 z57);NW@qm)r5vxypL7-I@YtO_cQt%jNq?G#Yb z1MFb|x-F!MG^Sf+S1Bb}EK5)d2|T{e<4WqEW$M1^cfd|}S{-=Q!~K<##AJ=#*?tuo zacyjM#OypAtz^Gnu7mxOsRrDdWA_~Fi#%GU#m%1FX-ZLg%cAsZ{Y-8-6T#iByI3j4 zZ*t8Tkggdy44~YglxB{cDP8Q^kxf(Is}$gGS%8)=Xp~8oA(W?-QtTraN^d(GgqQVo zr5xkrmzCSC?47HRl_DH17f4GFFOs$K{6Q(ifpR`n*yZ6ps`syw{yLeyur^4WdrW0n zHqz)puCW33o#i6w)>;4~`rAf&qaH{71;??n2Aicz%OEaa?yX%~J~Siktxzbg)9afm(5oV}BPb>4(a1KnV@~VC#d=i zu2m9$D;G~mEEuZ~)A|x~0Q@c`^I3Am>>Et-ssFA{zL5uyD~k4;c||GA z>vFdA45bnY+H`;!N&DJHdLbIk&cugGDV~sDhvI!wwEWq5DaN--;tIJwmU8FGwL;-9 zCH1>N{Tib(Oq-%XO>7 ze%)MSi<>H$?~^N6NnOw$R&$&jxUG`;HaV{gBelW$`k+z7)0MOj$O+yU1KilXh7+UH zde+|K#`j948{BGlr*LPbYOY)KS+iPS?+y^O@zNb=|x3V$z8_S+h(odG@yEX=wP<;T zmyFS=xm9u&qz3PfO5PoF$nqxlRXvN8wExJ-Evw>X?yg!^ zt>hk?LvhFQF~8O|*-}u}zhi_ zjpQU3MZ?QnhX{YFZ!#5yaP z&zAGJb2Qyibyw$pO7@=eJ6v2JZwkA4i3j`wmgk#^ltN(e_%}d5Ftf%`v4Dl-z&I+;p2lf=-*K@fG{VN~569 zQPOWOHyI^#QCcjXibf*_^OZ{Gf9107937RdD{`BX{Teylg*dBojQL(YY|^f=f#oOV z%*cB9{%fX8*3)FCq2*`Uc%F?H*?8GD(nHIyl7)trKa;Z}A6a3P{zvp|+mU3yq?^mt zzBE`Jq*u;$N%Qwg>b>N=?n_g9)e(Ey9POzO*}!A5^*>5U9+sQ7iW&AXhk;OZ4A{TRh6Wxn#WbsZ)(oXVAmOqQOSsA3eC`td8Gq?+#bBNPX z?4{v&%MAg-N&$MvSxp;Z(Sd1EFa~`>N&khM>0P18N7J%+@1r#jR7y}FOOQX)Ida~t zB%LIa7Nu{GF|zwiCGR}Bv`gmOw{ST%=w(XgCOO4<^BptLH!C?GkW;&1>qcWAry)F` zlxto2r7xUhuTwAz|5+vN$#Qm7q;(B{DVl@WZz<^q$n@nigE5+mrilyZ2>NGA@*Cyq z*C)ITQ#GV%mqr@tz?>F+XEx+ND+PH&ZpeE<;k7w&znU&oa^8ry))u;sRIOYE%jr}; zTCC;KiL6kPKOxtId{;x)UrBniTm$l~pgCPKRLR*ThhawQHe!a0oK%11beP!B`sp$_?Q=cBHWUk4fxF_>&Yh0>h6!(cr?q2fi zT|6-ncDH8dDvAHdA-g998-oGtYcZ01m6G`rx%n!eyo~0-=_p6qa&5j|w=2otl9h|s zWxbCmY5$O`nEeqv%KS2WQAxY4oLXw4>#IEV$a_liA#x3~_4uf)di*P;1fR<_tzZ_d z<}%gE?@HGF$je=>NU2~@D9u3vVET-VBZkkO-G)=f$NuS|}X<>M7;9|A`7&9&qF}WZr(@&{oj2N)$J&tWG}=6jjg8qD&c>#;ksfUxMHU)u zzB~us^hG)b@AmX~+W}|4yo=;_up3>YgZmimiBmeynl5ZJM3|uz;S>3F=u>YmWTnI0 zG4VnBEMsBX!R%b{wyRQ*J#xs4Nb4o>G**flQUyV|Py=4)KG5g~xgrt&qx?BjE z#nc`NKS;^Htz7?0mL%v*Pgj;7r(}LgZUZpSW460zDM`D@$t_z_hfTY*aUp1)sB*cI zySvPtpKPo#_1i5<(m&<;Rbs#1*eGDAmj{*1Tg$Ih1zl~776+TQofk$tr=&kj&h5^$ zGc>e>sNI(oysczESRXj{7 z!b7qMmB}a-J~kUJrL|d(J3mfR@;@x|yY4AGPsw?W{K}Q4@7Z$d_p6oEWioZ|){B$v z8(v#4RyW@KJCt&~lY`nzXMuM^_oz~Up|SwoTE9|b*mvow`Y$O(SR_|H+6~q~Gag3P zzptcSSElV+m52wcLw483KHAUxM*mtVK^M6a_N*hdj~Rz}q8dhh9HX;FKK!ASVu@S> z%5e4+U;1Kxu@!Eu>)_oY=RjBciaWdIqa$W$hS?k&=&qDtl$`oJr}7CXIrot{GhJ%O zqR`<=?vPyT%j#0J3fJRBAFJd}%IT)-%cH4!YGB>FKc_0$H<#JF(z%ZDP{bYtv%eh8 zPq+n238He|+t;PKF0%?MiTla@%L;oJCcf3_9xuoETTDs+kDTsaG&E1EKkc!Ca4mEk z={m<()qbWJYixA-FEp;kW7E6H ztohZE8uMtyv+3Ek1Jiy7=6&wejZ6z!gg3r)1*7sQY|@Ta~mM=0KYWyUw_I zNJ+cDT;cPYEb|-kc_n9w%vnMw_0oxbw1UCtK)j=5eqCnvdcBh=b0xzUN-=)OVaPe? zJhSarC23HuV01`o!}6r_8tS~Ux;ME>CeGj2x%jnv#2rt+Ai>Hcxb)Pt9#7Op2O8O6F`T`o*Y%~YgUpHCT*y!$ma>*Ccx?|^e)t9C?*860q z;oT3}_=t^9*!avg(!;x7kcEbKQ*uSmr#u*KXM$u=$s+BcaBUOu7liH8wO)Day-oo);usN^P-{wM@NqdY4ou z;te!Y=vaKXT**9A&SlS2VvbPqZX@S&Nw~f$T_GHHtzb@UuoD4FB3UMb7gR3D?{4#}y`bAFPXuH>wct5#mMW1HV4O3v@) zJnq96(`NcabZjl1q#8D>*^Np;9+3sfyjPBjcAt{_2RY-j9Dw$;l6f~d)t)EvyrJZc z%hfv{pPYs!`9w+DO>VF9F?eT?{-`8ByRVY-Jvq0#(nnS>`#07GN(pwC^PHA`1RM4>YS|c*b&ZV>7s>B;K_VPY zZDB|=#gxX{hU_#zJdTa+*%;5pMB7LY5Kkrx4G^!C^Pn(EBUuUa^L9Qx-FArBFKs}k ztymI_B(VX&V~x|^O8T*KUYFuFlw@5Z5;G58uUAsvAy@lSy2Y3d*urKLqpbH;QXeN% zcWu4>1#93@-3$qiR7wz*i@maru6fV4y>O+H|23Jvdp%B_Uy6OMtvf!AJh)IP!(;N| zg^Jb+;68=qIwgIboCO69u7bZ?$$GZTT10CsT@$@eD0y#?U-YtAbvTx)4=0>Mc&{qC z-EBA~KXRb13nr>Ps7tojwP7F2 zIh~($YS3Ov(kJBfmV}qn7=1M2xRhpylDVJ!D$(NXTC--2RFV#qliQ_5S<={9uqGHX z=d#Bs1$af))>x8mzQa2zNzaf|ouAw%VSfEAQj)$Vr?jNCcVMWGY9;eB`9&Jk(iyA@ zC+VHSHQWiBilRP>NAGYSr97pwJgr@{khu>203~(jT&TmLNJ9b_UmK-xtdjaP`TZ`2 zCUvz~XDEpel+#SFn4>3psgm?!`4wv|<3{sEyGco1C1-RVsT8Ad?^kl(Dd%yQswmwl zUmv7h&mQm8GfDw|lLaWH&8^gc)W;*{?*2EG)JMwHbmwTwaSGh0O4hq%*5YKUipCcl zt5tqd5)YNDS2<22gYtB}%bj-6^@%=`8xguL&(U0VR+9FRN3V+L+k*P}=DxgsO5VHW zBBnbDqs!?|1mk7iP|3Sg)?EekE;-h&Zl+}YR4!Utu}f#|QR5tGa$cl6UdcXIPIG?9 z+1Z|@Bpoala7iLuPv@>tcf=^--IdH2%P%nvO;TnXtaVD(dYQGnE*SG}AyP{66>ZB1-_6hGz$Es{BBp&;vjmA$6{flsnD*cSlW&T`=wtmhh(Sejrx9%lJ{!4zL!Pm zgTpJ$Pb#@zmAMPtIsKZFwM2f&Xmd;4?0|iwB>hq*E%rS0`FkaCaSp@{@npnx+Vnq4 z;^*WFT|zB%u-ditvvj=fRoYUnR)rqTb8jVWXE~<}B1zguWW2xYDOrD#S&Qvs>l&iw zsX3#R#It1L&a}ZcPTJBVv$s>S-z&2hN0K!-&fJ`}+et}0PbSW%R>Eu?c2SbD7v2sew@v%rF0@#OV4s|`C zB=0XLI6qP!G+*3jm84VTcPNjJ%Q2M2TT0FnnX|xd5DeDOl&n|Fta;9z=sznt_sxN` zHe_}n*P5W~)C}}fhnL08Pw@&R`5>7bqb;LG8b#Y*$=X@g$#e>jiSb6?qP_$DZ+*ORHsT6LqNTFq8+pCNM>(7Rhd%BWU*C|Tc?KlBSD zNmm~(qNMF5D-HVWbj*1)DM`a}4wusgf86TVX|Ypl9I7P$Qzp-&vv-WbJyFToB)`6S zRGkgZbCsO;$t9ady<~&)DkbM8a^9BHrzTBr&^i6Iw8tR7T}i%7&g6W0Z%sw@h>~=8 z4k>O`RJ3@|Nb!qG^7rKw+YO*O6aJo(b)=l+ZnX_5S{+QobHSz{-EmwMH9vR1GDTQp zqqJ+uqV-GP@mC$L38tdFPn5<2T-Ry-Yl>+7M0Ogu{e_L+*!Y8uzicBtaQhEgXyA5~ zEJ|Lm%6$FGCYrr5znp8!oRzJ5H4#C)rmEwFMzn*#2c`{VO_Dar)GH1`$Dv;o%w8^@NW531> zr4-l51yR;2g`@kntCIUcxg*uzsRL591ITE$Pvrz6FwxoDz;E$t1q)NbIqNqRYrTsTfC(9g0!-MBPx zmk6C9OAA08mGdm62#?DmbZ?B)?aFkNLzwm%cxA)oN*V5vRYaaM>u*tVz9%b${&cl; z$UfIUmBb2|tm%JHDa%&!OWD=FO@>bqrqhL~dKwk+Ii&=1A0eXhV+@8 z+*2|8i$1;Lit$o@r%u)h13GmYcJRs-D~DPq z6Rf+@m|{;Q>DO}FOEE&h@0_9fEhY7JGW9ynY)>Bu?fynxsuX5F zS(qMT4LD3G#B^DR0@MI=I`jgPzV*AL1+`6XcDaF}cRz`i()k64GxLPU6g>uG} z)3VtJ_0ZfE@(v~WrZRc|5M3oqt2aVHy1#jK-NZ+gvee76^D!DW~Pj=tUl*gJ)cIv*(Wn(@Y3)xs?8|lIFUCBa& z<+~P$y}&Gotk+TmZ5KHEW&SE(WcEHpzfnp2wM?A-{Ii3V3c8IXf8{=LdkoIoai#TC4y#TlJx0sD)w8I+^6Qi zJ-?AY@so{MYi9H(9#V3z$f2T*r{Rt!`#@$h-OnqzPm|N_sm$I{@@^{gdYv2kg_8DF znKsKsUB4=sf00#L-u$q+elc%~PH%U~p<-pbX|Riu`|TXKv%Sm%l-xJT+=U*e!)~Oc z{Z}qxk8aAAO4i?HZC$*Gjsa_+Q;7_dD>;a*DSK5|B9 z?~E)_lJ6jAw&$7d%apuDIb?U1n+=uB_ZNy?pezM_vXc23xuCr-06De1(^{SIv(Bb5 zS?heI9B0dNcwLirjgs~xIpaM~>bz6Q`;E-&rL`YZ(mpEFX76ghtR%POBKB6^A1H~R zl2e`a65?-^+!x7-_I|(kwfa*@f0mqduh*(*s;)D3o2r-l>l6DK3HtQ{xRZ8xU z<=T}$A(%AB1LI24zvPx?wxXl#Hx|-}X_3w@7Niw|=CIWZN+}+fD`@{|soGll=A9A@g#!!1xYw7~ z2rLau3P%ed0G4kX$rBL_FLUkK8V&vGsjNrb@@g`5E*_(tRLjE*eMLoJmtf(6r z`7(3noJ5!kDiT|5)^t_Ml`mJ9UJFw6#zcZtI^$#2fyv8)^$oOJ(#W2HN-@UBVg#l) zEe`~ffnY|bB?8l9jfr@5%B@&7Rtof^TxCkBbm(Pvy+T_lsjFpeQZOl8@7M=6S;=~) z%(}^>a8o!M$Iu;>0$r`!6pzwMyLc=Z4aCBYwwh1T@`_p%l~FzBDTUikt{%f$lp0G{ z7mO@P@tXtXUzLhPs{`>EVRL8IVx?q%$n|7|DOnrkZ|l6(iWgOiH&a$S6=R_J=3pf^ z9Rh1=z2!>!cjZdedr^W;R-yXDnc-c3j!?>Rf}9Oyqmd0e#S^he(5SnoD7lx&dC)m~ zyK{k({e79e`zUl2$3wGDYUv*tIdH8~hMVQLx62G#Ax3X!T{uuhE3`sp>vES;fDdH> zDu>wZ%LLkAN4ZdM-k$xqlK(=v5H>cIgwZQnt%i6-DceH%)#%pJH`2F+qn7-o6riUpzyPC* zxXaWD@p!V)yU$!aUDsi~L@t#6lfvN!I%uFe(|SywjYf9roP~x0>8X@umi+#9T`)T^ zZ}OZO<0nq0kKRb5xx1%wJT6+N!`lS3;;DudCZ>v!dJ1Ye`M}AQUaYoon zWCHOTYFcRkkVc87q<0D#@`RM~93WTDE(=@w<$-zOq%%Vrlma{{m(WINR5Qa-=%hn? z%p~ox>Yy`|Z8eCIH!GB)ohge}I5kBFESpW*F-qE7l5;HCH-r14edO8 z()@{bpU2hRxkSnSq5Mr$LbZ@S83UuXGD`bKCG*>Ix=ZJ#BB3R8RgmK#h5MA$gX9wL zIR+|{Mv3Wcjld+jagjcD;^tfw#?;bdSqiB9*#P-LVb9F4@n0UC32j$r(#lPT3q$8N=H8__XI z+PmiNK}ns6g&7H`sH=c>L!R9Z^f8j~2+(+-7lDd^-UB)r;l2X81#Z6sh2T~&kp8}h zTQ{Ila2o{lDA+audIxM<1N{lNDL{w7Z9dRnaN8T`7sOHzv;|_>7ia<8js$uZ;Z_3m zfZK&YMKko z8fYre76=yt8jf%cK&5b70rU;R9RqX*d@ls50lE(8F8JOJREZ~^0QvyvRiN_`ZWYjf z$f56m{=yS~10~^GGMN4fkwd+Jo`mlZpr?UG0tJD_0hJ=$0-zeW1%dWQEHR*s;kF;p z2%w{YUIsc9=n|ldfD%C0164!Pdw@0tdJ^bi#P=G|b8!0z=rBC-E71Dz&0ClLmczFT z(C6?S0CX+fHUhd8Zd(Gqf+r>c-43_8KyM-3UO=Pay9DS>pk+WmBHZCXcLSXabR(WP zA82!gy9Q_{_}&RL8|X2h-+*2QIuuWQ05l2c8=#%x`zO%DKt)67Zx5gzKz$HyFwp66 z8v!&QZrcET1vCxlDflh~nhIH}fX;+l9B3Vc+aKs#_#O>Z40IaM*YLd;*?RQ%CQu)sC5Uf*pm*Um8t5RP?SVQ0 z%>z0dXfe=dLi6RK*s>x z5A-5Z`3%rpxV;JVGTc4|Iv#F60qtExf1QTXUlmYipmN0A59o1(+Yo3I_-+Q&6~5zv zDvIfE7SPiOw>!`?Ky^SrBU}pTT(}(qbQs)D0D2p;oC7o)ZdU@`19ThEmSB4rsCO~_ zy#O>2zV8BE4c{+;?n5lU0p-E1bQt|z57Zmz2B7tT3V}ue4MQy30X=|ccLLfE^6dij z8c-N$F~TK)zC*YJfi{6#Gtf&wX9ArLbeSCv95(}%BbEn%c7)rrKtBMz1@so4_zdVt z#QZbRL_D$9M)da#+$w->hg*N32l4Dspy%PcInd*9n*ek<;+qXL8E6lnb>JHT>W^5O zfYyWCp+Mil?L?sO@Wi=5&%*aApcQbt9cUMXdjzOE++GBF3lh8sbO_wO0{R8veg`@N zZUr0DUmu`uKwBZ^K|mJ5Z36TFe76Q#2s8!gQK0!iUx1?q=s!G>1Udw<90YVI&~ZRd z;EA(2hhKW?@^#H;rkL$Gko6%Iu7V-pex|}2hc*e6%MDr>*3ZND2iADK(7D|2f72k zV}VA)Z7R@AxGezs0FnlQHbQ(cpeqn=KcJ%!?kJ!nd`|`10lpUj9RPGa&__TI0Ue7c zo(FmfPrL(^58p3pby}-4Cn}iI~-^?_?`@OD$w~r3lQ!aprt@}0u6%iV?eJWUtR{f7QP<< zor?Ir0SY7BpFlgqt!PvFdkm-tP$ixi474lUMgScIw{3v-fZH^ngWXnk3-mY8Q$YK`_jRCgh~;CTqv87l(1CFK z7w9^mvXS(+GkgaEJ&$KM209qNTLHZQx5+?9z-=DTD{xy3G!)N9fePTZ9OxOi9Rbvg zCr$x+2)TO!(3=Q%Ezq~{y$k3pJn=YC1$b0zH9ezqNhw#9u(~B3$t(`kMgM z6R0cDx?c0onkl z58@jG)Bv{~fd0V~Gl8xG$8JE4@T~<}3vT-Y<-zSpprt@7fvy6&5U3R4t^?W(Zg&Hf z!R-m4$w03H{feAi1@u0`eFyX*B={TXBe<1}p}$pd>jiW;+=c+%0W=b5E%=TDdI&M^ z2(%-77XkePw`!oV2)7T=O!yuEbSd191^NKaa0k`ddrXbu-K%EfFEZLzO}ZX zzgj#|0rUjI^#{5c;f4ZrK^bih^b_1B05#x=*+4-&u?NuM@Qncd3e*JD7wAx+8iYF$ zs2Acp7w8Z8UIp|CWVs#aEyVnY?TaT~1lksE?*R?L6JG&+jwgNx+7G@3ThiYpc%mE7 zzd(b4E(013bUD!WK#LH|44_Z&?5;q2z^w*oZ=fX5bod?wv@M=J4(KWHo(0qmZkGdf z2f795PdxD;(AJ3MIiSPf`!>+Y@ckTUI^2E%>IJv8x1zs`;8qEgz_aTBodVxsKr4Z^ z0O|)c5vUO1<^Yu-Pxk~`fLJV`6M&WieF1bB&_h5c0X+xsPKcL4D^YK8t0G$nVJkS+DPXXNuv?0(#K>Op_=YdLq-T`_Y=nJ49 zP?o;}1@T1QSo*61>H>5dq#6J;4QL~v-|@tjKw}VY63{z9bAe7oxV?bJgJTKMDxhUR z_rv#appW5pGSEeM_I#jS;d>3xws5->s5inr29$@~cp2z1g!=&K1<3LZ(B}yECs1FY zqHXB!G=%E`v>0eG(3^N-1kjJ**aj#9-)TVI;IbPiA)=ok3z540oD(Lg%^ zod)zf!d(nB0B$z`ZG)Ka1zHaD6wrr2uLJ#ua9;wY@a%6u$H6UsTlzZ^;kp9d2s9Ar zSfGu8o=3Q?fQs?#WS}>I<^jD7-^D;>aEk&>!L!SOM#A?9pl#rL3eY)ly8!55xLpfm z!R;=fu6XuwpbOyk3eaSP`w(a<(6>PQ!1phpNAN`PIQp9d-=09*!*^Yve4tH%3Q(%s z0_DMNI?zO*oquK{QX&;qH^ zbO2CiAlyf9ord^uLA-S!+;D5VbunVWCF)icd~vn8btimr$GG(y5U%{Tjs(Ir+}2${ zxEI?RiYGelK!5g4)186r>!14p-HmV?0xbo{W3Q(0XvY2k2@%`y|k-K(7InAeN7Sz6AOns2J!Upy%)` z?s~Mg#1puF(drCeT#0D?1cW;Ztyw_0FVMOd2p9NS^MG)xp0x`Q?zyviA{JaeXRVEx zaU+~%U+acD+N^uvi!0Nt*+96)%-R#r;&L(TSh(S)FRMS?aQ&7w1+m~#EUN?v7gbqT z1L688YhNH->SPVXv$$c&8U%z}k1YG@qM<-9AwJv>WStIQT-Rf*2ZYOWtTTXcp^atV zN`pIQtX_y27r$6x_~I58>rWuujbb$+KHOMh-G^|vN5t9$zPQxGS_WU-v|$a08?L>u z-iI5mqOeB74L3qqYXRZn1-?B2*CAMI!wnY`Sj&KLMSxWZgwy%0FAxjP%(o^2;oN%b z8u;QAdCNWu9%r~)8$l|ZqHftoq2p+C>nGF~oGEVE2ZQ5iZ_7TP8wYG#_aHtTdu_dk z_;Bd7wH0E);m_7w_~ImH>sI*UbYyEMARJO`*(VLJJ&90ngsTMl9M7%;WS@GA(`&8! z@B~hiwZ_92N4i>#KsZ&^vX4f^QK#0|aKp)?)^$KQ_S4!A=rEw^KqmoR05%*&Y3+`f zaTKI=A>42-qqQjzPDQlpfnEaI8{u$hpmjT9!2y2OW$?x6d6sjXVNqE_}BEN)^%H zG@#3Y76NSnR0U-3FpUHKg(vn0ng?_=(1Spy0bN@}e-{Id0NZUqoq!$&S{uGE06mT; z-US*B-!Fmeom;;F+1sVC;mJC>i2ks}$jV1J?DDb30AYKLW$%%}ZWpT>@nHvwbtVwD zdsy2c9JW_j_8tlBWUyu;K5Qzm-bFYp>$gsT8y4AHOW=kD@7DW3SaxpRj99S#+xid) zE3vH$;fr<8)p8`fl6pTZ4G zB(2YYuwK!65C{tet#c3ymgrdr;0dgivz~-6mZn)}0%5h7bt`tLOYH6LzR_G0aia9C`TYR+$r(>i#ZuxzgtIc@+QtXx)= ziblhYi=%Y%*UD2?dY-^+2P{E|#k8}cK1;Bn&6UZ9x=3u<2)fTCMw{=FE1SE9X!$0c z5xTe`mQ9cAgM%TW%I0R%Cb#c&KnIzH;ptc-?W;Jz+8;Wf?ykw z@f-nbtLKQcl#6X4(+A}?mj+{@I@%LLyI5D&-Nuug%_W(1^BE8WNc>b)&^m`iLwU*K zr(^QSaE`IJ9i!Ei49_y|mCa+FY#xKNdF&L(!eJC%+iV#+%vdQlm11tYhd1Zc7txu0 zvnp+{JV@&1MAo?H@XSe)eD z&A1}1igr;Qm5zCAYs}mEj=80}WnN{LahvwWWN44J6)o($>RQp(gmr7DI9Aerkk`NY zuIWQ9|5e?t(cN3sQI;EojwZ4E)o0Io*gRtmC?gVab*jk9RNN!lTMC&PdMKBN@1kf& zN$j**rPESGi(8ZLP&wE5E~517xPTtyihre@SU)=3vy`nfC>~SW^fI(fYZBbL<}&{x z8I9vtlz=s% zOvZUBlMvl4i@h#h9h(-v5w=K14Q=Vjw9y`)w>O_N+T#;DimaJE)atN4OCgf%&=?gv z`7H;R#wepG)i~Y0as3Zz}$LvxPYuizDT*;P?Pb7lN z?JDgk-)%?|fA5*Ae7EwQAKop3yL>C{^3BNZZVEQ{&z)l_kM>sjekV;r`WEtiAk_+fELd#hBYYjB|*h5zDM z;~y4WOlAf+8j`1c7n7?YdE9r7d6u+w8^vRG6nG%Rs}$2hWcm${_!lBa9rK{?m|Z&N zzV=3u(J@@7R66E7jTEF~#&@iasleszS;j0%X87&?cviXQsa~HMtz)EK-x;l*BO=Mn z_xehs-gO=7u z<M`+1Yo#>NUM}_jf@0eW*W=&8|fi1`;Pg4Uh@5njzpV$bCmuBed%xSJ9ly|{Q>T-M4ObjYrwYtCCRY{ zZ0$SdEH$7VJ%LPTf}4?cM3L!C+|ynqmhMcP+_BS~{TdSS`gmiwlfA5pIu`L7j7&77 z8qHJG4)$G*J?mieJVm!6EhPX0OTH{BQk~Q)9GTBSdv@E3X8vJbWv*#&WMKda{hidtt zy&0cTE$`Yq{lwnO7GSpo&2-s zs73y1Zym^V8vf)u&|%AJ+Khs=%{51vkI|R;NdLL+wHn-Vm$`EktZh2nr9a%i966T$ zM!sWqwIN*k?PvfpZ3ruoc0`e>gKxFB8mBw1p^ojic29;IS360c@LhX7`!A}sza*nM zLoH6G#oJq*G7U=9jv{M=(s6xN6p@*Hhk`lPcM-W7m6LtvmuD$k2U9#|qrz){T}g23 zmJ|GokfUyC_8qfJw;bKxC^EW*>yt{iL^M)R|MdHg?VlD@yO#XCLMd1i{n8!0`lYQC z?_M3#R?iVEl~GGQx}-0*H?K1qPyQD>SnjLE6H{WI9QX4<}&LnTO@e##i z6i9Qa{c+1hm8Km->)3c1{SW?Wb5s@I`i|M9D!#I#=(y&gGmo8nmGFAA{l0Ck5*|!Z ztckA;cL{fCGi08noCo?R&#|2Q`;Pg4Ud~-JBjsLYJy&1WvwUYtu5WV>#{hYj^4`h6 z06CWTG~Y32Derc)-2TdrDV-xVQqXsYeb+|EZ9S;O z%AQn~b-_PUTGqrD$TYQxXXQ8|3c(g?pyng`F~#SeKTJw#_QrJ`?$XBqrNjI z*Rtoy^(+Z-mw&{+AUT$QjqjMVlz%&V0GUn%Hz4hZBJ<_)MSGjE^q0#!I9ICUIuR8? z>@8|q?)9~Do$s3KS?yGNi-NSlrfGSOU5KmOTZuAVh%4+U{1?C)-?2yqlS#QlrM&37 zU|h|~bH206vuv$F>tm;@QbwDU z+EM&J&?ZzoM&ca`WsL9QaVeCMzH`g7gsnjokEu|2RMn9Hw@w-EUw|BS%0|9pcIlK2 z+Z#njr*K_T>69Xk6r@uQ>DazWX=9vpNt6zzTw)xpl%Qnz`bpQ(>f>bJ`Q%xq*1;5yQ6|k5 z_JBsK=x)Vvf`9596-Tr0m|cqF==MgDQ5;-9Yt16(t+cnR6=I*9UA2~ z-zDVIC_nqoFK>&ZuQ$){+vzI%!4!qRu6wR!Kgcn~@2tn}=4GINS#qoe{e8!rr53cKZOAk)tW??& zMP|(G>GoD}f}lwQ=b< zO+&?FB;KK3j__SPF7pBwP)+q=17a&KSvch-FE}gP(d!xwc z6s}7uowA!o3eqWCbnFVEo~f9*hR8jJ_9&%jP4rqdcO}?Tnyd81O$raSw3h?9wss zv^R>3j^R3`(lPgFq#zx$pkwZ$3V&!As44*G-|QO zFxz@0x4#a5x=Lkq%wRi;{|`FGBLf^dW=G$}54}p-2IqI z{)Na<$Bg$KvrETp*WM^HI)>|%O2-V;NI^R0S=^Y`aYJuis}k{Gbtssm?Uo+;cEhzK8qp(mrRdIm-P_lFHwk=_>cveCJKB z<<8spz0=_?{g?gAkz?t<;5+93dFi(qcNJX^m8V|KMPd$c!-jE>~fU!-6W2`ch6PQclgefTuYi)8#xl-F7I3Y3y@=Z-{d>y|9N@$%&cS0R_34U z%ls4H8Ix<7^XP_0BHZP^%D)gfmizm@W6o0U?P%UJJp^tj+7U%&1huNY34s*UL%6JC zdkCFdht25*hq%#6*l=gRipsObsWyAJN(bSLM#-b6upSAl{L~n1NAdrmr%=&0>5e93 zN8csmYC@*^&MVKtwYH#mjB-gIrruV1w;q|~pFKxCGTwL0ErIX<|z3~^d*0x@4U&i zqp8eqePm^?2U8j!b$vf)dFmV4$!{gcbR!|q$D;4gB| zG9IHZy|3z|c?mHm~3=CipW+R6j;W8(LB%6?gLjfnVGrhYrnVlKtNU|UZ zqA1!Zk`+aeLq!2a5fB7LyhT9~lv7c}`vgP~eyIFkSM_vtbye@ytLmP~-_OTwAe(Q! z`o3?ydUbQzz_n<#N~LBmH^>ISGHMvt`$+PEt97-*@_{P}#IBGJbT+FU$OyiT_K1)X z+=u2#>eRv)0f+O6J&9xlP0Pi&@pXL3igDv^G_nvk?j#Vcn>LtAd(|de0Y5(n*5LAR z!Owp~bE4{J`cOD;zv%5hCZq*R~l*Tbp~ld zb8ie{-{k4Kf?^57DFh-kVQ5`%(sWYz9rfpvA zd4(N#8x-S91C1=im#QuVi!W4BM)75%i50Mfc|dE&9&^0-GRy^U_d=a;`H)n4_J#;T z40qMlh^w0S=z4=inY#$YE)Zp!t{V2Hw`b6<5(3TBXwIbGE<6Z0e4yEb3{jeahWDfp zYo5ZJp%`l(My+ zCwCTr<+u@mt1A|4<`IZpA=pSM2#k}LpM{T=@`5jioxb6 zG_nwE4%dZX!G`L}DA>$4u>yk4wXIETCRVLlqX_XvSY^EsDiTFDv&tZwp~g|$IN3_3 zR?pWZo`scj2}EdEY2hC3Nxqr~qRD5_ei5R{^=PW((d06~;oM@=cV~UZi!tOHeBp{Q z5JNsrAX+yhod7%oT&mX{>py>1a(a3H0 z`5ZPy8SeN0nfv`UG&QPzrvnseHALUPf;U6a_b;K5Lwv8%;j^59b{ZNGY_fHSZbcj` zAZO@rZO$;^9IINE9r-%;?bu)?Rh)b&w)qT(?1KB|pLG$-)Xsb@0b>n^Ax991T_InX z$SNM_K(?TLB6J{Up_!7pwXha&_;g_kndxA*i_zol__7tF$7yI}A$n{k5UtA=rqiyL z@fGm(rC^U?vhV>kE2_Sx8+U>=5Iz1ryakFLe-9eD?H-@aI@wUK-(&9eyU@%idi|pv z9lLcn|Fh?jrY@_FD1kfh<|s&y=jY_3lty|5TwD_xlUxj+%LYP#E_GW`who-H}RC=FQZNznymvz0u<{(}q z5TQ9m>pC0HWdaR>UT47>SeFSI#yo()wF__q@vqDV4D|I%qJX1mxGjK!C&=;cvpV&H7o#KNg#HC0JLxzA_5`k+i155A?Q9d zbMg@MMZn=hP=e$-!&F8LLSM%lqZowlMk5PB=uTY-7KEtAjDpY=CRRWYn%~+({iE~w zQZIjB@NVyjCf2;wAl6W;IK4{Jn*Zr?&7#U{1R^x5v~a~`EU9xKfb5I*g%CjY1_)g4 zCl4S~0f%#lJ6NKwa*I9G+vBk(zF5UjF&~XAgo?QYqIDB!ljypI%)=*xDY%|p@NhSp z5LFM;qeedC#V%nDzHmi9pNK|oyPv1ARSTJ~&o}q=xoA>UeNCT?2vk7y_YS-PivDh( zkwg5g(SNfPfOZHP5NzG$72R&hu>w+nn_4>#nUaTdCOzeHQTFWWy=ciw^=7v4QX}Rm zF1*~MDoX8cmkey@dw>hffaNl^4JHVla6MU%X;4 zc^r)_1e2c=h}I8ctkfqxx?<&jJqT6q_C- zVz!GTh&%9QD~69RqmhO1@kLz-7CxwgjKarm^E=zES2!9<7(S-*AhojP-oE*s1iAo)A_nJ;CkaRf)wRYlW;y}Q#QY0kf(h2o=CJU zp?qSpmd#fNQ{<;ecn1{h&mT1i|F0(Dh5vXyi;L;a7+T+ z30;WzneJ{31U0=nMy5-R0njx0DKfoEmnIfOmg_>q&h#XR9&7UT#9Av;E%DMW#zy!a zP7v9eucwMmsZK2M{zareuge{yzgHI`cKXL|?zb|fGEe-6V-Vq||o7b14D$DGtC<}*CkkH*IJ#ALxK zE=7KdOh2Ma6Jz=zU5MD3p0N~?|9&g63DW`5vD3S7M`m|73=govJxyrv{2p zc1rwDqC;NNWs^DNpSlpSJ7moAOmDBn`(S=HzKlHU6qh1DMW*LM!G;<6EM17$nI5;i zKa($6Ri5kPV&i&hGD{0gxnGg*qjkw*%05yTB6hwfZMI6aa&=X)yghL+PkJUc()UQ# zNvW_7wLNuk%KtAS{qNA_j?sUHE=26~k6Cwmw^iqPe@|?@PfQN%C|UIs`6)7ep)O5~ z>GO3VVrP2v^6t%Rc%nZS8_}J~Y^lCA<@^w7{){e1jOOcgA!4U_+=fBPoXU@4V|r?` zGDv4t+^@*@4|K_5e1BILB6hwF0DIVrP0hof%pi*oZLKic8kh-C3dHpqqvj2Sv(fLGgwe@N`{>*eM^^ zZ8fUp4dooS+ve!l7$23)=MEM*K2nz;ChNE8LIgS1$c>!DhHe(3{jLTCv*Kdi_UWcq ze`xL2xbdsE4JI~QwZQS9S~L=}7kF7!&ax`$Tz;G7T$Y-ylM=a{pt&o~mr23NCDXP$ zKp&y*pRPSMOc~On&!@EcrCmea5(ntX%Gxa!Kq5KV0ZH<%SLoLs5^1Ks@iz2NODG!N;x9d{GqT#K&5Xvks(j6&GSpl~m zCr+?n$t~kNn#;-i$ym9TOt3trOBCb!X9S{!5n|qH)jWw1gXKmwQQlrk)at;c)i=m- z`D$!j?vdP1El4>Qq`-odXMqqiUN&d=MO_G{=I5!Cq8|3nZMuTR4oPRYpf|1vGSBlw zzZbk9mvwq$!4dPo3d2Npwk|~Mj+oI*LlP^jY#CZZxyncJ<74vyIU7$%huK80Y=Qn` zbh%@Z<|ti=*y*3vYzIv@@Z|TzM*eiK0YFw5ru?)nZ;bjgbs=J>e$na@gnrtWCd$2u zO|&n_TeU>KR4*sw9(iwU9yuTh#WoE}m3y0A0~nNY3`z~-sCVnK%pCPDU5MBnl{l?` zFp(=Kwp)pkW#tn6R?(T3ZXPYG9nbaNH^%0mL~?uoU@BKmZMRa6At`D|$}>dlI&RP< zmHFjUx)8DZ<$x1mClWLiC#SIz!Hzs(!N$039mbt7IrQEkXEL1*^&g1ML2pX-!!9Lg zDa4{wuxC&CEfTt!`*nF{uKJ!XMC`8G%NrYKs`Y%Pm{^zJ0WE1&qXZr*m-tTSAF(+o z!G_Azj?{o-$8as^uezKvxBN*LB6hdzzpPwp)Ry?#&a)R>nOM04w%O$z_gI;FqiXTq znbsFqPMl2kIOh1>TQ}Lw42Fbk70H^K^G$EAdUG$HU&wCqZ$y*ikK!?_T6L^ zdsA>%EzGchH0lXB+5jr46!Td)J>)iRF2=q!Hj(U?tU1PHJ!4W}Ov-YNA&Df+!HGTL zvARBH?RbeUMC=Zl;fx&9nQApNm~LhRoIkR$`NNqCJ4~c|i!N7;?z40uVyAoB#zv{+ z%=F4r^owI7dwQ};OCBy4zetxiM*Ri45V2D~f1{OZvcD>mFG4RRcfw7vIblJvYNeWf z=p{A`=Z??na>?BBXqLx~`x-~K-~&VSp6m%<=OK?R?uK+sXoLl0ZA6n zex)lJrn+Ach)}v?*ow5?y-b7ax_0Z2Cf|G>s>88nk54uk7W=RNne+FWE(B{YuTU3+ zO@3<&d&bHgkjXhcScr!Ajg9n~Ny{xe)yvwCkk#)E1{h}bdlHBi>UUmqIJ>@@v#P+Z zM=mGm6|r%O1YM8Z}O>C2~ z>nSzZgUU(airAz8&oHpk$zZiXN*9E%Q`d`32$$(X#O{KL&PzAdd{0BzIdFGu%uhq5j%__&Sb2F%i&QsHF&%h<>spR76srWzHot9eqFB}VjPx)4F4 zHR2NsaWo~?fM8ZUp_>)DL!bvnw{!?JW(91k>f`tN%*;oUk=s+6>G$FsErd(YC4-u2 zP_SWAIGI3%CWVDP;IM=}wqDNGtClsibI3h}K~G;a&tlw2uDfgg65@h6dkkEa0TZZ0 zg(TQvkA;7%!t&}69PH?}_X^OlxTldX<{*ts_Y})nxWMq@p>Eq7vbda)J(ZbS8lI!C zW=gdR%!pLUFYXgW%fseN@{8Vq7Wh5Oo(S93i;bMs3xAUsQaBb&D;)3qSPDNZd)z=~ zN6xC$`-e_?9sXyJ&1NbjirY@ofMT+S*Dz2BbX!n*(A5_=q6u+;-s z9_EJDz%Zn!btHVuS+%ScX|m# zXuODi5@gicwWqG*$hD&(w{R}taE#d@+gL9#r|n{02-ZoJqqt>lmy^-Vh zOHfb*;tkA zu>OXI9}Ng*MOL>WZo>Jumi0GlpnK=@EpkG20(9+NjZ(gMFmV0&qylZY&I#GVCiu$* zCowB*cK!)->93Prbd%(wo9+ZInABv%`TMbG6Wrk~ zQ}8GPq0x0|Pb-f<#qm-i*!&N5{iN;_DV>FV0Eh3uI+KJ=xOFZs27x!5QimK(Q;h7JbRl9Vd)&$$nSqKkec|8c`$%k5kB22pw?KjD zhjdwDL_eqt5hPk8_OS3pvj+_bX2ov06>&4q!&|%CgB*xn>g=K8bkw;ulF(=$r7Y(+d^w+@Pp zqVE@(pFz`eC^}X4iWbN}NtZb$d*_{(%zW5i#o3lStAZpEleE7t}Evn!TkQO(Xd>23UD~m z>~YBfw>+WE{>hxZ-|IrK*77WYh&)l4xVi+_Q)G(ybAnr%Cl@18w1n$P5GZ|x3WQI9 zk`43Rak>z(6W+NV7Sabqx(|+x?g_~MkoykX2rL4 zo2lC)b+&f!I)&!;PL>bBGB6dAk48_ne@{vCPA{6+L%C@PnouqmN+tbIudYCt#i`wfN^G|^7EpTXg13a+_=^X5Z*id!qU3d2G_~)E1iH7LH4#44vv==0uEjF1V zB=W8esS2|}Xvr6wvwYF;EJwNXVG&*A7T>=kl=BgGj1h+F+({S_H#mUht}lZ{+i68H3|HF zOm*pGm!(K56i2f-0*;A0!KB$NQqI3Zh#(vAfv6Ozxc6V1=Vm0gZ~cP!#HhhMp$idg zFc_xXmd}zR8qhT$m=zc3R)kqWJ8vT^wwPD}&Fk;&-qA9}X{p|R-N3Gv)dO^_MRv6e zIeS?m+SRfOfN?`9X&+=S^rj_zyIQ>3jFnqqQpE<5DyyGe10;q1m*?Dv&RSlk9OBwpCn?CfQXD+voCO zG*?pn7eqfzPI3)e-0NcFi&ot0atRvQ<%I?Hi*+GbP^TI)3hKSYicqy_x7?Yh)SN*v zECD81W8#vK`=R6rrfVg-m<4-ZoSeg1fAkgZdVt-|{5@R{u#os|N?+LB2;m`7qZyNt z&a7rcbl7F-lYcb)r`U*{?FB}MURJum?C;H)eO4EOwXk1P=R`N!p@U7%1#9y?)eJdI zwx2x}^&)7zZZc(he7biF>pzMC>k@;co@9Rf?|I959n>1EDJx2kLUi z=wGA@5u{(EgJ69Ojc^(e%!(2E7~N19w%PBj*nB_yX1}-V`ir^zG+l_;$(C>SyC62I zhuiFTo-Rv_=yP--f<$XH4A!>jfJy^`S#hjxH|babgYu8Jcm;pu4tT}81kV@J8$$Sb z{I5nMCwqTysLY*bwA`}O^m>+&7frsRs}d%(+X#flm{~U}j$Ys09e4=!iD+mo`~YzH zk#c9UTq^BIIX}eF*Q4g_J)#T28puNgB6NVGO>=km%2oV|$!kzj6ayL=&2Z?tH|6{g zX?{hQBPP<9bRlA=dF=9X)mpcfCwk9vTtrWXt4pfZKoRaabv`25^PyKs~WfK>1}P-Gi8~3uR~%Pz1P7%U^_J$NsWA&1Q$Og>-3v+)xlcx z1_IH-E@%F-Om-_=UG3c~4r}(X|F)KR_UiX?Q$E|GVYy%d4o9RtH`zmN@Ma}o%^vpU zNfwrB<_uSKAz0%XAP|vvOS4zQ4#`#S_3qRSf)}oYqNC`iL@&&6CS(I15M$^Sy6iED z@6?5e-2pS2ZQ(??AKSUUBiIJM9vk~py*2N90g8*T5cJEqP_9VGSysb;=&e%Wu`?mj#St2}BDMzsbwt z1VmrCnmS9r+Gp%gAP*tU~E)R^fG5D-9OajiqZXjU5MD}-h+jc6X^qc&EX?IH~(C0 z?9cZFmXV*<`$-w3WT`{nxyn;Z4ro4s4a0?%Qx1GBKl5Flh6#f)(WnE#3^ZRduA`3^u zKatym6OxKA9w?@rm(j{jgCe&Av%R~Fp2hI0Xqw(i$KNpQ`xWObdoEMWH52TMhpfVK zT6Cf0*imtQRN;qJSPB1~+!S0`1^;AsI^Ad=xg30`a3cJdOA4#u=lcsMk$+wTKi6~= z){=i&2S3jmDy)Z3p#fm-&A*e#<$U(xsyF{K!+p2^W*j`T+kdH(jhgFH6Dweu{My#8 zRm?mUrqj#S)TWA+&G+WBWICPe3U)$;BFOXYH+lNymddx0^3yf9eCLS!$jjxI>5|Oa z^Q8nLv^__^pK|cnlpKe zE(Gi2ZYB_s4`4?xKV`*Ip6qzKe3p}RAgZR9d3=Z8r1&vZFrg8iv3M382U@Wv7v z+H5o+m=zz;t%#e@ygmv#kFb5vp&HWOU*73F4o+@Z;-3MZT#ZCYzSB0WSM&AQT$`4p zHWR=MtzM5QYaD?Hr8N3bxL0=>4zX9Q1ibZ_cP{oDfY$*?%2*TERJu%f{^;%Z4$g*p?48XMB+^1Zze65r|N^>#j*GeD;E? z;T-_y&JOF@3qG0H1momhcp|aa64n<_1`DDHrJ_G(!kr=1gj9``Uxe~SM|A75$fUnU z7b55gjflvCDs6xo5X_3vx)pJQ>T6mnU)n)+;zp|oQ|meMXd9PqUJ{L}>{-%ubHv4w zi*GzjC;|ZUc>CJ)d?59p1AefjVG@ zDo$C8&y@6XiJxw2JD!Zl9lJn!s&X3!jA762P+~xeZ+xhV|=f}OykNcb--+~{)7@u#im{It&o* zmAJ6`EL10g&YZhJ$XU6QT!K4d4F0t)wJZkzl0dXH2EPDBvKahkud&h)BGm^sN4MaqRoG$YV!{z&KC<_ z)s+fMzNl1;V!@LpRzNHmGY;r)-H3JqT*KsCZdru{j0*w>g0rFs0y91F!_`Gj&Ou7z z#$1w->>@`hI&qyf`~3(+D3#HVWM`7=XN&OiOJ9N<1y5A+{DYipqT#f#1aLS8?OF5+ zT2gq5oHb_NlzLS{_K$%8hE4-{tm^*hrt_*SS-C$}L`S!iRJjWKQ^?E`+iZ zw8zW~A%%PPf-7szH5bnAV_2{YyYb?V*qpI|>=mjxw_Sh@P4wC}c*mMt z;o{t;4_E1P@%-Ph5kH4qA_tu}ylPD@ae+CKlvBLmgn#KW$b|fYE=253n7O)EYgjNi zgotu7{DbrOFTW>ik9u5PDr7OFa1u(+_6ipqFb6C!%noPjLIfS4F<4;Z4I0lhAea?2 zm(qY>R?tjY1A{LdT!nfSe%T*I(xX`T5cCTNnTwj<&Fej?XpcZig-eYbXr@5&6)EKAMo> z$3E9XSy7CA`LQqj2u_c8t4)Qw z6X0`^yIh&=z8UWsV1`y6%-SLKo>4n|QCCB5JIu7K9r~`M^*<{>?t~|TNt31Nz#Yve z0LxA{O73VrVQ+B%jnTY3z5?w&=^eGURKBzUaG8-Lp#%+B={{^9obq0}hGDxxZ;@%J)21q%~O-_d2Bg~4x9+QL?D!^5EN z?#y{BGkq}gzpa)iX3iN*II|de*hl9a{_zw0huDbSBWXDnq_)*kjsiUbhe1|SX>}1QYxV}C% zs)xJc`Wju97|~bhLIjD{Xc(+*(J`q81he93-E701)#z;PKECOj8n8_t-aSh!v-;s8 zDA<(41?wlH5tO~3x1En&JXLdxPWO04bHiuJyu)L|*78=GSefSbi!gHm+R+B7KT7?iS@K|=5GZe5m{qu!+p5xb)%k(1^tcVwJ{ z=KQX<8)NgvHtd&v&R3LtLy)CAzZ({v&CmwNfP87c}_T6^_S*y{9s^lMDA5Sa6OWj4>I@i0R*Cj zBi~8RPWzGLo-%?o=7UTB6aNhh7t<&n7}qYDwcD-_NsejqkC%ud2{q|Lj> zNMNFOj|u(6`*itZE_jbFM9>8q^I2?4j1HvnkV)X9NbQ)1d1a)(L0za5RR zY^4hTxnaL#UhFxST0x3<1f^UE#4U@9hcUg+Z*UQyx ze^(*TAK+dT8_k_bQew&}QJ{K1bE@~zg@|3v<0#d=JGij1CN`!aY&gD6L4g9%C+f1q z!tP34h#=7#-7@RhY4F#8U{>6%+c@2xy{ol7J8pb?Q8e<>zGau|$t3;%1-dF?LOhQ^ zw6Op0Tv~x+8CGKRsq46={OM@8E?f>c9B*($F+++>)wd0Zjrlrr4nL_2!J5%02t?#L z!0xB7UCOcieJCf2#SxL^QOO-e$&()6(dC9o^qaa6@zZ<4^5q=8e~yvfzHC-h?;muz zVf6l17a~ZnMnA&3A{vJ@Aea^B=vKt-ihkDGu4tI0jWcCDO z3^Vxo1R}JPi9GC0r>746Yx7()T^bF)g*O8ZM_}e%lQVGZ^QbJlk1La+vV8G(pAJOaI^bMf%&P)-EmmD8J*jG*t<<%Ws!PF;xD=^fR5 zYCyifj*Z{Z$Ouqw*61x*heKnJ1_ZOBqFWI+FRZqp7bzuO%S347?@rc8~<~X&cR%IFOGlrxHzTsNnHk+ z6F#8}5p;q^zt2(!+P7#xFe@hOR>Vyma%13bx3G(^Lc^{0zJ(diK@akL8SEKuzBb`c zAD)OtU%vDq`1};yG1n}Z>jow1!=t+7GNC;}AVL|Aeq_3ERTZ8hgWYhx6MEz^c=1Kv zSEAv%@JGPmsI=$7mUwD~?^s^Qp1haLN&crU1Zzjn5r|O1>z-Ykv$0$xrzV{%59l^| z(GT;_izc-Y{V*e0h4P(4l1^*|Q1)~ zZ&v55qU4F{<6?8f9+2ZT%}AA~8SqlIV}{tj9j!|y3p+>ZLInMx(K)gHjRrpr2xi4Y zx=q{d-xjyFf7^Z4(v!Ji!?tK7Wl!|(?&-~(J>u2iHC^{J1yu+{3p=g_>)`!N=M7D# zr7p|B^K8(EoeK9N36I!Z5e=t>_W};zZ!Lra=AIF$9%=+^@pp|7h66jzdA>{+g0+!L z2}I<5*Q6DLrOZG+o7j{;Cvf4y-B4l_gJIDFlao1GYN|#`6)3+`moFym+jSvgr+m)l z!HPwmZ`#zKfqz=wZ)LYad*DLKFJmKrZn6&LlNX$7PWdU=21Cmi-0-9>hs+I+=|aTr zhKVO^I3>{!cXT=LfpXlx9vkh#@uT=%z=fz9F`(t!K#wk1(C|q!W zrOO_3K#wj&><)P2MriwR8D8xm((kUw)HBX901ZeRGSy76XcdENF&~W0CvQwvU3*A3 zoC9;51pykSDn4@rFTG!vV&O#csrCD%YWTjlKC*bV4H?hT^Yy4ttKAD|_>mr@f zos;k0gqCFB{&`*gmL2;yLe%D^s0BR>vyMLIuKSLdk|%>NH)5*a;sE8&2vx(@SDw zdJKKQK+Hpr(B+3|`Y>IHAjKMUs%%=8PVH$xFe?Uhhm!8J>~~sw)7&Iy+0hx|!0cY& z@uF%pLbBiNP0$7x9K9Ps7Q+))X=kiMt>C5}C998RU9m8|6$wNOCvhhN$+SxjzGZZI zG&~nB1RRbzdy=!Z!U`2aA<^Na%#XWS)l$= zUEUb=kLW_gPW||0jeHTV@h|a|zZM(ioyi`rM1ks8ba`S_zoZKhJJn;BX0uj}=XuWy z;tDBalNnl^K=OPj(=fH2s|yi3$SzXC!N+Xfn@K zbc+_qKTel9rtqV6Az~+gg0tB-Q_a^Pf8bcp#m4$Xve~y;ra*T_mn%m1J9Hspr+W`N zWdZBDxdflK@a(@YHumSca~F;YDL#df%pbi+mr3S~3w0r4cgFZrYOubXsRdT{Z;p-o zPI$`|R+LGJg6==3%M+veGrAD5Q$3T0nL0UT(0t8ya^O8IN(RR>@f%Y zKo=r*2TX!dX>Y!-K_^N%=AVy^`N__()K{uN`QLTwg>X1N0Ghw5_1 zbpB>th#>76lb&qel+LDUKrk!vx}!aJ-t;G}-Of5{8FbfNyetKj^w+&RI?fs@{GEQD zqn{V(=SA|d$H9(DXW_6o^nQCx)#`0j^FwxbuAHqccG_z?Tg=oT4dMT#WYy|cE=`UD zIrFAn{$K6#|7ll`VzKX0hRJdv(oOIcGAs+%pHlNDbp5`3M%Vg_m zXAPcS)<_Zi31a9JYv_cZ&Jmh5iH?o~E*v^m^b&AR}N+IK15z8STx z`AWKGW$Q3!oh~&7dSHp*{Vwvw9`XkWa;T#tJ;^h?qxT4~(3MWZuIYL@z32e0t$qV6 z*714aIF&?%J)zi>= z2HduD8$k+<2pVUMhS$kFK_{7>Y&s7Io;jKP4a_o>$)C|2smkP7Etz=r6yn1l@Rlm- zK#&zb(_#~Pb zRb?Edr3_L>K^ULFTd63FkD-yVdP7&HH+pQoIHMPE{`9f=~0!(@jCMG*HjS6 z5Ae1sisZX!Qu#cZB~__tO_c>JEDGjEyupfs zxdDybcEJRfs=TPu6b!7{qHwB+kexFAC{Vyzz=cdIXK! zb|LL6bWdN8JEw`r`gm}fe%yPEQ{K@45l_myN=rUMl||9K0dKORXkP#SPc*`` z8(GicQr@?itK<+o<+9BnlFa~G({8kmZi8h@!;A4&DhlHuG;-Uc$=qNxX_R{MrCgu` z>M_?w8qJMr2c$JwPpc_LjWh9PDvIN6Xyg!aunlJ;FP2gWdqPhGt}UsjogE17<^#HY z1&>u=%hT`EUE#KY3jb~?BP%QuE8umW_q6u0gz<1^NJqL@E?2nd`$eDxx9LLKJnWOn zKDuTenJGGZx&n)*pVt*O z+e>vLfe778)w(S*oy}SY0^q}F_qdIhZJqiFnkK1-3-^QJ#xfs(Pz?ZBT z)9yzj3o-3`x)3agQ1uuEksC~`fFQD8Yws@@m+$RJ!(GAr!s*oaMiWCeL>5Exz0^uh zuaXcl2`tAAFI*k55YkB?c7YHw-mP>Xf*gu=ju1iKjAlt5LG}V1&Lj3j5F@U@YjVuI^H|j#L07A866hOwBSOEcKu(cccCs+fO`XJ;X`K^2msX{%X$U~M( zV@TB^w^B&+5BJZyh-K6;PNb5sQPw4$g^ePC2n`!8+{HbSRXh+nK8p5<5IQbLGbIll z7Xl9F6?+N^9n5wy{rE7xY{lqdqmhN^aS4HFU4ls;di9As;OlRLJ-GHK`1(FHE2_Sp zMSM*Tl=x~Odi?8n3lu$mHyXL^9-j?|P3a9!KF$JOf6mh*cV>#|yip8qr6 z3PsQV0gW8ud5vzKWeT*r(12jGCVAb8I95QW@TbXyq*AkwGs_X= zXZ(B<693O?RzRG%WeiNRw(cdjPI%#Kpr_&7Th0ZG%b*&#ghnbb zTYo^|GmKNHWI%DLF6V4O@c{x6N_;B^6s+QbxN$q$Cqmq~70r~?t%Yj=hx3X%pkTI( z!Q&Qu*^0sAW;C)8JU&MtTGui7(o4o!z~9e+O}I8F`1@%zGpha$rkAW1qUWE&TcPOr z$I-|kp4W)^tlOZ$Lj!`Pm+#Z9h?`!1rM2nh_|4S>yiQpw^S#Di@53rqDmVKql4APr zir}x6=!GjB%2nt3uQatnyjw!}m9Bc#{pAre&;?Kp!whsDfe7tSLIX|o_eqS~ym7PW zsby$S39;pPG)q!v7rFq4?@JCRIjG_(>;i!_t1C)m z54^dG5}AWWZo5RL`6aT=$_B#6I&*cLgeFB*9g@4Ml=>D>2h>y)#tC>!6@{?^jofx& z%woc*rrq8+AdYj)#jzbtjH)=6>V^)lwxU4lcxx2}ayA;d?E;zO7l_v*2PE=2bBTNg zO^vEVmg`HztFI`M>+$v~isTwJa@$2RFCda;uN;uc&&_4>Fq#}ynXELDNwdbHP=129 zSWzesppl0Y%13wW*sa6)pY$r+1t*34!QNqiF#IK&z99`v1CyRQAeP-OG0s^3hbBl> zEZRewW@Sa4yoNVcQ75mUk%!YsOXM-%3n<$%#XQVBTWMG>aPAigsHDqWB?kgTJmZ=Z zG($?T&Z1Zr;cZqF%YJC&wu@zC?JeW*e8TBM`g7 zLgXZ0%>!ZZhiKopZI+$G{63m0se21w0UXXP_EZuEea4I3-*@nZD@L<#qLGDYb}xZw z-J0SIdXm6LSisvagF%LiiZ7yRQT6t0;%%V{qR*elo1p0PzoU`c?(;e996`9>lOHhl zdjcS$$c@ETz6bHUv>KxC7vjxO^!*-a7F693)?mKf#) zUqbVt>R);omf0?L2w%XLt?1>O(8z7~@>JG~N<95*b5H*g&55d~X9ThUd7FL`U%sNZ zA44ODcw3|IX5ByS3N#>C_y0ECin!hXQ)61%{de}lOhiTyEb7y*ow=IUG1@+HUcCc}z*4kF+*-1!g5%IcNu63q0S=!COeW#O zGhOT_j>Z?Q7&(qaBMXt^Ed-)<*}yc~qk41&JY52F3{!%wXi`)?J(GAkPyx~3{dfZu z{cWL<+wSjKEH4Q2`BmmV|2Uc$RiDodBnMt4M8AI&Z-k=XFGnMX_+6uWXBh(RC^R5g zhA>OFB5sCoNNX1s#uf9W8axfm->dW#R00>Hq++v|YUc-@SzJ#fnId>xmv5FH{G34S z3h6;-v)X|^yE&m#i2x{)I*sg2oF3qIJo^ zRNA*T*$VjiO*XdO34VSfK;Y74RX@`~ByYdy?S1j(D|&lxG;-U$J(HydAs#=?+~b?k zyr_D7P9QUA)b_G~RV-_`j6j5D4WV613`gCUZ;%{yzZ>l-p)a`;&63pFg&P2e z&l!}Cx_j>I@+#<>$kril$D61acy1-gq5f^T85N9j>_ z(bY;v-9=Y>brn0Cr}4Hb`ur(0ve4N)P9Q>CfAmM)nK-=j-~OZSQ!h2v#w37=Xev1sI7NE|?7wpCfA2oUr{7EyuFGd$)J(j zE|R%^krZq7+S%#8Y9@H-{bS}T8A5ZTsuIa-k>astxk^}tMVWjAZ?K|FK7>YYyG&;L zWin9CS?OH49tb7hH5bXZ(9EccMCoP(xk#GT6(#Zwyt#@J`5GFz?Gl;gmx%lT{0rs^ z`3IU9RfQ-WfR`&I^zxm*;;mH_$e+;2Z5PONP9Wv#Kp=kX`61(R%zS`|XB=aYs+ORt zV(gfUH&sy@v(U(Gmj;)rI()%d)pM+XKGvA)<3uzys?ozBRrTsCiex3;UPX~CLnH56 zBJnPi2#92dxkwslYFZ!?ufC#4s(5=9MN&p1w_POj{GAMt*1S$4Ad?%+W%4OBIjS;I zxO^JZ5f+wS7e%X6=TP%cv}_4@iH2@?c$i~iK994^RLGo z^kL(1%mDzgYmH-?6?M61%d`9AO;r>|5{=w;VN7Ad5XZM~GuOqbXi8Kg#?fRW&XJud<>%ZowO?D36=b$ZeMgTY2$~?E(UM##|szqnS|^i0;aZ zuezc{p2C}}D3Qm}$ZeO%G%xD_&ct!-q|1!+(N2JfCm&V1lUkB@(3*l=5Q5d7p z$ZZ!!(h~-q2FsWFoORpu*8WVrnul8;%Yi_$#9S&zplMPKBZ5PWzsaT{p zhYp#`G01?ITOZ4?Dl2Zq3AbR`&yakFL-ye zxMr;+;Po@jz5X^dGpa2-_{24l z_iL@q7bbRFwYrr{WUAH7Aa`@ z9iUaT2CPzjdmeBtdo288HBZg%E_@5vyLhO(@NM$7>~U~oea@=X`-e_?9sXyJ>MNFe zhPv&s*-WLLFPGpSJFA)P45LvvBhk^(T{x5cyb3rh+(tbz`y`KdmvBmd^hc^E&{jaY zKCTfw3YHiiwS9zCCWBFj^r-F4fWx&0`v`FkjMD-4Fa8?3p_8rKKZLhYF|I#IkcVkp zVNQ8BonJt6qUvY=Wrj`rMQ{HD zU%sNZ|B6O#ySIIp88#UUczo}j#vb1jAfiZu#g-ks%&=Jp(d+Z^HYj?1E*d$+>l%GK zOAlxlp#j0tgR6Aq>!t^9Y3*f(6P&w`I@}pV|03uXv|^!fCn{aWjQAtzG_{RD$P@ zw^_1WVZjhKR!JpiuawOuDCG*&HpOgV9+->Eq+JEEY+*Km*cGyc$^NPbqRH`Szql1; z^9jeGxstlJa3J9D`NA|Z_3pP`j3P(jOIM5{hog~&C~_!)XkErIlV%Kl#sdB>f<=Zo zLmthGs=w(dQ>=sN^mho7C*BT4 z?_Y*S4)MN5x6d*M+I46^u*_kGZbjV8VSQ^e2eJg=+@Z@YK|BGKzy&L*-Xd9oAjWas zlVl0vQC-$q+VBX02u&MW*O!nL2+6g^uc4hHWDKvMX_ET2@JGPmT;f}SApUYoW?OS! z!k4TVIsS=879z)Ux)3aKQ1uu^j)zRFfFm0JZf)e)-5TVdUt99gXo3daY1!K-Wu1+7 znWD2zaIw-z!?B2yr6f`u0ah9gFb*RSyFjEE4HXWgnP;J$AOwlGqZyJ1iPeC^dBYw@ zk`2d8LVP$4U#Mby*o;ON;={?h5G+1W%^1apgH5b}_;68cH#dy$&s1|Y*lgR+r50C1 zEuu&*PL$0@AP#Ub>o|={BF2@vytCZm3IY)tFdEodw z;BZc{=~K?0>0NcSmckFJ2H{|4sZTA<+RKch)e^|b#f zXRiXHzyE+YK+)g7MI*P}-@d1uJ<0+;pLd0^&u0S!E^$)zdGIM`uM(o)XW)%c^!rpa za){qG`goQm(2ha_f=xi|)D^Hh0kNXBX~Kl<{cw1wBV8<)D_o**I$E+)z1f>&i9)sv zhkwdNctQyF#+NHKaukUTIl7$FT*2SzB9>A^x$a4lGn}HUCYCd7BoLuFL+iSeiLBm% zsB$jaMM6)q15K3F%Y{C`;hf?g`DV6@!K8sNTQQha(a1tDDeFS8U_upS6in8eSOH^> zQ(HSHF>b)B_4iftIWCgi1C_ufJW`DrybJG{#Yt2WH}2Bqo5hVg2t;VyXyI6+vsvvx z*mxT44(!vh`hx3U$k=e9d3>uH)OI8dTKSv`ALE~Wp(Ymg|-AdhLE8yqO zk73)L;ODUb5k=A|`q{sgx@o`Y?NRvh6}`P18oBM>_HCtZG8XXo5#}C049$yb%MNa( zZq`Bc`oVY`6usVsMh@}1Mz78i1KLGsK(JB9mvw`cJIeS@YZHS}WjOuEB?a5iQkCk= zK2|!ss9LZgt6Y)}E8IWpA|`R2k0c?e=?aD=1Qh}inh>3pqJu5($%l8;9dFE&c!h0dfU80y-|DOM6fjsV+nV=Y%pEQB0JAa;QeGQq2MAc~xY zc90N7-j3!;9z|9I4(AhhnbR{}9GIMjFIq8>Y(^ssf#hUe2o^}FevAUi!6sHfAo*Bp zlaBG5>k0RAW&a7!tDzQA`IO4yTj=!}|cvN1zlTG-Qu6jM~n#{>p5>l?zbp{J5 zR}ct%NQwS-wQ-v_Z?;Oca+Qnt_n|!{1eC9%S&|2o&jSwU5&LkGmiXP@HHLWt@J#i*K$2qdvz5% zo8RJXRrL8YXk?+Yd7419Zth|_6Gx^eo6ZkZid-0&eWkHBW&i{(|56PDk}LOA!a!Hr ztEvzXrs9oN6vreqa@)l*n~4KjnER|`An{yoE|9mPnNbyp(tB32;K8aZ#*bt1<|;~L z2^zWW5}D&kBwxx|JJO8`^vc1_+ZA(-44|n|)yQ(aT%yZgUr{6lyuFGd=|dy8T_jUI zku;yC^^XZYX|9e>pgB=h$8nnKXjW9{U_OR7RZ$p2XympFgLN>KOfC&USMp@lkId!q z12i+L^3d&IeAN|W$9M7ODoW&AXymp_WTqE8;2A+WJP%|b|27xMztFs>3Pd+W^(rgM z;|092it_je8oBNAVEG3y=Di*mP{_WYFdoG04G{4RVs!Hle|<%f?1{HmQ6%%x$ZZ$N zG=B^cA6-4!TprzMQd9$o(xa=AAq>a^YAOn24c<~kVVsCYZo4pi(F5jwL;9EV&E;_} zni^GkXh#oUeMOP%z}u@Rk_H;N?IM}Sq6Z<3_A*v3(8+w>TqZZ7$x)TbO3h)66Ih!4 zs+ALkas%FCMWK8Ojofyj_)=9uo7mGlVXl!!(Y&Z?L_1Y&R#ue9BY0yKFOH*BA#?r@*0KGoO`g&qF7!>yVO<`%YV?wZ5PWzsaT}r-$Tsh zvN$%mC_U0FNnibPaTn!XpRmQ-gYZ@>3g!Sba)@9wwtTQ%BXkK_1A=X5zg>4ll377F zDi~R@)5HqcyRxaZo8U%^56zv2Ze!A3*M7?g`&NY47Bl4GM{f6nWIxI|x_V{%QMMC^ zVfHHw`^;kDtMEb%;tjpReenCvyNdKN7ynKUej^X5zqoma{O2y;wJ1YoNN^^4n^mpB z(T3WPy4Qo^LLZ>13W?9Xuk-t_StiZ)j%S_D4S=;hi05Rg(|G=b8FR0P1mbIf| zRrAhkm6_s@dr!Y6RG(F{styXh!B-chn#twC9B}(m6Q1(}8Q5ZP=Br|65HvVspJZZ4 zF<-JW)pVxVXZ2JwrWTcJH8@{n=JSC}DPL(6$-yB*mP_U80GMOcB4CLrR~|5wO$|8C z_UB7|LpD7Ep(($bRX1z~uy3zU>@aHKwK}+`R?laRn`NV(hX?is4WsDxYNk?gs$~_v zLwkzu!u8NYIZxSs%Kd)Y{eH&%-r#;e>wZ7yes6TYH@V-N-S6k!?-$(fE$;V=?)OXX z_g44&W%qlV`@P-$-r;_~;(qTWU#su~Fq}NHTeu(osk`t)^7BWeI+9m)hv2V4t`qj) zYV`X)C27tRV1waKz(+|n%-_?s0f$R_?4&q{<)#5nj?}f3WJ-<9se9LEZs*<`t~U1N>v-;@yE;W*?x)~OsE^>y|KKfB^yaH*WMRnnG8IJ2 z+&+c6Jq_C#Yw2`gI(o6W`ws$$C?=6a_aCU@ez#tt2oAv8r6_{^(a5`y2y!_=1ZSFy z;B9D1q$A&gz6hLpi6S@^ZcO41zS%L)aG?&2bXhtHIfKx3|0=MGLQk1|gXyjc;0(C(GzcrV@GiXMl zmH<>sl)%$?vlJ!p6dJkh5^yiBN~iOsyeNXHpEMp4Oah2_a>9eux&m4;Q3joO!xUvO z7LD9?8F=|XQS1zkH5b7WG$Rp50;gJ{1dhO)r6_^J(8#-x1jIN{Fqc3dnvtj_Angot zc(W8GkU=BwIua;}QQ%|d5*R`=60roFYKc+cBY3kECGa6Ma@!@~O%YY#KIq^S(Ra-? z@GUeYsv1z7A|mw?Meq&0U5X<38XCFnBJh$zSnCw$h+Z&P!9UQPsH#9QDWnw>W$;(L zVTv;N6B@bgGMLevB&t?x{rO%oE!guKmF*29wABCVJ?IQniEwa zsCEyeVxkPHc*7KBP(~xST?SsNC{w`=<|_CUni5qND5i=bBDj{?1+UBO*5UjQv5Qf4 z|M}JEs<&MYUb0ZHHmqEJn-CWsF;~PxXj)Vip_nXqbrVCwgLvB%L&Fcz$ZZ#c7aDey ztAY?-Hy6Tx(3GeOK`}ItdWj-<6>pcK2wp}bw_OC2=3-C6GiTw_O6AO$pTa+r-~y?*CKKY^a8SMJj`Zo(xn;aQ-H| zQHsvrfJWX`obPOO=Jpw0Z0`Jv&}>BNd{QOB`4`}gQgr@#Xymp#ebZ`oCrF`fs4wP<6dh=qFVYoc}evQHsw0DjIoLaX!5E z$iEcu4|C`L70pJZ&L>q8oc|}hQHsw0JsP>~&Uc4_wf+p;OySS|=U;D}{m%u6c(Q+` zVIZxO;Qm>7s}$Wo9gW;}_q%~#Ncm1Q_x?&W8vmM_-kt~8Jo5WZm%j=Vep)jJ(TxNbc>QUhY>F|5-uDQE^{2> zZsCwzK6bCJj@jj7_YjECt27Gn+&y;s2=^=rREYPG3BS@sRub)4-Y3jfy!Q#SahP6# zcYdKlhj^vLQj2;uW_-AgmOf`_XX0R~-hd4dULAb*6a5ZE?A%ZEd-wYX_xnfp`zQDN zXYxhg5A-|eVex{eq=JHZw$zq0T-mO!*Rd>$gHyo3P$mc}~QqVs@#;jd}+7c38;{e@8;Fv`RV$OBFo4Lj|poz&5Bz=cES4J|5M zzObXC|IWfr_?$Hq=_QC)0Hi%OQ_GP10sUFPJE0D^+YaSfz*}X_sCf^tEVecOtgC6& zNJFeaUA9?{u#G^3Qr^P%sK>jt4qRAwE!rDyetX@8Af>Co%Z01aG)Wy=_#ohLF0m() zb;G8+gh`?+@dYbR5?z5t7AA>y5{S??75QzH?r8zJmmdUUaBWWT@(DQWWMcnDvD_c7;FsipvW0++wRe zGw)w{=;A6WM5DX#rYc6GI|#Cdvm+m9%<)su6>{h0AHiH)OBLMyJ3N=tYw$(4t39R{ z>UOWrV#fL#yv>UK{}mcp=#73sAX=Aa%;trX>B*+^0~J2~oB0`IolFA=TxzBo9!?~A zhyRV4E^+0#K8#MhDhq*PGTvxKp-ey{w_PZFL>VaOtaPqi4`irI&6RQ-ni^H5m`0Rl zoyCZ9G~Q-Kp&W@uZo5!sauKDJcD7FNd*MswD%pzWMO7uM4C6_&!a_9Z$D6Du5(|yo zc9G2GL=yJA{8i>c`8b*zRiT)6JYJ>6c=A!a(TY;J9F5#|sq7JyO2{Mg_nV95duVo4 z#d4BiR2lZA`ETRRR+P(qXymrbWmZrw;#2c4nJeX=Xkt{AveH~BP-8KsJcqYfQ6zsu zBez{7ftW%^2ibCEFp$sgbA$27XD@(=XXIlXQ&_b{xh%k&ttgjyXymrbWluh)P~Muu zfq-Pzn@eUbnjzKT(rp@C_^OMtS&cVcQ8ug4$ZeO+LYZvb@j*Z}?=)Al~w_P-QNks#XJ7c-E}0}JnQf5Q!0MfquG6svoY~kKh&X4NE9dQKnp8WhO@_*m)nAM`r{V2a6wqcg za@z&8->?FrCtL#(`hdBF-iIbiRYIpkEFt%duj?na4evep8YqhBLNs!Sh&1-lv2A#C z`;7(!+p7EJ7H_|po9@ZiEOHDtT`iaE>E3)PXH^60{f@bMzlrvcs(Lln!Q_<|qu#xE zqZI{v4;onzER~9e+L&PJ=0FVyCfJYYZaH%Imj7dPOAnh(SXs0NtWteDsGhqd>kXg7 zjw+=3v`-;h%>CPe7IXjNoHw;{X>#I?oImsbX_x;`ySP)votaX$zg&eoeyt(NPSMwO z^~83H{)a$>ZXOKX5*GbN(b?UEBy!j%%wPMV{pB_wb|h^dfQVugI1O<4Eu%}t4mHfP zT_JT9I?uiE)+)xL1q35pidq;4%d1~{Bc+_U^mcM09z@9+gH2Cv_sk%i#( zD+1BFZqGf-FZc4C8?h}<@bXN6h$1}}z3e~BAL{FA_~I3PJsFMMc3=C>^2`0b!rb3W z(X^fl-aP@f-%H$l`k)N0B)$`uA7tP2f^Rz0!y2Qa-EVSPq;u=O)O71k3fXx39ai! zCbD`5GKJ5gT_p4&pGFfU^>X2Iz~P)?Pa)%LX1h4jxei~pVleq68d(S?pU{P1!GtQv zD43jMVg(%fA8Ktd8Sh;O!-bOHLoK2hWgIoa)U9wIvlBwd1v?{NB>Jo_(JWy6nm~jG zj72eB#Jqk4QaldC$!zbB_-jT_i~^Bfb<3U}vh zB=$8gq>U!JZ?9%5m3*mh$alZ(_?zhcww>;Gg8QB5ekZx#$?kWG`9DcaHm=>wf3C-#y&#eD}M+{VsIBd%EAf$QOOT?SE(vGCSmM*yvY+Lo&W) zU_LJ66GkS-14IswCapjL?LhPTGd~8`~#!4Bj@yk;_p8d6*)&!V}H^LQSmtGl9)k3jkuZUZ896i2DOcpDXcokb%Hqtq<~qIGi- zyeM)xK@?YlL52iHef=3mSPB zlSEyRMB--So?{_E#FH{=M2SAAq9}O?MyeNuw=At+W&5LTB zI1=A=&`OH3I00{@qAXURk=rf{E}tlhoyR%mqS%gRMO73Uk;18>D2Y1WL`6xQjYi(Z zBq7F$&zVc&GiX-gl!UbNxE^n!q9m?CBkx+0D2Y+x=jM`l7|lwIl5nahMv0%`O;nV` z18C&7OM;u7sK7&p!6~cVK5v|3{tr!yswOn1tVkV2QM`t?QBf4Hppn}y3NFcnrx(RJ zt1fd@90(Bcj65`wOj=1%7K`vkD#~I%G;-TzF~>jls8(zJ`Cc)tIKx~Sr=zJ+jTcAb zhaX-&MRA;hw^LCZ8_~#Z7sqT)9CB^E-&`B-MKhzSjU^h|aH}awKP)6U*c_46vdNhl9L6dGIj*(m_JqelaR9Vw!_ zx-=k|6?AjD1_ZO>m%3Zz-Gfcfwe~E+s6MOM;Eo}@58a@ot-)SSHh1FaHFM+;%TdW%D5tPmj9A*wecKL=+jU*pg?EnGoK7(cAw+`$YA| z-q+B`A>P*LyIJ>7y8;ae*8QKaTM@VWzpb^`olMyPugbwYkB7)!AYP7EtTeFL*%6L; z2=7daXYhny>2jXKa|}>MCQwZ%&qCZbCx#>2^BgDOE zuelXv8ABG$mDKTtjex`X#a<@PxQ^)Bu0Um7b6Kjf1#hlmCv+A;4)u5ouauj|li)qe z8%P%~1A`6IiA(WpN>3Yz&X?RJhjqSJZ?SXw0N!pz6}%6PEObuqArPSvBJyJ?bAxh` z-aL3OSY@b|d(hmdh6>3Aa(K0P)fR%rU3kM4<#Goax$SZ}Fd!E=8CV=7FV2!Kwo)w@ z=;g|_K)m^jxq|+Prb|^pXPI|4UExfK5$JdLnkY)@H)!OxOKQ)6q1l|CPBb%muR)&5UZ; zQF>3Z!Vg~pIc`_8(n7a&9Nuh2sT_?)Zo5>H0jYSTI+q{7dnmQwJ8x&3>!yUJNmVyW z&sTU=q{H5zZoEJC7!ae)R(uT{W5{B>KbzeU4>>zRY990 z=&C#gH3<*}^l^Lz6b1BAG;-So6dHq?`~_3y2h0_8Kbj_01w|TzJO)GweGgv)MG1Wy zjl4@sh=%z<5PHR2LNB3dYL|p41EPffiLZg8gq}kqw_QT}4bzP^O1FLg4u>fZo6O>h=OUx z=|IBs1#`*Vgyu(8GTjkG8jwu0>Y`{qi#J_SG@nKzw_P-IMA3*n)05_Uc??aBs$Nz{ zqZet1^fSEGicA=@R zQBMDjN=_QPwb+I)y1zpMf^GPEyYA8)vx4p`GO}Wci4|}I{=;Ki`kcmS@@^=%?fhhP ztCPlC`#9OQ^X5(FvOVX`KkK44ar>1d`^dV{O~Q?XY#-Sg0uj2asCBzU#*!)r!e1Tj z2)BZ4|Jd1Rj-pFy~ zORLq)U{{l^fS-5&GPd0be(nH>C=z4Q&-4TXZ@=j6|Dt`OdV=Bq(8z7~w(pXL5Rbpv z+~cX(JU)lCY<6a)SqIVUZ^GN4*v8+8Mh@}1Mz78i1KLGsK(JxV&ARe+tboLzyS3+5 z#@5Qc^?}R|E-xsf)hg{o%%ACXZR0v3Npeus6%R`e@&sa6NDjuk9trdrm!o|m^cf#U z(l zR-%!GP_c|av@R8JZ?lm2_gt{VFb~*)=0nxL{@X0%UT)yaR`hZejofxG`);$4c=|?j zPv3y%MAg&5+brbX{uI7^MQ>k=Mh@||M&Hf4f7%sjK(OwAAKi+$-G9Bc-T%09$?8b= zm+M>#@JFZwE+|QLX1`T?xd6-}R&o7}r2qe&F5RsE{|$lI75e}2Zmk0;KE)0!HBrR*V?Cp^=4%@jvSMmc4xGP6)`oe1y4| z4?|O;>Sh0gK&Y<|#uu;X>n=2M+kNeu5Rm&jXYTI|nif@m2PXtVef|!-35q^H1C1Qw zbB*qtWdyWy(12hW!LM|?C^sW`vb7n(#1)x(CXp>>YBj6IWd)x`D^@Budmr&~E4b*g zD+lGKo8@wy4D|aS-K}G{4(ES`8yCV4*1=q-D-)Ige3C$fCIE%S`HqeQE*v^PNtytKmO5fBx6K$)Eq7ex9SB7wG3j`neB&|E!@!_FF_2{0xW} zdeJRB_EFfsm-U{TcDHYE#c=-;bVHYLeaw)347U7|RjXUMG&SG%a{3Q|_KSzQ3-`O< zAG+TkkuUm%@_XQ~;ZhtoUa-bag<#a!KVf18EDCOI?OnDLoohBa(zzn+7~0A;_P;?z zq8I|KAaV)ZY1`aDIPB&^as!BKSuh*~qrjhaX=hR34+J7K3bb(3&?H~Y14Dr+cVNBZ zikuAvCISSmok*j2;WglkbBjHd>@M&bFK#Osk1t#?T^NH#7Se^?2}J8A1!vH$H$K7w z-aZBl!nHxc+ee{kQS~-W5rryC_%<3@2p;$8La^XLm17h< zt~Id&h8q{OICw0BVTM)8aU+e+ukcyU3Hy>U^lJK9LqF^2XFd5yn7iowf z|J2pvmdFXO842w1Rjb#kS|vCxQMk&PSQrb&__O1YjiJi0r)A3nFo>#?D?t0InM%Kl zIEo;K$A@8O7wob1a<*Qzz`W)Z!^jrd6Z55Pv5~WS^F^4#aV8s<495)#s2p2enOZ&F zZxt(66=LY&$iLj5Ddmb*b;w?Z{EN=hU#`E>O%Tf-YeD?a(~5K#4goryS%X8}?_uO? z+2deqYtE|F`-e_?9sXyJ>MNFehPv&s*-WLLFPGpSJFA)P469K%Bhk^(T{x5cB+gF~ zS7i`XyUw4`(JkaWIo4Y)|VX$1b*r~Qp2+EH{!3Sl6)kP=h529vZRl^)Wpy79 z;#2|=-m=5im7>4gK8*8sfrU8ET@j8gf&i=FK}yy;(PT+|SJ(Iu8?;Z-wiki6{>bAVKeR0mRDrtD1(^~9w zT%_o<)hwC|hRv+h7wG<}%Pxy(&k=~wh!*L*_7#vq+hd(oqp`>ll22_-h`dDa3NLF4_&4!8>YNV34}&Jq%&M15i)UNc{`yS>Y5^zx2lPJEzx5+eyBG19_sdJ zm@j+^a5y^cy_5ar?I|EV!EI*5aSVM)RDcL$R;;lv}(&?oZ9h{qgYRM&8?xT~B7Q_+<6P*ti^*EW70i2zGHw+%jf!IiZHxTEIu zS}=5MWb2Kp#V4XC$EJpbq}y@^S2d^OsyRKD&j>*o-MVgNIl>wOp^+n)O~1LjI!V$n zK3~dNJG!bck?)@usJk>fJ3sA7Tef(=wPni?-Hc{KLW){B5SAa#MiVHVdyr%xa0i@I ztCUkK!EYsWu`UGj+g4o&)|UDSM3kX)4J_>N+jfbAr@&RF&f-KGGKJo*${^?F>%j_V z_)Oe9W6PGn??&kCYtWRbI(ur;wc5#rdQ(tC!R1$>3m07eab1WuxO_sTYLWcED{$2P zCw_NN0e7?Ci_p~%ps7-I^~7Y;;uO?OaP$4>f(18!PZuKSW{r-P_0_ar(12i8#MM_% zTi&SE%L6c*?A+WB3(b6rKI*G+C2P}@SyFP!VkHX-*bRy|%+~%#6rj;3>!d#+F?%|# zYC6-XmuroIflQST+i!GPCSiN_mM!A1N7$VAMRTg!oM$v$>aVBZ)4kE<3$1!j0uk!d z7WBdsm-Odz7EIgs6s;v(7kskcms7WF@&96kUhGD*sOrTDNmey6Ca*!4D|qijT?iHp zSL#Brm`pWf6qDx@D_WqoX}Nq2VuBN%VUJD;hPRyLJ^*%jS>LQJTZG?^P`Mdm{hmJ%1^$1;m2bwrl z*Uw0LhNrxG3cmj`x_rU+U(|(YgYTUM(zJ8Dk@NWP{2reO19|tCBJ}fb&?Kq)nXbW- zItkwW6}nWxyT8zd_l8Pck$4>(u%GI(2FfvTM*Q@Q#HgoCXlw3YP2}KyWLrq;q=)5ZsC@qRdgl)|fS& zU80|Ty zD=moCl2z~+-YiWOJc35P5fWT#Ox_UUQ zg&smHC@W(c-at)dOhzMjT^WmD(FwMA)zVfbV^^!`d?{n)^CJOSyfV5hUV-+Ft}G62 zAq#cwWKA4_w@y{~dUfG}*rrjofwiSNdF)h6lQ< zWjo^xLJk3m16h0tDB^+Wint%`Bwa-urKbp0HD#6Di#JnKC3m5byRMR6qLQ4oCnQe% zKDsKNM>|DV6|Ke>fojPrcouJ#rV5@xBX?Z|^N70&dy1j`#j?92k1G}fL_FgPcDz|V z;VD&2R>DHOVVX+lLnDt5B^2w0@<>QTI3c*0gZ_3#0-Z*=w0YL-D=J6RJq;;qxv#Pw+8u4{tk47E}vGaM2gz875%-$A=YR}N$K z6hg&hC43Wan5GiGhDPqX5@y$nqy?#i!oQ=d;2&t0=&E3Ci%vqQl&pZi;*HW&z@N~_ zU01-Y-A*km3>+ik?I|T^xe>q-SZS=F!9pai z-(M5g7JhTurFdI3gT%!YIh4%KZCP31bAY$mC@{DDc`!EOj+M{hJ*nJFC9}$MfN)m5 zO38h||KN?%r1#TkWT_AMgee5?1DMDn^#K=AD?;Vi{%xDnPO?Vq3JEPjVEH}R5mAEA zqaCUnSeB^*3$KS1R-VOMqN%%Q7+t+5c*nKH9h70$s75>UFP1@1hWB~Z_u5||s4TuW zGNTItq8)jq98}m6W+14@RgyzWAKoNQYJ1VhQb?I)3c*7P6IdHUiU9<-f~7(R5IniH z&~4Clr<>d!(Afh8J;yplIIWw2>jTf5-tHK$mv*8-vJGBg9OmU!0t zHniiEB<5;>Baqba?==_5><_J;9M;}~H%~LHU4TZG!rGfDL}-rEc3t!}9S3*pvun|+ z0YTgb7U7ztB#2wle$f?#e}|S@5WHTp5`mzCb|@^MmtDX3jUKmq7+(GP}asf@CIsX z<4QDg*R`?0QAi^YA0CJ5tNQw?{ak-M*kygdYQ0?rD% zuC(`*gK6XMqpRV0v}dBLK~*zZ4bS2&(^SJVXymS|VM)0J7i#Uuk2DX4l9Ld0vuhwg zEc-&_k;Gzvh-V}bKGPIhJy{nE@#bmjq7RK6q6>q0XFhe!rZ){B_|)}TrUPVm>iYK+ z;Sv+{5|PPLA6*KXdW=)F=%bVV%W%#@D_I$t8q3Ia+5^E^>mAJ^g}G40g!LOtMZqVm zPp1%}4(;HCbzf%K&g@JNmMZC{0|N2m0<_oNHo#}9-;DN{lDOPXz!BJK20?r29c{n$Mjc$HYX z7y3D<22RIH5jIvRyAqohDugRVXYwmkfAY@c7Zk#vGcoC&eK$laws0)iTrB6UjD1=e zE=jaK-wWGvX5Einm2OeG#^0=g8=6AC7mbavz|~_Tjz`V@$Ta8p{2~A$SWlX&*o%OZ~=yrVzZ}VB(9^ zZ|qI22$gC3Ls2h0;IqC4@4fD*LnNwHO5$~n=Yl=B4nT@RMYLm;eMnB$rT>V6Uzbvi zqyV%NZcK z6wLyiZiGuIGl~#&9k?W75_B!vtGY?hej&30Vs)g@Gm1AzQ-klM$m1aN>?>00HON5f z^X2I5ei83X&5$E(NfA;XpIE(`$)V;xyk(j+-;G9=Ld_kf5Ioc{vAwiH4as^o)<(+q zwo0i`BD4K+*7GlLO~jD%ceHnPLr&PVv$|SR==lrYFilPVks^BG_n+mmY72DP{hRd(h5aWL8o%?IR~5(G5DN~ z_NQ*}Sst42u!>0G=8bq$GzS89eA;oMh~OFDb($<(Wt9Aciq+oehI(`aNV#5`#V z!9xra+Dj|M^nfNe7qj*rIdxg{K;#&c1c-PtY2o~tphRD7q#%>P+oP$#WfXZF1erww zpa|znRx_M3b#*NKIb=9N*^j5ran%caOB9DUrv^tz>uh9mg(PyKx zehc2Qn$hSLq1kK*>s~G8(DW(1m74T_9E~i6rjM9H@X*9W_|gkaTT8Xgg>v35z~g#$ z$o8GzfO{f_reC8y96dCJRZR*_zr-7-sm-5L!OsJ5@Itg%8er zwUGkQX1qO`3fx4I$3XxhgEQ`eu$VIvo!eb_Uuvd9;e#_p#pEzk#T%wcav6;*g_(jW z1P?PzYH@~{wr{JSHw=eA;oT>`?KjW|-U@Ds7;8R*_N;EK30d)w>Lg3?lX#mnrT8&4 zvLwa5=`L0S9dRkL(}4yM{LJT5re_q174WFTpF8`gL+_?~F+(TR8tzQ_pedzs?jQcIWqyWx0i?s&3(u`gfapj}uTcg@~PiIa_Ub+F(cC zRyzNN*qq;+EV>1UJN`OTuW`p;YYGv&0y>}(NM z4{{PVnL-3fFqrG$(8?6oPv~8U)&yPHIm9} zva+n;v|F$++E+}KTx2Q`uCf255TR2g?HsbVz9?%pt8=_#oO>%1N%=)qo@L((uo;iUjrxb&`9@58!RmoN2ugjqEy%H`?n>A$aIu;))bH z{v(PNFw?r-D0G-kNX??VMb%lsFQF!Fn2YkwvO>ZpZLWBX&)$)}r%`3t)ItbBcA6cx;9pF+(ur3-f=%P-pH}+e7m@ z#bi1moE1-BQ)?DK7T2@Eq=?D*ObQX&O|*YTebt6iq2SaKYq!;_!vot+S(iAq;tUPJ zbYnJgD$IWb$2y0!$L+b5fFt;`u@Yu_i7BZvSduDNQqbm@A*q^ch&22ei0<(NO(A&e zT1O$;*@e?qFbx*#DF@G8{(USf$3zYA$7K5hW!*%Kk-0zvMEIDuAa5Ix%*BI zG<#z6_v|F(Eo{>tD^}8X-PB{;=@nCm*quImed5$oIkmC0yOND>4cbh`Q?)Lq*!}2MF^~743%Su#i2(xfkN^xjiqBd+NwkX!E z?~9F#WU|VPNr5dXZc7SGNflgEq*igasc$(wcbG!NPS5HM`BIV4L)ammGWm0@M9DeD zhPNpk@YsmZR-TNFpEb!0vxf3RI%cp2S`X!?!mW`gdfe2%oT5ifA+#wn&QDi}-32U> zY;|h2k;HKo_~O`Ne?9SQarM`UK>q=2Bt>FJYN%<4#LHe_OvDuR-;|dQrl>1Oz_Ny5 z{jUrcd?(h{i_YMPO?(5~I5WEd6p%86P zP7@n#cxJlb6m6QK!h#fR5FsR;QL5}5%$LO8{J7XySqWQnTtjH)3JX-skksy`AyOmQ zXzEoSoYtE{#7@kdE%kiOfwVGlO1)SNZq&)eMnrG2;1-;!xCKj&A2RhCcYM|qB6i2m zI)y|hn7PP0(qzSzvAKPAvO0DR)MMP~mzqKZoo+Bi$!9rP$72A&t%zx) zK6`zoVvQu$Z`-UGuiq0J_b`$n<)*B%6E^D zlLgm`RMxY?>-7~gSTCCTlT-3fQwVKJjK?H%H*8L9bILaCPO%eD-S~mu-EozW7_W|v zh?&WZlPbGK%abXqpx}r@jujN5gF}vqWZ*5h@7UPfHz`TR)w17?iSD=8m_l&5zLL3q z!3h&4th;FR{L!^J@$sdlVLwzZM3SxJ4#k1D{y{oY@AO|X1x+6!beTn z;)K7`6e8$q1GYHfY}L>Jf?F}obhgc1AwGU`M_<>QyUE#;*kn0mFDA>mj}jF1zwJ?! zZxev;sFkxPJ;;hqlaHk2DNd7Ehp5xcYJ9ADZ^mR4ZCD#04E|0<}%V{>_La=5gctfD}{VFUL= zOufcK#(*hA?2hjtn@-@AEZxN=ju&4a?)7)?Jz=j22@w(xudFkE#DS1$9%1AO!|_6;I7rzij})t$5J1w{lanc~d%?noXvY zp<=84Yd*jKSxkIsRPorB$CDhIBpPf>^t=3q0o!oHwgHXJ{NX;B4$g ztErT`(a2p_%Kn4JG@RwN(}VC1UfR7YDqStx8E4SRq}`teg31fgHS=4vt8_JUlCEZS zDlV(%IlSST>iHEKx$EjVR7*Yn@Dotd@^3|sK1%=sm-p)`>GkbYlHUoksutlZp{c6* zXymS|suvbE{O$^9=EUflIUem4UCkV!shL0(Wkno|H&Ig&$DonBu87qEccp73-bcBe zRzM|tqN}8ic9gD4PB2r6s@k%0DtNOsl~Y0^cU?L2>cxO|0y_Cnbe;S++AX>|IZ{(6 zQYB?oydQ6*rYhctMh;Ph!JG=8mSKZ(0|-7!+i9ABxzjRtcXlhy^vy+*r%PuRo<=KL zDaXbNp7L#FxKJx2YQjiqSJpc z-r35R7i9YVuWI<{7wRLE-;cLPll%kF$Wn*F$Tx`gyu)Cj#Q=g!@KIA0yB)^OlRCP< zKYMeroF`}9PAg|E*f%9C7*){D>q$t%N3%NqT?u=3WRqY1q#ubj)QHC zhZ~<0%^RNu&tBag&*t6&ID+RIJ;F89aua?>bU$8c3c*{+6%?YKli$?gJ(*H@MD6k0 zp+wxAwo=OqkCQEEWjMI!-s~;A{IjP1;?ljv6e4z)Pa?Oyh+*TA*jzoCUZJbl<@d0u zf4GYuGKC1b*r5C1JrIjg1`yneoM}be9_Yo+t|U)8-LC8)H=&4|6?(tZmiF3Mt{kzz z{E%Cw5Iq(B&MdG4mw~&930Kw(3K81xv@;5}PFJU9%5YgwEtsdGJ?+-8;VlOrjCPVb zxF!HcAf&OxH%#$J>u2?lBW*w44&D3|jV$G-YfT||bYMz~6dk5Uu>$S}-Fs?B^V8mA z>P|jOuT6prtu~f2Vpmgz+O(lpZ|v`7sN}lHin9YYmB9U=JKVz4aD`Qx1d=hgl9Wx| z%fm&1LWG8k@M|NDj~g$SoSdjviO<2`I|KWAu5ORVb8i70v8k^}Hr-8cq$2K4Q8VCn zH)@94qLz4J=N-|VeWj_hO>ethbQ<+6$ZVHgbm%)k)l9`Hiw9>v8=IH+O){VQ3`n^K zNdCPgx_>`q3c>T4k28weIH^O&3ac0q_8x~`j0*RblN*oVAPW% zho`f=r?O5RDF^09&uNdy8Y{i*(|0hv`37i>7AvGmiec*6rt;tc=#3P@An!Cyg?hJD zAgoqKyw}LY-2TG$csEx99Kn5!xo|F>mh3%1rkGMXKe|WHGlk%-WjBRrdoW!Hhj!`p zvv3nX+<4m5xJbawP<9&zR|*0akyE?8{8lvFWa>jM>>ErWVy9uY_!^(+{s&`o{~UOb z$^ZPGLj4bz`i#5%ep86p-M&!$7^3L@U&rSDMIo;sDroqnsSh~~KR1Plorb>cHMkes zf=j9GkO(yMyKzOJ`EUVnv+!2oXBt=#F>{-23K2U2bG_GC)g8bR)FH5xeu}Z}3e4sr`RSZ2n&W9k4e6)k^;-oBEGaaFQuRkOG5Y2Oqhx?A8E+ zTXBYIBy~qF_Zsa5G|sNcRUm_Paxq`ERIg+LW0x!1qph%+b8-_16rQelg$pUTVgz%k zsZ6-iE;fbW9A9J#;d1<3XSeUnSYNFrh_8cpgWujJdXFOW8w2!+t$f&4{!YJDt)-jx zjK%n8O?}N7zlA~=j9E?AN?I?j_QE?7@S6Oo6{}c8*pq8Ia^b_RPsZA8XlE%YUy-f zO?{v5VG~!0?Fj&Z%RF`2Rvoc!$+lNZd1mupvC;l_G_vbL9?bv3l+(tQqt^OZBkRK{ zkkAa1EH&GGpf;eCgQ6=X6`N8vVB-RLyfsi?Su-!g+p8HW_D3UkT{8(;GrJtv4V7l! z52)qr=xTW*+DE!^y%{KlvfkO4#&`=1^V=QgW0ya_J93iLtSqf2rdnit(Z z=)kch>8qC14{gC4rYXe}C~{~&)VZ*;ufS|Sz3z*geGdel^P{tT9^RRneUa*B7-1&H zFJ4|nIrQwto2bcm4UH^?o^wqhc<5oOYeVQUfZ$fJ*=7R>9soaOI;%yjfa4d5&hCDj zzR{{#33=z+*MQPCYz=BGQ|x?$bI4X&Z`a#bOqIn~5WYkqLgQKZX$yndWx9`bj_1?Z>1UTXxe=oeARI^gVu_>0K$zkLd(f#?9DFkmLPf&=^p2TF3Np-{*6F*(+P>wx@ytxD?lg;Ch}!Awu=sey`4iw}moJ)h24T z1uY*Cn>*q4H&!T7vMuX)ZFE1bZtchR$AyJWKYH3soJuZg6eWq%( zd`YFpNB8crrVulSim_3#G+6{2wCUJs>PsFphD{-YbQt7D zJiTH~&H#d2vC6a}+zJ*zBUv#<2WFZ%EM4zjF;Pu8#Y73tq*g-qO@1skZ7zd17l!Hu zyI8BHoMMU^(Q5zLhfN9L;=I`ug3DqILX0zt{kGT3WYY({m<*dq6Q>oc-rv1kL)=yT zt=O1Zo%9M%fiWq#|F3CG%FFx|n=HR>>R!&!gA}5JImdvG-xKR=>?C(!=i6^$qu?Md z3Q`ugOX^#H9i5F|8nR&;mS%1zH-p0|k_}c>%vNUpAg+A6CrPg(xALhBDO7UfG$=V@ zB0bp@f`^@bOd)u0#K?@)8~xl=QrrsGz#~~PMhG?)--2V@H%PpA3+F_K#F%?rY%*M! zba%_~2%FkLikAer(NqdN%C0ws;DU^agoWJs5CiCwr(`fFvXG07g+;!>HG~6FJ{=b- zXc#i}A*Ug03K2UEi=kJ9%~v)Yh;Gi>CESiu7(`wf8xu=N2S`ouH3;|?$&utXafPWT zIT@FlLIlY$h;2MPvN=Qp2yVp}OsCC=6)-P6(%F6I(@!qjMVOzc?i3sOSK1@3M#7sH zhI1i$Bdtf?${?D`D6IbqtK=A3LAGRk=m3=z5 z`8c$vVnwdHHxwT+SAEfx6CQy6X$rx^Afq)>7<`N=BWzO7xMB6cjzM^#5XR{1w`~?f z)?u-+KPw3jDA7_=R@qTxBL_!kzMn!E#3<9Yw90#On%x_0C7P8?G*5C0jqB9d+?(X@ zPg7G;R;p==HzOq{9j}Y-^R1>3ytSRkXbaQ1DLHdJnP-OW%+5SqZ6%PgJ2o=rajo;B zrBP7L)N{O3KGzf?=zN1X#X}uyb_NjKinv1EyyjWr#3nd}26Ii2PzWOUaBL#zOEyCQ zc@4f6B@-gkW<{!IQ^rMLrfup z)EGoA9{gC-Gl1Y$jFDNGw$Z~jRBVe*?pnpf=4!Q0Z%c)y`qYK*ttO6hYH(w!dv7po z8MF(Kl-I=dprP0_b7(T-8V75iDTf$G?oTBxxtbb+2k7fN+`EKf2VB!MsRzxPDu9c~ zGKC1zXP^KsA~thn0Ku)eC(3*POh|sb!xNI*ZJO!AJ2pah{QmYxE^I;)CfiAifLCnB zyczs`rpn;rdM}0OV7I&!(%zkvxBbK<&xm%FSN(cxlaR*I4`-3q`$-n zx~su8g7(wY2&oa@6Wz~unnLjAb327-dnY{|cBZA^?#6;64(y+T;@YquTjBm0WM5zk zu4^PkO3r@5)Kgs4kC{Tm?(8YsMm7vvm4YDjNk59q(^He>kqj+Qa`WC$XvD<-Ko^-FqX25yBwG?rMt@#sl?Wj@@D7Q2v`BH3sFN-enV2lQuw{j(Ro=#Avze- zXR~|n3vh1@tV(1pLEXp4=G-~%CHK5sN#(~z_vSIC5ImT?h7r>4soCkw?eOTsF2UnF zWApe7*WltOecuuVAw&iIxBZ_(Wqn^&hM zce~|DZR_*Vz4tj&2(Ie?VFa{0kWJcRWlr8M#IT>n=H$uAf|V&LmQH_S>K`u9ADKeL z?&8U(?Wh-Pb-~9IejHccIVD+V#YsB;m#K%ilmBiC5p=RafaiS#i$w+y+=?;!2-8Wm zWqjTO=FHreh>FS%VjwmJEKj=g7^!-hZu=plZ8+T#+C3ZyrbHZ%tTTm(oszX%N)>o& z&aPQb9u9UKKT;;AT&hkraZ+iB9=%a@->1aJ&bnj)3`%8PgHpquL8&|#)RL%^O})%p z@JXf++C&-WSM!>Ur(RCLBvE2h#TF-=>#>p2=WjAlHf%kCvZV-GF?AmIe~ChLJCAyI zY@VE$bh1ato_kkx&s}8-!Ij%!&Tn@PrRw1Ch}FYK${xPW)ID6Ax0*u4?%{pT*nX0b zKRp_wdv{m!vU`7Q>KpFfADTkM?%rN^xo-nG=25nSm&^Y%9oa&-Hg`4bAv}9D_b&J{e0%PrWJlpTU?TTE z_!Ig0ar@DqZ)RUkWM8(hFDKJ4jmc%J0(;U%b2TV7cR2j(vq#r%ZLE>&K2WrFIYV?W z2YuO^#M04AMz`ubL`Z&ZwF0tv@GHH;9tL!HafBkSQv9mBnAIz_s<99H-N%>BLn6gbVT zN$K4ct6YWwbf{4Zp zO4{CI!M>dq?x38cVRu{_oKa(tOG9eFe}f*~SEkA-_MVJg zCYL&;hhe`0_>Xb0PGKI=j#I3c>Q#8Zp=J+NpfQw+)IqA+z|XVrR<~PUl}zAd8o_|A zAmm0OR-crj;N}zO-iz|-vQxIfR@MNO%5wIk-7{I91MJ*EtbOOMAdS62KHg3~-a$Uz zMLtH!$2H{RJ>=s$^6@_MaU=P-iG2Jw`S>9D_%QkSDEas}`S>LH_%!*rg?!vfK0Zf2 zZYLjikdM3I!_FNAR-Eu6{Fi$r{Hfs!$x)%6DFMahTK{3 zrE&PcaH(JqRO&?t0t35Ymk1FR{hug$Kz4tB1r9{8{n~FPa62qSfOYc?-c7Uc9;ur? zD~c7+O|R~3H$8m=kGcNM?>~cTv|;;+@;X3Ym=`t%Db9TU)YO~2%l-+42<@`lzw>#q z=TcZEBySRC;3hS@HeAYz$J8eLq%AJa{SGQ9__48syamU4QkY9*CZr0k2~v{%ujoGh zyD0=uZ~ww*YWKWMAMECDO+zv^8s;aVSJfaO0TvhqE-vzArVz0cFpm(>yiZ2e3^v8) z|32#f=Cv}R`rlycJMRA1nnJ|x{;?hebz<|r-h-fnrk>-@&zM34oo~?Z^VETLGX@ac ziXWLqQFnwtV=82Ey(f4hPS*LI0!w`Sw@PYOyN|`x$!@e$71wID+RIJxLe{^FpP(@7d^ne8v=lw~(hPMBBI3&m*(h zO(iFev8ql+)bpH2+mn6Ee($4`+RcfO)DBj*xR*4y$4kuuS)IzqKdX$s0%@iVbQs$gitXE+(l6M2Ju(mxC8x6h5IxRTG=b0tP z?=tlocYM_pB6i0&FVF+udzb1}>2bJ??!tjTn|)twM6C2(ElXB4=sONodL*v7f*}#} zUQ@4fVy-cTh@F_F8}e4QYBMfc&YXQAHd2-)Gt3Ce!`O3Y_n3N<6LP01MC^pD@;Yy? zp(OZI2B*N2aAM!_RBW^)`CUX_Q-SOB-4{Pn6>5sqTAncVEGOqNQ;68fNo=hbwvBi* zYt3#14%xXEwhH~pq{rgQc2^`}(WeZD^4XQqUbjN7aV8m{yp3vauq9&R`{KBzWpT63 zR1+KP<-C)DCFaDo68vFAAY^T9ge>veN;Q>jnvg0p6Qnk>IyxDvOd*18#9;D_&%d!D zy#WNb;>)I^S$DE#O^286)nPqrcT7@+?aFbTI% zF46xfv}1JXUpEH*yjHRhK909aQwSeHBX?a0&DLKW3DE!3==A>t?G9b~Tetq=h)nvA z@V01@{sS~}*GXT_T0e}&)0t8Q-cqZj`A)xp4yOM!au}Eb5V*WpR|ki*3Ipou$9FGzHuqL*0TE=Qi@-wrMOOrCTZzD5DOm<@!W*S2gEP^{U6(+tCiu<$q;M{z+|Q;{OY8jVAGzp^>{z{4AIFJ<#xj;s3tq%-@anh%WQ1S~5?o zBU66|-W*NpZ$l$@oqD&;4_f)E9cc5ylU| zNTQf+p^9UptKt~6gLGrV!5XR%YbOiiHF)bZh4D%>a@U11+Z6`6#oDd}0z@Uc6iR59 z=t?2kQVOg-GWmJDJ(}b@XymSwzl4$BJZf5X&a-L^nzDA} zgVA7nbRBF%J4iPgv>Z7oYbOh13*I_SVVr~yv^QVy!&!su!^AMF)g zHMGnVc$H)coQF3_Qv$ou$X%C!JHuEVwj}mH6`lQ$qaC8le#;p~S{s@8kKnD*B>sbF z;74fx=<490R=I(yaR8-4g;(j2sBUk zv^W3KU*bgzJE#@g+RLW$;M>{@6vALzyUE4st+zN&T%WbX_t36EyW5pN-_U+F+C@sn za&G|~fsV#98bK7a_0xK|mMrnM*1rR9iDs0zk|G;$Xz;K^YYJzRs`sa1<dAlr zo(F3p3gB6!Pu{)PguNz^|IQxOZP)v^Y}fr>d6QLxwJ)5At$r)bX8|Y2W zk51=#cpqw}6RkTDUMHE?-FTZcd99(5rC@TdDFhEDOkFRnU^4Nf^;?b+V#)2`h={4o zXVJdYjV0kD6Iu_KRX#Gg1#gL_2rpCDd77@*e0*dY+2hoTmdsJV|MIUn15?R=^azO_~ar zh(_+Z0;V%>NduCjqI3Upv^R7^dH8_DR~spyABML_llOzs$RWHNBmg{zVBLxVL>C7n zkVBlZUC1G-(S=t=)1fQ8RyhRJLy}wpZ;7Vlauj)-hj;2o)% zQXCLEVJ+87?p033+oehH>(IzjblFNFI+s_>=N=17E-nR=A|@9XqaCB$!5pX|1+QYV z7B0dYrm2PhL?d@y3v+y0sM+PfJk{r-%iw>|KGBsyc#bL7Nmjt8@iu8H;1g)%5Cs?{ z3Ov_fosI!S7jun$wjZ}q$TFUfuDxf`Z0KrlX=n%{)sXUwXYht-3hrr&JRb6kSy1z^ z%wplwk-L*VfQTn!T-}OGuSPPdy?Bc>Nu7m8mZHcE3emZoVm4vl>vRL%$VM1-J*@l$7nDu~vDxy-iDpgEh6`bhC6}|GDBgz@4Uo<;MYTrx4>IeVLZA zis@`Ac$4W9Xs^4Cvf*vSe+=y=C2_fL0**jQ!++vfL14dICAsT*1aFdN5PKMnECsQL zC`9K{mj#(p0j{&N>18D89V6+ilL^XT<}V^=Fw+2{9SN)~gF|To%O0sv%0N*+Sre1- z_GxNjA2f2;H8FS4fh*t0Tk;i)KHeC}XkQUs4@aQAq8k?cm(-~A5UiW5g+uYSX=>ph zG;-IqFmo_pDuWj4#b8tzjIM$V+8??q@V|heRDoA3ng4U}R%!BoHX6C>{Pzr1Y&$zb zbE7~QxH`H3-hp4jW*PZJC7Zx9fZ!9ApEaE_aVIKo?Cf17Q%))k4Uy+<{TG#7f>yFphK;4l z$;rH1qA>fVn2>y{sU-M>FvaRY_u+_YpL+zQoN0S|*k5tmgTLiG&S&TG;)Xr45B^nFj#;wfZ!d*`KA?dJB(WWl5j@xENe;0>Q)G!yZo7v>_v3&m1aBS(QixC;8(bSf9X{vO z(#BHaBzW^IvAJ5U+oG6X4~61lu~N(mr}rjnrEDohURg{ztYBAt{6zg}re5O$KE)Iw zcE``%VihftaVFkSs#g-5N|l|0-v1*u*Uw89+@ez>P;?63z}+dUevhf=xby3#5ZcZ+ zkKShtmlCIz66>p?*Kdr?>obzOhfAqiDP=*ClGLv^brtvadniN)WA)rK9N5&cp;Q1l zWg&zV?V|(*-xr%N=O%YU(J5HrCPhOKDJm|Wy*s)~?=Xen0=|v0vLGxkSsM0(m0>@i zVY`R={+LQ>ch#UkU zs)>^aYj#nHbBD&}_`YP7luZL2l$|QkvL*K)Wa>NK?oy@@vAaL9ncPH8wyW&26PtI9 zBsP{Z@FWrNQLI@I_$vYzr^m(xyoA6FNjbYlQZT6ph5$KDLnLChn|hTKv&|Gjn;7F9 zYW^wpVv!`Ur;=EdIH{BYt&RwEjKoIAf@Fo2o~n`3Q+c;^iGy9H4&)qEDMV;y)%G#j z4BELfoeS=KZ*1=Cb|=^Hih6qeupUp@7WoZarW%S&1p$<>I0^D5`_{B z$V+wje=xCmLq6GPF=BLj5AT8=o?T;En4EQwZL;7@2KoTm}%_3N~kH0Kt7R z({vO2+XE#L>bU3K1GM+CMKnk7SETh0aw(e{jJC1m@9&QQHV-cn3#fo0ffenTwwB3Qm4tNPvjn=xtWD-mQ*bj&W@n0Qt5@`sc~igge$p|8h>@DL zIXV?Jku(jVExe1mKX+onTZ?lS;n)(-V7-`0@2*&7I1DEIyZ5@Zk(Ikf-%%NG?osFX zfBT%#+(+SOxdu6f^gj3#S?4=$Kf1uTnSN!sE%ALr*yM=u@nf-8T-YO2&ts#4q zgrzgVzOA{l=;!qWme>u^n_4+Fu?+?o!AQz#hUr_>>mjnR_NA?yR5sGSkl2sY97|rYAPq znNr27l|+4$->L41Lp@8A%tO4JsHU=>4U&K!q{dq6CZudSE(90Q1Evr$3W#}sKJ*n; zSXQ))nURE3OdMOOlmdrN|3Qhs)L*w5FChIxv-FfxOxdh-iGshH`j1oaCsT;nDVV#y z3JU}@A>9NKjr>6f^vj=(tAC!Cgv5*$og%@M7A-k{36vi(16^ba5p+H#9Jm$XV;zr6d%k5wqcgYQC{-PIn)=4`+byw;eOw3`J=Ewvime`Qk$-bM-(qV1!a#I{n^ zArZ>TC&&`|iT23uQY9Or?Dv8Z?HJU^1guQLNeI`F6j@N;$qY$xolC@AW9n5d?5j;7 zVkc(i<{})O2OcWch}a75iH(FFSYLud!RNG4$>DdJdW$>!c2kJ>9ZsgYn*m)2J5R*u za5A^ul(@X+@tCQ%xWgYYg^1nZi?g+nvQ48-*52i0;E!IP=AYKu`?)2dA$J->*ELZBEerf77?)RTl2!mMO;0ky zmF?&>Q&;n#bc!hiC!D$3fGtiq3ylU4+=`g`{~p-0O6TM)Y02l(*hrt1gk7t?Ql*xD zu_R6efhh#1J*EzP8ad4iBkG!%vArfX zZ%+qrH%pXU{Yq0m@!0kXQ;67IJ#~WvlTpE)F*{=O^t5EAS)k!wx^JhLhf+*muHVQCLUiZ*zl!l=LbhGft{iU(eLMu zf-fh$2><0?34hv}I~qPO&)ogxnYDUtY!j)#Xrai)|%6aSGi_ z+E_a<3?&SZ<7swf02cIj4#0SX{tt<2b%4$j_E)O4(Hz}%>Ne$gtG#w>qtDyD57(Wf zn{zjpjBahr$=Yz%XW-nrli5kX4}P&-zpTx@7pj=M9zN`VkAy35H2w7eI4^f2(F)yu zd*UqWv)tQh8DtM`r@XO%)j4llm15d=sSfeSO!l*(I-Gi{f-kl<7P0R%_o<{|lSG<+ zOYqdkNi9A}K0XZ}lDj5tByJwXc zo|~cnq}TiYP#!K^wJIa@+cUjy4_fC6?)(mM=Xc4+_sPc($j8I*AxVuVPGsvVMsbe- zoU6E(b;ZA18(eUuqMas}dq5q0k@^>4q7{rqJ?pn^hIf)Zfk4qk6D)_(QtH9pB9d8v_+vsIIG8hg0Ud7XiX8n&hIqbiGVFjj^u_Bt6mo zUf1Gx!R{i+x!@iwmRyAxMOqg$$TVCs4Y!n$9XO;0`+4OFHK4~V_z_fp{(2(u z<`(jCGWj@_e4I``UJoDsmPzvdhA3stp7V8pWaVgXdnWwR?LYUYok`=!F~$SR3i-wd zuO^5)Fo#v#@g1MxVH!3FCwy?WJc<=?sP4O+jYv~A(p`<>R*w;=Lpy@eVvjOU^8;)P zV|C2^AG=Kb$cNfh3K1HS+P`h4hdGm+yRGNNleX_|k4tlx0ge#N8!+=tDI{lXNvYDL z#Wm4Ad9^77Zx`>N5N%&NUE16XO*e(o+xA0tgx&)Nv_aGg29_ngJ;8KOD0B{RS)_ZY zO0gmIPE&7kY2R)N5j!EX-8SIea^T-3{X}dW%xSg)uUx4eJZ9=M?)FDaA%bo<=wf&; z#p0R)1h=AWS`jyIPPW>Q7~05!Zp@QAv)M=E!;R#v*aE(QWJ##Mlhru zJ(|qP>SU7(a>{McH6{fYtrKHXRo56P#GYa5T`vDqO(B8=8N^2(Vp$_JfZ$flGOdUk zVh`%&N@qLH`i}<(#yD>%S>D$nrc3WQqM&oRO>{hgw)VDQ!0B{6G8cTg|Nj6FA_o^X< zfzRL#(R{??lN33W#kLOVTC>>KtbTvF0vDc=b;7_2`zOFwTzHlkeGKo&sr2?$I4M1P zSz~eqW@;Q;&tdT5%L-7`AO5h+ga)<;BQZ}CTvEIc1g2$hanT9ZK1iJN!bz_YZN1VSf5Nc2RK!>a5?5E{~}Yh@^th+ zDMV)y8Frf>9MrDB46%I4)Cb$+-Q3lHBc_eyst#YFQkU|9=zhG>6oNO|>nTKN%3v}8 zpdMc!C>kzBRa_SIRVW*mBPx}x@cqJMQ`Pk1cewD*EnZ^b%cd^mYW^Z~Vc0@?Thnst z+i7H5LCq=#dfjJYbLUig?Ie^a_li$P_urGI5M0HNGYZ=Me$I5_Xjom&2RuFfg}8(} zje43CDZ6?Kl!{A;UA1$mPBevx-PNl|#|N7W6693_a?cMt6-c|o#OYQ(_~u+HHVTqS zvULYcNs(LN$?ZSvxFGp%HMNVGBE^xHnR=F!v%e`s?BvW|pLgKk4PVvsFKca!jfpu) zi@ueQ%iTGxzs@FT}?CyyUP~G<|iL6fI>QzcqC}Z$ZzQLU0Mh z)cLIS!rZ2cRj|p?5!&sLOmRc=jRom^T;Ko2m7lNUfo`yA5bc0Sz6g6w*`p8CAc?46 zuqtByKFbs$NR&ZC<875q-xxq}EB?cD%tx$%Il2QnJ4ZJi9$qe3Y-5JM?Vr>hp*5B% z=H}qRkY#FAo#c(bW2cnH`;AwoOR_D^EWI0>f55*vnXI87+T(|mh;nmZG41jjXI zCgGS+EtO$qO6}8$?!`e<2;MR>6e2WfF-{m4!S1nonY^lcRzdVoT~5%(#5CN_`GNS1k#lA1pm-G?7D zh2U!bFr%T}6LV8e-wxeBJmKRH#@~<4(^HeXs=%%4b;JKP^%0lqw@e}8ceCmV#6QL8 z=Fry<|IgG%+|9o;g$TOYAo1b36N^g*5ZsC}dI-~D?J{z!2W+<7T&==nYl1z22?2(D zI}p?M`$Js4#BzGm2kf$Rs1`L#+W}WyyTwZ^Y&3NtZ=UNZ#CS+RhhlT+#H5owL>|Fs zqkGRXh2R=~6CQuFtbg+3lB_`izVAVpE8q+YLGd-lwpp zV*tUeV10@K1h;~XAPpe66&p;uXm?g%xU;hYv+2_>338`|ycF`C_DEZKFo(YWlD5i@ z=9Zmrn#zaOi9)IS(0XTx!;62f%i{;+&$I<=wLsJOeBEC-{LK70> z#CoN>85_1(!Xx*I(jd*Sn|db08G(X-gBk5u5|Sxc)qK(wc36TXsnQ_LxSKjp!2n0* z<{zex<=Xx$b8IKphSsvz#wVT%>7U@$<$oex&H2vPT@4qTo;}Kbe<|5`Z11r%^_ra~ zGqLHWQ>uYoN2@80l_N)O8>@~YTQrY4C;VTJ{kr|y#>72va&ok>cX?#AF{M00w_n0d zuP5$D?c2h>oJ_wct`Z~_g9UoJb#R`yWi&xrW1B+o@rZ#J0^8B1W;X zNU-mQdbL(6B)nc`lXpXue-`3$s6ae@&EjN+T99f+051S2w$xo>>PO!0-)agGqynQ< zH-PcHob_}D5ZsEmvXI3a>8;3PrXP32CJA_3n3|xMcid)5DA&ZT6rzJU^}>_ul|;Fe zcQPXhSlMk#Uz~sVacmA=l!PleQ>^?Htm*RdrJnYO(Y^b9QwXm0|78TVucu|fZ;2Q6 zAh)g(#d~{4MJoOg8x>2FP3M!Wx=JMPvq7Tcucp4_V*isVMC^1NejJ^a%O|$iDsUng za#BKxdjVCdTDCLrR%j;S6v}zK03&?5R?O*ZSD#S_S*T-F@kvC1fAC-x7(M zSDX5kx2~g2A%fHx%wP1h;~v7X}dA3N}?`0Ku)e)pSz9oqW7^B3wfiHlNV` z8JvkVxT{PUti3Iu@SE4r!TN{TmyfV7A7fuWLBA*m(v4&3Rb|bCp6s=Ofr3?Z%5`|W z1GXM1o*(G<|Gb}?CQP+8Cny`!U|ym5@&bL-<}Cpgk8L$;OO0OGXj`^2wRG94SkSYT zhuvp#E})2^RJ3&)yKnABanadi;)uXx&BxI!x%HircVPJxmTcKwXCFcPP04m{6mSHp zU{;jO9Z?S5uyqam4lDJ8_)=S5fOCU~`~ftw>z8SHhrF^-vkR_gZlp+|EzV$ax;4u) z=@t;`umIPOfF=H+tgg0mpZDDIFxoA;G{bw+Kr^?!IUB*reh6Q-CfVObBfCocU(Yd} zW_b?ThG~%}W>id1{!3)0_W=lhvNpC@beWzBwTo@uzmM%4H#*GN z0rzOYD`q4}2>k;dE62t6X44uSM4g=b=;V&(3RB^Fc6hrqF!8<#ty!hu8XHvkLKU7% z%M8PWvMO2de%S9BCUil~Y$3;E(FU|S-H5?^nAbAjhoxv8%nPPBs~zYs95f?tC3$}_ zi1w3`)ZA%+BXH7yyR4wUXj(4Ej|{$K&G>N+8d>Ts&ZZEZ%L(SNezobX0MFNeH4*cI ztIzR~SI>9N|@_6>)QfU7gJlrof)WVXG`o zDeV1MY@kwVu5r97Met7pV~RCxsXf^9L|lLOBU^AFI)< zNNK_*PGGEUFUip&k@wE`hw_uzZvZoUA`9tQiM>> zNAM9fkp>zGol2A7U`j#irM7eE=Pc%G^_M4LH+_wQo;Ha^j#+uNo$fJ@+@uq0ToFAi+ zrI_~VBQg4mds$z>bA*l*5-VghkRf1X- z5oH-zip#BC(eQ|}m_md`lnzc+PN8)UgpUnqE~N1BTC|gtbmj&CMvdT$AS^G;-H@ z?&U)d71uXJ=lVLdQ*^oR3k*C$_`VizfF|FgXyg#S4f=1M0~oA0Dn!_rFDaOQLv*H3NBcyV>EP}qHQU?q+FK$J_V~R^#AWct5hkm#$l=%fR?k1#1f%< zQFQn3HkAqQ?%zcrLc9CU^$C-p!hz2IZnX2I&fpHThm`!~J_0xb8x8t625dnu%X5Rb z;S1G_3%8&}n z1@3G|KzSuPpiq-siv+1E0?8XpN#}v&bP6#J0!fdr;(-8i0h$acfV>&)DRnNg6L17p z8fb@PIJQTz0&8AT&YA?2N>5Im$XJw*yB=SHyt#vh;QY)F}0vCFn4K05dqRG}S1kK%TMj(%v`kY6Shbcs8B z44Rg>WVz+~HcjBm)eIVcMk7l>;|~;~a~;L3=E)}_>;T6H{tMggB#zesL_3BYGRM7? zW54xs_pk}G;-IOp36rY$`<{G=xm>k_KI$co*x)!gthJMcndTc--bpGVceiM z=LrGp77QTx7~>(+AmxrR9`Ec*#`H|7Ji-PU!aBx#&~jC3t#OnpDQLNef*3@H7Gv+E zFx3pt1Kvd;Li2#mbrdtaY6p6WyU|2Qy~G`8KPkD)eFSjCOkfs`8=mQM7jYZDXw86e zD;ik}7@skP-~of_CsM$;DvA{_g7{-+S1|hIT@`^ziN8aI+A*HMPf7$<<25EF{$lEU z9zy;|A;v)nnI~005K5N)8%vB7N)`h|I}*-mfFp(yHYp)hK@KSk@g``7ls+`F6jFLk zA$Uk(dWsZMUNBX)n}fW(vpL8dk`LHfI4rKZeeNu9X*e2CM%;N#mn^qjKCk&GzFf_4 z@nbZy6fS;9Av!l)b>}se9M5_Y+u|gSX8=Sy(oC6S|GZ`x(^K)KYcf3vjofvnee;@1 zwvUd^_K|3>=(gzKyk;2VhvO~KWc&~`atPxF{WwnrShrvR!RIw^GYwMin4-|xF-1=q zUXX_eF(;(6PC? zFw0-{K#p(&njfkExDM?rCB?bR0Y~7a!TJxs_42^tT72o6(PR{jEJc%dQi#rF3Vm!1 z(eJSU-`@a>a2dM9_gB$=(dC<6c`VmKX8p@}8#Gz}A{x2ttS{oLp)HvIOLXS{i1v*x z^GgD2qW*fw?7x7wLzDgAqLD+`H|YL(2En=x0|=f$oNHPUH-q>^7bX*&qOdA@1YA{) z3sp+BHKI-?fLTJfq(~PI1ygZDC|5Q-T{wtBjE8iAyh~DWih+*f4QMu`j^lK+mz0F& zjs+Zn5#MA2kmZ)kClj{g%he1Q+tA2TxY$A=I+r5&CKDu%F9BO{El%S2t!R(vavYpY zP%(WWzI08d&qpJ7o$0`2g2eV`qqBVr+AF$jt0ogvjDHGmfhOZ0MZ)061Z^Y|DZa!Af?otIxQe&t7a0&_xs&NE@~Gw zOX!3YX~FMIJ90H<}#X*=RDUTC*}cg>l8H;Kz0Z zkWG=NB$;i3R25O=b*8-YD6*A8ghr7Lu2fE;bq>Ui-DpOn*il0}NgX>ffFls%-dxS7 zk^;uL_+m8!MiGrH1&o~(qH|q@dvmpl;SYi-xHcy-`~kE>bQ$*FTphymjrhVfdA=Tv z+;yIPH&?5;{$6yhzk_y)F4w`Et3&wyCf)!|zQ2Y>4&mFN7w3rp>ktee_^{$c(~7u> zz%!jq1ZL!|5xWA1FG`hykPgh*8ylLGT5G&Yl@5^7s>%Tc`9VLmiJ2sHI*Kfy2h7AJ z$F6R87BHPcjE5{>Ca-uP6*v^lhSX6Ug!Yt@(A)~Z5m;%k>y5eX@>F9AU$$o4co`a5 ziW~b=h|c8$bJ!$wZNy38^Vmu@X)7)AI zdX3+q`H(V%-=N*3q%`*^;0Tns@9Z||atr43i@(MftQj(XiAI(}#?L84=h6fBon1A{ zOZUOHI*H|d0RopX>$2>BXE&7V1^D7Mxt@nc?mE}LcXri$Z;sCQCbV00`3}Cb8_M|x zya}3|zZQ)g!nr|z&Qk)`IT%3jl;8o=K;@0W~v;X6TF2&gysaD>oR8fYaYl8K7pn~>M=fw zc9oLR+_ius(Bkf7_FFHHCq9HPT{C$6HyT+A9`84W;K75bC{pmaAc_@mMDlwRJNiiX z#Hwv)g~7zLP=R&~CSIYMY#j6EX=;ujOhvqS#?;3=UOY`9#zDN8Ollm66Fn2L6i9Jm zIzY4|v-}(QNua}hAdm9omdXbYQ}Cr~#)pY$WGO!EWeUOL15-_;`0%8ucHQLSb)8Kv zX0RP8a2G>SeAwb7@Mb&0#L=oSK?+r+7UcWQJx;_RL79p`vDuVz9w;_Zh;a}oX1aTW zpx%LSQ9@H8g^N7eQR=kfOu!LHaTg@G?Q&A#;LFww8iQzLDQIL&A$ZVW3W^joHbk)k zl8T2qn^a7x7ulk<{}tX(Lmk=?FpgIR4F54oRp9XdyuWFkAXG*4_=Ks~dGz=wg$Ruv z9o*G4&8>AHc6<-biWED(gLacTcH9d%0wwNLWs@$qV4iJ!6JM}q;P@IESqdCqp%9%L zce+!RYL@>E#^BnX#PUDTF41M#KUEpZ^O3)Eor3`cpQ`+jsd(Md#M?VNnwZVT{}a;nqB9uW z<&;B*{JBp0KRrATrSh3H(Suz>9t5`7ln{4TI5V#4rwv}bfV zXFFh2wUC+r9Nr2|=Klwc+;!#`^Sw_k*?%TF`%k02qs#uX!2Tz(Cb9ya#9N}NfXC6u zAqp@^0eBX{x)B2io<&%u6>+nOb2@wFv^OUiJa@TfGB#={Mb|K%lOzTS{gWbdNP>~L z#M)I2&m0mIA~bX8TvyVZla$X|Zbnn#*7EazhV`%Om%+y-w4;=4<_-rOffR90l5pmh z&8HSN;LFww8m~noOF`pRrVu=6Fa<>l8q1dkI`<%*Z$RXxKcr!FZ%zvYir4aLeQwSbnn64s)m5)XU}gdO@{Fn1c}#hlLWIVYPA+@6wGM=l zo+(&Xq%blaAaHq{I*j}cd?irgE_*cTatr3U$rOCSnt@{?8d(Y)dr^qaWuWe|hnnT1 zz!+THlURN^+9kRy`O3)Eor3`cpRjn+w2N{lEWX;=WskY;Jy9^?u=gk)*ZVM9w@T3&+!w_z zilTPuy|H(*sf2iPa1(_HO%6KOcQ9JWSj*l+Yad7wzK*6v>OLMsyGzMz?l!;?lLU77 zSK`mLfM*L2;4RRMCikO}rD$@mDFlxuOihuZ$qiAgfMLdgot?>;THS4xtv!L6i>Xtw zxsFn4jm@gnQ~&lU)eMIJ=lz~}f?yQ`jY(iKE`xRj#AC_c6e2X1ba0?Cy;#z!7r-_J+4-x*RZ`#22j@ zFdj!EO9A6iQwSa~n0_J!jJu;)0V9f8Q#*PHbQ-x)WOA;fy97(LT}T**~Oc+Ap(R#+R?jb^(ptb+&y& zil)Z`jNcrc@te?o(Pcb1q-fSbX8i`d4VtW9hei%z-JpBt83OAf3?TTBVwq`0h!v0_ ze6zDF7&8Y;A%lvipdz>+rPN#FmCAX?R#(h0lk|oaPnf!!4=Wy{5TSWN=Q@oZU&RCQ zW72di8B%7jH$dPrC?%h{7rfcLy-c< zBT=k?!11ll295=)ZI|{QVT;s8v}%=-Yiv}75ZtCquuKrGVu-OG-9TI=@lf(=3Na2s z$$V+AqP-^&QijmvNFgPQ_L!32+;+eb*l8@H>lcbj$f3o;8=)Cm-h@V$Ld%(^5InRn zO+^YVM@O*&LdzdJJI%QOcJ8yy6yf{1KMYlBM|Oe_EnpnoQ-ImceX}V6Jha?IA;v>! zQ8*wFTE31ZM+z+uqCKV#Ew=%VDzqpnA%~U+@J48cmiy7jQfRr?6oQ8qrm0Aw<%TF$ zKxnz4vsue5cBqg&#bM=zY-Q?<_JovURM`qESGC20{iNSL?MNQ&0J{XqDsq)cU@I<} zclE;q%H9+rG@x{FI@G;9fWAdy()E;2`^54ec0R##v&jsD#{moPsw(llPO+ z$X(}sU%q2OXf6Tn-xi(wx1gP)%l%UI0d+TIOYQywydj$WzZs1j!oNY+&$9>CffzvW z$+d0Vl@NC<7i|lU_448I+rLk zAM_-y3NYL^Gjf8^3lO;cS(jnqK~FW$v+#v$@;n2L+;yJ)4|*!NULT$7SEHSx%eC~N zr<(7h@djw}eIyz=gl~ghoF@XTLok5giNM{a0g6}w(+H1t_8#07PO)lN=v5On*k47K zBEqLCFGNdNslUcas(FQ$t02ruI0scLp{Fd*H}Df!M_1vp~%ke~yQ7L}0)p*P@-(TqLUp^>H7bFC=^k3CFdkz&v8C{{r1 zIk~fgkQrfzO`n2#;O0$~x-+;WiyyQcbK>#|Q)lzA@)(5}2VrFAw`kB z0iqol>I>j4F^aI4gt_f<(0CC|lJ;&5G_n*l{$>ing9cMjq@eLg6e}QT+|${hF{L_O z9~{h!H`r`Mt5h8@lsmlGET3xDg8ihwX^|jK#f-&zbVG0@!z0G4DMV<*=-^VvG`H4) zcrk=#LW&nzw40P<=C%WlKuPn~8dpGW!F+kc!WXQWVY~^AECq`*DMaTo&E~B&%vk}J zN5L3e2Q9JuPP9vOSr%@s3FG?h_~JFW{x39g*SYrJTBGFqi_!VM5A7CRzNK4h!Z^Ph zZ-OT0cc76&I5+6Yc{0E{2LlK`dvUaBMcmnomv{D_i7BK9hDiZoA!EWUY;aO4O}*WF z%w(Wxk5*RvW#G7)mLZVgI2CmcIxMQTCQJ!X|843_h#Q|DkGjC+)g1v6NJw7AB37f{R64O z6KHDOM#EPt9z#1!$!_kOfFq^~>{zK>htc}GCrsFD0{JiZQSu%DPaht^8>1Os9!4We z;pHJy2p(RTv?7I<&qlEVCLWh}cH(hGwhoKp8LMW)0%@gUjnEiFF3ZdeTdZS*M4$C&x}@my zYP9Q=jOS8-Bhb`XN!LnS)ka?TI2vz_X81W0jVy(q!%ZQ0_+cuG6n^GMu>!)+CptUT zF>x^Ol!X{`Ayfc2?oukQajYuF_%~##mOlJH@292-qE*C}^G*HDW6OCIA~d#iaP?y{ zsd6BQ+>GW!3L-b5eWau`cNO3Wd^D!fAVP_9OXa!B4fs+ugT-}dWGPr&OCdU!s?KC5 zA{6|77c9ZGH;LbGqy3@FFIx)dw#!|@H}GX^viwyva@Sd&!w+#NnEqFErvHxii7wOZ zRwL1VneD&e%hzQ4k7(o&whel3o&d0}zyN|zZ|pX$h&#P;UuSn}PC4Grm+gu;&Uob< zF($pZcEW_SM{|3vqhI!6Una3HQ|K3^%o?j`4p6PZ=w`5JBEmuw;nsQzoC>fja8Q^jU>$gf~@w7RdSo^7Wmi9o-^_G zw2ULCddROwBfB1(mUrLWTlv%=e7m2S)U-&@aWnAb zxJGX>bvPH}4b1huCrp^I?xNB2N7v@w1@n2sx96^gFK5GF7liyIw>0brE5m+pVnSU= z?iwhoFFg=pju{tY^P(qpr*$~q7O2p)Z|GZiwi z0wyFs)7iYCcT>eG*t<)Worz4|s#XK3LmDk!rSclRbY$Y}8tHGQt|2Egcpr0?sUmnj z@CFJIKI9m1ygr;|2+e$fECV*C)JmCJ#fA~l`{1u6o6ty{;0#74U(ecuP99tdIY(nn zi$NKTlbl^v%_+gcQ)6|DU(A$>yWoHy893^V^7d~5<`kWpW91#VR~O(`w)oAwH8S?^ zl&ET2;uPqJYqXJQQ5LzjVhk^o$~C9pn%&ABrX}< zn!CjPda3*MGWYA{?$;~aum9zKZMa{rbiclxezhA@3)Y^jU9Js}p70|4*O)kzFYOrJ z+L)5Dz}Qj|{y4p2?dCSrb7w;4xHWec{iN^D?*c4bcz0tT4_r*?kpkE0QLKQ#bxUUh z*PKoDBD9`TF;RoPB2IBgSXH?jDuYY7)N$)bDp+^!giNTUNom!7@|h;#%>7aSplc2N zIk85_sujbXJ51fp!`p2XA~d{paJVzisti@raH<#LR1KEV?MfgCdK}G%lmI`9c9@dV z+&2J6AgA$aGN+4#`!DNXu5h3MSyXl~PCgB1{mUCaigF=H;a zsY=qA3J|yesw<6G8A+pAQ&}04@Rn*SV{bHa*Ok#nH{j5?(ezkA8%IXh#^Gqc=xXCN zNNvDoBcZOcIu60xs;Q0vG;-I~G2N=tDcx#76Lxe>>_B@%R}+WhG~w1zRzezYp{5ef zLL+xy31swBtJLj)65bVE30I-L5swm@HI$Xmz+0%Pgv-&$T~|V1reee5CTxm?baUr! z@+F{&FGSbGJ!rq^Y690|$aR&~aVOqZO?BLkM((;grVZw;8f2ION&F_dBz}!{hOQ(I zLv~>kYfQr#53f;jYg%a%G#KR zH&s&`bI{0L*T&qY!$L+Jo1#l&1KKOP!2&lL4c1gv#%uAGYAWMZXymRdV@c3o>A~H~ z=uwR>kuusnx)RxB(x0T8jlrw3td#=ZWKFH)(8yia$|6ZCs&3|{=t8*x?HgU8Y=|Zl zT3=Zu*WvBeRLQky?0vblCL9Hvw6MfK$S zr=x4-6KLn?YGorzDbMR`M>kj&)K=rZ{++Bdo~!HtX6 z^_5lfL%hA3D)~Mdx$7!fAbPD}*M>{MT|ralN6ua+0Yp66>v~iuQPoyf$liEsH5KyW zOHU!Qna|ukm4Te~@aWPw1n=yra6zeEDZ-ZG%Nmp6v~0cNj4JjL;&N7@nzAMa@Mdai z;y^TV*P}*Ka8`PUmDvfK31P=+pi z-gHgvyaA2eb?vMbwKG&H)ydLurCu9uA)u?G3#ftim9BucM-Wh0{bdzhj<;V^MVFwF zyRIS@fxMx!q8SDv&^^%wbSK(Px&ktYK&`4SYv*>n>6+U4EE>7%+F=pMb6{8t3<&7g z(FOENw6AmpWDtSItiPZ_OgOq|&RP5jk-VM?9 zavj<)x_ZIw#Fy(TtK(X{t(xi>MI(1z9m{sZ#czD;Q*#}FE*=F^+;2pe$yd=1(v=Br zeX&KQWxaeEZ?vXfzKBK+(Tl-#0{lh-b~xPtf?uU_tLb59_bQdioxPD@_Lh3S=9DX? zj9sk;FC>_@5SyMWHQIQ&?u7(}fHA_6cg1}Klfgh-^6#pK-$$?yg%}U_5zK1N%@8&M z0p~z86K+NM?Q84MzEYBzTLd@)FO8N1r2wV<{z}RLW)0rR|EKQD1LP>G{}*%LcSs;1 zfp8>%%YEMg!j*(u5eUO%caoi9cW0TIO$dVAh&X^kzyn12id=GeA&LixA}DfspeV{u zMe)W91yO$0RW(yxN6)@b)udh5Zy!7PB0ErXfQA=2A~U{d{_ zv_lc^V!>dWg;$81M+}SJ*UGr z5!rJVrTaOPVeE4@+Qv5@X7OWMb_%h&FYhz8!7a--6W(dCl4tweu5*1!K>n&Tibu0F zN2|Hsx5lc~T+1Qaq1B9F852yI>tD$3%||oD=ZM~471pM87>Ev-HDvtdgyiw_$7X5BFDdgkz3C3 zq(f`lRYfO+aTd>*70mNg27%4gRG!5LF}3h*t|#G#CvrU=Mo!?`qgShTFPeY{glhNK z_=;Ax`-jv0dcefxgMBM=rTMkZ{4ZM{ZF4R5Et5a;%wbU!jo^=DoN>8qwFJ}lF zu#jATz4nxeRs#Sl1f+yYmEDvHI8E>DLR zMU<{BiJS3oiITVxMsB$zMhlxXrjuvGMe!6|3#uprokApR%i_Cuz(iR*4kIVX!ebaw z^Ni?D9uR7tImR~;InTU%B>Vnt()TkGZE&H-_cQosGDe)tRuuGaAx)l*x}8&%)rowJ ziLP~{r3tpN^w?~FS5J{W!QGcz?^u+Wz>bT}>QVw~x){qLlFQd{yYa$#>~06J(|F+$ z_UEJh#pm%vd6Il#hW}e`6uM+@%rjq_pkH)S-x#{b%FEu-RoE-^Ie&I zU-b51ZC7$Lj2!!j?C|I8I`WC!3Iix+NU|F*pFG5*h+`C%P9iEqdL znwN-`2?-Ggnb4?^DA-QoKT6kx#Z5%hYy0{SVNl(^ zRaFL+?FEs*Cs^J)^45j zWb`8ixCsx9nCwgn-Sc%HUWeu~FQRLYNG=!PTz2QPprLsS0Dq5np zR`$RHC2D0?7`f$IN$5Y7VyUagEtQ^dspQ}~QKf?RpLm|OQdZ(|5|xsHkz1~mtt?kz z8{x!V*%)ZA57)`HaFwV!;SZG223jLaTP4@vQ4&>Bg^?3f;<1vU7DL2El?Q~Hs^7!M zt@NhqNsP4Ub5_n?_f)trzY7yX73Q{yy-rKXR^j7#NJJHW3r4n7DERk~kW!&ow()>a zDm=q?=#QdcOLCcXA8VX+lK7^d^FfCRo1?S6Q-SnH>7$qB*n+WIn;v4NZY&EByK<1K zQ7d($I7B4oiKCLu_vcETPPTs)&h|@iRj6#w;B1>2*o?o3M?hr!1sFMjagScE z#sSe5JRsCKu);SHISxFR?l>?i`Z{0qI%fPmwym~6oyjS*>VeLAfE|rJ8{^s%EDD7E zstfOp<$SiSx~1xx|7AoCS(-NvJG~D@84QyEXLU zhbMBKhml*(^)%H=-Dma3!}-1mE(?|KnZ`7bcz%Bb4}r+}4KQ*7=N`RWjRT@NctEIe zV76}}avb+(s92I$wFUM?fR9V|C z>OXkYM7#PojBMG}KRHBt zZG9}ngC^=@8yLCe`j{RomHV-&)52wP3S1YeOpXom5j%HVEhpo#6V-A8jNE#)tj<+3 zQPr|5*_$7{@fxObMYvingX@xxTI}3ywOowHPE^YUFmlV)GCryp7m2xZ#eZ zRFxbN&&^pJ@#vgIM;I7E6^H#5a*rCu|G z^TSw7*n);kOI-&a0$0X)A{T7VXLHV7S=h`Uh(|$Wem@ww<;-uUmR=jOe|9+g{cv@t z?9b)wCuL$Q;4C~6q5^tg zSok`_(dej-;jY1Xl1E)ue=z%d_)&=t@f{f1a)@vHLMVq2stIz4+e4yYJDwb!?iI$U zuE9RG^R#XfQ@2EC8mG9bOI#)qdr8B2g`r;Y=&Z%23Dn^ilUTgi&@9EH{9-(ZNc4;3 zEsC4IJ?R*kwc#0iz?@i~u`66AC#{7o8IDGYe1fA!mt`9};Rhz##*Q$uWgCk)M0yQD zKEdH;c_j-b@MIqsC=7Ga3pg6 zK0E{>=a<9C37mWMbTt-;=HLOLE*!@ACL%8!{+jMsFuX69)!*xUiY0(KlT&8ZLjz|5 z9+=jB90S33eXFeog2y>TI}8LPqm+$l;IA+n^1M*1PJf1L%Sd8DA6Wvg^?|rxP?Qc*ZOO_I#}$!zyiVMY>VCJ z;c`&f)pm7oar^`P&_s@(g^^p%aeP+?i|0`bf_Wa!Aeu4Z*=Mn}tAmT{P4L4Lx&B|X zxc2DTs_ly=-~pl9{zblt$hQAPx|=x-x9$WifmQ0XlHjX;9+=i?9F6}_Sdh{pRO3IG zL$pKV9~q@=bpAZdhSeKZ!8LLcS~!{EXne@4eomA;s%rgR_)&>gaVCsxwS^TNBE8lx zulgPQ-oPRW?ETll^`P<_zv_3h`~m#fM3%3Dkz3Ak?5f|v^rPWSKMdD|%Cvda?`Hd} z`0Xv-j zKf3pyTQ%6rZ~WK(qqA2WR%<7Y_WqV{HC20mlS6p4_vU|yc;@2hL+9%bEwSVe@2`}K z1M8ylYpX8Xz{Qs*f?DO@ia|8v8es~<(Fm&Uz*m6{5<3&Jl5wetU>+V9(LLsH+@T>YtflukIv^SnT#>q9n0blZ2n8}qB_4uY?Hk^Kz2PrdkN?$JU}ArOJHQHXB_Ga zp?ZeUUQo}N&7(+EY4eR}azhKcf`t>P%FE!oI$KD=R^>KMRa*I2=5sL~5mAO02==BN z-O;h=qV?ymUs$+yZbwJY1BL6@j}_|^X>IybWSg5+sGpUF?R++z;QR1$5^blGL~uPd z+i>p2LnAVMCyZRNo zk&R_GFB9Uqev^((I->s-Ml9k!F^d1F61DhCeuy?0d1mXysGpdI=gin9nB}PqV#Ca} zI}%u~CuTd&Bs?%8%j02W%W=l|LMX=(T5E#ictEHq#D$y(gt|C?-S=`bih@0;|76N* z^Va@~XEHJ|uXGxn`&AyfiK6ofeYw9P4@kQvbX>Hr@Kv0;Xg`%hB)VIQkLHhzQZ~Ho z5|{;fR;p|C3*j0$i7XTuj>d;vljlTPed&Dss6?YW7e=;>YAuIIZ(NpZ@(zCQXOUoM znZ@rta6PE}#@FQCEZ>D6o5=F*FmlUTj;+Z%n0_&w=@;OdP? z1hzeTwrcyL6?j0Xw*OAwL}c6lV!CVcV-I0V@@zljV!ysLJZD?fmYhnf?#kEY3HvB! zRUBH6arFGzEH-R5ms(LheOPaJ`&d7It7b z8aLI3-;7m^cA7cbmo@v~F%q3+PZ-&9mfbi+decHp6Xk4QE)#8aYG|UD#S=I)<0IkfxB;#YRUL;!s~<@_r`nF; z$kx`$b$GNyoqPaBZn;i2>*~pMos}8vFAok3u*=C@ccweHCf{Xx$YbFuc@(Y=RV58S zIvrC!xOYUHaha?3TcbyD59r?~dT{Cl`sUWMyKRZGL&m< z_6c2Mgk2V{k)z@AP&INeQ6q`T+A28$50!G0GLRN7CKOV){u;#`6cV zC3dmSzEUuMRd05+zLxeSSkz8MR`;i_rEy=XN0bo}X)8C5Rka6v^`lnRKF1+ER@IvS z)Y-Vh*7axm@?A?98`?9kKZD7Tr-{0s_7k{LPCg5dGaQYT>i&%!#>Hx9JWUzsvif#< zKf(hgn$7n)vIo;me-LeEtOE7NCXB8!a$)d5I*dUyV<5FTKRkrA)i= zR#vBZL+EE_(sPV+l76ve(l3sgpYTZJ4eZIt>h!ou%9Rp(O33dc*aahdHA5v7=#6OHSGn?J7KMqG-D~ayxXjtrP1}cYLGA-4L#a>+r%7 z{p-Z$>7ky#-SIwv$4?Z-RWP#UW><2E^zI>Um#m=dz(DUhaaCZ5=usAA;ElzH;Zjje z)$zYJ9NYOPV(!Wz%a3G7X_Qx0tT^RuJ#&!@y~gM-#B;Mz2@Vw z69q9BMz-8*GY*kn7hK@3Ud;Xt@tnv44D5i%!DXVF$O+9ckn{} zACK0hx}UH$4~Q0azfEg0UY4u$6uaI1uNp4h_rVNNrQ7g>xD9>JOxfyym*YVb1$zlc zZif!IRe}JLdf)@$TKF7ZR^rv*@!mFOXrZ3H?PB-i(Gx{+4~%TN*j*eVy)L*-l6qo| z!03a&Vj%|h!I$7dQO)F}rU@uk09!*Z;t3En^a6~WpdpVoraGapHxGywcETx*S4HP+ zA1vG13}VB~{)=(hT1&uI_nV1_OBCrej@%C2Z;nNJ-T4jMS`yCxp?E=weealX{_A<$ zZgnsoH&F-&z{r+c?aLw3>v;2Q#l)=M5KWl{7uf3t;1W@L-SQ@gCYHLbn?5{rqHYQ> za)NF=T9oQ?!p1xxTG-{LMT>sMu&dpzzB^p9cf#yYC3_ewSy#GNr@IXgm?+dwa^!aC zbXzzoQTKeqwtf_@f$!rbCHA^y&CozSbKA9^!6PS%;d?N$~am?Jfm=5&)RmW zGx4a2B3J<O|4%ToWl6vHg;16xG`Jxxsp+rGj9)pJ z@9pLffEp6rX~*E+xg&$vFjt2A!KS40v~{@%kCUj&ZDC|fmqWaC&~!!2UM1f-$gGlg zoScsbpB^rccfrM>_ALAflZ2#gt-J#dny8f%VdR!;Wk$Vh`RFqf{N+-^M&1{$lgr`4 zP<4W@PCF8|HF60aFi|5H!pJSx$fos@_3;PRoGN)BTqU1_OG8x&J`Xulwsmqp9x_oU z_rS<4*U99D?dDhE0(l9p2~{8sx2UQ_yPy~^;CJe|+RAtlkCmv57hvR;D`OgOE)Cpc z^4o())d>t@!;Gr~2klJ>C2d9a?HVyrIa z`^VJUP?mosai{15d--xD-zEOL-lej=oouJh&e*RzqqwyFN*ue$tn(F(+C^p!he%x2 zOYwUQBUr}9rOn4-F62p}wvV|9E|HVY!uuJHMn`pYgdC+C`tzbTaACzblH^9i2 zO07<*-HE!AQ)<=i8hj%;y8fsiT1Ccg&@2)l5S5>ZWl zR}SIP2{p$4}2i}5--@50)=8s7$V@>);KZVDIRfe{Hl z4@S0{!a5F--jKI>T?t*K9NX_L!^VJoc4cp_Y$)QhEU-XD+y|G3dZrs6#&#>hOwd-w z-FSdRW!woPCn&?C*Q;?s7?1~q8W)b`i6rW?`F&^7l6B+ajbc=iccYVB&(AiVNqBrjw#UQBmhp`7g;2&LG`DdX&x9j-i=|@aZhb(Ip>5EJc!ql zIR5et_W6>t-B;Y%*@jcXqa!k1gpn=7>Gg$Bh9mU0aT(6Iqtt|;+0AEIJp%3KUbv)G zyVKqu(@P2qPiN4cl)NyBLJI>yCbVRE6fRQc7 z*_A`2H~!Aot2RVWI*UaYIC%8HHKGn4`!pCl8fR&1B!@>y)W}L0IYA>HEk$)DVM-nl zEnN5;er$hEzr%NHxEybR>7dGSUIRJuOspPsGad_3bT@M3#2%EM-AsxyPwG5Rh12<6 zyoAKg(`dHPlCsU@aXcs@uit`^Ei?IsFN87^p{|X~OvazUz5`zDb4<9Sb_wor!x_Ye znQ*sjU@BThmbq+#$3zt2|G0t@%_YSFchh(Yl3Zq&aDF@SS`uAmXClA#f_C_xmb1*_5b1T7&1yO@M?6Ch$FsNs&+_GPb*N`~qvxZN^0Reu3?3g*7e~U# z3A*rT7pmh3^YMUa; z=Bd{$*|3(+hZFi4yoOB}VfCzRL%A1^ipcDzVPwlt?(l_Bh9dOU1VizFP*I52mpmYp zt?dLq2QAAPMZw-mzkNhU2Y#CQJjQ;*+>VawNdBO@?uu_QIG$ z5Bc8to4(3YucW=sArecPJSY3q^qBb_9g8knfByP~g=<-PdmboU$9}9>U*N@_a!7Y} zppsvcJ7mr3t-F+tdN*wzgJ{N_Jdxq(@1_}#%?bWG?S!nJGzSlf z=v=coaw40E$^L=@tA zg1^?kjbxh6uHE$$(-?~H3#a&Qyq?W8omg%**LUKv5xKq%Mz&1nlfDqjbcEtIF4GxP zn{W=(CY)DTH3H4%Ww@YJv)RJk{^Y23m@T|t;-L_Q_Y02P29wS7I*&=_GIjT0N+&Uh z4KuVFkE7Hkni{3`oNR8#<1rDr9RnjIxv?->- z60s(i!|_mv!duLd+sIUQJ*<8L8WYQ4IHe`Lj>L(jp{c}jvbindF%h}#g^?{&$@@Ym zQxOW=I89|Y-Bj*n)d)0|Ps0Umim9+fEK|7y4}~baPjTcnGL_vDP36bol>QK}V>3)8 zmXpoxb9hWdZl8vcEmL{Y7ebkeP}s(0DkIq@MQe7^9c9WM!HzPKL2Q^od2{ErkIcfd zlW}+)M9Gcj$ZcRJQ$+4b1Im8kWbTa@k?18`Hz2c~kZmM;-~ka?-4#Z*jASQY2xTNf zTN{^=MBAM*BRQ#*?Jo}$%QR*ZI=%JGY_s_=9vPA6>tSTeY_9c%P-Y|4wsDyapIVH? zmFHP00zKvja5bqOlRUM!R#u+H;~+}zDURF**21Tj*b;={D4XmVOy>XaA`%@XxnaZ- zvW?_FctAu}{|zHsM)FTz2xTNfTN{^=@Tq0jgsElUa1rjsAU4c(P$Lo6+nO!H-SL2k zBHV=|w}G|rsU^l~y|)`4(;ZH47Oy7JW0I#9S7tWPXW)?$c|HwBw#?=fUkGJ3LTwwD z+3=~wSiSuiD@EYc@=>^&;Zuui>Gnf-97M^j=g4hfEqrQ;t#KNT^6hXkzlj%-=qSkz zBbJbDB#+<$5n25jjBFXnL%tBoNQAaFE+gSn%Wer%OUGWpj`Cl)tW-y7B*F$$%Nuw= zL=parBe#LI@Tn!nY0}iPeK@__F^CN_lqOFtuFPz+*&2_G$n%ykvSl_~_(CYN5o+7G z%x2hOUHXSy|oN0u|;Qc?|OmUFc)N>4xRJf;P*{NnK@{7m9JvilWg<&F z$w;mWr}0X>g2Z8E%Oo1>+1Px(7mtR>=cO>RWgZv#LMZbPs@k~BW71){flANXd^s20 zN-$PzA7eEMG?GW*vQmx2J*k-KSf=tY9uQH4U**VcU@Ds#MW~;W#?{cP;q?9quO`u8 z+>=UDX13Y<9*>O3^KW5f%WQt_3!%(LsBPmin^A|AiUY+#eOg(xcd*H9%OEz)ygbL< z=42X{xh%i~A&PE3M{WainJPIz22%K5o2N#q&v$)?2Qi)iGaycFfQFxbdGkyMC!jH>JP=Ol=kPibEyeu^znzn9D)-|t5xKnwMz&1lE?)>`Dnel!m#GX}vg9Pq zPX5B`5NIcVgiA@a6Zcw5l!9d>zr%wditRTXxebhDB1=5ULT2w1Oyf)jv0;Wx_gYFk z8=KE*cr-*lC&S2=c}(zyQ05_2wQ-rp@S{xkIDr)+&^?ZYYe{vF+0J2@=U~~#QalQx z+>YYNZD1dhqRf;0q#|{xo#7w%6%20&9HZDUMzVyVCmT6`(Yu{iqnZY17 z%pmNZNO%sGkxa#-Aj)kLM@}@7UBo?-XzADvvOgXU zkwdS-e=QbCpb9d>T1Zu4F4YV`;3&q6(Z1dg0noX9HtDbUBy0 z^Rm^D$KxWZVHJ#=pazd-p!$ih84n1x4PojV0FGRm@6TmRT1UAfT!Np1386~R{aTmI z!s;pihsQyb+{Za`VoyoWR;GyDlbXtN;bcCI7m?Uh+)sQM3E4*SBpwiv)hA$N%Sayc zg-}K!w6$>=$(Uu?bNIH!`o;mBqSJQSkvavXWXxQmym#NOIAu75rpPU-b{9h+e) zv7BsExfYL!$n7;SvSlh&UkGI?LSY-HsTl8vKFg{RXev*^1#OC{xLy(cE*=U|c#m`B zHZqmiOO=MH{3o2!f8%v*hN;AIvQ6cmcuYiY{{|ylrt%kG2xTflVH=mJOkFnETge}p z%XS}9sYLhwiv8N+%I^CIyUQ*NV#8bzB@E4WM%I;4Cms_~iaT)RHn5qwHnT}rMrVYR zd>UR*qTd*wX_t$*4U)5s=M+3RBHJg!$d>V(;0vLQM`*4I#^V8@q7Waa@_gqpxL&S4Zz;tYTA{bEK-S;olvTN7yO9 zW?iO|D_6>$(LXcnKRe~GI(ya)6e~Tsa=x7L`qQ1+D3{vb9r9ylxB048ea!5W93s&v zQ@qVNPvoBM@6N0&6|>!4S$3;yWp6H1?#T|Acf6j2nU$x!`m)&*aPgetC_Kn;^e>y8 z8a)j|mxxZf{I7&E*tYr@o(9oYABB-ETYZ>Aq<3Fqg3!=P_9?uwG0wlvLczSiQp{^` zL8yv3vI&aeN!$APJ03JqAFsm5E!W4En!jecE9(Yw?9TeCqO@E?Gus{zteFK2q8W3y z?J}n~K{K*R*@dumG#^idsH3?sa?5ozUFay^-<|Kul{49M@}}LK7%rXT;JQ%l=GZ1k zC!V{lmSuSCM710ZBez^FTj**T7_4Nny~Y03F5O%huAB4W3Q=|Qt|sb6uY#?hbMY*Q z3R(*zw_HIJg@V>(dk1r-)7%rTn7iPLP!)4j6BHw|wiR+a9yL)Rx5CIRSI88u5Y~#= zWc@{=)xlY97QqHU@mNEnEGKsx7Zw$So z4h$Z8hck!`GxRoLa?x_P)v^g5J5eqF+xXNnwZ0M~R$kd_76 zikZ2slukTyqEdE%kz4L7GrNkc^K@q`+05!(zx#4J8?Kf!;L1>&(D6ZPab<5S<}^Hd zqGC>gkz1~q1zn{adzB%>O4r4H_Vcw~ImPgW8Pja84wujS;WAO>b4HkahAM@vr7Q4M zh+4V~MsB&5W=Jjdvl}wGZnmPwt}czS=Am%)JO~$ts-EMTp`Lj1wqCw~2T#t(7~`He1?oY&N^gp1{6xGGe!gv~W(=C)FPiAPRU$}eE#mMdkNtQWs8d-h*XN0G*oLjp}BgA z(zi9UKOR0&GyA~EE!T|n7tw`WHw22|dg+DBLe)z%{3VvUt(80;I#DaDVC0r-Wl}ER zUmompUtHf5u9J_zC86r%=pbLw(zZ2n10FU}BiF&mE!W5v(Ov6 zt#tKd`m&W${v4wfJrORM$KVQ4B@=e9u~8Ll1wD#qK~&JgFmlTkG|Q}=Q#-GPYv=E9 zZK&EgG01M*`P-^_6_1~&nm@tFEmzIFsA}aLUk4r1corNSe9bhUL2Q_7rm&|s84B zrLj23M|irnCT_*UC2Hap7`f$|nAbO08O-+fu5-O^Vru32aIO3RE)i8LVG~QkGT0h= z7Egnyp{HQvmTPF_K&jYmTvZQ0BzU;pgh6bW;r5UqTZyu@74biqw<=K)|ACPc6yfnc zqWoE)J7J6()c?0|8W_4J( z(yhHnc_^%Dr*~Bs^A{;s4fc0M@3?1sqjxEHigvVQ?K$5i{<~BCx-)vWGWKis@7+Vb z6nQXw@<`FBmm&|~5Qzm(@ukQSEMvo8R>54z{M4(DU2ut5#c_v3Hc+%}1u%_Q#jmuD)G86 zr-(@)t|*JCIr!0u7BU+~wk%{Ohe&TEm@fNjtYQY=$Fhj9v(VyuDO?xliCnPx-ZVZN z#B#73$5D6;MAnzU$Sr4mR;l`YK0F3}4_7?JzM+(sDP9u$4}!@1 z+hF9D^FCX3+eX~)9nSq8aB-+-`y6ADK}*Eue^)#ZBL6$V$O-&=G<`KUhz8;Tq2`9q z`Wl#=8~&W`a>K}F#qPo0oVL)g7FMiNZq+UMyuiPewQ7*xW?*Y@>@8FFADw;Tuv+hN z3;j|0WAGaCP7jyo%1f7;H9;k2Yy+ z))TT#|7&?!`EZvk5T|CNOk$p4?=qEOG~A@~;w+5G1)`JX7y|CNKQR+&2;Z*f>K`I|F{W=#3^$-h7>1?&A+T6t$J8_UvX;qef;p8+Gc z5%>9C^Oo^3;oKhySA=@vZ`qi8mW_SZAC5;uWPUM>+;Zk?uD^1S)hfdpr#>*B6Hfjh zTofw###hAkt{+RtI`>O>NJIq`VdR!8V0_*8^Su@AYUxwqOtZ z4UzYoVC0tbK0)%{om<0p8Px_RA4~NM76EJeinXjGk zd_M_|__xA|e-o|;mH38dyvW7k{dGJVBJZ!k$Svo+cE;!IZ9{fEJb1ug#2_}zfIq*{ zkQXImJN>qJFht%Lz{qXGdoTO!iLt8lu5jMp0T+aN!Z+kSO2+2>L_8QG@5jN&E$4lz z?C_#RX4uCB^!e`caPlvKt3oB;`0ktD=HnSzo_`@86Hx=_!^kbyz$~eOQf@VS2_jd@ zhy@YD20jVuq1dY9LpeDFcn70*u0OzgCX)h z97b+A?=z$qM5W5C&E;43Sg)|}8_xe;aABw}u&|K}#FMghusa?UQ3t!g$Sv2ww3-fj zifc2gOWA=QqZh0WS3x&i7ODywt^t?pDcKsx;vo?=a0ZOrat+k(0`P}e>RKd$Ia?4dv zdkTbAEZ=W8a|?QzzSnaJE;&RiUyygP+l61~%i}cmzbo zvoLZ3;~u?SjRT@BctEIe;Mcy*Nsa^GOLvcosYk9GC{}uM<$QU5Pp)^se1GOnShh~h zRrlqifjmOAIYp+zK1o^bjQ*L4Hn@_%>g=hQT_W0d%D3H$Ra)-SBC z@h=Ki!pRRpJHGyZnlXv^L}z z4nFNG7&RQ+!6DjVI2grqHeBObmpYj#1Z2!~J zT^<e%RP*oV z5Q)t{z5XyV%GhZASHUF6(?Kl>TnU%R$zx$1!_nxdj^Sp(d6Gv}o&UY~QHc(5DU576 z#6`Xk${~bmf*c|n5(Qg8d|`O1Pf$!cEY!YW08& zMlLrGxrF$HZ?Tn8JjNjsjUssovH81qPF$SrIxE-TePp)3yEj+TsQ3#^g=HCkgp1{5 zv+z@fqg%$lk!2*^12Z`7G?KJD=686QM34CmM^2k zgPw#I^D`MlGbT%$`G(&%Zp^%qwSD<94Ud{Agvl_n)odpCLa1gV;@39Kww$FRhDEL>TtO&#cOQ#?`2s+QuR5*2zBM^3b=rv;0lfMqHsB>@PraDzbemrMO2W#-Ci8?65$d*$LaESDp+ZGPNyfa_v zaVh3b7F(cQ+y+;OY8OX`*+pkOX-hJn#KR^^<`Xb-f@C~8lWK0lz&s$-T1)!PEyh^1 z+Lt>=zjN}-aJBvdCWoq4sJS^3wG{d@JXE4Wf5MRyn_GHTHP@~K+os;R@A~+q!A>=X zL2Q^Q{0PLU8su!x;3M&vi6R&VBU?7r;R~T`N=R`-+EmjAvKgy$mCUMAyQm^?7ki!mNda`y!cRO5eDI0a8;#RmqPR0t?F&vGJs`27+ zjJD1w4;jg_`eO^X;E@n*;%1JVNMU*d%|w=X(ggD?3o@`NJcU=#d3A1cY3v_ma9K~u zCiS~`NJLT}hmkGs|CTR=@_r$$An(7CN0BJP=G(}KBMv{pFp{y$g2gwAK{R80w#8?> zNgfxU$i%Xe;dm@W)osF&+rUaD^VI8So-twW9?s`3cnyhWVr)rh@mWvGwv$dgC?c^t zz{r-JEcAs?b|U1paoNf6Bh0a+j};=Yl@;JxQpb`lqU#&=9ZFq&uDN729tu%&-5j|M z%w$qTVg0l-yyQdSY_7*kNc0k8KQoifdQP^Ld=QU`NbA)wvSlUj_k~baBE+?ES;?3q zv!(9x+I+c3yUclpRU^<(z6TeS>LiafFZUa-9UQfS%78=g- zMmVqk!s|$MmK~G(gq@geFaN*;BNF^q7}>IyKl?%`dl53*$n0flE_>Fx6LQAI&u+_u z?PX^Mv0*NL8rX}<#?L02YacfpJXp9!g)OvuVc8q*ooQp@=iQ3BEcuY z$dpt}ukI`6yS4G<23C&1@#Q+WqSW!l*cCKBzQoe84CVuP zKt%mr#gW^dtil_St%UV|&zB#V*hSQhhlJRqX}UggN`Vlg8BB#T*aY%sI)8N`Me zPKU4Q3ayZD1^udFn}?a(OtPm*6!djx7!D4(UnRc5)#e6p`5TVPwlr&h>>* zb|U1paoNf6W#($`*I6L~-Q+89EvatO;O-Dl#4?jF;h_*U_W(z312dTvWuD|EzYAyc zH+Tt&Uee(1kd~8eCBMRBBGUR2jBHuSi@p%bN`$yJE-M*voV9ej)p5aIGLJ!QnCZB| zWFj)L%w!H83sH5mIdU7A$z+~-lAA0I=kqAMhD0}MFq!B{*>TB?B@HGM zk%?s{zr|ci^EAHTNlw+!j{CGEcISABVH~L%f7du#$LAHm%R$F%fBf z8b-FPkr9n?3fd7c#`&{uu{*OTfiTQz8HwPdV$vT7<|pE^8Tn zQnp`zQ+eNT0q(^hHq2E}gXLMCh-E3e=m%LRpCrR}-wn142b1_Kov^P`d)YJ7j+3X#2U97}a&-^#X}DHSH59(aaP(aVmqk-n(zi}})(sRZ zJ-KqeT>D^pr}63bP9txtCq9WsPBhOaU}VcYAL9^-Tgf$DB{Q-E1HJ1qi%zbUuvSay5;O_O;KRlQ+B5=fXvEKU@u}XpRULjmX*7#yxnGqf=_(v^oTO*_JxQQAW4kNc*BjX~C@arE#Ap3?3WG}cJR0}z> z2?F6s+v?aI51OcsU0~#vt7B?kwo=NUlVPh=?4u_ud(F?2uMQVUH(V8}NJ6iB%-n6Q zWbxRES~&woZn;(_mva1+a<8VW4_C?u;hIpD61q~WXKw4{YCLkHPTmhAw_GP<%7ZJ* zxr#ZmJ`ygFuffHj3S>!OzmX~1%6JG5nW&5hVdR!8W3$TIVy3<_8MPa?m;5Owa_vkyCzE9#Ib4j9kw`~57;ESDE3}VAv>?{ow zjFz~qk{Nj5M3qd1krPzn@nnK}xIx^g_JB|iH{9lX^D2shJ=}14x}Q88mhE4sz2JW; zEN`coRrlqeI$Sl_&pvBd?9cW_A3NM>u#)f1SJv?lAF5wK%NZhNrZFZ5;pPT<<3SF3g} znt%s{YWK(cCL-JYEU$L&@x;>&%%H2&4_TAV_eK{(^H-JF^L}fKrL*)GNM^nhH7BRy zs{8Zy-;?VdU=wuI?~|Tg%hn=d9~ZAjq;(v}05FY3i4D+FK577%>zPxI?&w%_(fae(FDzWkDC&8ja2@-xVtrzx^7(KoCx6rty~UN;UY+m7P2zheD&MPR z5JORXkZ*An#rt!J#0sbQ*y*N+o_xXyhc7=Vv*d(hm!EX_^20KR9=m+WQAcQ#cMhgP zids#5E8(I!&)&lE3`ZlVx?iIUOUY?xQkF7KH7I8AIEjtrbQsxcEbrnFO+EjPnV)cy z^AmH@QT=S4p)@#9$#tKUE9;xoU(2EioEEQvYeH4UZWL9R*;#6+;_(sH@IFB$?6DsG zwK2t;8AV8XHRmhgY<~%_rt{St+XMFZV7s2EJzYM42TG*{&QHilGQrXKUpyXJ?L+6J*ghVKWLdWUDi5NJuS<8{(=WaRN)^vayyJ4(`xD0 z&qm`?b>1n#1kYg**ho$#cn^y0SQ*-WGaHYP$n;DY+47rd93pY(XnI4MTrb$F{tSQh z>$3IHRft%~TgsvdJmHUmYeLn-?vNg8=~*ZK52}07h=P9H!RYfjz9%m#g#?^-q7^7A}ZS!d0OPVo%5)RDzZyK7ofw zl*GqiB&BP~<$HL* zM7ewiMsB%W)O=B4R}`65{aQomcvtXz@n5(mRC!?YMJ+u`4sYNA66NqO7&$=>9@nPo z@>X2lctEHH^dT;9n?LljM+FB5GTDJVzg{#hg7yg)<(>>;!(0UIO7Sc`J^Ko1H#|I| zBzK09ElH*=h8dz-t4iz^ZjL?e6`jb2B36Yfq6;nz)u#5MD?-cBmc^NPj6_+ifRS4+ zi)ocyw$xo*+n;0;*M*DX18`ZWq9Co6SQ*-qxC)PuD2Xd!*#}-#mWf1Bu%|!^>27f~ zD!RC18&YUP`dhG|oocMks%?HT&!2P@})DwuC9K&lRo_Dq3Dx zaOx%ehxw!H8$ z{?D8F;RXw*v1b*Q7f$E@B2RwqgU z#c!*e#43s1R&hHj`9!U&c!)jzj`yWlIqY%{k?gQD6P|PPsc_?GEv7D!mvqbc!nJib zdo9d@)U$fdssh)`No1jm;pop*vUcOsDu*-CVm6 zNq4w!VL@Z3o<;i2ctxEL*4U&U)Mz?SCcU1kJ)+-;$4X@X!!WWeq#BN|=Md@L>t5)P zN&R7CwwG3(ZERBP9_-a`dOpRX3{=c_;aX8`qTzdf4HV-}+cJ;G@xY1l`4)`aa{0`0 z$cKx@dTio9;gb0`Tpy}r4)!z|m8vC^f8xOsW%4%|x#cq1$|V!_-b0eVEIcjPU$$Wo z*kn!>OT#@18u&|el^;*olFU|k$VAD^gOOVs#k7S)3E|(MF3Q^^<*wb6$ z$y!o577v#wm8CFpf>b=NXw@>Kn4>)))FgG5uT82b#C2Ox6vu=_!4^ADPWRG$Sb4Bd zTj=}*d}=w*i|S&&pjBH}ldrt9t*$D0wzShF{<~BCn!olQ`*mj&mv%Mic=PRJzS31! z>L2A0?Qs1zf@N&nMR^qFLY|uH;{0K_L{2&j_c0ue4*BYPM3ZG!U&RkfG^;Pe$d*}s zkwc_+!6jdPx7mG_1rm5o^(VL-RCeR9zB@VoJ$`5+$G?S1jLgJ9;a`kBs<{6+gQ852uq{OOfPKv*6Wyj-UCIvhNW^z=#I_g-SRIU!;3AkO zneHgI*HEsM?UhNs2QHhF@4{IOM`KFP1rdYtRPAGbMBMp$H-6BDK2oV8p93SyvW)3v z^Js>ZrcV}TkRzo&9@tFZ&jN{$2UKAfuC7<*9=Ix0lH=onlj^(hLlddK9Y&TqysciB zv^kEA2R6?yvakYqegQ5Cm1lE2aB}@Tet06+KY)=FxK_QLdKy*7tsLy_Wm|Yh2BCEZ z9IK$DccO1bqgL=a;djGR-6mz^8n*XiPX9FATowr?Sf|>m$24VBkO68vs5UJWRO{J{ zmoHm?aEU5|g6c7w3I>w)Pe}1r?`V;h6Tw8W;hdA>J{Ajh?pYic;EGT=p29hfM{kdStMQ`~ zneK*>Th8=UwdI_X?T?1D{UNw2RJLbuw#^J|#@FK!5E=gH~nXr1q>u{NzWENgwI2t9@@!U0Pbjbs&LEts~ zz(lk7JB)0Z#j6}5y+L4-Xr*qJ7oCBgZx+kjGKl!9^3XFem1S|+sD*Dgh6VWHiCoWz zkz3C7G}TDme7_@{?-Sv&Q2Cx|%mRt$_i=a#M9!DN$O)W#baFKei00q{p@xBHe2q#D z0~e>ek?I8TF{h5qKyj_HP;fmgS*PBr$2Vo6Kz?*egsC+p$DDAjubR}Ha1DoOhdE(l zJauDOco62uY9n8OYvrW5a4W;nc&UmD%6Rm47x^rHbfTl&2P0dKayN%aZ(^7(T5h~z z2H!8Uh_Er;;`^6yU8sC-8e2e!=U}t`3p@rQ>pz2$Th96{H9N$sW-vcB6U_W12GNXx z(LU2RHwK7!9ya^q@i>U=kAaaB*!LI#)D$6FhX;h3BC5VJmQ%zf=}r;DyL$5j+H;7< z!*X@HO!aWr@X(j-&kqdtvWF3i{jSFm;=k|Yp=piDF)%Fm6^H_JET$0oA;VHmmPEKgPgfrII%!kPXqToWqO(~LpD&GzH?@ri7I z3r0?0+oOA{0YJ0@4+u2?9O;{g8~`3q_kqOW1Nr_n+5j-&Ow^E^8mk`V8UXa?4P7IE z{wF$lcv{nO3;|QzhJYw#V+hz8=0ql_9x-@3Tq7r~g*gmI<3kPs zoG5uzH3V#rAC+hr+rh||VQkGIQXc{w{H|b;1P%eG!u6o?8y^DPEWZ;!Hj(9%VC0sw z92){0OkWw!^n2l&P?RbleG!bDz_v#RS3`hk1s)J;2pI00h#Ug`l=9Pt zUB&*cto~fV6D$SHlAJ259^o1T;@A1EAt3(yP8pombR0v#W4<+4L%^dPq8)~S(IRPM z4EQ6=i9A2l81Or|N={k}KV~=@Bl1Z@NtQgW8U%iWAD3tvzk-o1(|CzPq&Eo2Ck>q( z&(5OfoyGA?27!&kRF30M8YVG44L>@O>B%s1%bAWnY3O8oNjTew!d0QNZ9Zw3#Q4E@ z1VqLUfRPgz_vq$oAP{ZA140c15Br*w90;yV_qM>iGTSL2*WHonE>_qR1|_yJRTul0 zY=v!79dW;c&a5u;DY$k{+6(I$j>c1UOTHG_C>#6M<<6+1{VEsD9S3TObj-lVIaIIwMf1*>wr?orBSaKkX8M}a!@=;^SejK75#*$Gy zXTw#xVOFeulZA`qB(`uI!_f$-j^(Z*sFH_O3mIqNhb5ZEX)v;78mDlG^ahOyV$g6g z{6Q8<;6!mXTo5Y5lVcM_0?+Tq4^HIy3K+TNJWo-hgNy60g>(H7TofwT(~TJ+f$sd?*vmwcn z$5jKtX83W5#<3}kY#GON4w2qKAn$BAIbOzM!OlI4j?orVoRW zTh4Us&W4libHmwQ3s;58ws~hGiSY^^0g>^uVdMnHJvzD?3PfA*fKWrhKYW{$918YH zcMpXr-MN8E&)R%B*O6iOv)1gYe^dTTuxg!>bHDvC^ll2Z*lM9^eaJBxJm9M$H5q)4 zL$t$WFttvNOy8Iheg<=6^^c#x^>Wf%c%0#A+*F05m>Jk>jz7X9AUewTVPwlup5YMb zO$)Qc@_|`3gZDAr!E?h%2GNY!(B@sdKr;#xckqQzVTBU=_z zFB(m9E_S2&IvxvA1z&-YTdsonYTO_w;cwwe z_zPSksuC6$BZn&=TMd82;~}cycQA5-8a!qOHFk(r;{l<@j$YqHlp)WbE2Zibo9@J8+107&1mij2KPjB$yMKpt`ql zJX|9ut%ZXbj>d<4d6Vl%9#sty%kiTU4dWOX*)ohHIYfFxgxtZw!S6*ZlE9(iJ#am! z{KjA2bhG?!{Mba6&w-I!&T{PKO$XEWhBN(XxF%Gl&6hXbY~O(&pUC#7VB`e0Jvz7= z0z@nDfKWrgLf=H>5b&OK*B&M|SabLjO9itgr`p^fmFyjA&4C9-UTpZiZ`sux@LLYi z4s*aHEq7xen7j&QMV={YAeg`)u%XFGY~f8-F?}EqTL^36+m{k!@xv2cWE6~SxyW!1 zk=|r5LtK(;B{LX5fQ5vehZf`e!iAwSK8s&XI+Cz?-wO|d$ouXva?5$2trip-abF1M zel=ViD))1Yl>{vjoBwV+5F-Cs7&(D|kJhiI2hl)0Ak_5mYu`2|r-uvDogNmf$#qqV zrH)Lc*pVrpm0QdHxvr0W61|k~>d3I?VoLdQv=xRsVL3asSnY1g`xGL27Cet#gurw3hueH*r-qJCa)@>qI<_358b(uk5@ynBN>9M$bBdwxAj8q9s&37VX^4bugL(`P zh-grc!pN3EJufoVJ z*TxQNcp0LQhCa4k9juQ945AqqFScuR8sp3mso5HtkB3Io$XpmXK_ed1i5hT3v+{sY z1I{OW#V!Y&1JWIEW_7WrJUcS0bL_q6Y%iO0O4kC7F zdA(3!fErU(@l0R>sWKpSm*wIi1G3^ETFwP9vSm5v`9dhm5fTfsoYO<17+hIco$g!c z!^|ypzs=&uW-7P49NCm>rYJg1unuearfN>^d`LJ-F4}nWUJ&VPS6fJ!Fd_E9AJdx}DVB`d@ zJvz5){-OzZK&b1DulX92yx!P7-R3_&cg{ezKiWDk-&fYIF)o4C>Xce_scQ;|@0ja) z3_Sk(P7$JrP-{JoN#H_X9jQs+d=AkLlfZ;n=EkMPZ7@4l&-f%Ea z5NdKb*EbP4Ipouw9LDwzc4Ss%qua6C+;9-AS*PHt%UyGWzCWF7a?t-oXYXJwMy*9T zCWrl5+}I_Q)RCGT_TdnTlS6t9Wn4XNqmitH$*~$q2CkEn-@!%g*IWwm;goJFD+)aSO`?n|Yi% zt1ff-Nc{T3K$vSN0W?ur7joio~5^W^KrO1i#)D0{7Cd`jzC6B z14d3@-=qDj2|~0E4+wP`@?l>Y%gc~S>AqAtzPDWI>&OfabZ0C2LlP@s**Y~>J=irs z47oX06jm)Ntv5MlhEsjDqh^M8a)@@A879OsH;m*$m=UXmoDY}ENot{&;b^qTMax+5 zwtJk5ADrkOYhh%|Jt`a`y@^3CTE+@yuze2;C~#o73oZ+l?f9Z)ECrkM+wl;HoZku~ zx196XqGhaT2JbI~^Zq^mJ|@gQ3$-by)|&Li4H2K#nH&SdOcpaXPD}ZyfngelXorDe6wlc( zk^Ny-WQOXc(|zC~If*SSWH=fj@{1dSDtTD-faIR|VTq=(8;oq3#?Blfy&*wyYPb(c|H?HZaL4fFK)QFz9F3J>)@hLxi-JJk-+x{@BoN> zUj-v4@a@sb)i59$f(L{e1}6I^B8P$hru!Xn_Mk0$%R;+(`9qcgW=c+#HE9?S@oBxs zF$_HCTXi)IJk256Vi@2#8^gfAVOHb`qK1Kg!bNftTlh7@(Fl>lfS^hqRt*Dx!w*X| zjlaOimTCNvL!>?oxES817d`JRhPPr6*i1}iI6e#{@H`JcIFaW$FmlUzjtv7Yu1^T( z`dGLqRIbfoAc60tcmPDckAjgC`1a`JY8Vg=!2?1K15f%IlpF@Wo9-|$I+tI)Cfi%? z(dK~P zxwv1H(kB4Ij8KbEYe$X|;b>n8sS)7_4$%%H!Wfyg;UfbuGgjy5gUjS3w{SYc(I}~o z=MzGWE_qgM}9;e3A^E(?`!@mz_Og3b9i@eqidKLR5saPHCB)o>u1g9n5f z4i588L=FePO841<@nZX~j!b{C)Td1dWBO5ta>}iGobyRU^fMQ7moXlt){-1k!blc5 zHbzS=sVQL?hiHc>VL~i(V^Y`=W=Q6#?l3HZOXVcFFpJ@6w8$qDW5L^QvMqjaqMIy$ zku5iw&mq#A7UYwOv4R+mT6l~5<#6uu*ejJS4a?WEr-zZ^ zN?)5BzQt0&e99@d>VD3-VW@2$Wk6ala*PPy@U62N5x&kL+F?W(Es{2T;}w_(YdUxt zu9B0=!VegZ#z=J>Uq_H+$>XYJgkR#vB^t#qU}VcEe#Rlv8w@6j>u@K>Gm7ZBW^p`~ zL14o&mE$R#<9PITOPGWooyhcf7`f$4PgPgoPPP|^vwaX;6)M{^INN3hHskx_5fB;Q z2S!d{+@pi5AwaYR4+u2`e8tzKtKrei~alkNY7v;7~q zDpa=3p&*Izf8!Al8UH7YoWQt8M^{6EXbT*S=j zu$19woX95=YmwVm6{q4yCK|{)VPwldPT~;h4F~ec#9Flsp08rj1daz+!Zo4t9Dg#g z7QfB*d-3BF*}fD;ZaLerClhNGGZ_DJIOAW0>q2GRd@`|?gU$Nq@fe7#e+EWQVBMp` zt06(O2oDG~B<${+h#V4rpYH90;p|ab{ndrnSpt|jIdxV&%6anuT{qz2X^qG+9K7aR zb2S|NokO(4a4<4T*|3i}XQP~0gTZVDfelbjS_`8Yj>boI3}1HSM9HJ76@!`hQHh2z z4Mw&MV={+GZzvcq7UCWJ9>pTT&N++UC2&2c{7#D9L~yfwD1K}r%Ll{AEoXVMT7Y*j zy(XOLGF%fX(_-|~j==}ir@#MEF`&ES1RDR_c-8-r-ZglO|F_S$vl zVYB}h%u$ud{+lpz%h{i!y73SS*fm@MJ8dup%rhQMFmth0up=G|Q3Z=&dwpDGxC}0oli{Ac^z4!a2VkE)13PS;m4vJqerlTk#->yx#&NC-Cmk>D90x8ifah8Wy(p zO+*e0C#SnoFsi(!JK9rGTP^q<%K@_}r`DRaU6PDY>q(A5;WxgOSA)W@I7B-P3S%TM zM)Me7L7B0}gfR>Po2Q)Q7XHm@rBPDbE=kfQ53E)WM&bu1n#V90*)op~4w2rFP}?p^ z6w6?F9~KOD{#h*V373S*vbJ4P64$%ohbMBqGmPAFuH)M!Ir&}{&UY7F7AoJ?c1cN` zpNWS+qOGck~9OlF76W@X>{{eD!+*h#Ol0_vFmlTo zo~YIbES9$#3}$&AgJ{M)Z=b>9?bUenHq&$PqZ65)4I?Ko?a{GS(--#d0il}yO}>(q zO}{tYcNxcv2SyxwBxYf;I{lHJ+a_zH+c_!aH5;M8%DO=-ee&6NQ@QCVEZ#HpuiE~ zUbrk&w&Qyw#!|33|1=%~k@GuXxhY1rKV7!QNU z{SRT}1nxarznUII)9`>$)59sgiOA{U2kA}^Gs^?nQaRU==_(b=<&I3Qzfvj===&nf zU4#0TQ+x@pJ+i~*%FeGa@ZWTb07ZQD@U%|lSV-86g^Uf^Qch}s*px%G!vG;U(o0}? z%)u~6GGR4I901qMNpoRGhNJOQoz0gPoJ7hf)MCTFcoam7*$YOtEM|8Ok={r#M_jVI zDrfND$07@yEeddbsQimZ+>>*$8_jAw7NQEeVdR#pV7|JfCn({g;Y#=rTqCLy78uVi zxbm^pupWJaAAzF`h`z9jCjtA4dQ!%|KMs$9$oeuEIe~SL4zGp; z(IPw`)R6FuuUW|^+4xi4MTmyfdwUF(t40% zF1XfLH)<}phC?LI1?e@7arLwf_jnK{!|E4bfa~Psvv4cJ(KwMWLexXIP2;opp^2t( zAB=37#@)UU$~1(2f=r_t62;)k!m@O)EaV$IZI`74J=^pS<>8OelL=7yDQb`HvrWhI+3h-QqQBN>iHi~M3-EO^^YrsD@E zn#mLx*)o%f93nlQ<=xO&!3?&KU;$z0qs8`Na9P}q!)7~vH#C-l&G{jC2t>{ggppg$ zdF*aztY`-Bm2lqAhD$@`-MkwbOT*^A9}k1b{aG+_0{0%BUkwkUX?Q@WD~><=wk~N8&Xl4rwbB^xlSai|)^VcsdTsya;qvwIbb?nEA^@S~yesKf)eRTxC3#yF` zpM&M<)LQju=fwuP=c|ZM>r9S;;eKEFsDa@g4v|>;6bFV;JZHm1egv~(HIMJZMRF2b z_y)t#2&s(ViKg*A7}+w7?{J93^UCA2I%a;tiOA2l3F4lhi{WAG zg2#gn2GNXR&}LXX8W#)RZVvy2*`RLK_6CgHa-OHCJD4u6cMj+J?Hi11@ru2XfX(;z zcmTxndOH|7fp3pau7&~85Ii8%FmRWzaOE(teY&q&*B`7dW&6+4W`ZKDS7+;J?t|4l zO05w&CWBsIEvd;M&mr1jGN?UR9c6CJ2iL+3$#X{Ct-J;O4_b2C zm?}_H5_ciArgm! z^m@h!mayR#%V7d!dTJ&(2Ck5k!@|A{M`J_o;2N{~|M*K6u3YR!^E@64 zQ3XGMkz1~U*h?3#>KRHH`|e;RjA9Vj^hH&I`O<|eA6pH>@py=8*aSvSP=m+JpvDf- zYCIs+CCR0}vX+-5<#ZP`N7xTV9R=&wDY_=z-K0GZwZvCGYRov4L$t$~F^cDGxJfU} ziq%*0aFLwE7EWO}`dlIIZVIa8Vb!(DD*UiS)98YcEz>xYL!>uI$h(^^hCjkW37i~m zfD1xpIDU6Cf#>V+gA;lF0F2yno?~}6U0gpF&h?{kQK(#-cQ+IGei#pc$oE%avb@40@og$TQz^t1Uw*A^M5n2`M)RK=0C3772S0xu}vfOA>a{1 ztY3UPe`@+m;>Sbc$5+LVuk#;HrBx4c-K1Qd>(7<4y{^5UX=e) zRj!ol@5-$&+{hl;E_}_9(9jVJ300?b75fIVU6l;m04uw?lpW}ih!1hZc9;pqt8y5l z!Ea!mWY(j4^Ne@4?}n(}ui)xA`7S)ea5TcIlf<4+LT3@5^2~jX{Yi1`m+)gZw3VOK zkza(7Wp&2%=F61~t5Bb;&kGzWy=h^p+$5=9HiP#W=j%fQRqchp*NZciLByx#p&_W0 zi*J~l8Q8>6!XqFOKORPwsvO7uqEKbpjL%e07AKzVi&=E>QE_O>WLk>#gW$?gSr?nT zxw5dC-ye^H$oxJqasu;e44_uII&S4)Z*Q)WiOfUmAvjh+3GqQs6D#!cQWSob?np7F zQe@M_V4tyf@BLWXn80!XeTd6yzpOwQ3nW zKgXiM&N_?dr{S7Vd5&-5REytc`$_!xM7E!Rkz3AoY!jzi#SF&Z3TOOHxGq%2%}tzY zIoPbfj>kY`{WTalfpw3j9(80fU5Xar0iouCb-sznx#0cjKI=F&&vup0uUW@-m@f8L zvh0Ot{To#Wz6Z4`r|R6_s3NR5twVV%#H!G}nYfk$Idy+yc+2ZZV^ zd-x_Id&_g_KF~HgUuJ72y;;4Ze2*o8Y1b({?@P{lP?}pgI>~o@tF1c8w>d;&CrQs% z#@4bnjO10A46A|s2`-b9&%)0bjz)>R;;cn(TgUJ5BRj3bc8uS`$d+UL+807OhEPwC zV|+6t3ijsB@N`$HMn|hue4XyH_0je~Vk+P1g624eb3;+W49c#Dcubl)9fq+Zi!*Ta zT*M&~4I{-hDz;$Avo;Ll1egoUFph=Gj?6T>28)UV8LKL+G6=UxFl4T<6lfqUUeZ_8l_uxOUyfDLZs;_#i=Y1>|rwUU5PDp zEz^0MFN883p{^j)`K7PMrRjVs-DQi(gZ}2<0V0NkLw6SV$CXLF3tU2bgKxN&0i;N_J(hYjC-b<@8#qctkDk6^D$l|6Sf=tcTran&e2wAgrXntktQ72p(kJl{h`#a! zjBNSJW4;i|SA?E|eC4)~D44Hwrt2#c>$mN*rBYV^9`uxpnqw)4dRmIScPRqX6ziBz zCbD3$L0$?-xyd*Vk?1BVu9-4c`0aY0y5S_d!>m|NvI|@*x0B3gI2te2Dg2@*9=&ZM zo%qp-Cb9#JY?;VH4w2ra?sV<;wu|p9iwJA%7T;&Ub)oVtp7^qJuvtG1kAcYgDKK)& zS)ZjIqmQ2}#+iO~IP>p^YeQvTJe=Xq!)E^qJPsoJm%+#h?0a;5H8_aY;Q^smR7d+J zA{RHllqxjJ1p8CP4^7$~mQoMfkqo8u(jFDmo(mP{0uCRK-t?8rh5yaHLo zAreg_#Ve5Uf{-Y2!$3}e8L@G+p-#;{n#=)0&iHba=&=1$F)LGKWYU z9n$M5f})I80K;G=UV>6&wUu!U0vooREEnEjWz*QH&f-g$E*51FYL*y{2SN0g5iqjl zFK_dOQ2rt`7343!^i{U>mxI!MWMhKdo1-JMsyD0q$}(2ZX84Nl-H_U@Av`cmvJOKz z+LwG~C`WLJL_4R(Kwvy8sj>e0;8xoJ+o>2<;(TN_i8b-D} zq?<#e*E{6hka)!mzCXqy!p=gA?~lTDq4FKS8xqgKX8l8W3`Ew~!^kaXJ$5%FUNwXH z?}Rh|ZMZg6=FPhy@jPtyzlp~|Wd9KuIe~qTrmyA((KWzKO`Wp*P*@67hIe zgR7D;m!iJql%9LnWx`cS^l*Lf0vOrymHEC9%2$M*f_$YTBnoz4=##t-@Yyfh~th%4)tyLb7rccM^M~`onm3QPgM51@3c=<6hO4;y>t6>%_ zzj!}fBPWrCa~Y1tM|F&R2#YC49#t(_T!9~zXc3pe$d*N1%puZi3*&1KE?N9O#3I4Y zGK=2_;d)T{6ma{xL{*aQz^ef>^zYN!e%CvafLyzBP`6?hWoOmhS%ZX9tN-5u+(?2Y|-DRjJIb~M$-Myj~ zlh$k;&3|haXW)gymK>rTn*SJ?wbB2NhPkl%!x3nrS0r+MHhy>_*ZnYZ%ejv2Ug75Z z)^NUWfy+YW+uXe(k@K7J5Qv=L2qPzO?$OKDI3SvX2ZS02w(w0vjsuscdslLF^reb& z{#^Y9@?WteFn4lF&42&9T2NZ|aSQ}6`Bq!42E522+F>9VTjRo*2u5CxvLVk6_3egX z3<4XRoP-ws#)_qJQriHpMwmRZ8VNe^BNHv-zrNh7ll2Y3{mg{z_6u{8ez9fJFOHet z(XlAn7H(nTTJ~+Bo(Brou^%he7j9rbs&dQq1fF*b=Xqzm+N1OR>~lW-?0Y^}R7bK; zBMp}F>m5ADw_LBqZ(lFI9X~#i?d@S?t3jmAc5KV_TE&br`^<30SHN|lp4sM>>$Mzg z)=$M_AhP~W7&(D;kDji^0?{HoAe7U*;A>WLEI2jYn*$@tJ=p<$Cipn4Rj1IZ`+MFU z5D{t3$1xDx2V+?aS^_sSJky!a~8OZ;RnS!Udr+tbN(t&GYZ@gA;lF4UC+? zvxk?fb|4JG146Zf8+;Ry?cn-!+rfmsY^AHGBXic;Y-zQ=blmw~RIE;=Rehgb<&o6_ z)6B@x9d=;BVwXWuKdL({f<|rD@b*9as65TUp1I93s&=Qhe@&eQH6ZZTQCLU^Xn@xF4>QlhDG)8IHzDZKbJ3 zm^`vtX}SkLGSM^cf{`uHxSd0!*BxprO>UlFV$on{oyGHua80N@Yb#BOY`=gXpUC#} zFmlV;j;}Pi8J}=PFymtx1U5WT8MjuN5?LRG$3SF#IEmwK)}iB~qG4UOXwYVFA}G92YA zDK#=I;Sh-L6Qikzd{R{Vb zJPe}Gtb&m(pXu_2P(CAc734FAhD5=xKjx*ogt006u(-SciM}SvwoUKL^%YC{wxsv6 zoUpmbslMtlo<7536mvP-qqDyjpeAF7&3xLI2xT*OaELarnVGH%7%uZHOp@g?Pr)T~ z@?7{T!_nxeiakVJS=fsl-^HUKn#|)cvSl*g@`X?)BUBY+GM@^Gf|<+@hj(<~vR>$M zDuu`^FDl zFj7?JhL`LHlVW+v&Ty&RUNVp2=w2drJdQ_id&vK%?o8k#Da!tz)n)ISJ=kRz7g5*+ z4T30w+_zk!$R$UdO=gp6CNp6&$?l@ap&ZHx0s%!)6y;PzQ4qxgMR`Rok^2@9K@bE{ zltcVKT~#yHb@ZlwRY`aLd_M2nV3J=w^?aXx>Z$7L>UZOD;cL{Fktk4h^DI!vHf9>PObJ&@Wm5I^ zyv!nHCNT!GNQ^~xT}vb9!dQ$nayINMdm1^BbQCTPzMESy-^?Rt;>|nekp`@6A8N2fEkEx*ia!ZI6lwXS3E~v~E3%7l>VrMBXR*Vl`zW?(hlU_dLnO^v+t+3DS z!%^=glLO~H?_m;SAiHot9m)P{$>lH@kda&th8<>4F1wSCnq2rpAqzucgIugV5VyfG zw;TW~8@XjaUkRC8cti!|mUo9(LAmANY-^Wyvf8D;r@D$xOB|?lwsowk75e&$we+v+ zewlhW61B`Bp2;R21!IGmy-jnGuk4=di%1qWXETX0kb2%eoHw*YbUh5uNJQ7c?z1PN zOG!sfMDJt|j)v=zS@K+iTjZFQu7;J3v~-oPgiK33+Je&3nITqCTDmFQw6sBAjb4_b zr%2`Uu#b{nqppoaKKh7fK4PZEmf{bT{_RUeW}<&Gi7}9g7N`3`%Rx&{M}ZkRXc0+Z z)uTNJO(q>R2fdBup!B|&*=GT6i(~eg3o9GhXST0|%sxEAg0jy`zHuH~LD^?!whP0P zSy2?fg{Lgy96`PuiA1xbXQGJ*MrM=}v6hva!+fF3v~n<$7z1f#O0(Bm5;-1*VI+}H z!EUlAk)ugRK_WKLHZ3<(#u~h3$CNP$D;p`J-&aDW3?4l}DdWHpD=1|gmTkc@N37AX zefO3XnqN?NMk06Y>6ttD?4DWYwmx&cum5EZxsFMUfgHl&@bZlHUdttq!*GmT@+j;s zdoH<+bktnJzmR0`6Bfv|nTK!-9COP3u(FX;?(vn7IfX}4P)@lf#0ttOCuCcO%;9B7 zrLSD*w5|FsZRDF%*!ae+bIU19$Y88$7l9;m$|5E)7IKQ-do8Ez3d1pS%1*Gm>^Ws~ z(y`?fy$5EUvOR8rV@}x?RyK0V*1i%lr|@VB$|(y%te~87M7DLx?D*wC+V)=>q>N&| zBzO|_W+ciK-*5iX+j87EVVe@RmYL4+zTTG^>5|<{7nyQH%#`o;$}FqzZq7}o&EaB^Ptyu*Z(h^{~NG-T={Rn7E4pRV#dI$xG9b? z@CvM)5(6I9fGjBZVB#Sm-zr?=+mYA`Dkx6Oc9Jrq`O)vL(jc97tt^=C@C7t?Sp%=( zyN6bM{#sb33|N+0;)7&u;OyiBOkyn55;K*)Yhy|Q=3oDMt2l{o)ctECer_tS7A9J!wi zE9cIAp&WSE#{T+n_SeDAab>?)t00t)nEbE74RPduHLRS%-(&EX^#dP3JS1fO@IK#; zi2C8kj29&07x|hC66U*nuTgKX#AS`VhVOy|y%Q!DB-~!-`?s(6<$}aNnM7(4k=?j5 zTkE_wrYt!FMPpPEi%0@1xvX@f$)uxJ5p!8y(K=w}lLfc|j`?IRtZd|y*}f7opYT`; z$|o=RMzqK$9ogoSDRDlbFSnKp>cJ*QkTXXjk?iF80G2{gSfvE2Wgc>vFLs$i4rUUm zDI~)+&8e+^YuV#?n1_))J_S3xDk%r{{SneaQ7J8WqrU03J(c6-#E~>BceX|XSVghLa|YcmGj~esAa#_ zdS{|Z%Nl)+{XEMBzTbx#nb@~9?DxLsk=a;5Euu=+4s)19YVDBSu(F=r2U;ERK^T-V zx_kh3nw5353F)YH#QLm`u=m4EHt)mja7;E^!pcUn+1yt`CL11ELCI!jh!ym3q>}BM zyVKbYu6l1DoeWS?=Of2bPq3=U8gz|aJQGa3`G*W+b}2z?nUSpW^}5U|btW+evPz7k z*>NqEd<{loq>`_|p0ZMnK1VtVl?MMBM8bG8e|!mV+%bO)!OBMdILlW;<_{i2LHXmD z5GyEu{4(2ztBd*v`ueK1Iy*;EYy%zW>nhZ>uL?g*-5QBx@?qa(BFv<-6q%JBO(T^U zwq%wEe0j*saxare%`6$Nb+l;dZqV|~|6p21o_PcIn?27wM>-0l#u8StG~-V1iJ5d> z#Vv76I4&L=e^sY7HU^z)(^}cHyY{cSV?fo&MVPo7L z$7t9HR?a;d-XWJ5((WfMA`T0Wh=XB2xkkh$EFy;QlNl8U;x;)(#R0H#N>q4M6|ykl zLy(7rTt&IdH`$3*lm*!qCiCNMO0mCQ?6U18|1uoR)<|slo_R+5YU5*Axq*)R z$bC+-uack(m7W zp8vs@_gaP`ClUSI7m7?b|6~$lAl)oZ_k)&omYjtGGqTPik{F4)cQWayS%;thk=_?G z`7FR~aZEmQVPzxv%=VR#$%jW+Q1W@nH_kKQ8L9WViIE@#mu*PKr3H%g&`R^W+&KX_8hZ0>8Lq|e{IXw3$uvX9=F0V z$!rTN8%btsUkRCHcvJ-?nFS$MP?Fg`+kGtjB%<{5=TD;Uj6?6JiDBl+R^5F=~F*LTnkaEVTTYIy4elCG4vf%`GkLqZ>-_TK2O% z?#n>tl}DMx7|1K)s}{-rYnf%@IVd0_vy3MRtjM!xmY2zE3Y~@clYy zJl4gZ;$ns=A#2GeyTYLac(yXFTD|FNMfO>@DMNBa@mt?rtb`p1mmPT%a`G_7*EYrdIwL)3+ z^Y^gltem4Cla2zbF_mqi6CA~j`V;ysPVE2icGsFkZfGh0238iHnOrXQi_Z>l8-K-= zvfIWqgYQAL@_vJC!R|-l@&{Xvc@=hyD{4M$B&}}_8xr^{cUvt$?3-MDbbZSU&zpVU=rU5x4@D3Qdl{KxE$q&caO*tQ&$X>%T(UQ z$wC<`aIHuN;Dx?1d?0g0ba1vS8gp7p8C}KBTCulSsVm1JmdGkBTUmpzv6pA{(3}NJ z>y)vnSx7`OJ+1T&DLL?Taul=oZfje9;?QwJ%c8TXHtD%GI)^St(tplR`AM`m?FSpC z{a~M^_C})fsIA7jM*p?yp#k$TMw8FM4znVTR+Ekbr!k)u4n`Nu1ak^*f@6aD46JM< zm=l;pcFY&@;n#4RM*b&c7ItSE2I39Q+A4#xV{aft6F@z@s>bM|M6B;RB0@gsd+<;oA{WU)+)H zR*(5rwiCWUpTz8r*Efr0v&MMmxo9S{hG3&;t1*hJ>BGRKxUMObHy@~%Xwtl9b9%?7 zJ^pfVyh*=MZjb*n`Fri+_u8Ar$F{djSH?I?0rGb04py&=P?H77+nB^yShHyHOS(WC ziS~l|86(l|u+OX^5N$;|3ZDkw1Y!j#tdOPSF1Qtr>1Rh!`P{a)ac%KGM>dnB%mCXl zt?cTN#e5jIxljv)0kSNxB&mUpI&#Q05co?H>3wNBT82Xvx5Y6W%CNFA8f6^?OJ!B! z5D6EBN5X}$k6a^xzb3x+{+Q8l0d9|DG@K7Br$mECVIgZ1KIV8x$jr3ZwcI0U;tYO#K!B&iP7c23Ky{-NbKWcBN&gD&tXKU&|`vAto^v zs*K5^*V=e8{ydb0QCN&439J~i;*4G-Unxi$)7bQ;iOZ-Z-h}xy9Mi??u(FXZ{=>;< zwv08C54(2CTZB_?A2rHz7-hwLb7C=wDeAk!I z)Mbr4?+*pFj1#sgwuX~K7Bw_;9J>HjVw%F9)-qL=sq)<;q_FaH-M} zlm9xnA&>0xPHR_Za+T{lEth4+%LPIoUUm#dKs@w!3{N7i!&f25x0#Rawy78xC4) z#5H#GeC9<~aif&M$x=1!=^Hn)YS@iQq*e{t4J1>Vz1A{FFAT#NJtEjmR-Vyeq@y5d zOlOZnnwFa>qZ@D8F=ceY%0|j4_)5r>!J{WAW$YYc1x-2D$#%*iUl1r&Y%d6Wm%4)$ zJJwhWenCK5r$nqJiCpdrKqiq(m_%w4$#Ck?dO@Joe=VKd0rN4^$*r)%tcauQNk@UB zy&%x)f|*xt#!Ya{D>uQ)Mqas*Nn|&2XfFt~+@_I#gUrJ2OoRNZuyb6=+g=c8b;RWV z3T}ua|CeFq-1%Ex5NNqhi-G0m2gkt1Bry`x5%ca(dqJSp88Z$x!i{l^gQc)?N*s6; z2eQ841B-`*oRWOYH=xCo@6$YXcg%wWEy;@g=)W8SdCIsmAjt_A)njCwU*@a!se7U{9+V4*w^Ukerb`WHLgSy=~t$5+qk67_1ci=u~d2Sxvskk}+@3Ig;R<;&&u*|ctq~Nxmvj_zjjh z651)$6|7>jhNJhnk@0KOWEnS1iDyeD`i!sNWhOd-Nu)YI!*$u1N~`Nyp1B;RV&s`i zU|(6mM(2`_!bKb$nY7+aBHzMWcT6JRfR&9T@--%rdY^gRW@|s9XD;8}o%EQ-`(CmL zy9*88cfo#f<;{;AHv3>w{{wD=BlX*0<=m;Sw`+6zX!}~ozxAuZ^P(x0V^9xes@` zDbzhieOWm0A;LpK77p9^c0?2oFJ!yaI=ND)^cK5Hg^IG+@Fw*F%TU%}YpfWx%0b$# z3{#fU;dNgkvUK!OAJzJw|_7K=6UWLqZl1|MDHK zL;>-YZ1;REEcEvmYjhfH|3F_~wN|Gmvf_{jrJ(pJ9KhD-YwT|;C>)Mr<5sqeY}u%c zQT2v&v{v{K>`n3XZWJP5nZiaWZQbQDAlzS%epr!Yho7Wd(X zI3}FCVPzxX+{q-eD=gl|$K@2~X;CocYr$p4M3NYZg3^qFwjW*r_~L0P9a#0uKEbzipApn07GHTw1?Wu6s< z&ZCQLPikHLc<24pBW&Hq8h(wvJ=2Y_uxVgNKiQ{*u_e>o<4Zwinm;m$F_3ARh>{M_ zlFaKcA|uKC2lkkia`ZImD0CWpnZ-s?7$Ijp|H6%M%rF0dm5u!JcV7vaUwBLf<(E4` ztf2hzyKHxcPC90wP@ym0sPEKm`}L7YDWkW+qh+=d%a%;DHFX7>D~iC9nPw{{k(y~T z+%Y<(*=;Sq90~I>^2^6zKiTukhe$_ZA~tw5EjNpnL-3Xzlgh_nWh1G4gh^yqwu%iN zO>b$OKTpK>!MEFAa{;UOWHL$>hkNOL(P+YKI5_@}JfIx1bt;>Ro0 z4J<`jqph)%=WK+V6{Wg~A)XA;@f24eq4%Uv4jJ;)sF&NE2w3OmJ>baMYj zs{5++9DZ{3mftFUtJr02+e6;|4thtqx+NsL6D zZ{E@Kv~3h=#Fyh1I1=9&R!$-AF^0=BfDa2E60!`q+&6SZ8L&&XWx%A)YOU5;Ev{4+ z2`X@~TJy>%zChYCTN#=x#lq3PfhCKD9wspsiiIi7ZfoVjSuihg_sC5WXTW~4B9D$E z9fgT_zR`sk+LMDvq1)Eb|#Eg&Qhli0jp9wssT*?aPL>F7Or z7m=)1hA2zfunF}9tF=W~$+F=cOkymQ4g6)_LPg6h`@ytCA7$0BH|!=W@Ms&-QIIsI zu_;LtmuOh7GVF;r?3hq?gO!bhvNMy&u4tH!LP22=W=3j@EQ-e*QB!;hsRc+%J1vLg5s zlSr)yvKug_G<&V(j>#9HFvPtfD}o6mffY_xp3%R^R|*obj?lE+oMXHdZ`m!eL%dzbWU>LQY$TKQnM8I4gV^0w4HX{7hZTX!VA53HO!>BR0PEA11*X@45_iYsk>cT*biPvRCh5?>7~rx5oT&GEh z(30m*vYpz@=`5G}=+vr0y;fRHYoFDc`ncrn-$u(SYbZAM^h`{#dBQqwoD$EL4D>cK zIB+_%m`S8&pbXbQ8J%SJwOq41OvlJIyTJak0*aftso>>F3^{2NjBewaf_8MnicehF62o&I9E*9$InuGwVBSN)D0|kS)7IvwUWqgSee@DwlX?1O31Xq<0mL>+!JC2 z%}4sOJ>PPPIMhG>?s~0MSW%8Yz1~_$QJ%o;1c$CQ?iwHUoSFzrrJ)Hsl{mKKmhH** zz*)++Okxb=mL@WrBeZPO2_rMI%_m^bS*b@KCLM)RV=1dz)<#trBd0D$;>I}UpO3@J zM*ca(S3>3=9%DiIXX_9vDF5u6ZP_xd5TE7U)={Lh%gRc+xrjP45{1hyp6P}eChSrI z*OFc?^mV!{T`ph}sp%!dMUd%cd&c)O0tWHqd8B$ELqkzMg1wuV_5e~)YltQ)=q zd&HG-a%)%`>C5oe9Z6pdE9Xu+u{F#}`=M~!_rqRsrLAubOCx>{Zh<55Kf=l>#63oN zSt#&f!9zk83J3XiL=*~>CbhMtj!UVDYgx2-@3yw(Ck`Dqv@AM%Nn2abwb40rIdUl4 zFzpBD(a#(6DusG!ut1tS~IP6wOoCuxnIoD-7ys7R&~2!tlpgBz~FB zvxs{kIwAU?3|f{lVgdCFE51d@$ueRtlfZF#(AsBd3g09~#Q|DLu|14YbXPu7*%tPg zH4>ubq@&OgANR3Q6h_GUVr$$8#~id3tZd|HRS2--O%YNdHDyId}SryOrjAy&{-WLmb%Arm?W=#Bc- zO1}6Cbpfk%tnoF9&rO8UO7L3p$(MXt$a%>SlSs`c8O}>4@lI>$}b(AY@{kcgR@!7Zqj>Koc$|=M>MtNB%@L|D2 zLe4GD@(o=vx41pqHOu(i@4i}9{ix`{aI9JbZFJB5W>zZ$lciKR&^N4Psc-<37z?FB zeC~JLYpqsT1Jg3bkwMr^R^U;QbQC1=+;4_UG%RNx{dmKU38fEKHWErNlgO@Ekmr6| zC|^Rx1Xc^*f?eWDSv&XJ&iWg8^Ny^)1}o>zT0QsM!uzgp-hY7I;>z1{?zf%!ZMX@J z%zqCnr!e;z?PbBh2L}%cSupJ9+YwPPd?wq)$O-Wo?G5CXrpSAXXNvj8~8?fwe*h>=9SS$(4mP(nsK}JCZ&OR?eMtVr9Wf z`^<3K4cIHLwDpyRG~%DbEpQ}$3ap$$++&oNg#sTIJS1eHFxj^wqEMKdZK1G`eITS( zTv@EuiZ!+?s&k;$Pum-nrxLeQudrNY4ZX(xwq2PHNAtxWplBIM|JJlo8JH}k!Y#fu zWU25wCXreyWH*+?sBBKqN{5$VRN_vOrNaxb*Q~UoM@UB@)L6`36iexd`N;D*+z`in z^9-zPEOH>s!^k2Bz>czKksV1#%_1}SOXV$OqG>q?*$;2pF>mY* zD;s%ZPbQJwxG{TY{z`e%T^i{V$Q*2FH%K1`JH?gsTt-^!fH_VaiyPp`dljslJMVdk z*U3|uUm4E)3fM8O%-7RjCU17a=0sY*!wvB6x|2eHOfo6^awbD@ZI=M}uBM#SV z^})?FL=e)JEI;cE1nQ|ps5?O<-afB_ojL5ttwpa;c%Zz0r z^#UuzML5Y!GoDGLW||C_JlCNfYgy&pFeM|aYzn)`3OZUyItq@)B$icTOhy9P1aH(a zfxH7&HWJ8&Od`7>WGY`JH0gev3<;c;90I$;l`db(ZkcW}{uti0Bjb<2%DFS1DVH`) z&ZmZR{w(YgSI&Iztzy2(`b4~WN7kQ)l~Y)IjOMZ+;DdmNgq(zo^X-V3gshkC8=m6J zVuQubdbMWxve-@39V|Cl1J3)j8TL^cZk^kg#cuTVzbplAU=m}Y6yRSLOLSkW3;qhz z5qFK;O7R!iUsk};J*1=71&J?Ip!?f4oCXaVddQECr+EuJ*P#$uHg}|6YL+?2+&WP z(feZNfbDTx9HU@cSUDvMJgNd&SnwgmLqZl7Kle>$qOj=8cBO$G9ihG8aS|M~)`%O$ z7d+xOmdR*kAhWDD9Pb-cvdH)plNbv{20J>URM8U5#V{*lh`9*%k`;G!7U?KN5=Tc6 zEMrKy5O3EpnOp!X8_DE+CXro1kvKZSVEjk21uO0i#&^ITab=u*!9(1Z2I*Vz)*VUT z3@hhOI`M)B_m_4@|1X^O8?aYgY3na|q!E7=x4@D3E3k43agR}677Bb=@Q{#&!W!R> zh(h7N*>0$s!OtR$kGt&}=v3e8*x@QPL0RLiv77Dbgu|oH)-j39GGz?1R0SU-Yq2Sn zh#*-Ne1J)eg{okt(swPD6ksl*r*hrlDA-w6w9$T~qkw7fl}yEavqm@^Z{9JF911HN zdE_7_kzI{2k1y{lF4KsgK_&&33a7)4aV5^T(O5cRaz70>!jb#QuyXF)7s}=SwXwfG zoc(pMb6nZ;7q(J5V)DNRH^h z#mdNLDLMY_%Sx6U|6~%WB}aCn&?ZhU(Z;1E-$yYTmB=EJz{)mjBt(-*N8#1jlXw8}?$k5=|y9YKyvrlIPV z>?=jb@Jm0x4Dib;cCiLuqhOoiDEqH^3zbseK$*S_RILpA;z;tB+lARmY&UaJV={Z| zy;z}{Tl7`>gi>^v78=9%h(}jrc4xJ>uh3cVpf4E}=mnd;9-(+JQ%ucJ8E(y*#9g7~ zpc7$+qQ?`%XH>Q zoGg^F0@sRU03PVuqlrI=3(06)w)3CKU8P#7vxoek6c$U!7%Xh9G1oYB*usK7QPx%M z9k!(4zt%3TRfec$JrT)aX%Ta0A-aI7iugN@u3-_$@n-=iGCSp)j~P}DQ(OJkiie$G zPR3xeJ?tne>gZjhqd*aFpSDbIPEsVJZSkfZ^UBt+vXNJ|ViMWa4B{M%mb*04y<`q{ zM;fFf*eR~0lW(84I$-kd#tm@f-32S>&O7n;Y0G6A^RI+6{}SvNSLXWLr>#zy+=p-@ z9J!wbE2nVx81v%+n@@rGK;a=F%Z9nW9T8>2TeDq^m{+cL7U-m_TCu;cT8Te(T&dR7 zGc6vV9$^W~8hH-q_s3254_iU7-)d)ex6EGKrf@k--RsLnmJ)X{iPS}i>_!<5PIZ8m zb>4u%86(ZBu*a%8bIA+rvTsi3U$hY%}h zva%}MtTUa~_UffL@2sqr)vtwo@amDtHr>NcSdxpI!zP{NFSiTpx$#O^TjnnxpbjOU zD|pOb-p3?TlTL>7ml?^fYw6}Fn4FPr4u^eZPd9s$j>4tE*Ta(5o7K&scsP z7V_7HlfMS`jVpQn-jTf@CjF~%I~?g>1uLh}_b3cxZNY~Q4+%M=+0wToVn%aCwzb8q zzJWUJ_b68@-E>)9>Q~l7|4p62l9n~@8l}-JF9zz|er~=pkXZ_hfBN!~vznKf#8@aW zVtR?rYeUYWAENY(A!h+eVC9%K0HO(`qmXH=%Z41)ely|B#oKpGIJ048BjL6Kqu>&vjU+~*Y&01scWR}P{x8g< z;Yj*5SUGpniJe+j+V2Uc{q9ktt?$%IBfcqafg|xvVC59z9^ zvFPNX6NioyTjMvo22EVnxNG!`;uDbAd}+Nho>?l5Wz-{VZYH8kRvPbQ5@Vs#n5pz# zOFR3+>_ksxp|KC_EGzzKThdX$hyyni^UYkd7v8*MuGt+{Hge4_Od`8FLmarFxJ)Dd zNir$0%vcRO#+7*TzzwAnCiel{2uJQUSUGp@i32wjw`uGz3uk{Z>>OA2`hgotM@;?~ z;f6T!zYtbV;qOr($QpwWARZF3#(2ALM?{UWd$u*k?0Vs7+Af~9(c)?94VJj9k=KYu zvCN2jkl1XHa^9z$B>&l$kSsJFXA)zf&|v%$z1Nb@lxtCbMyWB8B(S>78UoQP-Tcr@WLHEl&HvhG{?8XK7p8^0?4n7M)EmOZHqF zokN!+hobZ7(pbRvT4+wwsBaxkeJj{CuGAMLHd|=jFbAA1a5Eg)x5LW0vtM8CQP3Qx z@$U-fUx3}?%6|jKKea1n3><}<;ur&m!^$Z!;88KiqJs}69ul(Xc+_`D6Gg`>?JGk=xWkYh=~0b0+wi3mJ>JN?K-BDpTo*VI{7J+NWJ4cZn(9V z6Jo!GmGR4D3s(CZj9-L3;>tL=-y)6l^LXoyq@RVAb0?kHZ(*gq^vA)pmypCr%oNN! zTHkMxMtl)&fg|w+uyP73Vc}bkdURqSA0WPlnRe!yWe7+?m};GL3#Ai0Y|De zsWd(|?3x627!J2o8Hy~$!4bZJB#VQ?n8a8p4kofbYqh~iFdt*wI39MA6>(G{9R)~Z z3Y&d!RH9i~8hi?G)-ipoft8K)F~}scD-EXel?EH(tH_kV%HX@OLtF{ZN~|xWaK0RG z+>!GouyXF4XUnO$jrGIftRH}#;>wz@AZi^jR}k*S4RGXr7p$DZ+ha_ZWdR=$JS1dU zaIkMjL|O27w%-|<+Fh#-^jVI%S^qjTHCbb=amcX60dmX@v)1i&oAsyzSP?BEO4bMS zn8aA952neEYem8iFelMXxq$FN*i%;2(Wa!M76~(Xkr0O%hbG#VmBI(`wjDFd`(R}w zqio3}va1y4h)SX5FOBulWKUqZ&;xtLl{KGQ>OC;WkRon@Bk>ima_+?ECx+ZK>R%40 zelF}8SL%Fgt*sX(`Ll5=9Lb*vE2oh682V-Pz=sPD30XbN@$HDH9-hp0QDJ_Gz9mu` zTtgojp*I5J;|5B76)i!&ucJ7af``1)1;4Zicv(g`yO{S!CBF$ui{D;r7Z1z!o7gm_E^C866xtf15Lp2&6zGk!&}t}bkD z^OKQDIR_4#aW~dUmmb~(QGCpwL@?Iv9npZM>=s6+ovX)7Xfaw^SyG9S1Op?1qeKywbPu{Tx|>4fqD%Q(%9%^5rv9 zX}dW>A?GCT@$HD1lboFGoMc9+LYt!K%UhO3&3{o>u+(IYw#LVYEew!F&8ER_>ze=Y z#UbY%e`gY7p+1=;+#$=AD-PMF+x#Eo#|z8$QbJNLxvU5eW@ z_O)>KRoFSM?Df~Xl#ZDE%eWzq{7bNM3V)B1Kvore0P&EJRmI)c zY5fB@Vy)pesynTP*~-{uS##b0?kHX>Fz59!`5Rk{F5kfq6&kJFU}*FT*WxB>qlVIfb~#I4?^DJ}h`h$Wq}l z-_RAM!nkaoN31(gDIGIF%MYFL7sNUT>ZQS=@ zbE@)r+y=+|b1JNCR*Yi((X?9`)+|NG#?%+AfER%! zi;j($#8@agCW~Hcqs_iBFVRO?X?zHFlNEXN0n$;BG^VjU)5IkjmP;3V;0-&blwDzE zBc<%bB(f_nX7WMVPI(O(6IfFW!Y*;8%%65C=9|MuKi<3}>poaHch>95q1Vp)l5pPN zg5BcEd%jjZq~71(z)f&u{xw)Rg}KLgFG~hKICx0Nl3}TDM?}f6cg9aT2K)QUrMglv zJVjl=a+5XCM)gUDFk2a&ECs_8zBFXP@EDUA3k3t6DHF5O>V-)^M`?*WN7f7LkOWp% zS%F9YBv&a!T4&0z7!&Qva^Wp_yN>DPf4);oGdIPDJDE3S96 z{-h&~_z}1Tj>Hdxl~ag&jPtTo;KPE4gv>Ax`z9$-D*QLw)rF}m3iZw&%Rb9*!trVi zwh?}LoLTF($@1&I5hbgHuQG|TP$f*09oH&_-@u&2jUy|CU%{TTqK>{#I%=iBx9UsV z%?al(@U|T@%Js0akx{N=64@;-h?mEuzckh_kv&)qZ?Jv=_KGX(FQ(vDXMq(~t-r@So>I+Ode}DOeG;Y0V6j$j>*y=idI#!-da0^Dr#KRhU2D2&bPoHRqQ6?Jmnz-E zZjlhb*Ul|h3|Gc3%euqIeWOfP6o)X0u~1RWH65VkofBYo#%OaK>@h3;s7yKv9kDyY z?1Pzgj>T$Sc>OAp8?v$u8Bt8E>F#ZG1E`)|}K zERd~H*ytN}5K8X98+Ig0{&IWsYplE<)D6}PCFfa2q`&&&k|WYzn8a8Zkrr5epe3c5 zzeHIYgVHpT7>Q!|b@H47sKGzyVeN*QjV9w}IA)^>u(FYj-pVAh8<&>w=h9Z!X%Vm; znTFlXMg(jFJII<4A~OP(vWKo~>5Lf%@5haCjDz>W%DKnEhVqfSODvSaV__xiB-dDY zhxP#8+95L@I&p&>mv*dMZ)%rH?QA(1_ z;J~#;UE>p@Sdwt7l@ZQTf?VtyRI&uQh)Ilv5@aIlvo_$|0<$s(oZrDtvf_?@Ogah> zafUlbC7P9w;(v=b>zGP@4J#X|?N76=o)GA^AZ5v#_JA*rR^ZQJ^$tusKP~baVD`BHpxPYWXy*Y^0V?GKuU; zhS_`~-*T5m`bT6=VA=2k*eR~0`B0*Dz~ucs+yF=3-+`5L=RHrZKBO^!Je>KXuwz`A z^W&{7oiMpSgd5?={eD*j))Rs!)$l*$!8(-{DVIT;SUp( zg@>iTLUWci_%eAGLj8yzgos`!1DU0|SVBF+s&Wx`vbtErB*sE@(Rvo5_&^(fc7<7r z9?ME&C)jD$aELZ19R-l~EJW#snT@u`&2Y>{+rr95Hrkp=WLI@)&q5T}X%WyzrUh0Y zy|9B^Bf$17MCptf2N7wQC#teyP)$pgNSWNmUUlNbxN$+|}WwM_Isn4wXZya7AR8V1pG zq@%!T@YkY^E||IJRon!}-17>oY~-GonM8Iq$wI!6V7N^q|E^!7cdtQyIZ0q;yeoNr z0B}l2O#U0=hB)%y2v*LW{}Q>VFkB2A79Il!!wzzd0bY}?r88z69Ecm^7zYQy$|-T+ zQ9#HVgbyqp60!!l%QvBk8f0R&`!OaAR8~^yq0}8;hNIRRa-(`Yf-qYd&n(5pxxQf~ zi;c6H#0V4{=T2=K*B1ZNb8U3alD4)ZhoTMlZfje9;?QwJ%c8UCe~~}fXKBh0&ZA#z zOya%Q2Au0*Y{r0d9qcYE`RG#8QP7BU5(G8TuH2k)4c@L}Ubz}pHuB0ab=u5Cn1gW6L{;6q#uKob0?iRC&5a4-i^Vu=a9rml#u2ft)G*S zMtml2fg|y0uyP7kdQUQnZBVbYKE?CpRPdly;8`imNOoPT7goWnjIpE+ z`^t(t>LeY7OM{OkN$bto$T4{9j+vzbD;t^RXeNHL3alNz3H!yB zH$UOq?1M@D>$nY$)V~TV=T3b+IelLX`8&hO-wyl6mHhhJt0BpLnDlSK?Qo?3J6Jh| zzDFq_s|h}Icu2@vzF3|mAbUpvL#QDsIeLzbnK zm`)wRif<88vXq#@B*sE1F(K})XSM0TZv`1ZAh??ue*dMNZli$9!Q~o&KwjRvCsYWx>t96l7U&6O$MVWx-_8YppW)J4{L3 zGO{xG8|)@4=;$HRQILp_JT!5MhGlW^SG-}zMDiC{*+?W$GKuVp1M!guJLSc{Mejv} z@;NT%43xykf6O||w{*mn(!dpt}krJoDacT{+#*xF;2>vSwWU?|USqg=d zeZxr>3MVm%u}~r5xxUcGDeTfU=LYAM_(cxg+^l{Tb3k9qD@&IT#UErm_9Co zm5uaqA(P0iJeb0l>5OgDa+B~M@s=G4-vKM+4Xhp9D_jOvC)VYV^|SxSPP;oC)ol`IK%U=m}YB$&iIt(67cFfC)~=z_gu z1s)wpItmf7k5Rx9?aI=ifVb-_5WRgxEG}Y>W$$M|y z07u??!pgbxP8>AVa+${bxNzpj!j5ret{*hj>V(OC6>fwh_d2Yc!rf#1mn8%rC_E%& z3Gr{=;YyScU(NQx!}M}r+N%&hgM-!@aU=aIL?7@f#7}&qO4bh7GKsNJJIp92x~?Ud z$6!`Q`S398D=Y5k7Sd762k|OI!g@2aJb<_Em|5;pE>B`^NQ7H(rHE^uwh8 zUfd2x`tO02Q|Nn?0pOlfvoOEO=Di5ca@mtj9yp+~2Zj>4qDAAUD2 zH`B_wc*~Ay&SV3il z9sQ3SrSK4kEih1`RaquX$6IwwBU4~yBaKXC64{jr;;;n^-<`-3>`pZJZV&szm2dK} z1v}+!@wOc)Zw)KwPC0Sdf`xQ%IOz!Xi7RRSumwBqZoGX*+Fh`63T=;ZU6uxXDDaSw zrNPs_1Cl5Wo*19$ZpgRx71U#(zY9mHHN+Z64ZC{a|J)(ASs92dg~8>%0VNBAOPIu1 zC=Ax29&2^M9WWFmj;V% z9sPZUT0dP2wOV0~vO%E-4qa=0X&f_bp}=k6CJg(qA^FSgrGC*7(GSrLWw5f;4n^O{ zleNPNCXre@WH-dDXZL|tO`HzH6!)53WjGCXnl&DxRivW;YVZwG_I{WN>15mv$Aoke ztZXEt<9#J$LgJAXl#n_?tQc4kEzb5S=Y-%D`kP6+Yt|RX&J-FC9s#Qz@u|X zM&Qn zF^REIDNJO2)(V9p%*q%Px-S-4E&PW`jD>1pS`3YMTq_wiyd9+`ZX@}W za|4nXiJ8cB(ov{1_+DFSyP03s$J=(yFYCd|Mt+&cB(kd;=7_o>jrIOy4|azdtoMPv zV!g>DlQo}p>OC-t?}c07NPKr#Id|go69aG>^-qRVUk!W4mHI+fGTM4!k{`gWa3o)Y zl~c%j6auoA;KPN7gsdh0AO}=JOWcQhL{Io zXIa5VHh)=mAxTu&&5+hMS zn#B2$q?S&Y+{fcaIC38cE9cIAp&XId#(wK?_FKWualP9YYo&$K5tIKGxFL@G+hOGt z{vM@)tS6^%$z;%fmVW+r~PM&1n>VV1n2HXHg-am(xbLX8n$-d<> zjrq&r%wL2ZRN*W@h;?-nwIE*%wweGRudUM0OQK^CbI($28t2kwt+;#PP6S zTzM-e*(ds7QvVcggCq4duyXFylPB3Hyrz-ADxCaxVc)otH%_uo^uwfoIc|p|{Yzlw z6#5>efUG9?(BUB=tBK{l9TC;Uce7oDn9y0R48B)=QS$}rLNZm|vQ=B#kwejK{Bj4s z+{rI@v5Pg@8XvSh+9(&+6l?vqM;ZJl?ZO~sKx!^BG$z-ID~q*arL#B`eRT;PyYrmp z?%{3aanqRHS?%pBbk;lQZTUiXt4+XrESKuVTA?iZ zIg50XmDcc{vr>-!Oa4+|iB~QJM{%3}kA902n~t};)*Lc{^tkdASXp>xa=FxB?;!8= z3g1j*O4*eU;w4Qh?_J0i>~0h;U)plaj<91~Q77NLNCUnd-nt|3ZD3{Lnh&&GlQrqY zn-^BvRkAFQb{Y1HD{cMFi!|aT+yY19D`Djn;&O~1KJSSvF?9v4)fej>ak5ax3S29a z0r-^X02ZCkToK)z?drqSojd8289HgET2Z%GUPb0$foqMr#+J6Cp)|OredR!fnyyv~ z<@WeLY3Od*p$tFGS|O4{&UbyIMvg6)b8pX1`GE1VX!BBA+wv2KjvHDQokN8Q)k|m7 zrRUn{GP*SAb%@S-tw>eN1@xcsFAX1djcKJyXL+EjxUy6(_75F7w5+kK%{d8A*vhKJ zkK4P8<$jQCfyC&c%wR{pU=_RvLFRmY;> zMOfJ=3bH0UwUt9Pyc_>981F_TF%lCy6E8nSvSoU6eMmB1iZ|`ZcnPeWJL73`aMK_k z7!LUW*dNw%%W@C%ml~w)CguI`wjC+&4J+qPd3srv9UA5n!Z9BQJH!<;e;G1iyvg}k zym3d)t6=5aIZucyLJjbh;efAzJ>d#?GTUFs>R91CnWrzsTXiJ+ZCE*fvT>EJk$o_n z?0v8&FtTiJVUWEWZ`G0Pov?E5WG9Q6lLmLVdWIU9*->I z=MDThD_;xukdRM3F7aKm5l=my&UTl?`1nbe@|MPJaDZB)tFeu3CDv(=M9O(mvdI6v zZ?MRx9{>thu?%)K}+=S%l1X_DTS^A9XiurFZL-}V)MJvnT9pK8oSxD1Z`UC zD$(-_>t?Ff58GqYxMfO&S{{?Wi>$>aH6nUs!dT8EQWHjor`k_#^;=6DABCA1Y2(AN zqpVn?9Y{xkBHr6-nQm5(`{GSI=8g}+%0}+kgGppJDv0;CTJF+FA5Z24J}UbZ>=akh z$@jKe9WZ&X!3}WaJqRo3&O7nmR?B4?^Y4Z;zZ`aqD|7w5tyU*Y?w8<3ICB3MtenE# zV}O@60v{+mB;*`oW8aR5ImA)f?wnfK9Fp5Qx{CdsG;p_d4D@vs>gs2{pQB!3Ny{32 zjgJPD3{6X$hBoa~#wtqz@r*AKSwK9+B*sDk(c-0fK}$F@?m>AO<-}By!0Ik5^5`}4 zor0*r&zMNVDGZS_#!0v#j!9=7SlLKAZ($PI6&G*g$Fih2Pm6*Nl5yBwYec~ZU>CVY z!Q0s*g|&9a9Dv@3o8uS@Tf)k@$HGRtRx9;FsZy-9yTwCKcsvwgH@U{c#@fj;84~FOF0oRtIPo`bgbzeJm2KFEGG&?=fW6z9Ztge%g}BvggR$y8YGiAh~~J zvU>j@y@WDC-5l(SQ`AUhf_kyiU#)djY1A2+n}Q1p?~M!!x*O=V^%2TcgY_qs;pt`L&-YDfRk#Z?{sYkGT&^s-QA2W4!^u|vh^FSu{xZWb{iC?vC9Zdi>pkLnuejbPuJ?=U1LFFixIQGV4~y#~ z;`*q#J|?bz64%GY^$Br(Qe6Kmu1|^UU&Qrkaeanei_vq`arR16^f&sq{iEmE|9^qG z!}1Q(FX+#*e1~aDvrg4kOy=AhykatwBt~N0>{@b(GTUhIJzP!8&57_dyk*CU@MKuo zm;*4*cI0KXJq2#pZa2En{2nin{{OSepoqow(C$SqLD3!lP$rH za3wp5Ep5g1lW?6}++K+{>d3VdR?eO4gm@;bfjvJQ?0K*!T*30USz@bAvghEfI+Fb& zteiX9Da|zwjqXk1bZ>;c;Yyc}w@u4U!Z+Y8I}-jmteiXHb!d4CG(sdTWykEgtzKQb^)xMJJ~7Z zBeo!`(cLec?%uFBTyI;Rlbe>Cg!jZ-b|kzTteiXHiEN2n!+UHv-c_(GT=DWb5MS9h z@^T$-){*TouyXEf*P(S{jqIi2WWNnN!j&u^Z{x*ngX=f(Mjg3+9aher>(ticBaQCe z;dJkW-Qh}?pTW{H-DG?_-n1j*TVUnf8Plmx@e@4_@VNVftEx9)U$_FE%9b$1lStzZ zejRVuk?wzB<=p8`=d1thNrQ&CJsk07Br!ULGe3JJVZ3=4FT)#mU};h+zNJ>q&V^W$-o)|;dc!drJF{ZUvschb!}I^K++fj%u9^vSS8TtO>$G}}pG zWbTvj#vM5y4=d-+d5*XzT02BE*w=)^z8dz5D{OuYvfcyp&b|t_z>)ZOVddP3Ph@*{ zG|W$gV}1;Fg)3%0L*`qK2F`738`l>9!_M-G&<4QaIX`urplIiUYL7Hc5kTC*H6l-%r5Gx$~XKHZW>*&kLt}4(tk7 zx_r>(`z{T(U&NbrWcvkJId`_}&~99f?2X}MZ-5=)N|rB6$6JUEu0O{cb>#X}SUGpD zlgUN#!$OVii{Wgahn?ZdR^(){r`zEBEZ(pq-=|^a-1$yz?N!$ZFL^MyP+mk5qf;pJ z#||yi&3kwO-n1j*xv+BXjHf4FAJ8c89Zq>q*dea>F<-_?7;kdk4R73$^Uknx?wlvG zcRDn}tHKG_VOO{k=JgeS6~)NY$KcI6vaP_%xwDAI@0|rtULzjvR9rox_5@ty&d)iNSD8=Wzf9^Z`YCT?_lNJ=}u3)f~FyUGaT{j zutQuC^YJ%fygB~<2XEYw^S@x_+&OPJ%zJ?v`^_E-uCSMp#OPGm?_f)o!*s}uhj-!z zImW}=Vda!~@HkLKp2@<`=^qz4C~B?@V+=oXIjh+rwlh9$2l_OOmTwtP7F4u^|4lL@@L0C5vz{Qy!+PUIYe+}AnHqf2tQk%s<;eFHzlt~PnApDz zD;tSDYrYfNO{3Aho%#_-_ZHX{u5|fCo8RjO+uz~MIU-WzC9$i+9dmSyj4fC zZ-bRn$a+-Gvhe0*nTLcdybHb|DhlsCv;E4;toW4ATD81%Wx2X)X|+%NzZMpSW59O->{LTc!5b|UW$L%<`TXCwwhf3o%YV&zK#;P z%6j^>{@Z|JB|cfodW4&o=t?>ssa&o0rJPpfrCD0pQ7p$ttsOXG-mKTwbQD*2(pS?* zQgu~Nsa)jUPfS2gr_hThAPsT-g1DX`u4jtt7ugk_kbIi{EXxVWBp!*{V0RH&5m>Qa z$T|`}9~mSaC8IR>(*tn_871olc)O0n-TAPxG2CTMcPjT1Wd#lJ9n_aVz_-Hgu#Pj4 z379{_Z<%hEG&kc-J2JirR?eOAlxC9F5Wf+Q_*K{&u88?d`%TMD!mr>hI}&~wR?eO9 zWHDrFfR{fKd=GC-5+gAqG4El%Xw)3*jV!$p-moLzrLc1De5c9!MMHdWIN}3gf4JVm zGueY6X}ftBAAq;*NO?b4Ie*Hsp42FRCY=^iTD}R z-&d&h7d3+t^X0#gcjNi;)8hIJyTbG02RNkpd$+YMKXK@|p=Ht8OWN9cu8q#2%aKFT z;!m28q58d&!D2x{!1fBF!aq9zCL6xufSwyj{mcaRsbwB#KL! zM0TIooWZ|GX=VH;vL&zpd<6E0D`URvBWb-kBs_?>?nwGRSUGpnb9QZgJkv^h`eVVg zr;x-*)PCk2&CmMLdtefuh+E)Dd_1h2Lfm5nmqh>{7Cak8HPLk00zU z^eH94zHp#gbBetL=q}PX_6lX&vV!M&iPRDxyD?%y++%J0 zufh<-?I6ehGVCHN$LMg~3I#k`wPFt8tD_oa(EON26tnvF7`|C=E_#SltD_pFR)!59o?r2%et;7Z>A!x}6 z-|_XT%m|k;iB#7vi$>=|xz<-C;y&B5WcWFsgoAl8{68PxmJ}< zTKr`)DIa8A>mPRw^p#7Ug?h20P^%Tz#C8-{cXam9=flYu>-!pO)#HC3|4PbNG>7@? z{$j08M$o78;$Q42#Q#ASrF_WIM~u69E7;BP_-bEbU#k`LXL?t5^JzON!n?3DE;CTB zmjvS2Xdl4w-%-34D)hi%C)k4KU)Q=<^%QHg{SS{YA;ECqE@=KW^90kdz8Dq%TIy}v zR~x7lJBq!1b@BlYlmB_#LL$8PfL&?G@Tjmp1X^o%`iu2saK$$p-YHFl*^+qv^G8a_ z@$;X%#Px1*y+>T{71#U3^?q@EKwKXb*N4RQVR3y#TptzJ$Hetd;`+F_J|V78itC@* z6@LEoTl%vs_hrsCM+mLJeCwakG2AFH+el(0rlUV6=P09lV*z^cy{hF;}#F$cSiZ|`ZcoSGTcg7p6t?<&Y9~qAQ z7Zc<)|x9v!IKCGNOs1v}64mQI-5 zH^Gf?B6X8?cCT%4 zIIX^G#p9VU9C6FY7dRTQv#flhPm+!Trm-$7AvAWPefjM5b9noX`Q#K>*~llK@s*JI zghx_PKIsgxf;NQC&Gu!l8U6KYAI~K5y{){|aXWQoBwp&+%eEo8l`w33qgy|0kIiF= zgjuJ=tR@O?c=zP*q*fjXlD!m70M!6KXz%iqI8&)$pczaxj#r&VWqvn{XW#uKlDN94Ttb?~Fb zwal*Y>)1zf25Cp7c$}27_Tzx3Cw!@8=1-C-fn)P()*I*@=t*=^MzK~Yl!s1hOsExC z4%A9R(Lto6+yD)}sU%^%nTiMS#vM~}4OTV=*p(O-I%sbNG1;|MvJ_Jnk zWPjhD&}T#F6tDh)zCQXEZ9ny@uUzP)!=8Ly(^=^3DR!)^3^n%jG^w*(>g(t&)N7^H z9hGXWH&AJ?*jcBKVsa(x(M=A%rulK5j#(?#I_hisVrYB&c5a|nqsPD z6?#DA?`)C%o6c?p)lkE}#bo%Cg`0|9#m-u>H{JjfELEzsqohSg4f>E6Q|RCtT(mpCw8Taj^TxCn?a8u1yu+aagFdhCcs6PbjtCc4VFN9g0b; zQmE67((Ir0SV|Xo{UxeW{3-Q!7Rm)mj@}BCgZfLyQuz7iAu5tOdpeF@Rj75-P4DYa z_M%;1txBU3d8B)&v5)6)6sJTpO}ll_96W)3HZ1?sJBK=Hk^IFZ(n;+ysO8$N83LbD6sxe5EwOX4B?2WW{seh9yf zxNa-19~9T^#C3ad-9cP;6xW@^b!TziMO=3k*WJW*cX8cAT=x{$y~OoH;<~rE?jx@I zitB#jy1%%7SX>Vf*N=$nN5%C(as8OM9we>@i|ZlcdZ@S_CaxbB*Tcp22ys19T#pjh z4srd2xE929g}8Q#YnQkd#dW2)c8hC|xR%5<64#@}wJff^;#v{cs<`%v>oMY56W4xm zt&8h`xDJZzDsf#cu4}~gSaJQNxPD4pj}zBVi|g^?dV;u~D6S`o>u1FEv*LQPxSk@e zr?M-&*<&;Mvn)q`&WXqj$48h!+C+VRow zgRrvkXgF)eQ)rcgJ#^C$&w4r-@pO{Fo`G7Q%|<5T>1>~6({hvW6uf0e!V_WT+zC&O z{lp%MYKXTFN4zcU4p+qDE^eA`GTs_*+L7^AuyXE0K-!wzw!%(vww zj5j%V;f*_TF2KsUb6!}mZ!FN5e<_^#5bPXR=KQ_8l#ZDE&%zCHFSKxfKZdz^<{srE$BjM{|<=hF+(f8?Sq+bdr{Q~S2SJL9mH+`p(aH>3y z<2l>{N8-=G%439hVn3Bee1m6#EAjP7Vst9;1o1=<%zJ!2+yY19^I+xNiN`MuGFhrMU%GxKNJV7vc>&^1T37&Yka^*7n?Z z21^@#HPC+y2Ym7B~{W8CK4n_{^5S;tkmv?*E13egk%iD{g+a zm14fh`c=GnN7k>v%43LiylY-#{jR?T7v;-IVswgfjWyf!Z)Ea~@#Y;_Zv-pn&U#Xj zz1pBbJ}eya!LTn}Z|JFPpyqa)ck+RFyN+}ZfR%HnJ4=1>M5BC4IOWg4K5?bY&o@== zH))@Mx9>>%I9NG%+M77N9;5}q55t4t`>?BAgJ4s3t2=eejEyUCvm9gN3RpS!*jV0j zBJE4!FK1fc?b4#-PvOz=2<$A^=y;bJ9c%BH86OYghB?N^eXw%w@iB?NTBqTk{%mlu zH-#idr`Y3lfOw@)I8e^lC*tio(j5;g=T3KO>%~b8@V4QAw}#!}dVlks5G~WqJ9sO+ zX-CFez{FY+xJLO`;go*?d&HG8Ke#Aqy-E6dymd#? z*TKrUlU^A6%JMe92K|L_=+D8$paEb1x!{U? zJ(3umik#>2rsXE#d3ei?gy+D@xf5R0d>@T%0!^Ispb_6IocQjrcU*6AUazI~#EgJl za7!E`U`JRv_Xt?G>9^KlCK~#IaP&3UEw1SKw+xLgn9QrV369Lmu=3bp-a2(gV}4OM z^9y0O_%UyF!DM~`Zh|B8^I_%Ona^t8B>WY44fq}5z;A_p;tHHUg;DJ{Y2S>u?@0S5 zSUGpvOPb!Y9O9&*eC3J83(W6#yG~o%dm3paWIA6*=D7k27US8 zf-CrqNn$iB_@?D1;f?T?9SJXmm2)RNgZ$Jw7fqvla5&`yVUM`p+I%%8X}wAM0K9ca z()+>6xs#qFeAU|ht!P( z_ua5^?z|_I=!{AY@|5R;E3}CuF*+66WL}oXXN?Ny$vqF_@m3wlj)RqRCrkA=KO9Y? zyLC9-tzd7s-oktZy=l2gcniE`N5bu}@)#g2PQ29!cZCx!z}^4}H_z%d?%|{GmK_Nn z4lCzQct-L>VvX`y;grvSJ>p84&#;o#oA>hRc6X=fdef zV|CHmJmX4#AuGsiy)Z-IDclOj5O@Ms&Yk??^b^@N{_DLET#(NriP0&@`KNEw`(j4H z9NZSiD3}Q==N<(!ny25#XXtC(cMs>j3+xfs`<@T+N$XA0JL0W7lHLwh&YkqMrmrep z8s}O#=PK+ESI#q8ewVhJl*@SAj+9HVa_*F8sRw~;q%RC7eF5wfSJM1pw`#vh`+U58 zN80DX%DK~C6no2dSi8pk)^P4O!`^Y_&Ns28^~8*Tn{Z1UBj83@Irj*d6Z@^XOCbKZ zherO@aPqIfUU4PQAC2ifFp0m6Ti{6iMOZm^;!~KvXaP$jz470JtMrXXVsxr>zOdS~ z+$6jdZ`qOX5?DER!ZTt&H9v8oQ9dx7@&T|%T<>R5lP9bC3|2JzZ&IZ_+*wZ(&Y~|jYoO=76kMp!A&Jo`)Ws80`PFITj-H9P z?MQhVteiXL$>Q7E8sc5T5$^~)!}VU~hvPRt3U2V-4sY0z?>4Y%-Pt|MGF9@f8KI{=! z>iqdh(t2~mJ`Zo*k@PvRa_*!jldsC9etqNG&Eb%5f}P!^*kyo)Wujpto<0mbEwfM{xbU zlq5!{{^oldnwFb{m*6cs5?%x==T3Mk`H41jmJ2lv@d4q8_k-QxdN1>%kXxpkjQ7Ty zc4WLKteiXJnf2P5j$*mL*iorg^bKjpg>ya@c8M!zzGkABZ?ay6H}A;04lC!*dJY}? zPpjPgOWKzGhgXE-z7+O~D{lT&TknBM{M)z%j>NwSE9XvpG543luH*Z{+20NO$CW*Q zZz#PlW)$3s+u|4nx5LW0N5Nd~x#q%z<<1}fa&XNyjwD8>W?R4>fS7$SslN%cX*g1U z9aher`Yi6Tl)b52gcENcHRAm364ic__GWndj<`7waAbcFteiXhd7S;)_Nbm7PX095F|OqK&SXm`OztP+MmTam30BUX zyBOD#yF9gt`gP&huYvvIiaj~5C;MPhzZ$o}k@{7za_-c{-L7o()UZDlj{OPPF|OE? zce~OFllx=15sus+hLv;Yz8+7I!|Yd`^UvT)ekMtbP9?v7Vu;uKVbY(5+u=xmGOV0C z{dY9!r|y>!(j;uRj<=k1%7%Y?riXH6CQvDdt^TSb}2YbX7HQyID&lDz?M)sgJaVddP(PTsjzE3Da%j(!+A zdFaHUSZZ`zUYv#@gRgr^=*D|VLpiw5JR z{|YY5mypEh6z2RblBDSdPA$yRB_`oEnxzXH#!_u8q#23mr*0KjjC@qQxmc zi8f68!FeRvn0#QdQ0wd|Rl1dA)By*oHIp>n(^c*4-+bjjrL$hD(yNS{(>Ble|JvpM z)E@t5f6I!-ltQJmr%LZV_7;bFt~EmN2;V@N&_Z+=lSp;)vS{;C%l*Rdg2H9wvgp=W z$UVrSyXg0i99q`c+2)H@$JgqW_Cl?@x3GFBSc6VMZ|oXo$Eu!UtvJ-!B|wFCnH*cJ zRfifo1&DAviqT`-z57R>A*`ni?H_$sTu&C)Q^fUDb}dHF(I4#nKl&&78~xk<(ev#8 zzwrO4I}`Xwit_JgVK>?PWG~o-<&p&?upG(_awrn;-DH_xvs)18;kM@vldtEZlC)l*MZ zS66eHf&7sRTG;=06#s8NFE3?(#>Qpb$a5HYdogkA=;kAGtYEFBewQ*UDoY%~$^zCd z5!^234M8NVV>(}CI+0OYo4^y!@j`j z+PU77mF~H-JHhSOm=ldG$4Ju!89JX$`xp;dSubD{rC0IFi!sF!J zr2$^!9q$1=k4X$iVsD0L@d87A(lz4qT)bi;-&wG7>U`U5!*_3gx_iQ|pblU0YPiUT z47R)B)e_n63@gX5by#hw1)E6a9VFC(?NHYs6j;F$!=+;qU9hcuP_`Obs+|XSPHWGq zZD7mAtxL7)U?lysEYi+#?Hp>6b|#lde37=5%?s?nw0(J2Z67G+*z@a-OrbDX+t%%G zJ4*w_YGtsto!g)1ic7QQ3R{smR?qk3D}$kh)Q_3#gN4*jWO<`3Z{j7qfV!IfS&|E= ziHeCfOW(~b@l3Pt;EnNLM16zlL`G3f+zOy|J!oyk5!S&yG!X<@fWmQHBt2%c=TbevGm^!I1WEgjV| zy9cDDBY58?lD3}%cVufXtbN{=HTGnS*|K=rqCaVoKVpe%@ETxXGPk&Hu&`H{8_7>B zS^k->{Y_>0r*nzeEI+wjcl>DG^)Ns=+SHExb+7}ieIWmJrW1ixb3a;lEp8JrJY5Yd z8{z3&t`aIdi5}+_o=)|#f~|zsYD;v-pmmq*(p+aW`uv+U0ZWjrJ+HQrE&5nC4Z4I0 zkxpufDF1TxtcoblbBWl9(yWKOJJ=i{T5a1p5IPyat#FaO zoy_Pgu*dHmote(wY*$BLwy&cUym`fJvOX#v(x$F#cV?ha4J3koSKHFbC~kmtPlRB= z(vE>@j%~^8=Tvq5a6*T?nT&Zw)X8>f4)9ZC)2_H9EUdY&lV(rw8h@d{dk}w}ztZ5g ztD9i|Kyb1&vow<{WR?^dx&57VdNakYLbjt)>aO>Jj-{D$PDonM4Gc*%_*`fwGq1B$ z&c2iV^)c4}8(L@-=6XShkIwcfKMDKAUrjNGJuJ`2k#IE-gSx%MZ zG+9oUQ5$d-KNl@7BN1lFCT#DtGIZ?dG1| zo_O8Fh171avayg#n(`FpDV3*cpilA#y&QIlbv=_eL5tn`i1{Y#rFiv3))iPeb=GrZ zmJ=HF@B35#F6 zv>(CiC(?cpR!*Jv7?!$fh*y5!d*W_k62tL8&Wz_{`N(EQn_NGFy-&S4>H}Cgb*|%? zi})sr26q#GxEnPMt~knCx7;MW0bVn4H5 zUT_$03$Yg*3@fMJ3s!G<&aySB^@A___k*)x4^jKUnmn+ts5NF!I0Lta*b`2Jl~eBt ztHo|8Yu(^y{@vha*ge#4usZJsu}v}iz>T;m#6EBXtekoun9lacBhLUd^w0aFe-8Ev z6}`9}SZ{$z{2AN=BJrnT<n?`Xw^?vv|!!!b@P~)CtcH{A4@{)^K0ykNaZSHB{WYmZU~Y8?XYs{{O7OWEQrT_`$h}37n%BfSI z#Schn$7M9`d;4?W6ZQ;s*w5t)Ia@1C^1I)VSer(Dxj*%#uve(m z#omqH0+VxD7UJy-E7pc_=dyP+^Pjs%i}|c|V97K;(TNteiUU;H#VLF*bXBLL=SsKkt<7BiJ2O z(v7cf3e!!-AK+CJ8NUlFr_Ok~er#Jqy^%la4VXl8vU4$C>n$*euZLSeB)$%;JOYTX z`03ga{=^T1y+R$_lDO6allZ~71w`Tpz{;r;pJjU$LL292`%^yy_6(J}SdH0QVUj-$ zw}MFi6j(WR^7SwEtav4Uvp@SAVc$^MN50gfwZo);18xVA{`IhO>hz~+FB)k>{yBf_ z&%jQhVi)z+i+JaG7xPv7$sc)V>=T$obJ95R>^y3`bf&to zW-MMkk@Of?Id#%w_b->abA@amf#ZiDX@c+Et!uV zP*;A4Dt)Qv>Xxn4{mZzQ@f*&B((XQEozNxl~L+FdcyRZoPwsf%Y`5(xOO0QAxM==tl&bB#BTOq(Z{>K2~&|HMcpR!4cJ#!u=#VDPJ~O1^6{>( zAwmq$Iy3}^;O~^rVa-Q zl{g&l+7OvI%uhCPn7B`-nCl-XWP;B%Mbd`Pe2fMxYoDuaX1fK1omABCDeMay5}A%H zX~JgAIBbC=yNgN_HsKO0NE4d#Q7G$0E#bD?ZVwCpyuGuK>mRIHulNc7-q1RwVrPb3 z?Y@r<5UNzEX4u_E{h6-8n)P}lNH4prpWP_c(Ut3CS2y`PteZQ`znScGV&6bDEA8?J zP|o&e0|0w?17LS#^=A6n{ayafDwl$Ljdt@ki9h}wjp4BWVu9^owDqbWmcBmvh0y%uPk%Cgl{$4hy7WSw;HtuQCUm*&tx`uru?V# zX87M{v@6qz%&9f;^5h}z6&l_<{qg<^b_Nx%_@rum zpT*$&3%p_?-=D$Csq<|O_K-BVulU3LH|z;2TrmUloiBszzwla#WS@tXQzzTTcl9*1 ztG2As=X~8J>^VSj(xAJ5;+vs19w_$NU?uZuTiD#=u+c{?b1+gXUNRR<88~4u`bt+ zrH+hcxJ2xcvE+^$*I{Ws&?3y2VOVk~sUzlR!%nmE&M##;5kNI@@HB>{F{7M;+d+&s zr@_ibyg9{HLd6@=v%KQXF+NtXqcTs8PBh-kVvnwuvM?h)T;0MB)v+_E*{(>m`2%Yb zcF4lo`|Jn43Yq2Ea>W*E#827-1MBuR%!_nlOO*M&D+Lv0e#0e3K$PK#bPs4T=4BX> z5o2D0U1p`6e~Rfu@YKY+>{gCOg!w0K1u??>AFOOdn7_M9s0br^l~;th)5i)HVS1AN z4EDrArp#W48|d$1fh7`GHe6|V;)?Y|Y9mpxg_gz-+XLh3wnciaC8#W9_F{Ry>_IB1 ztji^0gUZ6>a+gV=mTSReUzm##O!k6ZWe+A>Go1*QnmC6OGTvMj?SWTLj3K+i%0>*? ziAyBMd4_nMEaWha_7|8z*z9i5UIx2`N_!T+l+tK|$$S7efylfJE2qwU_RftL;^Mhq z=g<9G*fmt{;udmiGfehZ<7N=qe+yQQVec^EtDHeh8V(X_7i2BhhR9uzdy{<~Zgem~ zM{I~;-yjEhA7zHaEQQ~9QUZbLf=rvwZ;u#++ z*vjIk$?lb|oX>Pdg2bM1-?VnD+V&nnBCsjaDJ?N#H`flMV#Ll|Vg$s9F|5H_h$z4q zj1ZB7J!B=BKb+}AXw<}aXah<{gy_aAB}Rx&SlNgW$GS?W2qF56SA^Kn#|jo9rjAW? zcXJ%eAo*)W(Z?s(vsMg8GO>v*PFUWlXIo#=ib!9yM272J{i`CwwOk@LG9Ip_w& zVK-2Rs-PN}Y*5_~uaro2Z&*2Xs%^#W37KWNXj*f+KiN}ZS5V1{vubs-4Z0`c6%*+$ zhm~XKIwa02_ZC^1gM`|{yV`Y1k$ZS=CA&IrJA|D&%~h92g3n!W7q#}UT01fG9*{Of zl08e_{cG1wqVn!va)}k>-OahkYHOP(WV3DCnes>Nnc#jQ=RYnkAFOTTSaYEiTu|p3ZoEMneg9~x~Da(J!@-wLm5pnI>l%2a zM6UB-<I(?h#q$1Pl{$!8QO=FwLOE>Fk>8O@7 z#Y%sv65U+=HQZCJ-OPTGBI%6oW?doEB1wZK-~Od*FH-sTZCqjn`F3JC+;o9PHD8M& z&%tcukWnuHJOlg7iZ}lt(}}RDiO-AaEikiyr*R925#=dZ*@!5A$z8noVQ+^?e=KeXk^UH1Id%H;c5WQ68=?nnrUMNghsc?JO#JsB(!FBoEEmth2tU5Nf(@!!GpW z_RfL6{&I=!o>}j^4*e!Us4~#!uanIcxz0{D%z!<8nPr3aFB>5uS@txr=50!jiR|pz z9zn_1luDJM_7({^`-&{hl*5~@SF+&~Y`T6+mfx1;RkFNVmfw-(HL|=`mfw}-_jn0! z(teHoS(2Ny;Jdx8p9JZK55Hpw1`*GeSY3oEBic1&MR2YaPI*vnx@P{GO( z%a#Skh`kiAl*sjBSUGjBt-+#48?pEMgS{8_1Qo0pv3#j!ko_HAE0OHouyX2T$FPN{ z2KGIFu>XY}K?N&DY_NJZxW0*3O62+)tULm^8jGHF$9kv5YcYxDq{Wge+t4t$u7Oud z9+z0b z6N%)GGw99NLdnfAAvti=afTaVe_0{tzs+=_+n(Y$gWdu&uH1lIK#VKb!^%cnxsFRD zew;z~n#TP(W|ilD=rgcysNBQH8T59T^qDvA8Y7UN8n$j_CysiGj*3#FXM7p>m6JT)VT(E#65sw`e_(eXzXL z7dgqW58P?3F{ieXEupZSWMIcL0}~?ClI0M?V%ILBQik2R#0pY|<{V=G*F>HKJH#C((WU-9aR ztp5xvr_Oq+be5bLHP}y%PzSVl)W_2!?(-{ev~@iw}+8B*@6mM>OS&RsMHE zAL!wwx)(aSvXxHurLV>_C+}NmeVks%^et&v;wKdPz{c=Cl-t9@>y>J$zwySU~6Cu;n#eQBmJknLc5Q(P~+FY^E!v%$X1gR*=`mJiGF5m`Pe%g1E-xGbNLqrB<_Z_2Zo#BeP3Ov>W(F(Knk&a2>+6FEXQM zePd1D@+NZZ6NjI}?I61LRe#pU!=9kB7VG?AZZ^kt5wDd<_BdEMb+U8o z`HPlzYO(w(f7n;T&Y{Ad$7k%AhM4>>#|(^MgX=C|Af4=X*4x#d`f7Y*Iyg7dVi&swM{3fhC5;!;3)f(r8 z6TS2Ab(usn^Y74C=}gXR;gu6PuK_Ek&Uw0ij7@`mh(GKDVXsgJHT5v=ez*lh;(No& zsS}?P*_zUDpYD(QRM;g{+~TQu#C&sfpM+OWWW5|#PM!7C=-#0Q`^WyUe+c`83R^ri zkJ@k2{yttmk@k0C@md&Iqe40 zSK;1j?P}y3!?GbeB0IU3!?yo%?JVl~+lyQx@#k;WqpqQ*+a8^Te%zi}Qi(b08v3mv zMLJ7N#rh}^ROyX5yo< zXRx-rr%|~|cdnSL4#QZ_u{?qeQ{Rx0s{~(F^p0S;3d1%Gp{LNvUbFH=RmfIY2J1UH z2P*Z><2y16CDwO*Q8AH4n+%W4Fob4i4GYcIQ&~VTWGb1iE*7ANfmdCMndO`JFtdV7 zvPC93Tw=x2Fr6^g;;>(LcXz~pZ4FxPj zc2r9p#h`hTfncHRJ6l$AJuCt6<<9p;{7o5-t&z&{ z!Fu0%X+AJBRoGgp%top2(5eh9VIOhoWET0lnD6-bx|oTum9KBtV=d}GaX4fKik` ze4_XRSlM`@m^9bc4BPwE!2aDI?B8HdSRdu(O|as8ZeX=Z_Ahv?M6yr9%BhoW3w+e8 zp`A3@d(4h!62oz_%S1a~ygw6|ZL)2{t0l4>4J)V4b`0C!(8zA>PxiC0BdCK`oV{g6 zn_M@?D=8|T|p%)$1HysF5RbQ+6-PTk?k?Ca_VebGi*7l zp&j%``!(1TRJ3xY4Hn@B+4J#QiDb`%l~X6%7Le6v+PnPG{u*`#6|Ee#f!QY8U*gpg z+1>^#r_Q!D!!|dxQTwVt+W)|wprVzdHrUrOM(vAutwgdfz{;tUZ41b5s-azNig$iI zhe=!EW*?jBDY=cSt54a6P>c5ATQ>Q+$?y-{o zwW0s{(|#ZJ2bK1e2yJ$1MmkdMe7u9#O{Dx5teiUKnRUvcW8~W4UVo~0-u)>i(VV<{ zP6T(T5hnMwaU+P_7r@G?b8lp7>@1kZ`%r)02f+@Z4)18D793;q?;f zw!_M)({1DLm1%Ih{NZL`S5V=KeQWVLoWb@OyjmjLBVpy#*^Xgvz-nZ_=1=x~*b!8+ zB9{tY+cmhJhgVAEdJe2S0=O>g*SP-LpX)DSM}S<}+i?ch+we+>TyKGuQ|Hyex;40gL?iqyf5KP5o}dyIb1%O)#Tdhv;k6RUUIHtR z1hOUl)rANA$^HTM1WK0OWn+;2Jzgu3>~CP@)X9!vH}z;k_I-b_@4$|rf)(rA;Cdm0 z>sxrGM6R#H%Bgc5C+|Gc*nVn;cfPzflW0!9EOwOZw>}ws7vL2W`Ob%xQ|CJ+a;KF> z`5=GF`@=4wj$mBZ-f0oowwBXW+v3#{*=_|Zr_Q#OIY~cFRq{t$ zfIUG)EAy$~LV6=2=kQvIWV>PI)X7d@WW{y+T2#KmAMa(bJE(Xk^R35*=_cb#@T!T7 zFM^d*XFRdtD18k7!5{MPVSi8|%bdC1KP@BqH+bDd%6G!bsZ*ZBDA&JGp^fEt{4u`; zJA{f^e)(G&Z;s~I@ydyuUxAfJ4(DR2s&QU>mUkw-fJrnbla6v`#+#hy)t z&N+zMd^{Vk-|z2_c^}vx)ZyHS+R}ED@?yMhBIVs-<{@%z$+(muENTxa~>x@hNMO8ANVu=9_$P%V{s0v{uL+bLUl{dHF(8DzE{D@BY>~? zMwQ0*Nq@diz|H{q%8zRqd>_RtCh~m0d#7BZm_&0@E^$JqZn-%V ze++Y|5ea_?E2mC)qWYwp#(0rGg18r$h}ywm6@Orkkyv{(n%zd&p7orqUVAGd_3YbrUIf!pf;rp3wLjwFdbzf5?}>?w~>z*>l5mlkr7()kMZ$g_Toh+{Ql> zuJQf7Ki}WLuAuT2C$+@a&5bC1CtfX)?XO_v)Y-NM-)`5?zU7bhb=VVBv||3{Uz|6{ zzJk|EB>QhzId!sQ%nuMQnCqQ2&u0?N$(qHA$ol=kRq;xRTxY||sdHr`*7*G3KK@`A z!=6A#Y|-+qtKIQhiDY+yl}7;CVwMe#TVMlD+&wW@bg z^)c)SDqN9NF{4ecAL5k~xxNQ0r_QxC_!OrGw%s4>hD@S4*|Jy$**_q<5U-U;c3oIG zb+T z$@X--S|Zz1Vdd1>POg@jlRB&)K)J;q@lCKtsEEb&zhUc5(m%#)CzAdltQ>c7)snxQ{Z;s!PZ5yVt%kNKQHDd`8DHya0!#Fjoq0&60GJ*#lbTNg9?Qo-iAA> zwU^a4?kaUwHtuEvBB&x$*f_UzdGMch^?$Vo|JqqMqBcHL?CdSE%YXW^gT1#(#_Ej0 z8?N1?wE^f=E)nbEh53zh4d+X*O9s~kUF3m4h~CBWkF(!DdT?QF2b(ME?Ou^j+B4-$ zu_rrN+ulQ=oLN3t+tFR1k|}eEot-5*Oa03`q>6h>vVHwk))IF!xIjlCcN}x*w$6>o zE@ywfi}Rm%mrH#eU4{Nk=W#x531pTGba!XVgSGA4jTtBu25UQc{k?SP=bS|fxnhO6 zgL&0MqtxTA(U-0C_LOs7gSB0q+frolbZNHU*WCwQshI8PWv>rPUfsS0UE7uu#)IETmm@Su>fO`Pr0)k04|E!o?_RY^( zZKam82KUX+mF23kTuqkqWI11!tIKi?SuT*}nzCF=mTSv$9a*j`%TLL2Jy|Z4<@&PR zK$aWI^3$^1NS5ug+?bcy{C`+O7JtJ2$-m70*S`5z_Ua@azP9G|BmAS&GWPg z?9YN+DK53alcBwsxHaPvS(2E8wH4bz%!jB&>;6er2W;$(?Fq z`&;G?Mjo{fUN13`Ukoc7iG0#@+jv@{!Tlm@hbP>VVOLP$imeurO&M%Y#H%H;Jpoou zo$a`cNL@9$Kk}#h1K1fWa951@m6 z9%J+#iC0SGdN{0{I@d{|y)2FI`Tl&*gB?QUEADj(8Eet4*^1z-uLv zeHK;jLih5kOcz{jK z;rbIujqnxzgfD}=ff24-ZjRwg@S2H)FM^d*CppK;?{k~V}-_Gf$|><)}^!*rAJ33$~+##LB3b;hm1u`vzr5B%|d5B3BVuY5f! zIP4~!r`Ac=;I$ITUIiiNcJIEId!t^1sZkKQX@Qi z4e#t~6q9I9c2$3YMp;?)vI z@j_TRb+!}LIb{v-G5&y$g#AH{(&BlcvfUiPhvRhm$VKdh%&Z;a?O@%o9ZPluIbSUbF{s9tvzufjPsfqWdL)T*VJw~B~u>&z580<#8dyLq&(vp3s$Tt|1Ilwm^q`Un+D z6*jkYEX@>hUGd1n+qU;G*p@3+ z>vH=HgWNz!&-!K~vA0Q=Szoe5Bs!Mls%!}Pn9`jqcC)c_u!nc*Z?kt)2KxI;WtI^M zpEJu29S+%nqABdtXp{+e(~1gDF>x40SK5O2?8?sZj6tKG8Z?(F4Yw z9zdDeunlmg)tjmGW|kDP^@jRPBup+ew0&k=rWBoVJyC{3j*nD7dt1I#&GNL14a@^Q zI7Xy8O5MzL{R2T9@|ilz*-9`!i44Oh8db6^94*T+vTT)Qn=Hr5a-1y3%W{G&C(3e?EGNryiY%wf za+)ls%W{S+SCQpRSY+26XC495MbFBGE-YhUVywufpO7~+;@O%Y*ZzeGuPdon1 z+!EQUsEMZ?Ve8Gk(mnCoiTh`}!OF(|S<%^-U5^OBe(@b;t#^gsS}^9{8cS!v{zo!d!}w-63v{c!`7Rm zKZ1Es&n0{SE2mC+e0?umqr8bf<&By~S-eM8x7;MW0bVn4EUyPEr%rfM=sAT3`DlO0 zN5BrD25#}zddPT_^I>@9M9v4p%Bgdn*=asT(s+N_pZD3YW2n66@QK>e2$TC6xDiC| zr@_jpbDwS9|J2C;%%A+tuxqH~SLNib%`n;Dh?_xVe*>(XI{PVgr}5oNjrsHb%%6i@ zLS;TZ!dz^&N_VPL;LqUI6InkEE2qwSW}S6tBUvLpZ7uKAd@_@0PHHaVyQLB47@vR} zLF7IbR!*J!jJnGjJN+8=!EZ*%9cf4JP$0ZUd3}5?DEP>TR}J{8E3=7sIZgf)?)x#LV6o;?)w_UH~hn z&UPYq5sX@KAK2mBiB3MybR zg2lN&={}Wzzl>K)Wcw1VoI2apVoyG5yw_OUI}4x3B$|_jug<6D*ru4{doFGYu@B6G zl~eBn^Baz1=Vi3>uUaqI+rJm=2|I{7>K8`0PFB;6B_H5b-eSpk6@R8 zti$G;tUti3C$fGQR!*JuboP=)H((OYN!P{cCA|eE@%3;Eh{V@{l~X4^ zmH8|FA;}T`ybptYLLJ`XUHz#2Chddq`iZm;fR$6HJ%f2G`gWK$z|Zyveg^CoDsb_9 z#At%a{50GIBJ)#V<^7HvX))gk3@%*@AV%e3SJSc=bfqo5ISevz{Aq zmU@p|8{xhF)U&X2sMP22UGtcRnEaREh7kF8z{;ufpA>rKUt@l;Kl2M=hftY|Q|KY% zP0knKl@mGFVCB>~uNM1qzDE6Sf9iL@?x9i_Pf25&V)lXCaZ`wW;ODS%>V05F*m1Tq zO|SX0e;IZQmAzPz8%;2ozl57WWd2WBId$f9!w!qze4FivfmL_PM!Unu+w4}?@RsR zS76^z;jhM1dwV-f`u(^aMEZTOa_aPFT5fpKa=q{PqyIMS7%F;kUc%A{llwPuBZ%C; z0V}7@eSY-Hs1-e8eZ-&tgRq0B{KZ+g6*R`|2lwH|5c|PBuyX4CU}n^HwtW91fBql9 zj-m1whspW)vDPJ_Ke z?Ev$6?jP3@vj?1lTSDvsUx1ZU?*WrSSA1$&|Be38Z-5;_g)a8>L&lq&ug5DVa=s2$ zPM!0NUBoTRJBv>W>=LY(BA>u{#-H}nuv@6KMUH1{f^@8U=j|!n2qN`A!pf;rpD0~s z;-0Y3JEk4n zX*qdtVgCNjTUw4D%s(iKheh$IC?4m9Y>51R-3y}={eIoVU6=J|%elU6v6?AFa?MBK z4r}dgwasiFOt5^yE*mx^ay7i=D|QdLb{F*(yZgCB>{sma8|PYD)<119V0aN@$rxV9 zir!oE*Rdl10Q=e?z&QUn`~9N_7uKvFObIvL_QAOD&)YMd)!fodHCHOKZ+uw4s}uh9 zA>}%mPBl{uJ~m_h5)md=&T`9!!?4CzyJ9|Q2N~9tU7BN`6CDQkXA9Y2u$+*qFgfez zgCN6tvc+tfjl5wX*;CGR<(O%Vr1is1kX?n$@@$zY?PnXkm{P8o&6GPbg`Vt^a%Na; zD^=L1{03{*@6SQD^<|2={(*w*v(}HtVS3prYoWhRk$tH!=HpM0J;hSFZ&?py3E!Eg-13j4$!x5&RoRr)jKN>+S|b2!2ci_O(srJCyu zVuXLV8K~w8x$5%4(079V%jUu0J3;Tr@?BZJC(HL``GG7yl;!_q`H?I?mgOh1Y*}A^ z??;v^$#P{`j+W&ZS+>fuO_pP2IZl@2c?o}i=S5}?wgD2#$MTm4bG^tEyt2Z3eXL-g z5Bf`6qFG_<-Xi>mKfk>_^FQ|SAbUQzk!{pl^1=EHG(J=8>@AgxnZE3xB@^6+ndQV+ zWrACBiP%hVVUtq9t!$1Et+r)t;wSAaUt2m@+s65C7j?x*D=t~mJ+PDx)JJQ-_Xo;^ky?% z9hqvCrPplXHCWry$rr^S8Qb3JPs^noOQCZ;tZwVaCx>)Jg=G-IXM{`D;6ssJ1D))9 z;f?l$(t#y>n%y_wDa$TdW@Xte%N|+w$}%U*yeyBCWkHsGvMkE7B+GtT9xux>FX3ta z5cX$DerB&V7!}&H*bA5q*bFICjRnDG0#7w+ycx*uk#&;I@56K=dnmPW`~f_lJ!Gxw zaoo9ht;B7;vtVUuoZ3)Jn(WxXM~k{Nwzso}c(VOD>RKteiSsKAywt0c||*?9X{e*eg`dYCMNqU=rUBw}41|YgjpT z;(R=BrjO@-f6jfdFQ}Z=cxEe3V?5{adWm#|K;*a+WurH{1MP@D^G8lB1;q?;f4#3K()14H0n4%%R-XHOGutTVb#Y;#bYQiUo_J}%pYjL(N7yq|;36NlwZbI-7;XiT{KK$v>g30;=aU-fF`xEM z!d7Au%}K(>^0_&9sA@#+PhjuYh+O{%E2qwNLgV4FMt4(xx*Io*?qp84VY>d8tkAgi!joxc=>?>-G*%LmGTSM##hr-G+J;CAhpn5Gu98hzR zP*2gfaD8wmUrTwvHQ57*;vr|`g_JAdZfosxjt7yXL6Jihmg9(*yLK3L9Pv^vv4Z1> zvlchrOp&jo$QM-R#rqRr=+ zP6SI$ZUly~$;wrJZ~|UAF@{uOWg~_h&n1$}4`zrNHlFqmm_eRN!uMdeP-%-BON=I% z^Tsu}2}I^s!OE#KpRMNEcvw<_v3(Np$02S|>lf-=Yq9NA?hAwWA@++VAYIcn|pwj<79cT4aK<$dy&c;rgDjqkT(o<^nNRtjclw+9zFy6%ZfL@F4Kvysi~uVkyjw41uBEs47Y$7 zQ8s~AL|I{kTS z64nEs)&nl`?*U(h{X^{mYw!mW@oh1C!B=owh`r#;bmfajwTx;B{>evfnNkzG2nG(h zfl4pL+~Odite8Y^QM4g4y?8O%>$1k|%WqT(??pVuT7ZQwYtO5F+O`*Axfem+=`zH% z2oJmZRb>tjaETRU4$ZhBtG1oZ4ZO{^?HK+8wiUxJE9waT_h2UfEWc@s-DkqgKa2hQ zf7rh-{)GLLf0_NSee1J3(q#W>c(qPapjHC zj%DOSEldK-AFX{e{~U8lG#{G6qoT6ijDjC=M?$YM6Qkei8uGvnZ$4`ILuM5Ki3I0!(_i2ZU&M499TJqy~BjBat1MJI7q0q z$K|e_Sgt)jPBv!<-V*Q3R9iZ_%O#dORI)P{p{ZG4t6mD+35pTNJKgKX*>Jt6+_PXtnNw1!-^v2|CkaUR+6VTV$MU zwKf6m0yC2%NlieXgWY7sp5KJ&M3B_Ptrc}#vSP(&d%R*|eAxz8HsZ^cTq3!gV~Uuk z?Uava#$Y4Upj?DqLZvLW&m-oWbIEad^+eXauyX3GXQ<4=&ihJ#-j~B}q4E}6Uq%y5 z=9l6o5Sd>LE5|T*nDc`PTP&T#|-iN_%q4L(#hFInY<0cT99{?-IFn5^qRoWmX2L}n2Hay`PsASr3Sh8=! zOfQsrS~~hmxk{x}Z0RVl4<|-4h|A!9YwdJ3_F0+E%EsLTMfPpdQZZ8qHWoGxKLpu0 zs5)C2dc%SLT01klZnZEvGEZ4jhf7>Lm`WWk;u0evbqJ_Mny=*$x5L!rXi{4bKZpHg z1)sl;=|tGb7iIJom}`_hwb|%IKccdcdsBynDb5CNUg&r8)BT7iILen7v>sZVRy& zOoEkTdVxc>pb`!-r8r2agyXBO-B~6aFC=?Jd`@5HxGX!Kv9zm&y^q0Cj$*cleZY2U z^q|Hea5uI_p;~q5v?KEI>7mn)$gi`L8^>jXwggR4Es4x`mR#gO*S@E6k^Q*DNXSKI zTYaE~rDZTrV`3VBoo4M4`7Wjt0aOzQ$E?jTBT^YRgBX!Yu(A=63S1(&tYp4;v|x3e z)&s6(rg^3&SHljX_J9TaA^Zv&WA=k@;l>dA!4iu9%^~izJ7asHP3lGCiqV|P# zv;!H|2ATcg0o)*BfA|Be9Mc~h(hQZUhzZ9*LS-s@yEa5-Dn})}HIgglsyX&a-4j{9 zQXS|#E*pKHZQAB&M6-6mT7Q#s6xED+D*vPY^~ZXSp+-G+7E5?O)%q6J8l9o{%i;<8}Vl$mq;!znJcDp!)+S* z3^U6!CpiXo4wd}8P)=er#N>Y@ZU~Y8;jnV*{O7BD#BiO~2hR8J1LwgGqV@rim#&~O zW*x@7-ayPl-KXSwz@l|_7sON@jpVrsPUS~BrN zn4mGud>{6fwG-qoWjfJhVg_HVM(sCqitpm}6JySIU}Yobe49%oms89VdlXThY0Ur3 zY{HU!gZZCe&rq3*SD9_CFv&lTTR|lM2&|ks`Bl||eueZ~KjTe*WhOBkiKRK>=WCBi zqAf9dKnrdOu?KuKTs^=cSy1_gm_{5VRKD>=*M`V^W7}lkI2m_bxm3&=k41Kcd#yF# z)OwqoX(;O>Q<>#)$WCzAl_5qY89Q)^*d!ylS!Y6{+1gao3u7~;nk?)mEBXAvOeeym zCcgC9Fx`wUOYo|R(WL`cHs+V3TqRU=5&g$2x@_xX1$zztzGUxF9^F|gc14b&e~&c) zONOl7tJc}%z`_lW^j}L%xyF@-iYZrdiP)Hu;0y4rL6fz3avw~~h$r{JKC%MO-^z3% zJZj^3^1?yMTGcyjzr|}MhLXErWh0dQnoA@%T}%||y@l_)%o1!g8hqb|{Xyj`?w(e* zn-j(xc-=(GufocyQ=YnW`0J1QNM7f&-lW%L62q|!F-Nl4c!=6>(q0{}pGbQ(SUHBa z!`!aY12GjiNT|ifm9E`ZEnw%vF`?>j% zxyh0%9P8T0RIYF|mx#?35}Z&}yS0SjEEt?Ip?nE;l$CwH%yc49YGOiBwwod5i+J6{ z5OXrDY=oE-T_seA5k1Hn#c1zUm4NH)Zbu2j3Dw{ZQAH2}+bto^HY(9p3Z_~ZxS zWmx`e?cC5vhqXkJyIsAnqR1UwA~uR7x#9?#tObx4VLC(s36>$CurW4^IR~#Ia ztW~Wz{(;v@3?0wH%0}q;E0;)cf)H7|h40KQ(a~q{oz5hNBM&wChF2VR%2V*ViIgY8 z%BfQhtvD>Cck(B_1MCy(NY+;zcG}zG^%H4t1uMtUc9_dmIv}P32MM*}xZO24$rZ;3 z$sVs5$6s0PF68y6XkzH04gwVt7K0P4$_rl7l(_TgG^wr0QM*L%c;vd3(p%S01 z9h#`O!KD5kZUd3}e_`bq>JF2?${)lO;UJ;%hh?q}k@>?`$-c%hxmsqoUuCLUcJT${ z9!Vm$+X@X+)*e?YG&zZAG=aAuGHY2fiLF_yu+^6AX)2TWESDGwnZ%Sx+qIx`EX>cC zW{!rPW$gm_y_rq~jQoaT#C$W}9D!F)j5mkD%0|37m`fy=Q_K`|a>QjC@vktGJQIsA z!;Ya6pTnmaOCwC~XX8c?xt{?mr_Oz@$}U#K{ulo2e+D~;%3i!S9Mce!|IN4|ME*Cz z$}#*Mk_44!hzZ0&Lgg8oyEa7T8D}K>*kV#=FFTaUa*WPQArrl^;(gWw>Hp576(wQ7?xi;I(+ZqLDm5nen)m1`;8PSWp!p!TgeOZQ?3zOXr z9UYv;jVxl0WNsXe=+f--ncVP57q&!}!(ID?iY$k4iP*@JTS#w;0n;MyeEIGj{%zP|` zmVHU(1k?JGY{HK^sgh*`yUuZ~JvR<{s*c`8y7(*7p z%0>)n=Mu@~1(U_*pOtYBv&Azr=z={$Wh@qxVe8F3s|;Q{k@PXJa_Xd~tF1mO?LmLq zUxU3ur9D%79vU~c&&Mqw5n6sRS72o$zWkd@B$qo(7qhSOm&SVS zZP5{GuwK9=`O`aTSrR6(;$` zxD`b5yTi&cJ~C@ra*3L2|5CZcxm;o-^^Kg4S$#+L8H%0_JYE|*9ykB}#`>)z5hKg+Da@_d8yUtyn6IfqYX*X=iH{~52J zNc&H)a_Y20C$sAw(}+*p&YSo+CNUg&qdBtmliBq)nABTw8;I0bhLvNeJ52s6e-KlI zgM`W-&T{R(GJhy1dop`cHCwEd%Ix0UawZo&)36uZXRRTocHEG=5q>#@Xn|}%WX`hW z5qr4yGnGf|$|XiZ9x*xGbS>f(VS2_Ka~$j|YX`_5!E_>AsiO5=(CQt z?a_E;?Q)4c>tLow<}XWLF`6|8%g$y0QhCKFE-@1FipH~!Mf!bs8^F|LGu5+>^sIF^*1_v0#+Nl=Wh1_<&Lxt|DYR!D2J6F^J)RlG!LV1TtZmOa zY{U=1Eg%x#7gkQ4xaC=gLH!JW>Zie;p;C`~)?p)m3T_3F{1;&581fE@fXXGrbm1VO za*2;UbBV!ZbBWf@-cqTOjU21|4cuL=eXW)ma+AXS$b>XIGFe$th&x@ol}aIg#U)}> zh~(y$v7*h|8ugzrEIDvg_V9nOldQb+k1?GH5P8B^-J6}kPXY&T=f$1tTDF~)odD;qK9J;8t0;+B^6 zPa8aWaAE$!`7JHIx8^Tm#nFTLd2v5jGwug_Er^l2gelhK_NVff#(I%I>-MIx4sU;| z7MR30#4R8aUkEFwPCT^zseGnUKgOT>k+5f|BV6D9RIM<{AC6l=B!39397EnA8BqCz zm@XV7R6g;PYtWMU#JI67EwS@e>_TawLnPw?Yg#tf!?r6}PSKUi^puL3LS!fOn{dyy zcDq_>=p75MBi}(QB8`a5VwT+E8?OCLN<^q+^7Q>Q;q9eo<22dw%z?;bFlNesu@!W{W)XfLblZ83Yn zD!47gUN8+-j_Cys$%D#2#FXM7q4JMG*X}IykAsta)vUETV0`fW^KhrN#vH;aF3&UK z!t}^=W=S;;b?sUz)i{VtjD%EUtl*_hG$+BtjEQDB>?JGod@s|95RuPdWj~Yks%NlE z@p_3Nr2;D(A*G*7B$rmmTW+k3zt3#(OeVeydxXk3e9KK7>F?mR6G?v?R!*IC=$0ER z?LYa`ejN4+m9|(is3a(k_#?OlMB)#^$}z+p=6aPbh-tw=LZu7)yEa6o3l}7tF3hU3 z3vR>?72C8ZvH$Ql%_4giGj~D*m9^j1%1z$0s8(f5SVQXVh|FA;Tw*$F87O=~#-66jY(~01ziLXLf8euM6HpPt~Mxu>jWg`-O znoA^?WvnLO*)sdTMnB68^GrFG!0w^aU!AXBW1C|3fezdhVjnmPR!+SStPz^MhwKLz z`uBqiU>8yQ!CKlb1}PrYaC3-#;apfbrY|_86)H0klZ=Ce%1kD@HbiD7FD09qOs|x> zd2Ukf$rai8Pj&z^l9fElnuEnMYX_{ci)}h98+WrWpH*|g3ndEEg|-RQLu7M z4{%5hRDL0*5eEsCU!39Em1TbMn`HBgmDzEeNKUaQ++VGsrnY409Sq;IphMoQvzu$D zQi;XRTw)|77GoGGEw&V3R>sVdgI#3Boj;uEM6-#pe8)8CUb0e^LUiMm62nL*tZaml zW4T0fDa3@v;Yf|{Wy}!Iyx|hq9aOrLL(fI5j4#5gCNlmiteiUIDe5_hIf{Sp&-pj7 zOQ@WuYtKEbtnb9DC$jz(tQ^DIVNO?RftUmwBve|kqiaKCTJXbUUqBt-H&CeN%#Q<% z*%ggR){a)|ZE|+N%_n^wU?tWfEV-6FOyvllaJC~MN0`uPw>Fn7gt^I9suLFL!j7_{ z&#%ICqM3r2OB$w|`NCRw)x`L+2CN*4FBiA8jA{w~$zRUi3eC^sTFE62(?sIX@SBGG z5N3{N`fwoZ9V+rwLg_=J0VeqUa07_o_lA{2;M3tfQza1%mubvT_h)`8>=-I@agfT= z2$TCsxDiC|%VFgh?he_2N+`sP;UJ+BivM{g6cdt7C}#I$i`jC9ecd=$WdEb3qrY70 z8t9CEdgv~=`&#>6t=i=5LbgRTrO}eeq-J@{@oU$vr!tLSa*2_UY1DZ}eV~P-=V6{k z*6|$dG;5d0Kf-h(fNHDqDaejenxS?qp25u^2BfE9Wg{Rx#U+wUJm!nU!|FP%2Ta?| zI|-T0B(MaX+5;AZk`QZS%!z3NZVa&>jD?j`?+0tDx!meLtuJiv-xs!lokZ;m>uCEN z)&`mVVN2W~Vt?2IR*vZp4q1juRK$eiAfXbK+gt;j-1+!x!gqV}+?u_9V*NPc$#5UG zcEDO+lQR^tKxll8D>Cz0Qj-&1JDW;PPT&$FAvKvAZM+tRz6}$U<4Wy>d=vJTwG-rP zOeaD{p1_FOZw8%j;Pn%O&evgOBj^lriR6+Ic>*KqGmZI!%qGvRko#cIP??8MU_@JC zlD`MHf=K?iuyX3;Lnknze$(iG;7|Wu*gI7E`U#9^OUxedHf{;A2fP6*$MgV)Y(XU) zVj6LfPzguXwIMR$SeR_WF}=T(t5iztZIWVvZI2kQlx(#-8oaE1Z`fZck!A;0(_Sh0 z3~LCskdqxuB^jG>iII?G)TuR^uLYf>U~00lD$V#j>@O?${2ojvnr4VsN(_L~0=4UL zC~g5U*c=2a8^LCOE|FZKAzvxcy{2(Lms#bRYMcf8hRQwsN{QYMbE^3gZU>S67h&bp z>4#n^(LJa2fLr~0z)xZSPN{QYUvlsjXw}sdXegrGW^a6)$K_whwN^y`-3CAX` z4Uq}QVaXo(Z0)M_7jn@jFaKptz`~Zb$2Ij^NYd=cRA$-Bc+-`JN;6*L5+fna7%LjB zg_t>eptR)3QOU(jCV?emR^a*3OeaD_Uc@C~$$C{vF&(d$7*3|Z%0@Vu$R(0XDda_5 zR>r$BTd)ynFy0CF2$ga8BCa^nJK(hwNpA})r%pO_5to&A*`Ia^_6n7@ei2t3@d9oE zk$4VPjv?+a&#P2HObZSYDph#db#jua!dl6u3e%R9OPQ|DOoiQfQR&U}XQQ`W+z9tt zYnQ7XH{{b0_b(_mT2OC5WVW*84>!2>HI+YH&m~4e{xDr{zLrTm0TVQ4nMYxNSvx`g zPNoxKBkv5?TVO6x9>Ogk#-00NWh3s~%O#S_DMAZX-E$iIQG0r47$3v_p|aN(s(M?@ zUhpAq3$Yix2P?<)0*9$X%|0TiI7q13=Q`Jh$k}IVvS$Wo_OkCi1ZM?H<*uOUD+PBS zMc!825$?m*4%qZtAVo_=L+b5_1Ut(_v>j_3wnUTNPEABxbBU2K5lNO24`}hI6J}}5 zMaRM}vv!C4eoQBVN8SQy!zhhVOWdPzBZz_M2w2$&M2B&SS$0hs7enO_g*2BTqw6a~1bmV`m9as>v z_B_HjE!-ExnM%X-$P{PEK;C!7qB4+oxWq`vKqjh&YawTi#V9p7jMR4eJSKtVYF6<1 z2}~zKMShx7*>1*{xp>{g_%aJtHsZ?+E|FZmAwSKj{H3wpo7sbnP=ocJuve(8#YU@m zyF#_VB)%JN0g?F5uyX3eL!ahUKGUc#_ou!T_6(J}{%KCt3X^;Vw}ME%A6AYb?~n+n zTtZA24iYMtc*}LtlDWjq$!>B?tCR{$v;5nfnPSgCAybZI6t}@W*V^rx{%KC$is0Lv z^+rTyF-vZ7i)(*Vxy4OfA~v^3aMICRuZ5qdVTi`0^AzkZYd^@}!*n8O2nkaxeCbo0y*&t*yv><%j3@ZE1##$9;TM8+9dId#UN zyWdRCU-#!c2)l&JS-<0?V7JtRuUdjTV?0;sV?PBJugKa_YpxyPFN4Y19w$r@lYz87g&SceBw7 zll(ro6-4rjVdWU|4vB!uCB$^$Afa-J2VH}f%q2RLJwQC6cVJ0ybjx_F`9iqQT030r z^FtmT#y*tC?WMiXe1U79Qu#xTON@y8K{Z^9F1Ns>j5*~d*i%;6`Ky?YEq_q9n=$3b zc-_R9@u~;{T3{0YD{cXi_@80r)QN}k z2jw%3`jmaVsZV4Q!;v+bBV5lPR4YvK<8Uj8yRgh3 zD#`9eOzJEZ2Kw0DD3xla^SH>9(S6}wYYjBDo*^>`_p?^QdTD%Q=CbTZ?B&|WR6el> zmlz58#N=?(wRm$pOwO2Pimele_^I`ui~?$@x_H1hZRlfM`C z4VApO4aeRNlm72;JBak}hLvOJJ0u1ww-8f@gM`X0c6Dut%q_M^Hn*6TVb`v8<}%e> zaQ>>&nJGr{i}CxSQOnx#n)-5cs0E?{k-5y0W3;hGVR^djYbwVW%_T-cjxk+tz7~Bp zf(gpTswW>C!2Ys!g8W>j6JaBdUFj__9~XZ?+a}UV^C^X~sWcKUu-&|HyPAOlp(( z^0scd8Cw1iubCKH{thb}q2+H}BDwTps@Te?drRXyYd>^!8k}b^2`v4la-I>|#;DtG z(w>UfPozBwR!*JvDr)Ip_n1a}XMf^5!hWF=7aLb*8%*lk;WiMdZw)KQPlk?CjzD>j)X_dH{;E>@al>2<_cKZh&PvU ziP$0OFe3L_5HsxgP@O4qiipcJ;*T+tu(aPG{xIwqDsl1ER!bvH?hoKb5V`*WR!*J! zTs1SVi2W!2?EeQlhsu7Q_EEe@Lrnhf70-Fj6vf%1I9C+s@xt2u2%8q2 zi3oK;+NBtMu>*m+3=f+27w0f#h8&}SD zXUo}QXLeA0-g_I?uJBrI=yr)dSDV&Z>g&&RRy+DL!71EEy;ivek|t$VBEJTr00S=N7IldWrvG{`bjVt}|v?q13ZHa;)PM zW(d}St-Y^y%#hn7*+MqRM^4C9vO{Jpq2Fy6HbgnHtDQ&07^=Z9yRH#!6dL8&I&s}ndwA;)W-8rBT&g|6`Of@wZw=r7gjbR$}BFC zT$V9O%*-~z`!Q3nv1kz98+Hhl@YK)~l^D)@;*}FQ?*=QU&Uu>3BW$cs@@Ksqb_$jC zDq7+Y!+R-i0FieER*vEAFuMm+vsfgF3Bf@^B?#}hPD?UDI6T<|VRTonyE~E}{1Wb` z)=pMCx@q|VH#ssJS<-{sTsxFX4{qTSBVoIuHE6Py9XtbbGUkq_VINsh=kH@W5gxU1 zJf3h+vR0KGJcZXv3?hGom5m_s7?(&cIhZJt0}I~?2YTlQW0}NoWPc{#DWTlJPI(Mo zH<9v6uyX2@r>fMzLV8Po(p$hjp^jv6t|n@~xrMMPUO$oc#;|e>ZHHN1B?e+DaF9@m z!A-8gNhSv8Cz}|I%@hiq?COYYBsn+%?yA;)M)*u_XhQ(nJZP95nUE|ALe;fnsRZG8 zE-?}kgz@!eYe~X4U|w?cs4axA!+x?N&!5F~B247b%(~@fP#MH)CI*$S!OBKZIiE`; zmng`inRRbzobO@Qcy1*87WN61bNFax-F}nyU3mRO+P{XCQ>Ps|npyXlM*MAm;%~ry zp%T}RX4czaQhybqcl1msSi=724<1aB=Jky0Q!XBYA z78j6&tv9EQlkwV#q)&vEV@Ny1d^K%|AmJdPri~3;8zQHT^%9;o%Gs^~cJ}Pd!Qce~ zu^oRmYXa6yt$nO^*pSmkPqrAG*cx)BDSxkB8XE~tmg(XSR|aajxSdOki0MK!TAMCj zfEgLn#Xn##Suy7yWjYZea=MVPjOpT8yk24u`75k!1d%^;iNvQ1E92=0qvOzEJcUVM zi4&D^c)ExqJrS>+NO~NsoI2_0YBSeLdk25o+rnO<(iV4M>Mbx6gspH3h{QhwE5{Ib znB7%^Af^Qe36&uH+%-ta1mUD)kK(VqG~XY|4o-plskM{U4j(!@C}+BI>?B)d==`Am zo9%(Mk;%xC9(=*IE2;Eg8JCDn50aZd#;^u!slin+AY=^K|f_><1T(Yra+>%@|Q_h{Jy(#>6){5a+ zUo06ig1A1-Qg%mruO*iJ&6S9XC4b=(v9Tn<uDjF8g8B!(jseT{i5 z0;MKC3)V2*3@jhPjB3Qd@&T-D1eSLN{aJDE-Q#cSulT*-X<~<`;VzBzCjO*1Y8q*A zTvBU*$$JCb03z@8VCB?#&s0f!9P^|7nI8c=#-1>kqg%WOZfS(c{V?1JBKLz~;|;u0<~5>ko=!NwcE%mvzhkEyfSxjO$)){6b81gM&Yj2o=+e7RPQ(@(p-r$f?sH8+pH4YLgDY?kCTg#;6 zjnRo-f;KwSmsu7`K@Nwztu^{I@!cJ6a%5t&Bp!#jb|{s29LOa`LgLXHG+9eDz5sJF zCYoiikF2QkJxnLUL%zGiLCIQGVljZ%N(>@pSlI|7B`%R%Vjl;UTnqby z$~XM(j-B$=c-=(G--4A>ryP2B$3ps#{-hs+eL^Lzzq@0n{V-lXk@f?yatv*USzRRt zVk&TuP>I2Qt__iiK_=O=RAW0!{mU!4p6ESgs~m;~C2K!x;=4Nyvm+CdB|(_Rnu6ul zvSXe0QgAxw!+e2(OtKRN7%> zBdBc1C6Y@N#rox1%d?PKuziL{S|l~bo3dUvPpF^%}w z{E43r`-Mtee|M+e29x@ExD7<==fKJ_)E#Dhl{kng!a+hM4ij7(A`^!t$tDh?Ps~=M zZ|*$88h`~SYd>q^jsiD1GC5fih6i0asD$A@E-?}khSs3TT1a^d=42!bufsmFqRv0d zbRsrI|>%k`}mVy4EuyiTHjHy)7~AgpGbQbSUHBa!>q0n12GjiNT|f% z9@pR`6N6im{Z#CPUDaKlktYr{xVKunT5azkk5CSE=XvOe<&Y;E&UNiZDjhhBOROLr z*f`htDu(gP6YrqzF0&76G;`Ro?_%(GikjJo-sSzJ>R=OxL#`sO2x}sULKg?o zy!cwkmKo^g-z?I+7W9?6x|`X8Vx}0JC~D$FTFfr1X1aq9`8Bb#1`ouR+hzGHS^ip7efyJh(sS^id*zmw(f zWqFS*@0H~rWO<(~@0aBRvV4%2+1gk(ZFOb)tG$DZKVkpWM)wp-O9uC?wRL9tgO53} z|2e*#IYIekAb%wLy57F|qxgSc&ejU~?=UU)3SD9^>crhG_yMy6+Zr~uq~7IC$slW> zvAH6P6YQ&3gXh#**(a+8$~ksh2-AsfIf~CdHx@CnX0`43HeNGvi{cGf+1R2;ny~GN z+IpY&rn?T47>*4`ldia4+J2m6O}thj+0|j?kw7+A)E*Ta>`(Rp*b~-WAIrF{lVuBc zW6bW0*GeS27p$B*+1OWPPxHrn3hWLl-XUL+{Q_P!k?}HEId#UZ!QPKHdT;Q@dp+z4 zDqb;q`Hqz_dauK4C6c`sR!*I4+?lVZ{pmghdxJ_>j#l(}mW}aR ziDW+wE2ln+$H@(UZTv3rhuZ-=gBqqM%5U$8ClyANJ_@gx$oKQGa_W3rgQqPT+zb5S z)?iOi;fj&VpAi{k&&6vcl06GnPMz!+_MA%td%Hi_pTmxzf*s38ZSZi;;Cd@wDUs_> zVdd1hPU=<<7&X2x`SblJ><}tn@ionm@h0d0!z(9p{yVIkI_K8l39klt){)+6^9&}@ zoU~a)X8v5-7{OEVT8U&Q!OG1bdvROKsFvWLygcJ1Pdu&o2Cz2%kX>WEvp?ek4E=Cf4cX;&Y;p2%ij8l zB!lm7@rsFj?}C+6=iA0lRcUnJ^{4wb>r6)W+>8{%pShdxFYVEO`0hQ)ApN!)qmy9e|ZnCp%Ugpw-x3@6Yx+*cVi`V%*Au zzXsiF@p_4LuZERVr#qo>cv%Ddlt17!JFgcVi5H0#l%Vi{O8-a_W3rgM<4T+)e%AZrn7uV(#Uy8yI9i zjn_&Xx$DEqsgs?iy)vOe?(m0v6zmjgj22&+&>CPy>d)f_5P2U8E2qx8jlZ{|QLgz@ zJ{NWcm9p5`5U<-9WBDw+S|Zyo!OE$#wcUI3bAPnA!k(a_6;axLN5)U_T8U(T0xQRm zb-3U{-H{>gM{tl(cVv9Y^-UUiN5&q>-jT6#aCjs9`QrEBzG>}P&3+ere5TmhTVk(N z^<@VwS7-g#wL7W1GT!78E4V8ov3J=lr-D{H#yg3h!z6|yiEm>%(bw2ka4KjfUMVqv zOox??05XM3B=?Tu1o15{^UT*C%n;9)6nBN)VI9VKldf2VH%vEEyPfc=iHvuEl~ZRt zMSXkAsi`!?0NC|Fq?NBNuxPeQIgp|N`1pG;ulN>SX>g^|BA6Zf7 zf5UX5Ie}PJ*pGleiq}dEA`ijJMi9B5OC*;R$lEjnPiY$hqdUB_f>BIjIC4IdZ}>J% zJLQjI7Sz4l4`JohDTi*;w2)rpPrAKnr1jf0?X)+<>nD!sg|KoAZHHN1B?e+DaF9@m z!S$})Rwf3UC40^G%K4@Jk)48mxR+Wdi`wBs-aJ%4+*%p({=UXH(?)HQRkmyI?))iq6f;a;k6Qj$jh*@5ky|%63LO3 ziwetufwhiB$DzS@4JI)hiwcu(cu`?LHZTvbn@D*steiUK(4xXZdOv^Cd&54Vj%0mN zVW+((UO$ocZm@C;ZHHN1B?e+DaF9@oia)ppC%LHjYO;?X7c9vYyIMLr2P)N4UrR?l zeQ)XL9w>J5yCuU(!})L*w)VeTxhX4-peeE?jfSXpL}o6_TI4*}9;h;jbGSroCXw89 zv&ITtp{-JGgrOQU&<(KftoN;522vgU(N~ka; z`k7alI@8Arwto3sYoZ@5pS-kGUXrV{bezD(cjsZ3%xvffXa$0A^A z;=yagd^5&O!mB67nDMZ(5o6l8L~`@ZT=kSX;x>)?j?64gPmiaX-w+#_)HVi z5R?DbxFJOTpM{lU_&ZDxYK{?s#6d!(!vAs&XEGK3N3wIwX#O&3INd!J?yuI)*2FzB z@fnIC_Q+0h?NDl3SdO&O{DyLSUGjdp*=DS>HqnY zejoM;m9)M`W~coQUO$ocTd;BrZHHN1B?e+DaF9@m!BW?T$i(0dr#-U#yv2=gD@HFI zTQlwlmjoYO9JfoRnpsd?-k*&uJGWVa1|@4ht1TXKFKno9Savb{I=Fq2na8rg+>+Uh zt(jyGQklROt`Z9Wrmhka|MSV_g=5&4h6)1__C3SIe&~}I^_>LzmV>Z%sGiW}%0Tsm z43`)QIbj=bvz9b`8D=E=x;l+{HtZzp5YI1VIuRf>@%o-XC974(FV4WLCC(tH!OF%A zatfD7E-RcQUUaY#{uwjHGcCLsb_kWQxVbfCyt##NBVIX?^9`_a>YS&kofjMH=lxkf z2RntzTD)?tHNfQk3~m6C_tUU)3~z_DPGyE-LU52!slhR>4UwtA)yW>KYO7xy7~VBn zyAusd)_&H+Z(7!^j?77xba4S|iD$YvpG%B{Bq8Q@%H3dEa_FcuVQ1J)R^a(fnN9>r zZHU_`cf>0u29)h!Wh0<$%_Wjc6sCx|)_w-Nqhpk%i00*uQHuzCPBOv>VLQa#EA1gtZYP_ceq4y8O3ZdCD(_n z9I@Iq)5iYPKg}etG@D9&RX)>Ln_*@c>*Hn+*?$UFPM!T~D#KVY|Nlqbc?U>RRDXPd zyW73n%W%h$qj)GTQBhHpoDT#M1&(EIcW!t3c4wB^*$V_o5`+N>3!)&3pafAwNdkhB zL`8xm#f+jLCE0iI(1f{fy?USO_g+_5RUaPC|1+?AsQlMA zDh;D6_89mSZVGV>90V&Ti~)~wK~)?gnRrO3isK32Kqf1WkEAtu z$_d;(vcD=IM56GJPzA(!z5`em5NoEp{9!_Fuu#-iKO6#&RcCN%;j&n6vX-G7Wy2?Z z2b3xsKEWl%L)kE?)@37)91U}_^2jpSM^4nyVy2_$LFF4?7VD;b8QwOL@};nH=9FX0VjZL(3n%>u>=P-h*aPqp$dZqz8#T;!D=0;?#Y}ezN;6XRakv78j+lX zta?PtW)+0ZS}Jms1~XYduu@tMDODOw;}YYcG;n^l@dGd^*+ccRVq4frPT0}LOh*GE zS4Sp%ws9-GSz;i0AFONzlJ{_l^oj$yI+DA}sQ!AGDS_3&k+4IkgyX9t6F4u#8z*u; z6jsihb8K~_i}g9-tj~g-LS=2Pj!fWv25tb6_i37gwE=M&3rA~1S0dfuyW?i*HrHzlDY32&V4V~HB|0m zL5s5+Hv8RiGl=YWft3^3dz1sJq7X^LLqb&)_xT1cSy4Qk?zb@}_OBQ!RkTv#OnA6D z$65=g9E8nUwsI5^r~3{mRYaV^CB{P$(a!s9B$V&Kq^yMUE!as;*wL4njs`?dIS5p; zS@k~RD!f@@Ao&KYYz309bBXi{2RY^7BK#X>3Rc!zgntD)gi1I*<&ePnalCON=U>9g znRAX!Ik;GN^arz^$Rx(1Jhbm-bIKus_o}!7MBeX=6>pF1t_lQ^5IiJQfpC&K<8N6%Harcu1(iVMpJN$iiW*bPI=sh5VIt(NH_rY2bFJpm7|;Tet6qN%6r4gnNyCfa&(YB zA)NGauurI@%~g(W+DGH<6KOAll@n-tWOY>-h*aPqp$daH0}F!-y%sU}9@sEx*Zk5# zkACv!o$xqy4zlVVO{Wu@p8P3{({hfZ2DsgK?5G;x2fh*t{7t?RvLfvE0`GlP$C@L> z;ZnJhXJ1De&iB=}u(ov%=5zX1nCHi6DD*cS3iv^wb^Gh)3+tPWm1lh^sj>15mlzNA zVuPXP1EYYP9t9T|olF8NvYinjdXsrh15_0+yxl0Rin0SYgP46L!pc_mS(QtqS5dAf zrf!_BGe*D;%(TD~^MkO1s3TxQJ}a@3&e+ov@5hZHj)QGr<;=&yMru-uG8X#7$3h-< z5_K$WYRphMJ7kZCMYuu4@z4z`CyWP=l2TQrBH?&QsN&>l-?S%-lV7L15TJ`4jNEIEIafy`_9a|O}r~jYNj`d$S z8p)3UT*dw^y86?rwndk)e>!e-esuDO`2RmeTuu|0&x^~M;__Yg`-P+P3A1}KKQul6 zB=*~`o;*8rzIu354zWK2>2vv>mdW?$%Duz=f1@DC|8@a>W zPc781eNCc;!)ds*xKh9KT1R_WU})W4QPZz?qxmUQzGJG=U(OHrmj>9aS7_OYYBa(| zFTV@((Sss?EQo&2^46)N3!(?)^%wH`pu9dLuMf-XBl7x7d3{t~ACuR|<@E`9eNtY3 zC9l7h*QfY3AHBc~+4~*#SM(3|PYa@d^1r{x%^Qgh+pvxOx5N40FRtauJJ=s%pMRa3 z^u-+f8$0_j@y$;ht>s<)t33SUJCkZ@(0E+?53?cgaqSh}jU15ion=yV6VuU(8~MhE zCvWTd{3X0qVjcbuSlOz>(Q=U?<=nn5u=su_8t5P-Zqi)gRpYul-v0uzX5o{KyZz<3X^C}jV112F;ijP!EeI^ zszkQ`g_W~s%V%2*wp)j@?P@VwF-c^xeJ|cDk?nj~IdittViR2k;UmHc9|k*w8lJ@t zyO{BIeEu}vIFa+guyW>{C)H*e4ZvrH13n%01QoD2vy;z{T6gd%c&kLRC&9|&fGnHi zHOSr)PWDFF6Cl~z%(O-Jdw8ovve&`NnUkHWX4ehA&xG@R8uka3uc(}r?Kb5<;B6Br z{}xuxoN_yVyI}yHJs4a$&tMX*tenM58S4(7iZ@GSI~i8aob6QgV#xsfv2eg2f&GEq z!OC{~4*n3{Hj(lNVCBpycQ)R+8IT9UAs1kGP$7%Ys5DHs88610CNl1Ul{05NyWuGL zUe!STrEt_2!d{`Gp2J@!nLV(HpO0HWBz_L8oIu=T;hkE$C)RCwNT{`Ym-@c^lxz21 zPWOvk6Bn2B%ZId8d%uE5s&kkT7D2_nu+?<6SnRi5!e;GNw__dOmt>gP8msrU< zzSNc;wDUe2G3CE7DS6YV-KMX@PIAJI{>F4PAo36^fl4;3wwu0+H%km8FT=`KAbF8X zq_?a@9%AJpJii!R=D&+cj76Dm6OJEZmB4vpym2Du4PfQWImZsMab^d zd5Bd4@BMKDh`jfOl@oY-WOr2{h=kxFp$deDd;^p$5DH#94}G_sPG%ccY7g=ieP#bB zJXW0pt-5#9Wsc2O_V+aG)6$Ql9yr%`1gU!9Y+nh5|4d&AiGOyw^@p#`t#JMFY8>C4;$Q_p(BudC&`Ra0?Hj2tchqk~)%=>IZ|L|zF)B^D(Irf?3 za`&SAFndeZ-J35Lma@5tI`Jc0*J8bi=3hj>kqok~EXx=A`YYXoxk|aPoU%;?Z>HFr zFOCf6%ee|0zO5k7z_T`(^{o&eDh;eynj4_(*uq^?&asd&*xfTUO8DTmxBO79oLijh z*`}p^sFYhP&vt6H;x>~6DkD8h*tblo-7UD2*_}1e-H1+~Zcz(t>rsk_P4u;(7xt!S z_I=uFDlH9<47O%?EiIK76^84HBDOu~FRTEnZ4Y`zUjHhuf0Nf|<@Gsv{kyzAFRw4i z>p$f6pYr;myuKu_|B~02<@FVL{kOcnDzE>M*Vp9rb$NY*U*YXUPqIIj=60f4Mipkv z?yXY_p8J`{B*tRy=ON}9t-!8|`2eE>_6vhKxBe*eH%{dIC0IFg&XZ*wY%qQ(obdy&GpLNG z@;CbR0$#dMy?^^D-Y}8xeXw%oeAi#uM2P|Yf8o&IfIUQoz7dDMvfkKt`hRe1h$G<@ zSUK~NFhlxIOkf%4Hy;YF$2VgVt*OUn$I;9AH|wt71aF?mdP7(_bJnX{Gl>T8PlfY7 z2zCqgRu|u#w7Ov5-v{6(5Si}>D`(DpT5MX^pnY;U?Gs>!P-%;bEoQvU`8d3BBIl!F z<;*!xmb2>y34-`|DveF}C4#<%`v z#^U=V-Y}8xW3Y1Od^;QOm<+;GjtZ{9+L=UaYA~^2zG1o@qbJ}^6B(}pD`(DlmULA8 zMV~=>`*70R!A^=G(xF*3;wbK@8N-hogQL z_6QaAEU~jKzM92~+|S^x6G=Y}D`!r+y++zRE@ECexa^+8BwAB;i*uT|+4fyL8*i4# zb_T4RIa|^fXm$%{y)*0@>g^1Df#zel8ASFUft537Ki9QV&4}dXaP%eEGgS0z@ks9K zg?-l#;8qaH7hvUaNS>`6G{}E7octxQX9CIB);~(;su$Z|!mS{ZzYtc=ocs)JC8vS> zfpFwMg_O z?=`C)($q!L1x=4@kiY9H=X*!k7fW;U8xsqnEm_A-W&aL->S1HykJQdv=n#e*G4mtL ziolOOe28}hxg(vUIa-_PXydTj$qOXua5(4C??kJe^~U@Ex((X)H}cLF~6(++=OoI>P62Uk)mK zj&O;UgwNCh$)sABjWBX4%t_uc>fDx#VIMhBM`th{jfebZ3-h*aPqp$dbtZ%1Td@M^kec1+%*oa-&H zZ^Y|owrpQPqmpx=jlr2MeGU7x)Z-`xwqrI2K1prOC00@jwC2=~a`Q*2x)+*OPz`@| zEn+)5x_d^3D{KRP{l9iE9x1ZV+m_hAwjn%Xf#^Nw)(e5dTBH?8rxue7-Lo2 zV0^f|F638uBkux%Jhd8cgOy@2ioXG7Twrlf;Qb4KhTNU$Xm?M*QQr6Gzaf;~ZLq(`8~4JWZ>L*l)X}(OL#_)PSq9js(_#?{J(esR2_f z6*@$xjYu*dW+m?%H6ipa*h@~_(HcxgBO>ROB`hnLY>c-{3?>`E%2qI0mrJBKB{W@3 zt2h}S%xnp)0uF>dLS-zL$;GX=)5iXI>qOG~!pfPGo~@=;oU~60r+qx^6)J6U+`ria zoA|M~1w`U2VC4kj9$8)$3L-6dNT@>Le}RR1bT4l!e#7 z$6F`Hm*2q3R($ytmq@R6n5W`#e7GBx;;f~?Rm5~Afz{Jg=Iij;BX>XS?9z$bL8RXS zD<{zRNDV5xh#=x2p|Z;@zQb5PhQ6NeiiGyzLSJ!Fp`ty99srM6=Wrt&q#Ap+gq}m| zR%-#wky!Tg9abu_?9C;{Lt>dMdu_y*VVIVcQ-)wSIe|yrOh-df6-Ol0amj|&eB~hC zFfpJ+u(B0U`nW`T>12j@m~&J98Z##FS@bKgOQ@8^+F#9lJ9&H=Z=T5di?DL$tXEel z*UkGE;kp zv*#ADkDREZb(oIELoQ+Dpk%A6NZ1^2l^8@egO#lyvI&<+uSk$f7#(~MXO;w32%mxd zLFF4?!sw>_DZFhW<%3}5%qho~Fgi$oKAiNauurI@%_WR(+9%`f6KS6SD<{zQ$m*&v z5UIdJLKOz9`F2DW20M6tb#A`zXXn~`3w`YSPC2bMxS#a_i%HI5*20;Dy46}ba+C-6 z`qEJ4!ChQpJd_8MWv`72;dz*rymeHC@GR^mC-CS=rlTQ|GYNHEvSC#uJcBn(3@A^- z%2q)61D8mzNRTrLZp!nPqxYmmc@C4nYGo?r_)J0~>)CkoMAkE4<;+>fW)j@IcMIpe zGwc>BZ*wLgk@?4P6Nt<|0xKsl_sI6DU=Yc{LqZh{clrh@Sum_fw_upwQyM8&+PaIS z;?enXNvj(^2aj3jfU7QUx}@Lt4Fos7VY`;99M!{#zGF;P51-`{44A?*H z(AKtaH2Rac{8?O{5tqO5i*vM9KiRaf7|5;2mz(d|6F=(`mTK9mUPe?Wv%{?O<$RGH z$|Cj&e3W$}{`l3r6Jk77XZ4f@hjKlY?%E07Y+vC}zf}A%R~!$;MLYL|kz(>NHQC|z zfkK6!P9z++2zH#4ezZT+(O6Z*iI#$*ym>#tek7Xh#+zMfWchSM`EXcSI%e`fVYt%G zoHHm#z-PEpdWFR_k&|7tN0}+{f`U4{qjJM9=fZxWf)?L(i5Xu{BntQ0c;iIeXTr*I zES}NuOxm1hsY1fV`p3+$K-PD_PNA|Ep9(NKVDr8WH-O0d7Faofx61m|o2lBlXk=g@ zU+Jy|3N1_ET9F!l+xzzDdHx5ZchX($FsV>v`C~{cAyzpW9kR~xRy}yEO9)}AmY3=^ zM5LnA+r9);*7>hsF>CL(w#{q17w1Rkt=HDpe^YcmyRd31y{&lyk5Mgb3ImdNjmjSz zF$t`~ax#u)G93+w+?pqcm26kRSs!ng7)sWGm90=R&sU;$?}|!DjGUkd^1AQ%l@Vkl z-38VY*dxd`TKwo?Zp2cab8J-)8sqrE4b=v#BYGU^I|fwrSjZ*D!?VVuT9=LBaVkv5 z3LYoJK5_z%%1lS&Q9tOdHlnQ1aRS~dF?1XUD_f!CXfBanVyGYVX7l|%vjn^QEWY1` z{Xyj$UnRwFM~m{e@wSPSuYr{lD0@VAl^{fL@Q_d?=AphFkqP3gbW6-AFAgInu<7z6?~Fc!5i-Bu%XJ5U^@{ zrPNa?=h>9mC9Ei|)u_#%e5z9m#h!tY-u&XiKz?|1;plwA3q;*BO?NTrKkv%*MkQ7Z zj#dYnBGUgP+R&n0rKdmN+g%!A4>Y6Io)$O9R{iykR{L7qN^c?8w|F4O+_$LJEtOJe zBwy$ot(IEc6V^z7H`}gS^IfUP4sLJx7-uam%?%8XRx2&;nmoar?UiTmt-6QGC3cWG z!`A#Cdro z(_PM$S|2}_lxv40_P4r6td)Gvl3GA)_1GNDEy;HeFYT=@8R;(O`*M}S(tPWg4c3q? z@6Io0=RvkQ8V{Cw^WD9*K-p?;gChf#f@o^6#Y03irMlMY_Sl=b+I`))sau^6hD!rW zSqLc?a>c%pfgHONT0Kl^H^Jh80vnJ^TFkDJFAkT=taEH3L+dN7N|_z%nyauHi}kSe zS*KFzmN$2$)Gc~CTFtlGqa!?8=Bw>2$(0MDNL~=lJ4PG=yOzAJEwAgy>$>u~p1iIv zuN%nghVr_RylyP7o5<^?^7<}$-ArEJEwA(Cb#r-rkG#HDUbm3f_sMIQylyG4TgmIz z{F<+Junz$A=7%c%qkF%@{;E#s8z?OrT~KZB$qn&idlyuvlyl3J4@RQHHf(ESr{MCx z^TYfmGp&(D=}mb|mX8v~eAeO24D1oon(z1w?}<9Qmhd3e!6&$D)n)7p&8sjS?ZHv5 z>90QnS(6=~!W$+|b{qsNTaz7W^PQnR!5Nf4&-xQc`Bc~?&bfxjrYu%nYUbP1mnY-R z6Iq`CD`(ESwtctPKzvg;;_t(rpdy~km)h}%e(Ns&F5W7U?6+a%%*jrvPgxjr{~S*D zkFYnWbf9M8Z$O%9#_M$ew@4bxqcXS1ofsBTx(N`7T4|ZMu}XvgOxMqI@_EOH6Tafko#b- zP$7$BVa*=c#CvfIh{SWSa^}P*Gk?`4qz%wt3ZoTDZUxA~rnH%#PvHmsaE z-!+}@0Swyrgwy^p>>4WVwRyqi?1s($4%`eP``cjU%-PRzyo@o(|0|sQKVipE$&3AJ zj!xLzpT~_La(@<9&Yb(|*84Dn`ufKO*Wl|giPqHMVi&yC1)KRi+yo-?Ik0l(%%`ds zk_PO3!eQ?T`-6Imi$z|_cAN5Uc-utEJHyJEQ=U|N6>RWb9?o|J_5_u$m48hPO;4ya}wFIpNO6aw`MzXTlMG z3U&weHWqohVYPYnlsGVBv7XmQ}IZof_Y1iXDB?c-qO z>}l((3=P`f52yWI*e4im-F}<)xAFFgw6B4cGp9YQ|lHM9t&YbiNZC$y6x-T4cFYFR3YO(H9GvB_eb9nPa z)P|ilF1H?95&Sm1T_W9EVC4k59%l@wV+zFPbPox2Ou=)$Tjb?21*dtPrRn>1j|mI% z>=>~4$EVv)Kx;|o(5mj%bjwn+vk8hd)3l8xjuQ#q@*OwoM1nVcB^316d?h6G>%E|R zf74~Pa#24%b&D~AeqdAR*zu_~JDZJw&6(}klZ%WTY6NV?B@)l1NN=;(MAl&=TkH>` zk=;|Lp6v^J$azagJ1`xMMpZ0Eu2Hg5#a?)$#8k06tZb!gauuv>#g}hz ziS$^@&pBu=Gl>75nS|Y;7V+P}j-e8df6hVcgw6d|xDiC|kHgBDbB}$_L35kIzVpOj z_8m+DtFox<&CfY#9kKaO#0??xUlmqP;O|issJcQV5Dy9UG;)gXK$cG<4|$!G=lck{ z+Ch2!33P9Gv^s}cb=Rh~M6)N*VP=_@njAI59=@YS)eO7(N+{$z`ASIS9VwrlTj*sc zc*Un3mW~nhu|7SQ8`^9P4EuUtje#L9F&^s1NwqE;3FJ#K9jkb_5cZMtu8vM&IvNjo zdM*bgTUD=|&c|CNW{Y!RWh+~p#U;|K66NW+4!-v>O9G3-yJ3G&`NmJrbyNNk-Zqi) z4`JoZDaXDs?jZe2IO&&QpHNAg-xzn({s-PZk@nwV?;fI2eW~`>ZCk4}{(390$=(Oh-dhT`#sn zyOKA1Vn2=Uk6S{FMf<|aRxH}fS3<=iF}i|c(dHpmuvzX$y`DzB-;GTyvlIIDurtbf zfK^A%;Wp+U7ZjFi1K1H`&h_=biZN$%iNqL_;-q#v@3Rq6Zie|-5#$N}&`b&j&??!oiaMQ)pxcN~Sle!fFT6#{#6iIo%r zEB$y&G=m-c2z<9Cn#+D)`&!E(O+Cat(Dd6W{8wH4#9DSXcQS zGAQ55Iul6wX4oIjtQaLxR<_%eZ@}9oQobHm&YbcLEoT^@{}vAVFR)9fpv49w&3v2n zpYZ01tbY$HXU=+hJcS#m*Z5rUJw1y_jK%YmeNT&RgK_I^($n$QiKIJW<#9kdR!|wF zcM2!HBkU3CO)W{sthY(;fVWO0{XtkcbJBAL?DEzCUJM7m1a=G+xLDKa=!DI^A2))? zJr65q&VBko?3u#=esMVPi(rpXfy+BQX1z`N0=#u1>GNRa1kxU}T54iUOptg;sEM&X ze9I3xF}8cUyFw=SmP$6+;YLjD6!6Vf<%&MPmI%9zCC{xyIkC2Y(vL}59l$tJk zj7zL!x@_*=ZEc&MI9mIR@p`>;=xIi)USiq+0Wzm16U7R*WB zHtKEso3NvtsH5kYjs~SF&iZPYZikcC@TQ63{4tO_{7>nlso3wbZVsyafy(w-0k@rTha^}3}>{2RL*e5Xa=^3Z zEeb?OCv5JYz>OesUjQp7aQDdhs%#L6!b3up4UhN+ELk>emF_Z|_Jd07gSf>$t!TIq z9Am764MK#n!MLWu)q# zGK&JI;qT*}3V+%14W^^r1l2Y95=pxccGSKbw}BY7e*`OAQ9EtwljXoQQ2&SZBoOs0 zurr)dGqO>OuT$0UIO#&QdhI2=VItpuz{&}HJyNR5$|5p*NT{rQmTyO7R^B1qRW6hB zgNyRLy=Gp1|EcI8b&fDXHozX{m9<)ka^&f4SP!r#7dfC*p5Bs6tRzpTmOwfi{WgNh zr(sUAm+E2uVAxSk)X}a?M}s0C<{PHl>Eb}VX<|6pA6B-)$-Z17^@sU}yA0B&FmnRa z#!0YKsHEc$^NkMJypP8XAo4yIR?eJv>|ws)GK2Z|!kJ$OJBG^Ke3)-^!sdQ0ZUmA0 z)v$5`caNN}$_9}rJS0@vu!V0&WZ7^@x)1Yna=p2sN?|G6zc-j$-qt--Dh+I-zYq8q z>k$^PoFlKgsOe)XRzlP*uNhvqTgzLHV&b2^bW}0%JeL>`#YBT$%mYT?S>rU6omE!M zViH*W<-~tMTiYsawZEb^Ca7_$iU{Q5DXmctF4J*qh!Ln0R<v9k;Q%85Rbg~i8S;79V@~?fa;Brvk@F#rPS|1RRNM$+*f|+i zw!+Q{z7i_zh%pruc8(0Of^FfQmF}wSNeAZG8U2G=p!qrL0#-IThgx-yrcoM(DdrO`9LVJY4b$zU^)`1S zw8D*;wEhb#TS+Tz#*-H1D>(!2*5P=&T84KrpQo)^ZIgX3-YSvod{{YivYm}kYT!L0 z9PeSUJDe3klyvttOt%?-8gH7&_+VH$bH?pFrx|?D4Ci|~>osaU#Cy*Uyo-!^|&Y=8ayP_ zEY)4UC4`)%`dYfPRGn;6()p6?HF%gh#~9&IF>u)q{oUBVeaDn~iu@OsSjkglYD<5o zs@Y>BpsamHa529olNgI)eiGBsi+OQCm$Kci2iCybCdQOmu(B0XrgMq(rXFX@bu5iR zZm`~i*@MmG$S$dM-n+tHao*UG&3aCJB~GIUHu0Ts3y8#bgq1TVJ~y^vrQtJ!dL^9t zQLtyI)YmfC-86b(lP}^{5Xmorl@rK&B!5*uh;-p0q3VZ!`X((|KkSz7avN1Y7{`Eo zA0D&L0oStnftjmiD#tAJcYVi{svo}1CB{|#uywByU7mnRSvloV*i%l}(OpbOqaqLZ ztk(|=nrvG=b3Tl>O^hkOfR(M7@-r@xS^Z$KUhT}_`k{?Uj76AFn&9tvDyJQNT0L&UZ@R=G9*QjBmx(^YQbXI=dxY`IT&?O#T#2RB{b zg=sGt=^+x^AYq_wDpx_WV7K(?@OjQcP=SSnTeyIba? z;nLy?+qPcrD-=Z!VvG0oXZJ*H@!kRQ`U!bGP+kv`*H6mp!Tbs@=G&S5u{0O+O;tCE zk*52ZC4r?`o_7XXQrE$^H579Lqo-FVmGg^7%7xMB!%RmDdvXF#*=}d&MR?o9?A#42 zTiH2n${iwH8H6uj9SJ0S9_$Nec61Q#Qf%mR( zym!LRpyHKB0m^J=@x2{yn8^1BuyW>nXPdd(0R3V(=oetGP(h37ce4j}ynYV1fJpqW zuyXdq&05MJzV2DUk$WvBfjuT*#LXVq#OLA`5Q(o2D`!r8re50`y!Q&{y*um^D(}^K zrq=DZY43u!Po({ESUGdrv&|6Nr0EZmIb( zF-zhhq2|Xn_DxN4e(au@=>>!dORNRC z$g#GHtX0}I_qR&B_5%CB=5v0KPkMXUp5HMSUCczAZ>sisi(iA+BIz2t7D?C8jkUBo zvv3&bOX-T9+NNDnHx}F?ckzVTB ztw=9*?OKdFY>XXV(;g|-4w$ZaWvnYK*J(Lp9=2-6k5&&KW5<;9y(2yO?qvmb?#r^V zk0Irj-0d}0cDIjpxlk@LQNqhiD1;0T6lxzvX_<$ID=bIGUSR&3J+#zbU_K?UzmeD9 z%Iojs_4o4n2YLOYy#7gEpO)7@%j;j{^%;5ntGxbAUZ0iM=j8S8^7_2Iz96svkk^08 z>x=UGlDz&)USF2iSLF5I^7^X0{zqP4lh@bf^$mG_lV9N%vk$O8mgbAu#)-4F184cU zt=0nU`DX{u0>6t%jKwVQJV(bxSlkFA_Z6^m z=G~EjC|f&QJ`hfM zTi73d_p)mf(^h!fM9S}jl{2S2kxh6SX}KpH?~$-0sCYa0ij3MUtrepe;*Aoy9ttau z1FnlruIGevJqvaO$d%3OSX|G*8zpi*4OY&aYkgy>Rbc%vobIi#JE(N0i@Ua58Y+!c zT=mt>c+*72H^9o{hOt#%{XLxV-(YumF?Ll~f5Dq3GX4{+JZ>0U#nqbU1eefjFp1Wb z(As_Ms;y?>O%oYUhn2Hu+*l=GR9L%)Gu{by2X-GfOtm=r)Z49uNhJ(Er_5>BII3>PjwN3US zyj3FE3t;8U$*!HWYRRDe^Kjbt!``9NUXK^lNjnAewgttK=0 zzaGy2RoFLF{_9Bou723`U&ieq(ti!^!RsdxClwOR~;tY+t-pBH6uQ<;=;p^R=$VO?!Me+GAl? zP|=F7euyQy)?K>-Zt*|&lC*WrktfE_|bJd+n#G2`v3>QTILBIk!;<;*!xt*?r*UQA3nFSxc^jY+ho zwi0Uslj<+uJHQ?_1BY#UB_E8Nr0BbDrhn>uCJyNUPVZ4)WK2UZ?G_pd8y3t@jyL$*%Y^>*S=ylo=oLty31DNnCOz54zjBQ>8D&iM@3BUH|_cxsMYZ%6IZ z@Yac>KL;ykPMYv}_FKb&-wZp33S1mq>)LQ8U909pZorKoa=#u{&Yb(C+V(l)&i-3C z=)b_8pn?|jA$-%HMfOj4t3yiL~#8l{2S3sdmzU!T8m1#xKL3pfVN}G(R7~ zBKsoVDv|69uyO)fj}r&gp@rh;Iu8kTXyLW|Bn0GCci9nnXyE}~-vW!)-Mg)A^Aksp z8=W7Ww_aOY|4q^P?6Pn)+9>INT*&@^b;5r6N^bO&(b}JkE@uBF+HMpr{hb4=x?9r| zR|-p4bS)k!_EZWbcA|Y(?O*fDhw|mZV7^#k|6#CZns#i0)xESjm}|seO~a!7lmalapa~@}5v1h&usxnKKGRC8nd{K~6q74mX0B zZH|VOt!%T5OQiRyxOL=L>U(oTmBP||GX3u|!veos@om^WRQl`lxtqkU*iR1E;HD7A zz?HCa=3`)k*mvujj)UKYkAtUR7g5K-#(W&Cv^(}#coH{8bE_0L` zYcaC}%h9=9VkM4l?W+-cr@$wR4}hjMw8^#vRf0ROtARy9&eIOszZq-$tuP zwYI?`J4TkJNxjWhcGB7487=IjqrvV{U&3ztonPb!&=ucoB3q*e$>>Db2vFpa&51ancxE)0L%V6cq z>Cb77{@dZ`uYnyyMK9N&IP#Koty+U}C2j%XGs3}B;bY=S*lE-; zu^oR70y}8OiN|mQiR0xFSUL0YGHU_9#SY?iJD+OMo-Eog3{DRdm;_ekQ^&(xJ|652 zSP^0s+yo-=xBveU?@VI7T{!ElaYs9sl-pIH*dG!%-J;xuH%_GdURXKdzV?`|P%|Fl zS=U2C&3LTtJ6z?A$HWfy(rZ@IOR}VC{rSEx+&T}cu;?^gDfF<9ILBYO48ud!8B?nJ zHhto3_TFtcW})`n;+XFk@*PI%)yg23NJKC{YR!B{uBo45erP`3p?uc0s8H-FjTG4@ zcv{y+PpMq)DdiVazHH&!kDk)f(Q5P0gn7%446+6It!|;fzD?2m9i(p``q`aa>MQ34 zTiK05UygaIl`RbBdkZ<{s3Ti;PZV>-!F;WW*0JDCh<>zg(AFBM4XKuTYN%XdFST12 zJlH3;ij~5EHY4~&7KLjwf)~l_m*n-!@_MnnULvnwk=IM*^{evwHF>>EUcWA{m-8z; zvv>ykV`Y#{8_p6gN+Mjh+$Q{Iyk#QcKf=nH6Q0Nl7X$9xF9yS1ok@(v zGrtX2tedV?Th{a6OuSJd*J-eF=3F~^c*SU--6b6D$6;Sk?^|)ohp^kG`%%1IBHa(e z%HxA>!QAjL6i#;#_61Itm4w#48{zE|>Gr|OnbYlTJSiEs?^nVBe;IZM6|gv~xM8}@ z_=|YcM8>1Aa^{RX#Dl5<_-EmOe**i03Rs@PBp$G>JNO>FT_W8d!^+vy6_W%8-PgkD z{u}lMMpsU5Sakn|w@ak^Pgpr~x|8Juje&R5i-POsjhIAh>gK8P-Km&aviPo#H%#Qa z4y>Fx-_FMDm_hgx;e;2!?x5blBL6l_xAX5lc+*72d&0_@Gwu+RlLp|=h66qZ_5~HN z$iKpFo9=SFT_W8PSUGdLwFq6C7&h>JD;)1tursK58xfk%Xj>8b8+gM+zF&uxGv_;{ zJ}Ykk{#7{O$6;?!0gIXEy5;sA{7bxLBH@Q%QaXur6SwsvJ{lF~ck_v696MNefCm)|2eBVZxSgzO%b=nyPgIU34E*73wwpiT6`bd z?17y{a<~OV;zz*BnG>I@Hcci{9}TB|F6#A`Ll5=h~&?Nl@rK&B!5*u zh;-p0q3Va}z8#VE!!GI84^#Kc6$?Wn18fmwsi+kYkFt(np~^Yp#$dR ztfjrG4CHgemG0V^BWbk5ju}s-omy?&N=l2$rCe`M&2xMw>hNf_uZ3fxr$67bq>kb^HIgs( zu)Z~4hUo9V-r=Ev0%@IeNE^a)t?UQeCeOB6k5>CzNM~_jV4#~VZ|$ocmPJ`d>+iC~ zEIU{7ES9#?XNw04Ljx_oKWlA_FfPs40|z*(G{9QuZ6W#od~RuBnB~&e0_jiTX6%l?OvY>zW~GoD=w8fk zlcAP&MYO~s*Kny^+aSC&-!ob*q|oF@F}?1wPSyG*dfDRcja0gG1EpeLw-|`cH$C`= z(Q>KsA$H>qw2;p~y(qGOG_p`xRDE75BF;sF(Scr&P*r8ersR62#hPqh++RDcs z7FP$mkIt7%EaqL2- zB(LrA+99u#<#md@cFOBid7UP&)8%!Byv~%@S@JqtURRgbHRN@Uyv~)^HRW}lysjm$ zYs>38^180Pt|zbS^DDd?>hH{5Y3_!as-|&__X-EH4q%gY);pyAnFRK>%{ku}JPa*=|$*Cf+uY^5wAd_@QilY4g|Nl%Ih8;YZo^ zrOik2wuzJF=d^lD6^r8!#0A=j5S+wiuDl;8UQM|rmS3dM-q+lI5= zD%sx`tk$+lTkS9QJ&8Z>z%S2;%is8gdTWbhZFa>D_>)UUkH1IN?UwnHEz94`cS-eBI!e5<;+QUi1&#G zr{V1q>3$AY&YbS_p4gjQgYm85jBkcLLS-!PrJ{r z{BPmJ{{nl4N?a__bM?X||0moEBKhCL%9)ez5GxuC)@xi6T!_zN60Ir3MFf{CF{}ta z9dDONw-Z(#4|Hp5NesF>h11;;_67A$uG8gfU@W>j;O!FWeh^m9o~~HMW6&*z(_I4l z0;4NeA6az!@pg%H^RRN}bZ2Pmrwqs!heN&yb_o@-_}sZ>zMX|Hz?&zsJ`YyTob_b6 zfX$$Me>mlPVP{Y&i>7s@k?)Uxs}_#Vhi#T=Qtr zeGzY$NcRO;d3?|vG55J|{FUGudIKiW${Jd(Hnr%ki?>UpyB4gRIo(OMm2$?NyMH*_ zePK^f?_BXYY`(tFBD)vfDv|8&uyW>PI~(hi4ZO#O<6Qx}gNj!k@zz*kZ82VoH%(+b z3@c~OxI-)wHvnH94)~j}FQ|Y;=9P=vExMQE?GovJ4OSixbRF{>PlVHb6!ry5*FC@S zFy1ba?k`~F%;`=jY-QZHt6dsgQ?)UP*3?w(e49Ai%wgTLZ^6E=5~;okD`!rXoyQ`# zqZn|v3Wxi?mcbQSw_&=?_&s>jM8@xil{05NrM?%)K)f&<@u9FcsF7J54OO??CVU9q zGLi5nVdcyTPh|VB47g{6!#xdl1Qo70vc9%?%!EkGD=F{T*02bJA=r6# z@tJU|3-sI^IdkHUj}uwc zp9`n{SJ*RD>Pa6ba*_WtZUvG2A7SML@*c@w)ejgY>MM}txon)DP|6KM_Qzxgq=bqEnWp19k6*nh8sZS{Rpg_ zIqx~@OQK24+b<7hK7mPKr4*Ia}lmg7kN-2wBS2=M<2QwWFOLZm>FEQiou+oD!P7EtY!pc@US;!^QD<4)D z**E4egZ72Ypuhs+eAq2i+G1U()didRIk*W#=4ZjmnKNHgW#44(cZYNT5$qZ&cd>WN z*$tch4{~DpY6WDvy0IG}-Ny9@zl@TBH?T9QRdeWVJSgp6GqLmM;UV#QF=SZs_ zIL75e%}y;pIm(82e0{IVhW~Mi@lZBQWIZ+#$h%-RR=Kb-lNgJqky%Vf!%-C*yK9(a zqiWJ}1H4gU*jN`>?-L=od^!!%;5-7$(`MDg%ClH%bf}zk-#mu<uq4=1lAroT$KSL z33y1TGT=tvz$D9nm(qQyFt0CPY3q*7WVLlK$(M_HePz?p@W^!zJHiLyv6W5C__*zL z)3yBMC>NIb4mMRTRJcT9xsYB~sR4BOz?et)3Jg%*UaEljGVCGX4bTmNKb@*!s zcR%c!;)}Q)#27RRD_b$>Twe(lgT%-Ria|$(Si#mq-IHz%Qadq>6;Z!s{lMl&oI|c< zJ29BK+DLYUnqT{(P@(1tE|C~&Qd|->buhQQyS7Tv`bhLUFexj({15h&6L$1G)6u9H zJ26}ziGBlbn;29611noGcM-{VV&< zUcOuy%oi){KMXhQ(-M=TT)4n@2&r=6JT9@4a$(CtTifO*j@Gv5p3k=GvX7*n$1eRh zMOU#)G~<|6+kh>+(OmZXg`?F)O`X(m!j@!rb&V9uxuy95_I%TuUp|_Pw&9H}h;C_wZ2^^T$9?))ft-o#v|EJ znK4*#Yo*cqcz=)`*Uk|hUCDH`ky#b9L7MsYli1yO^TbH{BUssrq=L0a7*vr|+({l1 zDw2M|w<9u=9-8ixSo^`1!a$+2LW`pvSE2*eIm)VgHVqNY0>g;3P8+L^C_0f@jFp#i z_^2qlDwjw*isqZTNV=eD43)p@Dh-LG)Loli$q(df87US>w_x4$2&5Yb@1zz;=eoLK z#M2Kkn*!tM2Y9!_$UmM|d6a9Y!j=mbt`A!fR@wWm2un zMku)$rel?67r{Pq0*+2&IvNkTSD1s6t*ZC!7vQZDL&tfrvK2bMz$Ma~$C@hUu^fEw zXO>`hpT+lH*dJ8B;%rD|yPY8J!rLZNz7tl?obpVya?L^d)o{`;!#<&s7N_j%_S>{y z#M>v*egRfapzV>%RXHG1fro@D2THyjkxyB(J5t@qH=$sb1KVAN1|;Vg8}pMxxS?A5 zag+mFGvfoFwz{~)xF`o|T{g;rLtr{qy7(mQBPZZ!7p9}}kmUdeC0kYHz$frliJ@Zw ztZapjeYiyG<$#0l=a?md<-m!sKd5};<$#;=XYsa)l#hXxGp8IY2OOlY4=4Q{*e6ud zW;x)d{VlwGBJHbSlg zfyE`~P#g2*FU;P$xmqrA)CT|XMWLn&{>~-FLv1isb=;^BR=*l0C2t+Iyly6wz^W)G z?C2flE{%#@{-SKRA2FukZ4+b46j<4cDeYV$y*fcIe^LH2Sbv<^gWZ)D>yN@-p|XxI ze^EWKiGLWkfJl6MSUGdzvE?tyX9o4baOx5487g&i`HSj>O}-Def=Ip>R!$)Ak^EKt zAku}0gsLC@=9{!+{qTCa%U`Ckm3nR6BgNXnOm_5a{58Y1@TheTx$0p}-%Dca_G@bk z8wP9H%27jH?K`ei4e?DbF&=7&>G7@`G3FtdmX%o^fPLiz9^J-tG%i)~k?*+mc5L}6 z-a0Y1+y^ULvE^hsiee*9iB$Zvj4F!{}x#8^Bp*mt_vj^pl!O@9;I4kG;xVdVt+9>svFCq(M-kWlr+ z<-WsM))Q-``+8zE^X)`GJX)PWX3S3psM)C{DM#^;_Z>v4cv!?G#zXNi(SA2^Cd|gF z8BT{?%iRc``r^lWbJInm7e-lo&Qnf|aeXaXgnuuT+o+1le?NVTJ@&2sgs+ zpwf+>4B%w^J-lfm6%!!q9Zs=$&yqwB<5U+f8*pcs4`>42l zOk8#nmtFY9In1iNI>U?D2eGU$oOf=dQ2)D2Sf&ls`cp=Aayh>^U(OeM@}m*oUv{$L z_U1;5@l&1EQyLt~^;Eita^+kfb4I^ZJb^1FMwS%!{u}GBCh4 z^VI@{mL+hlNDaT^e0#JtcXHI8?nc##<@~_N2egV|4|v2nhgWOj_*h@~R(QKxp5vg|asRId1 zwyR2k4e@q~A!9vQ*$NqJbBXjyf$8G8+sXJKW=mi#Z~*KPDr2##EpEO27`Y$bI+66= zuyW?4XRD`fC+!o$X&(oBg-TnzVK94O6F(ZafJl59teimHBbTdkK%@l^2~`ff8CVW% zm~J^ReMyc@_Ltkbm$9SdO3Spe;7)kRI>%e}NM~6Pn+({phrOGuO&d51gxC+e>Obrf zX4kFO@{^-txZQVjsfytTTw**_3^TO88->HuFf(}{slwq8u(O=lqX(Ie21Xv9rs~^@WI7rZxuI9t zZU>hoc-zF_(hni5H*p;9+D^r~LivaOxI|(FkzQ))Y;@a*F7Ja;$xf>0)AzuBa?+00Vmca=s@S;EFx?I*@5Y-Z zhLlZVWhv8jp@*6e{Dbv}<w0Ze7bMmX7uL<2id2&oUh*Ie;18k&Y@S$ zHLW}94=PQIj`|O~q}|kaZ|`DV34E;Cm`jX@dSj;Ec_ZfR15>lI&YrNhoZzGFnT}p< zh*MN``|UWh8{R%K&g={;TXE)NTq3<%V{MgfbiWzgmovKptBn!ZJ5=uL8M#L9i9G_! zxFy69P=b{cMu10}P?<&q6AuZMX*Tffh|Dxkq?>70AIuN1ER!$v^|Mdf59TW6!gB2? z_h!}~Z2US0U$wUd*@oFJO|M(7g*C?m?hU?l)C2DITw**VoEkg5|3>V23T9{JoF`$2 zIq^sLF&zy~buN!RRu}A`^B8UdG3Y!3D_cS5K`xPA+F46H8d`2M$hTjQ-nAC_2}}a3 z&8XzXqK|}**!)+)4I%P>`~M&R^;Fr>Yz%A{J_feNUEfhCvQ6sji@u|$S0}N({v+kW zsN?S6(5O7D&e-Fi3pa*14&DnZC&U4d%0U$$BC&W#sN&;0z5`koANNg2^_xD^8}IB! zdY0t%_jbeZ=yislmMk!>zXcLjYiZ38E>&|3a*4#6Bfa!9L+iScbS{LESxM)7 z*jG;K(Me24<099WYUbM^<{Z3vVu(2lR<=US8NL!K#E5Ye6k?(fE7&`{{&b&jCJtHe z?H*@67>g&G*6n#0Hf!V85m$ccOG3q!hqy#yTuJd|T|4iy5l~)-Nm&8qRoF@Hfbtin zqXCh7-UTYztlH@IGTtmPkh};hTY=;SE|Ff+kf-Cg2*2xl=)GtW-k3>@#dC^HIKJmS zf%67<<4rkVuu9u1ZMDC|Hsp2TCNc*e+x+f=eqcEC{b8q2Z)P0N~lO8#!gTqIX%P*_RR6!boVrM7JKu>kwJD;V?{qp;}zDAbe=rw zFXZWO?&CIVUUh?IkBFaCw#5jm3(_$SrqRQOwqqwZ7vO1F(i{f-urlV1*isCe8 zygi#S6K|XtS*F3tR%DstE1@Eb7(+pkdungo-0#+yupueM78Z70RXQ#*x)n7}280&CLF>h$1^XpL5hP zUe3Uw{&!c+E^TBwBE=29zE+XqdM=R|DN>yGoXC1?1d69%7FM8m5_XY0P~69KG#v8l zL^VuSn0O3tlo%!+ft9T=@gSE-??F|5oyex!egk@^S#&2biLoduZMyNV6FC{Lf;UZM z{PzDp#<8yx*_^iv=e#xUZ1?I5=34zOHos2fWZi`~Ph|aGSUKT-_Q=^P?TaMfA)%%? zzvDY-<>SNbbT>3kVVwINhpi05W7U~1T6ow>%y4ZaJIaG0-@&EIgF!Aa9?FBMs^dnL za3Rdh$|L8)o^oQ3PGUM56?xc-vfVBg&cWLz2A8v7Wh=Ox!6niw7UW?o%3lWSyO}*$ zb#Af#5$qKz>-b?Sss}dlAL14eiQfti>W}L#1vWwxW7rlm9zz z1(E#UVC4kz9#w!UBt*LKkWht0^J_c{uREpJ2vm2H^R(;Ff%K;><@d&i9Onp>1b4BA)#!ygUh~n+r;3q z7p!arm)*HU>V<^zm%;jYW=~)taV+c=D(iS5p?Y8wUx8adB)$|@&YXCxkWfA|s9zgS z{c6}VRO)6Sp?YDH|0Zq)k^JSbasqjeDnJzyB3*b$s6t{h-;T&a;xFmGh?p>Jo~rab z>i`y_oFlEe(D^1Jc3!ym7sDrIdjT0)uvGg>HcuidDtgZ(&A(i-F}<)BD{Sf?QU2( zfwo6hSA~H{1s)QrFnHQGA<4qv{&Z&;Cg)e=+t}w?m*^`fuY|{{bD&iZYg!%PD=3-8 z!eA{IIckF|e8-fk4KCvnZzq9Q=*woj@Z6H!#2Ubp??ve0S%^*^QhlHvbF7+M0 zvSwI2-F+7mh6{cAvc?{Gs5&D{br)y3pw=xmTh_=8(^8P5EI874*r>8#A(t2rWx=Fc zmyJ|$Don#F2~LK6=0KiG)UaF2OpZ!nUDg+@e3m0jRSIiyiNs1Fy>v3m=)6%g>1brC;;aax19tiF5!?V`sQD1AY=xQ+_)4fyBgRrtsF@pL1=~OMSh@$-u_p~< z8|I0u16b|j9Asngq`?f+MyVryeAd_7Dt;WpB@*LDiaV&-lSZ-Mh#FVGG_0s`8SEn` z(C8edqw#1wX)sW-RrRECDc&kER9p-zTcP42E|FepXgq0Hd>>(!V0W9v_d(bnRKEI? zhKusg@wSPS?}wE$r>s3`Sft+$C;ea8Csfk*lZK1->v;P_+ONXO3A8Hovb*uck!?YYGGNdK(M zM*2SzreURrg|LsDK%;$`j>e;&{%fFQt1A5;inmG(6^FpeR;c(SmqX_KCEwhm{j(d*p7F z{zWSAkWlG=JKv7T^#4S!>PvDQVU*Oihjs$ z)O%6ygqF@6(-7bD9et|CxQ)R2Tzow*{zoyhz+Vl)*scKhv5Idt%_3##? zD!EF7S**o7M_$?qzK`UnQh8}dE|Hj*(hEkNjcyz9rVmDC<)B{JPfps=K}<(uQWcNB z4b$zAlEa%OhLj^iWomZA!UaUE7*#fX=#U)d{1GhTWCkg`+8o*kFRlw#Q2fo>YAyl<39*nWI7rZd2W!h-3}pl<82c|$d6!UD}?-zOQe@3`x z>=i2O__;x<2R8ASa0`gU{{bs!PCRyQkn)*9eUsaRsc*<6#^Ra8zQfIPgH$hU^6TMN z5Xr9%D<_cm$n~mR5b450LOp?e#diqHCy)!%-Rjp-J0_}j=A>3EEP@BDGsaYN&SD|< zR?YkDpoZC6x^ff|-M#}$6%mJXiSbZGOsRL<2r#F>ysWfx66_}@^5`h0qcM?Z1k^3J zgUa!E%fz5^EUat=l@(kfy#hj>5m5J*!TEd4n!xhmI@l*v&haw>>h{~Tuf^LZ(!Ls2 z&YX7ajDWhw4B~$XC;nU5FI3{@83FY^*wlZG+d!oL1gxAu-6QL(!a<}64+&K`e8#sU zvT!&)-FXJKb7x>gD;n1SAsU>V?0@Y=zUB_<56GKTLUFqRf~Fez*{8-kq^SkRuFkVmq@QrXzb~+ z_!gNZfkna+*dJ8B+M-@3<$kzBrupMX*n(q^(80PTCjX?GtIA z2P-Gg_Q>k0Fc7K0LqZh>b9_4@3xmtk-P6-}r&-Z=_B_S9frTaKNNeRgO=hu{jU3g% zlfE!ib?_LMNURRhOCj}lniX@~&s#7mdF!YO;Z4|2PTJ9POh;p)ztd#IWYellcnxow z7*hTXD_bGuU%nD5q=@ko6jB}uv4XwRT$Ju4-h)blH3dEv$n{JgEf@N)s?&o25Q0d0Mvg%}fD&91a@yW1q=8R)sS+zO;Ae{3} zuuG_%&9AIFS$`jIp2+&UuyO)xkDRU2zDNQd66#4}Ti=ezCy5`VJHkJl|oWqTb>>x8bVAl?Fa07_3W;U#B#hMvhBE8ySO;I}-PBWuxqH) z*XGOeo!zk6?~I#4WdAW(Idk^ws684h=RXq8zYM#F%71-hTZYjUdkmCtQ;1_=09H;I z10IEfsx?G1@sLop#*4lwP1YK(rCV!E87TF!lePy-gE%=E|FewAs19De;KSN{3y7tScOT9MKx)&jxVTIJ+O(t4RfJx?E5dQoH_B>f@rL-1&ICX?!}&ehbw)+=tAmW~`n!l3WKQAI+;CB{RM(9UTX(c^rWhgBb(13Sry zG&-K?Xh5n{__K%@M6y}+YV$0-Sz@?216H=e#c5n3z0zQscwl!C{t+`JaJJ!xutTVX zXU1k55;)(AH%{byGpw9B=UHlw!NvL?;jI4-JB7+x%qJQhu*-nI;RXb~;O&va zRT&@>f`^1E1NwYBBFlhV(=7u!hDR1v%IwTQZ8l+xAER-}Inb(m1XcnKoXU^6Z;9*Th}^==#W!2U25*-5qBXAVZ2W|a^fOad#loZzF^n7=eERq?_i_Q>?Bo7en$}l#g?R_6NghzaMrBmG<1& z^ukJ+Z-bjaWWFV=oH_F~)iZj`X$JRvIQK=cYpC4CA{J*i?EAeNH-pIja9BBky+=8q zDhiP_JS0>_@dw}3B`b1w2}vLoN7IO589lBRL9%%Y288Diki|662vz zm{jYs5j%bY)37Rpdte_qfkxkFIvNkT>zad-t*UnpKgL@nhKf62Wh+$N#wF65V3516 z9en@IEWzq_i|@Z+e^B|xcU`+F{}XSUNcnkKIdjUfUDpoM8{HjDdVMA_7PY>8C!4#j z-L%)i+b7bV2P-Gg_Q>5T{fkuKA)(U$#lFKI^8=Lz~Ve;9Df>_G*d9Q5Y=r9Z;$;IFw7^Fg#eS{K0av?6grDoD5^K zQpX9fmz<=d64TL$RHyRC$vQ3Bu&NG@!y6_>lA~c|E0Qepl~9pHjGdrJa!803Y_s)k z>AtyaA1V#3SZbUeeHZHkR^2$qS4$#E-Ck|nIwHxPz8q8}xt&WSMv@daVo#R6HbTiW zFefXNJPo_ai8^|O>1aq~D5>MJLdhTShKZr%x3IDmN`B2H67%+$r;63pM2?&E?0e8V z(jq;BNsL7mYLgaokX9G$d8nzl2}I_TVdVto9%js&v6cSxxOvJaOS4+*55_t{7v6_}J2 zRE~n3iAo9K!R!-pUk=<2+ zAQFOygenmB^zDc&5dNC(i>hgr@<_3VeX6stw9uQ^=BuXNiv}m>XshnyEEMP)Ww?cP z1GOaNs0yYqqp>Pljw4kSv~!8^P!&v%cikuswu0$cspEaHubhCRb(xOFr8f zA2!~Dw@!>D?}nAFSh6XXNUug%Lo9NMd(7aykXaO1DjW*?h00qjp0xX5Q$GZ^fk^$6 zuyW?q=c#A%m5@Ipocw99Z>Z$g;di>bA2$8Z;dT(|p9m`_(Dz9Gs(uiu!$U&V4--RY=^;CB{P`F{##NBcZ$i zbFvDE=U^W>QAfXGIvNkT1crl>t*Xg|zv8VDgUFv@Wh;pMkxQgkILIY14!&#Mhu()4 z-?>ZzE2gP@<4a)Nlvl^wCQ_aWD`!qQwgkpOdiQYByTCr7k~WvXxM_bJZ=Xo}qp)%U zZI7(33ImY}JS0?M@FU;gBnyL$(tU9~xtt%&)fT~&wMm6j;IZl)Xw^LfCl!=+THNX=3>J zDy(dUk4v~jdL_Xuc@jt6T?XmLnK@W}Zjt^a>=Y_#F%NBYz2AH9$S1zE5@9EJusTOt@Bv-IGA$E1%7Y!5wb(O~95|{x*nvxohw`AE_t{7oy)X|e zVdP*ZIgv&OFdYquT!tV}$!1kqa0K2gF(_A9GvOq3Fa1lP2nG#qMoDDmK zN;tj@A%XLmc;iIQr^CvbbB--TaIwB4ob_$6Q>d)XWe5qpZ@~>9^1cyPPT=j4!&Mm| z5`u?>Dg!>~+Ywm?45nKKOzqDV-5(Zti**ExP0qnaSgwfgnyDF0{iw*BzCcu+@EVsG z4|T${SkH}WVZ-}TUh)o7$9JvAB(Rdoi9DLhbo6RLu-#g;X= zM0zzt>>P%e(+uMKF{7|M)FQq&>>4U@^Bjg)H*EHM;ARln?+Pm?u=hv`DzAtD;vu2( z%D;WXn9M83rTcn%HS_Is6&|e4kw*CLt?%mhn#Eeway)c?-gh{uWO6E(7!S#0qWy0A zI+&6bQm%zv9 zjMy)JoF8fTC2_e}T)rYMU*#8PSgGzF_;$K(o0fR$bwHK9T3?(m=Zii0(dgou2X`|D zQ**P$V5-jQDGd&>LZy2sSI+g7b3^@7ac8bL9;$=M(ig@<#~@5fcDa3^P|26shI-+; z2zH&5cytKU(P+v2)pe5c?)?n=nP|8VZ+NAl<;aF|FRUzGGkKseTsDnH@y5X5G!JeVQ7TH8Izg`_G);V-r}}iXR(t ziPY-@H|5VTV*>NVr(l;*DaY%BMAir4%@bK404rzCI#wUJd7m22`()THRNiKNkjVT5 z+yo-?<6z|k<{mk{mXO6`jz|t35~?g{^X-T%3;v$&j{50+<$R7kVzzbXj~X!!Zo8Lt z1&dM60ax8OaDG9WC@s_ylA}hr%NKyE5$@y?%j`s>mUl`SvsB(|Gg5c=88W*@`E>xj+&Be)?%{vU#s6Zm@+ z0jiD=3B*G})e*P*1~6GiY?|`)f+Vg@FPsPuS?72Qo?fWire!Ec>F`g7cRvcCWeiRVPz|9T*M{PD;MPJ z2RG$Mm@!!CZc%;^b_tboe0m{~_0RFwhlDB%miu-@mIdERccpyiKz?}GHMj852hafJ9BtLT0_PTL z_7Nu*KFmzUo}AB2)o)eGDCc0|?- zkEdHNOtjxZyuo^a#VF@c3*KNaEYs4FV+!FvzW!E4!Yf>2JQNA-yw66?Soaqw534>{ zi%DRWloM&x!E`hra)Z4>KtUjAEf4nX*tJH1bokT*r+1lIxaCD zihxPAE*mw#uV5NhhIkzIkrQZi57W_j$kTW^DA}qi0e*?MN(>bb!OB*scz{c!R|3e> zcpZEvJ{Vj9tjZ+DqQdY9`Jpx}D zG>p^Ij-w1H`VJpe1}xzc6k z0`Y9TWn$eitm};+k%i#QDW=-Ivz#XtpsGLQj(CxQr--fqOqTe$ zDzcNRJlGHRlM`(85vHRtk>x?%ayxYFjkin;9ecpaR_NH3OQc>N)V*bJK8{%vSRNb= z`-I9lULMr#w`niK+b7blz{;7^j+F;>j~T?T2`7Ff>=!C=vplHx!KQu%ZUd3}Ww3Gr zb&uSx$^(%iJS0?ku&HlHWO?vlx?2$@v(G{2dVBNBhqTQI&#_)$5z0B(g1_aXtkaT_ zqd@qpuisUH@MkVD9twocM!$_XGWB7Ui&Y^^W)fH>B!Zm~MxUNqE!5 z@Ua@KY=w_DE|Fe|Aiw3)aF;>)L(ClP4zx&r0CozMbo^UBjSkqnx5W)0^4NLuGD$%cs!^oBNTt5k&3_VdVtw9ywl>2_jK=NT@R5kG|RZ zyVP(}Z((VnSAWIu4S2LVhgx;Fz*h{?G%Xi73WTrw4jok>e3eU#hXSEPblQj?_rpZ2 zoN+JgB`4JA2BxDCsdn<$3lf%WSFJU;3vZVgGVX+xt&nj$mq@QPm@X#gos3^)wglD% zFT)<8GM*LNg^)!0MZ9$)=@($-%t_Bylk!g58$S|Edjlph7WKY;M~gitW)JLgU|rk- zBJs6gr+Mz){7(VO(N76a($N&qgiqIhcpMHPpL=6JaMgkw!yIM*|{v9tc#jSyc*r7H^gq zE{=hft#GlNOQcr{$ejl+!q+oX0xN;1LOP+6Nh4-$C)3O9hr`*Bz~fwxBvS7m@m2p$ru4EVHfM`RiBO1fo0$Kc37r7$$G zLaPMU`z0EeoC7U*Z9&60E%!Kzfwh^zScNQyk17V%q9#*zO$97yIy^=sKJ*<1n;5^8z39Jet*e6uZ z@wEkY`)%5Nc>6@!y|8lTv}0=v>K-$Qe>t4^7h%6piJNN+>V2@OkK#5EshVzkJ-LL9|N4dm!s1v5gyKY33|G{*uTHy`YS5CmuvrI?hQWbN|aqI0^ z@*li)Vk~(DR<>fvOI#wodSMOmHX-gYgZJi-qIaXkdow11)zDPlB7@j{u&Hl?+d!ng zA*`G^^?7PuekJ5T6;A#j*f&)2>lmjS#rt8?KLEFbNPjlhPNF5#$s(yIb zH+aeV;fLwg4;_W!#q2vw6@A&k1@Mq{jb+ED(I6Hs|dZF$ugYz@Y z8mw@)I6n>hgvvQSy->H`ru_%JeIo7O!pfP`j!iGrJ!TM}{a7&Z8BAgMG&2;zbu7f}>N5Je*hf@l=vSLf1Q=hRzg=6z1}Io0#ykBx5RIrYBp zr{DLjI#qStK>1IV8xTtPQ<+C{lSfI@ZKYR zls}I@n;GTL!phd89Ju#L6X_qBNBaL@pKv4XHGOimLm%xQ;Lm49`}?qRM6_enZdv}l zQV>Hzmj9)34e`tWY3Y{#ag}W60`YO~PzNySX*4HkF*E*%QhjWpqN8a7CW!H3ov{y( zYy!r)60Oh#jQ6cp`hWxAnD{ozod^5FZqkOeu!qnIg~b1eQaxP$gJmnQFaBU=+SmtH zCTU}DS0cSu!2gJnKFVi_!5DS}ABA1QjdJiKN|CWX6@NT4)+fQr)?*#`h>||u|7ITV ze}&z`jko#{rO2573qAy9%s&k)N5nivO_yzfR~%wU$hKf~Ttob}U`o0t6-RfJt39Ef z;9+3^mYKAe8LtYs0}E9jO+)ZtTyM*U;Crq_D>MXS9g~%A;E!-L{NIJ_27V9wNE^_? zPlZk>9{#F;8z}#&vK9C({#0hFco9}6sp5H8BE43?Ulq{AcekIQzcv!zorMI}6m#Pn zTouqq`91ivnNi*WR<<7Hz^Z^I(jPL9^wF?SxRF*@1@zJWApU%2w2y$5BcdIncFXeb zm4X-&viyH1ZgTR=|JLc=XEa(|OR*qS{x5iSHAzKe+J?mVbSeAH$!`jPfI}vh^qj%D*PkTR&qQ>33nDa3igje|@yy#-GoO z_7+$yVF32Sy?k7aFbbDZ-6vkO;EYisMd zyKuGm@k@dF*g{1|(*ztT#*58=e0XFN zaF{C*>G;`^o{!=9<c;5@Vg&S}6r9foN@4<(_jQL%#azxBy)O6Vvc*P-xglr2Aj%$eD7JMt+mjV+? z`?)amb`C}JYndFb1T#5Ah1OJ-ihP#wV zuMoq*et{&?%V4K)BOScvxM2W|_p$f@nDIUaR<<7Rz%|DWmnktn&phVm!j9p_T)pPF zVFZnP4IczE?&rYD5pj=Eo0;4Ta50^7sWD4^l9G20KX`(!vjfPADLadkvjX z`Hz*$20y_c%S;zf!pbCFJnl-Q*A_JHHKY+9|1;y3V62d6M)OA_9KP338|P8@!EDcoN(z1L71?*s4wFyp;HtQ-;V7&TnB0bW6fAtBpq;H z-v*qO?$Lr##g6bBgnk%PEn@?V4X-P5#uchKniilE7aG|DlwFBdXaU9uilArf2b_~SK$w3rim+HWs)WaT#59`|F+(JJ~X=D z7XvX|5BM(Z4sLX}3w+){8{==|k7maBTd=bA7;i7nl})GxNxDSefLJrLIJJeZhPDzCd!WMElcXK!*LnCtG8w-vld1 z#6CvRmwkg*G-61|zF~G;L;SvBYP!n>qw~Gl@HGUl2m`PzrA5v7%z-} zZP_UN&Xs6|Mq#XDvQjg4_&FL4(jiO|5?C{(4QSzQ;iynN{4)n`p!}!GC4&k0Q<b_y*4$=%aiP{%mHH7sATcqZ~MMpow(B zJks5;Pq>j*&m8EZ-HAV+8SN~r91-mpwOf{duN1_Pkmdh3aSM`P{y&uNk;75BN_fk_ zEik28#Ejn-IO7Tx8%^>5N?d4U@&A%5(F(X(b z3!E_d50$0=LHwc2H1R!HnWTyDxDx4=e*bL&jqVmP5W~v<7VHjgbc1gTv@w1Ie>5}3 zuffXJV;p!}K;t~?7shd(DI}WF!P8%{`nEtD>*@I8nX#S*D@VjSM$MLG-zx$!BxKqD zLR@J5vOhlEvOmWC97X6gK@P@Ln@f!M3VI_8)f!FdUmX`5S^6`sL@Sj3ajwlu@xKI) zhyT-%uLdrHoumzEp(b=f0rB?=dZF?kE6e|9@W(RK#iw9pk}f{sN~Bl*{k?*^2;U`! zV%PxO0Xu{n;ox4uh&bPlKb#ro+hAquaSrSi)W!M*^H~21b_zGv>R!Q!c>e+)05je{ zgOwxV9ixWJHoz+gF(hOgaAsUX{5Ifg>9zr*a_jm+O~8!j(3GTQ%zXAQ#uchKnigPB zF;=W8_Mwq2z*JYF6>_PA3x5X(R-wBidP+9i>jz5%{CjJU5lQi+BE0KEHr_tTtJi7Y|39RqsMmJdYwK3iYe>5}3 zd&A1sV;m^^G|nG2kMpUpOSo}X%f2?&C*hB0#`;89IU?3EYPKx#jZ2a21Fm)@TA>eU91#$fEB(N?;Mn-T z7TFJc6Lyt0yoIj{olsbmBLYs?{D;fF;BNfk%sg@@tW5IACRZZ8zCbx5K%@P8F(9lH zC(-^b>=tgcbw>oWF@F&s0yE~%!^+lUt~nw=M!kp9Y}jtFRDzXLuD zX6z@y$`P@TQS@cs;1!J+60&dj_qY)IeZyYq_6=jik&yWZgc^pEVO+I2#(1-UH?mMo z(zFU6i3^Tw6;5y^TA@`K=i00^3G3i^kh0MaJ4qYTLZ{FP1;pPh;DyS6tZWY|_+y#r zq6{mObWwCA(rXX=%>udz-z0`&*cjXhJA@nI;AVk{INyLjoEhg0u(I_y2Q~}nV*P}9 ztRI7&!i}}MSs)_bkKhAf#`|GdIU?RMYPf6zyn+xzLbd@Pj%$eD224u#^8}-dxoS1k z1?>1dnv=AU8J`q%2NtS1nkHa7F<7iU_OX#oz_zYLD>MOP9g~$FU?Ch0-$1!gFdz1j zHlT&+LMIfD`qzmZg8Zk-7N8w}Dl=8=2P>0QG24|$uLbZ=3Ton;6(ce10M3T}!HsY5 zq@eqABvC#Ce>OA9r@_j@MERQ0ZCkZD|IjbE;GcFG`U@k0BZHcdUv3`q%V6hlL#`ef z)Q9~N{Q1nVUj!>hggr(PmwkX&6JkinK46=;hWLHJ6Di*q(2>g*Lw&%b!T>BYX&E!_ z1Kfdy>W-!l_+eac%Rb;CSE42Q0LNsd4|olZhX1>eeZVWQkF)_T{6gr2;!*!du|p84 z5P!g*%1jl%gOy3D_>C)(dLN*P@3dc|zcv!z-Gv0!3v=Te>;v4NBZ=}Z__LW&-U(K= z9_2v!*F<`md8ChpeZq~jTK@IXJ_dh2GulVN$`R3yQM+aN_ewzw30eLhh?|`J@_${r zZv!TX1)pqZr`WF^{#5a$FsxeA297hoX0SfIQ0dXM0vE?cNVWnOx)QC>3OE-)`i3hF z!EJD4NWr)T_LMfbh0h9|P*euIf+5FF+k&s)&t|5OFTu(rg?z!4NUtrJ+_<1mAM2lq z@nEeuiS>A8j^!Or44T3B%u@0FVurZ za>#1@*~}c0ftCHi$zSi8u7r(#K_BaD#CQz*g{xq%aAU3X3y~4O0v`c0;sda<^@xZ2 z1%1@NYaaD)!=B+rUDGc_M*ds)D43D|CafG0`547s_6uIQh#?^}&f#$l@%x3(rrR$# z2jP3?hh8si^&*<1w5Syr;YzeZlQ7P;S?LeQWwYu3bBHrup0Wjm;4=YE+ zJ4OwcZGcx0Vo1m~;BRrulHUeAH@dAYvLZz$t=R>9!_2kQ+S&%j=Bt%lHoVQ?e_>L! zm<=p3e8b=mEmU_jjlloJMMpLQ-*6=&-99_g?=jpy^gg9+JfoFP;CVPA{;xxJ0?)x- z(gwBgh|mc|WMEr&-O&%0|6JJ$Jc~b}ykp>vLR6&3;ZJ8qdNizTJ<^lq+XQX24>gbWL9kc2zi4kgNVR~zKU#>7fEn@m zuyRDiW7Kll4tQlDhJE2j0x~n%|3M~q(he6d+X1wRn9ayOFXj*}_ zaj}uDK-HCKg;rp!W3ti+Y=EQT|1M-Ba6RlJZ9of`2%S(o{5^+mp!}!GHsD(PsmxSy zHLOfh#lO1}>9qm=*#k{{9~L7qTo8B=_6IkezlJ}b8SPhK<%npC;X`1?{1dRU^_T~4E($nJiTfSqalajQ z4L9!U%|!t-XzXvphrx{fEwFM#>|+#t**ADaBZh?R8|KC}#P1vao^IbTs;_)*s9ktn zj2}x&iLx&&R?7b4 za4bk+cocS#Hk^fT37t?l{Ic(a$$zLU`#;1V%1jdv!OA2}Jm5;CUiN8p-w^{bEc<_l z-NB7+u^kRGhpS2 zSjVW@vg~_BAcll2`(KU=tzY)LaW&dLQq0BUKA*@W QI z>Sdos_nTrMhGqY5*d5&H2Ft!S#&_b6X2y6EtZY5TfwE8I{9E%lzX-d88)vobYh(R9 z{&;4rpM#YnVjZJq%d+nkffy39?0+n-A%5APo9-h2#8S4@mZ_E7GNu0B(6s-3FQZvW zi<N;zd~5dc*@)3`n0TQNPhV>Nmii;YMA(VnA9!BfkM31vB#3!^#nnk5TPq z!{C*R7!tB!*dwkXe#5XX-PZ%7#VOM8-G#pv24E>lOPcXv0(W4cVx(yiei_%>vPJm0 zE71xq!dS;-C3TGcJsJ(t9Bd^dur^8?(86oNQK5MFhY8$3`A?N=1^{clZ#PG5-y$Y(3_I!vq1RDZldF z|6m;VU4%q4T7UX0R}T{e%%H#bo$z5WW4|M;91;5%MPK#}UeSmlA^V2GxDfk&!>`g^ zHgG?K+!tyXPKR;T<{0Cf2?dGs`-a_Oa7tWoWUH{sm1u=l!Tk(!pOQX40mp-sjrFjT zv>`3@2%T_~Fu}d6#tRiG6>IUwGSfvBRwn79&y`58JqUaTS&i^5Vkm}?98prcjV^f*RF5x>MwQF^5s&t*zWvS?{C`0;KbMhLkrcQ z`uf4Z_)4xTSILz+a{fIElf|fmUGwmx_GlW|v7_AEm+h!!`m&X5cO~1`<123ODn_;n z=~WXaU?HCycA+-#g}sGNC~5=VOKR1O`kZ5y_}_aY zScs2c$YisBLwP=|?E7eZF<-4^gr9nSFSW;2+IDq+v6!o69KjG`GWl?!Eo2&oO^i95 zLYMn57Pd+^`Rv|bs^)5Kna*5Sw!bL;L%!tvx7zx?a1#227+tVU8s0Nn76(3}yDGIa zTgzsgM{4s>{V&_yq1H$04AdWIi0yhtDoBdg#|??Zb*&ei9i!fLrS=kRw+JUFDd+|` zTz)M-R{V?JZ+`>qHEqNTmkFIvga-C-=PeP2&?Iy{J`iRSx)xUUy(E9`SI3obe(s*5 zJ+_RJPSs=-{i_S}(@i>~va7@ADt;-(-;C_CSeIRL#awT$^|AbwnPaUraolrRZa}`dQ{D;ac{}243 z%rx;gSec}Wzqk_VwW$6r3N*Uy=F#0xNMM~kH@d-d71|ij#vjd$@%vz9>oE?TtDtc{ z!#vKX!7ky(Sv^;wjrGa+lig#mVK`X#E_89$J22WlQRlY_P0*A>~HU1 zmgP(`*5)d;&??90U|_Yh4XiM10qPfe`9lnqA5AxKU0jxAH!$c*v_dzqL)dtwG5B9N zLjKQ2&ME!}_LertgJA`dl3d(voETo{Ug`K61 zY#}FfbWKEf{4|kN@#ixWNgu3C5=n1d37JSdl8h3`3X@TYiOJY>6Um-EV#8=rTn1k) zce(FEoF8plW^J~TCvRi#5vE}sk(R!JmAZM#uzAHBs5?$Sx5!b3Sk_Ec?ur`}nPl#8 zC0ZcKOdG-xO2+v)959k`ehPa|8}q_LLMIfZf$44&GlVfT{XC5ihM9hzfR#!5c`UAk zOg|oDM(O8vlTnED^ZRu7fsV>{hL4Tx{%Uh_jPdIbF|H7=nyj*m7%SG``_Ra&vXd(j znN?DK9nz^D6FCBo1xX)=!YNM>Aubg_W(xIQTk*#Q8e&I1j=u;l`P~ z4$;N>O8oK6SYHk+N5nct&6Z`~D*`bj6ZN|{@PnxrjqaO5%Z2} zPrfVsQsgJXA}l>=nbYsO3T%8BZeK)wmCzliKh97k(liE7#*Kz-3?6qSTA?wh$I1(p z=K*D&u?3D5DJ5^gF4Km)@RHC8g=b(_cb=gOqdy4QIJ|)mf|+PugOy35dBv4TuW^_f ze!CFhUy1&#KcT-=68)J%0_&u?(cjaJexxb1d7O?9g~`A)SlK!Qd(n3c(HyKY=U^r5 zA}$B-jd*1eFo&|R0v`^Og=MgE1Pd{`2HALcMJ9%XY&;%~o7nuu`*7;q(8q06X$l{8bXDCOlYI5MQX+yQ$^8{EPd zg-$3c{`HoDp!v_1J;m+#vza;MHdvYDkXu}d^m+>adQ0gqCDt#9@nB6qiS@5wuW(}> zyxvk;K&!?t@DVU0{xewFdc*_QTS}iPQQ!VG+L#y45<20w!rR~#J|-qDp^0Y=J`!f)>4B9=;>pF8kcr2m%P8?I zF&TweA>B9K@9*s59!(8z%IGb3hEJw$5;kG&k`_Syq-EF*8DfN?-5BohLL6%*EgR#8 zL8h8pU5OS*H9PA(prn~6;SiBD^Em7>ZIlb&7CNEu40yeb&I+1h9>qt&Off%%l}U!W-o{%mHHPluJQM>%kHweb!)XkUsypBe3oVdaQu$Ee-1{ClM!hJ;+&7$4UVXB49RzmabFpWat- z*D|t2aeKG8^-A2qRjFjxi@UhW;uBz^`wz7SKN7}a$x6##%)Q_4P%~nr&OrTfieb8= z4Amt~pYVTi!y@~HAGi{ceL{N0WZDppP`ZcL;ee6q@+#~(ZOjYL37t@s{Jq~p7(?eD zoAJRg6VS`BGD$!$#g&i=$YabX0e#@9KhiJRZrGF{@@JLQ$^0e@~z z%2}eDjqp}CoUzr179v=aXZ9DvHJp#^>q@jho^e8xsRpc9lFKSMG$gsKgx#f2E{lXt zC^Y^Jf2svEqpZM3z|1JiU}cg~j*TlJGm1x(QAXLvWE3K!Jd|!mc~7lebG}8=o9oqg zF;@wDn$g9?ODXQ?oWXHhmn-7BU$!m-u0$)O6xDhqrQ8LFhNP4`V0YE~Tgz z(3EmJJ_2S+xeZn(Ddm>95;CQDG#RCoOHD>0Qp&f|-KjoGod~@t#@~z-a&WA!#2HNp zO-&>6dR!07tnsQV5t%hoTo@fAELJkbE^nX_Aemw(A%XR3`b;rO=!C-IA4_w>|5zH0?lEE@*zb!(_bAvM+~@|6rDre-j1PmA zt;aZUERDwb9P>DrV3%;?tR73##(E9@cxJ47VC9Hd$Eeh@*n34FhJ;)a-5j?RIinE8 z{+H?Q4xieWt8|F_a@#Wf)m-Ng^N39_yjt=GJ{+qF@JHzm5}8hHjEj|Q3~qHLA{&GB z>c?&oPEdM;hW`4Azx*eL z=8Y`Gu4dY?y%;UlQ~MCf>@v}nXo2kF1;&kwYrK+G4uk_kvdRM3TiVzbW(b{7WCpyC zDXG!(2Owu7^Y8&Mv&mdonPihWaV2Cn@mMm-CgV*;A+pJd=`K~&k5JKXG1r74*qllW zoAI}p>t`pNkNSq7)ufYi;yPcZlaebDnNCt%#h4VZT*)QZ!LcE^WDs_hHoS!kg-$3e z{zZo9}GxjgT$`P@TQS@cs z;1!J+5^~jJODcQcq~+all{DG^J%tKl4B~g1aLN)g(=;u)i3s z;ml)SSE3bKg>h~)l=QI*jt40lD`6*TLt0oQbV30c@V>?DLF7MHPBT{Ek7cHdWw0_y z7st91>9q&`x0rPizCaAcurW9vb_h4Z!EZ4~#Q8k@;mkOn3oBcXbKqOdx>#>CkM*sv zQ@F8Kzr`F8@0;-fFysAYSUDozF>1JM1H6I|LqfIz`@}WGZv&R6+XhS?=AFkMg*jM; z(juqt35H#bbOwjK>-c?K=gZ}T-?|c!JwbY9V@Jh!r8(ICEi^Fx4@Q2RXrhq7Iw);y z3;z%<3pWQ|I#CRuvx@Qf0GR1yEUZk@$*8yzGM#uV8KsjK;}Y$slOLtK7jtrL=uf*J zFPz$pbP{tbrt%r{VV5J9$7Mj~lclai3*-|gG(&yF{Tw(nB%zdGcj*(#SwbhAP`q21 zR10WES%Z&&nNfORWs*^HaV2C%@n|y2C`(L6A=W8&N%#H6p3ZC1THZOGCT>RQ@9Qg9 zYR)bVuXhN4Re6&ztr^+n#8?|N>H`gqvoXvN&YIPXjd7zQGtI58LDIj-}6y?G|UY2Ls*$)poij0$PDCBW|V<$ zHW`J;Krg4eUt{~MI2~Kc*79q`Cz6~!ffo&adhq-~@2eA&|Jt0Cqy2Kpu=AsA)gKt^ zOzieztXRMA10-|IL|38(a*PN{z;q?490&)6B$WlQuk=Y}hR_Ko6>pbmX!x{`nTJ1~ znMLNp$|Q@-i7O$qh{usp78!3c3Xw%dZcWC1k?z=rKwdkD81^B#fidow@Af@9AmF6m!mZUg`Ii z4*pwna))-s1laOX-+bhZlli%&1I5q{XEO_2iO77C;#Sdmq})JhzqWJ+94V4oPJ=zB zPc6p^op5T|#Z4`mAo^pN)mR=m86N{P$$SJ>CQ0T5S0cSve7lFgP$c13%E~2TTv&xC zvA+oR4mbARt<_PM&@%HGd?ZW)J_RdVCty$dsijB??lPy~4%kCn3cRJ#p{$`K+>Vci zNy2Tgas&x6x&_&Ac;zLAgxpOsFRmfZC`7|iOSj?JS^aQ==r+Z9v(Sp^o5Cb4nQ0k} zd3|~Kc71<%p<z>^649N5RZ6+ri2t!)zN@LS`6`Dx(auIWF6NhIu00 z4JMm5j~?Dx^b*8lCrII*_a z=SJ55iLOK|)c+0G`$^rjqPSQD6n{}+L!F<`^l%D%2d3*;FmJc|8Ff>{NJha{Mlu*38TW|7bdCm3&s1+{@@mKFFIn3-i6 ztV}Y?v2i72X7PwJ$}Ibsj6!6VG6W1MyN@Krrm2@9IhzZ|1WCBVKdZ)71ldF%DR+j~R5uB$untMf;K1@&ImcUjbB5@T&>LU~ zX3f-OW86^4gmbGa(ECX#I)hn=R4bm7}VClsK8seyG=5=(y^a_;gd zJ`QH8`5~-KQq4ngC1k4c$TCVbH=B$?q?#|L+v7}Jn=R&@+kMCzo5}AqC%b$|n_YNs zY}~;y-_dL@#*0k=e1c?RndnNiKw_B`FkHzd2f|??*<=CiDSbAXA#}po#G4ie22Z<{ zdHBPbDP%6JOj5|4xDqmjcnle(kntv?5GiC{x+!F8M=_VJI3HH(=o#{JZZ%<7Gy0Wy zpL26Z=?@aQ;`E%j(U5tius4&9(N@o^GS;DX2v?PP_oAsI2t5-yaoG6pFLg@I-z*fPoy}3@}DYaH*eri zWu}VPU}cgjUU4PTTTH8;NTKna^-uKIM&dhDNMOA>H@=}0DcUGc$DhrN@-$f4dX$4F zQfQ=CnMZmh>=SOJ$%zzgv{&HIXGVJ&tQ-;T7`0oLf3Fn8kdSX>9*vuvoKcAK|FLuz zN4GEa_ln7ebM1LYxsnT?O}z>xR*Ty}yxT#=$ee-s;|diXO(SqcT!3UFFyKl=HUjBY z3nwVjbfqD<3l0h?7+a!XtZnMFK~ zjIzk3CZiBpcRg*$q zkLz@qLSA(xS|EjN=YLDtwOq*{yS$5rgk+GNghVr1&QU@q6qbP<-B&2V(bEL7BmQ(| z0@)5$CJAKQxDqmfcoZ2Wkj-&f_S=xJq`L~SNBx$1am(M(A4xbxxVIVkOT*&OQ(v@g|?9vDq^@EaY*2CcF&rv z$ZEQlyW;v==9N2KiO9T?;tJ?EHyTO~`8ga9l0$w9J4v5I9uhjCfYf)VyP+cK;%WS` z%yjVttW46yW3EJcv)cOZbjMXngtuuM1^(hlgvSVpW^|-9!lB*i`Z#ZmKb#rocSl~F zgS*o;u|Ci|)(dcVZ<8<8a+OlHIC#mx*h;Rezmgv;&{&h*>H2uj!w0~O_gq*x;&&aR zhRZgal!Q`Al>P%gN}FCLA(3M_A0%sk~9a5;|XnKHi z;!-1ffRZZ_*#o3kCMMLaR%*m`a41NP7=+!Vjb`COp%V&;|8au)$mxp3mH3mH3FC5D znIw$M;!4Pb;n8E1FxHriLd+X>Pj|_4jM#HoS`b?5{E4ujCFTw8$U=Z>a>kQ!{Vj9G zzc9K40yd-o&0jbX$+)(+Coz+-ocmsbdGhMs}E0c8b ziYt*`L8#9gG!dS)75a-K5uPa|nlW#n5f058^l_e!Kb#roX|S^OI0xqqnpm$gkM&B} zDcoN(nK$U;y#gNqGv3Q!<%oF4sNu2=@Crf<2{~_gG;V_O=M9IX`{KfF1C+}xU{JM` z4Hz#U3I=<)Z@;y1 ztS1VIX0&|t*Q{#;H1Qsf4}cl(v9NMPykpdG*#>w8A%=u(11^mVuHOcHH{I2M-Q49v z_xs4%N+r8qd@Q+Kau1t_RtS!V;nilDfn~8aFF4Cn&c~9y5sCpidl!an5SGV9N;U{f zU5UsBA-x*1i`E6ovcWlUkVrKt!9LT*xp0=y3HJ-TyIU5tX3+j&4L%HJp6P*=NuJ5Y zm5_PHMxd0kN7vP760PEdoqoi$WP7JdT7|5hQsC?KThmu z%~iyUOwWl=z)sYLzwm9L6N=lwfo`f9D$wmZBmE!x{X)+h;bZs+hs;7hXedA8D&yg9 zdbFo$9MPW1uI|X>d;7wlJ8v6>{#<>BzR)oH9o(VX*WWbci(-X5U?~ay-|?|Bga21p z+5Z8JFXpSYjQA1t`ahvJ<0@^ty1!TymxVckzLtliEJ@s)R@hr`;r(77jyasdehmpP z4;qc)W|L8f!uUeE>u}?a&56<^vf@R9P8Rn(xdQ&JX>+50rBg5y#wd;5{s2Qswq6_y zGF>hcgAUG4*#ybFc&sad=f&oi!71Uys0&gb93+wudtsMp<6JmX=!C*EaL7;z(T}K7 z1?x7FR9L`A$xMaau5x6&Q+yA*mp0yk0ulUqeohP<>s(3Xufu(+Erm4lN5_tQz*@q< zAU<9u16RVz{@`Tcx!jdVZ#F(B0+wnmTg!L2S8(Re>CYCG`T0X)n1PaICR)3~ z%GS|3U}&^Diut}wZ?;y+ugjFmm0qRB9dFLma@c2FraofMlxjYOX(>K@CQM6U)!q&0)F; z_F0NBspeCdZp4Srgy{xY**Z-74_)RO-t6orebdwCBs~E;j7!o9<~1&4JH_ZReC$k& z9)Xod3`TvqY)xsEwjN{Le!mMl%mzk|?G&T8@v$>8+5#(E$7t3t*=U`3QBzg;nP<+= zTp^Ln^lfPq(vWL31!oREXeKzbU}fvz=-2SuGyalXS6Q4F&Q&sE^Md$nhyu`=<^Y`z zdyJcaR+mUu2fx5G`o?Jx%=u&flE`~kD1*i!b$TOOPb0I!x zCO8+s%GSXd=4FWI!%V4DVdrjhcJ73o#bu`nFGCu3Q+zhz<7VQs5mvU2&)lIqALj#T z&Zg1Me6QO7yl76)^RU0T1RZZ)zJjJxh@QiT&V=Y$SlK#6vxkPLCtJ;wvLzLu9mX0@ zz$OWaWE$vY<^a{rrtnO_hs}g%9IR{|p7}$=7(=ZeK`meLU zPwetkC-~Qyvor{MjLT9JCir3FDM(l1gJ*(tIjn3Qq+xobeAPQ%r%clxFh}Tq*jHSH zn$RQF&8G0&hYy1TBtFXVg05xHj7Brngv>6{d6QY-4 zW$O^l8>Z2ACTX?&+MG5K?K#ePvNlynBr{n%u?cN<*m{c6uK4JgC{2Ntt)nzdKB{(P zYvQb7rmINax-K{8XesQk6!THgbPCZDeCSMw7Q@QcA=-E7d{p-&S-M_lj!-}BEiOVI zHcv&;a0*ZbA2<`BGOTPJpkek9iFdH8i#f4$y*5wYz20Qb(2cOexC}L64^hZ=iqQ@D z*qIn@fR(LdG+Z9?FzPFxtF+cnm^1Vk>@6-s&B#Ly!zn_L}w#jE|k^$I(uo3nEY>?>{_YQmCZ z-E0caDty>Xcviy7*5MguUy<;ln5Pu8>YlWV&FQ%ib{3bOChRL}*iG@d03SCKpYvg5 z>-Y?_LbNtp?9XMy;;q;hqU4`D%?a8B`-@9Z6IQH)rc;PE;zMUbbStcE9ikcf-X~iu zYR~6CZ%)p0u#>pt7~Bieu$SWUEIwW)F3-Tq)^V8`fs4G>KuI-|#v8ZE6NE%EZSs=% zZL)h&tM?P3$c)2B%tU51tZW^bh<9SnHI~C);BcrpJ_o@rlGGs8@Qq89DWbt7$;W-;tZfSS|HxwxF44T7pCG4xT z;0c&b;kg_iHWQx9VC7bYr*V#4e<8#D=J4DH`zi%^RI@2O_u|85!gCL-Y#pBW>6_+; z7d00!ylPI)X4p|&a*mDPHivAc*u0F7nTgFyuyV^|qq%Tl>ICE2)~-S#nb}q|u+d+% zFa;ko6PwAfvUP0sjL0^+3l^4|^Rfi?5I4+o3T&%DdA1o7;MX<7UP$JI5hwl_n z+Tnh4U@EYuxWE{khYuS~3sV^%G!vX6tZW^ehzz5>K;cGnU~Ygt#0AD6!$e)2umK+| z6O`*=W$U0syj*Bp9H1nZ$IMxI1a=aa6@!-x4SQ)`c^Drr6PE{JW$U=?t?yidw*)A} zylqa*7T8Z*Vm=hVe+imQp?M1*G839NU}fvjOxHtGzZpOQX3n<86Qo%}BAE%&;`qSS z&84u+#D~j-Wjd^E9hQh4H}zAtQ5PVbVouE}*jd~(W3c0f*iG?SiI1C!&k9(%)$wT@ z_*at7h35EN06Qy1d>VFBe9p(m&BW(CSlK#05fkqEuTXoz!6tKdHo~6bvSTpe4jWCu zxfLHY6P%l2W$WNX^f>jC{Ytud&K#L%VIOgkG3asX=2BRm!H3I)hsNgAn z1(*pFjho_eLL!-_*kBeFG?_v(8Xqzfnyp}E>(E3Tfe{`Y;=+Q1%(+1lGxw~++_~Wd>!t&`6e{rq&`+Gx^ybR&FjoF|dhBIE^bk6lRu~GqV`>QW^=TVK4<| z5k6ohFo(m+)`5vQJ12f~&L_1s^QDS8F=g0ITw)B)&IK%{$Q1DrGm*)|%GQyISeB_f zP(ORR!5o_nu&cP(7%a;uR#SAY$4AXX=UQ0VIywD5FzhKV zIR-DA!bVeY9>fRD1m}COvUPCwikL`giP>UK%v-RFxWpV~FpKi6rKr4tkCutbYp}9) zR3bj4UX8ehOlgQ`ZD%}*nkgibnM4_UNIlAY3e$9a_)M6l!OGTQipV?SHlU*TG^oPP zDsy&L!Y)c7@A%eIR94`lWumeSR<@2x#M=bnJl$<;7nrkhKI|hdD+X^9>gG~d&clbx zgymdV**Yu{hY*DK#8N4}U2UT|Ew{o>;?iPp2%%vw#pPyvyi8oa3@cm5CF12%@JcbI z7CmcD%rmf`xWpK|d(YKUR5vob3H^ zs{4m8vEQgsZH3Q^f2+_f{!{jH6O(>CZp(IT{wM=@WzhIBHp0v z9Pt;k3wuQTO<_jVU$}2$#vfbBcIL%L2&;n^4LUD#yl}j4dvvm({e=uH=`43t=ZP?i61m1_HrfC@%-{3Uy!{gbCh$x+o}0lk3Kj{;o$hzzR<9C3G6U!dYvI zt79ZL8S^sk(QWc2@ztABwm5jnz}QNztG|*T)Wm#Ite6KZCDAY9V`WA^4=ekFlZB?s zl}Hbhy>yslJF~r+YAx5Nv`06H!5M2p;H-#Oj3O+j5WRtqoC(ouu(EZCv>B(E?Om-0XVwnJ#c8IHz*>DSI59I$ zz*-8+bbPc-Sf;_stqMz}s)uEjIV>w-CnXL`!&(Z<3VgIoSeC)c)?t~YD^KOVTE15t zV5sPcxxk#5^I=bMiP0<#avB=dWQxss_>h^{oC_;k$7ZGun`*7xm#G(crI*=g&djZ_ zo4CwqUO;e|3E4}5xfvfX6PPc<$`QcCSO}JD$=(7_3<){KKRj+LCP(2dC>o7o50g=d zwdBpCQ(a5m=IBaJY_2VrLMvB)gMVP!U&p{PCQHd3^^t`ZD>W<0e~C-5TuJ`3D-pTA z7`bi~XAOVo^~K3D8EQi_bw}fNd{-gSjCOpS&&Ol3{B$DU3{1ht z$INw;UFFCyr?`x~2Mu#zZ8i8>XNefI;o{(8+@ac4WE$`zVgx*3Ckg!`e5B0K9}X*% zGIxk85t$2`{;EO8NVe)W6G}r=5hF8XqzwB&W9b8EF-?5l#%oBfif967glabMtXDAo^EkOS7}N%nlo}M?4U#$sT)ce zxfvfQlaVjO%GMbPY-?!LnjvmxeAb+kXJ99BInjJ|W%$`}&{)dKQ}|$+to#^Ow$6%f zWvyJwWqQi$Davv0G45SQ3yEZU*H|lSzMYhit?+R&3Hj&9BSbg95uU5+<~Iw?8JUm! zKFJmOhNYB}c6_8vO7?@5t>=;5G_zoFEkaT0NwVgEoDDmNTWb!EGq-V!q->ml50c5o zX|QsuveB=wak)7gm%+|SnvH(S#wGY5nQUAHD_dtn_ufYAkSlA;%f04=+ylFaOGvEu zHqune$zAwRnVj4KD@Sk=V}Fp`V&rW>h#?_2I&B|!xmb?E+wWpDia*8Ob>oaeY;^i# zx*MG)uE>`1ef>qc*=g)fXp67?aSSXq+3eIC99?Krjb_8sC^2GeM&XkzH$1hu5|KM$ zA~!iSf5X$xvWJQc(HuBLzQOV&aPZ2ka#ntiVUi z#9$e$><>;BpkrN$$Q;r1jZlHtNFiQ2ih1=Y?FC|JhOnFuJBXVpBA4|zusFujcIiBP zuuM+Qg_W&y5@@T#oRmu)S#@P^qd6(J!Y<;HqPg>mpH@0tb15q~$FQ<>ZuXAgCbzCH zTk6bo=6lsEgU3xVE=i+>1lI6#vC(`9fsakVW=hRg_?Vg0{Bz_{6V<_V(GF&zIWF^Y z*E8E)qYlO~mU7aL50=Tvez3Cj>=IR#`f`=t{#s6#Ub5!AoDDmQn_i5nQqXA1%^CQh zncSQPD_iF#s`IVn`o!@*^_7D;F_*zE;u2%j`FiG3RxZJZ%VgyuSlK!&QL8T%v7sv4 zr|!$V*Bq96U>|W|i9Bn~nNa)oQd;i9$IGPU4p`YbEm56IrCd~BbH8kk%1f|=xTqL) zE{?I3lNa#8GCBDbtZbc=z=oO7+Do;sm{$wXl%0)dM3aR?GBcvcD}^{Y#kH1_vOPXp zCMgqPW$UCw)t~A){ka_Z(CuP#Ru;iN;wBZN`s3S6X*nDpFO!x-U}fvHMCO$mJ&;y5 zXQc>xh|7vuUU96Yq~!6@GD+!zm93K!*Z>}`K<8%rvg^o~yf&D_ay{%ME-ad_+wzy? zs=mRLmuv9>GkLihR<_PdRA*bu7u8A7!{)3!2s?<&icx3l7)v?%9zIwmC*OgUt#cC9 zuk<@FipZhpx6Dy_1NIRY6{CK|x0llL8a`eoEw8}J)@g~#Dr@t(bCq?tnY$QIgQg3K zWTrtzS;aAyaxx7cER&PnVP)%_M0G39-dN4M=auHHtbm=wO)Ey-O5I?}%QAexOkR$K zl_PkGv4d7_!u2-f#gLFYv8Kg+6)H#J?F2O%#XE6#R{L9l&l{WSorl}5a=s^C6`vFr zAIS*rH2ggLBh&su22L1eC$QLKQp@H`xeEP?PUElIMRU;@WN5>wW<&62EQW5l-}5EhuiD)bl!E2-XdOsFz-q$73;4L1 zJp2k)Cgt%Lu0&+kX!;i6{e}R?&7>Wfj{e@hN?G01H)U62fF=uxW;Edxpc9(_P}q9f zWo?g-o{7;!SlK#8`?4^q_V+4Nxy9xbErPwpEk-MwN|7+0LUcGjcqT-Lz{=Jk+Glu( zdh;cPpt3nZMc7qbf;8XffeV?RhlJ%6pFBQtCO%!TvUPlB508(gj%_gK=X%&zTz-yk zUIubZrvP1x51k3n)v&U4fEf9QRRaZw=y(2am_H9 zrk`&P&3UkwQiR4cnnH6fK4>O1HCWj?GrLVcwoS2(o7jcQvTt0!O8DTNS z<;(bpnYerrR<@4I^dWG`Wz}VzXUutd3ic6~7tQA^VP1sE6qq05LuLZ=BUsrwFhk`R zvg|i{cjM-FD3N5`bPEp_6Ob>ha8d~Z%{4h`>19W@o5Bxrvl z11p=cFI8OnBu5$A^{CmH+9pPh%}sow<;K)^+#f}Z&56z5nYwp)Dd4D%T7Ip2pKxU4 zX2Fs3?U$QWXTmPj2EQ;_=!C*GaQaa1HiBVp&o(TrDmzvqeBfIlH?K~|tzah2X|8e% zKAOG#4ej?Umd)|J8v!+oqPa2IR$u~JYv5(6dR4T8)v+#V(}$HL0~;ADk6#+68K zf9v}>si!?t-|U$ys^6J7Ukum~u=8NIaWhd@f`A2FLT8HS;wCW}tHH|F8Cw7`MiIN! z9I=~WuW=E}C6Ac!2qo;xxJ69Dz6dK@C+rZ2u%2wCv)WV1m(&kWKVuHsQ?T>6pcRt` zO*)41_G8>ICT~B2m96u35X_sn`ngAW1w48Wvi47y2=;p% zSlK#jheE7X#o5zbXGVkDd~@8|6T_`HdE5e?p~UTnTgJ?8vtecH#9?!SYM#sq&NfHw z4A^bl%$CBOz;Ov>>@?gYCSxbV%GMdfI<{)LtETPPE;A?X64-fM(o*Qyq+=*=7vY96 zdHW2kJi>T$%BPmMd(3&e3wB-$@g^NZdAkEQjLF;Wu(EaD4u-n6T90#Sbh)VRvUtfH zw-;dFadBIde9zYK3#IK>xLr)zegP|6r%kz~K>zZjy@M{TO`c{v2i;ysBr^v+J2}7{ zS5T%V;-)Z}8V@U5XG*!UAc851)FN}F4u`$P%~@w9hm@A6LvTx&M125OwocT1R!x+P zkji>l(HyKi>@+S|oymbE9YQl!7j6)fuMSw*I$!hHd})@)t~aOaTG(Y=x>hGkm*Wn~ z*44N>$^UT>g7xo&Ltps<81w29ttKk+g2|EW?woVvtm9$EW;mzh~eHnHa7p(+W zNgY>EroM=q!er_{Vdas+6x}27lsQvBhTYW)OlkK<{0KLN$<+VB%GR0U%?jnKf29y^ zwU=@0{!iFxT(T0J6-tNDob?afASPdbgO#oG#oOQIpKs7DX|kMcu(Ea9pp2$l z?z+Srw2NT3aY0KyqeZNGeFis)$=Ii0<&njhZt?3bbH?s~-PSscMXZ6{j+?|}>^4~0 zI%CW=Fy{+i9U09+#S7+${R;LP7qKMQz@$fLrThhM5tFc=!OGSNJCgMt+wVUb+b_k5 zBIoC;Of9k@MAx;_Rg zTc?Y6;=AEZeZjoe9I~rn*Kr|B@Wi+37RuVc<7P2g`+u-<1Zy#_jFY#{d6!AWkdQY6 z?d~33kGvTu@mtA`E|=EkD%E_s6nQJzW9EE60*8ysH~&^Lad)|Isd_6}gb#dT6enBoCLf+};oGTPJE%2Z<@lPhZCkZD z{}krpmN0>y<0?m{z!bkKu57Q>c_{Fk4`#qK%~3fWcQ7*p@^=&gs019LLQ^;eH-*W{ zDp;8$zm={;dWBV41J*-TUxKR8jYXG=@fu#pcrolXZWG2o$ONGkbO)VWT!@>)#OnfB z**abe!^Q4rZ|Kmwh1?giP%P1 z**aqTGZ4$I&t;1FH93W?7tPsv9(EX)E&kzggsr+KC{)kkmN21u7FMI`bGizd^K0etj<-%zK%?%_!P!k@e)DX zfECPH>xP}kWsU#d9m!-vd56N+iCf2nFAFPMhmSL#^xdna?K*SX24SypX-j548FB~3 z>q^`lCSI4r%GUAv03)~cii~z{F5lf#%k*YzmAv{fj>OetSChwD|?UtGA(Or$gO9YK-Wj2ps4>Sb8jI#P!* zGMB%wsI31egzY)gcxE|ONF+0}VV8bUAv>R}nn4oQd zm92xel;5ijwN#{#_k=llkHNm=lD95N@`iE}Mez~bNG6I8!^+lCRK8p?RL%>nBPr~? zYtG)=u=BX=BzD&7_pGh!E7z9Uyv657S)lwAn>j!Rijk`*-Q6pGpfxKT{h&WDw)qsDpl?*DfC zOVx6vCSJN%bKSkUl6Y5@%a#=8?lfm^6YNATbIH7VAIduvzKytbO!#hvm94|~L4Nl} z;mfP+J#Wt5bFdG&?DZv??{v!I$zcAay!(Vxr1QmanoI*3nU@0P}mmYRxx3l4=Y=T zO}SM@JCz8w%SvMFHixVeb{ZG5Y$7!^=nV>27Pp28*V(YLb-0vIAV$KaUW_$pPSusL zx42Y&G%>0)cg0_ho595CGFaIxaBMV`4~Hynk(Gc=h<0Y%QCqt?$c4UcdHfbF4oJM~jQ~DeP%SXWdZc0wTQw zd|Kq)Yaho=V4}RvRgS!PD7`CUlnWNLjtShi6TEonYvzo66?ZW6;vxPyWr&f0D+nz& z;l?m&xe-<-iSLHE5;F05%#N(YH(g15xwYc$e`MDCjc}6TeMi5B{mjjJEBRT^wNg!a z)O14dFY&=M3I4gO+yePdS%*7@cqQ-)4<@_q_Ay3dTOpCmY=XZI*U3X8-~vSpiHAK?Yn^i9Z`9E{AegON6OIC*6&&ME3_<~aPecTo%Ro{h`M-Elw zE!N-6srn1-uhyU{U!qj~8MlQ=)t_Kx>r^Rwh@x`U>U=3%$)A_2C~p(qH`}-rzE?;j zGs{e}(`q<`^0gOk5R9gtoJ2uE>m%l9odEl*6|$D&3rf|8aa)*F9S190 zr;6FXca;0qi;ruohY3DqPSz)2pK-}bvVX7pgVMDgw}(mBT3FdST?g{k9y-eX;-FNi zToPrmtR%17%n`c)6esF2jO|kcL!yw z4L66$);lAQEoR2bRk}J9u-y49 zCRP6pD~}wi%AHD&^*eK_egpffHK;0gQmTH9+rp&km$0&Rs+4Whk@c{WTi2&xwbQ=F zbHW{kL^5+i{nL-yj)Z;2%~(mU z#Mk{n={gLzhe_ALu(EZ!m|3f5eP3Bct7MMW8rWf6w35tPt}`fCJ-9JUu5z%lb*`9e zr1`3D``_oy$@(npGA>z3u95ogpln@(o5N)5Dp=V%Tg;qQ?4+I656sE>KI||qSxM$B z*BO+n@8ZTVx%xJ&Y@I9SYC|zsQ5*Qbm}B*4*k4?%l3Z@jY( z;$KULFE@DJpky6~Tf-#lL$I=SvY7joOSyHmY*&rE)%k=uTT+wlJxB6jruQmGT|Js5d*+zHFtM?^>U!<(zLlC=2nU z<{CHiZ9*cMW}bhoCf;-@ZlSEb0~0a8WbN;;@`z!rmaXMGGWFxa3Tp?Lv$p@pWG(C# z%G$oTSxnaUft9VZ#@xZ>f1)KzH`$zJ&e=y{w{eSRk~_EpE}@K_ikrk_>?Bxu#4$#W zR{xthWB&@ft)&>#ov{8F+$1JrpN5sKGp2m-EwVrJibLaEu~Ia@VGi2YVc&5@~cGX^sxfmk>r3G5ap; zHZEo`$=QxQOMF@6NO*y8nn<#3bzZ zu(EZ+lrIPlN0>attjq)UYB!#E?jak=X_2!JNh27RtjOosPS8g4%wGrzi}b!PN8P%PlA5|w~0yFf56JtDZ}0h)DJ)_&DoRYpgj(|jtg3% z`_Q}vjk;TCXZ9#=7L&Cf!phcJ!!nxgczD}9<5|Evu-~|#rI67gPKo~=w~0yFUtwkI zlwm8h`orS;n{&3WkVs~>nZgQf zVYjsqWBSwO|Am{xWbA9OvUSFo-)Hdm1ZfYM|Jt0gU&4;#QkLZR8A48>v&^64Mlm`2 zDXeUrGi>K}f1K+6 z;Y;i{YE)a{^Wxts9O-_~K8D2J4T;^SI$5N!^Rl+KIiDVM#&MNU?zy{gwfN&K@n83d z_?yCvsJ~b~U9VNRR!9!a2v0nY&6RSMY;noDzFZ~WE51OHEe>8Z=#0cO@iXQ`e+rHj zm*|hM=N8?bnaaJZI^+Ey-@kP|$e+N6&xClrt6bPIB9OBqsc1SB$`=MTereBSS9fIc zy?tRkZZpT@7Tmwg&sLt+J8y zDRa!9iSbrfXYuU(LgR<~6WD9qyu-icn4NdpGa+x#&i_f=8YW$j!^+m_+IQF@)~=;$ z>;hw|MhS^z+WylMNLQX0C{1m+6-=7mX%!V$lVJazH)o^^ zcQBI?{z6B6-+z_ENWc|@mJZw)CM_R>l}Q;rE3Sl0d>*qSEAj0WPJGApX1jBt-+U10 z8-={a2qq!lgOy2w`%YX5nczH5M^=KH9!C1Z+4Z?fbXzy({l*z?Yax-$ zBxNO=rOA|F)|fnd4Gia8o9*)GdLZcreS&GiPINVr+c0*=z)y zKq#4mo59R;vtVVC=VrPR=}i!Z{gpMAm%6&tkMf);#%kD5oeq19+febBaGB{Q=m@$j zatdw;6RK6PvUR8q8LnzId|55#JM*RP%(?keXZc)ZCHGQuzAlEH$K{K^TL|SV>=TOG zg}6;j)GmOPt)r&w?bejTY-hHwmS3C8WY>0Q`pV_v{7!|lyUjVf6ZRaJGybRRxSVMm zLLu9P8^nZcBdk0UAzPqA_M$mt&%>T;A;=bVQplde4Prv}EUY||AQNBYaWff#Y=?!$ z9oZxyk<0`z!AvF{LLr-g8^nZc9IR{|GUa`Mu3Sb{$s^3!Iuv%8Hi2EUSKC%?&Oe38 zVh_~7glws!r(7vzdvk*WXEc2#Dcc6h)-~|baK-hB*z03qY7>T6QeS$ zJQ6UX$>=6?jBbQoWf3E7Ho5_~fQiutSlK#8vxm<{!igoNKYGHPqsL%haXI2|Z|A^ zp?V8ewhq;dU^QS_vzUAf(7kl#9)gx)64leWY|RQ7*vkU?O!stZW^rdBe8l zPQvdmX}8bDW-oUB$(z z`D;&(2Pj6*;ubJ5dInauj?wUo296WeMT1EP8F%CpghVnOdGi+yTo+J~#^EL~K^hG! zTL)?Wuw^d1S6^9%I@Fw~gJ7p|GZX(#H|{c2*cTM7g}5zDwC2Og*3mj*c(lCl7HW3u zE0}egW7Y{fkc%1rGYD+VBK<;<%i?x1kvkh!9>K_wrG`OscPe{&0U2=GBeG@0n-)DDY!XIz$U}W zBM&gLY`@eTuqCkHS|)?(R__<%<}d+U1S?wyZ1~sKeodeo{rb(xs=yB8lGXfojM5LZ zD3)tSW@CMCT598J_@p=$ewvN~E8v_00ui5VYwmDf_V2^RhYW{}6fFmeW zZ{db8p?U*W9zjsi_t9DeOsD|HcQ~!Z#-fEv> zPSq;dW!zNN{LMB&PtaVo61Rkj)e2bII#vgA-#`ZTgDV}@h30Tw06UHgS4UDSr2&6X z#Lmati?ZP z4%oA>-&zJR-CF!JxH(L~o`RJ}9$;iGe!`)~ZT&bQkxW~kcm~t0#gE3#VFI=ltZW^y z;qR~YTUw_kL~N)($Q-eSu;;irtogS-Y8*n#ifvUSMVYh9Y{^_}K$WnqtT z;Yw^-Lch!YY}^ngRA<1-)}dlAOXxP+UujO&<*>`RR3)}75wYj~GTag-R+qra*0Ey0 zoUWAA6CC%MLv=6gFfLSyy_^<)pylr#+zuvEcfrcmkz$v>YK^>|-fYg)%dp3|OeI$S z97j;7UcwDwLiGZyY#plM&njwY+VwEw$>0(+jE}_0 z@637M3X36O@e9H#&G}L;TRE!Oom*YWMt)H9M01*tha<+#jllUf*Vs(fvsNt@k)H6; zxxew%_~p1QOs&t?JShV+c@Q|B77sGtC$xLJ5x0qn z*bT6^(LLoLY|?xJ%(Gx#O)DS z**b3ArlP&0Tv9(|vGw7`>FizDV_eFB)%|$s%y9^X>uua1CR|%!W$SP);O4TKOiFu_PGfbaP{`)sMlm6q1uI*JOkI|ZESQ~Tm9I0+`8pkT7&n0d zyTsxpFyRl1)+x9>Ote`vHwT+aHEE|IEpD0G`}G-vI3*lAqW5?{XXeL@j?4!4Pk*t4**b;Q)$!y>z}9+B5_l}x$PDgJM7xi?2v z%XT=zczQWWNF>w!SCdX{8vjuACgAol(HjRVTSxCOZb{9T^0j=nm_IL^^RuJ11%Ih<7M<2jSK+v0Df$TgQ&Qg0`koR`&%J%t`BpJ;o(1@f9@3Ar!7o z+#n`gSyxFMUyHfUoVG#Ogkb(!3{K4s4EfH`yb!+zs3S4f_@x?3n{_u*zSLAw`L zwhkKmO+jzDGnb(&xv!gJ_A2Z(E@p|pDX2SzLbe$T)V@k+N)&{pAQF+p1iD~~wP#C{tktzB#m+J&&+S`9Se77E%0xLHil z&WDw)gLV{HM1@C(+F^O8Idz+0CvvGfH>F~#`iLU95x0?v;H|K-bp+Wx|A>^PNEPl#EoP^I3HHF4k5Z? zr`eg=ZO&aM>^LrWX|34lH)v*YyO^k*4J%tm?L%O`)9yl4a^9dhdso7qflI~2QnaqF1a-2*FI#}0jK z5wYXxRdeVz!_MPEm)2X0x^F0QFXOf`k$VYNwvHV8_;mfZT;IE>l-j9B8P9Te6%xtJ zauYv3tvZK7Hw8D23EgB^**bLW!#E+o)_>6oc}va7TLQa~o9z-mjHC4s#cwfgArrqv zu=0q*FTABu!LQ#OzY6TaR>LpsA&Oraw~&cn5mvU2AKK+PhY`DqdG$cpjppFp06UKh zURqsV-8U4u4Y+MghFMN`I*%TNC%Oir=K0*wT!=%S1V_{B&Z-bXR+}-cb1SyW}chY+gy#CD2Ow0GnpVxhn1~^$i9ra zUSM?B>6~KD-YVF2-1L|DWz-?hP~2AHmN9W#0V`X_jeQG1y?<7++=b?(T>yKHOIqT$ z0MwmAAv+&8iV4|yu(EZ?)bE-`9_JZiHnGVZw2iRmxS$o2enT5{42A7h+%P6=H^a)- zVPhB2P znK2~3V50F4MQ=229}~T;U}fv*9l+fPrM+_VAamLl!an1sxUR$tsyl6>fX&BEVgl9< zD@Onp<70yIdxYNC<6=ly{2t+Sh4XT?nyW^Bh_KI`>s~liT&`F0xpu8oZ#t!>`;f>l z4;JvjGYRf?m0RJ2{rcv(l|4_Zp^ z$L(Pvb|0*49WnJg5YdRODP}tJYZbiSG{@_8*lAq6fUoOS!L>Y8zkaq8MrNF+1u{8;mgqMyorXHdAN;>IxH+7(u|4wrhqVF^v@Pz*oA!+!po;MeRo1 zCMIe(z{=K9;}_Cuxy#vHRO!xZ3+dD5uss30j|*FJg;ezl#qBZNDkg4^z{=KfQ$Nv5 zGh5_R#@0)W=L7G;4&wrLM$_j5(hn4=w{bg|NNs_Yts^yO*hN?E(#1S;oaPFNWTuy= zHXWy^C5t(@4NR0~!OGTA8h-s=-)Nm_&eG|yx45b4w5GEZxkPaaZUhsiRj{&knAC5~ z&{C&P!j;9e&S!fvyNm+B4L zRc*qpVdAwBR<@4U@GpkK(`*H<7tP^%9(EcRuI9fO3j2bh^&D;s6Rl@qW$S1SUl`R% zwF1`;A2OZ^P7)HywC>F>jH)*%UK4O@n0SqYl_T(qv9(L?4)b>S#E`JKJ8V{XTDl@z z%J=mb#m9KdrN}*E$C-ouAvj>%ta&E8>7`x$Cvj2cR$W2a_B$HEPTUp3GvI zhDEQhza~B>RW5aBvg`8dHpWNI+4~{vLN0s!BPg*_o&VDe`-j5!5N;n6z6W4s>+mT% zXNQHamR*xm(%s+9k^3v`I4*Mh_n9WhIbNZly@^}J1nqTL**a*->+|73tK@q#=jAHp zdWO4ZtG2D$oPW+AEPQ@iTU%kDV~xw~-a;ao$u0j@EF|IIU92cjnYfu|91M-6vtUaiQaHQ;P$g^a+LRxt88m?nQBK?z5DOK%u)Lq>^v@N{QDE)p%(TG1@5c3WlZ31f|acU$IfcCVlG>) zW#+3{?dRsG{SPk7=+2It- zYEQN=S6>CGFMg~xM=b+8k6Sd8?ax%t(5!YQZW$A}(_v-nz;Rc2JIclW-jZ`qLdP0q zh4%_`*al$7abZh#g*WIG3fiT(RZP$>hLx>@rd*^JIr9{YYU0-KOjo7co2ll+GFz!b zU0wT@IdI>E9moZa|1GsRvrnCOD0p|{)-l1m6IQkk-aO{wZfCWxn6D|h?f2%W{T6l^ z7d8I9FL6-w{6XP*5x0j4*YmLQ2!cyfICnnIc-HwIA(70iGikUSe^9t~!0lneH3?Q8 zF>vM9^<_)yZ1ZSyxIPHGtTi&1=MM_k5x6}}xDJJtt;3~U+8x=Ch4yMG)v?cI2e zP1t3v16RLhwf}Y89wuC`!phd+Qf_gH?!n4M6|KFO8P6SO2#I9oj{LKGaTX@Jgg0o` z+7q{i3D#6t**aLtouQFn_2jZ^^Hs5zOsR?|n$vYW>@{xUO7=)p!zC24<+w>q#FoO! z))C`&T|K&G)lZu9^>Nr`T)vX+x;%eSxYptJFyZQll}8X}?*O=wT{ruKKBAI?Z*^aB>5{lTnFbD%o#NLLLts|yfB^24z_mAVKa`MMN#9G9)LmNt>T)@=HrJsL_f2!+?uI?cB`(=pTD0z==-r8%$3$-vtZW@U<*U?@y;i>1FT$?lGPfqt4lV2#3fuFzT};@XgO#nrhUPhu-7>Xu#!Gifo_o)Sjpv;^ z2#I9oo$2Jckb5Y4lW_Bx=uLo?t)s`zb3@%i^+9vyj(}a)B6%+47Yf^19Y#psbnM)n+ox!!9O0L=? zW~KR3w^BYoXO7u*u=lu_l@i5_xP~G(h?~Yl?n+pBj#Z6-( zw**$Uj@$>i(+BUTtlmkYl-G}&gSQU$As4(_vXcnCgJ_ZM#|>oSSAmtS<99fQU+|U^ z1--ADqjwYRKQ4NGX`mN$4#n<9+&Ct7H^9o)u{#FEZrGb#o;Jtt3D}QZ{MMy|A9WJN z@G;y-CWeo|%GNRDo?Q1o_@KSlW$WXOrx)+Sp5ua-?8)_zTPSL8<7P2Y+X5?(Jk&JD z5$2hrHdja_Gm}jTHT|iCIk;I&)MmlTBMmj}oiAsaqjoy%xt7XmQCGj5f}6!eZ56C+ z9X0Mte7{oYujRPZoVAN#*Kt`(cC%90FSLYSh}*@4?E+ZYI&5IKroE)&ZgbY|ggwV) zEtL`)byvqG+$<()8)4;xMnYr7e|iE$WVsPTVXeYFSu$i&?UlGc;U63+H{fNle7< zg_W%%26k$VJ1>+@?R9g~UWJ{GC8+-BS|CU7sq%GQB97@L9CufR}v+jFJy zEOe@nNM;sVOk);WcMQdCSKKfrZc|`o>$q{hvLEM5{$prB&SlK#= z+}q;(AGz-Chq)&jPip4~iDV|V$=((h^a=%S7H$<2w3)E7b+pePwpQ-TsNa3R(;T@?u;aMMrBY^HuTao7;#M(1yA@Wp4jQ0D~~+XG@F+WHAn3r*mEtF)z*sXs_rZB3vsiUsLh9!t)s^MNTk#MDs$3q zbHX}dhj9r@_9KywH)sya;?^+1IvZBD4i`K^oT*i{!L83T@;&wT1 z7!$Y4U}fvLac}e0O*QW~hwMJsV_e9Rz0Egbj(IO`4il|=U}fuQaW^N`D*4{bdAUlt zswA;j&H364yN%0NvYV5nPiX#n8MlcE*-Nmpb;!6Myw$E?OkHI>t=v^eBr~l{_Jg-k zOBYjcdzf%dhLx?ubr|zqKz}KJPJb@bQ7%<;9sRZZTD9e0Y7W{G*nQkgR!;Oi0QC*c zXp3>%n9wbPm90a^&1l+%vVL>WDzMAApe38pqE^VtxIIj`im>tsf=jbBcB465H^44y z6}a?kVjFOKm~dSWD@VYUD{Pq7)^`5j?7|64+S<+ob)NnsG_itU#1Y6@nXM*#t3r=Cjh@boH^is#1VQ^^AWLI}&^1XdwFcz4DF%S3d zHu=*3$K9C+$Wc}Mf7rqz$Sz0-1OhP;n2-dBY_cV?ge4HeB1=>0?wP4cPxsJE7BsR6 zf(*zqfIx%?f+&I@NCZ(7*#$umMGyo*5J3 zujhR0)90SM)U9&1m{*XVIWVS}?Wz>r!QS;$u^m{$$)|e?>aY5;g9Aq<3r4^Kg2=Xb z5==xU!^)(#O!Oq$$CCEhZt@H3obQy=J*n!iQCs#(sYpxn9emh+ap=c-4D1(oa5^es zoO~DPSalSh1(T=4Vdas}Q+KgY={NB-Am`~U*e_c=`7ThN&cL%^@^l)kY@H`{%?nJ(W9O4lHs43n<&VP)%d zY3~Dt)~=?xkOtTTa=`9|o#O(=-+QjE$PK$b-dQhSO@2_u?#AR?6v3KQ&y$u`3MT~#q6hbU$2PN!HJRK%sufxithp@mzNh55F!^IQE&6GrICXB5j zEMNyEY%HD*ldz3p<D@z0L5q(JOd_1E5gdwG1AU$8R}BTExPHRT(+#S^f@_8 zJHme1t4l*RP@tyaX)uAB0xMewYSOTEsoUx6(+g8p4%2+tD=tijCtjF53n)k_JOw65 z$H2UJeG_(zixU5MGIMg)SvP^gG=L|;gy}3;**Z+xX0>6M zYi!Vlbm6~{Q}r|0HZE2CTWq*g>26TG?!dEQ;?(XhaKaR z#XnpMlVxhnU%?Y$LiG}?Y#l0g%^GS=wUO}CM~Y{ApHdR7neDZ#W(~PPYu5UBHcY(M zft9V}rJaZm9}-Rd`WNJA?E_oJEn3GW-mlk(!;rRpPdpPQR=dN>*0Gv8?EJ58rn!4B z$-(M}P2+-a_TqhTp|gV50mTPkAJ48fw?18l4GjnFaR^{~(9t zceumMeMA0fXb6&k6$F>x;>j>^`3r7O+QG46=H^(c}xA8~hihVt~op|G~=EdDEtz<~r77s0P~ha?rMG z8EBanf!1UQCG4|!LQKLw11pCR7NZgKd%4;$97DolFE>svtmV)y&XptG1wSWl7stOu zsgx~~{;fG_G8Curu$kZJy5eMGq=JYe<^Y&5s99mdDF zmZo0Z49OFS@5jSuLVS;>99rPoc-hxB!$J}GnFp)fdvZM9!Tn`cIsX1siHk?T1_H`k z+(a%~sbhtX>Obnn$J$+!+}Xk#-2aIoWm5KD^Ca3gcxrD`&ZR%OPB*_WTP&y4RfBz% zvQu`+sf`I=5*MNIN}@G0(`@oZ$lwT_F^t1AV%DWiU}fu+F$!2NySVx@*XE*g>%C4JJ?f!phcp+I{!|vA%LNZ1GwuC+tMnKrUhY&kykl3pIu^ zw+K&+$y^y$w$9u%Hgo1ucD)?5>tNTopz%+1z@UXzv}^Eem~>qQD~He(WA5lrKWp=c z7!nrO)V9_jul9STvYU2tp=)a|$+><3eqLOzfg##YRiB3Xf74__of&_Z^f^2YCeY7# z$|GSas+~NVYxX8E4+~C5*E(7}QCLGsv}U3J>@4_6^H2%cL7-U`PlyT4%CIu2f-86u z_GY8L(ZOF{XR6-Aq$}!e6n&p`7ZtN`No)q}9Je0vzbfygSS!6;$eLWC-P{g%R!q{S z!pftOG*^FHrCUx~26k?wk>=(pX%3zhleFVt<q~8S%Ne^1_KeFI|4ux7+-&$k>ADlohe_A%u<~f3 zD_tlS(}ir8wvhX#oUYel&qe}W4L>Mduj2VI>3SJfwoaG6LlDyWrwa=;u*M!EZud7< z60Mn29>?E&@)KsZ`^pN+)P{H}Os3X@m8~vb0z5=K8BZs42egOc?go(+?%cVK1fWHI*~t80W=g4X0? z#q-07N}@IML;fx4__9{r4$9U9JRK%m<6&j%Y%%*S&rCz%I$TcIT-Y>j;c8{SHDn0o zYYv_eldpqdW$Sz~`>m>-WTtqU9IlgL$GC8{vfrw?LCIQ*XTv1xL|EB6S^QD4zgWm< ztEM;0(Yg_~jEh!_N5!fgl&$OWbeL>i2P<1=i@B3{LdD6K-JJe)+~?$QJp+5jg{zf2 zi48v}T~FcpFzI>{R<=&p4BkF<{Ww!&dseGpYaA!;>sM70t?BD~Te$C|*+N-c8BdGJ z+6u7pC}XX$S*x)&L(bX`uyx#m)&|xZwoull;%PBi>x7l9v!=fx60&w*{{hpj?2H^U z2X>8%8SoyZpEq;%<2ynLI}Xo?N!Zb_vUS2f2aTLVdm>snJ73P(xv+O!&VZYw;&L|R z3#ILBJTE3~XTr+XY16)fI@kBRX)m(=>osl}-6couPS`juYCWy*(!zF*ZpV{ia&{Z6 zJjysTZXmrb=j>J3xDmuz*gn$Bcv4KxUWApcbEe;Q5na!`6>hSfv~fy2?c7jFv}W4b z%D0Q^Rle>D9XZ#-vtp9AHmq!&G^|haJT+`C&62aWH|!m^sI{R_8}fzHwg;XUleXPp zW$U!TbSusg-VP)&2VJo+d<#28Kd8Hh+Ww3Qz)Y`C` z*06 z_=SvYJOVZlP(H*HVS@4jtW2uido|WRbwEeQR5U|dH>&+^_2)gS8m#!bWi zVvDf9m_0s3>SCohpv@ReL>2n0cP~1*RCl(V%I30tS@I6=6gghoDv8$2PP^I5ZG5~; zp3rf1GM*EYw282?b<*}|-a{~vR-fye%+-3iW8}ac1zX4+?(!`FF2Wkh-Qjp@Oz!5w z$|2mvXvX}0t~MaYkkI?N7!rOI|J|fov0_O0QT(4L;q)$3rMOz_51Hi^`9o`e%&q+~ zul7gnO5nPk)hH_SduOiN(Gl90gkGOCDaI(`4Hm1`f3!`V=XLN;(fB(W*e6p+m!@Q# zvXe^ZoKh*P{R^j9be2qU7cS`x{%1P9f4j3@xd#W&M>4{WNy?^l9%3 zKkY!4bb9nSKPAaM^WpFL{VHJi9$8Q7p~IQX805P6sjMnD5|y;3epvP2u-_!#0o!JL-o4*bI!%vgU@tl{8lSATTprA|9<4tET8>A{EQhyx%AwD` zjZL%mwdH^xfwnT(Jinqs7dFo?;l3K1XG+0rF$ICF2@fyeaWi>%4pt_^<1?N_Xw^u( znf`2O(HOe>xm-x8H3+SdT7SNnpLLW(68$yhXHEkA)R!M?$`}b3kM7JHyHPnbF@2b7?h|Ztp0T4K{KJrz{=L4(Y~b;tUt;>W8Jw-&dnvTQCw~k=zoUtruAkJkDH0k z`LJ>bIx%L|{=~f2mB*0qmj`Z++sOG*)aHevD9)2ap_T_OYV-2IT>qGV)AGQ}@Ndod zLmAk2nB{@U{W7l)seR>R*gdls<8tgT3q0>hgiZ}Z8~ovd1T%flYfYH4vZzlxGb zqM3hJ`PRH7urnP*Yx`z_CmPs03+7m_F8)%$ig=XF()V%n^KRo(z~;v19heXYmjR~9 zpZpZuQ{yrKee(One)55A2?N{W@iG~h3@el2Z=xp=S{)Lf{)fP#KKEpJb0MXI6RsH@ z16yPq3VJClhLuBRndq!%OFN~b@MxK+91bg6M`bf}T~X$hD*ENf19DQ%f*s5!4a$JJ;QKs7y#Qu(EYXLh4AVtl#N-nVgYJV0*ZX2>KC~DIIDC@kp77oDVCH zSVYJS_yIX0_rmtH1CdG}MdWTgQYIpI!O9~Qk%dlCJ3{lW9FezSd)k1A%9JAVCLSph zk=J465JY0^)%n|fwe|lP68@&+hjDkE{3vR>PNFEDl|-R79hZ)2@0sMi(&|)^I$5Nj zN!}xi&IgS@4cVrn69}$pSIck~c{dd>Hv6n|>~A{m>`9EUO~wAz>B~(TyWEIK!q*b zM>-4l)VS$LpM2=1vxGO%Q{K|YuLEF%naKu7{0Rj z2~%L!!UJXkvj(he9heCrz!bVur9xMkZbI%UCuVopCN43v1jP6mQ)G6*BW5Bq16H<< zOi16-M@OSRIV-)eKU`J>eM>b}3Q0E}Die|ntUOX7F$_VM$sxG}_NNVyR8ysp4C0|O zAvqsbwhl?)*k!P}ExFx&1y|o~dO*&}y|6`GPC}1e4&SQOv!$rqjYrEw#(wQRK}ZI+G;!7pR1I#8S@t1;u+9pN}@G0puOYw zvyF5qEMxI-nXqgOD~G@mW9!D>{i!Vn$B^)s0uPTn^Y^2uZ9<5m*hvzF+Jm~dy)VA4 zx^Gt9N#o?2UV6*HKQCh)m0c3qT@S2jbHlLr^U`Zt4HVWH=Tt?$1HPac*>#AxQ+Ww zfumY=9|F5C!M&zCRLIgD1l&*KUK4%Vp_fF4KJ7r3AUe~$w@f_Hi}D1=zEIc<%Hx*kvR>Imx;{D zu<}So#?70NSuRKBR@kUEATyLNMdoHaUM4a(!phc>F-(pdzq(4l`ZBmaIetmb%L}ke zTwY>Kj+>LEusnwc%Y@|_SlK!(hMvVOrM%NV+HT-F3&hi(wUk6_8rv8>OCwDR$QpQ< zOh8tJm8}C}nEfc{)Cc~IknAppWEa>YZY_y1`w6B>L79Pv$^>NxSlK!#hJE9@d+Ek! zc(sbsD~F{U_K6EijD2H0T?$MF50?py11nnxCUB!dW4f#ytbKjWSX?fV^D+qA#N{RQ z#ny(O}SE3X5q0iQP~?-wvLLap43q3FD%mLI*a9;RA7g=oW!XoLy1yIig=(* zND8pBbx5|QZL9tsSgN)xt8WrsD@W#P*e@ z4fV0^E;pyI<3Aziw_K9aala)kkW;`+WcN%F@Kqlg0G69(Y zD_aM|Z~#&{r>2WJ@&THo#J z`n*<0&X7}b8tf65k{AnY!BiW;W6?Y$#z%z*`UeMYJ2inzz&UzYJ_F>pYpkSoNLQ#=VKh$gFy=d&;2? zyNy@IZDz6}aGzT6*0{~`;@)|zl1QR=rjOmQGtGMJfm{gy8{^S30oV{$Cd1x(o1I;YQhM1|1TI>kV}*|DKgSLZFwxo@{GT|s5vAYDv>UB$BhiXtYO$QD3hWn`se`0UHD%s- zO#b*(#3N@iRDhL7czG)IJH=8qvOHZYN9k(VHZDry@?0F$U?u(EZcwlP*E z#z6OkoTSHKySOAB7`G^y5~l<`f(Ond=pk6yIzd|*32Lh9+OpEea&$g~ed3~H_?#B6 z#cs-&GV=i*F_W41U}fvfn5&Mdd~4`zTM)O`la)kkW@oXhjwx|U&_q0NCP5Qm(!ba~SIw`(hwUT970UxwAma$JV})yWe)iO>bB&{c@!S0~r^Pa0Jp z&KK3QXC#+l#&L3!Q_as6qLgMR^fwLbzCQhm9tJWdCts)ar@+RyLw=#sDPK~CdmMHCr zUdIDvBJwJ%Y#ot_hB2daezD+W(#pTuTX_1p)Xn2j!EF8yN^l6(5_r7XXI+w z9xfxH2N9zg@$#gAT#3iY1Y{YkJTd|4a`RpKc=LoDkjG$qS`3JnCk5mYJWeJc55dYK z6A;$`$j5R(K7{RQF(6)^6p#<_IGKRF2P<0#Byi`5Kg6hG%<~I{T*@@mY5N^!&Oo*lmS^y2nXo(sD~G@mDZ*>clihi!`J+`#y=7}$51!wy47$>@QHp}*=Z zsoq|G2}}o|SW z%AwD=jRzgZl4l&){0|;;Sgb-8ZeUk%KaIy6=+ic=2oLkL16h*iUc}>MKKBBwTo2A4 zSaP03Xzfk>h{Hq!AobUdDtY$=^^Ure%V`bKwJJs-D_6r#aVvvif<7!OBw<=CuEYao zLbD83whqnYVWCMEDtYpy$tUF8JO-P^YQNul_@+HUTN+G=1734c{+@3_6XA4P55Sro;Vk|@-6!#ZQyy4~=JSvl{6u#4PM z^E;N?l+pQs@y9W6ND|u)*+7s@Yuu*o2NgIr3#s!Q*naRNLYJmP7arqm`b2L(e7boA z4SQGz!w;*Tb6^_+w$1pwdv{SfO^;~6u>0x{oPj5+ZAS!itw$T!mcXNBmcv<|a_F;f z?v&}Sc5xNq8?P@xN#oGZAm=Isfk(@eqasO29P1%a#y4@Ep~CJzNzxgMN9Fy%an z(5jL6cEx8Rz^Sj|JM;DRpKDc+LU^u*t>TuD$eX;F@c5b23I3IM+ zUC{Y?Le9@)uvc7u4o;x>H26`eQ-B`9LuUf?5Ugw+AZ-OYFpv-J206;b9&M%QV>v+| z!e(&^IwV=s=l=vB!@8L*Iwu1p)&!R11nnxh%x60K>Z6Gq4| zjID~t&O~TsSlK#4Q-)s+n(vmY+eayfeBXQ*IY={L%eb{@UUF0VfCIE5?SN;%#Azz5 zY#pa*e4M;v6Z*wX-EyKbuxnhRj!d4Ynh6vt2Ty_t)p4-0b*OgYLzT;Rl~bi2w@U|W zP!87luyb6nj!7OY-v|oVxp*Q>xXy-^t-}?*Ej_fF-6;QsqSlMwEr;qZ*fB0tk>51I zHr0FsC`@hoT}Gh>$p@Mn|!GXI6?7x70-l;*UPZ7 zb-aLPeK9FkV;6~MeH$x@*39}^(5x#5C{7#V88C5L4_3C06JrT8optp$U-y%9Gz<2M zTb>eJ!mOrF0oof6oe9t$u(EZ47~8n?BuPciPZ73?%TI#axW#~IzF8G zL(h?1E$8P-*efnSN!A~gI;}s;@X(n6T?#8(2T1#vm+2%@Cfhx&=;%jD9+NZl2y7RZ zp+l2vvFq7Wj2^;p`4-*V7Isw%}J0VFL?^ldwB3n zh~9yftwY4v&dr`sarAC_@?!CDu}fQn zJX{XYT-YjZ5lXO~R+&?L=HQVt@i_=q9u@d3?$_`+O^(mWuvIqjS=>+YS&B!_#OFj< z**ZR)0c>%9-&75to8aED?9pt15}sbkm0?HzNyLK!I8rPk{;4 z3b3+upcrdJ-Nmd^&gz@{GvqAo0Ncf_N(rtJ)w8DUV$=yMTgPbX@O7zfWXd$n z&&XkNVAHrT9g$pNYVv?0bsU}p6RD$NW$Q?7J3LZuNqw-*E$a)9=gVn27xs%w(_zWc z)JUI#bT%G76Qna?W$Pd@W^S%}qf1{ox=T*cov>M4iV~c;dAU=BZpUM1B6J(9JUS4{ zlh@f^mm~BlY?c*-RPGd^m+{z{2)zg^TSthoi{_S8r>*aRYbDZpNF`AP6ZQ8jf6P!12B36KjbTL*~oHb~V);~f7=IY!H1$G8|J_%?`d z0EOvNJOL(57sJZdVd4yCg>G#ydqhsrL$Fm`ijo}63f&Z+`|-$`_}l|4TgQhntlq_L{497yo z7rOOZYUaubnge^qEka4Q)GBpagAT$&X99EptZW^i?S|jxP^H|- zWU}ON+R1W?mcoW{DVm$yKF3i06r~gK_?ajzf|aeK#CZQzS?Q*ooZ+&X8|5%v4_n5C zDZ%$&0}fD}uER56;&ctHJeqLI7xW87o{{796l|GAoRk9;rzi0Ym^eKSD_h5jvvyRk zPUHyWs$UUz+$$@I)^yxSt{n{-Kw(+|Pk;&2N23oWV5p;4J?tQ-X)69Om|qHM!BA(s z>Y)?QfQi#Ku(I{q#5e`n=PY*nD*E1ocm*6SLdiJy`9gRoN#OO#^c~oGe z4y;j(&Xr?yHf)y-jB43ajLyWPXJT|ZtZW@4#>vONO0Mko=ay)T+jq)2x*hh5%TaNgY#k-W;MQL#xrUmwx16LsV81NX zq(=G_q}}lFnIP>9D_aMNaeSn|ut;l=3UY>WuvJ`!5SC;E>WU~0p=EM}E`{ylB9!2izn(qC=wdv2CPo*+%GNPrtZEmtX}7;vP}^=ANe{_M zx*v9oOHzWX+P(o4rhD)Nm@xekR<;fkqs=a6`y4l)A+KYlCH@}fS1!)^Rd?rYfU}ftdG1_VR zMfKz43>^(y#U0HOY^RMMR6i1roQcmoSlK#0jCNX?sDBLmY&kz?!d`LtNwA%+rcUe6 z>3HZ&fKG*#tpmhZQdFZ@|B2d!{&qP*x4~v{2}*ED(aW78bPFCk6QP@6<|$V_0;u(EYvwulBspKx6&C+1?~;6{eaqMdl4WW+pPP!OGT=iRxnLnT+wLh-XdXltgQ0O-Xby#={t!;2|@C z*$7s)4op;yQSRwo%t3Nu4uDN+XN{@mOl!=(c+5;>X2QzWk%_7?bffA-IWdc1kGRAn zQDcldRAoG5CNL+!%GQC2sxitv{Sw9NB#8A z(vxyz9*0e8Gctx@=}|mpCNdAh%GQyII7TtwEiZCQS;Os!E1W9sfIot*;)0XFF^WLu zwBq~+kDQ6m`>?Wgd?L;SHcWK$3$x@{X{Vf^ZInc7=1>Wo32aWDLNo~vo(a*`u(EZC zBHkKp_?XLfl~bi2w@W`2c(fd(BVot5r6_^7MyUZ5rg?Y*OqdRXm94`xF?@re;U&3H z^Gpz;i#j@1=&1g4Y~x|PxZ+A3y_b*c=;%Eiwv0>Df%5GJ-+@NpcMk=ADjqnKqLW}{ z>l8)YsM+wa=yvy*Ytn5h-_m@icbVd0>ENW^LuOS;={>ae$K2W<^J;$_;r&t1*Qe+f z*fK6f3EZe@aDd`;6P^JRryF2p>o_sGYjc>0~iZvpOC!6PPiuvUOl0w#@0NoZaNS>Z)-RSbb0KUKmzn+L6RUdG6r1z#sF~QD11np{X3Gd{+=XsNKbv!p zoSI+4E^(>ZF9B-2q$xB%$Ae}<^HW&aIy4dcpjq|0x!(Q0C1>Uh*d#793G9P|CY~;Bq9j@~T}q(+RT)!UHo_xj;<5p(Jfd+SpBX$r zj?2EVMcn$51TKpWA32?gN6f@!FId?+E)laO^;Js!T+SjnFJ;&xE-wkpmZ~Y!`f>su zG833QtZW^as19avf8SJXK)Oaw%vG>STw;>wV5&J&WUjztW+HPrtUQvD>B<$z2Ik{( zWFCc0Y9lgU&J>x4@tB#&JP0dWM<(J%6VE>LE8ri=$@vfL6_=a@ZZrv|P62u!51k3n zzhPzT07djQU47(c(rr!`Pn#wwiPlV;66kBHDN|s!#zSTTvn8x-9hit|c6VA|0X|aB z%RJa3ZlOtF-lQ_7xEzK@%*5poSlK!*5t|0x#jH~%xA>nfN9I)6CN44wY#P+Frr4Z> zN6p0ME3mS4Y$7h&svBth(%LO@cy5Bt;=+@_MO#g|Q-p57V`n1teOTE#LJ^&f+vn(? zG%GSY&Sn6}tOVaw@)6Q~gc7jdfmYM{X`n;SeGSl&xnaFGp zE01hs@{ayRkS;kgY1pK;BBOGq$Q+Ny%tYo`SlK!<5$9;!lA22CXCf|?Gjks75|^0- z&e7D8rqG;&2hD`$8?dr?@~cCTtP6*d#GH6%6Y$d*Kl?arr!~ zY#o<~X?CvAJ#~Ann<>kIIRQ3_3rqsjY%gb8Ve)v)Ok@_o$|D__ehrzc6cnF-8&u(EYvwhrGm zP$k;QWYl3*z$yo*L-r6=%|!;@Q*I zN@C>Bo`w>q@N9_(&V*-kSlK!}5!Z{T-=CXya)wL%=E>?Nm8FC&5-(z(-|H@%aiKITN2Hu(EZ0qK7W8`j8hEZj#e;1MC!+ zo+K9j>Sec3r0{$n51a|lcVT7g@GyohdNbCua(bSIt>V&?;Lv5f8S4*ttDhzAna3!J*7VE?oGGqnO{>mIc+^a6I$-4yjg30pN3q#Sj?Hw~ zCT_(^0-IXa6r1hwsF~Po2P<30CgNCVUnN&|`*TaQ<(;&go8w`hxZEUgEVPj}1?N~i zY$iBgf|ad<6VW28({8D9A(ba1)p>Gs&VilcqLV<2>?cm)`34?16P~Zb%GTkDs5<#< zw^Mc(>W9&PE=T95uuoic5~wP^J7@qIye#A5o%S#cp&FBIXQoWjpCA% zz;?t?-V~j`;&C(4`3tOU9i51p(_bjLhMKd{H^dXG4U|M{CRPd5oJQIdoOSWAnc#d9 zR<;gK#6hn9!Xm9Zo+)Q$FW4e(wMpP0m&%yp@_9UBCN8_e%GPm-Sie!1$WBw&s%prb zAV($-+r&jCfr)rMYl_VRJZdI3J+QKMY$8tP7+!z5Le9+Put!{G5;&PtO_>7oEj(l< zFc-nf)`5wbfETlAx4&3Wo8(%ld039kgRoOvY!aA&`-xL{?!yCT!t*Ow**ZKC^QdCB z&vEk^a&^i3a(4a=8^vWOfqB$W-V~jG;c+w3`6sMw9i51S>cv7OuV0e1_1WS{)Rs!3 zHIt|W4yt=OQ)D*BV`d_=DXeTAnTXz|Nl zTwW5XFL}eqe!h!`%mn5;u=0oo<^=L(=cnbs`~mi;oxrG+X@&V69x@Y{-@?k)fr+@D zq@=#sQq;FA#|((O-j$R@Yr5V9t|zG_O`++)gJweW-_Zw6#P!vsvfAWMt5+Dhb2>WH z<>+jWKZVuYyt=J4uU6g892ir~c2$b*VDB#Fl{yC2aPsM%g8Hkz?BGBG*H;HqrvPn- zht34(v#_%DsuOXNxbC9i>m0|+`8gK0iaS~*aFRHXImPEoc;rlcj)0X%0X~LH(9ejy~wv=V(1kDrOsCt&4KfRcY~TU%M)OODd#VZ*rfC^?k;{3%Mi z;_)+4`W&om9i`z1HN#Pzyd0thuvJ`$k{i^_Cw6-9$eH+LVP)(1M4Uh_RpytAPFlZ_ z;Bq-T--3POvXj6G?HHSlK!_5!<0E#fkhz;>w0nBwv) zJYps;zkrpk;}WqQs?5{3L;o%3^Uv>GE=>$ZU$o%tYqXu=2=8rjk!<$Q&X^=0MmaZjng@8I?0d zW`8_pCNf`um8~Nau^n12D*Mb|^ZkmPoF%YVTyhfF4h^PG0a}QM&IG6gD~AA-?Oism zqhsmdq~1ejb#xp%*n4R0kGZu!=GFc=b@X1Y{#(7X)DClHehi7Nh9vg( zBpgW;Tg#)^QW8aFe(#^gC^yzUprd2*DT7rnFHr9EEbqNg{h=)VRLEaU>fJQtZ+f=~ z`-_W}i42GRvUd&+>39ZB$DXGDGb}NV5sFqAOE^| zT+GM+Nm$wX<6qOO38tG-X37cJ3-*Is4m!C6o~0C6uV32Vc`ln3YWu%a8a1TK_QSE#o$|bY)lL; zf|adfuuj9OS`F12goouMJP3QjC1DyuLf8;-A08ePhF`(T)?wIi2nN55YDBy*C*t3* zFp97N}@HBhtG0I2%9@>j)%p3_?yDY z)*t>SluO33;V}90KLoaeTM4#fKL4;`;XphxCIb7z%GMEBr;31IEwvHhBsm9Pfj!}J z!0Hj2)1!mI5}wI$3L68<{+U2)gMs!^yF>|5Hqf<5LyXNg+C zZd$y)3+C7e;lKgIEMBYi>9V>bCtIWo*h7ESnXARuv^;89zrHgrKmPjl?Vd#F`gQ0U zWt`oE==JLjnvZQ89?@UmM^yj0_>0$nh8;6L<=)>You;QVU}!$|=h2Uk8E`(XF%-6|nE1AqcH3C3EOe&oZ!##a7f#i$jryD%m>prGxOF1(R9da> z8|#FYGHp|);UP1rnF1?Yr)G+|zBEyjQfIaDC3TUp{uX^!&d+?dz~9$V_Tp zf|adPGkpD-9$tSweSvtw^(iIMnh94T^(UA-tv~DI!81u(2UZ^8BxSPw<(@@uDVwU! z#7HOf1vyFkz?N|43sG00s z0xORWcF3^x8#z0_hP`SxJEl4O19;R-cJ76hM+ZA(^7VgmcK#Rks@?3E=3npPQ8U?j z8&`gDCcDw{t%2`)S!nCBR|FxHH_&=Q*x%@K{LtO z7FHg?^@S`Q&X@C&f(_!1QKI@{S}!~X50y#DQLwUgO2X?)@VJXMmlsieF|8>t$3taOax1KCos#hS5*@R}!t6Da9s7Pnwdm z4jwd*Sc<(=wmc*+&k{p0GpQQnN?gsdeZXo!#+RnVjqbD_iG8yEeQ&x2}6f z&gS&XN$G<<;*t{kjlQ95X-(*|<+j3SegFR{&E2cU1C3v(mdVQ9u(EYl%(H0YS)2crgYqtH5Eqo#v*@rhHgDsh zGAVfzR<=%w_BHl;rxG}0qD_Ogx>!67+CoXRW*W3l+^#l|FYQ(~!{cT0G8R_0&dWB& zy+zYe5)GU~<=`9)+r_Ohk)N}T+Bq^MP6?Wg2hJpDKUmp1LE5L=>J_Ky1c`>uSLNt@ z8TN^bPUL5}qR?r|m@=~%kC@3!1y;7sjQJ#A)DaO4p&!T*`W|c>7opfE`JxP67ZW!Lx%+*OD17je939yZ)tdZ+Q~*9Q`ZoaLYaP>3sSUaS#6~C6PoAzlzdndO`!Cca?gNvs2Hj{`>Q< zi(4O$j9KN@@s#Of9`5NTeh1j6H4_4trv<-1w2z9nG(X1Ioc#L%_r%RKp4Fm{*>FE# z?c+Aa#~jFzJn-G|7?}@z7g(7LYct|X_ybA}JJEo$mOP4DjT1%jM%+qUzZLcURognO zt#*X^UT43X?`|5|&Q(@oKPvOcHd8XPEowy8R5}fV+u3m+yg#^|=}ClEy*6HwxlXE@ zcdAQ$-_Y=`&X3>+Q~$C0)$WI|TgGSG`)#Gu^kfD?Khx28lAX=D(dPXJcx=on_dQsd zRJm(CiO|b&6CVJ_JDE)N177uypSgK;mtS7JdDE9I_Y^WEZSMDH6&?1IC1m^w_J~V{ zVI#ga4i1qKohv2fk9e$1QhpCBhmaCu81cu$T0x2-;ZO5UkDEw+Bzk$3wvI%r99$^& zHDAv??pr9+Mj!|FA7&U*C*y~|o;&Y_*HrNgW6>rmWNgY%r^g?QHu5Aw$D+^zl>F`7 z>o+fh(+9LC{D4T&*&Q~__>6nERXR-%XJE&ueG>0!YIp9|@~cPa&$V{JBV?AE8J=?J zlWt?zp>3mjP6VbS!3kHd3R*bObmNX1CtUQI8wQ%8A9rWyGY@1+o_+?8mHG4?Sh*gY zU*eDRBtk1f@-2y>Ak@BFkgA%iwIr9Q=!B#U!X9y}!=ACKLm*k&lbnwS%S7c|SUCih z7!8Hrlhn#p3<)3D9pWb9M^PIdMNw=Zi9#(scdXXd&S>?y>f)Gmk3LC%QDuSsyo|q% zfrFChj!HuzHVwjt4(a*0=KCGevz|ogxEWdxlkbo=YA%T82erzj=!2^Ndi_cJib?`& zD~->(_ig1|(*qjVJ*o~4Jyoq!^7AC)<;U>j9bgv052K%Y8@r_~LY{h{j|g^5Q{>No z+m=25$onjZeg1)r2?>+&n3*I@gq6u~IKh($trUrOPTGBzLqDLQFMO!aaP~QiwGQeS z6(v^UN#!^S_KI6MB99X>$f?JutFTiGT35vWCj6Z_aGp7JOheyr?=owhqIzZZ+?6d}% z3eY;2i5sA`ltgQ$PLY>f^6?3&K5O7{GvQekR<;h0_Nu85kFjmuT~5s|ut(gYGgCHf zg|*8w@PL`P>;Nl|Y+Oj2+$+bW8}_J;xR~1G3?48O7YA0hj*IqsSW|T|jY^luffF~IORF~KBc$u)g3M+@e5@XNN-?psnUc`{_ zH%~u+w^r(j_)*k$&O}i>Er~*Ho^IUU1I}w6WK9e{TWuq?DcgFy{>ihW@OYUu@o-N$^zpZGFI9U{I%r5>b1}G`dX|b^xG8o9 zZmjVD8U-P8Ns$RcAa8=iX?WyJBu<8v>%sX0)KX8PeVeMl{rDZ)1kG8r4x`^~21okDfUC=iAp=Cay_qDG97AwDNYw&%=TwV7k;mtrn_OgxHKi&h1b%j9NmS7 z&*bP%SlK#9+NUdxv$F|Bk$C7V4_AJZ1gIjX>ZaXCtKOsnTlNh;#; zGf67I%GOC@)uXbLUZ4$X*UCA%8g`4zQL^=@nmwiHN<4ZdMay7i>lAIrSd}a-a{8Uc zS$#?J2{}lQ!G>``ioBp0-7{$zKv{YOPk_nNL$I=SmN;E@+0E$#+sAT_K7`HUa+GM7 zT}_@c^Z_0`lcD!uW$O%a`lCv94_tW8!Dt(mMP+8@>PrzB0p<7bjI0amt7 z5@%$qzT;@vzdcHh(&4aS+=`Uw$ks4`vNRV@fXUJvSlK#D+6w|rbAQ8`q%-9FoCcf3 zu=&aS*5qbvcRyj2{!!~iLIUtFJqFUONn;Y@4 zncQ3tD_iF#s*8>|bM%6op66h*xb!5_MF*3o3_XJf&t&K+SlK#5+66^T<5l2%jkYqh z)|KK8dJQGfnhyGqBnnU^_I zBw91G+CPbzRmj<&4e_X%)T{?9Tc;*!j5443*-y^REZ8S*u}Nf%3O(zyHy$^WoIPM= z>*Pe%8^c~`Mb1qTc8SYPGWEuMwx@tc&7>v=D_f^#>xdnQ#*r3nE`GHfoGW3YxZp(I zQO<3O8;R3-_%b|jCOenH%GTM5>WU3#cpj5;^9XDbmzzYoV)NOZhwz}8%-jzvTW2P! zzcHWL`B09{2e40EY!c~jLeJ{FhsVt%=N(wtIyq4zRpW??Hd0N#N<5{Ss3cl5rAlO^ zY9vlastI`DOm@b@$|3B;xRuVo*sgY=RSXIL_M*9QFCFotsNJe2iekDX3U$5Sp6&f= z>#B1L#j^fovNHTbGZxr^*-6~2SE>itbYYv}QoR%6a_nEKm-i$>Z&eGu7%Tbjl5N=B z$D1C~CGbP4|8D*J^af$ejL*6EG^Nw@cm{TkT41U_QSBe0 z(C6L8TlDnXWoyg_E|Lpgpm(aLYYW zsZ)qH#6xF7v>vQ%9U^VgPn@L1XFoYSvtXaN#V7iM3p{w#e~Lo0Hy$z*nmu4;>(GRB zIOf5sBIl(DTg2sMuh_k9XFXerN&%0SiAoMuwvNg;tFG43 z5xPtoy6_ceS^VO09UTL!&veSp`0|qeY|{sS%J7fOSWX8HN@80gqe4u1AvUdin>Hrm zvK-i$@Fd#v1ZI!#=$L%U;L^cKy%(s5(X+hwLiNY7gT3CP*{FH^tUjnOs^?T{dQg|Z z532s_4Qx%orWv1g?`cY>=>ZMw9yN3hJymUU!q2lFX<&N-kCa&i&-Ii;pL!d&C$ytM zLv93??3*?yRN%t3=DToL%^MU-r}_EsD|-Hcj0p*M;xRKxxE)re!=Wb;TB{S^q|n|+ z4j|K5urF1sr#7E|Q$;Bx=XKaCZsmwP;xTOH7+Pd^yu@iY^(r1X6Q7r1W$XA%3mIpI zT%2DlIGMEaGUXJD&Jz8my0O=YLE2bJB+`&8_nS-5;ldJB{{`t5P^31*Q(z*s9;|E~ zsjwm4fK<7l)usL9IL(3`!NbZ|>M`Bb$y zX&6=H7!_f+xEMulqVh3nq)rhk;Gr`S%E8Lk5t=dF0GG*jIh9;Fl`i!4=dz1a8AH2t zwVbCbVe7a&9i7Z5XY_%>wG7XL3D>2tvURw2!8%T93)mdIUC(i`G%eq7`s~ zg7pxd1rx0MVP)%JX-CiKz-OvbAIees0Je&YQsgTi{87)#o5J%R9yb%7cVOj_4^Nky z@6tQ($=8Y}aubzAYbJ6D!QtZW^gU56Xex+?i}*)8N#rAmLl+T+Zs zk7`z1CVge#a5+$OVf(n%D3#2>7U~6sY!03a6S9L~W$Tdb&W23A!a?h7IIm z<|K?6b%TPo6wihU+KI5TbGM5o`jXH!!+zhi!w8632Ke+ ziu?0bl|*a$^Mp29bPFg_E8{6Jky-&(wvLqc*?YQ3p!^IhxoB(TGvq++0DHzQP?2Ba zfC^N=0E*L8JOL(7ov^ZXoQB=EQ#iSK^D1UW4wC~r#)T=NeY;@#6s6zw@jDNJYM@iSpM6IQkkllHYKI?Sodc&i(DhJCxc!OGS_8Xq>FtDO|n`lHw7?7Rwl#ARouY+)(vXxz(q zz)W0Tgq5x15_~}qlb6?tURg_~>fL-EZ z6ZvM`@Ypm`rpV;*keSH1u(EYzw5uO{WK4%eu9Wk#47P~NOXTHN!}AhyNaRvHUM4IT z!^$HU7SrL7N93?P1Y6W5SV9hk+>gi0gykMsdE~-k+CKe24$FJ6MQws5WZU!|JYFU& zZ^6peVF}%HR|}}2+ocn~C!RD-P!g?~Gzs_IoARbT%y>L*COqR{W$W;SPP&zeQQM<) z<^0Tn-QpG<;iOwnog#D)9y$}D17KzA2!*~8t9%UX25R%CljQ&{g}veeBzz;bIdO{5 ziFn{ld=|mV*6|5lvr#UFZCTwYhv$0ODK0$1HJf1C6rJnvu$kyw11nocC#v)DxBIlh z^NgIGr(mnN?8rMGKW_@plX%=rcpit9t;3^zsKZ~q32g9b=&bsEanroAl4woS9C_FD z@M}1MtSLAv;88Qd`6wxHV%#I;Uqw~BktT*j;6kjpcTxCJ{i?9y#Btox53ccPY&Q)a57h$cR+N+wrca^yD;Z)#hgA;*kpn?})U8#Z= zUSG5fchq?C6@BK0>xdc8Jdi1Q`j_IdGN1m%uyQ>(f1tV0lL)N{iC=iNsR5NNk|nr5s#Az$Rb!d1dtdD8~)lzZQ2w=!f%}2xTB^YMQxfciei6B z6l#U$kyYEeLi5Q3-Mm@`81Lk|v-68i({dbj@ zrW$cJEejadY#xkDwZCR_pC=JIlMkJtCBJ4fw)xm|?UC(ecw%qDPptl1_SbG+hmA8n z^xkKbPSZmgh&;5~{CKrjCz}(lhwLxryo!g+tc@>w%Ap9faWO~R&1iBYu+$M;)YCjC6Pp%O<|ZrN5`<=dK3(S)Cm^r;lVSpSQ}O*L*|;EL}(33e3d8K#QMd|>7GI^ zTUxM0>%?cNScU68d&7=#tI82cfuwmrd-Of<9GE=q1}j_VX`6^4Y3O3=bg@vafJ5=m#WD768K|PvlA4lTyrLz1ei#< zu(EZeCUcO=Wc9nLuapC|3^t3)QRGz#F*s7`Q;IId!)H=-F|2HzBJIGd)+p7Be8zRU zwL$I?IYtk`ZgDY+yd@zHMk;^G(fxS*Opfk>m92BcYM81V74l9_W9b7qOYgysaal^b zVQP3ld3p!WfyvWbu(EZYSam7ucK2v3O}s(ed{0mkt(nCoU6-o)Q;x>t@iRFZ2P<3W zh*g)Aj|-h#NoQ%UoTWLiW47v2!vo6GL3j>Ko(_POt@Fg1$hrA^wx|`RljSfih3(?P zl=S?~Gk}tGBAx(~q(!i@b&^=~H#fgf=zfLc?mC5)*PTLJ&9+)Wa)8O**Z&8nJg9E#i@Lu*r!#d zRc{ox-YYAK*0kPVN*<_&4V0=C@HCiIeKh*0(r%tMuP~|KXVuRB!XnZ*?I6c$D*il- zhpp+pT;#{kVyrX;eV|-*;(0K++6Go0Rn@BK;3y^0U-mDCq}w&y}NfHtZZ1t;kOg#jjXHUQoWy#B*WtbvmqUoiEn< zL7`G6!{D8AsBVYt;zE`5`hjNvCFwRi0VYYez{=K1Vy%$((*=ZAJr65e=SaJ+#@wHupf6``_(SnzZ#^Z^n#o?|)#fqAxD$$$p|$bonGCH7 zD_dtsyCdJsP$^gFrsq-imV>khY#6s3MSfT)21s=aC{4TJDKKf;8CJGV6RSrm6>A}$yvH(R0wwA#JP9UIZ@|jdiDK>B)yyj*&w$BN8CD)8EM?QQb-G^8(si(3 z)>!f!pe$X3XTW6XDp=V%ORTIk=LA9B&T=7DT993oDlO^j%c>Jl=~V3ikhY4j^3CE7eFY`anhrgm@T_kbYbbpm z!Hf(r>H80?Y@I&s^8wAP3n3R4OqJu+*)qHiNeHh-?v$Tx@YtFBOoElI^D`l;dYLXL zI8F}F(XdV2Q84nuCBXijmpCQoNIY;RIrCs;>*Q<^MGoEfJzLJrnXpM*ZX&-~0&ruz zf8caHY$i3Q!phdE(Y`a=JYE^@9k^YN&26wtTx=pgSAt+;yl>zZJZ>g8H^Iu*xryv^ z8t>R^ZS>1>c3y;?;lj#kg(u`~I37FM>-Ph{OO+$*r&kHk~3wUtC`reI0c z9rJwxYvOS;xmg`nw$4pt-D$i-uhpGBwv7wZF$qo9jYd$iy6{ApWTjzc>tsdF+)X!9 zTq-B&V%R1wNlDGzLvEtD5D%P5&Uvu1b#fwS?(_wc`{mr+1DnL;$btX z`8lj?otmwpMzY#{3tAuajvSn~V4t|)9F)+|Rm+@?Rd3*tGue3!R<_Pgb&fdI$Z&(iiE@kS?N>|}IFnPKHR<_Pl0QM$v0By3G3(VBKTv92iWhLF|q(3$j%ft9V(^O>lz zZRk=AZ6MoC&d<)URou#x)aPr5lBc8API&N4f~LdD)(MK-(Fk0Dp)usj8R~+~;xd%f zjz%DTN>LgQpGnd2u(EZEB4=l&n?Ej=^K&6=6PKT)W@jNcew>E~&Lrm?SlK!`k!OR9 zH+|eAN9UKYPh518IvW&r!^h9@$eHZ?6jmPL?3ix$cuUUC8?aApXD8%FkJs?Xne6-x zR<_PgWZx6G!b0nN#@!~Kdu^g5S~K@bs_zM;Py3#Y@bH-wZ2&7Pl#NaTrS|Z8Pzdn6&K$D~HgQ?Oismqhsmdq~1ejb#xp%*n4R0kGZu! z=GFc=b@X1Y{#(5-UtcW-F(kGcl6cXRa3oROCy(M+k|-+kdoN#Axv}m6 z9UYTT8LWDFfpVv3dGCel4`u16LjGb>@1`Mt)4N63UtFvt2gc0IE_Bn`!P5t;|8uox zaS{9rH2!=B_RbX2r70Pw?4;5;r&P*n|H3I2oh4J;g-bev|Cvtj-|o!R;u=`P$*X%v zig~9mJJ_?l&duE`Hn_PUF1-&9Nqp0jXpiT!$A>&v?_sQy+N)~G5pKE1@K|n#A4}b> z7l%^44R*`;WP7hsI!#YzUCrLVr~;epJy9coW@* z&XhAhopSs7b4|a%7gfZi`7uhF|EQnG?KFPCk3Q<1!ABj)kv#Ng@hF)O{b^Xa9-Kd* z{K1oGA03|}bf_Yzbw_J27n8B3l1QTOresV<$x!*xR%dlQJ|+`mU}ft}Y)Y6=7vR;# zMvaW!X%CFNr$JW3`X(_!ThK4SE-ek)uXu3|{|mFtGM#m|qT))k4O z7?4DvTH*7@w6zspbza%cx#cBIBk|YaUzPDEF)(|WUN~LImmOE#VL^)B|j4 zy$nt9*Wz;QH^rxT5}`d)=%5&9A`;y*ZP>iDV0uW`!w;$cyY<_p>tM@_&$;(vrPK6y z1`MT-JW=gMm`0BEDE-;aHF%WF(sz}o9QwT5*duRleBOa3GB{OzQiUySlpn`EH8#rh z$?rqkA?A}0WJ?%$6pxq5z{9XI8U7yhBtol0;u9)uzqS6u=}gs+Gdj7P)+Md*6EQF! z!8UPA#Vi3Ze#W$8`VSs46Pfp62P%OerGs@JN}690n_oSVTxQIa7|v>99TRK*Ur< zPQ@c-B61R}9D+!U8LmG`u64~ZB>buR6>&#UKZ@F1O%%mfB~hrU`Wx+?s*gF)S&}W5 znr7<1gMV1YUxjSfDp!lEX$EMRp#L^5z5WFKH=ac3ge|lMPkw?P*tIe|miOStQvad) zbMtp#w~SA=_eG`C^kl+!t!mFPuxnM%tR9;`BYz8zjalK|@RUOza2sdjfnBSb4T0%t za56srcJbV5oRUbQQKpaDunbe%pbUA`fgH(0-vp16`Or6lmC3NSfhQ6A`%iod{%L=Q zqE3fel4E+&ZumZH=ShsHI4I;(hTDnPkj_m93L8A%u)n*quHn z${AS%+r(vL&v=aZ$x>R%c(6=bPJorI(_*e8)ATxWot%+tU~{;P#Hu6H3?Gxf3J;M< z#uc!#bu!F#WLn1mX=y8VPs$m29JYzeNUS;%OqSM>NAX~pv^)$eTc^cbN2cp_WQ9A# z{m4hKIb23!)sg9jI`SVpL?#*U!^+mlFxQdk;dP`_&d4@OqBRqmSal?rEUhDx@L-v= zYz-@qKw2`{{&LSEx0Fp)+keuT94)8iNZ2NBMS*G2lcluG!-Hkgau}>^off)Ak|`GY z)zynyYjUO>lG9;#xRA_1r#ST-DI2HaF*4aW30AhwM&Jx*eTAg%8(Ac|O-{!xus>Wn z;1#r?EGZv1;ZZXAxB*rkxqOfz=0!Ol&%^$-nh(?b_gOqjCLd43$|IK#GO1bnr{YP? zno6QI4Qt%`VVc*hjz`JlV+^cpoew(Wt$jFEYdv<8!?81L4!3x~Gu~Q?bY$5H50Od6 zbXeIs8Jm$6_*|*nm#Xxu7cR3J9u44A zNZf1inVNbceiXISQKBe*Er~)MiMy}8N8;9;wYWc9bo*4fcA8%%|Ky$Mq`>%78Q5=_ zSJ=E?34ML7_T$M0qiZ^ZWjG%92^BFm2dM+#ACFtjlZbJ8D*5wqTll4NuXNd6s4kW+ z>dE^D<~m{jj8D9GoYHA}Rs)8cmFV;Bbo?{}N9e+muZQoSsoMq*pIIU& zdCD=UNc_~)Hp4;@IDi&BWOuYmL3obpNZeoJ8*da3!^fqEI_wp<+892gCdR4i0qx38#dBbibP}v=out5w zFr;R8Qjl(wgLDgQ6&Iw#!)AoRwgeltsuoa=Zo*Swa&!Z%Y@MUw$NtV9r2z<6PCtvXk%8m|FX1;<0W`C4tRM zxJ(`0BBrW7P@-1H^I#G+23EFC)a2ob$`!g@{V2z7a-4RC&En#8WD9WeOrR|7geSpd zX*#TIoh8PYr)(^_-F*dDKa%Rof$D-C;{w%+G0%5`QkBLtVN!KGtZbbsMuqAx(w_Wc zIZzkEW^sXPMTPQApe&t-C&6Ut99VfYuvA59C#`w9N6ykOVY6(q;i_Z6x4Ue4DI+^a-!aVE#ne(TnqZAfEARh*YH%BT>TAJw$2q}Ewe<2yKz4k z&+j%-60MovwPG!^>H#HbBRmHtNgKe*qk<%ttco8XCuv{UD{g6O2}#NWO43X`2PR2- z!OGT2V$AGHg|4!3HFJ@ir!wpqm#0?D?0hFERVUz?FsaJJ%AKZv!SHX_i zq{?@KQgsEM36rYJVP)%7Z8!XiX1S-BE%g*~`Xbcha;P4K4dX)9it`0SMo^|6#uH&O z^&qTlov9rFrqnr5!*bL|a?~&Sd2rI{yEIr zfvXr2{yCbhy)DYnb2KeIueXnS&s*Iy7AdQOFft#NI<=QFVCYGNVq(+*a+d*xKzjhoA?aJ++mOez8f5I*k0Q(*FO zC#+0r+wGo2`$o&{{i%Wxr1?1~y`ay@rxv;SOkt6>)A+WER#;}or}~_7(Os-nsM&I&_JdvHRw&-iHJ2!21x0HXo(dDK zyi^VGFrz%};djGulB}yAn@_ z$=WhlIf}KmAhsinn5z@^gq*O)VB@%iIV~p4%~QZ0!Lwlk_7JQ*`T#3c`m}EAV>w_S z!p4mdz?2&lun+KTn1H<~Gl)#d5a83Q2axMmNbD3-E zycc)aTm&p2gq(#Z!6f7iSecZT)8b0_BVCQtR*rPZACCy!W<4{z&`pO|w+EF$!iD_% zV2`=gZ9iUh^D+#UHkvY__E&h&Olp7ODUX1<7Fgz@5CneF!J_srIS&8Con;m^-ZEEa zcpL)B6EOaPhtCA#@31l{XRpMS@XJ{Z&(T%R0=Kix%4Ms|Xh*0oe1vvv+uSX#X_J&h zYdU%!#MxS!)eo5j3R_t61mdmn@R<;A=_!X+w>F-H2;9yV;!EIX9;|Wm@`eLM#y zN#BK)M+Zq{-{)C5Nl(LG*(J%e+w%uJ2PR3sgO#n56nO6}tR~HO^G?w{F1Q0$a+;2Z{o>NpiXOb-110KMJP#&OUxJmb6E)S}>tj>W=<6?C@Yk?eV#+%HbY<&YyhRN2~VP)%VF~+@&+tsBZ z^>aB=KZU*GBGrodUDX3h(ogUlm?ZreR<=$OV>L75b~}B2jt0|fa+v-G+r@?HOD(8R zbsH#8f5p>a^7I#2**Z^*%9Jg3r8Sr~x<@?0+dxUQW`fs>%2f4$lC&*Z5&*rvN60Mod zwPHoQ;R7XVb36|wQJccb)`?> zx}{q(9ho~xPSaOlySOy9V%@TC1LbK6o(7Yrg|M=9o*1<$m!X~04RV^k51YlMsTG}* zX98vEyLb{zmc9ckTW5)}GLXv_^(OpjIZA(kz2c(Oij{$?2b84W;W;o#`Yo(%outnW ze}*7u+MFA6pSS~GNlCP(13#(-n{zc6C`}!B7EGG{JNjs1)TO>cMn5$$UCz?>_)}oM zw$h5aRP}(8v>l!UlcdkW%A=t!<()jeuH|?+OUJ@)amTn;)TNpWl%_A?Suklj0#>$8 z6XRrfKD)T=bd|~e+&OZfz5yG?1*#P%!-tHZOnn_sgvr#`U}ft}G1dpFXL;w7FL(b` zPSj6eySPNPVtt@)1Lf(*cp6NeegrF9=ZVofmE633uIX=bnEncT#f7OAy;Ic#O448O z9GE2i8CJGV()8iybftbreORVzNvfQ!UgN24uWWF?cyhO{l4#B3j(2S*wp*v!LHYV5 zo(_|*Pr%C7`C_bOF3uIYmuOV&C8z51uvy$v)ryr&&jiZSu6PnmmOck7TW5(e>YbP^ z>qo=$a+DUpUU5-s#i&>HfRfaM=fET>3oD0^6yrJ`|3;tMl`JtN*jI5Te?i$efAHNm zo6i=VTMz5x6Gx`FD8dXAbkSI!*~KrI39$RNmaYglW5<~J%Ow4OcWKfnMzu} zv*#lfqwvn2|G-Xh>&l@CLR8D1j*IW((K8A9H>?~&P>ey%9~WyyE{24~aWQZ+@xJv# zeWlQmamE8;f_G37t(k!GZYFM=*eeCcMq}cn08Yh2XX4xGDTj`Z?JH}6DWs8x!1xdx z9vwLs$KmEOhezHNlFdcH0z$~qcoIxPj)av-ftwds!Y^<&PDfXP8|ydz`}aBB;g@(` zru-2O&zHa!bBE_Iu!d*1nqZ)?(S!-IgLueHWY71MM?g{AI)Z?}uQ^!I?v=A}H*PGm zpv_5!g+S_rio5XOnN-{fE0aQYdt3>>kk!~6U4<-g#rlEH67^;F&^GPA${=AS`#;!Y zZYASgv7YlX43siM%7ohg#e-&2`>v-PTFcsa32|WJNi7Ndq=VJ$GY^V+*h)#Xrfuh4 zPtD*VkUSw{3p{)#8Joe%q@IoSB-+>H2R?LaK*-5B{bhGyHsvhrR&T}^a#Qv9Prs<* z6_%GnVb{3jg?IFZgOkAsx}GMPc)R(_cp^-& z7Q@P;1uS*pfLE~ySU;45^#j;7i(vUi(2DgvJP{^X*TTxy!3wN*nTEo!5%5oPp8g1% z#pP)(YkJ5U0f+LZ82uiPpNY{Eu<|Iuh?J$(9uhZFt0;-q^ySH8WE$pH#N%gT^zr|% z7){sPrXA%NO~W4pbFnIUjHVm9r73v)OpLaLm91B!E&cUQ!=RQ)>(?yIm-CZ?UE+>r z2PQU}sl@3pb_^ak6P%-9<&h3fmk!Q1<=_m!E?EGl%K*+z|o4$g$genN%h|aM_KC|5@8B(G!P!fl)}2f6(3$WI!phd+3ET{2 zm}|LtbyY@xA?K9!w-0_TN9Y0AEiOX5S6EmG`36vs?!^;ef^;{mY#pTNy|2a=B02r> zzjBV=h0Wq}l-z2wpFhRuZ9IM^MsLE(qXZ+e_qEl-;yKtBN}@G$u;ei^?R{;A$IrxQ zEUY|AFd}OdVA|7x%c@En*df74SQ3Gdbh2g@*L0&kfHU$Om_oRVMQ4l~bSJG|usn38}O zgqNS;*)Vyz16C%rZ@DMYzBg`JU^$uIg4({*))M}yLKVJj`w!SKZuv>I3aq*pbV&U> zo(mJJS72r9SOqSWJ}|Ui&3DS_o@^#nsL+onZ2B89T%T4Ft(hohTLo8>BNVYu;TbUz zTOU@oj#%)tK`3JBLSBC-X@5CcUx3}>mM!KT0r+@WHG%@Q51t4Us6An2>p*e3&(4hN zba$yUEZSJOP!3fIc8m+v@vSOX4KpZM{dh7=u=-$S>tF?svxHWv4Ee_JcjQd{4{R2f zDc&cmb9kXrK2V&#jpxC{=`vV(bl{YA^>>}e0tA;<_6bjn^;z=<$tGFt%8lXLQ(qxo)r_d@4?E}QDZHtE+`iCb6tOy)Ac9VEiPRxTU4zYL4o=s zo(L1D-^0q*fns%Mea?bxs{e(HV-| zDtKm09 zR<;foYm=z2kjbX#f__$x)_mA8E?O=S#-B-g53fB5~GEA`6ft9U;75wl}=q7kMn=ciLY8%{f_4ThW z$l=-tc8y!RGOZdQgN9JR_QVrn0=7G>Y#lJxf#`Cvl25Dqu`<=gFs%hE$qDO+ZQ~Nw zvIEggj!?w<@Qj#<^}@>55o7I2mdmO7T2HxyB4fyd9p=!>wjb&R$S ztl(3O7UWVHccF&RH{=L?9X5)K&>_4gi-AxrcZ$!~@YtF7oB}Ib$0vFq%S|NWYjAy|_>QAup2uG@cQ$Ck7A+_!k;{NE9N}@HhuH=x?U7$#P0?&ep)M~J@ zb)MIn=Jt^~O_jx%`yTXQXYZUV;Ek?K0>;c8;b9fF+oOXnjt>Y9u=#>gx z)ur@ew`&~q7RZ6>fi2?#m0X3=U7$#1@hq4~&4-mkkczQ3=`U~AmaAe&SX|x=e9!VA zC-3%G)P*K)As>3t;5BlXuYw;I7iQiEdinx+29`QQ)32lAFL+*oC&1+Ra!+|AEO-XC zbi#}Yto#L+Js*`5@-S{NbJ>%(r2`TYFoLl1Af5`7mHS|2QuBW0NwjYXG%$>YLgkcF zrRwbxS^d<*e^ju-h0yn5%ea+?_u@awmG1=|O#hAN!UXGIu(EZqcJvoTBfu&Z(ysSD zS*nzF^kZ9-ekaCjYbDW|c_i;p4USi{BZHNTR_R!wqxw(p_r|IJ;}3aT;;Aud+Zm=B+kpY(J zyLDf|b76wD1XdnZV3Dua-6RL=2H3KZ0hZ}YcHhTyVS@EtSlK#QQyGm{x{#~%)IGiiN&Z zDSJXCn@{W4MXdg$xU(OlBwEwi^RBzWA)~HP*jB=`V#3w|D_e&x@J-H8*fOR5oU7jz zx04*N>9Aeg8pgYu7sadQ0|jb(JP#&N+ri4C1SrFxn3e-|JZzV3psGGlppM1!U;_0e zSb0eYnLacs2L%n*aO$%R>gY`GqFD_WTD+FP% zYDQ3`{)#8UMCvcFvUQ|5O?vgdhg?x3YNOwa=YSh1iPp>kThpZ1e4s$Bi|4@v>XWeY zr~#^???%s*1GN`y7q>*U4ycOZ%Tb@l^I!tCE39lCsK8rZ;XT#=qwY-Lpgfkl)<6h%?wmMDrS zih{S|A4QQ{QA800Q559=y1HkoyQ+Hjy{hi%;OAo&Nb>sCufFx_)m_SqIGt;bQ;{qd z7AM>uL2{1=D#+1kJ-rl2ma z8LLmyi-N@JO0wnHvBG3g1FEUcADc7v5LqrPQ_*yKjt(+V-=~)Y3DkGVmft2oDW*FA zZ4T5w$#TUFlzOW3AM|n{f%-eya_m4IfLK<}&JudO{eEpc#@h!>L^H<29o(VjP}x~> zWZH{f1|&#R$(CaW36nvwOR&=LT8hBaDs!GrA}fXsPSIpgO(|romeY%Z#A*rIa_m@n zju!@w@(QI5R%%mLywBr3=2X3lEEtxmvr$K&sZpw-gbdXXy(CDeHjpjH4%G}qr#F}q zXAZt%&eNC3T48xQEfStU1R13-&2qYuv7?09me;s#x=)^s`mH%rzb1=@Wh$C& zd0sVSxPC=14HB+jkS)g!*F035a&LEc?@2BtH&|&QzuN9M#`*d-U?Q4)Jr_~rQph6X z){{-IjcgIcH~+)x-9h(Z(~MEHZ9q(2Iq{Z5`Qi?6{%gS*@B(q+$g5QFG2d zOqLDHSw!*7r-uyKhv?-&0`>v2<=6r9Jlq=CVU|nPBgOgCZkS)iK(_x5opWXda9VlCs0T@kYi~T~X|0i>_{yWeiTT=9_bM3|Tj9#KOJeM2%R2ATnY{(F=q`>vh8gr&TNtO)DR5Vv(aV=!9 zuB4X*3D)Ig%dvxn+3csBHhst(s_&EK!a^0zX1}26((lsCfduN?WXrJwbvR-?SSx1X zDuyIn&QP(^wQ6>Qn704Z9Ik(mrNhG2AIV&Utce`C{!T9w612aPEyoTTCUR|1ZByRo zx5i__y}(2?W5Q@6m!pFW)Kq#okU;H0w){2$O0iA(By*saljXujtEhldZ&O}EF9#B+ z6UdeWfYP{to8RH>+`z11BE~zsr|=$mWvN^UexdMUbB;eqt|ctTC!l)WqFq4Gu3ovo zE*1Rl()ZC_Mk4zjW_e4vuG{k}n52m3dTQ@I-FKS9a2s7&L<#aHOg zBeD1r*|HSLzQ9bh?`Ce#-cy;M-c&U`khH}XCf}a~FAcBc{ykYMY&{pC_^P{q)WzcXfNdoU4AvK|&gy!0|d+tIy8GPDiZa_kIw#(Z)d z$`;`cQMlhxh0&4b7#&8I3mb}X?~;t%oB0HgNt#P90FtCxWXrLW9@9mBZlDGUaN9WM}M{;yF+42_7(VRezt}y55<7Bnk&XK45GDjb! z`;X-4!(_`_I7d!uq>4x1G3V%8WVPDPk*EAJN8h0PkL2iUWXk~@X-pXLIVWctLBm9h zb52wFoYN|}akNwjd@=5IbAVqXR}&WC6H$Z2GAp5H)=5!h7Ysh_^a|Z+B(*Ow%Ui;< zljk*YSrX6Wi+A3s^D*NAUjj@-GvHel77w1nOJq!=yN@JePqJkxp6$j=#4_`wK&aO$ z7fZE#J}b;ToeW+Y&OEIkYlRIe;X%|azT7D;rMr)WXffGx>=1Rf>W#X4t!hf(=iTP~ zoJW=k%g>6?f{O zn#GqP`aIozBt)MjTaF!~eOtz#{#2nL2B6=V1N47nov;9{3@re$qRa67lI}VZo}ZB| z#|}^HBzmxvtyD_l4e8td-Z=l+3QRtARb{Pt7s@5xI`A7$1)sF;uLoudnnMRtkX+(%nVE z`T(;W*h{uAuz4n~R$D$fJbi<=d;FI<1+UU&MRt$N%_;B{TjJqmy5mS5UL;$Vg4YYW zCV232sC;_`uW6p(Rf5ayTBQ859yjiXyTC*=W7efObe$r4gP5Yw61WG_-A00Y0J9tz z$Y!)Jl6kIdUoC6mY1ZCoc7{0;>*(4dqZw}3UIl}Mr}z>aYv=_)!f^`OvJ}-;G80=2 zMR{wJt+$Zie+Zm3Oz=NImI|90;U?p86uHHh)A|eP?jsqxfNVK{A&qX0_l!=M(=ZWZ zTEDlaXRM~G*-AB=PUQpB`|p@T{4H`_g$yw-rniUW|J7G`DG+{x?miOYuQAJ8LNDpr z-@aO{i>Isb_LP4y$Ky|QeUUvSauS0Vcw{_0GDx8OfnE?KC{L3uOVRELW}PJ6E&Z#7q$b$kO*$S?k7vsu^VC5v29l>Y-+nwHR_@NN zrHa*TUc5bht~pS%=rw^{431)*rJ;jNR2RJ*NTLoTTMmd&8rxR*&KGCvf`*A0cfNS` zgsug8v(+K*QqQn=TSMNQDJ|z@sX(%LYFJ)<<_632vHM-V%1Z zc-H+Cns~N&c#-&oITBaUwM7Ou+@4Sr5}x8qaD1Fz03;kAC0mxF+J~8m_U&--Jm#jN zs5Ds3mWru-vfrvEt-MvRq@6C`1CI?ih<=Bx8#c<|-bcbArP4y~GrvVI3zDvHkSzz$ zrP1N>KGO++8YaX(Q^N%JV$3(~lwHFF_hJ+?k;+{=t)t`J!!vRxE$ZkvdpLKB^JBI1 zW3BUJ9sA+RX?s!Y&E-aSbOiPTfem;@ZtBvGj+qw@+n>A~K0UBGcLn@_FYg`n8=rvR zua8+*P7Myi5fEP&KmKWI<5RYr`tnREUFpfBs;Oi;pQ=NW1c*GC>ve9dZRpoz%C;k}2yr_Z6_?tDgFiatM-Y)H6TeEu-rt zpBMNB-AiQ9`5LnvSl?~TM?5zLd9?5hh`sXxe*w2?O;f7*KhZT+&Iiafzd*a@J*AZx z_ygTvBm+;AExXR~kpBcT5f~jpPggvzn|WbL^@>@_ZqFElvJ04?W&PL?akM@tP*OQJ znMn5(iO6`e<=7GNTt@CgBrUy^z0jPI`DA^tj2vUY2ozO@XP$Vh#ODpw1HizUPvOri!Od^S0RymSBq)}Ea$;7p-?PT!n|;7UG~*kSSYnq| z#$+$LuSiU$k}b!MNl+|-S$iROU1d(mNo0N65lf(`G9=6Ct|B2>Lbe<`BtfwRl$#?^ z@*Z7YA}1n14SA2^1kFZRDhqwp zIp*M;O;!opS1mN}t4d`Vm^0`OBY{~*wj4V!p2K{qh*Qq?52!=VN6pFkFj+1vIl(VS zqC<|Sg1kuzI^Qry=WAq{u;_%4AVY~|WWGxG7>UdsWXrK5 z6EKaJwz7GlgZh&>D}NyCgJs2FNx&|u49U}USCNoBLAD$_BmpbX@@AG@{%AaOng}MM z89EuPKr8pMjHi2wL}V=4a_oo%#gS4)oWYxK&d4!jecBO6pr~>jIg0Ko5|SgxmScw` zV3%#i>Yr0iiIaClb57QiCBkwtUw=U4mR3e(fbK046^m>+c2uUThtHYphHOT>eBv5& zQa(vm2usRw2BfgU%Aj0HcNPiC_N61J0bz291u?2&T^7DBg@J9V8e*PY>8b|8ImP* zSCNpMK(-t^BtaR;roqB&A(FhyoRT53Kv+slG7`J2GA0}7z9KQHkS%YinDpgK(lq^- z%rW@_S)evx!pbUR@;SP%NK8IMwj4Vq`>F@ROuD3UIQ(mKT7E^=2}{cf`om#wk!5Ip zL3bGm%}>deV}~XnPwA5{7T)Gh#<^?v5< zEzZQwGH0YK97e9(u4AhX`+tfnFAT=UP-K~v1L-a!Svi1gId)b8X72mTR;p@=Tba%_ z=j9BtMA#0>-OgvAvvshXJmusJXvA`68DMsb@L@+zHf zUzufWK0x;wiOq#%%dukMz$O~ECKUySvcG)F8WOT zv+*csJeY`P6l5?D$I2>WGM4Tu5|c4x%Udoc@C1#}^BiN2$x&p1umQyg6DX^U$q{s4 zk(eAxwj4Vq0UJ`X6&M1E8x7W*b230y2+N7Vh7_l;GAI_^StKaEWXrLG5-_cjPm7Q2 ze$t$hE6MU;DKVH$fs)FITu%2CiO8j7%dsO8FxJUi74Zhi@0&C7U9vt{MhwO}c2Q+W zzD;)(3CX==%dtZeaDdQOPC1G44|7!hPF4wviopRwUSJuRztSB>0`olCa_qnabvz|; z0%fn~jYm6E!9+Bp9g~iyq?kY1gYGF3k;!Dsu_F>NB+i%mXU`JGI?K%=Swa>F8%_+y zI;^a6BsqcZD-x3hWXoGJCgNVmA#+SNkOgWJCW_sV6}qoTOa{r8W5*;YjV<+yyCJ_| zPRZxU`d}$BNn@d?axD1_-Blzc*O4v94$0o?DSHUR@Bj|%CKbA!UzwBg3$jR9QViZ! zXqH#T<)?Iik+}SbY&mvZf<`?JT*S!I@fYJ<_D!-%SYAvD6t2shm;=E?G@~DbJ1;yXmXSGt?lBUXeaV)$bYzMp@lvld%#m3~ zmI)hVLO=#eEF-gq?lBUXQ^=NMM<%#iVo^rgvHu}+Vm?4t2}_Jwx8xRB2IfM#!$@E* zAX|Kcty@|-x;#er7KzHEWXoGDDzFPqMrHg9#zUmBU?Q4?*8~-(v@$AV=-whx z8AY}nJ1PNNCJVKEH9MFe5~g2{GH2xovPRgjVz6bhQCu08L+S1!VVOg=96KxlX)f#z zOIAzCqSOlwnB!uRRl?$8kmm9N%fR%~9Yz9^BwLOhn1JX~wE9!k>;`c|_Lb(iTu#;q zi;F>YX%tt6aKx`Q-RkDiM@^^Du{z}#eON&8lX%tt6<$1chNLZdDTaF!;fXz>XrHw*{JN2)| zqoF;(L^PuzgUwG+QW=rSbWf3pOd?y39g%?f6}WkH4&2EpV6wy-Blzc1+wMXAqf~Pm#uVm zuv~)0XCb6~&K#A`kX6E>VlY_d1(t!ij_xoLn5)T_V+ST+{8P3HscbPLU8C^}b6$Q* z775FX!T6_HUKy7k(fvi@@*vrA?6?GM)-IQ7(nE)Dnxpa`vOri=3^r@CvdWnJi|#8D zlUK=>W5*;QSE*$C#pBBd{>^yka{!o#X6R#(tJp=AA=#JiDiV^t$(Cb>Bw%<9S0M;V z$~tpK){y1FMiPVJF_ctBXU>qrmFSvZboRJI3`d}F`iX%nE3oaMX zT}482KH2gX3(2|CE4p`>LvkxwpLRe3MU^AT&2(3hklaMJ96KZdS7lV-Nsh9(B>03m zCXbO7!eU}@Rfbbo8I(uq<m1glsu>Py$wXDz)BfIh7W7VUK;$IDH)hCZb7S4OVy> z#g$c!MvOri$45rms zS!GP>bYGE}Ttc?IY!1El{GDxR> zp5w3Pv^-DN2}_H?^BmqH%g{VWcNq!Ivt-Kw&{(-^r*(9^dw53fq(vPaXAkF2ael0J zeynwVtYbf169;XxO-Jq;_*=QJJ#CLHG)(N)R?%m zqhscU!?u=}gE|A7b63C*kaTjuZ_LO|4fvhh-a)_d2{2h7zdT#CQsqP{-*5GnQ^Ow| zwm<9C$>D#e4j7fqq`ov$N>_R^scI^j&ZjCBOZXRd9ehuA!%(;P&vZMt#OIlR$%cRR z9a6>gK&f0z6|CWb%`QjxZ{6VN5b&8cLUm0%)HE@hnP^WPEK3AbG^?E5_}w2)HO*Jl z(i!Aha!dS7v&8GjqA4pncLLb)RZu-J757(bcThp4`dveJ6&VLlVU`1{eMVs0(`b6F ztKGBD!B_3w$y9GTnJoD;ONy||>Eil!Wvj1N&JHU8 zI5Fs&b{qhnB1j~UNqDnBz2Ea3*o_2NObJHS6fXl^B| zgpC@3Plh0&X_Q$`qi&}AjAZ5}vgO#B@oeZ7m?@W}n{=Nr2j(%dL|9+~ci&-wu?sBI z@+jS5BrT7SEyqraXWqw8OU9B`8eTFEE@Qw1Esw*p61dWUWCe;VlQN3#E|Qe3$(Ca$ z#j}1Xkdl=iBRawyl|#u2VNnU(q=`iZ$}6)nhwd+ul^(L?*jWk8TQZhyfpp@M=C{pJxtFXE78TQ;$S$wU$~|;{k*sVcTaKNTz@7-S+mOmvL|*=C z&dc*;m9V^+_C$>`%gj7S_Zi8|vt-M$GZQ$1&K8T(d89pFHXapC1{2YYicCk)tiUoY zljsg3X_-K_96K$6c}upqK}d5?FlS`}Ss-k1G0j_`xH2in(cMLoax~d;?4)=$cKS!q zg;W);;u2t~n8Pwi)(8tr;MJGNF|<=+nU@0HV@lwuiN)}6H@dC`x zm_u_NStu+tOAS|z0GdXzWpb{jyNx90DzfF+$=N?(<+a#g@r=mF_l@oR`U# zV<+dp5uy%kuq{^L<}UHH(*gf59zyL4CZZWaofJ;wX_j4PXm7gjNQS19EyvDK;MluV zgN-Rd+*xA|&M9PxuyMz9?9B=+)3TE8Fp`#KWXrMB5;zk)C=b3bG>7E^vO-u`OlN}a z^2)57Pxlwe$|kbq*je!$gYu82&K1MTt>&cMOx6cWO5iPb$dUKCWto$k=-whZxshx+ zc1{BKX;$DZDS21SW9G0tN)`zVOW?r;BrI-`WnvzoyNo2}VY21ei3!YEDy6)1+xM7P zjFa6_U?Q4i*EDBg1(s>qn(i=?mbc!1v;?jfR5oOU{Ps|DR_4&9NA3YPT`z#*%B1wr z-9?geFxhhKaV5AX+K{o=t_50p&1p%JMQU45_o$_R9>KLsK9Ng@wj6kMR^+CMQRC8%a(- z*>ddU92vB7?MevGJXY3Q8`rkwzGSUuRC!)nxIoG`-VsA$tTVWWuhZ z7X?Y!FxhedVH!8n@XKwSt0go{@cRT->K+*8UO4xf7?&Q#P9sFSSXRidA@)#45`d+cbZxJLCB0yE8>`sm&jCDdv~jJi|-`-fj|j zQH9RMLalE%*(JH4A)1V9hnTOCrxFQYuw=2pMhyw8RrKz2KkW1vW{tO3JPvC)1+Xq=Te|msd`c z&Z7H^0KU3QNrr&90?8=~B}ywam^Xbgz-@Ttv1U zJ3D(S*^y(+z2>ysLskb%%Tcmk?8)H>cz|vPM`+ zwDXo`X=PTPrF)BHxaBXP4kp3Bb?znoJz6%^9=|U!}ZzVGi~tcQp|_z-ONPb2re)!k9@eU zsG@b`DsqdrQj)O?ky64O=QcibG*Z;F%yAtA@t$; zf&LV!L5e#NfjbJS*qEvHR4(fvm9b0gVu z?ELKCk{?@ZxL;aGv>!8P=TWj!SauXQF45R=%Pe#A2;FBSHxH97$Ii{cBXUzJu;qIx z@{IYHapV~VCTNKrmYx-@2J@K6+Hr^w!&tp)L$VwPLnUzBT1gbBN~9 zs{)zytPBYvx9BoOJ#^QR6dg>q9D5{c-GfyIYJGiqabs(*IX+3UQrH+|+=IDgmbp2L z?lY2`)5(@&=SEoQTE*rRx`Q+3OU;?7lU2ep({iD!RlnsauguFObbpb&Ttv1UJ1@c# zy332Lt(+m>YtG6&WQDM-C>~tIWyo$>WllEJeMNF|7uj;`ob0R2YMeHx&WN8kr{y`a zPFPwL`=If(G{*okGtbgJMl$mh*>dd6?AMAJbp|~7-^RnJNnj$HVU*$)0}?cWnePO; z%SdX*kuAqgjk-rtXS@r{aXF5x5H`kW_eg=6?$LB#k(|sUTMpnvV?~iKN;*pw8YcKm z^)lTF1MY>hI%ed>K_*_n(&%e#-pTBweZHm9kCB^}vR%}VH+i1Z$uCA+68(rSy?jaZ zVrC+6l`L@SBm5=N3H%I*qFU}CSBu+F`Euy3WVMtvo4XF|_?JU_v=$>K)dzJ;gOQ4T|$A*hpkJ9B-&IZa=eI&7}J!ONHz{8TaG<`crG_^ z537mx4O!pDV z#$9B~0c>c@UGV7-XP~5Ef=|NSsGCx8FP!nXkry8{@d74ce!p#7_ot6pP`2PSVyWnx zh8g`IYKpIH5%uLGOv5xMvRfS}Pd7aD4f_>))VBq%X`>34WIiFY6*CbyUJo3Qg+C!P z*}sgTtfm9W)#MhKPsH5j1X!fQ1iHv`H zGs}Th-o_~!;fPj449_HnccNwu_-!~*a|&Hl$Sp6Pby?7!mrU%>n8V(L6evf`qeQ+^%&YIBAH@1!SqPF+*|Z6FO!H#g+$R=hNLr zva^Y7Id*o0qvkx;xV!#S6*es*4BT%uhv#OpR#`<(CCh~csO4T`EI_>IGDDBhT}LwXFxhhK3<-OUr3hpd2CG9t z{2B9KH>=oE456{)^x9t&VNwQAZ*wgZy13LB$Su!P+^(1Qg%CO{>$q%N|;v=z_n$uG!>xHF9@yaKC*ySm^OwlED-;oquM7A6| zMZykcnW9=gFC;$qn&Wd1Stu+%ikC_>@PR_h+-#;hjpXJovgO#h5$-2Ya-&Lno;Qc* zIkH+$j{P?fJEsjvgO!OnmNJ%9$rYS zKrbfdK$G7v9)C>&6VZ&nmdhJA=wYZ)a5)rBpgWG_XB^q`md{VAU&YS?bAFB^i-nCu z;qc=YT;}I!y5mTG=8-LL@%$95%0PcPD?SN1XwFZ8ELL0jX%t-MCr5W2$xlDoa_syF z*Ih`dP!aYtY_OD5(ASwWbTwHpEJG)U(T8~pFLQJi-FYNO!(_{`b2QR2SgB|w2c&l+ ze`Jo(gJi9+2!*l?=9XKg=K;FkNP6xkTaKNckp}XhqWDbhzs%8jl`Iq%olpkycA;f% zUZy*ZZt!2XUSWGiDgLc~Le>cjjnNiD zPnl(EE~5L4q~`r(%dt}v)H~S<_QL(zR#|}N9&>0mlV!p}V-#t4k!5D?qPvV_=615> z*qITo*KV$MHn%+q$UJ9`%(G;bu*eu44Q-ZKCgv%+$4FuxCtHr4n7spX;KueQ0hmc| z84sBzfQe{^Obboc#2W>cc^OA{7|F{HWXoGFFY0|<$C>kTG+88UfHC7GaR1gky2D6b z4kugQVtHw7UlQU=!JL;IS){h`(kQSTU;60|BYDY?EyvDF(0ZkJtCGOX)#l7xMHULn zjL}XBZ=q#whUrctxw(vNId*P>W`1FxfMQ?PgXYLQK-LJ0jM2=mTV9!#`|187X}OPV zId)ot#!1axB|?aK)tr}?$tq!aF&ZZ|ODq%fBHd#oF)xrU$4*SpPAvB}5I#d8kh6Ek zwx+k}Oa~Lu448~|Vo4>J37SIp97)jbWXrJ=6m%rm)e-h2)sk7bCOIu_1zl;*&@!@K z*yv+)Bv?^)nW7Wvz9T7GM7A6|MbiT2YZUwV&Ns(q6ImcEHpiLF)u{LH)#%P5IVqDZ zZ^@j9`}S@!=j2ARK<(m0v0v{7y0b`5t|wcLos*#Pc8l)l5p!N1CJTk-#b~_kEwtPZ z{haPJlAE89EyvDH(CQ@LswO1DTW@8Y2){*^2}_O9>Lf3+%*-2fmyyi8PPQDtjK(F_ z{2pxQPFxKW{4&((y7!84FPzJmjlB4u?&apT7jPT*DWlqY8~65$%c)G(Dpo7L>$q2t z8=10&)K`RY9e01zMc;kTiu<^ig4?tauFEpNk9#pQ5qLRs;9a}n-^ab1KSNhn)F8Q{ z+!FH(xeH{`ly#ju3+(tRsIGX}gx`a_r#D4(hrZA}2Fe zB@M%qq!OZ)<`69-i-v`0ty$+4pnwe2iS!a6fm%ei96L~fktm-k^r|5`-yEV%WTCJS z8Ac*csbz3#bgz-%l*yL2WN^wAH8?k!gL5NUsJ4OAEVT^I4Ro)O;9O6(96LC|h7O+l zlm@HWLKY@<)$}}KPS3++wXpQGJZ;|SnSuviV$o%Ueol8CiO^5TmSaaqcvg!e)N0_q z^)|){^jl=9u>7>V5^iLEeC3wmd4ujZ5}wz|mIL6?SVQ2;5YB9*h6z3gmC+qUaxa{j za3e1kns@<=A+^zMT?`q$x>T-ai~atk5OOhoRWXC)igC;8S^6N$rL5cBSzyOk zHTBu@;Llf+p0~OiWplmrEO*eoLx#D2W;w8q+qm2@MXF=Zw7+km16($or@o4=r+T3S z?D%V2@$&2lwe2aTRPV!dKaur*8QHSy9Pd~@#!Li8fzTH>6o914{dPPQ=Aj=1#|!~^ zfGiI-92`jw2i6@v1o-FO$W=!f`kq4pv4PjTh-Y zBGGt(Y&mu`5;7VUD^*Sp*nC*xMgMzmYaBkNg9%#lg(c(|Iw9Vo%Aic4yNU#5ce3T! zLD^jairl}fGzVlESsN@MhiL!;MU=rfk?tZAj74P20bpp1Nco`F$$T|T@C+!U8w$A> zian)Q>kAS?3+UeEGa$VEqYQdilWm z3T7g3&=r_chd;2MzyqG5TJ9xRi`!87xcVNlTFRQu-2`@gHB;{i3Up3AdWO|*$z0#~ zsCqNqH)Mpni&+k=;5Lq`_Y^DGGu-sHz~{hY!!gsdbUBrSYPqTd$4miL?J1*F=}*zU zL{|FaWXn>w_B&=Gu>FTVq&`5Rqc>Yjm4}jPxKg{4gxwb9(xCVd`lM0Ds7wG8VdTd$ zDvAquocWg^R8$3)lc8~Rhmq9mK(-t^HJ;&=6I#1l;c}cgE=Q9!!geBxed(=n@s(8O zWFFm9BqxWHEyvD@99`gD#&X4K8C?qIxa7!EVR0cx7gd2}YWnF8BdN)dEeBAeF+$;k z948&pFu{jfx9fJU+zTh`HuB=*CSJf$>#+6?wZ_g*!&8Lt9AT;GA8&n~+{lzIq<+!} zUorT)TbE}(__~vs2+Yj`ldtdxUwinsyarX)W8}(m+b|!6 zJxZ2MS>L$_!H%zr>htAMn6hStlNsK!y590}*&}psk>T)RW;w9#+c+*04p(^e@C;tO z1GG`w8E4&FgNZP*Zkd9Xn|wU&JD37bsU;rXij0Rh$d;w<@pT8O$xAyrW?ne_?%^4^ z%i-KI-Tx65~WkgmSab$ zRXBGWWZp`xA4-db43D079K~hXSK4=cl17wY`@U*<66E`rki!1|kKiy>{F!zxy#}15e5r-F; z=0uw?oPX7vnwQB!VW|mWv7=dT8J!pDek0L&fowT;boLKiA?@b#Y63fZk1-yBO$QUv zjKG$gcUQdNGCWi0jw9jOooqRFc!awYym7}fjV92u(wv@UWT~)`r{&`+xc7FC;SwyxRJ3cM)9L2=p`R3egB5Q=@CWJgkJz-d*yNm>;Ot!ow1EZKIyvZDx8_62A z5g7FZ;SF?`k-%I}wj4V!E%pGZCk7ueXXatDOju@G-cN_?oB}5Ve@^!riOo;QmbYkZ zloNqlZ*QCtzeSd*o!A6T0KP%@8i~#8WXrK*vv2TN%3f1fO#Jnjb8|45h-M_U)O;k> zD7Ksk&!oGJ1ZRJ;t^wr#yu zY}?~g70Y+>`8;wPQwG-hX(Q~!?}Hw=RE9e!Gs&t|gnKXK9r@B9>F%|?_3igoY{}oK zOElk-Uu7l&w`I3+Oa6otnmVmvGWja&I&x*XjhFAlznZL;vc7YdfE{1W)D?$h)iv5J zmC^N*@4&x`?jr&GFcsL za8Nt|kH(}~S}9DtNcR`X$qQu5v2!BFlR_zDB{L=Qdb+)LFa~8hmmG9wv)}1?4y+P@u3fBR{7* zi)7>{WXl1JXv~oDNj7J|tzm*s^vEdd>BK9sitOmmKdrwdlFx&?%Se8K1{Hn(i4gxXojh18cX9 z^LUeB@GiC(!+HN!o6_1J|i!7Gw}klomK74cI1W4KSBX$ElSxO>L-qn>@;ti zk`tchZ{Zd)pV5_^=R8j`6B@l@_({*W1*Kv&l`UFjY0Y`ej?}7gn<`IvMu7=heyFV7 z+^Zm%KjrC`gPp$~yZr@|dcdvet|3F*Te`IyddD`!rva?w^;^|!)hbA9mvhXkx`(c( zGV776dLFH+y~UJ!wu9+zBCCBS*|OBL?axfKFY(!3r6MVv%IA~r1(XG=I#9|a zH^S4w$-ca`DchU3lJ<+50#wJDLv=J+K5TqCLklXD3^HHy=*2+tbvW5_?0oH`@pKey7IWZfM6(k!h^OF!LPBrO@T<=APNrlJMr zW|A3egAi}7HV5S@vOri+-k}w5+=9xC4AUJ&GIAN&a_o%k705_+XwVWUdC;7a2gnj( zDN*bLwF3s5bY@fT%5cIcv5P8mazEWwBq#TgEpNG;R0dKKC$E}w@-kVX=s96Ul{tBl z?kbX#7s!@l=OhsnPndXOn!ERST2kmF9pfBTIvgB;>ihW)WTS`P|-#bSIHyEFxQuoeX6RDOjnZa*T7nIU<|L z8etL9iy^$Matx`_eMOQ|CR>i3ltWa#&0x7!w6GJwH<{COBUv{rJuM%R2^=A}F279F z4RrsJL|sp|96M2SX++7>!H<{&^)OjBEKn`)C)NN;IV1dYy8B3;enPe!J5S2Ktdh^B zS%ebv;jMQv&WGP3YlMYIuP@_el_Sp^bYGFAyiT?pJ1NSUm`bgnOnQ3EK{*&qL^E*G zn~7-_Rpw+S-Blzf`;#qiah%vQSm)NPnw7No+zB&wXPI+yI$0uYKp}JDFRIMRsdQJ7 zoUA5Wj-8X~{!E6AJ?)jqzEr*$!2g|L_$O`M1EmsF(v%`w zj-96cf@4!QV->4e*vcq`qpQpT8YT;c1!$qx0Llr*%>obCuH33)s}B2rxtpfJFMRRx zGP>tTcs@q996LNc2zX#OusRMsV2;uKWXZ4?wS2F4gkG(Q5ihzNgzlrej^yZ@WXrL0 zw6}^Q&-oT10KIHZ&WmJ`u;eH%%Cb|Q5r*ZS!pf|?KzA0&%Ad)WV`oL!7H(_nKMN(m zGJT@)sA~$Ch-TD9-4-sFR;Fcly0=JLb|qVmotCMAkwqMxFEi)lM6y2EpmLN}R>Oiy zMJ8ks-A^PT$CE8@k%Xj6gB6}9oE~HxleB}HSx|>Kken_?)I~@n9>9E^iCE02&_$_l@-XP0` z<)!7zU_qm18ydOTGC!}=-A3~B8rkxe&ri^-%fUMv4~J%giD-sH=KM5^E%UQK-EAa4 zon*_g^P}#a2E{Ygr<>DqDp?$Cw4okJaeJr1A(@TUbSIH)oJ_VHI~%GcfppnQRbkg% zUozEOfn@<9-Mz@1llPN_!g8XuBp?=8X6C(ghmp*@n`}9DX7*L(Gqq}|4}h`H;15;@ z1Z3_qN9K02PFQ3VPpG(Qid9yfuXaL1}?98aP`DQF@5XPKR>N0MUaiY5en209P)!OFU zEU8S%Xu79JO133ij-8UpioOVLf$>ed%rmFsaI!MkP(r*=oXa6}ACX+l zCR>i3i#^p`*sJtDHu}xk$dJ{+vZ1vS1Z=QUN_?c~ej@pJC)slBe5l66nQUL5khl(; z<8c{T94sDMV`96Ia_smR-AN=HA0b0;3VToCx zv+E!eRB}1O{F&}KlA=G7EyqsL0gCLTFI&vCTn(DCi}4_5cQ6snAm;=feB>g_-0Vts z8OhDgWXoGNH_hb`A?%!J&dnmSRM@a%#!a)xGB?N5T}E*4wY03}pHa6{vZ`oSN6kN<~YJSYnx)*XSN2sd(3xT$z`5)7?e# zavs_87Rk#%s+fWIk>DY>d@3y-J-XeTms`j(Maql6xH2zarn`&e<%?v?vGbxj#W(=z zFRUsE-O=Obp!|-k4;B=ywQIMWG9kaA`-vpv|HzhOCq#8B+EvbZB2wUFhsnnI?r1O( zO}?vjD%w|CnU-zo-Xdw)iflP{T2%Y!nzvR6q#SNe${}Qhun|RTA6>JgG9|O=o+2sf zCR>i364e>CrgrYSw(_N$j5#tXvRqhXw9Xi*i!Jl>PP*Gje$FIYj-4OXoG%v=wn@M- zQE{o@GIMl3Mpg=oj@CSkRAQN$kI+3vQgboca_rR1P|U+{4V$aGLN9fnIXB-VYlY=z zvCcG%qRcWmU#I(wB?3AeH>fA|}WNk15TlR#|viokvL#188L^MMst+_gXab;e1rn`&eWhb)b*m+T% zCJ|rmTV#&N@nmJN(M0PsiCschdVZSZSh|l$F5W@596J{WD)JP5vp$?iV_U1U#eN~2 zl+9Twk=4SovP36SQI=Y!Cr|epNl%t+Id*zfxr)6`l+2Z~;@b4}=EPh}RtQUsR<6=4 zsZ7bI=$;}e`2^W=?34)4WZ5x=ttP@@u2g!x5LkX!+n5@9i+K7S+>Rp#UebXSp_ ze2;87c1~0$*Yc&5xL4tIb3$Gti-RRZ>*ShUNSTdS=uRTpc!_K|b~aQe*9xgYA$aV+ zyYV2W6HG)i$kEDRp^P#a3A&F+GNzF&$4-W7%@9;;9yk)`OjesSaxz&ZZ1~VxGxU{K zrey`)TO=(@$(CcMMYRW^klN(j?c+N?|6X%W-c8mA%ZXOL%FF3i10NHgNB0!T$VRf| z*cnlcY6`V{HJg-soLkH(`7&9dXenuwRE{KHqI8tGuxcPe=P+3=xJxhnO=nn_dxPvc;-ZE~fIs z7uUBdTYa^1b~yLy*lj!NJEV%~ffD>y!5Xe>?OstATjr;m?lzL2gUFU+k241==J(Y? zia{r34$wQvdSUyiWjZtb0p*qnI+N}CfiK{E;ja78$MEbHxJ7%sfMP7|G0&WXrKLqq?VzOUMrJ zHN%Yv&#rqK52SVm6VVK$wC*VjEV)e4PIS+a6zxd196Lp-@pn^85u4-9u{oA35jN&% zjlX$OWlr8fcNNLWkz~uUbE0}1n2VQe9d1hI+~moUVY$(I8#uV=GDlgu>qw6J$d+U0 zXo_MKRkkuU>5TNX=FEJGEDx3$t(VlCV#<7cg6<}gk1NQQW9LIPPgAxEFlE7BXUtp0 z{^|hinkr<)OBjA=4$Ke8dSQXlnx_dUw@lFY=zb#!`VQH0>;$Rqv~!glEW@;{5}w!0 z;dzBD6&4m96Kqh^GR$B?K@NOPIE%eBx{51hO}PRa?0q+ z&(9N_M)wlQ##*xF*x69#vID6>tKx&>Bj#{iOcnjIX*~t6G_MW$d};s!^eZ4+^Kc`3_D~?@kLIL2 zLzW6liq@RITx6M>C+RLDx%oZWa_rowZl9}U&$E)Ha>j!7SoJZJou?U(cXk33(TsPr zZl6<>Ste&ky3a^*wkKPTogCG^s0zFR%9f$U0nf4Kz`TPj5jN6j?Tg|?l{q<*?kbX# z!^oCn=R|et-Vtv@Hl?`HJ#UUmmaGyM6|GbEzS7FH^wGUV(vl`yj-3|eJW8otP4*5c zSoxGWE1w{1gk?o<9)*`xCglpcuSilpPPQC7DXKFhjrHYJ9$rk79x896 z>kNrdUYVHh(EUXc^DVOF*ojfy=us^JDQR)1+$-j!yhPRqON!R3B5pZlLjFeg6G_Nl z$d+R#L={t*a)GZeCZ-#YgrF-0h^Ow68if04xOMz*}A6Qg)}afLZCOUXK6 zV~Z&<>US3x)BQyfvyf~#c4AaBb)Gh-es%FYb7(e_rNTm^HB%=SS&lSSy30sz&Lvxp zog3BeTM#km#l}-RK8}3)O4Fua}bz_W}u{-!3af`xtT$C8OhCl zWXrL06VNN!V}?|3Ufi&Kra3UDku}1G8Qor~QC69hwRB&Rq^u%aj-3?Mn?(?$i*SGl zmZTN$i(hOG%LmCaVPVmFv&dgunV0v`-9_^99{ay*cnmAkTR?~r-kA2P6^}j&yHXsnoL$NhOlDFd~8p56UoPRWXrMhv8N)2)QZ_Y z@m|Y!nB#FISsiQu(b~DsN-5KE7~M-G9dpT+W2Zy4%c)jm&sMRg@xlJQFT-IiE16E0q~`6$_P z?6jzENZ6Q#OP(@TUkcvfu(Md;CNE9wf6pA7?~vufVxx6Kg1Xo;Ki{IejpXMWWXrMh zqk4aY327B!Y+zNAsS2A@5&Ni@%<=gfSuHF+TJMi2OD)s$7rNI-dj3SV96LR#6(Xi1 zJei#Ag=aafqWJFOw7rc-NPB{bXhuj{D@0;}WoCAxJB(yz7qaEpnF)+Ic2CvfhQg)h z;4CJq6@A1JOD)s0knS~-p7~_UvD2fvfrB+b=XSzuF#{c!kRfk0C#OnQ3QLaG4IEO5 zWopi)dyJ%}NVXh1HG%z9@ST>QH;3l4WTCLo==W2e0?W*Nn(i=?nQO?FV`oNnm#(MX z<+Jd1O=U2Z&KAWH`7h1U`59R+EIL|u=?0WrCg{g>zmWtzM7A6|LBh&XW(b}w%cdK7 zvG3N7|CuB6U$Q`0WTWb844tSakG$oS2gJp!eO6@78%*T7^ZX)@37uj+E zA6D+#X&oK!9-fgqX;DYV*~7V0oFA*5A8VZ->(~$1#6jC^(~-Ld{#NcScoenPt6^f_ zrinM0iQMF+9UU_-9Jc+q94rrP&RqdNz@4czzvfiH|TMnpqjR3-9(39pd==aP-N-q-DdUN-Wf><~)C>{lcwiz0+jfJpn zR$Eoy@a@1(YG$sau6}H$l&qeKeFEh~|wOjWj6rjyyiVBXi{ zHiEmAUX75!Yq(0+Qu#8yT*GtGHS8&!RM+Ry{X^Duk!;y@j;D?5nThs6v8Nvj*mrnt z%}S>7c_D@TJoshE#b?RtU|aqncrJJW<&5IfbO(`OTtl`TI~dcHV5Cd6VpZI<@=J3z zenu7u%f{hkHk>lbc>I{|BNC5?$d+TrW4aQLY;l8Cu80$?|1;;~zhs55d?;>54#*n1 z-Pqw4QU>JTbSII3{F7`sc0kneLwQd5pnZ+|mKk7zmVjgVpvMoVj4~ek(S1bXu@BjD z03JpIRwvWdFu}8*`MR9*VY4%iGV)??6E9%ce9P#z4x1;>?w&g@vCvrtO>C$nR##Ki zY}%LBZxEW;&5PM2J1HU$*+-p6g=T8g^z|D+0bFJLlkApO`KcV5>kiIhZP^ z`pc=o0oURnv)GH{gdH{p8Fu!@kv=9)7ki*+mJs5f5Z{+3}fWwNJ z`&iS&<(eky+uO&)?JI8zZarMeEQL9mVQO!uApBnVly`tKa=Dd+E5sh%>3&Yq`W{W8 zJX&woHE}omMW@C?7kNgGshnO@T3DKwur>|m;U$9vTpbPnoPr4htCH9_FqClHd!kUv zScz;U0TX43YALa%T(c6r@Y~Kw3HYN{F;Ok2ij~1E?C$Be|4gcwN%WOVg@muYJjtps z=b4>y*GiZ>ql&e{;E?YxJjeb*imj~Fw?F3`_9xCcXE=A0y&^Ii*6HB#rTlPn{&Qp| zYPmCEm1Sk_EcPo~3$nd}pzipfl6g zt=g!W6H@s~BvrFR)hbp><-R<;8S=qld$r3UbL@Ujo3vNH>f_HjhySsN$~%f$KilL| zn|v-$^SV6xoO9s!Bl2~tZr_I;j(FZOGOO75b$=&o$X#wj?t+F4|Lip6E@;SIZbR;} z8**2+(gh8AQDGS|Jj=NLPEzvT7 z9ztCAc5TgD$It4XGY`58r)RKyts&($!^RrEW^1U=nlC8 zl5>&`o-K8@n(VL5mHU;h3EpIX!Ayic zm>j(TCJ|t3uutSS;9DUutPpt&T(stVPm=j{U5z-Puj!hIT;}c79sOSWMN3Nzt1=Vu_VrhXqi^mKu;Y^~xUav;T)AOg6TGQh#!Q6X z*N=iO0hS%Sb5!4gFNM+5t0Z>5CUrjF(A9^-`88b=kxLxV&p#EJ%q{!*$8~k$QvXiZ zMC4Md`}u7ShzjUd{d@;})i9xYGc2JsI%(d|J7HhL1h4LMbqnJ5^AEOn+x3(aYyJH& zEp`Hg#>ATDOnzdam0jZtl}Cj`R(&cT*bnq2`Ft;Q@Y$ff)_flB2y@a7WhMf<_7J-r zcPVY=Vta8qkxms8y%wybRcfg`97N5q<%&!e&RV60?0>8H7sSqFf(I>#Z97mc_&4wN zx)sFMTgIGoj{OHhT)nW}X{>}zNZ7||6D256xwNrjm3^c*j#C;fsfdM#MXXh_Kx3z|}Pr7B%^>AP$%yGrn9T`#51_%v21qiNl>x+ZwYSfy)%2QCL{ zisr5s+>1FTUH}<$+B+RNzB#~8q+#jGN8pW6ln~Oo`i!8F$sv5{01kt~*L|ESh9o!W zipx`x>zRpm#4TsJTb*EhKOAXuUj;ip(dw-djPIJu_ibGhyoKDWYl62^rxK0Y>9r`uaJHRKrf1~#@xZO<#%>;FCo6)pEax^nZD`!8J+9KBa{O}JU*x3wx=`!L_m zv%6=_ODs>FH)L-~T$Jh;QiPc^!l`37Kr416&PwLt>q*#-XtA%4RL%Q?M}|X~PG%x7 zK!J=E^P5HNhLmam+-B$-C1DD%Xed@U0LcltSbd z>qA*xjd&dD(=`#f%mMR8mqsRZ%Xy=^u1;L)OLR>{F10$XyE8JSTcvfk>8iwq{)(;% zQD}{vjHh)@=+`j8y-4U5#O>iP(OMtUP3sQurFAP-oLshGJO&$u?QMiXncZK)fvkRD zU}je+43@2`?Fcr#`;)Hh9Kk>6n&6fHw5|!a^0#g8*n9Gt8syMf*ioFA4?D{ix%)|d zY5e4wp>&e%m(Y%!tWScE8fI}5n29!KaTAu?3!e!%Pm^%Y)A(dOEF2kg`+*&Q zLN~FKt+;luM&Gnq6Yl63qE@mS1+-|$YwQR=nuW6qSp9&+jljR=W+3$Q# z68ThJg?I>Bt!n};vi?x85gpic_dD`_G(h!hOp1_~C>N{qO>3j{22EhD! z#r|mSb09(PM*Ej9+P{1WezEFf3aL#QYp^;nylkub=yYn3?G{~G-?l$r>K(qMzTH4J z16PX=UtAyO8g&1|CG|0Iq@Wkh31)_uLD;HhtMH*xF+T)0_a3J4HMi8 zr|;4*!Nb5f6D?qNac+Avk;IY>L-xv9iXSB?Czil7E2T_L-kkgd6fT75Uhi~Thdu3N zKgt2mxup1lKslMUzdz!{;$yl>^T6{cGZ7egf@hqxqxs}D&XzDcTY)^A9qY5o^L!Eg zf8nT{`y1Htr!2d{VWuwF490R6@8_kc{$F!(|J_>L(9@A!U;yRnX%lRf`^4Q!(+>;< zUxl!{^6j$aF8*;z)+ykDR;1+2?yhTs$EaO(P4GzRRIX8^{HMc5*r#>2Ujxe}1sKHo zH~z1PtnOhdtocQ$!k6kw%`1Gdt_fb@5lKB|b~o=f5+~G(tjDM%Ub=qx246%Qj7ek~2EY9kWI(DDyt&SDWyxvRK*FWy7i_MYM#U7n=y>;O@02Kia zNELCHu8O=OZr3#-R)j{U!uusBqth_Ky?8`7^|8Hx4E`VOT`JxIq91HMl=kqv7!FwV zebwXMo>_D4ls#?X_V2u)O9uz+&&)(%vL1Rqsb1(Ae^59%8oJ(Wrg?Q5Pk*eP-IbL3q?cY0B<|a2Tq)(@v`v&0n};(TL;a1-iAz zo8WQGMEjcH)CFbB+4z)7tSnWn-co6OqOVkj-PMJXuN&l|x6J4pU zqU%H#I009CfD=+znl_jD99(zYCLQKKeclp7}pTWG@h%NpaUHN&7|D>)7j^dTNCfs;^jMj{(E(9|hgGq;ifmC*V%~_PU zPjj+MQ0#sC)sp`xN5{)|Yzv-gnw&E3S-CQ+(uDyHu zWUHLEvT&ugud7}OdWO+e!=e7hU9NMT_E_neo1B##Y<|^8nqp)8GToZx&GSTE6P&L_ zx+dJ3eY~wH+HUL0a4jWdXHGO$XJhAuRK>HMDi&A#duAP(+-SQ2v6#65*DKh)GbSV3 zsH--w^Qx{1UgziPnsDp<(zdqdv2*O!ysT6%W>dbV{DqL}+0&Hgz@>ujw0X}QXwB=L zua4A|Kc_1wuh!4#n&8!XovsPDTGwkeW$mT#alyx19uBEy4+v_(hZ0Y>{9IRBUcooi@J zxX^2LO^8BkjGXKq)w$=?3Hur*xEDXvjel;x{$zXm^+~hsn~CS!dkPme?i};wZC8Xt zl=pgK;fm8a&X&UFm1iT)m3>^76^`3SnTdG&_q)PTHg^NqLH6&rn=5yVt_j{mzRXO7 z-oGnPul^do6~YXHLgW^wSAV6e5eM`ax+Wr*IiQb!Ju;zN_VKUj>cpjfMb|{+Qmgy; zsohZ_-Kvk@1HNjQw@%hIAquV0LGwP|3H=%-xECMRCC2UJ@6uW%(;mCGK6AGw9Gn7= z-1xdC#mwp{x>WEMypov+?9E#rNy>c+wvZ7{BjrA0|M@h0GWS{dCw2%a@am-5?&PC= zaDr|6vX2`DZqk~Qgm)MFFn`jwoy)cv=z(;3ll`aBQ!Vx%?g^Tg3A(YiTUyMz7no$%|jj@(`BU%m>zo(-dT`>mv9 zJHI;x{KIo$lDd?ZrX@9uO`(a7>9pUR*eG6B9duAdyoeKL9*nzM^FOe;}FQq#7O zt=aFUCKlvVl}ffRo0f&{iA?B&I>Du`rb}J+CcdtQOI?CXQWYF*UIjCCO>p@4*EPYD z3Q)bLr>E(f;E+UA zJyQd#XQ}WA<%N;e%e3Hnv7L}AYa;RrnI2dn?0QgNQ~7*kRkBxbl{jul zmGW6#MR}!sTGxbFDH?Imo$vWEQh;VP*avqBkWw7C4phnb>n?gt(i4mI{+CW6~$ z%gdznW^NCMPx6^tcP>^j;ZwFM_W2!qLWoUHB5&BXCqF4yHrjvw$iP{rYys|bhKE1< z3vdY(8v!*B6v14v|Z>{%*rZ9*1eQ$L*7t2E2YXI7Wndabm7IobYYmHo>a`v#$F&v#v*>W?kiq^vt^+Ya8v=cmRXPAqQBaIJB3E z7Z8Vv?ad~3ZDbR$le;*SaJJm~PtZI}mf6FV=JH*xYl8RNm+G3}t=6eTqgGoo@d8@yx>ngk_^Txo>;d0= z2>&asD%&#e8{+)}3KK?yMfN;C;uML*Pj$8B&GbjQCOBsgG83V%nC$4TSjh92uY^+z zxhKJnPvZKx#xjZXQE6EHlCD}@@W1Jrh+OaqEobK^&khBBh3J^s`AP6~tqg<J5Lun{ zbT-`Tvfb*k-C|eMG-H+EmK3P2*HxTX+O@hS#7fghrrp`_UE7-pPxC$AaoXbJ?P(76 zV{AVQr|#>)X|ZpX#h0@w(&8WM))lYrhjdNw>i#}65qerY+Sx|p-?s8{I2Dk49PIei zt&efHtyJXR=S5wOxXdr;nuuKHQERM9)i3fcbHd4hWs$do{@(tY6u2hBCk@ly@wz4= zmw3YRQYr&0TWm9yJ@)YRCx=I-_QX#2!)z-S`>-VZA-bw@wrA^_Knt(2MB+X+y~Bc1 z0rp_o;`>BDgNYvWn)IF!g_C{d5?ni8%ydJK(Adx;+&+?WtB$=fJ^h?>g8y2GFHhU9 z!*r4J=hJQ4ylE# zV|r_>3Gf!O#;LN2OPdd$xG$bK@1KM}xi{7xQuLw#Y%9ap;*On6&m47}f9mEqPr zc$j3nvej2BXNML2=Z|O z^-1mk+Ws^=Tjf-^B>p#amE#D1P1i)^;_uYhzS1bZSNW$RQ+`6H``uvKAJ^54%lL`VT(4T@-jL+>9QV3PeO(Rrx?J}plzPljI#}04 z7iu8GL2XID3= zg@@nl+E@W^;$+kQCbTKC3YpwUsp0Fk{*A9oEu^NaAFqP4t_iUUG$N%t1Nr&(?x2~n z(6R;#@D3lp<#NeM_PxZ5PhRWmPd^_{1=puL`^oGV+cNH_`Bj(MksoXOtZo(YTK+UM z5x8w8cub@*8Q=_-cZ8R`)DPi35RR<5yTFcrR?%K(_k2`pF87-Yd7rM3x;N47-#FoU z@=$f4RGiy=1e=AZSk>Afo8npz!$m9a1NRS+DSSXSf$yz_&fIlBdekV zn@z}5L9Rz#wnwb;9FL@`IzU%v-WBYtYeK9l%?{tW+Rcfh8YZ|G-)!BMwR^6eR@Iyr z(d};gnfHFd7g|q`jEf1K@Lg8-_IJCxyXAG8Q+2D3*Zyi|LL(8-?Z0*f1?}^?aMB4j z9VsX5h9c8+awq7>P7AZI2TvYtFjuysYl0I!=u}SFz0(w^0;WO&R#+;fa^TGAwUJfC zRJ$VFnrQkETpgd%)sln$30)JBSI4AAi^!!mDci%hBddm8n(YC;9W4L7y4rF1@6k08 zx%|z51h2dg4k;_(naC=D2PF3O;3{}hS3h0_zt=S(R)Iz@&8JbF4oAZT_rmGuHB4|X zobj)Q3GT%;x}y(wmSbhB`JIHQB1LRIvY{p^QKprxoE& z5UX10nFU9SEm)RFRjm=PW$FYE39J><3uZ+V@EM#*tr!VuX0)%br`Fm1HmM z!Gd41H(yGxhjjKm+|#dmHGEv$|)`OW3P@Ss_Q-`mk`CsC&C>P!pXE zH_j@mN(Kjn2ER>=|15oo0|xBe4;gbQB@<|3;wiW#yM5j1aG8!=$hb- z)TuKx zjIB>hUk6_e0d9rhm=n`i>&nKty~>fTefzU_Spb_RVWrQ$sI^>5TX2DCvELUkz7?6K zyLLJsXSc-ik4qWkH_UbYnyv{>^jDp#33~xzx_vUnSsiC#+}%8ycY;$;2 zL1sc{^SfQncO}_7;Nymg+M8j?u90Q&M9qnG8YXz&~<4c_C3cJ@i#H$8-til$-88$#FP__48TbaZT*5mvORLriVCE4;E_~SU)R-{SJmCR zCd8`J$P9RL;dF8uCb$<)a-m^@d*Mt%Xqez$oWgRoz+trRY=wJF)V}OUxyj?T$oOm= z6SY4byu;%aU5Yq}FX@_yT>Nd|NVG2+>~Ta?1Bz|!qtJ3Yp9~)~97IggH4(YIJ&mi2 z=CQzRPl6Vmq%-Tgw8%cXB+ZV#BeJTP)x1(^9t+QQTI2WyG1+^^lYOX3osk}?t2u8K zhv}LSt4$-SxzppG~U_Oh0< zfWO$!5Ofo7YuLhFiKd#w)#-nP}sXZ=8Fsz|MRwzt0!zE)GZG+(xkD zlde9#adyDYZs4m@cJo1VCEurOf;XS{FcX2C>-Ok7x_4B8;@7<2r})kA!7%2;WyRr0 z8GG8z792h*34W8VS{&UQbxlMr_#~(7Z0zhVQkQ+Y|12`ycWJz9XZIn^Z%gw3SXVnP z|3kVa(DG}?^*tH^9PUiCw+J`^9zgtzuNGd8tQPj{Y^166| znP_7aAG;c6gj83VOgu8Gh_YiRd^31hFdjZ^n75AAHNlAp`DMjfm!q8QUz?( zRgYIdRo6u16)(FnnB2?H^M51Wb%Bej3sBSEk*TazFi~gkQCy@cMpW76{ znJ&kfF2@=8!JL8o3Y?KR`Jrwlb54H1Otdk-+R^QQ*s8Cu$N6hy`i^V#IL=2U9iKPX z@i|=+ob+d%st9}0bH@c`3yxnokMa5h-)UY{8SS`E=cCSj7c#gz!j}zG+U<2sL@&5Y zxSZ0?iBNDirwT}Edvw*}k>X%o6OjwPQzMIVqooh>wUKE)p_xE6zAFWmRl1sS*-z3n z5xMLwa;Hs^iN0-THZxleC^cP`xX@)?6Qa->=?-5#b^2os6Wj|YW706ey>RBvHB4|X zlDcz0?t;k$?L9|3VXeIdn9XahvMMWu;{*4G!*d!TU_92J$|n4=kc!PgDb?5WH|8w152_L+3YEC#lQo5Yl7>6l;9m}uJAi_O>nl4bSf$Akt5}hh80MF_u zPEyxI#s_sZQ*M_;SOe^jlIu4z7qnzV;jwadY5N@ z6PePT{__C7qZ>_EB+dWNT=QS*n&9;R%&E4p`=cX#m1A#lYzRR)!ttNTs_aOAmD&4L z8V-_=ar{fS7I@=%Ro6u16?vd^ejuHP3&Y?>oYn^jroAJoZ2BPi071hg#0i2u!7sx+ zdpBJZVr6M`TfFCU;;n`W?nRq>zC&mEdcNh65faq%fdf($UZPu>yz!pEOl(O#pP+O; zGNniE`Ba)`%{A}SHNojmJJr^%p6}3El%DTWVwGKaOvhFo_W#ZvRzLkGPXh&Zfrri_ zcY$@?>fo*D5?vFK*Qjn6cqg$A@l_YFvT~cQguE8MqH98|1&xl0_iau@)iA-maQZe4 z6Wj}D;$6c8_u?+y$xz!1xK8bdZN91Lz=d#oJzP0kP8BP#W!YY4vESQS0q^ZR^WINY zyl?LK`tsMpLA}0LtH*Ydh}U*r(dCynftQ$xHg@L|*Q9#$mOXj8fIXutY;K!;bU2yx zD6r#SblJI+ec7HgZGKrwkS4)jGfbE#=$haSX&f^V`pV1BY%7M1dGm<0kLx4hvtca4 z$l6bG_Bq+x$l%jKn{N)&RgU94SJy=J;yV*$X?QcQTCT~L1DqA1_|DXr@6!_br|T-m z#XnWoMC9V{y1E2UP7YZ4L95){VD4YHc~4~ePwuq8-sOC~xwl;L*8RJ5_2X4Aq-#Q~ z0*yp~=Mqk*qG5u2@i(Vm3VXb=tGBaPN5NYo1i|z5R)O$l-CE=z+@xzF@+z3nc$RrE zJ7_`D<-g7AmyxMIvH31@^TSdQ{F$z5T=*aBnm`M$y+*@!1lTLrnbO8$9`3pG_5QC$ zsJ#6utG!^|{II0_%eu00D22FVONIHQnWysPd?>ot{rh8cu}o8YZvf zbxm-3$1)S4C$D25c4qD8qkYgG9+}kJH(wf-r%?~lRf)qoTh~P7LXTc!!Mp8(&SylX z^O(-Y_avUz>1xDfUZZP5lvyL0;rWmgnKVprFCxl^+^0i?mkBP3thTrBWG|?9sV+Ug zNVl$db-!QNgebH|UAdE3pK3LU6&Mw@`}FM=*RmPQKa{yUoa(FZ=*&;`J74h4rYJW5 z-l?lSufE%uiNGE_*OTq&n0evwyN74wu9#-e{^u@-9|N0nH^GnGr)F;3k-HZD$^QMD z7qj2L#rbiY^WzTZ$6d~k&)9$d0r+I@v+z%656@WHxG2UcF?%D5&ke#|G3;eV=l#>+ zi-uR$_xB3aGiz?L>i^??%|C19Zg#$r`>p-K$KV$$cMJTdrEkIia<{@i)f-iryAA&B zlHBd^>&3Y{*gxM1zb@;@-NpXptMDrn{mfZl=m}e~+?k1vj%5>bXTgtpPtO31Hhapo zV$mx1*arrCvKxlj|1+g@1)lXTlqx+=3A@Xc>acSl@+Y>T-V{MUH(c{5=hU7?%i)dh zD<)pR4D#LW-J3stT{#N}*z64-Y1n<_%S_&YqJ%J+R-fTiSl&vNi%A%$>9d2KpK^5!^t7hU?nlZA^2j*1NfB>an3{n;Q#ue5%2t9L*0( z>Bt`Nr?r|0*Kaa25vX7I?;wnKPdC_;zJRHZ(04?p;!cgbpX>==`?HdkN1AJSn63#P zZst1G5k#%-5wkZcO}_x(AA8~e!Z@V$YtNzroM6Q72FUp|KugU2>(!I%1>g@^G|o#pO(b`zOHgy z{O{_Th+O;$w)m^7aDzc#O_u(J$fTdhq;Gs!E&QK#RpY|{QP)J|!mH;j#vd15P8d9A zF&4gRm=liCH6aSEG4kSrHzzaIFu}c;q)QCx<#Ac{Bf83Q z@gLST5xMxSv+DmwCOsyr{=rW<8tJHR=CtGd;!ty=sV@&LL?-9BPWWhZf2lkhlQY+`U)KcZ zIO9}B*tybJTkw3gx11{bS2;c&nch1xy&K<@u>Gj6Rvg<8>zasM?(J>43$W^#_rZNv zWMc2Y#CESJ=}%>S7jzapWxKwx%?|5Rbv9aY?#7MV(wN1HR8>IgeG+_AA(CP{u#WRk;E zF7DExTJZPls>Q?mdv#5Sf@}2jJXvs>kcJ8F#k`2B-JVvkH{nQo^X`tY+TD-ByD_jO zPl{Q0>ed;r_SJ2=F$m+Y*p`)B`UGeJf*EJyutx;FJx}8y? zh6(P)p1Kj)9qjL=b^1cLTikVS_w0H020Z&ZnT6TDzFGy|l=cl$Zwv>i`T=|bXRdRk zr_wVwIXejx4e;?~rulK-NLDeabAv7_oVM$AP4IfYR@a1E&wtXIoYT%K_i$baKMC&c zU~jrs)H4#l45_j^d1X6qgO{2gPHxOr2kZkkBhKFaOjlxF(LZJ;+L&jycqaViaJ0=m z1$KOGWaMYUUo=C&HHvbItL(CeVUw z2a|p5UE6HAdu=h>m$fp970daKL3mqn_`SX^YURP0f9~24AzCz9{k6RqSs5)x=t***r_zVt zL|TtTw+oGpqk28^%W)eUXUKX)w84@j(uPI~X_FW!KWn#}Wu*MriugZVlAOAScDUX9 z!du+BMBRlaY#y%_I2{N{JKXM#VW~Y~*;%B*D3{{X+Z7?Be~J|`=1Yz2?`^LgH_JEs z-u5}|T1$rV+3kuLe}jkL+qS2{s-eDb91R|RZ<{MkjPM)UwU!usSGyv{-QXvN2H!Q< zsPa?yU?RhYnO|xN-j{|)2_Y5 z0#59?n4Q~ewLxX_?~bF%U9DZV*2F0PR=f5RlRwz5h`7nySo+J;1FuZm z5FuLd(?c5~L<`;vXhVc(@$q(@;Nhmvp0+mk+I}>eVINeJp<64rjLE9peegVatlHZ0 zFdos19jSI2X*0?N`Z6mb^U-I_m)+@`@0-WQtmb@@qc?c+Hs3dl-h5ZJD?;v!%i9$p z_a}GasP50jqtSwnK73SOqK;pEyf1&n` z#d(NbvOP;@ebJGeWqS!#D7&-W%hiEG8@2bgYj*jex~E+cG6Wk|#F*dfCr3xZg|Eg{ zV@Gqncx*bw93?sWwx@W^=r}rlMGkc*)(J0Y*LGt5=d~+h+|7Uf_Ml-uB(;CI+DBU| z^xb$jJUN7+(z!PnsMm&i`)c=e?&s6%)C%syRnbf`z;Em8ozN-=@Qkt zoN9^g`#`(4m+rf-T@mBneP`bkbXJCfPKqlcfBlY~+xG0W`(XHjLT_z|`m3ajrIrIi_C(a{8KfwjC>Bs=R%GBM7FJ8oaFw?IYlOLs&`EMm1Yac4p6)I!h0--Wp zp)!dMnnD_laz#0@T@mBnLG#rI$gugbGiW4EYC3z|I%R?W3>o4toC1lCSktZ*Hax!bkI`_0UiWLrsRjB>`Ca4IDRifVi#O{_;GdsRndmfwl%>P=cC9NN zw5?qcNVI}kaRIRD^TbGaJK(Dh@1@A&>pIL3ePe?zw~|Zhx=H2-^yEuuJuZ{XRK7eD zc^&3$KodGhAX+q z23#hYSMudQkvGY_fUEr#7g@u6%bD**oOh5fCrq>TeT#MZHdnNc8P4a+$z0^?j23Z4 zuVMC=u*~~7@m?z=H1i20 zPBNe3yb3Ne%nZ)!<-|vUVWv3?XtF8cGRb@imk#rCMnjy}!wQ~*%WU&u@Xa=#1v<$* zju}=WvBMnUl0V|a*8@#7ZwH!fzKkN1%sYW5nFqM!T28zlm-*&5ocA7FCYv{NkqfxU zb)2^gmk#qszC4zTY{I3(+{i^f%z3x-Wj^OU8|Xx{2k12OQ(PvPPa<)GxrS?aE;B4f z-pS?{oH&gyKVvD!IPaIZOfqjl-W>A<=KBgRlgv(Lcm<;dU+%|cg1L+Nz6sP}9?glz z;WE)Y9+ydG1nei6GjKV{JPC=D%~?P*&9At_9}OuB%^#3A)0~J)huMS61oI4BPBvRn zWQsW%XtKEtmucobNStV1#tQxui5;c`V`7T=C>Oa8MJAY^a($ghJl-4unq^*#%gN?> zNSt6+;xgIH1p5T@b7nXLiSx`VzHCL}4D&*uiRMi}v(4AghN-3#6-_t4#pQU@g(4Ho z=W&^2R_kvqAD{d}3l>>uNjXR~H=xQ5vSDYrZ_dB|pLJ8&PDc`81<&nG^qw(Hn4?WNt*_B=b40;op%s(R`lK6S(A; z8Leja$&5bDd`G#+hq&YJ=e%FA=;v{f*+}d#Ut{)1;*qsMdJ zyZADJ6F^6CxB*}9|Col3%KMXxX6c5 z!!mO`5+|E$P-Lq4BUihf*|#9C!yE^OQ_SC3$|)@6$1G(sUpC>g$J~ItDdrH+Wb*-L zKMj0K%`=&A2`+QYn^C00d>!@CG|KgToEhHAc_+e3Q_OE!*dQ0FpvX+~cqC3Tf52s` zS%Awd(~G?AW-j;^nm;4)Jo6B0m|z|N`$^`{C^E@h&car(lpnDYk3=G^wze$Pd&<;!)rOf-Mu zyd|7?8OuDvm+$iBpUCSl!zek?JQZk>c_LTzW?VYVe{jjqA#Z}2#xlQ-ONaRqi=GKI z&1~V4=OS^Uxr|HxHy8PLMh2+E%t6U1=Ea=1ne(pU%iTzvWrPB2$-$w|0O zHIre;*=8aqZp3Ac8D_Kud>v*5>r!Kx-Hc{)kzXOP!+eDEevL%(hj3zzOP<7C^)*I+ zV!j2O_$?%MnA0$OoZBhdC1!(fz z#7FXF8z;V)h26&NFJW{JU;1&GWbWj=cQW5AIqy{NhXb6qkcC~s3?Jf>pFtkYno{&8u)B4<;_BnjfIZbn{nM@CIBSXFiC_RP%ZinPf^3Mk_j8CYuf!U9c`Gw~7nf<~B}nWr`?%x)qnm)Hnp1I^WnPZN8D=N*UBN{j2I??BhTyK}q~7WQFX==o)ffustF;5&eZ%;0HQf52B2o1HWpf36-`QLR zvYtp_eaJ{3xSNs&L57F~=C4#I(qBJBNpA#sGss&(-VX9kkpBUB56FEW?+5uHk-*f$ z`li$=X&T53B7t>5LvH6VC7lLxI+4J&-&!D6a5eckw7DZq3d`fyL$jd-p4)O|+ zSAx6>Dg0P;qVH-Wqv{-#yb$EYATI@ZImjzPUJdeEkk^5{0pv{} zZvlB5$U8vZ1@dkpfpsrKi|78FlAaIpT9DU)yaD7skoSXp7Uc6FUj+Fw$X7ug0{IucBqD)zU89QYkhBA27sy_a8$oU+5|}rJMtuC73CEcyfIJc8Ngz)Kc?!sX zfE)#RD#+7_1m=-p-=DvLk}d$b5ac3|i$N{{xfJ9wkjp`?0J)M#U_KL8{h6(l^jVP4 zfqb4wU|pI}f5okobUMgNkTXD5fvg5u19B$FSs-T<2@Ia}!TOaiP|{aHz6SDjko!R% z0C^DP8zA2V`4*ADz!3n}Pkn`wJ`M62kk5jA4&?J7UjX?c$d^FA4DuC_uY!CHDE9C-Dd~qGKOz!X&j!-J_-#u163CZ9z5?=9 zkgtJ!9prwH2S6SK`3A^0LB0j@ZIJJPd>7<LDqw80NDt#31l;t(G z$U%@Qhyl3^qz|MYWB{ZFG6-@v$Ph>!qyaJvatP!eki#HHK<)*3B*>#c{srV;LH-To z(IEd0@)(fEf;O1$w8l=LQ$H-o%| zNMPXdLgws0QPK$@CxXlYISJ%skW)ZT1(^#n4`e>b0+59ui$E5GECE>xvJ9jXWI4!b zAS*yl2U!Vn2FNOq)kFdVryKOS^&gaU8_4Y-cYr(sqzrN=NCjj+NH<6iNC46cascEY zNREQr=Xi^8=xgb9T`4N%8RKi+cIE9j41oC2#mw>z! zD17&HN*V&GgET;fK@JfKtm6;GK0SkyJ_GVukk5g99^?xkUj+FQ$d^IB0`gTNf%O=I z|D@w7>12>oKu!gj3o;L6KF9))g&>PS7K1DSSqicYq!VO0$Y~%eKu!l)333L=Dv;G6 zYe3EfISb@$kS>rC$T=YAf}97k7GxdB`5+g7TnKUz$i*O+fLsc48OY@zSAbjzauvwc zAnQRkfNTWW1hN@q3&=GfTS2ygTnlm?$aat&AUi>Jf$Rpk9^?j)Js^8Q_JQ08audkS zAh&?r3UV9B?L-3Ws)haMFQTLcAPYejfh-1D0~$m{s{6XkUxX`1>~aaN6*wEp& z2Ib!latD#XI;N36|B;lm0AwM^B9O%(OF))_ECcBTSq^d<$O@3tK~{pC0kR5YHOLx} zGeOP*IUA%4qy%yf$hjcr5eW=@-B6|RSV|fOIRtVK$YGEpAomgp3_Rf|`|ih6(tC&m z*7J>|Up|SFeg*Ptkl%p(mPlaW|3-;jM=5DH$n_vMfb0R;3$l+$V4dVBd;e1@=>d=j zLB0XiCDAm0V~9?17WegN_i$ipB%1o;ujk3oI{@>7tXf&3ig7a+d``4z~o zL4E`BTae#@{2t^FAb$k;6Ud)I{z4=$lfvd*{VYma53&JdBN1B6l9LPVdG>!%(sMwb z3-UaW=Y#w=$O}MT2=XG37lXV6i;lRzeeOaYk+G7V%p$PAE~AhSS@2bm3W0?3IVb3jf4IT_>>kW)eC zg3JS%53&GcA;=<-#UM*SmJ$gJwkha7dG9N6pWJE(p*j0i0C1q8sV`eIiB>xxuL5}u zk-)$chRnkyO1c;1Q6T>c@@SC9fIJT52}AnCx|RgN z$0P_oEudTII%1t$g5c#61aB13OuCL(x0E3Grv$+t2J{?TI~-$z;2{$PSD7IA%ml%C zCJ0_ML2#!Df?rJ#9BhK%X%hrD8PHL>j#z)0AUMth!Gk6Ut~5dLsR@E}O%S|ng5Yiw z1izagIN$`q6DJ5RIYIEv34)VO5WIDQ;I@&v)7CkU=RLGbYjf&&fccdv%c z;7Jn%mzp5>)&#-HCJ5d(L2$bXg8xkr9C3o+krM>hoFMq<1i@J+2wpouaNh}nA5Rb* zdV=8D69gBZAo%(O!RaRm-akQb0}6td6zFqw9kK3GLGYUjf&*0$JgI`%4U8)cqz>;^lLRTnsr9xLJ1aGlOS+5ZM$C9^EA$XJ}Z?i&M6oRu^O2VfLw1BQ7 z*10PPUS2`)uL8a0rzisJtbz=Gfm76fN7(1mmzv0h<8a1RTDpI8ta#)9BE z76eZ^P=l@`)}<~8zI8!xvI~N@T@c*vg5ZA_1V_9ec;p4aH7^K0dO>j33xd~P5Zw2I z;KvsPhrS?q_65PkF9^PVL2&vDg7;q#wgCiTKR^&R1_WV;KoFecK<}dKi1m^Sg1cN0 z{N{q-&j%Wy>xgyi3xbDV5M2F&;PV#*=f5EA0tmu(fFSG(2*L(|AZ!o-Eu-s*-6;@+ zEdxQ=I}n6T1VPwM5QJ?7LD*jqgpCG4*l`eqtp`EaT>zR**ActTAPD;ng0S%*2s;ph zuoWQ)dlG`MIUxwU6oRl_Aqd+QK<}gLh~2jkgbfTq*vSxtEe%1~+Yp3J4nf%M5QJ?H zLD>HgggpeHLv*EkS|RKzNFKHq1Yw^+5H=hH!LbE2k**`w!zBo=E! zg5VPr1m~b2cnJl;T_^~CLqTvL3W6t55L}9a;9C>~C!-*E8wJ7bC zR1mgmfd2eP-2K?I5roYfLDLD**w+(;4L(8G=@W!4KS9|06NF7bLD&rx zgl$1V*tG)s4qZp=_LU&)V+q2BmLTkG3BneaAnbJs!lsuX?0yNtHkcsnhY7;Qm>}$s z3Bp#HAnch5!seME?4k+6cA6mUs|msen;`783Bs0}AcT?tt)T0OjVTd?;1WTIG7*Gu z6G4bO5rhB~L5M^Vgpd?Lh)ofMAQeG~RuP1-6+wt!5rjY%L5OG(gwPg2h;b2wU>8A% zdJ%;17eR=F5rlvkL5PeIgb*1)h?Nn9pcz4ko)LsF8bOGs5rn`RL5Q#sgisqnh`AAj z;2S}R!V!dU96^Z75rhC8L5S25gpeIUh}{u{ARa-8<`IOj9zlrj5rjY=L5TPfgwP*B zhyfCWU?4$=3KE3yAVG)|5`=&uL5Lg@gb*S@h$Rw)pdvwtE)s+=BSDBa5`@4bL5M&S zgis_wh)EKJ;3PqaQWAu4B|(T=5`+LIL5O4$gpejdh;0&tASXeHb`pfJCqamR5`;h~ zL5PSFgisrxchYsl#@q-(@Qolu;Rr%Fjv&P42tt64AVlg2LdcFF#O??}5RV`P8vyN~ z>xhjy5QOjpL5M>Tgn$G=h)fWK5CuVqRS<-r1wn{j5QH!WL5OD%gun(th;R^uPzOPX zc@Tu)2SJF|1bPQuM{L-pAjEG9LLjFgM05&5Xr~~=cnU(WryxXq3PSj&AjE+RLO`e> zM1~4Nh^QdMiV8x|s31g-3PKpEAjFdjLSU&NM3@RfsHq^toC-qlsUSq53PL!lAjG8# zLV&6uM5+ox$f_WOn*x1-t|Kl2;HydIcf2R}g}H1tHp35W;>1A^uko0)Yh~ zB3KYYg9RZ*SP+7R1tGo(=(}_sv5}BKw@(K`NTeXdMhZfZq##5~3PRYVAVjwU4bXMO zhPettysIDtz6wGFtRO_d0zHqeBQ_LP5Mp8lAvjhL0=j{Y&~?N{b_+s?w;;rN3qm+4 z(39ypV&h5$A;44+B25J$A?_9E^K>1t0kDD)2`dO8 zv4TEj7`=n8GHbm%q9p?ZGsTqCJ1qEf)MZ~2$64s z5CSI%v2cPA6ekGLae@#gCkXL!f)F?-2oZFG5K1QqF?E6vTqg(-j6lz)>xd0y6oi;Y zK?rUXgeXTr2zL~OxJN+gdj&jh;|f&ut!0Ne-wm3NI{5c1)4xt+Q(A}QLd7Qa92TydliHLSV4${ z6@-vjL5PhNgdkZ#h?W(EuvtNfpB02aT0w}Y6@<`QL5Q&xgkW1ih`JSo@LNHM!xe;p zTtSG;6@(C7L5S5AgrHqPh^Ym-l&&K-xKI_|dvqPK zfv18Hfhq{0sDcoaDhR=;f)J%D2;r)N5VtA_0jz=$$tnmTt%4BSDhNTYf)MR02w|^+ z5dSI&fv|!Q5i1Cxv4RjID+s}|f)F(;2;sAW5JxKr0kwhtKsub`Or5gXYq2!Y)| zXVG=UMtBQCsJ9@*d<#O%H_&6~I%0#r1tAJt5W>L)Aue1H0>lL&Qd|&1#swjETo8iD z1tFST5W>m@A--G?La>46(RIWIO#@v-G14P8dRh>|s0AUOS`Y%O1tG#(5F)IBK0?&= z*wHzBKtX`7$w=yqo?1VB*9M;&M-ceY3ElQGbEsBpl|yku z$JYG2jTe9ZlH-osd3092x}QELe_;Lo+M(c>;0*zN?t}2;Y7d=lO#jU63A+0#LzPCg zHb8J{PpzB2SU@c1woV8-p<2Ho@XI{;==5^;LHec$ed7Dr9mkFyU#<+)1~y8{@cyGy zYx_;m-M|40=Ft=AjE3Wek52ElpS`CKBiN=)4WVCTT6eX5(Vs=x~PIEoz(doAFyM}fRQj2Fd=vxVWl}50e ztk7Sllvyri{m=ozW{+jvYpFGg*+>6B+1yB!UMaZQUZ~ZRVK~3d=GoMCuPIaG$4TEo zT{{I|_~;9c9bMTI^j3!Z8fE$-OQlin!6)WdujyP(-!tm3^$hm~oz+7})*L%Jk1nN@ zvd0d-V`t-7#U4;ig3Te)>*xwsusV<<@>E}BRMH8&mEQ#kCC;T2v4_+2ng$`rWWKQY zf~YvEc97 z6EXwy%<$zVdxxwU9IEx#8bKNNTfJQCrH-W!xYpB#_##NpD9;L4?5Xc!$fX#@B(bO3 z9i)o11H~_-8otucaVAV@cC3SaE|wSAW9Xy1Vg*gZ&F=|2EhI|1hW<+35%V(dtm!bC z%~efXC=AKLe}W8)B z94M+vDHENhvRwDa?jZYfz>}ydt|XnIvYez8)7cRorKjl@*pC)OBWY=cX2L^9vVX4Z z0QU{lVgYE-I_)nesb zqc8MthLytu{_vKYEN%UfQq~FG8@~2!yJ96~)v}v1EBO6Sod)eFPAThz;=31K_v{~{ z?`d^c>Wy-?NZUQ}f~tE~#&g|`5xd3g?8>)ToI}Z56VG+>qHfLX?l>pQ4a_OZnB9G~ zdO(dnROzesWDiVh%#^aum{0a^meqcz=TBGG4(Y|6=qvpZwXEr?%T9o*loPap1%>O8 zMYRF?ZSJeymAWFfcXU*OCAfuJl7|H;B?b1I zEHZqTN^du6R%+}Pvva0jNNKd(&v8n{n&qt?{nAQ~H~d32{254wYHV?lloy!)}v<_6s@EHw(Kf17*xC zY5g(_+PeZu|0OOpqd)9wnOopWD*ojz)$vE#N-J!iM(Hs<0`n{X);rzZRQY$b6`3r` zs#VMyfA(4B%BkO_G&3!LnNmwT!OQ&_Xq7*ulXL$&M~(LPyA z5v9>GNp}jxnq_YnZkCi)GFC{slMyK|jj|7SQF=*uT$}L8sc12CR`2jYH{4L=`tTrq zO0z*eF}ny!T`(-c7|Z0~3M%GX{u* z?L(f;b&U8{nDniG(>9$yY~N;bxC*}RYu2R~q)n?>hT)UL<0@ICmLc=1mWY>ESxk=8YiZiA2V-LBWguuK;%@ueK-CwKqWiJ@rbEuS3t-#ZeWVstY zHfiYRP${k?;W<>YoTQZ2C7(lujU@(jTAeq-;BGotsUNKD@5_0Fv=ersBnzyV`*dgb z=61HtRgGIH47r`1RWP2_rak1 zE_VN=-RgGOdS#rDD}6npkEfRDCMz(V+xsz^&XYW@lJD3`>?Z`t_5LuUFIn}&lbr1* z1S#)ltj^I%gO%#gv7<|IqE4fWoawHX%ivF^IiT8mWHmXX?Hz29tLs7*+hs?EnZfAi zVJn}%oxJO(WeBCOl@8Pg=`Wv^D)a){h-s)(D3ByP^_ZC_%(4F$vp8$7nxbwRsIRowt#^8MS&9zps_P&Mo0j zEy-GJWvT2g$u_SeZV_{;tz@7Y40H#+kcFWT(ttCwMNHp9+bn_o@G|yZs2!3Jt8Gq{ z)47#Crrk#$&^|g>vvj$P80!fe_>1{+)vC?CKbjCt4oPSH&4(%j68ue(wOy)5}rtjbx8 zN__beUtZ3aA-?pm?&t93!_4*H z`aRiFrcJGCqg-}txP1NNvg8@&vep$Txw@4`Tg#RG-Q_Cz>}kuqsX-G8RT}iLwSTw~ zkZ~?=oxc>-u9Vs*&N5n>x~I<8wWC=ED}iX|d}A9L##K>@Zb1LFWjK0VrfH#p$b^g9 z&2SUWxFRj>5g zI#fAufPS3%D}!xXEwa}YZP-g{S6c0J>Eyz#jzYJwm^|aEC`Bo7jLqj1rQgPKZ}^DS zra|LM?;3?&)6`N8xM?V$5I9;WQ6>J4>ga!{Hn*d8LK&s(#xa=y+nJJW#Y&e=!vp&% zxTnoNj&7QEeyq4=)+R8Ivuo6Fakj9xHdOAb)%a$Pxv1?PmMg&Q6|>T=W<&M`)!uT@ zS5Mt)or(So^Bwb%a1G2W!^IR%**KE9S8F{`QbbvEnWQ_5+6Atxd%T?qDXV0xkaQ;_ zdhiuFv7HIwVOeyLy>HKXHs6Yi8PhtAY_2oL>$Nd@DY$I^a4&@*rmIc5=y&kDC1DjJqAWgJ}Vb#7!;%Wl}9JW@DEw-#f*DIqM-sxqyE{ZK4y=Wb;u#$4Rm*J$OEFWXh zIv$g2**o2`%X&-a4h4PL@5~@mX|W(GPK)hWBfNN#1RsSvh1C#WirTSw5#guLLaAlz zqTb=YzRV@O-O!9mD9x8f$#tSgY9Vd1)F~P~ z^?}Ad4!HtKlO-?jsp!Y3=}jO&@)x=AjWlVV^=(MBn{hqCDToT8p;9JCzw+7*$XP_xJbN4lC$7p3G4 zRJOIneNuQr$0CdSq!^eo?OAdc(rZKgV>cw*ziFU{vL9|5B+`o?_ww)9nDlb{H%+8W zLe1!zWb6#tzM7FTO3fQFD&*04>=Z5XfP}i)!{&bHFd{v5l&aTrUhxN{r1->rQ{(|D zDJIl1{(!X2-S6#NG4g}A`Mc~iP=;&CVU=ucXNwN2q=Zu1B(r&RGfZTuOA9=TrKuF3 zSFVlj<1y&IHpf+@g6hAPU3Asy=Gx0stcYtb$)D!h zyOVuCbkGGBDdoEkRw&qpyeS+?KPJCqJKMVWU92;%xusjxS$}_<*8nqbE6~u=WA{MtMpW_XU-^j?m#Q>HZSy{g5K6*~=u| zH8=Le?(H5*StVnIq&pcYPwlbYL*Zdrfq9Q>lYMSqOTSNad`q*KKovD|^gL#25*w&^ z{HN0OJ0(6aZ_mvaph6Vsq5ZL%x)Lai2cSs^$0->h7T z3*pcm>>Eyf-_APUTmjYEB`($7hOt}ObH2HfihsFFb^Ix}am@MVI9xj}aLzaD!d(nU z3dhD+kul%2otUJE(q);XJ8fdE@g^oIt7NQ@bSERFMX`xVcwC#Va}$$o)6($lhzeqo z(^_TUyY>qyotFDKPODhUtc`72$uF(stn_o7oRrqZ-b44fT>Ex$`#9*p4!y|96zi~P z=%E0!SIi%M_EUo+sUG90xVtIOF+Em|_eBRQLp}9-s&$G%C$C$qR_i*CN+>HVjgp-S zVy5(5=TT85;j}2(Nk}nb%yk~Iu%y6j;?{(*JonJCZb4=!ksb6>#2Ms9HOLmynP>+O z3{}~M7PE)#1y?{dW{FF6ZHZaKn*dx%#lPI8I{p+}#3lg8;Y{&ie>BXk(WGc)#hNe; z!vUGD`M3LQ^C@Ox;6Um);-e63wqu>|8-G!E|6sXV9|*mAv1;u|ib^;E&vvG7dBdPV zZ^>J)L~GGL5tqOCxO(s2b~X$m6$)+`MCD7aJ~l(Ro!IJzK~kKoJc>9blKkllj}|u! zl44ulFi48X*f7{rrlPI6X_K-O&p1UMaFb$6o-V3i_fo(m9m_O4NYPtGU7<r>uzU zC&>>lhX0%z&M7-0uM7Dy+%HSBC_*Sp!pF)L{J;h-bagJU07jc+H)kaf6y-@iha}6(ql(gWVw_4QvMo_UwF=Q9eJFzU^^}0^YHRHh)LP}oV_VA2?-YeSMc=a zHI(+MIxZ+vJas+e9o1xA(ND&i1!@XKC+h3z8Mpc%TGe-cxg6ZxdUb0GH4l>GwH*k? zt2RhZ)Ry&naZcA2Yuf>mtZKV3*G-vI-&uuh$*)SQ8maH-$vXY@>74qCwGWaLwT+uK z>43FFZ3E-hHb_=&qq}^Nytpl!ve;d2MXUN~tWZEu8@G9}vBI)djh9f3L-m8z-Zr|h zRA_)k;#IvDQ@w3go7}fZ3~G8hcG6X?uy1{Mf9oAu(7sl-s*y%eTNM@?LCN~4KN~~C zK~MEi>y0edpON@@I}g*Ff#Y?wV>smTg=fHUMA>^u>F09fQMd}o|*J^D=W;7>T)p%}y%ggJP1J)I(6VzKZVUd|Q6wUPo=BM`Y)O^zJM3`&TChCGp-I~!pUB@;wW@7w>`AYZ2 zJ`M8x= z%%}7e@5ONUU3AQg+l{#>>&d+tr~iAkb*~lL)~<}N4n61>32JWmJSD$w)w9>p^$$lQ@!*Zn>{VQmYpeH?c7|Gm~dNZamEhL^)y;qc@rSJr^d{rP9xRzyTe_k zlnJR7EBMoW@~DwkB&F__+|aV$I=ky5@6ssyJyJ>8b8oaIQ2cfC0=jM+-5B+hQrhmK zj267t1r#mhWY3h7zHPz95kyne8=P5z+)Sgjs3@f@S`Keyce9ON#g2;M{ZRXM`f^lTKz8xa_m| zcDin-#KvzHv3Yx)S#rrb$(K;G3j0CwUcG8K-kA5O(V}4Wv~g`>__Zi4oiXmn z`5^1Wm{USY3Cz#@K+(mGp(EwsaCb16`q8S{=y@r^&8V1T%0Y29-%%-dVYmDCZYlcj z*wM4HZosIFSK7b#E|I3@oLHSAh3>TE)<;S?Irl{M*ZRCrfLt-sCCT?;av8~&V51Kb zdSvb$=87AY9*NL_t8+pJ3aXJjkS~{!%#jEwAT2UO3UY;sF?Js#Wv)CIl_yL}=tn zmHQ@n5O6Ld)Cp@<+Mu7ZBN}o=iY{&RQ!>L z>`;t?9n`vAybz7R{L(D|?J9Wgfs9wK?amf5mHrE&;>pFYU2yV_T!L?j&$rPnEoIQz z*SezglJE!SEpF9r9~&>tT(Bk|XmM~YrLK+k)Go)Rr4 zQN*}PS_9QZ`*If)OZ)&JPqHTc#3aTWGP!^HG1x}ubaCQic+V{R;!M`CZGJIL8}t^ z6?CVh(tmF&8;tpPmA}bYWcwyxTIxn)Z^RQGh7+E?Pm^ntw~Hc1b_mAr+PFKoh!-+n zWGTvyR8@u#qI`0B*Zb&GK4UX@;w{-T`dcBPscMMyiEGF>-PB{*Cy}bzO=-!&Ehgff zlHK|jFWxC*+>{h2_d(I9L^BwU4Ba{bu0B)%1NBaOPT z992=M#2EZ=N2;kC;$}*A{V_JvQ>1f|ee(S7Lo|X@PHDY|GKz;ycHTDOe5J)= z9J1q%cTYCLi{%UpD(=o0cciK`A--+m>kyb%sGgYHpK(fyedI-^s(nFJJgK<%$eZ9> z;`61b9DC#y{=hVpz6u@iuy5&D=C4w-?qTq zrF;!b?6XBrADzk0pHqm10^5WBy)vpnonD3;%huTt8wBit@Cqv_r+XPrN=oBm2mO0Y zEG;nKQ5A+;6I^T0x z=q&4xsF>s2NSU>pKJ&E97lo-ZpwQ$}J-BO_ z<#C@+5eZ_<^NLm)GwEt$TY5$J!CI{z;En$tI$JLsy@|Uay;;=ebF!;Xm8_b6QTOoB z5Do9vt6h^*t(K`OTpxS6h>qGHI7DB5;&6B4p zy2i`E0Vegqpu5^j@2gQK*D1!T__(&aI!!B2t3xSt5fn0&!>!voXN1ROstPYbX8+-V zb_{OkqsmV$QhWqKX#g-?KCY36ws?tl*QaX;Phqj?xuJ!EfTPP`3ReL4!`N_Gr zkKSQ#x$2y|H(j)<-u5qj^|AY4>oqqqwUVkTybmR2tm}cM{LqO|b=o=Az$_ zrBGI?mV#;(%_A?MFG&seW5cH&4Cz&LS^>XHuL_q3^lfNbBG8%9hv-wQ)q%m` zWYAvtW34Kqj`mh(Dhr`@Sa>8QE9+hCiqY2oOJ$W35>Ka3;vWpJ{1LUY1u2V#lEmR%*Ar0LDbG98ivc5qF59}Xq1e=G3 zYV?cgt*rb8B?|g&xwLs(;{4JK&!>=AVR{QrrWR~qADq`Io@+*nOceE7k>Q%jmmux% z?{GIh>ZKI@(pxeYC5LL2p6*J$vFBiA&~-@02um;Rx2M1eOBEtb${1m(TssN>k=Yk% zrTtbE>WdU1(wfY^Na0Fv)ii2V*p4Mxy}(9U(!v7^f~ zHH^ymTG9bwe1xCrfYjVX}b-lT!#kr*KkUXSIE~l;Z0A@ z{(c3baOMb6b>`*rnQxosew!*9#RBDT*EBn`VbtHU!mvs<~d*4WlR z$gd3sJyAz0@3n4a7Dvmi%n($dl^LArt;FcNvC=o}Ce_T*=N0nXQfTxEuc)6n`lN8W z#^>|aO!yKUmRDITPU#t1bEZ!u30ZFK_XplKI#GFh!o47VagJ{@=ee);57ven$J}n5 zx8RJG@QrsqbK#4w^oDCzGqeER6rER6@?2B)a8sVam#ubDYfff#n`&QIa)}$d?n;QV z5C1Pmdt>2?gkEFwiu*0!g4OqseO(}A$?U}(kz@<+Ue76L7yG(8^>nezx)LgfD%HNq zesT+Yt!+~;8{f@CBu}rLdX<8=^bVBi0KK4WccsHk3E8CxbF)TJjs|4H>twpjDOf6` zfl@js#Nr#fy$0Mgh7ItwQH|LMN47UE+EdlO!PtCQ#OhLt+!V`9+e&IrxoySlSfGBT z@Md<|kJ@(j9i`^BOVq~7(1-e(J=l(!C_LWc9BIqe{G=a!JQ+EOMM_UdGW8|5U#Qp-032wWEn=f303^ z965G0^d5P0zhwIMS=~K2L|*VLjUy&f*nabitr8{Ehls)M6z!M>50?2T|9aiWzhysF zp8S>BKVtMaTs|1|4bq-2^+Cd6<7PjBJsp!Oq_4kr&?18jSffv}1!Z1v*v^fflv>nkLvq&1*D6`R zveh+*sx(5&Y|v3@WEvnp z2>-ggmM_oa#Fc!R$rJj|IqwXc=r$-)Jnoe`?Zx63I@ROu<@)pX*}S(vu~OC!ez0b^ zMJS9kQ`?#+x95@A${=U0|=sYIly>Rd|(GK0QE zShJQ498sdL;+FIThiGGpg6p~)*wyK;G#c*fSIz9^d96i@uu17+l>*^bQcsnRenQAq z=1NM0Qxm#T#b%=*Pk$>#iNB2XKS1*$9fNEm zBzQl%(4FcnJ`-(8ic}R}sVb&D#a8R~evY#0)>2jV=Z4kOk>oisq#~GxpSPTs^ssvl zupCvzzg%Qx7(;3e}m{e`_o zC2qMip{i}+0Kt(Ug_@Q(Kp;d3-@>Dhd>!;aijbt>08UH{V|nlvUVpJ+={*xBnwTq{ z)d|chwPaIabWtc?ZLm@8r}+nu-Kj65cm@20+p6_FmCTSr;i1V<#}!Ie2@;g$vf~P4 zT(b1H13RTLR(Sg3#(CCBhL>?{-_yfJ7Qa+ucPO%o(F;A~euO~Pnl78f2dihX`bQer zACatrtfP{@8uq&>E2>j0MqOYxg0n>5q@*S`f-~6)TIZ(pURbq#{f-TVl+PSLkf3xg zG=6No(L+?`_(8FB&5Mm6T}|frvDLIUeryeN(g}Hd8b{nBB(1l&j>Pz+9=Ku8XnWv> zJ?-=W)mx+oZrC%r9`LKl=>e*y-5#JCiuC~MNc6zjyWHeks2l9#L0Sh#VpLxwf+ccU zr9*76L~hyiUb!$bV&1$O=_(akCrW;Wk!aPz^XiRYu*J$U$3dhRbyP5@>N#W2HJQ=> zHP?l8x&;?uA(_?^5}+iW6L+^|Fo}`uwnRp$^!_+EGFqOA(6r|FB9+RxN6xl7W&g@S zzITgcj$vDa+#!M4+HB__iYcZyOLBG&(u(;DnRVTjfpSmE+uZRGb*YAW+FMYkR8R_K zsy@HEyVg(f_x!k5-hZUrQ|-?5ZlnmMTGz^hN=gBG{~%d`QsHvzb)?|t#!$s>rrD8^ z^6-};ovQbqJ5vgQ%1jkIc%I#&rnMx{$(vvh3BM5RzZ@K=)?jftA=Q8;Pre`yj#w=o8^DMp`H zwE1NfSXdc4a1S}fQ+1vNom~N?_Y#+CZ?mNC-qAs>q~c%hQXPLv8)8QXIS$t^hg3Tj z&@72p5E8dNnSLgk5#}o`7W+)eM$7@9?UYpR&KP$}6JiJ1C>;WG2QLe`BhI3q%kYIu zdQpqMCQ`28?Mn*SPHU3&f@E@VBP-^pTX)*7o|oCr)6r0ytIV@d7@Q$wbe7bzyqjh(0@{DFB5 z4@B<9Q~N9Y80W7ZS@%o%zK1sS&Nyt11Nh#}uKEoeSO9qFA z$*~{w4>pq9xFpPWpjXBT`KdDhl73oyR0nGPbi_~EK(tc4GO9B=y$pAw$0j*@hwwe- z6;@JC_cEN6lpczmtK>1Uw7^{Kchm~%4BzJI_nB2MQPP>}jcN*-KNJkoK3kfVW}xFZ zTQzNw$C4bcCxXk(KM<{WmucP9p1mPeoD$^Ln=lSr(b6ZSUUHT2`*j);rhn6_&;TbXx}$Ktv{rUS2Q zQh1kX-lz+NKh`zAjKK7(X?rO-Mf>rrO(6@Zvx3#dFQnSB+|O~hPwXbNzqCBi{L)I! zNv3(P=H0_%huk9P*jWo^e8z&<$ zHGhzv77ji;*OW76e%saYg4~>nxlDESJaRy#A75vGp>3`*#6n?6+QIvUPI4|)oGDg_ z{X%;Z0`o(q_2NDp%TdN@Bx$pU{neEsO8;e&?uJxsXj<#>(3G-D#tKPyGE$l|U(bcY z!?FT1R}IPq1GNF#NUWtb$Sx`WOi=nQhUTGTJB-%}Z^98Q18un+yNfHKJvm+FR2 zY#4eE{jQ|qU+z*Je~MLN5B-jVKc-52v<_^FL$YqzquhChcm>d{PD4*w-z-tttECP;FWR4__Qx% zW#W!XU&Pyo(3G-H=CNGB17Mdwsut(Zg!b1)iZ~JPRn}cl zKRDdmo9?T%%Zo5yS$MI}l(ez8!b{`sjB%&fIsT)-I%*CsnJGy<}tZy{-3h_+}^%ws-MrUi;=19wje5= zG`StEJk2EdmiT-r#*TR`4M!`5njDc2u03Mxzb~4C^c@A#AR|Omt?xbq@|5r=>Hk-4Jg&oIW`0EvHI3!&?ET zsjTJ`y(+FGouRUvq?A61P4tS*wepR&mF7*Zu{WZz>-bGk`ywoz;7V^=lt9aPa&BM2@$UuB`3O~ zO{X3_za@pj3bh(Ek`ATDqmP#wu0o~8_HO&O3jGeyD7)((T>j5GDp|EsZGCSaz3>(! zeV#2CXk9D)6xOGdxGqezM;+pD$mH)?3+l9V<0ooXie2ln$Kw8K>Bf&&tkl{Q&n@@f zgL!jwcH7)WH{x^_J0nIKC`ETC6dkpe8%Cw2tzM~kEe?u}S}_zPpK@9ldM$Nvyke!+ z&B!Hf`1DV{M`>+3K*xb%F*%y)H_}G+lW|R3>Lqnh z%3jYuWte&FFWbNv{I+duMbV7zFleOT@YYPfa_zh#GBUSG^;NY~lH?aMGh~cV5|}9p_r?ai#c9 ztv5GHFGbve`GAWJv98ih1ze>Ej|}4dnL2%;!+B5X`xpBuQYnPTj&5u|sG3XhhuQV? z3Rk5C|65b(Wc|Fwc~gG8Q$`A@;kS!6aEd?IG_8VE#3{5{<$av3L$&eCX4V>BklWz z(f*5MgTni~4c+WV$-|D)f=x~st3|c^dX-u`thK_A4UU0cm$hatRk2cxyOF=# zHwJpOXfMBBrPfCBp7_RWsS~5u$n49WMQ)N(tU9I3I?BZS>6yn5L`u7t=vLQc$ZP{p3}mBli2pa{L(#q@MBVc`r9h}il2K`WVPYPBv&~1 zF^LMP9$D;h(W?o9E(c#!g4#L^>&DZ}&1Zx zjfIn{Y1Ogkj57AaH0h^tj>6odQa!1fQhhJ-TimTJVC^lVv9_qhs?u+W^MTr#ncg(A zfsIu>-=`dTOucPmJ9RPD>=ioC&XdV0&wDjUmshe@={zSZWde-78l?GLTW5vu71*ZE zB@a|Gc8?lpLuHZ4Y!!2@GSPzW;ePUurn1@}fG}S*WU<2(e z3Cyom3+DFIw`9|Pzii8qsdQfu6;CSe1qmnkmiT-rD#wC^g+DM4xF0OrQ*?Gg>R}VS zu&EqY+Rk@{lgfJjUn-=y7JFPNs>T;Kjyo`)P)o46Sp&mb7MZHn1yS*&vYurVd~}3D zIR1z)MctTXg+DMGm2*&i<0kSL^wB4p@eySI8#nPx|EK$c4fu-jk&Q#dx0w#8qIdSU z)4y4+K^9Lp+L<(yi5r2FOX;$d*{*a);kfxArd);$SuG((v0%lCbN}p!Jg4Qh>azvI zw#KEXR$kn!m2qxq9~Nba_Qi{*x2$V>?ZEC@wN4+nDb$BLgg$JSmZ4ge_+VnZ?=-Kp z>8!Li>B6xV1?JQG=FD2Q+nW=aO49{VaWbaeH4rIrWoM{plxxE;(@%3Mq*PucR?#j?jlmtKC~jq+al3jng!d)Hm4LYK5ibRjm4DS8UzT zu2A{4+cXN*V!z3u_i=ZfB8VEnfg|?l#kMu1msN(U`{@iKvfrqbbm}NW?%fjZ32g~O zI``7uh<=W(Y+F&E6y4UUH8a&v+TJmmZqKYj20>mtW7?1|Wy(w+5_eVx2m9#zVX$ww zu5ZP#+0{uC_Klh4OP;c-7k0Z=ZyTsK#%8=U+pnNwBIt7`GOtCJP%0=bZyAfRqQr}l z^E_&~<3!1mG4ia%$4xj6fBvj{yJ!E=3>HhEcHl*A-vj+5HUABXWn+!51H!by{uA5T~9G(-A#MPU- z>*|$i^yUTi?^xQe<+Wx)1Et`#W2sx-xeTe6^DAey0`obwwRGyC%1~m8p=rbJP*a|2 z%zRfkxv%8yP{+9zdt52IO0ga4h?`FARNm6%p0`xC2w{CXNI(2WX{Y!_Gm7}nSzV+J zZQ>0y^s+RalWd}Q4E>t1m2D*{b7k)srt-=!irz6yEu6kOxH3E@hm2T7*pc%`r8gribze@k_!-q?=wtM|~0odX3;yM}(HGL(!7RJC0ZTe%ezA1D-Qssu2?HbbFrN+HZ#bGO8LZp&-?g?63Q#u}TN&xVE&i z>8-gU-edW*iEDdg!<^sYux$Pea^|gc>Uhy9Bxg)mG0Kt!#{}0OwI^px*pe|T2If^R zY}5t@WCS;2QI#3o$eI4~_FVb|Jbkg^P_X_G1;*9-&g;pVW9_#)@QGsmv(3q+gcxO@ zOEPboEOr@gC3Wj$m5&)K+=!32Ztd8#Zmo`UZMAizMKlPCv~F!rdh1rZKFj>Hbkt|| z!*vpiXvaY*Vpn~2Uemq`M~e5=XZ}%xUzef%N_rGMbY64S7pC2N%&V*(*(fokhhrhEFH(9%w%|yXu7M@&9jXk} z>AlmS=`58~LnK7ia8a{yAJ-si%-PwEiKS>qn= zfJ19HMeS<8A3Pzg_k+hQcS2@Ac%>r?sXA>x6u6Z$`yqB8N44bjgMSle_CwYkZ2Mu| zSoDJ@MA@X!{opYd=m)QKWFb}OX`8w;{cO>1nf*XW{I`r4m87$p-OZ>ex`XZK2vS6* zYgyVvANe|XPqiNK&CuRG5EG)bZ)*D(v$Q1j9*C7rZ`B!_=*^beaC7_HllBwFVrJEf z#22D7m_+;7Yb3l(3H3_Xdi7>HTdIe?#}Nxpl_$t(+@!97B6g*D(=|}UCc3AtBBFBX z+Ml*%%igA=Cw06NqtdwPct=h7Vs&%T3!KpNEYGYehq;0B=Q6yc{3-FR{_|$K|IM1)s_)eR!pL8|aZQvCtB?PM0 ztlUngFjR(`+9vh4nR%7Gs8w0N&0&3!eNum$xlkla)v$U;<*ed=sqU@@1ceQZ5fRC|9(m#2N!s_wiU z`0V%ApwhD*AF9CNI!(uYdOZm_YAj{Dh{O9bMUUuy&@SRkhS=x|%x2}jYV(*5KCvP? z9;>}$I}T$WdS3KSb}yM@KWX_Fi1dIR~mv`T@Fy9vZVkZkn-&=XPXhsd{=J z*Snuwd!sshGOqqLqgUVRq?E0yTKI4Y`l;!yjlroNN;KL3w$V2r9EC|eRikd_n(2#Z z_|jUra=1FC9g+7!Lcww5tEN=%)vD7u@AM9BjgF@q>qgu>`p$5T&`PT2+{n$z_^MgE zHzSRuyeQ6seZWd7b#Jli(ukqSDD|tcqtG}nkh7S^qL)&dM|-_YUtXs3;c9*KU}o1@ zMS}mDRZNy1{b*OJDb;U{X8f|9?Z@;s%?tK!*6vbVF{Sn+x@$B*dMb@d`9Lr*4l`xm zdn`>=Pg72*e^>G z%rus_LS7tx^KRjfwE4Oz`&eJcFCw78gsQ&4XPxHj(w-(y3(e~R5=_f7+!4_I%cp2j$p*0QwCrDKuiyTX*W9?Kwc z277N`#JLuGTpODnd>nBHW|2G6%WAr`PLBHSgE;dm+eQ_NWW{U1w$@nHz_L^gUHgZ7dnr8A z9t$Kp)JnHbng|Bz+cihXHu_y6RgB)iw4#*!v+Qe`MGd5PM&r`y)lwz?OSgcL6{i|dvKSMQdO;I z)+>jS+wDqgnE>1&{a z2a8%PZz2(Cv07-<1}zP{+*%@Os+M!;vp+l+6m5!*aMC7=gsD2tYv4netr;xu4)VmQ zdd{MZ@CzFSx;}3Lvx1cDl1;KfTG@l&|LMs4@piIQ4XX|noqBcTkM4m(O6Hm!b_ug1 zXjGamWArO$N-FqSE*(ej_Q36Wc|M(EULWqaW5<66p`ZR4uoGu1ofdg4R3f&-x9e+O zI;QY0)4b85P^OI7heCWAf%y!tg^gV#UcgPvJ(e>0%yaDM`OJqou()fAEl@H4qO7+# zT+7m`FwKIqVL>UPtmqcsIQ2DFJ7g#OuMM+Aou%=-EoUs(tiv9~CE< zH6mjI>GsS!XeL&=q-#{Ycgye~ZQQ|yYn2LrL<*`A6WqxWkI|2Fo|`IP#gf)aX}ndp zhGxjvs~829CmUWtqoZKySW{7}(rWLXpb;u&e+JqY+vy*=+P(>)VM&xy%I>?V+Bi54 z+UD&y;hNcmfq9JkA+_^xcp!@XEtkj3 zN;kb0N>6@tXvwjo%lhq7NI$yxCHy&d)#mN{^u(Gfm71g1VxGJbiBSEW9fcj^lJ3;& z`B<^^-dc0b=4*=Tu2+1%cq>F{pMA(cf=~3A1qTXm%V|L5+_!z^2pyReZpT0lZVLS6gT)ywOCOKIMl8A+ps z(df;a(Y%@W=4nPFX-1>DI$f1jbx+^Ax8~kk-Tg)aA#ZHW^5GWtXRwWp!8XR&eArlE z3|Ppr3`WQ@i?CS*#t1K;S!L-1;mF7ndE%ED=iI#|rvB;vZbrn3h>VPkjLeK|_Gcc> z=Kk&*(~taS{WB5Ze>(k#k4FKT_0NE|1b3zvpjrQ(2Jk=AXClD=bovh;j{-F7p8;(N?tFCWsiRr{o(Awgo&NdLk^N@Z(>Tt$nFfCB&d2M<;KHlbfZ@tQFTF>V> z<&2D8ihjvA$t|u|hQq<|$>SN%9w#gwCFJy{I-zLvs5o_Fdgz6WV2~G0onI_6<{6Lh zro0>cf!TaAy=IVQ)feJ^#;Y4C_bGG8x|1pZOE|}ye3=x#AnPe}!1_h&rb&~G*Dk%T)V;;u>3JTReWAtE_501UvGO@G^BoHsEEqI~=jU-3Ha_UPo)lKtL{S443 zeiuy-UqG5WqBan9Lx5#VypG=0!RQogM`6XS@ES8IOCPaaxlwJ9b9_9_8=l33qTA!k zkEi~6*Y8 zDcNspOn^EP+Mv~U&!__-QVai%89r@G{qEC#haRU5$C0O%0`~X)Lk80#9#vmMHPDaa zp?iuf_^$yA@1Y1Ktm0cwK8QWVj?m{E-Z_gN;`e}!508>(y2HvK9Ce>o$Iv-1&%#v0 z*MY@%k7<;2PN|~K43vSTne3(d8nQqE&ebJl3c9S4sbk98ExtGf@Awg5;Ju+O9t-eH z&cTI$LSa&;8ealdzG+PNfKCPv`-`Y!8ZVN42iSOjY+h6;ZD+z{_}L!|47sx8tXlae zCCZt4)}{xZua3vl&DsL1r?hW;Uv)y|HGX7j`l+NMMpH?f52>Ky)4laqpesHw<)qR~ zuAW|gWs8M2x5tQ#>)v%jWYp?Lnm+*!r7cEoCUIo)1FHNW-#(f+J2rm<*nIbV z%8Wb!Yn;X8rse6eZI#z7d<9$!0g`FtZwHfj@YKleM{ z`j*EV0^G`NinXJ#CUYCHUHQ{;I5~X$0i6(bc?O@D<+J&r8Tj2+C^^gOY`%fJkGKZo zd?G#mexzx*@}J9o4D-Hu5~}fLGdnT=MP&3xRXcFMqmgp^2M_H&U~Ot3kmb5=VJ+kWshh+a8tB~8EkY-XP>Yt_B-U7g zo-6+qkZ0Z*tLs$6+;$p#hlX2$)2$jI7hT<<$uai; zGcsKpdvb?HQE=rSf?nSsr*Uy*-eh8n4b8y!wnE7nR~BpF?jx?jdSbDfhAZC%^UdLj z6vXcw`{yC@4Jn#g>f^*jJgdgc2-$`>Cve-@=f*NaE@-NVl4%?nyp z47o z8VJO?u3JQ|L_2ErqM?D#E!`q?Ue06FWc8x4L_uE)etx$%8eeq6Em5YMSUq>Wf&s1$ zRD&>;2&cMU0RxqrszIn2q9t9gkVLY72aI~1M)Prg)`R+;V@GZUKDKIvd=RSGF~{5k zOoR6%c2pEx`Ojdrv)=8KFS2@qx#m{nx<+W_I>+1t%*k9U3aqiBKD}mbSrOZ@f&obmR6|3TsPU|T zfyzzQAXE&glJTsN0yS6u9gu9p*A6Jmp~0)F&>h81pMprtKb__Bx74J0v%WWJ+PlOau%k4;uVc=gzs-g@Lc<9MU&xqpBAej89XN| zni}7gkHKaRX_-!Cfay>|OHj%-m;!V(lm_ql=QTIbyr=KL(51rbHgqcxf2e{QU?4T<^u7MS02K z;CLZSd=V5V9LAr8f*}X5R^#tS5k>U=G0^+w=)sAf!!6y1xi7Q>A3GW;?*l#e8Q2F2 zcI35r?$cCU`JY37e8s2D+2Qkj{PF1_@V#Dv<}9;E3#w0Wwrd=NQJziW@9}%C?14Ak ztp-8s{H$Pr>jTvw{hnBknx7RgP`RlZgi2(*)_gKQE2Kcpm46;2yFH@vc_TMv2F(Hn zF7H|p!fqn8%Ai?TK=%a;Lg*T5NHS;^w&>#r!5X)GvTD#bO8?Umgsn^ffIrTNMYP;L zRZMK+UzcB7WJ=~u!4NrK3jJCwp@)MmJr&eF>odV5C}t-YAp(J-d<_(_8ypXpQ@3bv zNUC5!9S5pGBuaW;nY;o9DmPVwP%-*CF?od~s`(qR>{;iOoh1`5*0>e;*s2loo>fcC z9CHsa4c?O_rlR1=XTi~n3!=E#R(pKRwkx#9=QVikmC&KtFgPOY|>WQA62w^n~KtM0bw?a273N#m2MM;(Lp*21-;aQbD}PJqprC+f=`?c3JvyfCVk&6nm&a66m(CxW zsoqePtN}q3^n0{^53c(D0~g&sm2w=JMA;+}Oi2CDn$sJekbjqp?*cWk$f9SELhuM| zbFVUy!aoOL^&qc8G!S&-b=}fnk33d__t4NlM{K)hgKQ%9UcH1!b|Z3nuKXjxI78Q7 z=UIvl%FyeY{+OX9Ax{YjoG9xzgQe3;7_4|YcxDj_PBwyofcpt*Zt~j6+B9zDGz=A` zPBx+C%AeF0bt_mMy()I)I^*tzqf;oBY`pR}U`0{ymKmR2%AUCP(_UecW2@3Ypsee< zWwKRiXrOaTw+J0WWr;u6(Gy!87&5ed789n&%6vx(oFPuRcv^ zQP95D^KA-#1E&-}_UR(u#lU#8lIXI_w}6H0UkFKtFemO&Eabz{+71%cbN6W=A@iSU zvG>PxxXtw_Ki41h&8UV4G(ZWVAJFj;y~q@zqY2vMDae2oqE74XW>E9x&>eS)#ime+ zhguFQB)?7b`I7%OzbJ8f)j#e$q(>^~EuIPCVtCSF0-}8GNA%~OzZ`bykO)1VpZHSUgQo0hxA~TZ|AYps9_FkQa~a1Ycw~9{IULJuPyv$ zaw(vY`()tmP8IvnIH#f5rKd~k;hvZ}$9@T1pjHvNnKX*qeh)sM#v_}5J4z6M+MT3P zs2LuJOM1oMZK|&P{-D5$SqU;vx({e_wmOxEWEDmRDB$l9nuNPVR&`_%z=6_jXc9_M zo;spWjw}LNpy)aY-lo z%q=kv92ATY`4eEE&sJBl{d^Y2c{nF#MiF799d3?i2%yOqTFK^J!4LRk%0FK`!4YjZXZaw&c`*RZ1epV7wgeCX|I^Bg>%G^5BT z-q3s>cmrT=8>a&f&JavU{ZmbR4pP+>i;fP~B+2xRWmndXhNVtj7r zF!|(BXb$*y%0Kf7$}n#$lzcSux5H>OaQ6{6j;MMDVa>+hk2DQeep}FN#mEiO)QLMD zx(m9L!6P^c3V0crL4riLvu1GxEJ)29Pj5lE37o?C|XT*-ycATztb`7;7p@b zfwC+AoXmCH4YvoJ;H09OzSx@UH7bD3-vS1X?^+PTbfN~eFJ)l?-4`qfp&Ny+m67aA zS=geF@2{*mnC0e)J1uCdj%g=05N^VTcHoX~5Z6e#F{>m-1t{PCap;Q!>9gj8((Eb` z3^<9#tVrYxabKbV26&+L41T9Y+dM1BUWlfrX;P}Caz1Q!{=|CN_vnn@ytH#h94sYp zfx)8u^PsqW*X<83N1dU&barl$y8xg-)I(?zNfUcjF)n}urQ6UXl%j5G3r%8NKnoOI zd8e8JSY=z3S)mZ=bYPh#FU$l$l=OL^q-Yx5{jEi;2)`Y#}_*dIsBsmLYC3 zwh&KbeXPgUdt`+ZPD&L%QuKGZx_x?6)r~rI{O*eW@mFyg7fWyVlgW&90y9PVLvnhB z&34bvD?Sg^bnSmI=6I-&@t4Vr2RFPDElwNu-c;Aj{G_| z6HR6e9+m8PN>~ac;9r+t1>cY*$r%fV$npQc#JAlq`WKE4X_;FNyy%S( zz{y_xSy)L#QH$OP3KS0G&qBcvCRy}G6p`lNhT(p<7>(#n>`uDG;twR9#BQnq9{7B| z0Z6z`s@xb{pcHXT4=ln@40H)PxX(D9XR2 zC#ze>SHmHN((+It)x*+ihYl0EzknVA;h4o0oxf~vA5dt{bi$4o1i70BUMNpt{7=IQDhA_!k zizp(^Uj+}i;ixpWQHGcLgcpCI8MxS1D0z6Q7JmlrKH?heCyPH#!}y{0txsO{;JQC1`H_@ixLd!gD(R)HrXHAzMGdVRXcF8 zqmlA%P|Fqz`yjzKL`e2tfr=~tX|(|rqFe7?TDKhpAc#yF zpn_fbb#g}vB;a3{Uj^ULLei0f5$L$`4?{<8bkB;5i^4KT9!#Mbc-U4bc`vHLWZ>>2 zuEBjWm^2Mn{z)BozRPcc@o6c_y(PsxL%4a;xYm2l$D32)2jPqIkAUJ1eJ!G@KmqMO z+V>J!m=q9{c`I#|j!i~5$BFzK7hlpJ26}g!=ozZ!gh>3ofvzk6Xpp-~qxnUjFWYAt zK2IePLKJtYXX+PZHTR$xcKt~vs$VaiXIUXHzglqQBOij^*)4b#;%HtpE7tH3#!%*PL1e*gCz?ubsONtEN_A1-u7$6Mz>*;VA+=PApg`d;{>-A-dPFX(9yhvKN0AUJ^H? zq=}$F;V}Lz6pUU^q=_gZ&A+Fo{+KoO?(@wF(>5>RW!g>=0{NosLf2nA9+(vz`LYYO zfp{ANoOd*nxr#rtw+^F3%Y?t|3L@ zwKNSXK?6gv-m{^4m8P@8JsS@N+O6Y^NFcX89#Fyd;w+v~s`qR(B}2TXJ)4@MD}SF} z5`A@C(!`j$bK)Lw8lFpGH7cN-^GUxe zuTXMrs!7ej-A7zQe~Ec$8m{~t2`K_2bf&0#eBQIGKeJ1T5Fo)`{8>g@GJ2J#j-Wu{ zF#aqQ3{etK9Z>=$SAK5gsacp?y#XC3qp5jxNp-&b;aGcl%0vy=K(r_y%IIgRd$hkZ z?h@V8LC*}mxVtnEhp=C&#Y}p~6$ofmc+&4}sdvRsl-8kY;O--?Awx1$H4Uokm-JI*hgY;YZChgKCjbLkZiqD~61hyepPFesW79HZ zO#8{8>B=vHe%hy(&w8|#*<5phXDxsNNe`h(j3_ZkHERJlP`V9GLdg&_nY92dP;})h zAm#OOai0!Iw+=maqX``FcQa`e4ij0`Dd_|OsNG2#g_@2Y_-FVPG zRfcBZXj`G=wyLH|19u;B4Iz^8r)jwIufzCTZ_F6;ReEj(&bMlWoN;yACyCrM5d zrolE_Mf{!4-4VEG{BKJ9#~R-`8xH7Yqo%2lZ>-fI!2f>zyO=>@RIEMz?Wl$Y8aL|S zg+^q%j>_5N#NRVobU8irL>Z>}>ey{ny`}KWGA5qPT0FcB*uY>>{uC%`?VcN(`vH6n z&^Ll$n-M(kTXhXE!`sz(QRG?`?84*kM>W1H|1~hj{Vta>rR&m7eakKqpg@8{Xp-JZ zdRVzg00&BRB9n%7U$bJHZQ>#UEl_mj4}z2%C+!X+Gy^x=3MKCwR6J z2cyeg*F31oA!BF;{%OjJC^`Ge0u5Z6vNW#2d}4u`1}*+U`#bmewrG=sU_VuZfDHTf z?_w2+Yf#R=h6Nfo>feQiAy4A`Yn(vKm0ydaiV9!*BS&=q@8W7qmyrghaq+0iL4m*L z^7a-!lM#^P3cs&`{lqvq6rl1a1SwTzjRy|VB&r5z;QCn;L>NyxiMJ8MSTWIn@{tK5 zl#QCFW>vreKlH>%ycs^8VKaLu3JR0Nmr>vorVTF zw{(lpF(gY8bs9_h=I?`Lt~I57c!lB{fsf4yp7)Acp=5Zw8qeT6S)tVURGJX_W3%TT zQAJ%dbmG{rY6q@&G*ZsEiv29?g9O`PKZ*T-iYxyCX#6X><`l&>XuEF%zSk?zoMk?g z5QcYxvt8pDjIy=H-;V^BZkB3W8qi>3Wf6P;TY9YeU(|77%Bc@5@Ov6Tw|$h9lK ziZ4v;jr~a&9|8&Z*X38iH)LVG#NUquBhYc>hd_?a%K=r@vzHC*m#TK)Vn-w89i#k` zg?*4u^h($;*k)#?SF349~)z8S%D#??%a;q7WXgXLrm?E)p^+yU4@G1`pyC z~kVIcfu!&hKm7D0^*jiKEsuT=~1e;CSDxXI?Fd z`)0jZls))%zn4{^wDKO{KyKbQt8pjuu4%aP5cIx29$a?J-FaSWaw~kDYM%;1&bV4? z=9pBNL}40iCreF5!Igc`_zq2s7oE>Idcn}L7#_AY2=GtUp#U`(LZxnMSfFvE{=LQR zCaIemC(xq12Otwg`@`aa>-j5^&OCz2!xW%^E2?^w63B&9DQf@+O1Gh@MZ_d!4QL|e zyCERkzUPMh!Bwxg~Rx>P%vyT32GvWNb~bBdiHuR zPP3>|K)})U3_b5K9n>_@xnm7-jP4q zRM16{2b?1vJ$Za90KTA)JQ;B3fB5w=9bIQJ*Unt;$}(dPG<+j!<-8c4j2?FFr^DFv zBLpDQs;{{JCY{`|zsBCK1_9JvdgQC)vl|Vky4hhX7(iaTXyBFQ^Nk4J#2|zFMgZR& zb>(p4P&kY~3k75NB_1-O zh!Q>}9+IWGOXr+Vy8aR_6=gm4|Ei)O$tsCwlLmO;^Z5oK;X099-GOdE1nO^V021nk zPLey&4Fp6(e@eptw|K91jO{w!Sxb*rD2DPaZ$ptho$Wt8n9(Dx})EX|~hQ3<7P3 z-}?4jt{jI(2teFAr3+BK!N81PIc^pJK-=t|a@B5Y^l@lkwF43*f~eLvzmQ_#Rf!-0 zLDYxmRK%r`QAVvn0;(&224c6$kj>R)Z$Q<5sLKwTyQ~7y9d(-uBo!nRKWavG!l?i4 zXNEYtWC4Sa`xEJKQVF1dz_Ok?q-_QcxC3BnwgXCslg|iA3%EYX~OEGQE zpX01TjcbJPNxnC*C%yi@;Nz-=-Ght5v~3>gzA>N`cFHJb_p zXhXT_Z<+dE-H8-cvqk`?k8;pdv6rDvuSFq@bh1MJ8Xz8>T+wzXJ-k&FG7qWC&ha@t zCS@+RISbQ<1mt%(6Uv{p7~>IIg8(WWUgOeRRH&YcZIhPhy}RbbDj(Kw!~nunslp`e zZ_`;!R+TCmae(->2E*djO0=sg2D?E&Ocsqd&N4{&Dm|MFgqlR*g}(s{#16yjdv&*1 zO5w4V0s@(x%Cd{Td3c?>z6Jr*>+<{X>>-r{Hg^I!SDe5B5&1reYYCvgPauGLSkVpg zH4tD8q<}zX_i}jEcO7?eIW|?mF`t3~nj(RcQJyvDF)EHo3;wQm-9V^^yWK9AGJUt z_veY+6DRZweK0XoV7}EHKT6FB30H%WhF)kP~yCWrI^`e zR|yRon6VI0rGdrkmsJkImqAkr2}_^BAtZpH*2U^`S0XK^2xvuY*23&T8?op^F=s6* zCbLMbiiE)I16Q?zK04du6|9)*@rs!WxH96h%kEYp zY)NrUYqWFTM*v`y&tIFHg;{RpDG^2LV>XH+03gb;iy>9q#G?7}84Zgqj+dplQiKHl zBB5BPej=d=34|7VB!c^GH6gpEa#D>N)!G~ z$*O8%qe6H!oWOxzrhf#M1)%3M)dOV7j#8!l003W^{ozyo+Psf`ih_~{maP%N3QFLB z^<_PXS@E=r7Zxkh^FM&h%HE-VqZ`Xq;LKbYb6%td0Ua&!23N)Wvfo3m$S(T6V?}1x zM=N8GP-22Aq&2?5UhO;8K%my;JW^Wm5;HS%KjW@dsvi`yh83>>d|E~Wf^dt!XI=5L ztOwRAa;tuEwff9_ZyQ#~v%J5|V|$;9Nl@u!Dl9bnBb}9Vh)=p(-5s1m1c8p8_1SLz z-tr%9WU})7lXe_>RN>Q70q#h({diOL|tiT zZrKFyNCqJ_C{(;phmJMT;}vffm35v1L9!TZ#IP@XcA@+~%iOC!+%Q zbS=bBku5LWR@Xul6cE@88xBzR*B`zBc7HmfiJmXors;-Duuouc34jdV^BF z4TtCXph9Q{X&9xYBCbcNE8?;%^%?8N-AZ=d0svpyq!;e}EhuYj@LW^11JZiqhxlX^ zw~CG*K$5>YpI{z$A@h6km~OK+9_*rat=FBZND`e*u(;=7p#}j|8WL5#r>nmG)mnE7o8@LU`bDWA6NG9s*P#Ko6Ga(jzG|GKl;l|#qK~R(YX3m)Ee>GvVCIJcvP=#wcx!2(xkCV=YyXXx1 zO{92pvjHB69#oH{dP20VYzf6Cf?z;`j>DVEsE)(q5#KEW?obspb1<+25CHhb^KzxB zelMls*tALB=4?g*(ycGySo(k~RvntQewkB6y2U*&{(|k(lZ4FGB2Fd(OthUN_U4U0qD`n@H&k}kq`Q`-~jP`{}$yj z@ktMA+2@AX<^c)_Z22bQ-|S^J7XbjYXZ){IDV&dTn9xA*E)^OJw|Yi&4sD9D*8mSh zU$`97xvlAqgH_*x1H^CoI0;9s)twxr=Ab|-Bo&l>(ClYg8=uwm#I!MaU?9h7D6SvU zIi;(K1M@<8%$aCFAhV}iEYU(f$=4~Vz60pjD|C8Bi(INbIdeWVfde9bN!jc;IS`Bx zfOt3_jH#G-yCJa-Qow}Fv_4>*00J4h2c4UMrBd!-3mC}BLSzby;WI9QV5`ksznVPm zxVI8G;A`i-;pOo6@>G|_?d*yG1hCiN7!IhMvm0iJ?1!W^;JEU)Nz@*4EqdKyX|{cF zay>)Oj|-^_)EXLOxTRZ|4WeTl6G|>nYb=p(SLEYJ>zNP`n-TLx(Wi3jQ~{KVG{%d{ zFOYYRGjDbO7yxzDwdP;wu(ZY}k$odb>CaqK`rbm2GuPA%D0_tBtJhMF);K6Pf{K(^tVO zE=`xutFNjZkk;rzhZ*FtRK5|w*V)ZlS_oIOyc-9E%@JinoL%CLnX1|WX}z(IaQKRU z!2=MsMh}b2;*lM@@VFNMKwE2iHiPP&nq($KeW8u4^u z0SnnPSRU9i*FQ#{2|?i*UG{yA;s0Bg0{nG|eY5~yozI*7a zm*wCgj}%%1iYxyiq=nkfe)=VCcl>7S*-wGdTD#T|da|6<2Fzb;xF!&Q`)>m9T5n)a zWo%Tw5y3}Pl*jVF4DK66DVH!P`B3!RPwF$o77dPM$!w_LNeu{}=R?uDRYn(&$GRv= zawuA306jhwty_g&9F;Xq<50B56uAqCc-jiC&=?xi&KTVoqQk%~1y?kjHi}Jp%PYRO zm<%a4)2baL_V1I8uFSXgLe#^}h(aee+fYI?pwQJFvt|>UAhiMT+J&=U$!44KjR1a) zvc;D51lma^d96u7Oxrgi?a|mg$-%U#EdjRm7=W)X5SX$hja*Y(0H%i<#Fy|~b~vEp z=oeJ;a@aDV@vun&;p4Z`Rx$JDVUuD2y}N0v(3?DLQcRKipNQNOQ?hie;$(2qnv$(R z^kCWL155qE1-;H?^#ex*3I^oe^aLphVGSpDI>$YQ2 z9ZQMfB7zhN0:Y7`hU;ufUk#DsdIBft|fv==k&~(vY#Q}xV7x!8`PZdf>7*OCs zarlxPA06UJuX!aCC67UX0wET;{^rWlsbc}xa~E{IoywuP)>uHp=`nJxxMwcPcrKzg z5NfSBwkt)lSMZGhzV3f9D*^Fxm|FqiT5-}mi&7f^uhVOU*NYhIj-4SWRTwL(53eE71YrSJLtmodL zHUM7hxsmBeSWmtYz^P2?Xw=*(>}qQeK)psKP%Xg&TLbKmbpn3zZ5BA|iCcj>Bbeho zA|xZ8Xf%&_-w5=#=@$wzXxv*&@p2(T0OC&k+5B42n9#;=`ogk4kJCCuD;W50L~bZ9 z6{76w0|W!eo@xHF?X!gG3ItH&ciSdGA)iiyo0P@rUf2l`_7zn-d~uV!Svyi_2c)fV z)u`8edrbfUZHLCEf2oR2ZCG}|im5>Wb*t~rC^cs%I@!et0HAGC-!u<6HoOP{h+9-8 zqTBjC0RXgXRQ}NtjfW|<0WhU7PF|vDz(U~us@ef*t;wOW%khl>zT=OrQcjHqg7q0z zc?|-n+e3FjWs(|-2eR%W1R&Dma94I%%-)1s0b#AFhB3=j*DtP?z}INnu!LbHQ(H>g zUTRdd`xw2gjXrI^coe{?5vXs_US(ld@Zkw2Gy}@k=<1#?;%El!VPmoa0JLkg25A(U z+5ngy7-5r#Y1p~-CzTqAvMD2)}nXEwob?ubibg(|iBilCu__qJ0Q5)?2A_O3AQJrgge8xVJ z%i~)B612hD1hfhO(JttO$Jx*>QqNx#06^QDbmN*ANE!&xHwRSs>)fup$;Mo@1JWA( z*c>eTMgZUTzqEHigg``paIew4xaT4SAg<8^D9sk)8#D0c#}x=1UlSk~*rj8?v}w^$ zh>umSf#7TF{!ECeJ|5593J5#=Q=ejJ&v4*ABK!Cn=Oi{RJ!umS93;_VN-Q#n2 zeBW34wGZgA-&QbyeCwDh$@(gJbRe;N(m83;9A^p*SRnR{9F9I7TwKxvkj>=yG>-`l z1os7`kuT1d02C0oB~7fIW`0;a0~Uzg5CDI~ypbb5@{~aWp_|ft)k=wz#5pLCT5sfo zy$`nn!Vdq`p`@?rv)KF8Ab`3~xujFmuK8Qs3JA|x_eH#gnV;s18jTo0_=N~Y$N1{I zB8{Z^n12fn5MS@Mipi~jaEsvS(1G++V~?EQ zUyI`r&{ZXzMy2w!L=>vfjNyRDJ~g(Fcj=cJ3JFlQ;9@|>OB>Cc2>=ujxC>34!6}J* zd1dW_&yw~pP z<_YG^I%|Lj?w-*=(d4XIpXW&v8VKIeAhr2e6#2BD4Gtu4`3|M>D#7Gm-%H;z!|6p7~j{Tu>J=yA5lMhxKcE`qi8IvY|0JP>^r zf!ce1$7fxd5PG{RSHB^%EeVuwONPj5^$AgJ;qdD$sD{|6W}Jn0OLj$~`dHHex#7t498XIuse(0sdA6rAmvl^gSyxM{J%Br2 z!SSX_Yh7=iifnMOhr<&pG=1)mdr@54^z;XJZVCuwHc#k5l!j_BoExj!0cj&Vj%S$@ z+hS-2l-=HFd@=DLU=0Jvw|RfAbMA^0Dsexi@l1(x>+5{c#{vd&*ZTH_HckLj8vt() z2VJ^4-SBKB=jS2>ARhUWjC6_ng!c3(VmP@v_HPHYFwgh>+mHfz%38^xKtAC;hhyNE zUn*acUr*vW*ukA7PH$#beYLJFMF zO)EssMd8^jh@yaj3f;8Is6^)LyBpa}tB54Mazk>7;oN;tUF}jW@h1CTzOItF@LbU3 zx{AgCY5BT}Ze_NJo*}YvT}5Mx+c{o7mS#pPGPCf!} zX^=BBHHh%^J;BPtHNp8SJ{9GE2t#e5t$#7F|v|-51*E8mc(- z5q|vLyQ2pBuKc~y+bqClaZ(N_LbX&7_CP~BNWG(xazQy65d^IO0h?^3{-kC*v5{IF zpyJB^2qmaqRBe=?Y6l*6G*YVs7WP4c9XV~30I0a~+r^D?9~{!@A$rM_3LsMrBLBRb zB?`OI6cA*(m9{dOTsY-MQw*SYH*FPqhPa6vO)&#qTGYtI$Z|h(QQW6mIS)?A^Y!VO zo#xX-Jkm{Q;P_b+MA%OJ5N8^Km6~Wk`N#wj%7#L2;D9vIMJt~KYoL1Tbjpc>vCmMx z@9Oxzy{*n(G=l`5Z)eTIZ=wlKIs{E*C_s@))myCDW0>_DHFK1qiuB(N(r@-&Y#ajY zkE(XyYeysH2Cw{)g?*44_1LksH z@&j?P&)}O8Jnv&_4ct zq_IT4f5WytJLwL#S0~Un+ZsAu#cl`>w4T8>p=GEjiQN!S zy8iRQw0ACiDD#LOLN{*!ao5)%z}J5LyYST9^))QepqGf@^EB8ExstB0aYUwHB4^Rr zCJ$+yeNKb5d(th=27UX21)F6G2)x}&TN|WQE9n#i=-o|Qg`OdCvXV|QMec6}ce~NN z)?k|t&A`*PLdhMin*I#jeZ)1SNTxqc!7(1vRFUKzzfF>a#)b+ zP7|?QMBc%#{O$y*&$m!Dgujk!e*;;1@uxu(hg`Muf{M1&!#=HfpcD{va4T&UYfHwc zvfdN}=-o|Qg`OdLV!bJ*$o)eg_rZt`pi-fIs-8zRYs|}9!RrDT@OZ-@k$1WFy3Mqn zv1u97re4>e>B>I^vR46b`w;@ZzZZWNE)v7zqZ5Jm2nrOc_u%EzBz@$!jtbZx#NUq+O0N7O zkmebwpxEuxyTY8ck^6k>11P2a4$=T}m+TEtP9D(SY)i2_m|T64#nYa*ZZ> z_<}3{3dTD@YZ3!n>fn)wV8HDSY!fz|ND;epmO*e0|Lk&}^!cp~c^ko8b9?0tWU zs4dH$0s@b>(pKRzkyv@x6a(npOT7mxFh?bxv_7xs}0? zuI6?w2L3b_f5VDl3|QdyjsYMHCq|}X7y}8YK5qaBRil%V7{)*rP27i3wnO)GMm_+y z3#x?$Wds2Z_Y>6I^7Mkzrg0;uVF;J3Dry{&>AwuU8y1ulmi6eJ5fX}Sq*Cc^v+xJA zmI4NHMfoDA=$g!HiE(fUKy9Fu4FS%zp+bNZYe!)j@+Toc#CGMUfzz0ovX7@hcHr%p zagW)73N>e6cV?9UOK8OGKuyCCChg3GmMf3JrRzuGy$+oH3;;@e*L?QoMb#I znQB;|aijiSXiS!=#tF1sIf8zog6qAji#`p!h6}vxvNaI!bX~UySBYdQOQoTK4xQsk z*q~lFq)W0?8cXDRC&+h5Pl64OyIgFdL%D4;GtIhB0g=D7wLw-jb*C6W?{3;E^bDDk zsXN6KxqD!%TRx3(N)^AEaN;gFiz)!X*RK33{3Ly;vZw+H_}ArE!8hbdvZ#U~a%@3b zX8&F>ragy~4xPcYx3k$J0Tgg_2u;FPB9_{E0dSyn8=8cYAz-rg0%#)TKdX969WSC& z_JbksF}X7z1^7pL`7259vDdPIh1=iY{P7|SLYPj(XA9%s{89gm383q5Wn>US*HA`s zyvV{9o&1OdMl8VkBRUFVmZaf}gWL+7ZPf_*l))z@gNQli9$*?m@Uk=hexxY4@;iX* zwUh3tSpzM*Sb8v6+W z0KRwSSLyl0qLiNyNWi}?zY2cjwO*ShenKz;9asKokYl5FR$N>ZmK3~H3C+O6wnE9Z zua+tr*OkxUcZZHnE}OU3`MaSRzpGGMziZ&`Bd(z}p3CCzN1BE!zc+ZDk_Xte2c?<5 z=U|fB0@FqLOJrhUtnGWk%{-~i2yX|xd7&y$Gu8_++y3OgPbaSVx=o(6xp3A4)SBAH%@eKYG_f_M&vVh^Y=!T9qLhNIq%AS z2_)cC*o*jv42k;^j6lbg_dt%d&$zMayjbtP5x&0}!E@e~-ZQ*ijc4$j=)J~wc?-rEV{!dkKaz2zpI`z53=j)Vn@25^5d5R)(d`{L$20WuTC{0Rma`gKIfdSW;AO8 zw?nUL6x2n@7ITUI2wQ2nQT~o^gkGQ1*y%@iK_TpX@U zb-5kCK_zR=5@f6j-w5E>PP@&|Ur-wW?}iJxRItyUv^X|YFn~pMBm;eCU`uUre_7NHW4z~irW_Q#W=W(x8?SQo2YpU|eU*T3j zpc1M>GpJx~`9=VrBWhbC57Hc9`$qf%RiKo)GFeA)d={DkWxMYljf>NUyKnbVJ5;KBuXCWjeTb6qYfgCHcyT?aKcT1E1Oa&t?SAnN<^T=C^h=p22Q10oVAh ze0vBOs@T1JU=A~m-Ki~fcTxToj521kHL~Z*G+TwtY;;%SO%}4ocja#l<`abcN($aj zI>%S^cmzE@OyyI%J}V+&gEh){>!B4(6!RWf2JAl=4DV5?mF80fY)1eEBkDFZF>9nV zL-r&$1ZaVxD}M@jo6)6iMi1QDX_+hD)p!QuiDlOKuKW{Kr~RDIJH0qz~Cchr~Z0-@fZ;6e91nOi2 zFm7gC?$DyYS{>zvr{+En1)S5Ozs56|PCQJF@5;}WJpqm?W{yg?>M%BES&j2Np4|gX zgXv_PD+;ds5f~*4twIje@2G16y%$Pyz{ka9w^Cd_#yNbtD*~{Y{W# z#s$%4TtDTiSEDyuNcsB}VckV|2G7apt?^y?+jV?!L@iV0jZXM=_$QBF2nZ8XMiqP& z8FXOmJ(Hz*n_k3Z+c%-17kv$_WEV`H*v!?cj_{diK-t)VQTx)<1r(P4_o%3RNGCCi2`(`n6 zw(lAQzO&_jZz{CUc^ClzH2>C$z2XlU65k34{y7oK16&O3BHzqn4Fag^m%|2S@VB@X z5j^}?v72f` z%;f!y_~yjpubgsbiWu4rUcc9)6IT~hyt_H+z0B8s2v{ydG ztqBAJ61(R`zm0V^7zG2!n=N(oLoPbh)d!@b`vnzq8+Pu|t6Pq)>{8{z2Q*Zgwa4|s z+K_#Dpt5(4P z@}_@AnUeMvBCED)N2JR^?@cPr*@#rN1JZW&D)OS2Mc9WW(tJQpu3@9bCKt~z+zHv@`E$6g{FJPycq*v;`sAsg zx-RqNakZ$KxJD5KJrQiEBRz>8vlB$F{GGxn8}p2tlbdlbGoRtr+ArJG+|_u-{GP1+ zYJ6AzW0+*8p5JB3OY4nk=l2>#Yj<^f2$k7gn`$RUfTucg<;qt@Yuw8l^Xy^P+n#w} ztFvv!{^!2>9N`-Mot!b#G+g;X;C(@-cgrWv#U1kWWOJ093)fh|iPC-_jGVdlYIpPo zZ?0CAb+>kU4-#xcu}Rh)sJL<$G&|$r5nul(oHfZAS7YBp!L;M+A4NQa}aH%ai#GJ5O_aGunqPTjRO@|z6la6e2|8UFQ+GQa+%awbN~m*s1~I` z$&fGEZv-?M8Go~qvObHxPN$2<=HYW*F>|Z%^ViR4*Keyv$R$#X#~gDHFbxTk#iOF& z%6}e4M9DmCP%X-a(rOIv^$|Y zXTQP1UzzrbTmY8)?n&Skl8g1_cm`g)LI{)Dq;Jw%%e;@uE3~Q|3~rfs(3y*6T{~rB z%cwiagyt!dSDDN7WyknSv)3Q2zO&5Aqe14nGL5zVW_MD9fK|+1Dl5ny?!3!I&&2k5 z2^=Bddk1(~-eQ--0R%%5SR1mD1cCvHMK9Hgf03Gh77v^|69D-7{AImZ_luMgWCF{o zdBenJDgNWiUt6VW|FNI(pPzRAqIW;XPaZ!v<*dcfJXaOvAFRH|tX>=T&47emHMNCK zD$3s|AzM&)SX{Sc2}9C`FY#1R(A|eQfqcqWAsc`LrQ6WNMn{y4fF}vr04-2-<)5np zAMT1ux0CY~^n%lq$InjL6CSwgh%dxgse58Scg^#-Zv?qFBY3Vj6)RQ?l@= z@m=|of!`2ERMl4K2{cDf`CeV{1M*D|WN>kikfq5HL>>Q&ti#yE)`t}4nWh;w*?cP~ zWUEHVHKJl=1_R7Jz%+D{#L9{S6}6F0WSgmW)hF9b^(a9#+$UzZ;DrL#&ko;zZGWMl z1_60@&ggad%XZWn1W@;>uW5_!*fnDFzy~NGut$abyf9o%+nORciK2lL^p~bVS3rPH z1=*<%EA0c0E@`K$SqSz#1}qTU>jfQ75Jdq6bXUF)oauJ;){R~8k>iF4fegf-#qA}B zX4r1Sp_vE@6b|FhLcy^9`J(78U`%zcgFw_ zP7_&G^&A5Us6KB12vtM=q_=+ok7Yy>9y2mX797NV2!0CSdyI5Lczr2^hza7=EK;uUJ zyU;MKl{YEl?-?yuz5>HF%4AQbAd^%pt`@FQrn>U+WSJ5gQKp(kcI<>uo=To)4K~q=~$k zG>>x^rGQ|%3;5cIYO4g?bfSrfYP&-~6(3af$hC$93+KAh{K~Zx`%RbtTtDr?-6JmA zHW%%p6C)8sTMrsBQG+1bTF{7z66Rj0T%(MOHI`W+)CRUO9Zt$w6k<;eqYtnS^!VgHuDDYESs~HQg$Z<@SG}BFd#lXQ4rRH zwx#pvt3hm3+tvX!G4}XX+u8v&G50;s%~jto+-#OP-=u+n>08E1#_G=YRZpe)HP3~G z&Bovx;oDVFs`-=bYd%rg_&whU-Z>lgN&lyz2@+7yFJ*hc>zRq(7HB}?TZ_1ve)Lr>j z(FCjh9nH%FCy)6|SOx}Ew%YJ{Vp0GB)0Lkmx0u=FroMeg`xxWy zXxya@f$4AGX(VlMTT~r`4}n?AUfaB2!f!}IAz8H>|8BjP(jH*GGW*;Oix<-ly(v!s+R;W>8CSK~lVxZu zE8h~E3-vTMm)~1r^BM&DfAO~@SnhdW*sKE6Szf2BQ0A}h&I~W_#d{_<+jAm<(o~q9 z9n=ZUbI13gvo@&09)%E=cW0E)3@H1jU3%EX7b0(Z_>B(>02C0|^p)1>{W0sK>=dhZ zK-%yxs55!t^K*fVgqq z{#HzAPElGr_dM_1ujszb;_LH$RM>qRP~YZ5lgCu4*ur2*A_O4Psmcegc+@pd=<;MG z0DyMwvM@V_V;yP(;5|9t*wj0`+SfpUUcby;J^MN6JaA_DOs;1kbmUP_h6aN1YPJC3~{2U+f1kgb6;PPrr$KD6@x?59k1fBp4NURSB<9C@B6V7J& zRzSGHx&C;=zTuPvFAy?FAhb3v?wf|k!_GGX_;vrw1Yvm-EP(?e>*K*?$1Hro(sC;x z?9e@_i;k}fYuY+b#5D+@ZZsPTJ1@gPZeI1fpT2UPV}GLQ_-ah2Hms4!M__VL{Q84- zXA_!JlvZc+Ksg&%UP-9Nvrr5_TLKmd_mY4mhM#rXVsiMI(1_t@O=J4-Q)tokv9Mhg zPDM_e;w#DarMf5QBxR~r=5*pFN)HDn|H7sz27QH1P9m@;csV{qv=)l(T zIUli{_Of@4qL;S&SN&n}fXZ+*mcZby1}GUmpOF4w-lsksO4C@cJEm0dv?TxpLGyik zKxY{J(xc-y_Ns#U*4)TFU;&F118@Q}?yGFZZJ2y?u>}S{knP9pYCOYkl9T#1zAL|6 zQldPde>dRjrEhH_1%I6c#Nbc&B7Cw_*xJS0l{T#9lXe@Du}- zbvJEov4rHk%M??L!GWPJR??1Teg@0kwQ!g`A&z*$-(Lj&mQfv!xqKlj9w&^3sGm1} zk81?aP+4nRb?MaH zh}HB3HB=dM4=|(1wStq0Kv8hz?+9E6@n@@gSd{-o@OA-tzM_Cd`M+rnrZ0qAl>aU$ z{2JY*WIIa^6LNB!+Q5=F1UOf<3YJnVUvyPW*-EJbWuLx2OEuXZbU^*#~RWnXjl z)vQp%g6ucy-&=%9W`!C@#?8;7Om)p-s}p#MQ-c6M`}Oa_Pw*3TD(rl4LZ@AnOf@Xf zxKaNuG>i^PWU6sQroRmqHGQ>U?wie6TsZF)wZzj^h8b^H;~88hYttIvl|Kr7Fng)h z@O>%3Dw<2Q&)*O3Ss+38*X38iH)Kf4#S4b$eG8%{dT;8?9Ll^g;Tz%mTqjMwo$#*p zp5oCPK-FiczYLyJy+?dk?ghOEzqeSi(4zeFQt_O7!#}ol&e9})tP;L|o(f-qw;LT1 z1w8)%Quxf2!VA7D|1B`Owb7^Td%l5RYJ~4@M(}oiQ@mY`H$`Vfd{_QO(C<9eueoFP zVwBflYif5Of`aUI;42giL6Y5pgpw;Cfs0yQ#bK8Doz)trxuCIaJ|ZqP;*07^HB{8G;Y+txAb)~ zAJsUbl-~}1arXNE!N2=?&d=Y%N#Y}we-}uQ<+}VT__1T_2s82Tf+2EzAM_2mxV9?% z)Ck`v|6adimGBP!J;5UvSK}ExXZ~IAUHQAUe-~pMo9F*IT$GB+m9Hzxd(d&$$k|#} z$e}52B1&3k^fC#8K2ZBGa!0ndnT( zm3_RdI#WWez{OULkXxNvdombc?g6I3db0LZ6kPd7f$Oc&)ji6r+J&3=P?G=v2fOmC z=r8F5<=zAm@UP3Sf^P_sxHrKFbX<7{M*F-kl(0=5sHaPWp+q3HW3PZgrkkoks2E}; zJN61mB>P(sJJE@ume|xc0vDSRJU1%kxHG(6jc2f(IPMzXm0uC|PpWLjOb-nd<$nX_ zNChEgdT}6hpGG374eq)7;_pZBZh?tCEpiRjTR*wZ)j(!2=&U`!jQrJ8 zd@_&~1y}wZFcaENx#}O&Vbuo>XEb?tKm!3M*L90nZ!!kdww#6rI#ifDVZ-i_WLr*S z1$wUhTIiMOpNHZ;*^IAA-oQM_8v+=C z01eU(lSa(hS4*A<3KXa|VM4(WBw6xA6w&_g2KP#jOi;J7T_h{yYG06Afd|?b6ogy? zH6|DgFoPkB2^yRyV?t4ICVv&!@wD%jF%KK^a#pTG z6_%0ngVHx^MGNuvRl|NiraJ?VAdE(Aqq8FB}p63JXRlD@yr+Ty}yrYqF&iVW7 zT8=F2g9O`7UEbM~>+mIu%G@#D{G;ZWH41v-`O+w3+e*t7#cXURY}v?^fTP@$F;F_<0c~ z0KoUI{MukMY7r)ofPY5WtC#=M`dZPAYbbpg_Tw(?SY{FiGqd zQAC=rhB3U+ye8mtMxhzFpbCHwWEqhQq0Si@xci7}u+P3M{(husxbl~QMXh&7bg!8E z)rvd06*%9j5pu?r|H(1;05h`JxE50sT=@@y>n$#Hf7yG}Vm#awyXuYUlHZ%a`!1m6 z?5lAgkbr+(ew}_C2u7ge%GW`TJ$mAMFr2ie)Ii9OZV{f6v8~pW8XD-_(k(*A=%8dx zsj)=9{}$vUV>zYh(5?f@{UiXu&#wF`yd*NIeiBH)zb?NDz9CEEcLhV__z1|cMp2MC zN%MT?8{zw#5j?jsHQ!};yBg2nndOeZAJzD-{0`uElU5WjQPj@zC*zu9@~R!U-qA=o z<0{s(un!XK$YwphlUNU^xbhnKRC;7<)VyKr8-aIvWUB(t8CM$5@aU1P8qZ)k(RhvT z%6|!Fv^AO|n%^<te;7P8$R(3Op*=$TjV5d!$wi$9BdNZgBxAtESHIE+6F1w)o3 zhKMMEk}E$9($GBI?VCkjcpbp4zyrBfLCAXo=3xQ@Oqz!kronl#4p85A<#&Ofxz;;2 z*ZsT&NNw=l4FS&iRk@ZFYe!)jyt2*3-;W};D}N*C*AETyjg=Mgs*i6KxRW5M4&H)a0RWgV2 znB-RAcB@9n`Bh^w#|(jBi&Z3JQc<8R32=R_VO16M`{)ul_BA`?tBFNx{U%sD3Tq1e z3brdhgPfinn|V*>l-iI}0nRn6I8Cv36xL);BQ~9dv%SZofw|iN-h*I(^XNSUIhVlj z9x0XRJror~q6Y5~skw3=B=dW5FE$ry;8u{v@5NOJxg5&Ib4uQ3hY6B}0)Xw?eQ z%bHKcSp$=Oo^J%6>EVtFJZD+?ybNzw;~5MmKCi}ig3T;t0SV!Xi@z0{nQHH0mUoEE-;>gvL}d0WCVF3No#eBffai8VDhK>{~&Str{U0 zLXBPq1I#_ZG+0kYucF|}zY6;;8{JV{=q3{@=gUGfe0^J?Ucl=-$#y;Yg-`q*1oW<~IvYvp-76v#`N@79xViRY>DUFpC=cJFn^54%*6RHltY z;oRp62Dms-4GmF(nzIThemPE#!Juv>JSa2l~)`NzS!scfh@t+Gz3 z4LKFyR!&o_9fdVnrxDwg&qMF;P}bTPyXxB;&pftj5a4^i{#{g-guZHqs$qe~jrw)(a3q$AbrUBd#6I2NnVlS?s#OJ?tsmMj0eu&N2J@>z6!SFOI1hh-B&V6`Zp4WU^e zf7|Rj5#=&YYSM&{;;gYc=W6lbkLj?nJf%A=J1W6xy=ZkyI~b`WO%z8&(L)e zbJX~>^RKo1!sXB_wxFuPbQv$a1~KXk`ZPtE_3qiFwBU$R{*nI3A*=6_%8PYQ>EecM zqikgzLU!4xJJ> zA@(hx)3{8QI5HUxuuN7#D375S9SCx+YZc0hA4#diWwN4TjFcpl&8WHZzXDggUeIoz zxs%SJEVqKiY}E+494eH}G4}w|;5`Xt6$Mv*P+QLRDJ+JGC2-QYKZfIP+L(Bp01CPF zU@O5BA9<7WRRgKW+UV-?k{*O6>!vY4(UKX?`o~RLk>oRfSKIe~5#N-N!I;=2k3xVF zLT|0^3$b%ew?aHz4&f7TKlfD{) zYo5O?U{UQ)1lz9ku~tYvC9#e$f5-eu1-==<^Rcbx?-XxW<3-`?P3v_2j`*(pzrYl> zDQD9xJWojx0y=3g{w#fygnjG}LVrh4pl}#}77B(S$*GNqBAxmNbf-Rt{Y0CxMau%2 z!|+B7>E7?rAGqlQ3|wh3?@3?tz{x>{gbZ^JFb!>| z6GBaao}$)H_c>pmb?T^(HQk6IYWYs>;_ifwnI^*KQ;;^ekpA~I@4NK8R+naoro;)W zP{9b1uhc~D9`~qNFGV`X=hMYf4e&zzA`p*Wgn|UivVs?(#()>Sh=At?p}k0ox9ey8 zmcf^Lk%;fg@7A5QPg&p2F-_L=_LV*7^4theBKUu;$JbsJ95zPzytAZ%gv{^No%4JQ z38o4NxXxZPihSalYx?c3p>~vm;<9sW0(pHU-_mUpA8Ri~fPBCn23a&iU9ku1V zfHI9{T*QHc0Ep0AiLasssF@NELi^T4=!noRbcVU-*PP)~ggJ%KH3e6`3r5qrC)MI% zeQVBjK$yriVlvkeb2_do3abbAu(CLJ<)8U8z-00|d&>zz!UN=1Q2gcl!$Ik@N7ktdz3K`0H*O~8kccS#)-W{KR zz>_ShoDDZkNRlskye7xE8jFPTWQbSDOp*c?1Z|Z9Ng5WnVYS@oz=7m>8tazoAL#E z{ZwSzzsIVMVK0mE4=v7k%^9#>M%G6oH>BlgSi{pIxqsO!svVDIiSZqai(zvKA{~oJ z$Mg(YhacB^LX%zvjaf6giQ{&E@r zz`~3RTfj8E=kDJyr!`54Z77#`OofPOPj0F1@FNRzpYhi&20f+zi&~7xABYhhrAT{q zNwd*%LxaT~B{ByB#4+GcnECK}saCZ37!bCA>F9N+mF#o{j4$qWG;6^8y*Pm5Zs772 z|Hk6O7r6rwqW-B6BR$nT?D!{{mufhR>tC}5%zu~YUm%t|)qZec)z^#x<1vP(34o4) z>Jk&n3KJF&f`K<+zt($TUme6>N&vqEy+_7?@%zzWlC(l6IQ!*>4If|Jd>YsUp*|r( z(ROH$79~p^z2CgB3>8RT=$CMQZ>DJTp#%Ywxfrq zO-y=bnkF;4>9ADJ7x(a*HDLZVzpK1>;x)eNGJk?NG6MX4nCJUta`@i42b^LBc>K=7 zPEsyp15u;%hbIke0q@_MCMB1{^!&kW%8$XV%0B+0;8yX2+{PrGx12?@pwS@a*KNuV zaQiK>b>VbpWc7V>k2PSXfzO5Wn#<%fOJu(47EfSC2H!ouBJ+&pM=%+dQQ!RYW@H33_lC~oEr-Qd=C(o23vl@%N!u-l!}rY1q3{9R zeN1ve%SjtXL!3Vl%^0%zjrq6bsC99EBSXONM?{<@Bm$#y=l4U%4RHD)Nv$nMq4V3R z@B!Stq4Q_U;c))3u6Y42KT0iqu0p(o9Axb7`IpZLJHYEV`=W2l(d0MG?UOtYz}1JS zlIX>#`!`-vVjD zP~mKu`5EMtC%uh(eGDdjH?)*M7 z;R;y(c-1(fGn*&XG4y5S*5{wZkttyKgUjGFTI)B?KkkFVfVWSk$MBYtFOSU5e|D{j zFW~-zlo(w&F&>$nU$Ye(z}tuD$HgHOV5QFpF`6>G;C^Veq{y=e3T+mjTi{*S^uW|~)^$a^7 zUy%V&*a!LNmNn)~oaNqW3iKnz0`T_jVv%$-X%vbDG#`qY;zP9t^AqG#pvM7{ume1Q zuvc8%tL7)uB~0<5n$P+4saQyP8;*X#d5bInZ*L4P$K4BBz73bgVD3w&(EU-$2XOh? zXgs*=h*>V)zxj+b4U51;;Lnx+r(FGJUte97GHz9c56}@giv9=vCy#G8UF1mswWt4v z+6}*45t{7i<&)&+U&_Km{Frj{LLa)}o7-;gOe6(9{_AIFrNP6$QjGZ1Emk2aFyyPp z{MXLGQT1t5((&N3?L^yTJ;lH&Pt#09rrUe+b>zxjT#nzQfcUGC8Box?LKtW$U$9VJK%{aMQ)T-y? zKN6 zBeB;M!O78>rbrQ4)8NryDr(W+f=+p3a%46INr=$$d~&Y92G$xPwO9QysumlbhQk;e zHTl9Rh#Yx7Kz$#gng?_eep$Tb`MBv-7dQd#K0?1y3Ym)bT~?1$+umpj(QCJzXR~MG zG4cbPehU?*rc!y$m&m66M$KrxO*A!;BgGEz`ReH}5=-=a0B0YedW#oSY+|V@T%@lx zKfvjShOY6f+tfW&ck?1+CU64Wy+%cd&Woxl_7a9mQ^sJ5F-LDgGAqE}tHVK6A9D%J zE#eD3AHdlMxwO)Hu(&K9HEfE`p}hQ%!PG>KgcsoORjOv$wz{23d5eq*&j)b!8kLq?X3s8S zcNHtZ->VP0E7zB-wk3o~msSzEqc9ZhDm{jk2ak;N}Rc>Xr({@#EHqCn$ZN0C` zYL=(>Mw6lUN6c_@#tuFRV_OrA-Wx$;CC9%>*AFjh7SoL?#!vNn#0md+Eb_2|Ol|%!ijX z9W7ChasF}TpM|r9Upd8^g_59d*!2ab{Gz2=<>Wga^-u(2|vl%^3`c{&Z`tg+2&t zuzT4~m)-AL`%{V4ur_-rQTMUy+54AE`hFJuxz$M;0?m#W33~H^2>Y~UJz2S|si?n7 zL_IHtC!=$E0n9$Yv#Q>`zjBFd!Jv=7M++Wn$~Ujo7aO|ilBWAq#MZ^|d5Qe1MQDF5 zfZn=z>T>s1F1L~l`a3$XQTMaXfq9WY*f^^Fn=7A{qq-K%7TjC*XQkk^U?BMS%E%s{ z`)$fWZ_*lKx&EwN`M8d9f!OCO4@YA3|6MB+F^fOWRvmXlp+31Xq0&I3U(dr6GA@f* zW)$ssWun!RfGzg??<=2CqkP3m<@0iYbY1_jyM3~1S+QXh?NcigjfDWY`t;MNdv-Bs zIBdLh;Z|ptwIm>6_j35u{K@Kij)g$EyjWlLbezfRFG%Li4*uY5{LWnJO48EOk< z6U@I{i5eHfl*981S*c%6#lBowblxBxjAPpUdMcTnIMc3fHmW572`^&ruC!aDfUDa| zih_WAQe5hJRa8Y z0<81Qz3G}S$S+g0snh$jh$h^FOc&?H1swrAds>|~b+hFJ@<<)J=Wa0=jfr49@XX=b{|k+_LK(S)QgE(`ms$SkiAzyJ|$sS;z>aSknZw= z`tzado}G`YhpT5zIN1Q6>gRd3rhMy-C#@S1#Lku3}VH%!5Rdp-bkF zRSB4`@2Aet&C-X}(moLh#J;LvWPW*C@~&k5Phzo%-%>E>yPJM}tvj_yT?K7HWfXs9)Gw(`P<|Jg?t7Tvf3FpwSe>0Yaj>&BLC`2 zkGz|<^ z*!Q^xl52F03YdH;>|aa;q!*rLDtj;(-lK}=Ru!fwAnhmzS)CV-UAdBQ(voC? ztSfZ5Pg&N~#rD7zt=!?PBryjfNKf(x-@9hr;NuD`<2NtelgHKO;I#LCk7`uC#rNH~ z#rNJ~Ty#ABR~Fk2jvu21o#3NF&%V#nrdgT4E`*Upb&Ga?c=$kq#Khr1jtv)u9 zubSCJ+yh#DJbC=i8FzqB0-iRGPb9{{5Q|y{6Ctx`t6l`tP+%;ziHsL82se*GFv*GE z0aKWIE}v3}1|yjHp1$ijzZ!c;8#=S!)7Qw_98S<2UJ2j$cKXJGHlaR9hB38H6u^|;P^T+GhZ|bbe%-=W?NuUe6 z#pJR*;7VrxZY|r?7e8kH#*vpIm20-(b>?qACApG>LH}O2Ukv@*M6(2P3kbKu5f??l zo})okJ|*E+XpvqDkn6&~LPNI%COucYtkJeYPa=|le8c0x6(ukGgT5~*`jk3w>cs8L zBY++aQsRK5-IMO==~EJLg%;|i0J(Z6-7`9QR6Hford}w{-glKCAYIoDPmiCHXe;bB zF9pbTe%hT>cW+rPW$NRZv-cPY0a9I__67w#?l5@x)MmP=&)du)T`deq***QNh`ziO zsaz9F4lm0nS2)&AY5o7?2j23Q&v}dg)9bkMbV&R^C2ulyvSbd!^kP8QU9`R^`7hLh zMEG2S&Qp0;@4&J& zx>P<|c{V+jb?VATbN6kUTbH{uPc6lsiahmQn)yX;NVtnhuRiad%Dj4$&a&{eu&YkS z|3V0xJo+YgBA-HHK9zRrJCXC7bC#x;cuR8JPdDmV{Sr~+`v1B6^1w-ss{RdzTM^_& zl*qYUL$V|mm_PIU)1mdCi``U+i%6@)W5LM?XLjn+_v8x8S4Rp+4h$O z7SF7)NFa8zE@G`fXSc2ZzWxV}98JQyN3iZC* zpS2tbxp?(vJP~Gx3#e4N{jtSp7_%B7M856%lZ>?(RiV}xZe~kPCB6PK+lk+0f8s~% zmeXV#ob_%;@u3>`c01j_w1bzuz1dF3gb?goI#iJ8$9HQ;ZHTEkd;L0hHeM;8n zn^_m1vp*>k$CyTbf8MLKOUatFaf+#ROo}xLd4?%xgVY)vsM8*6vJG3`ZEMdH<)z+k zWibx|=T}$Vt(<ML(lA9?F=ynXeJ>dAL%bKsg z&cD#=-^4-`pw32hOFBdatT$C#7H%p5-*GH@^ueIg6@ivijn3TKRk0)>yK=x!>gkMN zEFQrQx?0CuTS72+v>r!V5|BJnRtUQjukTG~aQ<`GTU&;WOyTH?O83ZGLP1W*nAYhkM5(0 z^oz|$NpX|t=Eez&ZOwS-Rp)$+s^HINtR**lVT|cc z_e5~qmhY`|=6p<~GC=A~T&$(cJ1nBbSs%<=vBfED5H>|mCtR9#W>NHNY^ys@xhQ1v z;`UhtlQ}+%`1#`YSyC=YO^T~a+0SiG!srU?eEB@FJ1QT9QPCH+H8Z0#*j8U?%+rW2 zqqXT8owK&O40G~Ec%IRum3b(gv9=s)fS;*~@oX_3bz7>)@Ds)$h z3#r*fme$V#Ht}n zq*6~Wd9&UMT&x<-D;{WBPuwZD)(4!_Bh(>`5uPV-GFP=op<41zS+#eYY7v5K7$!7= zDC!5^@&H!17pcD1TdHeTsNjjz<+xw%pz3B6<5taihRH(I2|T3>5iPis0lZ-nzx@avj4iWkXn+dWLe65;bDD^SCJ)D5FP zJjWrsFm91NN7iv&wVF;RgFV9ki-Sop3%n6*w(ZX5z13>RM%UB4v^`sIi?2thV=zZ} zpR7hjSoGGcLFy+(s}`^t%goJKFZG1W$z1 zcsw7?fsmJ5C8!*l|2ZF5aIBV4~MnRQ;= z5MQ6OY@2z?AYuNSlHbVicme9Jiy&@U>$BJ-f)LSJ3z`hj`L~b7tK|}P68?>;0dXF; z7)@V*s<%FmyJp9our4?xwJy#CT}=P2S9;qni{Mx)r`3}%T??n#7V z4B;<;NKP+CBnGQQAi^V9(4>XlJ{IH=7*iPEmgqs|K>q^h!iyK93z_T^eGunbE_8ZB z*NV0$@MPs@PId@yQH&lhfI2M5TNE4;4S2bb&H^VwbOmU8kwRyY2;f!ZS0SSdpapHu za%S?GDGEBVaPJib<&%g)SOqriJs1UxnDy0L#e%GY;E=HY%0yZCHH)x#36t#?Ko8np z*vjCNh(XLG&7%3F2OH`8Y#HPN$YDVL3T|7U31fukmt?f{MRMMDN0-4K;eWa?8z%MJ`WAgorphAi5k z#=)xmJ2hllKUfuWG>w(ULMk1sieKnK$_5r8H9U#5*1@WFbVwAm{Xt=Nh3AAl&&2to zEAu6Y)*3-!m0G$Tal>b^kE*mIAkQ96*&wwx6>P4Kx^TDTB3QJK)UU`QXMwPHO0YM& zVqsNief~GoDF{;1Hc4Qj+TvvuCOi-Z@0JXP?AX{Kjv@GJQOar`pi-4njhSqg1-p~c z=;CKtXNItx9)>&)!`VuAf!b^zC|j|PW5NnyS1NTJ4%kRCS`O|7O06?PSoTx<+=dO7 z?v(u=LCfk)aT9*L_WBda%W>RawpsHh%hjjLKzk}$Hg-lDC3r+L14 z=!9f(lzFPg*4r91$%xZ>3Ze#~oYChigj+udz`3onBdi7%V=#KEjsjZNsvOl24oO|V zQV3x>haK0W5H11n&IFZ);Vz_LJ?U11n3Mu#k%&Qh!!y`mQ^iQuz+~QmzQkr@Yz7_u^T%+Bsu2aHQO}Tep&*Y(A?UHMa5j)D9h!^;zw-v5n8C zc2?@?r6~0JJ*K(wiZ}IJ@1Nwzy4AL-b47GG?uDcIc)~iT-fG*9h~&3b4@BjN@cLrt zb0L(cJBY$@H};_yo>aRpw~stA;Q;geAi5gq>alQ8)|Z z)B5CyT6}V52!~@9IXj9L#$c=Mk@I5mH(%V?rFH)1^o*_5K{#3*ch)nxwbT^qGuv`Z1(9BMCneRXL%|KonO zer0V#9d~PO-v) z?hM9j%vK^lUI8D!;%(M7Fr<2HecDG2DjkC@!u89Nty$@UQ`>6H2`-BHm~GB3F+WWN1nrwdZ^3G><_lvMlV=l0j4E+q5X%9PlQtS{v(TKTOvBiAx}yyfdW zk|rRItWei@7A*wpBP$vRLFJDKKpbn7wcxX8L0BJa)JPB|3tQs!x5cb)={BL&^#e|< zo3YxJGQEf?unWVqu>>ZVUd&3^gUuG&NIKVx zXw?~ON-ERsFD+dtrnQBpb)f|dSZ~r3eHmow0azI?;pn*Rb?jZgs6kaz)fyv}m~!bZ>0Yk~zZq zOA?8Q^`S*`ZhcZt0}C#ABaEL(7+=5=n6BZihB~Kg5q8D6TdbBWVy#5ydlBPql|LeY zZ;^sYu9Wa6aTu``lm#r7>5@3p=2CAFqeLXH&~h$j1x=Slt1C*G91 zfNgP9SR`T)jbIi|yRGl5xDbs186zxjv951G?kvz7#3nQa{dRT(V7p>RDbf=4{*NhHyyqKPI zQT!Qw<%!(zgvn+69Hh(YOku#GM7!#ISGYYE4|lq%>fuh4FdD<@z|XCCsuTZAJ`B6}7{P3o8vDJ@)n(%XqkDR-yv2btT z^uf9HHZ42dGdRd(Fts2TD}yNqguz+DKd~w8^JqQHsZ@!C3BqQau&G*__PMkklUL$W zpuzes5zE4Jh7EnVL1YrnN28#Mep}K^eL3gcNZ6!ux=a4d zYn73swgVtb5p@`1!b86wL_u$5TY=r~=g(bRar!y^RP`zEqEpaEMEMQfN=XbnOY5#iexx~?JHmni|!+K+tw;wd)cJ zq%9w@?aE4lo9!2?`I^er972>iGw{i^rPjB`KukJ*sG9fNwd&?snpQb41*-j!weJ{!)uY*^;fc_7u+ANg=RPgH3rZcRL8%zApny6jE@oNyzyIhjmX>XmF8fYAe6 zhsoKqne@IUM}%=Pa%#0Ub?@7H3oO*MZu&d^lSH)r&2J7uEiqhIiS6<}9*&@|TSPrUnUKb0?!6cjIi8mSF3t8rD z5theG!K4??C)N7!%JnNpU)HP6)pc2LLiy{3QPd0lL8U%?L-Hp$A^ffM!b*3)R~BpP zhTUQ9nO7Abgl?`8u2vUeW~ENryCT&Y!|uZ5t!?A7DBd&!I#~g?CtQxaN>P>#bh1T{ zK(az>FQ`2E-hjOpHIwr}c^mt1VQI@f{US7z^FeqUvA)k=7<1NPN0pVMlQ2TKn_%Js zE3d_NCs`pJuCnBNgVp4G5Z;(>PNT5WG5eMEChf=D)lJ3-;ck3t?oDRFsM1Xk4cKeZ z!xWql{>0{B;eNL3Xrf?xX=Pe(4z4Uwv2-K&%4Ayjr1v(a1z&_|wx5eFzqjsk>y>Oj zvs>9gO<5wWip5Cj1TD6L?H42KGAtP*Y>RUW7vbdTm27=ZA%4hb7cFObl1k2S`2@p@ z@cb6faE2c!j_g1$qiuIk=eWg*yrhZ~wun-Twv4~E?<49=x8If}V}xy`rrUR}bfyg z`9$jwGT;c=;UaaNb$4q@Wa-9w-QBu)WywaZkW=B5t+jij?y^7Y`XhhrSDW0n29P@8 z)~8}vm)*(Yf>fQjDkCdnm3D6p$yk=Mz8=S#gcx#U@x+<;hd1AU)22JlZ{9q_#{bmZ zpc^lWy!B2(`uw@4Z!Vkc5S{7eky2u_iBcAf@i=T|jx4~-kxmKIy2k(uR!X5MI2L}pH{D^ZA&N;zJn zsTB(*n!CFx%p6Vjx{0q0$GQTEOogh7TX+8sG{;Ur5{dT}1|~2eu~s&-2HXfW%&%0# zydQSS1IJ0&IP6gV(#Y&+44R`NNRL69LqSWh%{5#C<9PkyYlw|{My`$GRvUFp1UWrD z&pw%XRok>J?Z}R#lQBhh$tVwO(zQmt8M%}mQz1kuYJZU}vMi9;pquK#%CS9rU|l>W^v2EsN+RFo^JWLt;G7UbwX^H}!~bs4X~-f+F+bRDlbRjH4jPcI3r^RTkLu zYYPk@5KKFBmpLngdO>|qu+&OW?Z{ias|>1vq_k*-o$i`qeMuRUI6LB5_DbLaB?S;@ z?Kx|H^=l6xP)uuHlE>9{6pzDF8+WB|Wd2H>c;_nif~y z^D5;P^t?(grRP-$k;<^>c}okl>Um2`$?17_F8iZ-fx48IoAzyaZN0RJ4#Pmiwr|CY z`tj)?UU360&tEBrCV>!q`$xXFy55bP$!=Rtk5UdWMM4lB7=_DSc36FJPh47lTD>>d zhnPYk72S?`*zlV%S%jRpBeV8|6TW(6`Yehb_KUC&xckp7$`@*E0 zg8AAchtdZog%j~x%-7}?MEbqF`P$sCbNajOFnQYbVZp3u);71$)EZXDBMB1$?Le>0 z1)@9;GMAZ-LYiPY;>9uBq8ZPpQ`of^!_tQ=e41#rU zZxl?sct6{j{IgQ6LFTpZe2_Z*40Lc?&XdEH_lP>XOpw6Lh=eul;$`cJRW=?SK%^!8P^0 zhV|G07b8w^-Q=Hv4G%?qZmxEu+I~%SK_OLwWcMJPM}Z%8eb~;`Z>Uvyvv;}7bSQO# z?51UJw&E8J)pLt&A|prUq5Za)||)S)~NJeM07 zi>9;*s+(857?wLG4G}%BvQ`Va1kJvrPww{pUX&lpVQt0pM#%YsG5}=bgKd--7M}z_ z@a-1x=hMD7Tew}I)CsbigSd;;*34I^u4jTSL9-K5L1SGYs@@h=+62|!1 zy#<{Br^vZ)#Q@5qM zR;jcJs$0Y_O*_KtD@!P)Oc3pYmFT6B4;|rJ(A0UU?%xsO1lKLePt)*pvzAvwQd}ZH znIJl<4_3R}us7_j%^P=0nn@=Q2SK|H0u%;$Tfa&uq|RUUkyk?2z%l}Fy;()p!otWB zEH|^j4G0Cujy|#$O!dA`&?RWLLn<`PQQ>-8t{G12sk&b*2@^a!*Syi(?_%$gy&KtD zLe;INN}HqdhtDB%n8|Wo;aNhX5T=%3X>W60P>t--J4se`CUYx|_uGqw6-{R9rNMmW z)rM`>GikA4oC>Lky+!dfR>hIIO|yr$DkEox(-&cIutCv_*1Nq3#010NSrq29D=TV7 z99+@CfxPZA1u2i#$%03ue5YWfEe`h9Qw7NZ!9}3UI*6xU6#E;t4zl18MviCIQf5zK zr$jPFYfnwtXW=1;50F}M0o7diwBofxfDnwwv*hjqYF(*j;o*q=;hzvApBU~8BhULD z7)*QJ+4|H!f9`2{HeS!En)n;iu*sXDsH0F)Tx8+3vcSOS#nVe<%952NL8@nWk$Kk$ zW)((^d!E}}2q(w1-{Qqgw3(V>gG;u)Jh!_T6sJx^b#N&Py?zgV;X~abce}9g)LYta zSOyE$Iyw%5a&P+UENm{lyy=2M1{H*}kf7Vy^Cn#;!sf{G+`3|9f<8gDz3)cV@|@pd zNJyOGfh!RQ4l1u69wbij1Q!wy5+``}!LVQ{3`bo@^_DjwTwHGi1i`l-ej1EIZ{`YM zUdU7_Km`Rsh?9yFXZY$_36N4CFc5UCe&_P1=BA={{iYxYzCDp2!&)--{ms#tLn50_ zK!L!q`NJ<}?0AOs#p(iU5!)%h|LS&=bJaM6sURf*Ch141I}uIMldq8=KO-|rMX-BFOLO+P!rswsGfYSX71+)}m43ma&P-J#m(Q3k2n zz%LtKZ5T$P^{MP<m-lc2P!esX=xZz+4Lt~wx zkw1XF7AwJ^9i|FT7^}rp3Yah^7d-{@VRmqH(^@K8c($@6MlFTOZspBGJpFB=*H9EJ zue4c3w>xh|3Sv@6hG96|)fR`>|Ti&=kmr!@c zQ@MvZ+p{;2+yNqy`;utdeSdjNE%f_-K*i(x@)?CFbDdXX)EraL+EFw1bV78XQtyTS^@7+ zX&A7;i26u=EZ9HZv_g(M>&ysN!cI@H6T}c`5#(&gYRXCBUCotLOTZ*dNDIYw zyR_3YxNG8wF%Ld$a%`ndxP%WF34G}l1u?YhcE$tlydn;gFd*HEQ7`+HfTrs2u5Si} z1iBm%jQn_`uPrc$1iYNJV866zN8Qa@q(BKHsRD(|tu$YU3KT9A=+bn;p;cF0-U@hk zwg)lh!*9p2b_<`n)@kz%m)n`CcQ=s&!lx7U^3Z4a#q0O|mIgLOhdx&u5KEjyh2*>( z{LJoFzX&Gm6{N+iOu}|1w%tuJ3RVCqVI}Pwl3HnL=;p9*kU$9|hI(!MX^7|icOy0dGnY^4#nvqXT9 zKv(46QqZ1Dxlic&ati)b)Xu2KA$WjDBroSsV>ll-D%(_2&l_?#hsr?`2BZ@a&zEKq z9A@2$>brC31Wdw&Y`PHD*9v}jO&1Un=u-PxKw>M{-D$rOGby_((46Vrt)O?;T_Hvy zdj73s=W2e(3RzP^|Nk?01wTrHZ=Fgbl>)%d)L;1Bz4dBh|8T4vdYcNfT|7^vbIJX=DQ8tR(#R1D0UW% zqarQ;kh{GPQl`!Q9don80au$GB+BOPNZ-|Pz*W$XON`p~g@b_6O>C6}*}SbYOqy0Y z+gu@GI?zgEH^m`$yC@vuG`CHhRQDjbwMxw=LRD-;3l0wQ?xe10ql?b;tXNcsVIn9G zEcZ6tj0->_7>~HzVInoPdEc3}rQ}w!J;SZCHlOz<;E0S524l}nw1O0HbIZyw5tK*8 zmJzptHLs_r+O7mHg7%QREi6)~&HDj!&kEplwO7R{PJMIAVTYSiB+%x5X~r&;1Fm+T zNSMw2J$<{$L1)`cB*^A1-q=@iJl&?@w#_%6QAv@JR?n^scMH`)-D^8V4gp3-J49sV zH@8d(ipUaiy4eci7$@EPaS)(yxN!-?M5K8PQXFpXkP>ZvPM`!v@E(`Rj%Dkh?F&g# z37-JOPWPQi88@GaRG<+lOUw{a?AC6%!wk>}W~Lb^=Z!bdo+2ZNrIa_|9JPR~&ru(7 zxi>^=a`SOl)@G0+FtByD3B)DVj9ni`#Wo7J&8_(;M&KfvdmP;GF2C5#E#Brrja8q zH;YJ|&FyT~?vR7dj)jmwn~xe9CQ|Fi(=8!xwY0g-N|6!7$K>V@w}6{l0SS!YJ>+gT zid2N=BS>@m$w6n^P9)6c`fBVmIp920uep`dBlSR%t^@U4NOD3WwhqRwc8s{JZ+(l% zVTW5oB+lkDnHhUQ#F0|&f?oL%Xz8L>^Ch_CP&I@|jMSaUFV0qtb?nVYxC+8d=*|`q zTZ3*aDc+Ir-P61}h+}To?j@+5L7z<`=;h&XMu|d`T#_1y9L_ZZvsdJ z<3Scx?iOTozsZPnKjdz^o~-od{=B(A4{*BLm**6xz7g-Fx~t7??KgLrRBT*V{ozN+ z-CED!mrm#2PYv-AYkm|5;UqqP?&-xhRI7Q_JGJ1p#VGRDac#*rAW9=>)P^Ma1&JqEz(Y}Wk8@LtgLDPo?!!kmrh7tkG!X6=2WBlY)h&W zBtQt?*j(saY^kSJOCUVoi_9aMO*s{%F$q_&{gfrN8f)tvyc@kY^5WQ! zJ9dh!kKkNLTZNV{?JGB$w683X_LUn~+A1_6ZK*DOe>z*id*WC#b*kk})kTL!7?77s z_oHwc&dZ{J3XFkaREmax1?5Pik{}{*Zxfa~`O&HIE?PCM0Qd^3<2q!gy5R`2W(0M} zPR)oT$eJaQoy;hh_+I4DS~u;|IUu6Nw+k&E#j|mDK7~HTWp7@z?rWpR3Mv9yo(_qz zLfsYL>vz4`%%99)F2JG0i?-_9;Ln0b7?J0LMSg$Y^Sh_vgvju;Lk^1OXl*zkxCnH4 z^<@labNc;m9|DNrpiW?8)=FIzU43c8NfAuK*iP==HmC$Sr}u(-0}kfR!DxV>I?U6Y zxPcO1(PC|pOm!>-Dax-=-y-ofk)PI+p!`%{)kXa_k)MjilwYHc&WZfAZVlz9dY>0s zekv9szr(tlc_ESNSP0Tx&0Sqt)i11RYO;LWJuZA&iLCC7i3CApCa}3NFb%P3Hb!7` z(|8+V)7tOO#_p)B(7IMR!~fi;cz7%@ zr|b*9)Mv&0;TP|(O803c(mf5Q`%Z(&^7(U5Ef%oMsLJ^HU6$M(z^b_%HjWeb>!4Z5eWU*^Z->qo|W4; zQ?_H60qd<`3w>r@3(d-{>d6kOCr3n)cDf=FfWADxKn^mWR?U(e(VN3|dQ(~`(VwDe z>e7;O^ym&T!3T@|uw$`AmrAJ^Q|m>3OlfIyf}MjS5+=Y)@4YA`)go~1EF*btJ}`B9 z#V@^jp*r-U(5uqYRGA|@B6T?*ISD6s`%&mzUy9}-Hy&1JwoDM_rJ8O2Kwsh*~l@ zB1K|RvueJGN|&hCNjrDMvS{Lz6d7#G@^V}g8L`kC1!bq}SW+^2`J#vg%Q9t$$zT$x z%NvTogY9``0SlJo3>J!RD6%XwWdVT_CIaCg0uyWy3X6DNS*(sFS%Z}m1znS6nJOz1 zE@5azFa-PU;J|#ieP&#CdbA~NgP-FL`BBgkc4R9VTpX>0!6Xbw1)KWOcs}#ntPqz9 zrotr*$z~tF zrPK^va#|A%Ct*Q`Ma8GRsdvV2tKTbHUa^!+s!s`2!ia3vv!L{nD@%e#Rk&={3?^Yf zwuw1&s#;Sgm*zD=O4yJJ#pZ%qbPQc8lz>VYIqYzZAqTfb(La`2*)awcN1YBPB-Wy> z&(>J^=;1Yw*mTJz_D>xl-`2wLL4tSDR8@RLHEvZrZ%0;N0xvo%-B#)fJc9eM!vTQ= z>_VlD5x{M#EA3juE_6f1M`V1|sf#bA?4mJd`1EjkmrGw>!Y!Kmw$5dxN6TF0>%a?>^$vL6T^l$kuSMk2`j(CETKARBKhp z@}v(t^q?hL7j4XNnUA@3l_gjgdYk1N9~X|M>mJR8E(mPAH}i)#lE|L?b2Y$AO5%0m zFq&c9M((*9W?t1H+(ws7j_~5_R!b7vuux(is$o#o)<_aUq#NIFw>*-N%`T8EiWIHi z6qb^+6e72|!NMW?zC@)8Nf-m&B2!pck{qKasEABum;+zNV+HwT>js6?4BUlb4qTnG zt4iWlp%L(Mj~+whRM>^<#&)0~7XiD+g;Gd!SQJ%WSU)T@fMp=qc8wcLP$DY|pDRX& zAPBC5YSlNYU(>SxUv|GKyTM($ZwN;UPF8;bpO?ycC6AzXv&Z+i#^=+~!25GO-f2hB{ktEvYwaiK&xLnNpAvmSj|E zJ2g`@IJMU?#FhgIW3I!5-a=P(+It2%XoiD(ehI@N^rxP{G#Y@YRP65t=HN&cY=|yA>9zm^pp3w z@sAzhGacf6ZrmtG_)Nd)81xqo{UwRB*#LupBKmj|esb#=NyyDCla7m^J`TSs&V{=c z-)z2&q9TZo!f)=J1S#WYwp7JL&@wGf{RMa8ZLGy9D1!Hh;u^R^TeMDCZd(;d9IHQk z3psH-|2PSLRs~-r!6oP1<0SN)>cspF>Cq-fY>o)f%7O`b^Ee4Dk8<#dBta^s@Hh#J z!pH=?xgKUwLe9kdEwFf(xBcIu)N~2wdSf=h;`6Ls#fT_pSFuHrE)Z$Eh90An4uy!oMzS*2MKXf zVK1@^fUz%~7^Bz(ESKEQ*;@%me!R+W#wj@d9&12UZ;^zI6|17{oK^Tp*3SiC zQWJ7gs~3fF*|^xAsKHCoq?UcLav2WM5=P{tR^KmMdb6izuu(LrWnZjh1F#Y%ojqa0fZghxAAy-LB_lk5VU}SU zo^G?z6h(O03rnpf37W8_*A?6VRkl^yp8SI9ieV;9$*6;*uB`91s_$wRMIG1+Os_8q zoUkViH(aXIrVctb+=!MiBK-n5^0h_F?bt71UoIwm% zeYZLQD2g+v!AF9ZFeBSX9FEq?Vp8pC8rIBl`#`jW5$V{(Yh^nz8nEHmu>q`viBz@L z`pj!?&$Dr@S{yH7MxK2HR}(>;JzSB~9y>*6AK6#8>{29R!jSC$`Ohu47{|Vvf|)QS z4FL3?y^F^HAX>tR92BgS&3AZSYpbA`l-uPBA{kn1W zSRf=?am?++uxmLRGr_lt3Du1&XMvE&d9dumRIfLJP#*XzZg*^fiNd=bt!G&}nQ#e5 z#~n{zOVx2?0nOR!qfX~KBwj}rP@mg4!RL2dP?4f@s4Lh&j*sZX?a8#C#a%1*gwn7J zN8@D$Btd^i@`K|EW~nHSX2VpJ1iz5J+nHnu->vkGsbeqUOU}Hup!tp#_jIJB7LGff z8P;!?EOMSg%m}FtEE6Bc-{@O9F4LYg_le!@aCeBZ2Ws zg>w$aqz1F~^XDv1;S_mQ?bA--JjRPFQo%I3FDVc7&}7`mr3Kn2gh(aqFVaZM0*P)G zZ3a%jXT!?T(&J)H%PYN0rm%P;@}uaUzQU5^YCIq!vP_{)$~Ht45@-YJWSv0W(NvnU zuQoR@S!zv37vB!Aq1aqt5_0l~|48gYSzm@TyCOS4s<6DYJGv^TJIZ0A!zmJx z?B;3R;)z2`Jm&r0g&!t(QrZL=%4f^M<+Fu`fuVf1^izxl9e0k{)B36-ACz$(;CryTeO2ox7%FrbGR(=FE$6UZ} z%nUCCNY{r=s>5@u%pmk4ALkFwpS!Zc^nv_JRfOZ|+`+b_)FxVx6agxb zH?>1NUja$2{|pqQ^1X`l1(q~OwOfr!Eekd)9CdiGH1c|@a1CwubTH|Mr)_;wORDLp z$I4<`mfF!klZxs3>wb3>tQJkG)~WrJ6?0p0hK;smMW7`-gkyiyJDRW z&7jAYn@s40yHztw;W@s|m@}_0s;|+VEaWA;#q)7%_O4yt06F39rfE1@hsbthXL1?u zj%^kjIzo4#uY7JLT}vnm80bD+RmFXf=Z*vA3jRa-nd(5COdW`u;o45T`(=Cmr3Xm_ z#9~JFXK1PXK=C0mfe3kF@7t^BL|9WHZiLlDkaf|fBY{=FrBc-=A-Bny&Nd5OEbfzq z>8h1}SgCaUwMmU*0Z`pLY+3;aqt>-SpCG-XYDHslh2@hfw(9gOK<89$rG-U*L{@iC87jYE_S8jO?5!C z{F?17A=a%Nfmjp)%T38Cs2uA%8S)>Z>6$347JXOy|-40 zR?B>7w>1owf{7Oecjp{)mC^myWTu4{BcaopfytTS#iwBmHQ~eWh0}FdSF|4R)U22m zTE0L|_!;)XISk>-@8KW=otjK_Z9I!gWka;D0-tc^^@G9S;?p>Wn()!@2g}}g?6u5_ zc^qL=E7M7U6K*^|8uVIbrG=h`p(cFXH3-`7Fs&v(tF;yYO}JR$7q8_XuhLWp(r(jg zeyt)mcmX?tCtP`hi_)86sC7O<>vhCRqD!l#g|;$)fiU4?X%Ip0(Q>1=8sk?IQU_rZ zPW#pUuP%{XdaMBOrMGVMV=p_^2gqx*N|DtR$ z2%B&M@#<0AO}_;j#!wSJdZR@+VJF=?$Q(D}#RCI<5qic9HQ}Q-@g@~kFe(}Uw1;e= zPB?DD%V6T4nR$b}J1pE;;}%Bz5<20i&qm2h_QAw8tEUBvoB$`>cyTbf2*)i9HQ{3v zPdx}=8mxEup+7A;_I-&XZqJ`f*3zt&#gg;o1XY}$Kbo$K?ck^UHdri42*5&#c_>?kRwdb$ zMUo5%1Z}tC+L#puvM^%a&Qce6&VtB`A|G}mS}%v#aUjp3Fz@@R4WHu_;;+7DFNRSN z|5;_tKK)Ex*HhN)cO(PLxQU{QGHloEB`Q@}MIkB>A+K6%_SRI0%34`j>!MAy#j4N0 zQaMAxg0Z&@3%a>iD(8NpR{6oyGVNmJsZy@EI~4IiRhw5T=OIz5*&t4;xbRBlI;E4U zHBVfuQ)Et+Rtm%5Tg1(M7{i3YgT<9W5)Hc?x}oJ+x9b*(kE{w^R|%@oO3-;zYFJtv*9YFrQ>88{Fz6M1tCjM*;I1+f*23r;7yo+(`XxU$iyzR==QN?*# zN)2Z6?CM{;336)`dFv;F*-9=fAxoSY8&zCGq9D}?#9S%BNt02qG@tpvlGWzU>NIku z{Q|E)48c9K9&c2ZWoq5;vaxZ@4Y=#K#2sOT@Hl`i z6xKnk)#aL2oZXadW!bUw#A!I|kX_q5fMLQS)X{3oM0K%2Y(D3K)Rmui4UuClvb{Dh;^V{g^(!Zn#}Ph@xEFT)96Yu15HO=_^M7MjTr;dzu?pA5CNi0;xVD73mH zJ1G~0yCIAeeRgL4B6w@dUlTkK&Q|%20SjWStudcug77xw$%5}i)SY=pqmw>3xz|B( zLb-%!Y}QvSu%l>;OUeo1a>&f-U=%FGy0p~-1rLNXScze$p|P8s><^x(Zraj*u-8&I zukt}S3}?}N(t|azKI;@0(G1&~qachB9_KT0%3v3+wXC)=qDf`8<)LPPuTic*=VyRuVTiY%#v6JE?;=gru)CI%V3ikb0eS!sc zj*;NLZFEI@LbnP8XH^cfTFN>NCa4XqlYk`1VLLbr5f0)Q#&NCbjn(c@D;6}glo!Fr zWHh=6c+t@kUc7i5hO?D!n~G((;%1>(6f5DQ$F4PikcntHxESK7lcRPZsdFMtZN?*Sdo6pT|0Fr@n`d8A11gl`O?A% zWqsL)4{l7pwCxY8y>K)iPr#1AMGLkLaBa@4W+^L{4lw{J2SgWRhz@|sk?tT0$KBXJ zHTNg>yPzwgNL!oLT2IB&S)7Bx3E|c6$J3Ghc^(z%r`%bsrdKSz!?El9EJPz);)h|U z{J`>!XCG@*QGzYk564dU84Us$?NkkQsLhtus#L|&JA?(o-GD_9!Bk`G2GMHev@%~D zJmJV^GyJ2db%t7LPaM0+&%AxVw>5s|G;XaosBkS^MTJPMgVlsc#nL+rIjNf!xTSq9 zh+$mPy1KP8+LG`ISN_UH+{1G0IzJb054(c?D&fZqE^l4ktfsE2wx8f~!p90mO7tK= zsdaW*X+07?;R^10Uh};(f%O7GMJc8>&g#bJilui1dcxDv)N8*3vN~#~Dmwt2aIz}m z0~XQ?wK57+IUu~v#4lnMJ?yUe)~5wllx(Vofz7&4#nL;OtPpO;BFlWTkh-+G5whS;-fh?#t2`hx#@pL}xdZQ4wz%9gfwo{vg2f|-J3TMx2zuUGthP0w? zbPzh>W{S%=@aAOu&B*AbPt7L* zOt*Jo+B)`o^D0656_r0Vg@ZO6E|U*hZ)+FvoB+qJ^K_orFMGMUIsgnG^KzBHYak z`+p+q+mTC2rAEZ+FyqqlIw?jf_T?y?Pd7OB6eGb7Con<#f(6vJ;9Erjm5ZLhBploU zL2c}N-27+jz?KqBb;l}7wX{4IE-6uJ__w6LY+(EfN)10({g&kankzP4vWfjW=c*zU zxPp=DvFs77`iA3bvFyn=YQLhyvLD708+0tZc-vTZo?Gc!O!`7PwPM*V$|t>x)oG6w zh351xw?icRB%F^%fo&7Bpp_a4XXqtNBK#9e6>g@e1l;PRA&U|_3?adMdq0SR-pa_g z-UDhurUi*hm<0XFN>@)+LT+`QqD6@vgh)`|mPCQKqT^QnpAGH=q(F|w_o^z<(6R4D zy%m^5XX0Yobo&`N`bpG7cRcwv&p{lI6D>f(1 z(nMj?Qb1|#WS4%T)=8SG!V$8=nulfArCv7}Pe+$+wz76B7r7)8C%x4tvA63w)gw!n`-PWZX27g}#b zuE~nk8OfE(hW!a^go|EpK89nUtu1Cf9kW^_uE+@DHhHl>K%^4ARKHr{C7=gr4OYOq zhj25S_2hX?c3QA!5<0D&pwa-mCOa+E4#!P-8T+uK!g|-i#^HtICcO0F9_6v$Ix|** z2bBcXNq`e>2AH^j%4wn9Na%zkc0c#{Vzg=;H{pfp+B6ESgK;bALu#Vi(KQB~a043^ zy~!*XSqE9wWTyp>Mj#jbR39ZntO#slT(5S^u=q$FcqpUfW4uh&%ddD~K|;WGl$>N& z+~o`iLPj{ys5(lvqCf^1R-O8Xe)Hxb>hUvk2htGcG=n4N{HSv}@}^Uq<#|Tl;5j3+s<$_GSs7iJ z>+CUcq5vnC@xm@M#-L_lprczXvUMmKqKrqqexDuG$HKQbUohheMusi^^YI;zzN-l9 z78_XQq($Yt`+jQWB;w9LBxU5Yqm54oG29aT^t`%Bj+9jLs#UWsoy*vsX0b3OX=bRM zYYj0NR29Ra5F&N7-(qGWC7WF!u@5)Zg_UCtc6dvLF`A{|&kZ4mx1o3`>I4nF?qKr(6bX()<4-&H6Bq>BZa9mt0XgAb{hA0TKU2I~`k=oby(-8#0wZo4J7eDRA zRbTG`f`+O1wvvTlIx{7hcKTf=HX z1lK`KV#jqmvl6)*tje^sqhcW_cMeL{R?3P_&1-#KV;Bgk9m~B7KB5N*1k;}7$cGCo z9J!G7`=SH}!FDJ~>^ijk<}9e?^k0X7AvkviW3TWo#YJcv!$45&4dMa2psa8m%N|*7 zxM^7t9f5KSu2OtnkJ4b%;T^RPD>f3*YfuP#YQd}Cd`Xlxf2|>66?uBrp`wi+cq;_l< zV7j94kQ)2StZyk01d$cuD!jF8QMfce8=zirKbv77(%J_pu%H3nwj2Gbzg{MR5PbV( zvLo3wXq!S(RDuTpAqx!O2=l!P6e2~5aZ-Gvq_|Fo^v2z`$!mVB;_dw!L_D=XA90#thc?$^{OB zZa=u4>{!2vtBS4PHc})6;a;0thwaTvefbF-1l>L`HZC2!`n{Y4Lh$XKhB4f~U3_Qr zBBUp95Oh1H;b}L`qQ3VD5D2C{Fi*b)Cd%F5s&D5K7zEo+cO%03qa22TpxPh#y#S(W z!Buf1wE8wAMM4nni~KRf3-(>jdev{G5(vS!3yvu&zN^B%iPj(SAP9nMXB;d$ni{FE zZwv!LwF4%S+$dUos{s%QCXke?z@H|Pn$UH}o$)DGF&GU{0R|$g-7&1|MUG}E>(6X) z6a?Acc)kReSN95c9@{s?`o4z1LD21hh@cCt_W*%l+R37n+<>aDVMe6XE~v!m-ELsj zx2Fh#NDFX5nE8dr1t18ngNSQ`tnsN>I7)x`<78vNvvW5F@TDDkgZBAz&ngZ-*Rrb- z=sVL0^u4g(z>Btymi?v3D~~~^g+ds5o_f=aO5ivlNUG~dc`UkJsU#phFUroYsGO+u zL%o#{rk+=eM!$9h(p7`J6+OFhIsy?9>HZ!Zaavs}6SB(&2ar#-n&I)0wiL@*Aze7tu;{V{J2I}N%RmvdwCpaDN<*3YRbJ%1+yOLmfmo1mWIzttiT~D!zt&C4eF54nhL+i5zy8 zO>3D0A}9~@%i{WlQ3O>b*>FTFArYiUd9rJ*Y}l_Wpa|OiVAu=qV6Q6EhOGzT5QGQT zU^}BzpQE8K$MI+w{hnLZY>E-_5R6CRR=ZgkZ7_dR0Y%WRBtJmtLA>gp?#An5IDY_+ zCGT=q$)UBnqnU$L0+e&*4}XB1j*%RAk#RbPJmLeUP}YJT9FDO$Z+6nis?JPq?QRo? zg`5axD>q|dMbnacX)q;uwILZjQzwfGsmQ%WbCFiXkx59?!?7wOXZG=E7msS{bwSpd z8f8`ZWxSBogD{;$t8zLD8Y08n#1GIKxK=m>yR%*;ORy3XfxNw$MCDl{*VRM^{X$y#6)4&%)wc2)+Ce12vDx^9r ztwKR@)>fgQj2x?QyJ&705jP3PLC&;r+NukP7}mj@@~|pLHaG(&J(sG zWk5FPIIYT&kP}1%?wu;!aGczvRMI-D$k{v+pgL%Yi$L#c(BV?TLEiOeRx}NPoA*yx zl|uv$*b`s`yi}8TWj+|>oZVwZ%|P8$O%g-|?mk7`8z_e~-9>$Kfp&Ei7zE$0=B-U) zGeZfi>Yybf??nl~$n&K#21qswkb2NR6V+m8fkPCZltnblx+HE$>qUfmidEyExF zI~hzor6k;eOZoh{C+7_$cvM7^O?4NZmxebSE_D^uQov2<7@nJ&L5XAFC6h*VbJ3uo zuo&VNe=jUD9if;byTT7MEzAxs z#v%(-SZInSFU&Hpo(N&0I6IS{iY$sHsJwWb5>QzdWNVQHv4m5##x#rZu}jr~hRw;T zJ$4KL9C&*EoW;qhGP7zuw$sUhZApQ4!wpd)SQ4}0q&8h-(}o;^7Ez9aMOMYSNMd1% z`ot1wIo9Sy!ngE5(U!9p0`0NtGZW@4vUOR~x8%TxWaWs-i&333&7?IY!>=qFF_lU= znc+#05!lj??}gL#ZX3vp{CHdBDL4XNP73+s=`1^ZuD-;JCWUNqBQ642${T;`j)GO! z`t3sADL4XNj+^{-*QkreP1e$0rw5?kCG5x`0_VFwntHwLK#2NEVn!BNmnDsff{sZ0 zRtX<&esye4%w@kCxB(UcET=OD@Jk!2T{N9xt0WQ|fqsXOHLUf;peL@?+dS~Hy1WIn z9N^*dh6SEL%LYF7ndWV^)`E~`MTJKg zke*67@w+QI(FE4?48gnbR1#zawls(EV|JuQeatS*A%jH#OLNG6*{J4FVk6L{tYNu% zBX&IuRxaTA2J9;V@SFgauIt@C?5c2#*oEtgxCmtFy5di5D6|XLH3dh&?{hOOlQUUG zbLeHRNY*&)U^>KUs0Nu8%?2+9M}V|FFWCNoA748gcx_{Odvnjw7FmC+GcG=y&ab6L}k5N0{# z`-Qi=5o9Q^5E&j;U0PQto49@|9)ffqxK$2ZYgyS%dYc3a!FNEqeXhjVq)kgO1mm5_ ztYvDJ8e-Kaf}6}H7}yB(yON)o*9X^>^&y7QwTste;wb|ifxp{<*DqDqJbc35k{WJ4 zL)O&2cZH1l^M@VQwM5v&HmP_>?H)`$F3 zZqkd-pG%hYo^7nWr&^chR#)nF(3Lt^+2uvrE!D{~VXe+w%FUpyE!IhLq^b_vt=386 zd4-box*|`uw4|IByS|tcgNwYUT~SJjdWmdtE^OUmAGWF0ywc>v7{N&7eaP#3V_?P4 zK999RHKq&u&BQGM5u8Ubc|PsKA@z-gEL(BWtU+mAbreVhtJDSv+m3tCNV~3aA8n)+ zf-?;s;o->08!tJ>-AvvJBpquMZ#b+H62W?sU35DRpbKygxM(U#RC%u9!3%g*TmxV}$LkO0KamITSgVKl>gf|F=EvlHckIwGIieO{l2$sOUv6m^`W z9OyDHH<~cXp@gX=g_8=orKp=MDTs89W|U3I*E!wcHZNLcLdw*Qk|NWdBQJC>5x*&v zPC}LlXY05*lDxpHd?ZMe;Mf_%(NMh=_KBap)@Lo4ys)%c-~6xvHw}b{I{L z!XN%LX`y9dtRpyp309fP!dR1RYWq~eSodNf<;|0qQV_<HLAtzo0cZjotth(TfL=f~;&`5JiPn)PY3CEQ<=R>$?(WFnrwZj=Sa}-hx zjSwc7_Cs7j6#ExWYFYF}`?;F5pH6NMm-_B-bY-xHVV%&Bl4J7Bo-RAT+M@Q*0pr%R z*rKMDSuV7(qV04FVr_7v5G7T1yr@Uagpgk_X@^BViWSV9mMPa3m;F)M1dkORBP^lF zA+#z{jvpCBB5gVPUGbuRd^*TETdS(vtBiiDaUgLLHheLNANk(udN*pTCXN^#W<|-! znn-~XMh23RaJd_YgBje1kZI*B(lvCdXyjR~M&Ohgft0W!+r_vot#a2c7{qMwt*Meb z@C+gWza*3h&ek4>rQvB-)om!yL1#@NL7Brsi*3Lm3mhe3p(kqrew>cxWy>h_s^O5k zYDi!bCJs95)Z|=U(Tuy53_3THXFZHVlt!0w#AR0^ffh|8+tqzm-*LpH-{cZ& zMkjHUVRhCyNU%j4#ViF&dINv>*JKCcb8-i(11LU>U|zi6<%gDamb@5_K}v?V=4dtN z19iB%?G{<+QGWtcP(`EE?DAlkYROfO*C?@8SBnub)(rCQHx(&erFtcW7xsgwa0^I68& zLit^pJI7*)xNj=5Lj{Ep+mp9+gM!e>=h&N@M&3Fs(Xvl6>%It!>`kw!B8N^&QPlHc zQqNDz?K{&s9o}aqi=JjxYZ=wrzIK~9H}EFtcZ=$p76R2>MyErHCiQ)Dx4Z1m;BNYH zPRB@z(UQ`3|2#v`Mc+XeD2Wm@TSecPS>;7Vrcg}fEBY?GHwLN17eXqMD3QvxqBdE? z9BGthTPXT8r&Zq8Wgm6DS$EZkC9M^>ye|f~YC4Cs815;`xuL6wQd)CG8xUE$qRQ7P zg+hdQYhm`-Kh;3xisE9c0tX}ncc0^iI~+%1T8f*u?rAt)vqu2fd|W0N*f zbZD3! z3V^`7gTtG`g?xS+olH?UZ*HX)qapZjFT>xgt0`JFr~zN^ZIb2_k6`x*lm5b+PfD3c z^#GS@Jm+U?I_NZNSwcylfZNHu+3u;iKli)LlWyQiR7FJz6I45}^)t6&0Jlsu=`_r! zp2ALp(j}Po%HLA=v4OPAIXF9DDRF}C7Ksk7x@;n_iakFen}sOuE`?#vO(8`b*Y-s? zqJ%6#^rGaa7`h~ElQ;r^YjMSYO1Bl8Rw{*Aw61G@*D1$hi9Lo2@6F~pcOTn{*cEn( zg719LR9s^mEuDRlf$)ruNZC8G8g3649w-p#Y1BdrAJvin7 zt_H4Nfx5ocft3&^Vmgjuf?vkrMDc8!12iYy%jIUkAW&~kpiTzCa)a?o#aTgxC_!^n z{4jIc*%U3c=5;oSVB;?7@ygIPFn)3>yD?e`f}p)Ak!?;$dcvwB_1Axb-ho-aaTX*fmW-jLy zeaAbp9;Ht3B@&c5R@gnf3zwiqo*?97lD_Xx!A)qSa&^Wek}kot6>Amlt!ZHBDy}&Q ziUbGmMF9u%O&VaS(_JN037%aXWiS|2Z-aUlTE{^2fieNKjRRs6kqyLS29vO2p<~Ik zalFy>jmggw9LszP6D7=E;c6u7)cKM~b%{xT_}_i071!pxxvVrL3~H*%vA@ex0E`*oB@MCO{!go+Qd<>RqX}< zg7N@YPFU?HYm3zdDjQNQN$T_o#-!5mT<0KOWhPq9Yz_{VH{3208|Ep zK)sdMyvoir=&g=&LXueSJZo)ibtpQ^Cf7b?AR&PH@Dk70V=WKPq>P(5S#>5cDRF}C z2#RwBt}1~=VOW_Tm7gnZO2QCi9gq|Q0m*%x6=*=vWmZ>8*~aVmItf*RhtIAgzwoez z2B_-Ht`OP;8~5tvOj>nZy0xj}I!p2d8lMc7za?H!-E~(TXPpsmHWmV!Tk$j_v=^A= zsL>tjcFD?!l-L8d+6Zg2(=0+)~OVCW7ZDe>Bfo_b6G?=;e7F|n8f2eVXHHCc;An?y_@ za~;dXKxD@4A?tLz!!U5*($rBlNuEICPAvWg#-a4y4^sw4zguxV80|$$pMc}z`BCU) zAB4g_wf3v(jOQ6;0*EXB*eg5tEJI9E#p)~RZGw%PRM<++ zCmS2gd(_c#Nta;a4G=HqgG=FS)SljP)`B)4%>qWAK)VeafP@DAZ+9@Cz#$nfhCX%7 zStb+$c_%`iKwt~bAvICGI>sU;Oi=M9mvGIGPDc>ZLIQpp^ayoax@-^xEnghZ&e%kt zMZ1VitHe97925jEH^n@t43Cp*t&{0maQ@o*<|Lbj(N;MLGbb! z>m=tif-83$L#;DoZ2}-Dd8|+b7l}deyUoQk85J)5*gCO7Drtg@cQ5dB{g^8WtWNi$ zP$syzQ=$BtE}S$mI(3|iY!C!3kBo@DwHhHrQhap=N{l2y!n-}#8|KOltJCf2^?~!6imU9F+SJD7iogT>qKu{h+=RSrbJi1}j_rVirKBlZQ zPn>~(;N%Wxy3?b96ze#gDPe+&yKel)wZLn*GF4|9h|nh3659nw_;#1p8zQS^yHd&o z7w^%9pW%&Q2e6B9p*rJ64FrM7mmA?AiG~}L>nt}WR0$qF&cc#l# z#SXZ_XM_xJbF6SsJ77RUtYeN%07Qy>fB>0XLPEmYdIdA4zT$8 z6_g1sz8DJvhP#R3K>iC6IYWsPblmxc43XEw;jH8Qa-sxH(nmzWxL$v+FS69xlL*&& zA$0;Q5fhwfznXn26Z1lIR}!VcttBQTO3-j4>u4W)ok0|mCXl!zIiKJXFs`IGF=2Ha zNkTgd8(!kXph4tI1KUswn@XEt7i^81T7Dlz>Mrp zhX8I{hj2Ew_THqn>#Q+mVjx&~zl!-F@}s*1p$Yz^Mi_u>ymk6jojgIPNR!pMqY3KT z($p~!tbDQy+2NDZ5K-T3r&68CE`vV7sMNTd3G~`Eu8=1P`J#lv1>9f^mjO(@UbCR1 zI*SrHC1A4tk>XG?*T%IBB5~CaCtVTm?HiAkvr3xm360nv?LFOE+DziTyiQ zaipuFAovc%D{$2~;7f8ehIp=`@HF}a+|4m;-{GeiG_lzgJsE{4L33RV3sVaxWUqufH>P|5Sb^SCN+5NxR8GhrzLgxK_{7{}6#1EsFj0Q~ z+}9N!mdWy{hbLZ{9+i2-pA{XRC~1JyHXB^XUzJlTp+G|Gg+<5lIl#dVK#eEa$f|v;J(&MjFy$Zcc{Qd#8`B?z@BfJD z--js!eEvU7`AYotllc4*O#eSb```F$j4Ag+w10pp@4=^s&j(@p0N=kJb3PN_JNWz{ zK3|8=2%mkV@*I5r9_D{PzP}QGeF~td3LxHe|Jd@vDEt^rvFV)9|?yQ+^oVe+l3J6medL zCI2fvpN+qM0H067l*{q`srdd(e6Ha0hw=H_Si;ZX`x-v)z>?45^S=1)>oNT%e1A2j ze-_`b#q?jq=U-s@zhU|{`2MSyKF0UI!S@i~ugB-#;`33M{w?_YBSdlt-#>`&-;VEh zVVO(#{Br#2otXYCOnDflJOm~79!!5PKK~8Ve+b`SiSHl9G7sSUoAG%Kmhfo&_G>Za z=P>1WFz1)y`!C}2m+*N%d_Em>{x0TuF_!;fe0DMYpD_Jd`2NTE{9c}p-+npf+>P)5 zg3mw4U;hBV+J?Wr7vFy!-`|RP{t#2%iSIv+`M2Zq@tE?}nDfc_{yBXAC;at&nDP>Q zKZ)rN$M-+S(!LSjzkunl!uQAE^IH6Bi0QwJDaY{n4t#zFzx_Y_^&2tgEAaU){PiF4 z*Kfg;4`9k0@%?$2{}=H2<(TqPe191}Ux3eL%>P_`2Kc-Y)4vk){}879FP8rve10?j z`YBBRG(OK_%9k+z-$TmT;W{RKlnU_DKEgB_h8D)@ckD!bxip~%=2W=@qIf!{~fvb1g8Hbmi8%p|0{g| zCVc-5d|rYnZ^N&4W6J;H`*oPU4^w^;-~S%pzYc%>PJF*VruQ-BUohnv`2Kl(|3iF# z81nU6OnD^c-;2+uVai`2&Zp!1<1zh5@%@STKEe0@!RHNF+Lti>=kfgy@cnP`{VL3J zC#L)!lzDde6_~OEfBg@nvKQZP!Sqd-^M5eq5t#BBOt~*UZ^q|gOkczI-^KSQV*c;K z_pia{FXOL&hUG8gukXV2H)8rjk@tVa_bLAB;jiC>DgTbo$KrDU>1T(Jg8XNP|A{Go zgJu3Xe)XUD)${TFN%-sE;jb^ol-J>}U&7~4;q#~Qd4iXNd2Yw|yYRUSQ=X4`-i_sa z6}~?lpZ|rwJ`Z!g5>vhlQ+DC|qwxL5;r;9|!aU!NDd+L|IDFm@(;tYuAH}b}1D~J4 z=iBi4d-(i$%=ut^ehj`nJKT)V6Zq>B@%d2vbrnngReZk!-%sJQhk0UrzY3otOnDqq z|6hFnef;VqKEEBG@5blT@cH$a=YjbAQ+)ml%EZH8m+<)}C>eYy?=PF?@a} zrf{|cXP!IZzo_aDbRw_?ik@%_=5{$+^p_c8qgSmxhh`eX6=J(%9b=ST3@&*QfN zrhFB?--$VY5T9Sbl->B;gU>Hw`q#kw+2Qs0)jB@^5}*HvdFGhs+c3{JWBM=S^IP%x zhnVL9nCH*%`9Vy1Fuvb{c`nD4>oMgA@%`oaKE(HjVV)nw_wAUz1D~fLjdzYL$(Vajh{o^QjakLe%A=kH^^tl;}=@%c-b|D*W+!}$Cv z{OUjP`PZ28E_{C+2G2BY5exnn0_6;e;ua(1m+*(^Cg)6c1-^keEvP= ze=@%R9On5Gd_E9!{yjb)fY0}1o@?M&u)vt|ukbuO+>h_SjnBjQJc-XoVmbGLug(rH zL7Z>Klmqy@1M_?x?GnjK5K7Srl-ij2T zfhE5k-~Sb#|AxzG3TQ({qHc(rO4^;;ICUTWroi` z#+?6v@4tZ07vpmmK7SNTcoBZ}WBC3Ye2(#X7pDI@=KLv4c_dO<#`MQw`tvaTZTS8^ zO#drPxfN4B%c#h&sSs0KjQNp@H{&lV*0x=<;U^;2k`w( zSkAxW`^S*tAxxQLo}b3&)%avL5Z;4#X5BM9jCtOQ&o{uYXK}vrEKXOR9o`31-U+{+ z#ktC}LpD`;7H2BY4)4KVFGY%1!t?Bq%~GBn_OZ0@$FE+9>1>Ab>~J6E|2U?92fnZ3 z`zP@EMl9zqG5?QY$}z}u&v1h8Coumb@%cJT*^fD2fbXBi_rJyGTk-jWnDeFh>mOjs z_rvp^;jdxJhw)c75qWm_QG9;_rn6bdv%@3!{`D+V1;+}e3Bcny)z5j0~j3$s~C~2@6O8lkdzJegZI7&I5=b? z`6|kR@ySv169HyUz`U;$p2@uz@g%BaCskp z-w}ZMSyOSomR3{Y=btk_N3ooB(i7FexBUX=P`A_C)iuuS8%ges2|m&qI%5`+OEQ zwClZ57(-+(i)jw}8QT7ZtS=wSXo-M5I97ZLHAU z&DXFR6kZH$#hXrHV-f_CBTtl{hh|}X0{I@oWQ$68cvcB0k-(71qq6cU5+Pqa^iGh- zs>z)u5%Zgg`3<%PfCE>h3JoQyfOY%WEOglRAe14etv^2h8-6cLM(cS();EZdD>ei; zv5Rczm+xiLn46q^HLI&s!Sla8V}6T$Bz%!?j-HqWRqM0z3i#9^K>TNB^FsR$ALSXP zr)1GYcSedQP8Lqy9^!6}fxjZ_8>-vpmzNv_=H6x^ zG<7@Y+jp4XB2Ksza2&$9Ow7lmcJH}aIFTOtrW+2}>9BLH7q}+tYqVo{fM4*0VVx&d>JI9d! zby@kbbBB<^!Me!%#3AJUp{%^-73=0z^1W#nj)#xKNEG*z=b*S>+K1BsVSf&o_)N@I z%$E1Pnb+-&*wtBar=YOTwu48_Qs2l*y)S;A6l(6wv?(;b5IY&VBIY-7%s$L9^^@Yw z9jSK3drQ4;0HXvVliy_JKM+pSkAkK7Oo+vd^|m4bVrRFD5CU&D88CNE+m=2U1#nno zusk6o-eQt4cTL!m7{NZGQ%ukMgvQ%U8s?F-wlpBP5jy@*jt;S=-(gZPw|Uu8m~^LJ zs{tLE`%h?jN7yo3EGf&mA;swX*?7AUnaNyO*WfUayd6Ue}dR(bwGK|v~OhQ{M z2(g|3xZI-IyTfk)m*|HNTnckUue@{rGB*jD@-HS} zxJgLqb&L{SFxyjIG#W3;E}+CELs~!0Xc;ck?aj$~)9Gj(J8rBluz_qr5spxn;{&As zvnHAk_Ex2ril&GsXuUt*MW+kdn;CBnl2d?G^ytNX6r<$)k03+Y!W^0R=T>Ag=F7il0D>>tm1Yd#kZLh9oQhK z$qb>s!=z;%u3Oo(0j7(jeb&lD3&? zm_=IkbiNt7)jOc4R=QQ2Sq529=jdVDm12o^vA)0ZEQ497(S2g+J=3$W@r$#H*Jl~9 z`~fT9=rV0a4H+b~o&yO4jDX&A)MUYEaY$igipa)W%D|t|%8){6Qm}EovnePo3k#3T z!fj?3vI>v7Sv4>>3D}JPvk7EZ!5Nc;&EPzjgl_9lP%k!#)YT&}4aCG@`7brgw;7aV zFd@wv{H6{{kj%?XGBzf=gbeM8kkBhlLRNMYRy4?5>d$>2vzz;?+f7kW=jc&tH?hRK zpu`$>(}cBw=OzO%j^v!O}xkx^Dby3Tf)~yC5gEJt2+A*5D`y3dOwUTTuCGXEL)k%Vskk;uzUB6aH-i75Rr zmj6n#d@J*BGLf4940ZixlZ=)5FD8>=vA@M6bh(AcKAXcyXu9kC`k#O<;J)C8E3UJZ znNSPs9L4|9t^iAZ0Q2yP3vDI&+`^460jWIL97mX!;hG~eA`rrZISYk!9>VAtT|+~T z^!a|I^e~en^XSw{9BD=zsXT&F(T#XR$r*M8DLvZc$7VjOpoXN$O&5BQ(&J1@Ru(H? z<*4OFB41+?Y03_#uP)^xrOQl8Hj@rTg5#7j)$U0qwY^m>3vEaVkSy(cs!7adWulxl zW1R>k`SiBPWo!JiOmYXEh%!&{pJNiVnF=cxXNLZ7F=-uc#$4L7a`jZ5L9D*3Op-Q} zw*~C!Bxz5JM6Wf8RyU6jejM{Pg>DqW${7Uz!hIFOO+-4^Gdg-e&*Ke=V&GB-pW^d# zuZ8~m+rc4F`tK(eeaJTrkk4Pu{0Y)YKe@bw&QVgvc~*wrl{~|um@XVJ7k9g)u%Yn>$A&-HhAV>*k-xvGTTY;=O(?WR`WXS0g3 zVb2iw=dwz&F%WP^Q_xTMDE;i*+x^b@?z!ild+vRAk$i7|Nf)hrkE34%>xh3E8wzzq9b__3 zC->W&I$6<32Z9H4-aH7g_Gk&QITp*Gd1H?8Pc~aSv4hm^p^$1Pd5~Hd z5~klA+l+sItZwW@jTioL{EO zvHE=1PUe)ABXVIg`Z;3_f97!nIlov^=_>#jFJ{EMABHDVY;;6Azu5AzF|#T&zu;|_ zXh$FPEXjKK6M!Sy`9;-(cM@DROS2kY*l{G=ssG_eNgFOI`vj~u~awZq0Sr(=Nze(a80uf*g@sknBvuAbVv^Hopwkf^7S&EJUxSiRLpg%|#c=W%+FB zeZxi`!EgNM2i$+$2`1zHV184296JuF>Ges==71A>UpshxiS&3h-xLn_h=n zfois=N3NVGW&0fZ8#DdEbf-|doV6~Hj?t`xx7@d0gHVSY1kZ$*YB+To!}|D>YYY1F zeMNI>S0bZ#^AK8QbJjAL?#8`gDlQV-dh*5S2DLk%T42P?#lCNxAad{EfYDN>D6%mJaQ0Qw9_O&+WliyT zmSF1ur?`A414c1VfQ(A2k)M?1mKqp#5w+%{k%hPPY*1s1{@3Px?o<@)l7y>fXjw?1HV*?KP zv5+~7tLc#;$j=zEglP#m8DFXtqW+3@TUq0St4spF@-WYt$hbRK7A+n3L=CkkqXJfn zH?7u;m5VvzT4D7X%lBC+s5cn3By1&R`-=V1JO{=arO`rbG>qket~*_LeTzH#x7+|> z`jf2-u$34V5wov20I{_-Vv8Fsxl*4zF&B2#ftMumUaJ*GTnq}ACso;vPO*BU+`aoN4PgzZ3huM(q$&$e zldQ^}ta-y}67p+|gsDyWPI)Ud-UfuWxk4l8S&g9=94{RAW2<4T?Cvi{AK9SeDoqCh zl_|>2|2wU`mB0~d96snR!|V#y;EfzA z>?(!@#40^Z?1pBzyi>0&O}j^dZ3aGjL~?jqmEoXj<`wm;*U9V#A{+XL5FKzG_%F95TcK zTOg9KI)hGTfEX1?sr1zgCE0*cjqG>y-^6}D-b2))~iZ6o#@Du^M zmUCHqSYiz!rx_vcV6=|YdcG8MeI2S4S`cE+U@`c*pi~|e3B1D*akdfRuQ;um#$_J| ze=eCLwIciI_Bfv_lGq}Xcbc-ZL*W9Vkk}#yt24Nm86;K&QuG$NjKw6jNFc^^ai==J zHX{5MNwLPB(;fJ4+Ofu-({*e7maCCs4UwW-<60JzVhtmPtZ}_&jZsPdxqH~z9h2Nd zCc*bqt(Qasbi3Tj722>VmjvV7!Lkx<9Mh7IveBdxG2m_%6Ws9`jvZDgnLaTZ1%SPm z41;Y)C~P$J(qLWGGlx zh7fBga6L4}bWGRb-=bm6bqQ4h*%C}v;=v4awElXbSd;e|YWb>jt5M}8p+8P4ZqY{; z-~&2xxLIGGUk^J5pc7#;Z>4!XL}re#h_WBhI8c+3Mx#4xEl)v2MiYU3>IpP@ z}IXU(|OdhR}<2a(qd9Ud^XK4b{oU%}pd2>Bmjwj9_R@UUC5tDPn<$O`DN$ct|_y5_OWFhbnP2lP&H7(|A zu3ObL32AL;=1sG+b2HJF40E%);})|uk!jYdWlP@O@TlCOnw&I`cRtQS#NnEV@21!% z*j|!Sxg#}+X%;v8&>Zs|qe<8@g_GQ49Xvo$%lDX%yN#Dq%mq&+w=s{`L}R8L^d9fP z!%Ai-UCJFwF^_Ocn@5H+z4>CFH6OeGNkOhG+N@E`GHXMRjqI3IGS6ttkX7oM3H@=G zg{;*Kb7yjES)?U#G(1D@C?nUMwe1|6x;4RakF-?1B5N74y8yKa+Y>6*W)<7Et71R` zMm-al$PvCS3*T{mginwKP)ETAtiT#2RRayoom|OUCn;ftjg1_q0j(gCDn@U((adX1 zlZuDDI`VV!xs05%HdmiFHj07c7?z2=FVWpQCJoG;CS%|P=j144ZBF(5UQ>Fps19=$ zHB;-0FEfVFt(YJdyj_C5*>YDg?mye#B7Jdnw-;LpVQBjX3Ofw)bLvyFd5s=t|7bt_0!~Rp~=DCNS%}=$J}^hJipLg$jPOM zRg=3rt-Q4+JEfJ4?3vj)D$ngSSxTo5+r!8z%_%3;ddERXEBBY=OQmMRv6{4vIEvWZ zOeQGbg*9;#G;t}eXQ~<;y_feyW~(A6X(F3guU@I$kO89Cwim`5f2zAJL9R7lBP6bT(U*{&oTY-8C`HV2^} zXykC!ms?9qKu9haU$O()LJpAp_z2tR$Z^l^4*qZ0 zvr(guG;R9~p*Gu?j^+g=-&o#M|TC0&KH!Uv0dS7a~wrEXP(3g^G zv7pI2{BaeZvl^aOC}*pM_#4=)yTs>D5IUC6+r6eyys?C3HrB}2R+ey*Rv~LWA_SqM zl>7T+5vwcHotMvJy1Y|0dH9SUR3jY1-6Z~u2c$Bux|OkFi3{oouwHfv5%VrAiRyQV@@`kTm2^26bEed!9I|*KX@|s)0ofsrwHZfRLE~ZN3%X2k zjasf+=!;jKK&_|=v&Ldq7_!<*e_dYua?cGwRz;I##s3spb=P23O;TbNd-7$u>bbur z)~d}dbykW|2n4NuO_;Uh|OzOyV1V&&jshTBcHtQ$J8U zOp|J52(DClj1E`pWGtZ$$s^hlSIqawvow;BH^k-V^tr8YlqN3GdHX80TA@?!{13fY z(m>=!4#i_Nnbw*_RAU*?y)}tPUze`*q(m}3C@Dz1s%t$>1PM=Tv2fEk%BphYL0WlG z3hQ&3PI>sbkc;;DLFjXuP;22&6N=6x#xjqQnNJ9zognZ9O`tXFQw0_)=FO`9vdiry zO_bKfW0QCERP*^R^L#@++I0?EuV}Kgj%mrl$F8hd|u@U^{ zX(Fv`Em>s4edSe@gcf;I6Wzpb`upV2Sw2(2Dtqt}VHBId_iat6^?fPWQfhzv_|y!| zr%NxgdV!U($AFGW!J_wG;4mJ0Q!OupoU=@CTr9#g9w^$(>I@;QmLQJS1t9llMy|Um zXN|a#J`p-Fcc<{Vw(-?!{Kg%`{9L7HtuUlX(wY5|nc2O{s_wwtorC$cZn}$9ZgzA` zm8G-0l-VV;t*{H{UAw5=*m=XfP^TuXPDfw|*wFp{}lt#Y#mKF4^L z7@gBK%qh`sStHe$P0XmP{nTPeI z((O^Y>))kvu}1;7GU0DJpL>{(ot%YW#EMDgPHr~N{VJhE4~V7cj2>b}i7{tV@bqkF1>A^YL9DzNS*65%r&v4_s$mkm7w-# zm0n^?$5M1ge_=*?mkQQ|8YetxIDXlP@u%0;C~o#x2NzX_Io^kl$tb?C4F1+Aj(tAC zR5Av1n5*rur57tNQT6}^@cEi-(_y8 zY?Q{9qQ=i=E**WR0sLQ@N~`*zkYG_GQOtidG1jVvygAk_hisxr%|-7E^$~kIM#sLa z!02J|4jCL6H&Sr!_b+Q^OVEzKs(FUl?AnT&4C)s)V(5UY^?jK|4HOOy8w?^AQ$<+j zV-XoyMzHUtgq$Uf95+eB@q@q`vJlZ(k&l+qw~95M5bG`DHavENd*wTFsC!5mu;sLt zTGaTMc?35sI{trh-s`!8mA-_t9l>UG8}O5*1u$(oRRcaSHoTV0(E-SGhJ3@2k7h*9mN6ZwGxM^dyEZZb(-1eX=9QvDr%+J=7?$nG1RQ zb0OBt(h;y?t0|ya3|bp}CNg9(VaVGNqACfhFa@fC<*^rpthYBCS=$-=_v4X&@(WE$!%Mg>-?%aqHp(%Tv* z+e$Vfw}3FZkY)Q;BFrU>!C9Z$>}+3lPP{G-Grgx#f?qTm&I7HmsIdAsYw*tc___f5 zm|^g3*?byx0+9NrM#}PS8*t`F;@c~-WY4z=vNA*9OEOH`76qSwYkVwU@-TNSBsO}4 z<$J!Qp&n-x+D?v_RLsUY$DKabXjyINgTA+z@LG`jkk@u9>}w2z<91g{*-}w*gLv2Y zUh_oF78zya!vR9Q{MK4|M12X}rtw(Cb{YhAkzEOy#uXv5b44zdjRwFwUJ-7uYR8hn z4d-SJGPE)-fY)K6PiwB5ge_C2YV!Ib1skN5Xu<#G_Q8`)X@){0o zJsfFVQA45yisqzX#=QLzHuT>+79272@thK_&;r3Q$gtHHlt^+VhiiPnjgy!J;MEL7 z!=a(em6COYKZ$1 zd^DTnEX>kNiRrfI0mU01HPlXwf}X}Uyx>h2hudt88=NSxoQhn*WT-2$E=;iF#!beq z%vcP}4McyrV73)IL=V-7!kZkT9(3;4gy}QfRyfZ`Of~SI8H}u~CLhflf`@AagZ#T! zZYhX!IQYboT4~ECYA$B_*QFktvDG}E&`?`23UkYBwa2gR1tH#Ni z)H#Unnwj|4EZdvZF=ji)U_6r^EtB7jb@1-IkEGIjXr!$1jA08*64>*5)AExyo+SWZ zWFVTQQ5@g#ql_2~XJ`zqxU3={*;z=|S(g`=ld-cI3%70{3TDevd`%LF?xPX4;<64M zxrQ*EF@wzM#pM+6J`A=^DxX#Q<9Q93?yoUrle);?e?y4oIE3mZRj}QRMgNt~ZcYM) z{dew*qURzl0k`_EhuLH`!EC{H@cOTY+L}@5za`>ysm96bzYgLK(@S1uC-V9)W9Bgi z<4#RB)#iGGBU6s4F4t%wo(AcF23*Q?kD08=Tcu5emKYkO0)9JQsgXlGYLK%4mG20t z3%NPa@8S%_ZWll&xCtK93l_)hiabZc1$2UnfJj|$3LaCGGdw!*%@{GdBE@frE zWY~frwTni|N;X``=M#m~BisPq$gY4MXAmd_+k+fRyEUQYLi$$~N*i;9JxU5_G=mx| z2hl18Of*&FgO!-TkF5Od+%<*F0Lw-6h~3CX%w+^zx|GjGc^Ihdp;571+6KIA{HMs0 zJ(ng(g&~1i;#>_}W@ub&v&7|ZSw*O<#d3YKc!+fv0kcrg+DD^enZ*X|wU%%>k|ld) zA;>Wdfmv#Gx0mm)ak0!|mEUtGp>i;H49_e+BFBh;iPyCcYQ`ik|GNW($rt-jBH%Oe z5F_>_1egqDqc6a4m4llwvC5ycu`pSCFOusq@e%7X0!*xw^T~xI25;DeiBw-XB%?Na#q8v3111_j+qEQLPRM`;k z6x~cKYR)OhxhJ_^p~L(;W0qeVJBgL+IyPKKYIAweo9v6bHg8EvL!g;UWO7A0+!)e> z*ei`#e_KdbE#9p>)SR=krh@F zw5-iVk1Qi{W=YJlR<;#&cIinMw zy@mKgH1TPDMiDQc#83fML0wa@SzG+&2(o?i40z9;Z?R(T0s9^dh&@yj+m<9=7PODlq_*XR4XKDm<`7J@!3pw@(d4(~grR)Z zM~>ITj~|3l%&|}Sc&2-{=~7-bPSo`5JYRZP$;q0MwrpjNb43-Y=A*S0G{sLe@w>KD z2P0mj1_u`dXOiKrEGHT53%H@|^!ZmN&(#&oWdenAP7Wkx>vG&mPUrTQo#R7Lc9y2h z9N%v_()EPO%n0RlyPs*YCk{%sJ@8@Nc02gbHBII{oR(`5L=EG<2qI-IjQmp5(v~M< z5Rbe}ZIFvJC21*JC?y;sgJd>RQp(qR;}spW`K6kQw%RSgxC6lca}D7LGUC=RjSqgKACOKum&vf zyv+!tQ;yrTFO?3FK>VFXyt|J+ZSK>sWQU%T&?!6S8wW?*6EfHCM;0%q^hPZvjpR0G$n!9r&Y0=v|tw5^<}Qr=qsRKJGOq#2=yn!X{%GAMFN>o zkTHZE!7pfnTXEyMeAw%%%$Ac%8sC>Rv1#c|$Tt$3O!*Z}_Qomp?Va0a4t3YW+q_!} zZr(*A<5RLIZY^P?g&LL=Jl;ccw-vcdxpMbwi=ivG@te7E#kuLzz1QPrqjedx#P54b z+OX8DP7U3i73-=FXj)Fwbin-Ave8CCmzC*Lcco$8&~c%C1x@?Z`PVL6Yt44cOja)a zbrgPEQ@HQYDKyu#WQ!HKSe8_;s;N#}er>T$-Q5l_>l&J>w7jr2Rbo%^UHfzfw5_FS zoBu|vnft6Wed4j!awQb5qbZy`KaCjm$Dl8|KC`~2E-mkEYE4`7tQzGdC4EPPC1ta|r4fn3DtC_L{y) z^Hayh-7!iB*-6tiUvV7EmW8T(zN}S>1Li(Rb19nKr(Z2Z+dqDknpAjKP51QqX;;#%)Od=fb-sp6^BE>n>2|JsM~hC=RGC{LlcwfP zTh#gD10B;f9rM+Ia&B54MUdOSqQNV;m(rZpbqBD$HQi||p-t;&?~XzB_S00fnS=)s z%}egzHM=XfmoKMQa^I#GIC2|_F#Z-<2}*X-KF_w9bGxc?=9+i8*TA~b7@Edun%Yd5 z5;b}01Qbpja)qV`o9e;kz$F}dpm0}B;e_^jlv_ii5PxwSZHlHS?bD&++LD9it8!bK z=XrNd7tfn3(^Sjz+Du41$sN%JQqF}sQ1k;cAEp(vHZufYU$(DL;zKPf7ktW7HFD=& zeA^e4{!p8Qx9Nz!&L|prsWcQGJq!x-rOtftmWP`sK;dzkLbE}sjnMAb(EB}kiVFrO zXbjry3ZBLe(;4jfB@~^cDQYuRYKl6|cbur#LDi|6s!ugCbjr%&Z-glm+E^VVi3(aOO zxy{En?x0$~(Ddv*f1R#AyONsdK=Fl|;x^Ykd{>zh>@>hA?)HL9G;L{HB@}bYb*-Ip z)Ylt&ax2Qv^B4JGWDPxOE9XrG%Y{4@>s}8ElEqstm$uaJiIFFE@iN9PvO;Lx{{^WZ zn7M)Tg)MDVN*CPGxZky5YKQ%YMvwbdFf9{IS2V@CK@GL|Xb5Xzgv&#U^@h=$T6|*k z&~;^L%P7q&(y@=c)}Sf-TvgVN)hx+l&E~Z^(U&P$?Mt#+TI%E1goV@hR%lt!L}It) z(>4kCYD_v6^)Oix=`Qp*P4YD@(5HR6ugR{LoD~Z9m%jD72(kKB+85RaykkORJKz-T zJhH!B=ZwUE7+OxhN~?6TP_ikc{~y~lZ6r+*A8lTi&p>h|p8JXvbiHeIkx_LAcxH{Q3)%W_0U zHnhfDdmma?yy;$KHdyY+lGs5Wyi;$bG=f&>b%wmoo4*6HUGf9S<8F zZvUSzCDJ1Dk)$VD!iSQ_j1qFvw7{%ZChXJ`8k_!R$j5wRv?y_cvOkj5(pH$;Q>5GQ zPi(`z+HI)Bx^)CA5$tu(vevXdnOf0F5?yp_K2O$6o7J_hM7QLNT&J{koHo=YS@Ex| zF>QjJsxcUBbUXf??3nf$v>i3NC12-yrG0m3OJR~N|G_%bg14?SwQv6)Sut(tq%{S) z{odueq<#NuQB{)VK45KWQ$1Ci>BDIr_#xRYZMmdX6}t64;`*e00&iJalKnnmeQ7C> zsxQrUpOfv<=3%Xf*X{Nt*CQ=+Y)Mg)%@*WyziG2pRo4u41pb7mTtGkP@rVoD`*PZ9&3Vm2xf?ij&Ex^($*-|N+jB7 zRZV=_>XQ*KD{lUR=PE193}hjR8`cb@nI$YS9gW8VyhaV@A&|a^iAsJqXck}7beO6* z8Wz_yq^Slbc(bxm~I&fx^n#Q7VV;AT#4TSb;*WsjcRS}*5`;Y!~ zrlz1-Z*8K$Te^gvZw-eYr6pF<^fa4z+x4+;EClmaG>I$9)T_h1WsvXgFLs#M$_8*` zE1D&qFJ?-lwJfJ>V717~piP8ycRc?enB2ytiKt0hXAIDVqX zVOip^ZaP|Lu{^U_HARj`Vnrf>*GM$WcT5y3>Ks;P4rX~!ZNQFQWXpYRcA*wM^9EzC zMnpDjE8@M%HG$9QHu(f1bUtI4PjW93`xK%<2UIpED#^VFXr0AY%p$oLP4S&~ zTOyI%iws!jumf{Qw!}2@*`0|*vL%4lS&U~E$(A4zyAX+FOBk@uVK?TGYzZS~b0@k_ zB@)S&09t3U2eU}F#B@J|%pelUmM~zQ!#-_sD0pFP|8_VCSm$sMbHKg&>L8(ouY-xk z`ibGIf!CSj+G3&vuI_f2q(!X)GZ~d!Cy~@w?00jQB2h8(27Sn!-VmT$rNUg2{d7jQ z><+wD;*sp92CQ@FXAZd2H1ZMotY{vZmWx}%t~#)iWN>e~yA9TJOb}x_Mr za`H5|LacFh6IlP7MVqf#ZLpR%Ok@{>Ci`QS-KIrk52iU+z_dSQ(Pr}48g035BhemT zuwXaaxBNroh)#{(2yL3OoI}vt#k8Bbw0B=oZcS0#w73Cic=s;YkP`I|zz;Os9oJsT zQE65`c^XfOnXM4M(q=j;j(VG(glQMwHu$ z%<<&7U3FQF16y*@VZrPhbZfU6%XEhnN9F``tYxx!Q)0SYfDj#Y2D>e&qUP*>0y$5R zUf->mo11<(+$I())k=LY_o)Fe+m4u->(>&PIbw8PJ2Ee~8#ufs#f}vQY_J+jtjsb@ z0xL^MM{0XcU~VZk+bvrt$&$iUd7L3W@&$I2h+T@!95K4hCNnQLCOI~91*TSbcNXks zxQ^i6<=CLp3VTvLQ_N-1diC~V7VhBhu-H@fwpB`s)%PVfWHukna~)dYw5iMK$U$-1v`go740Cd)8=;*V_8AvO zF4X9F;^IaeAFOjYu{{o(x*Se!i^HblbPhjhkHZ+3!|82t7?Z%^EavcS&E3qzX%m;g z&xnA#EZJy?0I6Hx=d3+N#teB@sV1LFqJ4?*hhGv6cWKk15sA?GT*Q15t>L-Er9>mK zCQ1HqIcram5mm+M9aj>KL~Cq1E)tsWh=jHoJ(HEtvt ziPjj?%o?{aA9sPG;b`M>(L@OTc{_1%*S=zy-U@fIUeylcGaT*DkapD<1g7i#GwXG~b2bb($yfXrQtT#-7EagvGHZ4}mWC3#I`0E25Q|WPoFWxG5Q;%U9G#p>6+hS&2F~bs5>N>qY#bk*&JAu zd*&J|Yp}#SEJ_WjljVF-`~(D`?^89@Fc2X1iu{YUt6gVGb`BC#cf9`(5m38M1lBqH zw>=JCAp5K>4oL&;|Jvi=jcp6iiJUY$Bn@v187c0fmM+G;bh}GF+qILq_1nI57GALk zk#T3v4cDAPQuNkYoLPBOo=UA2FC{FqwoG|`BonqJF4>FM5*oaG z89Jjgn321n+mI$7nx|C?wOXZ2b~>B*xC^VQ1f9*f%*JhPcai=0vC`UyiHBIN?MAPl zd}B2_Y+b;PAU}1ZmxC0xIrBV8#u0H8`)0Zf6NWt*$FdC9{w|MBdGOR)7e`HgWJD|~ z$4L9+Yt-DvEu!u)?hBFarA|$L%q-jiQ4wIiC`4lkh@3JQB2hjD5vOS)+|kjc;y#K3 z8E0rR((K_}b^;M+Ya-kwAD2enx~U5i&NUL;o}PxcAMgSGe8#)c*wr8WmXRwGU3*@j zRm2U5uApkZNA6UT<79!SIbL!xb8;h3f~e?>nj`HpmX>Crn)PlGEc9!}yDP>n8-vfx z&KG)m<5QfF^Bb0v=KHnY%Iu8X7TygX> znKb9An+vs-I^D!#(z=m|iC=qzQEp`cX#o-f&Wz0yI|K33CSYf1Fz5{4 zCQJf9l#{`*$j`T-va;q?m)6NwJ5u2lhA&}qi!OKS44!9eJeM)08$4ain+FNKRan0F z_NAu@sMQ&@xY1+oJc#EcAa$-r>KidB7xGM5IE~nkA~n8&$0k!iBN?mf`Il@Pq%<+-rXnt45sMh}mP=8J4z3q#T)%EgRx1U$wYSg{eHusk%e3-AOq2Z1 zys=iPXC#yAlC%B^=J~ZI0?{=vPpt((XJ*ArQ@MdKFvn(US=1gZYDr^+TyI6T8O(|f zJ>U4O=pC!Qp}VXp9#p^wP3{xWa@-)_GLV?83R{6;i-DM#cZD4UtR`rz(4`uzY{Wft zgwpXW8*>GV5@Akc4E(AqAEixTGf86uzY5q`2-qjBIlT#A&JBHA0sE_@FljgjAUg@A;1k zJA`3qFG=GKv-v+=SX1(atH8mw_6 zURic8IlOu_URKtl;QIQ7-2Uv}Ue=R@JcyC7L!*3OWwz&qGc}5E^dQn}z)Qa`9M@r6 zAW4tIY$9}hhT3M7$;2$jj3tdDo6*J{F;^&_#>UXiNXRo73GZlBiRL?S**=Y?HE~G- z-)ExWdaTi#xTL~2WH`c(eDCubyr!|V!j6NO)+yBX<>vCj4r2~r42Fw7D=NTf0~#G` zxUd1M94u_MX35@gL6Gejvam@Y4siqWT#X9Gm7puc#jmdmk!fslbhWqxc!22)z~r)4 ztn^sv5zO)fjf*w8^e_jOgwQ)&O>c6kq26Z{JO?+ZJKgYy8Yjzh9K^nd38P zj3%&rzr7UHBu1gu@-3=Xk(ZC$ME(Sg7uq23X+mvlm~G2C@HIVlZ5_7*AJJGN00u!*MSgD99)8TauoWvddouPE z#s=GIVjCpJBYGHI7!8RdA>G3dO5f zj~8Z>kiTOj5_GwXK5M^~zSbL}=9d}8)vRS7A9TTw1T=nsS{d_}eN@;k3`6@$VF|km zxr;P%R{LteHI5R3|KgtJwQnNyKMaNEHUQ!m!8fwd5n;tkHKNw6HVHiC2qF6vYeXDv zfErJyanoI{DMd0R$g*4;Bj2(ab)|-aX9aOP0sGUFh3R43fY^yQHZ+QP6IRm<^bw3k z_$$a=?2a|B)+k!x&juWNtngZeC41qIAgeQ^(Mik)mH2}pn)e!wP*A*{FV*A}s>A;} zt+?H%JkY<6lRAuMLVlmpU}G4DJ|znwa@=^RNVXmrX`kVUhjL^f8q zz2^xHhRz07yhF6ed0BbUFFt#NdOf2-f}QXUh-~Su2sCRwoCM^bH6#Xe z!_7o$Jd8zk`iq8(Owm`(=i~$go8n~+7O9ihCj0Z5dZCoJ4lID?-!xp1CkstHfRohb zuW8U=a}l7jugQEt%gmO|O|q3RsqNp;#2`;HhN_qPBvFbM7Qy)~4G}D|nV0RHHh)Je zYb`rCPyGD$cGeJ*BmGYGE3^5O1Q zbW>34Gb)Hu{e69vYTb-0L97Y(+(e6#p!r{oCT4bxINU_Y+dmQBmoWqE_ON)jBIegD z29d0BJBQ=eApe<09xWme^BAS$E&tO>TP@;Yw*R5j>?IyHycW?=uP_QJhLmljhg_Eh zw22bpzCrbu;#Ct=eIc#5m1Oy#pB^r?d60Q|NtOzGgkiyQvaDEfwz!DK4Al=jN>sS0 zS*HrMGq~*$ZDJSFac46QOhHOPdh$L5E)`#AdSwFFL8PLm7sTfw@Ywdj*^>*Em@p1FiBaT`hE0 zI*{yy$Pz~+AF&D}f;Gkdl693P$XuzB!C)5z$(#eZ;@86G6|N_umc@rbuQDj26fZk~ z($y_ciXlJ!tx(#SE38oRK%*IiR_K-Sx*~@LqWKM2U8AwGMiWAP_8TF#1ncld6CJk{ z<6y2rPga`Haq;UkVpa>fkZ)chtj^`e@XV!v&SwxPmGZJ1Fj_c*t!`{W$%T}DC6w-E z=^iBo^ZlR?_8Rwz^129mVp!q)S5`%P9C2%95>a*LYceMX0Zz zFU+=M9iCt5xE&dXMl_}4?tw ztO3at@a714zL+n`C(h7zD_kyP^e<*AiGuazElt2?X9?lgIm7k7yfqc^4;F#0Vb&h= zQr&2$B&HVQw0V-%H3+qX3Aqb!==8dVj$4RvXmMG&m7J-&5*icKCTi4zsz`D3`kgzw z-Bl}(m69OK=gLpf5OCaJU{-L~UMAJQh5f_(UX_Hrosn2C$;!#;sw`J|GiS#h(=@g? z3ff?sF5_Vn(Ec2bVvG2jzvH{rM z8qE64lmy=7QmN+UOc1>=u4XFyN`}XTl^q`-yk9GX74Wkr|6GeZhDJCEz7E6DhjZb_ zs!V-upVwUu)cB$o=lZL1g=SqAlkwiIT$14~UuHBU#*?mmcUJB(aNM?2D{YM@9_9lR z2H)cth6czN%9XxarYfi0WQ%T3G(w;O@|q&cW0JrpT`n4*;wJYRAQk=$!%@WuBnPNm zw!Io#m_O*vDssy2gz6UD*xs6JGIndmx;*>xS-1ISwaU{*{^A_rIg)LX#FMZKGZr~i zevV8W+^}EP2wFLm3;DwZ!mPy7y&Osb^)U$PM|Y*aT9B^;d6~0&>*|MS)R0L8ZLC9Q zpDPqsW^GvKjU!kJcr^xN+gNxWC>&?Z`M&%BRw}TcgM&m}tHFk5P3YAF36$+SP^JbcPu1$%L>G8%+T{%^)NhLD7u&Df4iRm6b0M>TAZ~ za@-(ZzNF*283!*g`DfE_$wz8bF;3$KB>&^$F&rW`8lbcUg&!-Zlq;K{CmsH-{k`iVvqd29&p%FDI6_H+g9ce;jy zHG}p`M9(=>YWf%MIJmDO?rrJ#ml^MHmPJs7^I0u&CiHDT6VA)9nG-nc_~jT6hX`xx zo^*$if2I+(1_2%V!?T6$f7n9aAdmw7FN0Cl5E9+Gp5RnJ*LWjXcgZ*1Ty!Gq)pKRy z`>{4Vw}Q0`x%*bB+>@M&c!RJ4dYVCvyuj>83_ArVecFUlu%$4Byzr<{y6GTV1@`JkG0J<3fN5a9@oVC*w?X{xD#&RS=E&ZU7n$0>qN78YJG7dE_RR;1| znS?rqT3MrJC5k@iM-K_JlURe7D5|hi8HO*Q)_DP#Yc-7%%o{YGRsOa|gw7Q#7Xd$R zJs)uuBhcRR72Uj7ld%H_D2>u6SxJB<{+tey_VUq{+vbB6uCxd4(7~4nXnW3$spo~5@T4QK!A9WBn-6h1n$!0*5jlGsJ z-(n1MznVO1m#Ozw^KwaGvCF#24&26Q+^p$mBKmF92=O6=ZQqh=+gF68oigw{4J-OB(K(Dn?%K-^z0$nHCH3u8@I z(CXF#8Z0+nqld5+SS}gdJ%(*?v(Wo3Yw_qM0Iy{r65#?4=E^A^ zGT@OKLu)-pMJ{C4z#d>--g-_l_F=}ty^EWGAs&njvn&|$7>%Zterv#;o)nfJa%*w+%Er>xck}Km~6#v75T79 z2VY@bUhGcBzRFkx0l5s#Yy*?ShNXVF5M2(OhGZ{0PRRa3Go+V6C5tGUHHigTGuo|~ zpCh+LMJuFGccG@vYBvw_qFGPgkL7#qrlAgG6xyJ1EkNV8k*s~A1CCIfq%J?sdfwcH?eg)9T3*2wHkOvZ zh1<_-`6T4+jBGHJeJn~VoZplo;kI5-7%psZslF*!f%qDMT#S*J9-6J_CG#x3M)LxV zCR{q`LP_8Y7Zt8OtkK(znF^oDaD-zybJQ1gBBx_qtg*Gy02TT2YvRyrnQaoTS-mtM z8M_W+k)sCT*lfw89(A^?8PD2f(KQDQ~IZ=tTNJQ@;|!H31Z zXpVtGEBl4ed1e1q*d{2onp#SZ2{@%j`K6G~l=HLg#d^qF+b@YP1YB>qwN5@>6=m?3 zy~d%gftSQ~zZKhA)kiz~c-fn5=WQcb7PFn&>EO`DQ{@7UeAje2lpq^NBO9Xl3sT&D zVPyk*$7Q2|@eaCVh#gHN%{)We>x9IHHcf@y;bBc*SX~&u>@vpMaF7)>wrd*$W$PK| zrKp!b738~RA@AQj4@A#}Tz!?1%aAPe zF{U#up>-xiyRM)!8H8*%4{7G#70@J2B?bgb{KyZbhhpg z+!-q4osSJ-QMk{4DFQ}m)xmT-Y^RJwC4cjKSh>4C5)rp)91u;-er2clbxb8EG7URn58x%?*gT6-(B}qy9GP--7zN zrU**_vg^a`_@hjw@S0X0^{H3tvhdD9<|0#{6O&;HUE(0q6K~RBFua>txI{;OBG6|w zD5f$2G_lo84<4Cl%YNNMKl_iMuG3Va`!xoraZVt`&~T$!f^ia(b;XIJgF0bO0AQGn zB#4>0!+BxOi2ggRT9J*#@c|v^yM^@OsB#z^U44lXW=@DyIkC9`Z=AB8EqBI+5$=m6 z#Xwg`GH;E87%#G&QGj{ZM8WTAM#REMHWzOR$eSj9K`V*{c2hKZ(C8x5h5w_K4G45a z%Ps4_CnfjLN(NHPJ#ol>(Db?QXnqoqweAd^XNK9OwW5JoDH@U8!8ph+*=2)e^LtHrxk|3IVbfOeO$_(u9ZdI z^3`ZP;N};lYMKvtIg4b!XbLh(nmZ-oc5@cK0=d=aja3=y^`XYM+8&XFrZy1#cu(A z{ue1aO(TO5t5EAUkBdix#-&e7@pm-IXc}{8a^y!3JuhW9)kHVSS}Rq3Pf6J)G`Vp5 zLQRYkrAdz&|9D6f3{w|#(RE12z91#H)k?w;@`zV9WFCqlk%|avM# zVHONti|>R}{5v%^qgf|z?ACPzFF30*W*+_XaEgnVIxV=EoXT!N`mjYLL0_7bnI}dX zwJ&brckgIm#~18l-FdFIN?gp&l`9WIbK+U=ezz6ick)FqS|5JtX<15M&wL5=zto_k zn4+6RY2VcwNxNQUmcISMSgZ*Oo6FJ5vQaXgrhlhHV0UYHTpk1fr&Lm!6KBcns^gOkU6B}?d% zwOIM87q-Ro3kdW}<3K(XyCyszDi+FSi9K8F$#+(x`zP@d*pBXpN7W1D$*p)j7LRS+ z=c2TJT*{UUef>h(+G>WUd>$0mR)@sw*5fM=mqjf1nkTm1%P{gyS}@EwHBG zag-Ia@DOa!P=dhkOmBAgI-q-w4X+vNP(Z(D5XjkDxMw4J+{;jy#MhSq ze}Lg${k#D5jF`W9{XEd08RXS3F>-Cp`#+TWCBjED+^e4#{Qk$=ES2{2KnpajUt-kU z#zalmUzGYK!nbEQ76EJWDPMYy?1_^;9z7Cq-znnGHEmBPf=b|SI`sUp0)34iv`2`D zoh=3Y27`k{wjM7wg5ZEg5LtbLpapnl3!ychCBq07Eg!NALogx9cFnBFckM82EO3~J z|FlOLov=U?@bNICHxbOc+^@Vnz8dNSMnMlw3CXv*iv2P*xP75AH)Q;|R2T^Jsl zC&$Cb!PscY*dH-A%%7rx9rQ+M+oP?f%vIt^)Qy`9t1Y-)yrv|`)(pYy#M~=mu2XT^ za->EG8UlOypl7EFsYAKC7~o=4sj$NthIx?nA}oxwu*NA)?>nsW>+dFXc44{j5{pi} zt^&kvj6hJ!%No243=%4`J(Y4iT7uS+8Z9eqCxNfpQ8?bljpBv1RQR0?NB0zv>{5y{ z9q?RQ<7stI5A%-co*#2Z^SY;o`jk<~tHRW_P?i)oWA1S7k0-_8xU9wz$!6eosS=(X zFN_!9CiG74HYq>{5HrQtB{c;m)^brcYSJZeT$OXI;(Q9lbte0mWM2p3&)A1`Z9+7WW zZ&tcorkaheat7IzHL{4Rv#RkK7ZhDhD{4hm8!&TgsY(x1@uDh0W-zL_Jh+eORg zAib_e8Zk9+ErxxtgD}08wIK6~eJTNXJp(bwnH?}0Yk&Z`4K#ArAm@XAxvfw;jx~6L zoC-UEVek{IcoVaYHD=b47D6p&V&BKC198i;n%t;du(bjADdS*;K#N};m~OO2&`OSV z=*bg|7jlg9lH(NcQVa&w@Gco8x{YZu~ zWx2!+#hYtngGFSC4d#Y9Cr#T*D{gtP2`Dz`v@NApyE8G*gH_m`3=39(^JQ6oF!Sd4 zMGE-Hwi-ET3i^I{+mQ|2e>)-g6V`-$D)!?<=;;haii2fpvz}&RtYg9*G?v!PKt)d8 zN@(uKy1bb|GWI~mLT6px-ZaDB9KPNNHr-icYo!<|__cQy&VOXRUW(C7!k<_I7Gag1 zH(n!aEi1T?-kpTs{Vd&ER!~3>F$iN)Z@-)r&lF`fGi>p#PZk}YYP75|iD4H_7TAFt zdb}|y0hnPREH=w5@=xEBM_R-M&Kwkv0v7mr*<12;&{ z(@1(Ql_cQqU4-uXtQCW+97M{^@?MvP#y2&M!8hmLiuHjSh2Pc+2l6Y${!&@OfPdHd zdm6+_k#h?0pea(5Zmx-!A}2x%3`LveD&?FU!|bkBuPmL_hA4IG)0hQ50 z`ZZn`^j;)uD&h?mf#&GqTigDv(Y10Z7qXD?kJZ^U@XC1Np@7z85VT0l$1O4DO_VVI z{9{?P3~1jXyw=mePxcG=dINU9gEjW-6pH`!S-zl2|e80Zw)r+1TVtU1Kh zH?&;LS&YGYmKxss&uT8?3zmW2 zz{q%Z3;I9Q=v%!ZO~90C!u}`hH(qaOD&lk&p_8x0J0wB==yu6l0)DfXkbjOfHzV(h zc!5P=RxwbicFJi)_lqo8AE&YQrrav}%Y%jT;oQ<#Sdp`5IY}g=&3r%KR| z*BH_u6Z=2Ne61;&7|@*;GPkn*iHrxigCSTnm4~L~psCyz5(YdlT2y0XEt(SQ{TV{* zF|M$;XsYA>$hh#^?o5Z)5*jV5)nv?z04vWHM)w;xcSF2qD1to15cqbk(l^)MRSP>U zr4h1x+Xt<+kC6I5uCC|XD(qc`p_AiHa`UajT&e4rYZ;B5wH~J;&zK_=UtlA6!66y@ z5@XStU4`!GEC-CYoJP-TO&jpY9>VGpwt&}~1o;(1usYM_KJyGdD`A1MdC4@W~oLs>2hciy_!E&|Qe`=3bL3{TKt5@0lUgT6^^B4w0_0H{!cdfus8)>X8Lpg}^ zdW6#REZZ{_V_swof>NQz+0%D5MpjVrFq`It)A=ml3rZU50!G0~Mf)HZthA}d$+D7z zSkv^l`&hPTCB{6+81ywc@E(1+1D)?_bgaH+15V8fn`2qB*VhR0BZgqITy*YW1)VK5 zI@V;_h3q_C2;Ib^6sjuUi`^k}8%?%VRU5FZnb*C;yuGRth&z+z*PGe?uW)G7Y5MH-&-M!ANq3&c9JW39Gxf#YpjgsY2HsJ3W;Zx!IdLBiP zDnrm5xC6G(J=c4D293C@#tWl#Ft#UP-!t*=SF8`;b>s0p4SfZp5eMhU_p4}^J~&R% zI9hSgK`do5*mJp~dvTC4=Q9RPd8l>J19YZobgZVd0k4>e$iG>#*OUbLm>~!b)x7Z0}+8dK!JGY6uf1|=^{EIBaKEqRGnazo|j7yHbfc0J^cGlk&-M%uy>s^jY+;RCsR zyoUJv{ZeqWc2p2mu}c2@At||+RubOQo2_=$daH$U^k~fXHwa*cc6Jg8o&nhBCl9$@ zieIM{4-yJFydA~GgYT2Ft0Z!fJ}2R=R4GJX{O-L=0Iwtp@2grBef?S~yFp@EQ*`st z6ZXDJ%D$={ zx{Y(tZw(ENIIL~%3yp4m>AFtJZks6F6m^9keZ2s7)c_cPqerAdD=vDgls{7|kB%Ib z7gO2|b=dC&wuA;-zgd@&1swNE)Jx2VfgPm7%>3mA;gzWCHI?FB5Q;_8v91tA>dvBk zc#`vZ-lFOv#w(xIDu5o6pPSDV3-Jq9H{K}4d$r;Sz`fa$+#2E^rP<;d0WGhA;GuGd zoX=`W)6u7Dohz7cl)LONDi{74G`rV7**sAm=~h+eQ{N z-oK@WfH}k(_Co}fd!_U;iN@=z6z9spfRN2oru6b!X>^p};G^8o7nYxH?gqF_;{rEp zl$Sk`+3svEx)!6uoVx#khO)KPqs82nOut&BY56D`zh#2YgIamCUxSsqZ|rCjWY^I! zP5W+i9cgHlUCp<%lO&I^`mT1c+Zi<7yWyTN)1D7q5lzQkiZnG!n5#rzI+1yt=Spd66!-W!4!M29e8qK>2+VNg+I+b(TsG2X2h8TM zN-^FJQaMwMd4%@$S4YM>CvN|dAaB<8;JHXyID^g@Il>@+t06Ij$XyXxc`-yLebNK1 z&OOFl#PGBhMlf!2-R}9Z0AADdIDnYg!Upg{Q$V~uQ>z}yLIIb250{FL)i;6L#)0Uwu0vtYIIaYsqfjHU-QlJ6r? zARcR6=Qo;EBz2}}w7qQixl;D;TJ1443#f-7=^MsWZ)=4yYFhOS5qn)Ch#rj!`bpS< zW0yPZA_45)6cGE|+s1?^HU-2^x6Zi&cvuTdm|q%7{be_j-FAgQ?$UH19+^8He=D z(QeJaZmXxoQ!GK+%`{FzVPBy!){KCMwkg2APh)9g-brp%@U}|06cJvjYTez_;askP zX98!t5}Ml6y=enakUijvXqt%7wHtVv>kRQf%b4104URFbJ2>_;@$UeaMbnhZyO0A< zV4dg6XzCe>k4>H6HY_F_Q?Y?}x}@Hl9QO6M@+VCi%FW?nXg40n&!^R)h9=vEe-uk*S1X?+Pep31rzMfbDhmPozpC7 zJ<3?e{SfY*&S@s$SeB5cKOWAI`ralk+NOR_!ksKZ(;tq%F&YWxD)U2$7ts`CN!({*{c4;g3a(x*w6Gse@Ui;GJju# z54n~h7@UJD^K|TWt}~iDc7MkFgE2@*8ajB%12eOk%*@-&lr*O+G13Zx;i%xv>-J=j z7X&TfSxb#rV1)T+=H|yNG-AD(m>KTH5)`#@SH^_XOx*N?{FJ+2e zcO%H<46(W!Pjvg3k=NZAQ)7(f840)fUS-y~-B{*%Mgs7647B3EeiiU`=5vCp%!~gz zZb!!1)}w2L-$~#W2P?jM_KHj$H#DSs(}YNo*}jd|BB>OxVW#uhn&U`Ylnq$v-11gvEcM^Q!AilN~MorPC9c6>0G?yE4Wa%MvfEUY}v!Se6Lgh@n>N&|a4@ zT-<9Nf^5zZ%fGA*8`vVVFPHZG%SRl*2y0A9*jTd=uSu{wAArybV38vmHEtW6YY2v22&H5$IJW=GiU*IFEr=jd&N)#$4X35o1O(#?ryN zkLFRoKH1a3m^T??O&XGREsbDXdy|GF@V83c z&Bc8UKIC48Se}-!!)gSBJWopij%1*v%?u#Qma8cY^0XxYr!f#d6pYo;{;O~t#eS`G z7~|!cI_^BiA=G=iw7p(SG1R+#AX2HpmtnZIH#lvN*7J>RR}8UoCI9idFSxXqEBS~K=4m0f?sg6QC-1(_3j7-QkZ&*qoB}V>UdqcQv|`-$ z8mgO7)-23@Ee>z&J;(qI36>h?i8+8CVUU$g@Z)@Ead|JBV9d`LW3{>esNX>e_KmCI zBMxSSEkC~T6i)#j!lgZ*k}u8SNCrfm5tdI$>1bsd4+t*9F6j9bL6&2P-3s*X;2)Tg z-wK4ek1>`Gey^~H%X>N)Gm|ma><;C>xvgJA=2PME@p`3zy70)hcO?|e|^Le35XzKX-_#G#f-esN<$sXC~MU?`4Pz3 zjPu6yWbC1gwOWTBk(|z^@LGo;dnZ5w>#1)~zR#q*>`aCIi(ys|5TDoL?bue9sLfEtBMX6vmRsYcK6>aU4be2?e0Uq%@D8(B8t>ndFJ#EZar@{ zt>f-yob6+wt|)`S6RB4-LEp!8;57`i<}1QbeP4BDwzxN6NkXp1NJU>czK;Q~vrb}` z3Hp5GWJbEy)ZTWzi9u{l4R|X9mD*XeKRgV39HSCy=Oa&GB>H^dm-4aLekc~t%8p`$ zmnUebwHamWQ68i%u^0P#6jUFh&@~(NF<0&Pc~9BC$PjPj#@+Wm?5_;7{6fY@?G@Zb z*m*s_NB}O*K&xK<+Z1?0_X;NH)k}q4#V{*UN$*fz-`$W~*Nap-u7hz_t<;x$uVZ>% ztyI{J46{Z;|Iy#Kn3p#a`iOTD5P{!mPX&);gy-KHYGFoMBNaU|{0Udv8>tBLIYTT< z$q~6QR~-4F?5jPE{nE3Pk2r%7mVe31(e5d{QJ;#IHyGpjmyUajaaLWjozcm-ci$E* zTXJcyE(m&<$E4`V)KjBTZ^ z=*0Z`?}>&PT-vvihuDV^b{)z+#ps^L2fq{z>s4qy&#wbvHe`(564sWDd0&W%Wx2TD z527`qnor6%lrqy8x>4&~y0Equt~46$n=#iO)v z-iVR1-HvPR*McxxF~-voS?Zz%M8}R?UeV!V#xlmrlft!bc_cP8*fIYWgI&zE_wuA9 zkG=MQ076VL78=v20x~lkSvSh{ryt_%^E;JLn3?dj_-SI#-K8$EvJj+~9S{ z8!F~ozf73IJ_IFeu#&;IM9DYPT0<$_zIz4S*J0^94%$H8jXhAX{*WqAtiKT}*lF-J z5Cwh3ez!Y+mo+4Xnw&g8pRd;B`SwV}bEitE`O_RZJbCw};i=f9Fk```EJuQ+A9&v5iRMrm?(5&2zy==wsC?XePLxBopj{AsL9*3Re1?D z{;MXmqXnVz)=kZr(y#U3HG!M7AyBFL>zd5X+mV@2`+sPHahkVDdn*9l- z)cIXaTq|}IYUPCLexS+3jt-5YcaPH|%a}~H&*^oE-q*ldBl}oQ+*lFk4(r<{wQ90N z9?(H`f{{%F`qqPxpRFNqgq;!6CmHGPmW!kjDwjgtTu&Z^B}e+?p^=_1_0{J(w`GC* z?kpWAuTz{rX~+(|$RA&kzLBydVA#AF2`HG&$4$IgiV4Vq1gk8+@GLF4x4w>9&hcAp#V!4BfDdzD4#TtDq9kXGj*W*w1xqVUh zIKCpW|8_~*tc+{31XD&}D`t$#*0VE2UX;Q?;9VvQbS8C4VJKB5$A3t_$4IC6pA;<8 zHOSLnzBTUW6n6YzEYcCb4Te$1HPJ(?B`Fn8uR*M(9=&V0lAJDGgS^t0F>j=W zT?NvgVChMrBVBqIHNaCtCAzy%?sjeR%utCgkmx_N=%iJEbc4uaM4fV9Qicul7gmw9 z3eZ%AY(bOvB3Q@EtYdI~Db3~R+`3)5G6@Q_IfCmfIBD5IxyJIUze}T>aD>w+NxUq$)iUFYdGqR=tlLE` z4WTEAP`7!KT)nAWZYXFt)o7rGN=mhwYq7oqLjF&Ue7DJxMv)eTTb~Uf{Y;jglqs|( zJ^GXa@#nDk`LIm@FlOLpC$kOM7y#2Kg;xA$G^FiMF z(g*3kV(Ifi-u}o3@mCDBc-JYfV)04q?9F{X{Pbge4n!S($4Vw93{b5ralZjV&+l2! zZu6~&KiWap4Xi6E{b{{U@i#u`xS4fKp6~i7U-qEvHdZ$Oo?vZ*gOWR0$>6)9eED$3+XtH<{-vQ5@0@9Z_*Ynb z(&|QYr_|0dLCdSGW$-OvpJ9UZc`SYKo@pH~g77z4_~65WcdiHu-ev_820g^6M~R^3 zJytXLCa{kYLHa*gdeSmMb2svj4?)AfS;OGFnR9Xo;y)f*@z$Xsi2szu4?gz0$AuvO z3zk3lE?}J%g76VP9Kt!DeNG6{N3!(6r*V8b2s##K9rIzH_-GJ>FUGF(Jfs92s=%!mJkD%@(U$T|j}nQO;= z%!<>>!=c1F;{$80#!BYPTHeVX=orO1=HFWWJZ5cHGWc=XJI8}stUII%+ygvNumLL= z{Fvz<+<}ITS;OEPn~&>2$7t3u_*(eKbf94jYZ!bCq0>1~u{o<4d?ox-Inb~bYZ&|p zWF5(Y@NHT6;QNAi76%G;UcT>Jg6gtMUj=?(-T_Fk;yReGE z=K;>`p%A|tiywR&*f)nl`c#%ac>nZQm-k@d^Fuv8egf(+jskP(hyDi|gqal#>kSlACHf32~QLQr~ z-c^lGhhEztT5Ydvu2 zwer2KQ2u9DzW?wjw}TK=|AkfWGxVy>tT5VA1-&n`-eIt}==IK?K>6QT`7l)4x&IY< zU;9e*I(NcC?;EW5prLPM<%U>je~YybLmaWMjfL8Gz8baGU9wR7KC2xD$L6bLq5NN8 ziE29p8dztH|1azA9C{CrbbD9OqWYgPg_cqc>&%o>rT>XMD{W~h z)v#n)sm9p&@L6K2vA_=om1?x5Fd@}g$f%}NBk9bMe4><>#?1yac_%SEl;Rj}5s_yZ zE^&*7Cdjs0g&6T)E&>k2Pc6%opYBMraOTnTAH3=r#LN!rKnTNGm!D;NR zT|2c@0ZW$USmT4O;`_)}@kEPlM;2>oG;2#?g6(!xZP(J&yFK;UVlh{&#QWvpj$@5> zcPwpbUeu;)>sAV=o$wW@^&X~w-Yz}KWRo{#C4}-Q+r9)|jsDqZfd zbTq3ShWg4LCVv)t94j7%q^q2tQ_ptSy)bmG*QWHKK)7v{u|lUVaGw6g32amV6Q zS#3+pHtj`fxs*lj5$l!dbd_70NwMxO;&$4w)sp zz1qFRx)QGwut%R(T1|9Chn8T}ZD9W*N!kqV08Zm}-50`V4va|A;+CZ1t3L?)o z^f<46Am!hj$+YxsWDsGhl$G8(CnITt;}cskgW(F)^8GKL>GGoGwyb}+k_B9sKm>MR z0{LO;6afL%3_E{yEaXF(>6%)<9M3F<%Nb0!=q?sqXWWJL=Z2{*g3p99f@Qr8dAl)( z;Y!_byjNBMWXJh{n?6lt62moU)McN05E|rKW#!}P9!#aBO-+LcQOZa$gSEHziKAj3 zv~wceJ|fDR2(|W!17hr{2>y^b^V#3fb!I-TEo3%VlQ7je$S9<#PHW3XEhz2n@03(R zw&=R1JeXT$YD@jJ1(mbp*84(qWjIF39II>T)0*KeuNuY=5KhJ)?AGfjZo<{;W_>N~ zOKC};Jc`#>Db#9`5|CXB!>Bk^S~d^w_zhZQ#jPzAv|!;{sZy!;W;8=rSnZG*+8hOy z$X4wsD2A@G;?b=*a4B0Z^!3YRQ(mldf=j;$w1P`ZYsI!O%SoqLI&4>U^vy99Z~{$B zLAgzp2|?#Dqnv_HOEbK731n-Tnwe$h-SP1VZoifW>GsvvD!Bsk_Kck4cH8_YCNVrV zsLN}ewR*-|yFd0TR`0Fj|L7}L@2%nnOY3eWh;RFnD7{)$w~eA&8J9|k{{ zRkt*0Z`a`61sST<^|kYvK}+i=Z8MOOPNoFT$a4Yf9u{{qlf$CBY;^HgsJh=Ba4uuj zEoCZgTf9%4F+-2; z4)V9?{fSu&%ZOW-k2Fpoe3lirv3-D`e6;^r74g*|e~bssDIgcY{5hT6P_@)o>Y%$Liv&d*tAOCL^} z>y))_QwaMXoX-8_@TuH1LFIz{O3YBzGH6Gx<=0qcOCRm3veHs<9dS_+W%cHkKH3Fh ztnR!gT;}X$g0;>s1|a)#k{+>X$98U(q80Ns>cWBzs=fO8UtF<*7#88G~TMLZ{t>SlbY-b z&h`4K^%^40>Qw(v+?T+~QB?m2xdI7C!W9U|Ksds&%Z;$07y^M15{?7{7#L<}dUvNY zJ2RPMlLbXCxg7Ce6$C*PKKIb7H3#KZs+QHT-Wn{Vg6)p5q=H$cNbRB9)ka~= zsld`dI6p$M)}GW_d)Qe^_33?7JI%A?p;)LDYMXtDZLGFHHJw&CK!`mKFxtavQ#u~W zsQd51s$Lda>4o!=MdwdK^>ZlEk5!Mv6F3?uL{Ens^<)(}?O-d;8hlal*0&?5x=nRo zD~+~bUbNZ5%b*l~^Hl5DNiTTGiW5&mt#mZ8l3g_yth)n-SnF7$wX6nf&?WVCX8{kV zx3MF|6g3}D&6WXlvDRo5YmRzu%VG*`wY90YQWtCLDxi}ns#QX$N7ObPVWx)jrIQA% zEk!(y0%zddBT$KJa8`rb@jioMXP|AviE%3?1$fkfiB)xCGf#o7a&Eo(7o0{!jujrH z$Qjs~A(K)&6gvYuBev$;BNR9rb>pTCC33E$$QeY=RqaBxRj#PXy()#a>IFfX5Y}F( zrwgqDUQ#dKsu$$(k=mS7Ip@&!wS^KZJ$S2LkQGo!ySf@7N$=e%3vCBmgJU~z&r*Ka zY303RrW6l3mzrtEkS>vSXwrGZaI?~ZV~SRNAxUsq0uOe8<-zSnIG3Xb66eRXyu#jdL8=2 zO&G}4D+RH*ik0Fh3KTXB3pHnd5tg#}i|pl8D?>OYH3XQ>Y}Fb{o|7RQM-dL~Sy?4# zsL-wiBL~KK5oO%Fa-4FtR&VCvRsgVdRh-(y5SCDcxA!c1fB<{*f^f{(pPVZDx+6BB zGWN?T`?vNkJ*<^z1ydZ1?{dob$e#HQ)!L0REbfQ(gs?A52{~s{{=Lf$yWL zJid5=D_?TpY7cqWClkJ$CIpN`4G7Oa3)1HlJVVqAeXRfz*vQ^vhV7?2p6 zk9sgnV_N?x<=lIt2b}R5!GhYJevGp2y%xdg39uT4g@7O*!UX>~<(>p|X{iMt1KC&Qt52yisy zDC`+=g6+)=VJ}2bheV;lS_nH2$3V-=t&wAcXN#hvp9)=yW)ZK# zGJx$z!Qz#sQWzaH0UVefK%;2_ID`U(Ef?|?BJU;@_P~U~C|<8(LOG10gm&=)3yVFg z0tM2v^}H{LQZbI85Zi}TRpn&d^{;_ydiJ#;5>{)arRiFT7}$ zf^jV&S5hr^2;s~R`|`zl^#Lf~RqBP2{gGcv1w27HC6}@K5Z+~}B*Vg*wU9%{Xc-yb z3FJ%47}n1U;|)E;F|kLGF}?;Fs}U!xV;;>F4@#&u>(X6KjQ@3%e;ldB)Q4hxcYQV)B5d{e^~tu^OaJg zR)=%Ql6ZUSeueF?0-2t%5i1y-7n8%U-i z?=Z;z;z+IHG*OhLZ!(kfI*%b`qT@)iM$zrLsl2}{F5Z*%(!g_GF z2ykkiV)=_GL_&M$8;4m*-b-N;>Pk9-kRe=75fbVOPa0Ho^*#!bP*>g|f-1~a6egkX zvO@xuqI`&AB(z7l8myXO_L!guM<=W3uzeJQx>Ag5C`edl$+CiYM^eeNWvn>YQKaJ& z7YEP9Q|{AaP&ZJhbP5GM>0r+lL%N9~g&n8VoBBwnox$Bq;SxHwa`r64xP@XQ3F=E6EoqM#3;79azT@ z?xP4vbv0I!4|ZiJ4^otb9VEW@S2~oE;XF)n5>|bVLoM?dMM`LWsPkf$o0aA(6eD31 zFa{fH#6%PWc`|(vr>NWI>l7rRT?}g`SaH5dk#BGO$tyB%xz>GdDT{VIsbYe8~tT z)bm4lvs^{>4i20g4dT2evUt z!)cBb>cMbjJVFlz$RCv~kmYF&O1Ch+8Q{ zk|K_e#qULqfH z!5A$8MrzX=Hc?~bMH^ej^{kp*<4ArHVUWn zD+-uJdx2pF4`YqbrAvyK(6cGqu-23%6#QjniZU9!Jsty~r zASse3bz3Ix4al9iZPP+|B1JTFD)(KK^>(2S91K$qn*(0^i;EQ3og4m{;UBj-gBgY6(7iD7o4mlDRJG@3P7by3zbtw2X9KT`EHIey6%5|48XA;LB z_&)H)AT*!9Y%2~GY9jHuESPwzF#QcMRUIpAWYcvgH;qwD?Egaq;$UHe%fSVWGS zmOpa9ly#=y|GZm*8QALxrbe!?VU!h8vmI>wXZ-)1CV$v^r}O_SPT7#}{4R^Uk=hLl^VM7rogEHq!r$E z^T!R-WIiT#P%z0irp&_{KyPcgA6o7|2jbP^U^9ybFmzYC!t4oj0ILQtlpl>xOw6Z{ zGl@@OgOhOXQYVV>eVV##45rm!&W164hBDnLq#0S=DAZwDK(LbP23*cQqAq6-%NF?G z_UG|m`Jr~TC@)Q9tXAUE^Qi&piq^!16P>W}SHQ4PD&;|7z8w%Yl|vN9<0oOZZ=_ZV z`d`OpP%nPo%Wp-W`?jrqoCk~wc1(%5p=kX|SsV!y&U56(9 z(zE2KuGaOkL?a5_kfPD^apM}XSsos(m4hahDRbjY0S(sMgaXo&++vpy0PB^u8pAfH zh;#{2uZX0^Z$VL#M>BIx-M2D5QpOOR?zAzn-x|YWDUNEV-pfjov8>6jGCS zp(ykunO+rVs=>Qu0%WMUb14vAB-L|?Of`0IibT6=0%@=yvRZH8gxKluz0_-=C)%pt z_RsfwD@W;^-ieYZT@<=|JBnF<9?ya*x17;@-tQnV5znSYr1_mLobfJnjctLl?O9+* zAQ}WNQO-0287;7$L}Q8=M!uwLMh`uXW{p(Xo0DJZz_P6oIL?Bdx`daYG+~8CF-Rse zNS79cE{l$j2bbw7rXHnmXGC<8(3@3{?8jYotvqZ-s`z~)-s#V;hTb(CQ{k*BHBIG+2ay+oO2@VAe8<$!Ljz>`% z{N=q=@Tg%?s6*Bp?W$u}*)OM%QT@#rka~T8A4QC1{AQ&L!+VHms`0O)>|@mn$e$W4 z^r7V3u`FKhYA&~)xU-^rwi}wn2Tma5&t@h&||m@ z#BVj)!Au+r88@WFyO|%X)hepX+(datjVcXwfXmI#HS|;n7bv#}S<9rH9>ofCb9R7m zYjeBUYKwVw26zhvq-(S+Y|l#whbO@itJ3-74C8i+5tVo7qQw9Mnsif%?xJXPI>w?z zQlCii<d&7n6{Y{s z#5|5ymdZoHEeOmje@wMO7c6x5m=YQDylfIVDw`MPjHNc**bduKaL9@0C_{IN54sf% zy-LdwmCXwS8-jaqBDxyCNEyW(fqqR<;xr3*q9p9t6zzhdu-{RTSPIiY)W-7<6eU(s z@E*F*#{W+#fiz$daH-r}iFurn($K+*zTU_H#BJ7s(+XK_{5u7q+lIQ=#v!>R^>T3~ z94w<0=1qzdXY|5w(9QDlQIxDC|49d71Xg@QvPnDCoFPo1%l_hoTRhMhLW-iEbt&sO z-Bph@&k-sB8&H5a4P4NzSD0@^naAlW1_|%x#{d|K@@`F9mxhxxJ5%O8=CRPjSeV1CxY!iNMBkNikJCA;)Cy{t z-h=XuW7N??uv?gkyBB2}C%ggMpsS=-***#o$CR)Z!!Q8Z51H#O8H+vK1W|^A3smJC zNM(=X@BG9#R8hG~)@3m(972KOxFjC+&pO7c2@a#&<1_*_SjE4(0jX7GzDsFtj-W_U zYZ1Z%gc(UK)R7db$7DCF#XO*~#iyQ9;50F^Z0h}#bsXs#>yV7z2UCY2`Mj$sM4aj-mBN(G z`zS?;(-;GaIhXe_%0G^y0)H4tGzxINpW>(=r|jc2WfFU=YHBm^35pTZ5PlKz>P}=9 zT|Y%pVk!zf32#?Y6!jU(K28=16jgY;&B7<%k4jU3Fblgne*Scz0GBo^H}N+|C^DBNG9+omqunkz+8xj@bB^KIt#rYx3zmI#2mF*%?^}>oj-OHS#j@^E$6zNq8H7BAvu(f62 z#6FL$-vl3?3)^lbAC3xG{`a~AbFeve#9Vt8`VweisN}~ z0gihUw|q0O{pt4PNV9rM3DH%sF}cuWnGeMz2T`b~w76}daH$;6vnXh9rD#!I7F#rB z{)K69fC8maEC!^cm>JsJC|XpK%DPzNLBq^o-a%oa_J7&J@FhMK=)?r)lQOvZ6fQD| zS$g46TO2*ca28OUs7WU4VgU{{)j|puwFlW24EllC3smiOLPl7%VTyHPHdv!@#`17O z?7e3OJB4CJ?R&Jrw$tBHY~A&`9rO-o}h41lVaWK4QV&8Nu9siUS3D}C-G&F->jz_ zC{B`48PZJNL{WB)NJNwhtwLVjQgrdnkcl`D&V`mT5m9SC0|wgg`eNv3pr>e`YNPTnjRhHr!3L~TE*4;! zwYnyQ74k@m8g&AKeF+6>D>#UpAs$5$qxyUHh($P60*mPu_sxfC7g+C`ZB zC}7mEt2-bxB+{`^ETGpYMzWSmw2_9Exk1sQW|Bpy^umA3-sYp_Yw+~%%dZt?PU}#S#KK9!lLYz6f0Tn35~Ar zr$~v-6%tiHNTH%~vfZmtSTwzw0__~t*>T2TJn#3r|NaJy{k{vA2}@(YsBMsNfChZ6 z4`V3H=kb1GWz-k7J|luF9q%!b{~z)vvCus6 zm=NZh0dv(IqpH0Xf9ja57&8%xIA&Dl&l1f~Mhpf+9fr3R;;EOtM70V%f)&O54?~+p z(W3He4Tk7(uNfwGI`f}9*P z<$)CUovGtioS{~}IZ_@{u@9lxQ6v6%WflwKS$Pkmm@85*Zv#(dGZgp;3ZA}atTUgPKqi9iil-}I6z?NkSwk9|Sg@G-nU@0nc zO?`BK#cpS22?v9EEufr5;iA&Ry}2cWgDtJZInSY}>D9hrb}(qLk%1YpNC8hvt)=h) z^R!kBQP`-IbZ^=%HzA7#yD$~^DO1GsytNEnRkbEovW2T^ebpL;OD~9)o8UOXnn30@ z4T_guRI3z&W7-*5n}Vg+09Kr)Iu>0+(bDU$A)28&oJTQJRA((Xl$ojXd;-><+exo3 zz&&aE@26C~3khJ#aB91B35841U24PXu7+$xK6 zrC1?vqloFXRdsP15d*uEf~8k4U?h3~j7XKX>T?t@y@=Crie^`74ja6nV#Fg zF>P@C5}c5v6!TsRnO+Z|QEO{?zXvE>dQCFiLZ~KgAEIdKd8nQOf0TlySu`yJ{&=Qn zs~T$R@(GHT-l(DpsSzW6f8Yg0WdYe z|13pIuZn{v>*p$({9d+jaBsN+_X34WFFgY%LRO2W^vsJCHEPd=U1uL|X;F&y5(SA` z9AycjXO(|SQKFW#+oPyn_zHzdL1Wsa=W7%sg|bwK#pzlsJpGEoq+l4mLHR93Nue-g zF7@{mCWXT2A@7eAC56I}xzoR71*1Ci-zZG-)*@`K^q&+gdE@JY8Rkg;P4SZVe0{u- zxzYbo%&7Hwc0tI;)W-F1Swq&CBp=uNSYdOa>r>G5JVs9DSt2CMWoJLWSM|8b) z+LVH%P!xTxa|T6;S{Y~Oex^CjEh$jcRy|7~I(@Va#YrA+>FmvR6ehU~=yRDnWCEh4 zQgaj}xt~G4R?QL5p(rVsh0Kudo&^k@8Qqh@Bp=3v&WP?q(UMzeXjEIswl76V?$N_V zb@kH$6eM}LF-__oOo5UQ{lX`652bL)O;jE&sF}ILDN5A(db=2EoGN}hMM_>>=@jw2 zY+&@M;iD-`^0vn?C44N!NnVBYso>)&NOD&rQ^1QUO7d=L$kgvi6e|U_X;Z#SDM)gU zrW3uVWd);7@SZ_oQg8x&Vs`~aNxt0PJfWMXP$~GEKX8$mp_2Dk=(O}lC`@u2k?H7bDN1s`)@Kc_ryyw*MVnK+ zF%uMh+WC_dCHaWOFx~uVijzE%;qP!Hvq!g5wB%g|4~=A;?#K{~Bu_p|!IB3duVi`- zk$f;ygOlB+VN$IlsxR} z^P69#Aj!inS<3M>ijurJq)RxykqwN#bmLnTCVAKmU9#~Vind482A4H;2X2spz5Qax z!_3*Rv;TK>WoQ3^mOT1l#Zh^TU2YJp@?iY_pz@14rwyWeAd}2bJ2qfmfOL%Xfxonb zf&K|V)e{5;W0b=Rm!2%ZBzOZQASVkr*-7Dr+oDqmPS0e5{2c{Rj~pmvE`=_{n^cIE znF}#eXq1{GaBXjJF91`>f2b_wNs&bkcTAEgtB7eTnM=}yRk?8C9T8?-Dopm?+AM3{ zx&f6Udq-*3hFS(k*=TLZf_5>;GM&oeX6`Dj5je$Yq*e)L_n6miMnyR*Gf_x5n@Q0l zcl=8&M9)o1zaGZ6qTt2MiXIZaW>FamnaV&S#cV1;)N!GSTJ?U+xCcv_ng8ub;j=RW zz(by6v?i_)VKVGYWynqi^@i?;yG|xNq93C4uJ)kt*>x$x+N-^&5ZQ&Hrfz}0Nk!LN z$^9sLc2yvxbv%&DkX?U4kMMet!5MdyJEj;C^=IaIsQoHl1ca)Y=wocXk^6%J8a}@{bg%M*Y_) zzIC(N3;xOi94gz$55h??4%}M+ncp#p(FTWTP=PY37M?%`3EETw>#kidDj5YutajLO zgQEqwr)Z554%bjAA`f?r84~;JwaWOIHY;!*#kTHe_o4wWGDXFQ^QkDA#3)Y`W0<&* z%3$4viJ^{&XmJUZWGIVh;b|i*Xk13cSe>C5*0JMCD%VK%av4I%`>7z-x&9a)6CFuD zNQKFymGhj&6i}|FA`E9}7`(JjzZ{P>_#dTmWYXGss(_n__&rEXXBa16^P`S9;f@LP zF)C0kL&Z>m#Eu~*&&SuYJWa9ql*#i6Do>U*daTwMgbOMRHTqLjkf>{`V)xTRUH3Co zfHSi26cj)mCfr7mGim;)bLzF_PAW+z-asYMs>$cpmLPilxQ7aoNpCs4V%$q5*x%MK zgNs#^p6>&|QOc=A9)KeEdIN6SknCvxQq9m*z(ZIDC81(H2I~nlBpL81!jo)DzqJ;X zD_&UGd|Xvw3`q}btwNru-NmKP~}hJG+ut`-_)xVl(T!An$z3@re;Emwj6DTU9_2aC1(xV*Q4 z`QR&51nc2S?><&`{*YABV5Ax&CP z6!2RrL52!|vpRy~*q8!-PvNcS2zpn*kd^`bBSp8)L&iX7mmtH&GA$bXg-Vg335N7| z{I^Mluc^!5{z>7jyM{4r&~U^_F3bb}P4P1fhQqMsuMBw#r4Ig&ijbiSM#k&nv}~q= zw=_tHAj2qBZqhEv`c#4pHBgaHMrRtBO7SzSf)%F`98AFAr%fvSXsx8SLYq=}>< zRS0|5}RDcZoWL0NPt1#5kqVSefh72nKc8K5%I3)~hLnX-231K6s+7xd`;jNQU zy?a5kUT8GSL*x0DgDG4^5j#w-Bz(D(aj2A|l4RIH@N(J(y@j5$cBIe-PPj5Y<1`ZuD4SmtY>ZG3lTEznn#7n-Y#VLb@bYiLK}r0 zOQo=0_7LANWH5F-6(jqQY8;a-rjlf@5IQtFiHebZ5HpR?mQq2o*9RS_okqpTzRr^I z+8Jv@3Nmb4L8Ztrhw61s4WqX_l_UF(p?MHDNJYuMx|qgt4izMOKP5xD5h{iCVw~7f zJ!)jPk_wc46j=kC4uc!MSiYr7#mL?|=Q=Gl^}dQqkzvw{YN18(Gt4)T;;*Lg``Qj# zh8Esy|SRedhM_^V8|@;1qe+RGgxQr zdVu$0e#0rXi@~k9tOi|7jc2_x$6f#f@TC;kdNGXO(NhmpxdJ#!eq+5DCg7%fj+f$Z zhWbti%b@sCfbhhB`fTeSo_3`=!-rK3Mjpx|*F45a)80bl9;&&I5X~*` zN$hT5AsV~Zs4?s1LzTj~(@>r6dR1lC%ZE5Ctr#aT{-H{{ktof2#f>Fgh}u4BRGW32 zvI~%=XH!I~*$o`{SsTkIi8@6H;N`*RJxS21E4d?5%T4jHA zlJ$t_AN zWPs`={T2na?jTy16hMQEXqg9phoYw5YL=@o0}eZh3N5uW_g#vedWiI+v(`#IKZ(#< zi2Q$(2(5+4A5m!Q{n@rIh6-<24IP7@Q1H}iazn3FKck?jS1JTmE7i{_s&%@ny1?ytkC0OKTN5XFx^nkcVRQLGmL^=cq<7xB-NFM+0mzfQgc zS~UCzl_2%z#~Ux|9gKfXBDB_h{4a&J&gb>$d*)u`I!!WGPQAzBshxD})|*6Zy(!v| zVyE8t`sF4q(#90rdg*bGRuAj#Z9+xJD(LxPSL^g`KKT+r(EG@GQ`VV+|8ozyc)cle zUDoa1V)8}NqTkk3g4AAcy}+MeAgcIra_0y>w19%7w{gL9e+jeMap>A!tu&Wo-@jK_>gjbxoX6op zv+Vs?B4tv?dgVbS7J5k1eSegL%?y<_r4 zfOEhUEzGAPSRV`%(;9dbSssr6K&#ZM+WLhBRGzGBEyx20lc_V43#k}zlAPUfc`?;8 z0&0Pi>uL=+v@Snd!*hHTOPxSPvR=j%QzW>1vQ;irVCQze)h@2o_6nUy1@tZdZO zF2gBQ2ABcN)J~&?l}^4nR>GasdHsG#)`LEk3T3^1H>Rcd!G3v1+tztHl_cv}3kx)z zydLP@N#)48U%>7&C4!ty1sToSU)q&c87j0vErrRK1~!~wl{VGq(&S6yjlxX*reP{g zGh<76(u8-PTq=`&_Bvjd!IO#fqDHAG)|;JT#u!f&V`r*P#mPG4`Qm7Os^(ggMDJRS zQAx%o$Acq#SmRWztV5t@DpN=6T~wO!$x%|b{?>b_WY&j|CaYo5-L8wMT$2=pNbl>t zRFv~3$9Ua4VV6_cvhFT>ZXVJXdmj~Ok|MUT?{O6sC+mTquOHSS(z}QsqVi&z?t>RQ27Qb(j@gA*+r_b zn5cv!L`9~Xs7#a8(6!(^V0P|%zEv|FG;uSPEb9!VZ$O$;cdaacr(%-gxo3|1*)q0E7WrK zb7nn?uo5mMDUT_Zev-ml?}Wm#z{M^3`Tor<%ge2i6WBx9+WmP?1C{-0@xM;-?UQr8 z;@5CzM!DI9+$picHz!dLUx;d@LIwFY6~ulLqDPH1M{Bj#NZw?a=cpK&83ylTgl{BkJ5QD17P$h^%YBrUD#f>+o>*S-IYZiEg-$PHAF(2TY~Tg!QT# znW5ImES9k3rbfa20~SWYZJh*fApClXd|IBH&FT`Gq4;542X z&04VxArAKW!Y$rvoZEm3W8HC!B}}X06q>EPwwiaNwIqhNk74>+5<^?gyBQTDQx6$z z)C#2{nx#2XsB6ROnN*legIuvzX^&QM_*Gn~1i7uKAlCB}aaf9|aH%x} zma2A`$t)_6^*}t1K&58AqMiLad(uT9X4!F)MSvAM1#N-k&Qt{Jx%4=O2=AoqN+q#g z;T1~~=(<7{RH-L>P#H3HOPt@Rs3$S+wH8EZtF3Gw6~TH~63Y^`iYmZCRZe);VHp+0dhcZ%J2h&p!_;`T zoJwH5ATEvsEdAFSX*kUhs7CrpHfK(@G~Q_m=F$CGYe^dOxcZ#6D~&e1F0Nf^v{CjD zmBxC_ODr$;uBM0@Y?rA_)@#fX$P_x}u26ZbmvknQr_0d0M&-(M#OLLL4I}Wz+LDBH za@%W162o|W4V5I*#?rG6ZdlX@!{<>^Cc{w-W8(AIo+R4P_(Cd)^@_0sm74VOE}?Q{ zn&$M}#5_>Gj0!Uuj$#-uU%9pp(5uK0$Ud9S$S)0rn@TV403; zHNgzy>`zgNCR0`6!|l&d!7@$Lc&eg9-P@=j)|)I6)c5ES@10brOqW7<+QDT9VM`%C zM@57C+jTnN)vy(0Y zi5B0ZA}oy6lk2*a;{`;TI@GQf*-FqWS`!yeboy+us4d=uZ)rED^Q7%f}9yoht#S#xzEiiOg3JTV2POGVpMt z)~-|F*C?>{!eF}+m#fg%f^|j|`&Sg(dPjjBHmt747uo4WioSoFJ@f$~(7(?fn%kL{ z`i~UadZyY=;a;~o#LNFOS@)mpn!DJ$`MQ);kfwjB`LVh`%KQqG{DsTa3YZj_576-PbhZ%c}7eJzA- zafb_|qw0~d+fY>Nj+ZT}x9v+Y?sgQ{dIW8Y>o-hB@7jS1VBHDoSpe!}7a zQ`+@!N2|Izxkp~QzBodt&WivY3={8WrF`Yu`t+ zHe2PQb^`Yqz*CAl_GT6QboUmN&^omOOQOUf``|6u+X08vtvrfA;*#~eA9ES5Pg^lO zFDtg8JFYfngVeB-B#3sDnzL2}sTQiEnjj-o5bFd^@1_|nSBtf_b^`m#Nfn`3Ycz^A zXGn>DRVu<+F)F;JgBEM*NkywDx_!Lsxt1ELMQhRp(7bRp6(GYnH3IRu2AAEdDW`L( z3>jLXOh<0-o>T!w9XLQk-4l8N6~H=^+IuX(VB}~LTudd%&<~gdL<^Tv88Y+(LrA`Y z3XrWC>W!MZ|E)tM$gojZ)h<+9<%+rw@dH!@>lHe^`=ZxlFg8ygUK^4aTd9vwN$iIx zJ+~8{PV~m=S}KHnY9g)>=7@bg6~%gqdTbvt1nwKxh8%|Y{YffEhP_+QKTKi#(^Qb` zeZ(BiZ>6G4icUyOy@LvpeLypY*3VK&tg}RLUJ{%xGOl!)WYn>&s1`HX=-jC2^Bx}7E&K|y2$IK91Co}A{@=nDemsWj=n$UW0t-Tmt z4eu(=BUGAQB1TWcPSt6M?8u6B*PY@nuPHusX!p-Gw>j3p^h{u?y2?>;`BINyVxNTw z#3PQ6kK(Dk0O#AmVM3ac&OtOaJ9t8Js79kOZU8G%u&DJ@o>9$K2@dWnz_GfJ{%p4E zbx1%qVY;DSDTo7;m`;Z%a8yXK11`exGyZYyxah+VU<|RG86xamXw@3ZIxU7+$pX^lKssjV5Ykttl=5tmM~(zPkvvB^sZCpor)6`Kra z4aJFCnqudhL$!9J3^*SL%#os!rEz4(|fImL$33t)x2 zGD}Fv)EXe)Pa%_60Kb&&dI|3MP#p7v6fe2`%FR56$e_ zDY>_xTe1^8Y4JWr0h1RG4hn_6^bNSYMvKQEr)Y~37tcr20?H>SR`Qk&`eB0=xNx&P zCY_bW{Nz&p5g4Up}R`AbJq~vWJAc0#}3TktD4~0rz+2Ar|IJOuf3N$^63h$+8@y9vlk;elR z;^^4!z=D%u#PJXXi60YfMjDS&!1%rwIl_26b)>M7#S>{F1^s)|h~g=Vv>>)m1W05g z@pL9IWCZaHg*h^QY3Rt|S;{|tPd;MA@I8tXzZ`~DQ z6lGp)6yu2CrxYQ6gX8y+%_D(VvVby=0A8a|@g3POm7(YVD~c1}KE@vZZz)22KMU>Y z|DK}6?@6)NKct8MM+)?|*bWV61go8lzfkT8%+Yd2o6^a%tYiH*iV)u%{#b#GO#Vqx z=Ev5OkD`r8{!KCBw~XN+2N>f3a2tvczw2Ti z_-#ia;>WPi0pAW3W!EV8Y7|Okrz)kg*MZ5lPhX(SxE*1`K%d<)GQJfUtFvyA!O!Or z#@jIShT`9WC}id>GUM7EDX7wLU=XYiWLgV`+KBpDL{(?tk`=B{D!{!VEho79c?H7U zO<^JfV%L%}7_F0qKwqRlQJX-0o#;1X9vcYYzX2KRW)XbOOD-u&yq|(5D_x~9I%op= zQu;uRrU~c~3KW^|3Dl)tFe=oDQ|_bCL28)LzD&^~#}!@CU^Q%rzkiiNmVXD9YN?|dUoMl8D=jw@`Ay_c${p2oMPhhy6b{rG6IXaK zp#LC{8bG7wkL*$Ky83FfUTX&PM+|SuIKfM!RN}~ThO#b2NuyK;ltN0i0mVzBRO0A! zR;rCCN*bj)FsxM5)5j}0_14Jha+6*6H>O!_Gm010nA`YbsZp!f+QAG5Q{zku6V=@H z0Hf8dtuh1B6gMj~Ak713Q=p`N&M&6-`ya}SB_`%#=ErO>MGfs}iaQiQfp zhftg(rO@KSVU&B4QiQfhN2G@n*%BQ|aiV&)QNCqrfsUf=<8~iC_FBtxOzHrd+a8xX zfaXz)C_r3)HMB5GDEFw$QmCW76tLU6fr7?9K&Xw=Hcc%Y5)8fEJSt2O_RB1avu8y^`KgKD<@5rxjC(2zcCo?qPI^}@$ZePG*O#OdZ<^%G0!FxE^;() zKjtZtvCifcD{2*d4@J`h{}vP}GSO~dDjaAi_S%|4rDQMTm}XlFmr}{dSY~?)l~T!! zW0;*NTx3Gu-e%rzCD;QFV;DcRuNZL`ik(s|pyQ_9C{{|fK=0+vrAU$UG4>iYjFa}J zU@7%`*v*%Q@liiTOsU`OA<}Wt{uDCZLXz>&K@>5igo0N{^El|O6gH&_LB~G>6f32W zM#epFqfn7E0!6LU>Y=GKjdSKxw3Mtxd%+7R)?hllB`-(XJz6iMBBT^S z^`X@X6e%q;8irISQnZvZ?dGA>DHJcIXcjhvI+Y@(sE@b8G`O^AJ8G$d%tNb{iwo6qy$vUWNS7Qi_IKbcyRw8k%7-lx zXgy_EpG7QEPovszYdnAQ7)};bw0AdML=e>u^o&=l!l^3?;uk4mRMIyFB9s;Oa?}e! zikm6-eu^743hEWtSyP8BsB)$ggZ&bPP1B%5xz!1Mm5u?WLy&AOPG)D^cU}AO?y&H%qf z0n^lJb5+}M&Q*2#9SWIh8RaXOSsA}e0i${fJu7u}pN|{L5U5C!@M-ADmm1kIuEACq`SN4{|$8dtM@26 zjY{Y7ueHR%DU{`Jfu*X|sB~TgSE^Sg^6!y9(Q8x z;zeydwSmHS%Hm!%2J;sR6P0MOg{h4)r_svvHwqRtC({F1yILNSPHbmI`zJ+9s=?++ zduT{pLd0PHO<|&vVNrz&^M(IWh^T-O1%Wi(2i`&taEQurc4Ke0{rVInYQu{Kh{@(t zDN0;TnQT3cvX44cC%D?!kN$tc=HxwUa}sr^PQXBmeoOu9sTIZ-k!B^z-@EdrVUUUc zUSsnT)p}bXdBL#I7?y71WN??$rY1csaef`cdLPA#icdY2Yc(9FA7o${+Eo-SD)ic; zRclr32r0htAqp1Na@m8?a!pXEs3YgPLm9l{nk+ChZ@7+PL`5vCa!_sEKvANCZ+8@v z^>3meQEgOr5L%9#Da4Ku^Ga}mx$mC?4G4+$?Mg3=+@`<}Y-TE;^K3V6Z!NgE@5u^EV0;HLx^Z zI`fL}pYo3_zCrU-Df?ZbG!OSWm8-#G?2A7M0bmA<(xm_pb-7pM_3eICVNAEgp}!Ic zBEudROAjvo)52geUmmRoHI*T3g9s!bMCF_!r4MQow0ZcVQkv~(A|tYU;tM{%R&5nv zJ!E5fxizxXf9iF)c&tY(Cz!ZpCEJ0bMK*sv-)J;=ODR*1qC}0_qm^e;+8hcH>G_ex z7$r8@owARwrBGY!Nl~Iso`}{GDZ@ULdxA3H^{ucyhM??AQFf1t5#kzH-(l|92I9m$ zaIUEoCnB9iu+ZzYpeW4m#Y0n-coEr27F@#l(~bly#si2%;zraAEUT|g&~2d-h2~Xj zxWHY$U6f%yM301xnw{wxu-Oi-%wu?uQoP6kj-5Ka0*;E_Is<#0f<*?$p1_DIpP*>z z6;0RUQ(1zIiEC+?9-pRQk*%4P9!=i(3mqE*Bm==xEKh95^?xaDO}H9$!mvt^xNU1!5kBpfSp} z007ah4%I3pkzZh@IGTdclvfWRupLP$#Ib~b+uiHp^`^XgVy=79B~U*Of9TgHIP2jnF1&CEnaWR$o(Vtv%2oSif>mQTW`u-_ms~9^~Mur>Td51sQs4# z^(^Jv6@q%_wMbnee|x>4-hMMs*H<|IQcyeB1NAE9+tEt{+&69m>Y2*74+`oX9|G#S z%D3MV)OTM9)TxThGcOA`&$tz+M=G4>T^>-!9|7uVC&?u`RZuVb8Bni0S*G4Cs4MRS z>P+R^hXu9vW1t?be7p4(0q(Z=?WW4N+Y0K}o&)M^<=dkL_3d8*>Q2hH?-SIEzXjCa zE7Us#b>)|VdbvWqPf)LZ3aGCt)JFuh^(at>6zZ=8^;@q2^*Kf6O|J~f`zGRkSoyXs zsDF6|s2eEXULdF+`6WdE-+eag4L6x0Wg1L}8AlfV6qL_Gqin<~_k zt_o!S{ffWU)yslf zJQJv|DY$P6>NoZP>Jy60?GFSc+I}`r*Hft13hLD-0CgjU^WGl}z8%{ZsJ~WZULvTA zHV5kI3iVV$J+>dHd!H&>;Xy&&^gy7lR;cg!P=GsQSD;>|$b6lkUOFGB=P9~c^|9dF z$G!{H4bGNv+k*Pgx^J1{ZdH(}9YG!YF?{bkSx+p7lUZ$BoeKimnZKT)X9 z3hF=q4x9(ik-t6Rx0qTDZ91ohNk0QDe6 z=C26qqb~#XWrg#Tg8E87$ox%3=C2Ftij9C;Rm%HKL9PB3I3KP^^=(1D?r%U{qEMd` z)bW>qdZQxM_XYKe4FLBj1@{Mn`rLXzovTo9_(Wje`(2=}Gb~&16+ykZ3e+PN>T81f zEK=ty)IDwrI3GU<)b|a^oc9vc@05Z17lqmN@8E_3z5Jj|%EQ2dN|Sw~q_zs~-dE_Z7}h2cI+iwnm+&P|wt;s}yQkP|q6%_d8H= z?0*RAL7M?}XQfi?bY~#*`qu#U>~UGodkN~R4*>Nl#W`0A>VnsST7QrH?H>j8w)Fty z#}~-d4ettYx7rfEZ7EWnCaC*PgBKTFD1Yk+>J9&ZZ#PpoUm~c5+ktuwOz8@by;)EX zn**GGagj`YOi)*>3)H6+&Oa2?HwJ<8FWd6B(?1)O=>Btn`nW>fNlnj|BC_VnX`fVJH@^WH0mD|>eCwaX{n#afRw=)Tb5dN%yIo&uz$36*cM=3bm?HKdey4HR|;W_0aoO+`XGJ?q4+Og9`PK z2h?wWr%+cts8U~S$(--fsOz_7>dP8+ABFm7je593{f|aHTA|MRk}B013iW*&^=^fF zqoA^zxR=*tnQwn6;LI*3#fxJ_WO!asg9{%8^<_b2*F)jeh=S@q9B^hwzT%}Bf_l~? z0W~-!NKh{jRJKvY!lQY1T~ll5!7P^HJBs_sBQNG=z%Pn((bI= zXtpLWNqXiYOqPo0IO_?|JJVp2br>%nh0V?IzySHo zmH+#tFN4%iNY9^?oG{{C=Z{LyACsPc zPkR1+>G`wL^XH`J4@l1+l%78%J%3nweuwn@PU-n;((_+P&p#(U|Gf14Md|qurRTqr zp8r~U{!{7s%hL0Eq~~9dp1&kL|FQJ^aq0P2r02htp8t;hyWQEKQW$jL^l@~XscXnQ%9L9DTa8NwYpuuCD2?)bRGUiO!7tGT8Rh`rIF91}7Xl9Z0ibuL2~=n_3gbeT9^5+Mq%QsdTs}>>V7iw;u7{BL z1CWc8JH-HMa0NFy^9Xkr^m67Ffh#2NKA5^IRqAl!2=l&Ht&jgT;a+$$dY^cJ|Mp%@ z=zRengycZreFr4=K7}vyzTgQ*aleb+hd+sI6L1}9)mHc_Vfu3SXSNAmNUEqtxx&o? z|Cn%}c_&z8Jvf=ZGU5FPig8qYuSQPX1jrdo@HTFOMafxm?FUl3OR!Sl4@jKESv`pv zdtT$2I+$wQlMw`e03<;W^VPyYL_L>)mLU-Sp#Ec5ab!3kaXkWkhnpApCW!99v+cW0 zd%}J5c+YLx+-=(EmC4+OvFDt@ZB9tTZMekPFrxUJw|fEBSNs8qlevvxAGnPVaxsG7 z4}c_d8v&xYjSqAw0^twpKZ)D4(QSOLi+s0Xc3qyR?zUmcPN`gUnt}WDc@HMsKQ9J1 znvTH1GybRl4Z79w>A`bEaIbfA_e#)PK%sppS;>4i^B;07_ZBn|{y<5b^h!blNg#~} zd^-Z;4*)Msl;$*(Kg<05-dp+sxc|?_GXg z|3n$wnHV$i2V^%lLNP&DHpx>ED~!7pLg5cUnfs#gphSzHz|BH9`~kS*68Rpg3tUdp z+BN8BzWIT_xrwtZ&S0ZfC>4Q!o{g+{cQAO^#~)6(*DeK@+nhX?9(mtm3^^%@8wMDX zKpY<&@>cGU=H7jh5~FMC$Q;%EHHH!Vfs(CEyJS)~CItR>2#-GiU&{nuxNwLFe?SrN z2Shk4fivsu2Z9GHeD7h7=H7xHF1*br0(_$GP5_s0)mV2Yc+l6vvzRcfPFJ2uf5JD3 zyE_4IPXLYyetkdp>qOlhojG$Y`5{Mhr($TrA5dqa)>!5pjLUg`MkaZ%(-0Pa0CqSX zKlZGMb=Ty>zD?at5gLC0`qWhXw^fsUHvqa1{Z@F8=Q4?!&tjpP$MDP)41e_D9~189 zmV>WO4gO~TWbdJmng@!O;ZX+UIN+aOREM=NrHYU-U^HonO_eu0W^oqb067{Nz zBTjK;eyCC_cb;AtCfdipvrLZir=lD z<2~m4-|AHfm;|c z2E3;b#<`6G*TAy7zd_gV?cu-TrIbLNL_yG(N5lv3iSG=vZ~@CE>cik~A;jV&ojD@J zgp06X^uKbWCu*7rcg5IVW)AV(H?i*H4`_9H3PxtUg>hx5H_)cOT7?=DMSQ=YtZg<_ zbN1Y~>;5>SyoGO9nG`(b4UrHoQN#}sZo)-Dz|vE`!qlEhq|+6E5#NB%vE4Ojb^HOV zCyDq51Yvt7Qc$h2%b%rSZ_ zFv2Gq!x)8v>{6CO6=!_F=j_bY)O^-iNxN}md@By+gJUj}_j%9T>hLVQp zH&I5*FJn6pf)(F4Elt{3&Tfcfk?`n{ZJIsQ6oR%a_xKP~yBm z=g98v*rMYPly5Kv+Y10;e0&yIAIs}*h1T~~uW32aNJ(nId6xL+OTftM^ESu-FBJ8d zM0)l|5fd)52kY(3t(R!RNQlk?wGiLE2kR&PfZ)lxm%iZ4CwO|wYmTuX?!5?vKLC^{ zyQr2$Bmrcw2M`Q@0Bk`L&%;6u$eeTNU7pQTQCWVl+~TtV45knNoN#YB2V84o>52CT zdmH10c?pr_*pTrJfH@j?+J4;Al3OQW&Eo?qkqgesOWM5vwK*;Xa9nQHhHZ6{15-X0FtQs2Oyk180GL3s(-+h*+UZFy#P&t zKOlIb>aRlZ>MsLbj6nDUK#3eo1rpU?2D=o&@CU$>RDZ^EK;}Hasy}}M%$rFI+Cg1I~R^{<~Le~?-nNXYopRz)T;B`hkGr0@VVFFu;*F00BJ<`z<+$|UB zMiM=6Bo}kbv;9K!8D0@oIJ!&+K;aXmMto!gZ?6Lj0)ji8%H8R_RNRS{g9UZPq3Ao% zr3G2s52H)r4-~zXhD%W-$*Clwa4ROqGIXoJat8gOZ4xzi<)FD^|C(?&KO37n{)hix z068X!Q34Ro9!z}>H+7=kZori_car$-2$~OnK=4G(oeII5I~iyt0^tt;C5pEykZA5? zuquM#4}c|U?ikMjnR6c9%(FQ#Pn0_Ve{vdme+ugZgqiomPo7+k%i}ju9|nI5Ard9Ti4YSm!h)&K<)%)Q z5GUMuB$5lx@!Zp~?&1%aH%UTVK?K7x6$ci@qPgQ}QD3b>jmd1;%n#OT70!)U=Vl*1 z@oo7Gwi=t1m52DZ^chy(WVV#K@s0z+f-T>hhAnmO+?MiFn85-(w}H0AA1IKMC{oDG zgWieP%E&YixQ)R01Hg&0e2QHHV5!wHfUiMt`~mRO6Lg6b?13_@>qb8cT$pM267Ir^ z6abrOWhUU#d0TK;ZOZoNxVC$9@*E$j-=jMxTA8Uc<0{(yqXD4$qg+22#?@8cl4Do7oHKTD8tsVpw zkh!xaU)bY^%;!%4PumncO_?%;2lAKbWlIvq7)_7~7m>loKFNJ7X|2-O`(aah%n{vd z(YW{nWlGk?R8$mrR}eTU^z{ghKLDMqb7zKDLMMg45#jL%;Ll9v))I5()a>uTrO~qP zP3Y1FKT0$c3T`=4XpR&HEArMD@LvC^@79-Nx^xC5;4_T{I`_#5o!f^OT@&bWfe7H= zcXR(v>S`3hcX5@%aou-eJBdF~xFj>7L|e?+c{8M~`22Ql0O=ia1N5ll%KFn>KG)8Ns<85Q`5Ejp1eYy&3FaAJj zlGdSsH;q~W$%Fk6!r~9WCiUTfcL1wItbpu6Parh@0CbWqe6snN`vOqlxlFeYq305x zNj4}`cdz+=tL)Wt8>fKlZU(NaJjN&KZsF7TaUVu-@ZoQAA5Q90@@Bfgyc+HVE3o@x zv@8CAU6X9#)3`I!YFqfQjPBEDU6W3e4o1Zi0pGm%#BYMu!Hu>!7?mEf!KnBQBU94B zsNlxUim+hT7r0rI`moB~Z*s)b2^aC)FQZBE2MUyQv>=!VeiZbn1kD5fDgxsV04E)c z3g!W@5}yR!1OFO=;}3u*9E=Ly%#HESAVe_@KaWm~sSNQZdQT!3h64phYb}TEDd+Qm z-jhC@M2ATw7w7&qQ6C0>^Uo5yFcE^of(yTvf(sMw%!QSw9M3%-drbHPT1}E0Q+N+} zf35J8#Wd>voY_)&5!IMzw5xE-*M^|`Q*V1~JvYF}*#dP+!}a6gFW$7~Zu4k%oB z!4!o}vmKTzD!1mmR;DKy_$0r+@0jIfOR z2lNx)JgFO@;WTj@L9mjF|IM5PjBo~c#x(hn{}=lJJz!CiF_Q+)0m15Ta;ql_YZ`B6 zY3Uiqau2}zjz3V8M9Bw>7pZ3%9pQsFX zDyX81K@ts6WZ}eQFgy*s$D0bi5LemGpak~JFNB!RN|ZM;3I(TP@|Cz-a_>kq<~AY_ zuaJuFeiqw2`~h!Bk~bpAnit5JTcGh#=TyImxNi zJEE_kdBTj4D6cN_4YEQB__vK*FPLX6=ntfdR~t&KU2v9bfP#&PQT5}f;qXQ0AquvLCU5Bveg2}7>}{{d^o+RavN z6qbyYoW3ErroPaE8-O62`^RCh^KN!8cXnS0yiNe713CED9?jf*#x*w|xaJlJt{`Bp zn}8e|8jk|E?4I2|nB$k&6MAa!cW3H}o-$B12X$rStSL8JI$!cIjn)Xzz;lgxaVMHpQ}`_S10D&5;hVKIvass=9b~B==3{xWyV=RXulpLfiDi|`o$cC#)w=m*BxlJAYd>lHYd+J zo1-A`YVIWeRY2ISJ3_g%zsGc4{AXw506D9j~<;eYMrqzGe%)cZSD3=G%t9(Ajo5|2T&q=iuX9@G*dgwnwN% zZf2kNNKkmi>a#-WomoD#(3|jygS!{o_b2FR7Hd%88umVzk+(3BI$QWompfW~0EIlT zJCt7tpRW%zgAzJ3{9^fV%o~pH4kCpFoE`V5kav3=KI&JjTA_SBO3BKj`eqIxiq2GSBI* znvuolV-0#KpRDiHXVz1JG(B$*P!#}v1BdpF&;}+1CS+1 zXBE2-^1vbbA2b1}8!!h?+2nm=A}fpN(r8!VZp>j)!)H)JXT~Y~Wwp+}t-GBYPM^{FaRAA12~po*}2NUwz16T7ZC_Ajn8_d4uRsJ(!`NCx;Zw$W;H z?%sraj1Bl6k?e%OdjfqL8EGx}K9MZ&+?gD|m6VSZu<3DcLq4W<{E$dyUOQrFg;|T{ z-i2(V+v>2+GB1o+gUHg{ z%pMcTP--!A&&Fq+s%cyh3C9L7e#52PU1_*D z?vseyTXT0rqyRyk^%^MF(uvmHt9jo*SewRdUL+W6od$BEoO|T_mMo{XWbQMFxI1a7 zV0dh9tD=FmriZmDelx}DSkO$l&mpjNBNScZP`P?@!|nJyqJ%X^(KXI%Auzw7gohWA zrMc-jG}0=fNy+h6hp_%JvhLQn9BFFbs)e!gFrQjF+0_VMuK;oor5?cQ#+@zX~HI_G(x^Cagr@KYfLI z*@M{7|Fg51ex% zH#*x1Z5_u3LTVS>*fk521d`58$U4HQMD;T36M7n)K?$81r}39_rv@*BRtF5#(SSA} zo-v;nmBifwJUFyYm^vAPRZu11_5kYA?zYI;;KpyYlsT{h^fH78yE`CTqtBXxok>~@ zcY(XQJ0m~YQxC9|&+|x$)o#d2_f1oCVvOAQ{c&fr6a9~Ki}7QO5__1UMDS%k0O3p_ z03Qni!*}y7zne2$sSUy?yk2M&Mje>J!le-)MhlW7o}ja%Ug^v}mNCekfBp84o z#v!<&0CR>NoIvA~Yw%AT5WYk;$agwB9m`m->4E+uVA3C%ygetlfH-H{ z>IFX+;`Djk*dQFkIh#ccp85k`UuB2H{JL}aQmF{QBrg>MCP@IfpU+>4=K>pwXR4~2 zvIl~{bCNr{3((O`9{6@c?GIRR2OQuYk_((Dr#q2*0@d zBiWgGi+d76+W5qfMG3h<2XY)%u?#|kZ8$}<4$y>sxLC_jtfY1}wyJPeA2f;JG=t6v zbm<_W&GSg!W%-s3dp%bC~}~r@ToB; zX#R8#AF^QG$BEWv3lv*ulstL24xx6o<|#J#j5X#<{m%g0*mDj6Up-QQ$^9mW_O#$Z zZ)v1;wptFKwUtqw#N7yf?MdTLZ7G9#?&748}Rf`W=9WuRw%tQYhG>%e0sG1 zX>O_iDHOdI5&Ys+Ymiz*&HH?~r_2haLsG_50eni;u+-jd=0G!4s20)oJgZdk1_XVp z%dHX2VngE7sTLuL&AfN6_4}Q-Rfz z7YD5Q>Htg$ErGtv7%WuqlIWZ@D#Z{YsZIv`M>#FjxFrmFA)&>TMDZC3eZw3&=H>l5 zu7(EJMg9?C;BY(n(artp?2B+Dx2s!4i0}$;Y9@UaQYi{KrLO1vS3Hmgf<)HpBYP`} zUn_kazcgbA6kT_h*dYbg&`SoZbxW_d?zsruQ-wUxP7bVgkn)o2qI*7q(F$l;GEtXu ztnOh2;dL)))TO%TUc^e)ORbtMM@JmdvG&>@+|4ON8@++|S7(ExgH*(prq3o^d>>lf zPkm=Lm(kjTb^m@Pv!yB}YU+#5@VaV$D1u&&dhg;Ot{;wgz~ecT#P)yCvoTDrRZ4N{YjO8Z#CVj%sERa_YZivmC=%& zc-UcQ()1N8g(k#3Cgf)NX;3IuK@ zcbU5yZ2%l0$NVEF`G@-wvNgGc+{5h7+_!m7^9J{2RtL@2e}^8*A{Bz+mm3~3OtRtK zpCd+?o#n~s?&a`JnNv*c{t6L{MpcH_QT%a9Y5`VY@@x#olHdt!Gk*`nlTFlzolO=( zD1~J@{4=aB%5p$!FwP!g%fFx$y?A~gAZrKUFIXzjhBaikAe>2z3&O=Swz^jQ2}ssq zMMY{jby#o(i=DigK!&xc_O!FO#$P+f%jKugL(Wh@I5Y` z#+r~=gwPLt%09Te8V3j-#!LeRM*Qq`mLEOAdmXT?+c>pMxU;U%C^y0NJkV+Kqt3MX z(hC4{QoJJaZ3X3XVTqXPc|PiP5pQ(1<2!ip^PK9Ztlf+0FYTs-x6@;iiTjIq(AntJ zrjwh`h)`%{p{>0`az(aAvF`aJcn@n!BdxO~*S7WvNDwnHf~|+j!)ch?^ z^OctX%(^jGT?rSjX%0MHdDfZE)}s494oKEL78R-Lw6H@Bi-pU>BY4^uv)^X=DwwlVaOE2J8mlUn0n}a=25T1m4r<%LI_ywg(|t zs};=?d_81t2=?+OAv?7M;as%tXa;vGBA5faypX^SM1*jzo9W104d(Jpza3LKj=P&9 zM=6HSx9mmlc3HMadv0a_#Jg+)eRvp>2Z?qq&wd)UM=VXc443{D*vz)sJwXzd3fy zmFF-PfWG-s?|Xl_l`>}(WqqHQ4?N)_4)oCTP$r0+?}%Ljn9GN?ZBPxE;2ZjXb~aq> z5qfFDbTQ|YtFXliI|eW@=|N0ao^_@#lwScb>uvx6tJPaL=Ov&vmY#GrK2eYX=4i_p zBBQWo(tp60E1}lhv(d4P1}2%wkWRSI6zx0U+klzGEg^H+8n)Fz;i)K{Gaf<4ME$lw zLg6myne(n7Z%yM7BNE6!R-1L$T_MK0EP*JVPq@E&7gQ{^Lro{~W%4Yc2Z?5n5srT6 zhSv(g8S63U4%O-1AUAv%G0;#yoHNvb;WnF)hCkCl>1=ZfypEGnnBZBarsgC1#Tq6=TUh+Y)?4|VQgB?S z0`;6hZyWwXXUF-$$2q_M3h@R$4hkRMj-M6P(o(cO2U1G4QC2EUM35~@*G@EPze zrzP|~30WE4ix9=akfE_g!b3~>MuEp*LoXwb+H@~Pq)5ZrUw(yJ5kiqc(pKEF7`E{A@N~0Q6F|T zIhwzeTgqMn@uhOB};oS$+rn3ceYsuAF`hIQv5JC-~SL` zcBJwS*V}M?3e4#V-qV$5o$1G(bZRbm1-R@&xv-iG3*76K+BlBoJ^gM@o_989^%NGk z2d@Ih-6=<3W#DoxaBaMxXtl?6OCznbrLR>84){rK0e)iUUTDM4-clKMs5U^_vX}N_ zn%&Y!>ufm>KRH_a1h`9mFyC}AM8G9gFogwyoel5Dnrsa&U+-F}z|Q#Qs8^cZE#L0! zaf-)wA7)*aCm3t8CA$^24A$ohLP@hcGN4K+4BU094p;Ymi=W6piFb9lkj1gHz5RB zV!u2yD4{chC&;|%AoemaHPi@f1jTkoCiryaS!en(X!zt)3$~%6vHp!`;`R9-o%NSu z{~cX&^B~%S_6Fep{7v^djGcbe+f#W-3RO9OCRYt-?oIf0*PykX!q%%xIVoPbpGH13 zNQt8>P-qN5%n@09%Bk_my$xAJg`#a0DInsA5W`}#dlzybv1bS6GZtQ8S3(d=_@{T{ zr^Z0Dv+}uLb}z={M2vCoMHZnEMP*|Q7+jJE8Jn=sA)XodiP0W*R68zs7S}F zuQ#

b3g~WM!_%sy|`RRIS7AGx#m3xib}9snWX7;rpV-?k1`@>;}lgn~j!JV!aml z8wcz7_k=spgx<_@9J9_~t|F)s5_~+28`5%D8n^Lbv2W9hy6>PO(fhPV! zaXs`cjkL~|3n7gPUIZ`0x-$I5PXI+a;Y&w>bM#i?dK^}&4ZOc#0T+J^-|iP$78twx zaIlaAPAqG}!tf$&sbIXe4xz#Vm*BG;ewOn-11xDWQkRqEOT3{AYjs7(*aMs$^-5

y<{@p2NZymq#=scP-(uuwb>T{XX3aVqhQUC- z4^|NP>I$KDwqD9VgLACda17TT;AempdVS|HbO0*96hR$sY^Xko=TM=dSlP;1cS{vyHOIKI~3K z29p2oZTv)%K=wf{!*pa3;ih8$uu`Z92jhGP^ys3ikFin}x2v-Sgw?|U99|PWAfFHJBw}d%RrgSoQeiFiKH=7+@)#R3 zFxkYP6Yd$SK)Q{kC!LKK2XAAgoFya_Zy_80Ey#Ejmr*o`;yuXh`N;frcOJ^AK}d&m ziTC#%t>kfcd=2-xa?M~bO_TIaTc%A5Eief!7hynXnoFCKq#;Q!NbzKH&YWac z&zU)#IVVk^@Bsp%Yz1LZP`Td`5xFS{fBaBHxru`Ksi=se@}UBvB3}M{&-1=(?X~uv zwP*I6nUf~@{j$#Nz1M!9_qN`3Uwd{23#c8AuwrhdU_A^3eXW2N0*!3fvHLbey4*dO zmBWAQ^0$+92eL2IM!~ROe-xz(Ne`-|!I?AtU)dBc$aGr=m(0W#vG zD#v3-POP*XtnYo0Y}npr3rWn_ky9#VH&d``VE`CAXu1}W6{o|sh!++-O)g|dPFE(f z;&dF)3H)l>V&s~`Nskbqip>G~Zp^X#zUY25z3s(f=4m9Ca|u6&--lAh(ljM+I8!R^ zXOQ+loBMTyeb8{8m{Uhbj%>u14^c;*7zGCQQ=)w+voWvh2w68d5KFy5>V53^h-l%# zkuVdof>4SL4@{G*uDP7+j92*^$?7|CdW@_l6pswXz5ov%IbwUq<%+HSn&R{i_FVhpqfy7-@qcxEOV% z1~FcvVgy6wvFw|);jEMC!pG|1PO|!-PK_Yk6MKt~4pCy-wPy99M677%_1sU+yIs1} zj8!%($Or9}DES6XRGw!&JyU-cm*>u64%3cB3+tB@XGkvD!Iv4<`La~g?qwhcVK0iT zb>(E;E@v0Cwb`4=TCEvfCQu!udwVRKEX`Nl2X~UyH|q(jb}4=^Mjd4lfnF9%Se>s- zualJr+@lgaVR&+Wu6nr1HE_yPa0m4&A6Mithz;V&@ADH z6u7=9+PsNWqUFLju6k&R$ERN1QzXpWNVLE2KeU)rZALhcRyN;7ioL$xM_++cD~b1r zzOwG^$6I@3Og&lOejne?_;ep^abERTefvX#ops|r*r~_r+aD3^(079oy)5H892N$A zz0);6Hj8jCn+f2R_NIh?I=NnJs1I6CMYNR~!u?mk845zMv#ID6hI~bt*RU`AoSVCw zoO>|M=GIRIN9hz2&xCplV?{nc`Ybs=Qx&*ZAWLC&pm{{Kj%yAD1_SdV(gpE{$pua_ z4(j@smVh|ZJUox3?wq;qMf4A|h`ZC5fEcth3soA5f%y$xKPGq^V~>)Jp?sJ>mKT5( zOhOi71;JiLS{>ZUhyP%cY9T>ifP~|sDxhRB@+CwyZr;L5fC=RDC)vli@fCr(&$ZXF z8X!~V&snP3{_^Ct0Q#dT|m^=~AW zYti`gful6C-fX^43Yn%%Fc=mP@O@`C@@?PwD#O0Bzmc3n50r=fTKXxit|0}4{)>NC z+ahq5Takl4iHk#ra_RCMtye3WQKOOD~eMZg-z9iMM)Fwl@Uo z^wJtr6X}k1d&7=$zM5l5YclteHT(4)8QWyf^HSf!&y(vKQb0L)GMGSC&vlp+>ji`h z8Eey5%#+A<4^&VkhXl4D#B&~72VJG{fjjBgDVhL}d^X#4*_&u72P37j7AWw={`8e1 z1iM8A3p%O&U)&_${1A5Zn;#prYZ|gbrJg@8--?lg6H>{n9QGOGMId8D93RVznW}+G zIudC$Wp1YSd)4DdPy5m1#_J5<%C^}0ec$JA|aFxH2th#OQ z-n%ODa9FafRs%=GA#r5=jbzo{y*qYR>GgLG~d9tm=S#T?zGZ|KNfUt_GYs7pk(5L zDCDKrl_WmL=5z-K1@Vs~p1ql@-6v0RsElMPZxORN)2vq|bruP4CFk7A3>D1)vQH^h zQgFZ#rhzc&i$%uwRA;e3^e`I9`CAt7n%*a|%*i!dg+k>3iB|UP22r$bdx(~oeX@?t z8aRsrsgpgtg+1PUgx%820J23@Vm3-_Lcr!kE4J6jUrTyj{&uo%n`Xc|cg+Zhk`9mU zeVz6^*OphW$M>`Rg$27LyqC?8TyjwIb0~g6tlM`&Bbv)t zp6BVA#pBpYw1~Ek)HAF6jbznM+{YdOJOsgDY`LEjO#OHj|1G%{?lM_%>(;v}d;n6z z`^gQV8=zkzyoP>~%aHMt8$v(1VF(7M8pkma-8!;}iDm5N@)wSQ@Lo1Ua>@1`cU5-V zm$4%wco`a4Z<}Mj@L7`ffj{Z5gYS7}t9!p_wZIP8Y3UjhO4Yoc&5#@!zbdzgj8^BB z`}8lGG}O9zt2AkBjZbCzMO;OMP%q7$sN5%i9GQ2L%-N{EP-B*(B4wd+pZsxDenqIL z^OvI{wKH0LtjishUlS@?dy|SkXQPiqsA(%wXNzEIz3XUxkTlmqK3_eP^kA)P4GTG? zrgh{#OmZu1C0ve>)~1#F^sgiIF(G6t+;S?D>a%j6{BdOdx2R03S5mnp-c0tMhyfy2 zb`_~qD^jUe?(3}p9sN&|{>Dh1S&n6?_0Sk+<>yHLzObydBB>PgH3F7x)do6R$2m%$ zBc+wD0wk@$9^K~Ho+D!dcPFSg@P)u2?Ibwe-!fHK6Dt?};$fa2~ zK~kiS#-EbLSyFM8)0eG&;Bs1VIYNIS`f`<2Id)j>RPJNysQk6CBXtr<_~jQx5}~$% z*Va=4UnhYxSr763p-gr|#$-1*mcBuXp~-G2NgDM5Rw-%CQn@dz9USR@64IGUgj^Sm z&M;7!Qy6&N`6w#f$;ZxF`Eb8&~ zytrv$+O3Kco>r#U34U%CjworcWGG|cUV*j_qPvs6tJ zU1g!Q%HK%z_hvo>%^`%9uIMz{LsnRK4Pp6nGaiAU8>bhh?0Pw8G&fE!&r*X%Y*#Q& zpAobcK`__Dgb{iLF(XS4CX*W~p!s2v%Gl9Qt`(cH7MRdHfh4^B{BDUp@2f6T)0roe zM%HHKq;WP8bD3=_jk^g$1>bYau!G$sGHr%Qczgg5$0N3|W<=%}FjnWD$mq2^>6+OE zl*bF=50eY_?5^JKj_cj#$k9=X#*Yf|6$$0^>5v5kg2T;A3Lvuz!miFLta|Dq798+w zJTkNtdT78qdYD+yqj>7`OQrTGPfcbPCKuX!c9Ym;wvinuSyudq7O;8H%a2*9k0Jb# zCxg|9{X8l4JO}1S>0`wP_s4ISzzY?Q3x%yB#QNn+Dtm;~9YV^kAjUkiY|x3YwdMD)nyq$A3o$r(3q z+eV@fb;UL?tCSjEYwn}tmvXbB05iZdTt6%I3iAR& z=DfjgGaAZ;YpElc7n7>%~_1Zh!f6$I-%}W(rG<{ga@}|kfsd|-(g<9orV4(8$?OQAI5Yjxzmc^VBxh}&g z*k*BYHEV-nJ^Q0+2db%7jBZ{>zbQ1PKYMR5h*P)g>CLk*O&2n6A;zjy_4Ja0B`h(G z*QiT$tdTl`?;ydmMA0O+x1jRNQ*-MQ;y#}~?V6WxnbIXWt)(?1Miei(Lo3VF``N~1 zc$Ge2QIoDOKiyY7@c|Ef0RIU*3dBdWKm=>N`x+tTUs}!5=oC4$(Rs!$tsIs}Z4w}>km4fn;60q;td_9H6=Nn+7UGZwF&_q3D z$Rmj)=EL;K{(e!=bS%bfIz5?>le)9v66jd-ncuc_#Cin_TZ;MdhBKccq10?oDky>c z4Bf<3yV04z^3jRx8LG&Ht>d&J>UEcKbJzB;7`8cNebH@9EU|cZ7(n}ptGhE|LVa#8XaPJ!D@*LY(n2%@X>&kI7R2B@p z^m5!o^&6y`n+Yy0e{Sqp!#3x8>YEZv>wJ1 z&tY~20ByJ}kOXbG!q!5ZW7!0b#fSE@CLdv)Av1vc!iH#EQQC{2!SNfi zG;9XzO2x8vG$nlCMpJg5u%ju+48Wqfy#jfpqbd;EQC+#Wu{ht}*PbG+v?^3)aekv; zm?Q7l3{^`!Y!MYTll^%t16;jkiT0qH%`8m?t?;6Xt4G~6>tdDr><^4?P$u(eQeWvD zk!mOyE$P*0O}wgdpZsz39!Gj-tJe)jO`M1;Y2Zta+7pGEIvJ@I1>0VEokzI=q8Y9q z5{YjlO*=pYZz9=(x!8!vE&9tG{6%SP7wv^k^mAKqU}I+s&yt;x??yIq7t?jjqs-&v z^r;EuksmhQ9OmELlV$VdoXxD0l(L7M{n^s*bbm`;;z~E$mgaJb#8fGXc-1bg3lI@=Y+y_~*$ulT)4Xg|=;kSjPX5j57h_ zZ$Fit8;mcu= z<@t5j&i6!zZ-fpF6ZqcyPap1saU~JsEfj+Z#Q4DJB!(Yp5;@*ZIha6>Po73{V6D!~ z3F)0nA)lLXo5rL)TVDiw7X@Pi!G7a35{#cFLT!^NGrvMvm_U~Iokp^x-3PJAdnpAI zNb#}LND3FmCTv5!gR?3`p!ZWCCJ^YOr=vhMWq5EBUW@zd1f{Fsy2=;IWL2}JtHX)2P8MTs<@pfpS%&FR!EK*`BC+9xRo z6UgzQ)5t22Bj;bgM@g7KlI7_vr}cwsP?!D>o@dR!=B_OjNaEed2CJ?K$9R1K7Y|UM}uG@fa-SVtjSeRd0pEP~1Yc~G`dZW)k2OcXn=AAH5 z;_|FoNP)EnN^tZ*Kf0W&7BY}!`kwxU1$>d0Cu&(O9pYFA6R2l-W(PbpPAFU&uR-rp zOgl-YnSkl#86Fu6)4ne$Tu+m0Cg6H`<}}8^b=oNro}1*E$tkVrpn4XrXUH`ZaJ@W( z?c>mNrZN`3+vJ-G_+FmD_A&7-Rj;r-PnMa0<>gtcFcy~QC$fIMNVb`P?d6&G9~0Yo z*FH|hnSk--nLZyM1|r+qR`}{akX*1Y9rAM9er8p0*@GOebQ5 z`R9{)CSZPfCSu0Te5P^oLbA^U>@UkiOv*jJu;bc^g{{YBYVIy9vAOHs>zZGFHJiJ8 zrMbJ{#DL0{sk!TbwYf`hGA7JSn{_->MKCg6LSng(Ow zyV=5tf)k5#oPDFH;X=3<~!>j7%W>2{O+F z%r8?9W6aEF+Jiqu_L+eF<>_HK?rRHa)4Z_3{<>wEyI5G9#AeGS_AwGy)+^_2qPdlv&|v~^`<0WUu2Q|F zjIbf!K~F>kIEMl-fdKD0Jp}N*5|Q9sO2Fi_F@fJ1Ap)$Y08AjjyH5)fq%D5o|9tY# z2^LQ$ANl;v5Wyi8>z6LoK(6igt+ zhffQG_)e>q6`dNBV)7UY!vw`DJtIHp;KANq!MWkDa9#$yxFt zcOIitTRLT>iGJ|)+7Eul(nSrlL9<7l>+|)ftdh!YPltDJTt|8EpeHg3|xFi+$s7E#AR|)aOLbH zG4Pv-%LKRs2e0}R@q$M|=?R8W1o>@5W^ytlp7EM~Cvlma6kMiLa@EDB2+U;pfe+U)bJD_?nMCbR6PO8r4=-=gI$Y;2Nsx{Mja<)3hF-)l?hOnxg2$l*3)wIO~Nu+eqjS=`e&jt0qQbWz#W{@ zGu6NbYSHp{2+Rb)PZ%&{5pV9)q%~v7JrX_nU~u4;q07Z&yR}enwi@#?^pIY4&A+|_ z!w;+c4V>odvT_*WNuwbteGEn1r$Z6LN6?hB_*A=p9Qmc_<{2D5Vgh*wh>S3~Ul`G@fG{#iMwoz+g_Erj9aj)OrpX7B`-2Z1XAnM`7NU>ij$;TT&n6>Gz{p8=RX467oIIDDFaakgPIjRQ#yNzU=aU&GVCMKqXC@tU5nf(M zUYOi3CbGj3!pTpN6DHu~qo@eonEY}Tbyb1 zex9c%ch@}U`EZz(*cP3fc@qbUA^Cx2U`c^cZa<;r_QlJ9F`)E_c2omWYIIy&f@xl1aUEG?0v2C>s<7zS!wZia$RiW*`17X-kB8^m^{L5vXJJCd7E#iL z)eFcf6R`TyQ-oEWG7$}P89}q5=QvDg8VT7f3G-2 z_-nQ>nyPMSz3@tM$>bFBLY;09C0f>?xwm`TCI~Xw%Qu=d3ELWReM(JXIpNV{&n3p&79HNV3WVtPVUZD)gGNji~

>)}bDmXvA8%rMu_cFPTMa*oY%>AduQ^rRpfNX7pKMG(V(nbGTJo`EmI;_WRieC| zB9t=qc=E>t{GBS*7pD`BYeRH~vw(8^5@GPy>1$A!BM`>3jsY zt%`2qkQx(c=B=kNyPL7F*?mA$Y`cSuGXdjoJCzylEYugUSOzN`t;%m9=S;wPeL#1A zh|(F@wif*ER}>x{(OXab!$CLp5vum9zFqUa_jAxKb1zx59a$l@R1Q^V4GKM~J2SzE*QjEf?ktyqbgG6O(8Q29BG@;AZVsCnjO=c=M6Q%%X_Q zA6@fv?}oHz%5VDzGTLPujvbY8DIiK8N?5B(c_RuCQP44{6V zP)q>z^sz#v^Ae$Czd$%9v`fT?hBZqq5M>ShON~Dcy&bL3Pjygd9~J*fuW$g;t5~G` zjqo>sNA~HIvR1-`gU?;2J~y(BGSsEsP4B2^=J6cBWddR9qq;;&T(n3(R~Jn0ThJ#G zlnFo^;|KN5m}jJ)In$`$b7ErNML@Z%^0I6G z`Q>oY)xjNmA-UOXv{P40kBM1uMTD0=T)oupeH#~faZ`_|Xy*Iu7chZ5c1h(}0o74^ zVE>!2OaOai%r<2C@UGee{R2WX0rc%7`l=^hlb?61Z;0!dhtXZte^QqjIr7Z3k4$vh z(+jip;}Q&TUA5O;^TD5l$DR}3k}LNDefGAIm7QfkLE*GDby~ZBas(gB(pRtb_Y}{( zghpfnkw%Vmd7b(I8$7YVFC{P&0Nb5N#5fu=H022h!>g1 z(|PGi>3v|1Tr1DImH>ZrP3?VbY07W=2OuN2G#!Z2himRq*BrT}=?IHYdI`+`WqXVX z%`$5F%7AF}450prP)q{@9Ru9f#Q ze~PXpzwIB2FsgAJNY{`)T-bE>RbD}Yrc%p#AJoL^uGZ3 zlu_L*08}7&+7b1%k)0r*Ezag75P{5Y7I-EQW90T{9!gy<3wRp=nE-I)eo`LLJ6;xa zKS7xQbnl41XDQdR2-Eby)H?t(x)TPCzO=#j++PzX)JI(a+Ft-1-3dKl*ANI!cx+rw z=xM7HTD}Fxe3j;50x?E+!W@)!!VKWw5ReG~M|Z*;VBmxq(7z)n6M&BFgi5*Q?5}!U zR425kfVq9-zyw-zGm9M!h4!Lr-v0`?;Yxz@VK?{*(B0z%RV;Yoi_{ZG?*BWc(~%W- zLy^ozj%+Z2BqR529PJd$JEJI06lpFbBojc6+$HaU%(`O$dkJBg0CwM~LD9N`IAnnF zLVBck6d;YoB@ugDsY~*rYyQ6LTvDzTRDJ?ue9ivM+;%Rgg)mPu* z&bC+b135TeaWEP^@+4z39Qix}tm46BuUC`B3wEBskRW0@6;<)fs(mmV6UY_qzK?)d z1Jd2pnW)mdj`pKIts3LC+6Z{9_JWi+H5snDW*5GhgYCFtQQnZ>z~^sDJZ?)`78Dr9 ze3u$CJ{&X#QDt0FG@6QQp2o7s1Oh%I7Bol0byoF&@1$X=WUtsUdhaw&B$;Wq=ft$Q zsPdv~KK4Qe)AU+?NT+xJ&+$OtfaaJ{}cX zAz{qlQe%!W9AyN=$iI_Cgf!b}N+uBPX=5{`#i%u>?^eYr*vDzeP?=-&*@gKN6OH4O zjX4dwxUA}B*SvzqAgm7V$c4>Ko7$agxdD(R*)+?BV#BPTQM1Npa>f88rPO09uDOFf zC?=3`Vr<6sF!+4l2^d(kZXrKS6I0jjHlW97<$I4dv4K2|z;bD0@R6URm4iF>A`Kd2 zv~re>t|2z8{N=G*ISV9K_O}$*Y-1J6WUN;9Fg5wIyI&IJ`W}0OBL!r4abNiD3UXFWv6%_A6OU z26yyAbF-Ys=Kz-g+cm_3zn%S=QC%S?k90Is5f#T=PTMen3X*js+=4C`mS0`- zBQIwCq8IKjq#2=pNgc({z`EJbE)x?lz4ZD;DAq!{=Tq-iFCaZa z@fWHSGtGOnO(mCAUUtp%*|S|8+_4vud&J_Og;gxrqB3&v&l2_qQKm&Ea|^A)1gaaM z_(!0$`1=Pcn0X2TnE-Hv;_vCElODeK`-c{EFF~0Abm_(4lT`;q+dg#;^I$3dJ`0^< zga%0CgmuCb@V;GK)O-eRbu|U)txIp)Skg)sjd77K4WzhtP7K|yCsXgTAj;WbB99gVmlJo7^s$O@^e{s{vIn3g2>D7eI0O%2v zm4j9|n4zX-h|fHhYDeTKOMwsWDU$gC+xbi&M!^v8QZ$%$CpPy&{tzc9m;kb1RAZ@- zzR>r=o<&$DfPLzc9WbC<XajNN3w)dpHvYQ$K1j2%mgxwP$xv7vhI-qeHuZT{6u&0 z+W1O|(xpxbi+f}+ZlQC87K4B{FFkTkFV4(pxWbRFxf$P=P0r-auKfe@H;qnSDZ~1A zsP#t}qDnbtco0s7Yx6(`AtvN_=|vNwV<(%_g}I&TR)v7>2px6O^bJ8?*>+&{rBFF` z?718IJ8cDyXxkLBYX}4j)YSr`)N~n9oEdD(g(&8iSP+;%XCn*-WOWu)2aW+1%DkR% zOaM1Z{o}|++J7l47V=GmWCF-NBYB(XO85sVj^yHagR6b zns3neR;Jg%Pl#pD?#s``l&Mx7MGgE!f#c1o}g=8h{yBjKrc^i$w1l*6%=y6n2 zH_(2EyKTYVNiZe=8=;%ysHR}PesPa1;JXRP1c0|L+2tJ3n)_j?x9M-*6@W2{yS0x5 z?q)B#<`W#xUWuI=@(_#f(w~4E#oYopMS;8huhHEtAgk`?I2TFGms#U50r#W0TOP)` zTNdn33C09qqqtihEO56h;8zI91b`#Bnx&e0?IE`XFF zchNP!&w0p|>2>fEa3i>zqo~o1C~&u*8QI-Jvf^&;hDu^?X6Kg)xF5mY9Mv@7sJpq_ z7VK7nF#*^J?&hebVBX!_BMZ2PfJ^|mba!(^Ywm}o{?p=a=}lma(En&*9`#rw7}eJs zZe0K2T+g{CbI)D+vHe?@-lopOcMTEYg0EE<9HGILCoOIm-c&5}P#TK~6gfigDx{ox zh`M9=$bvqMpiBVT7@zt?M(>sp;3|Qc09X$sT1uNJBwW*rbhMuaG`~b2wSMCrWrTtA zHcqrZY8OA^cNM?8=HI!IafQ2-U(7V(*kS;s5OBwLt2>U+X9}o_mF%@5n15vj#bmV7 zoCi_=%R+sRP)q8B2L_a;m72xz0A*2drc{- z`Yu%XNmZd;yyF0hcwwL0<*_Utt}jd;CAT-=NGM_GX&e+~0&Z-$a_=mSZg7sT0NhOg zCNxedamBoj3Cs9Q{X}D)j9a!RNR*L%k;Ej~m!d z48-4V&n+}(@maU|V&Cyuy5T0I4A@{$T%>5tWwZ2Tz2 zU&fyTvh}Gt%p%^?lf>-GRw9VNfE}kFS&Dlt?bnbtlQC-O-nG7c}Asm~s^ z{J);0nSk^-yojXp?7xW^Ova=m!N_~jTM5DhAmi{N1qs~r9Ry%9HY3cV`jcYz%OuTY zY(_ws^WSX{jQ0?O$=HkljJy$kjUY_MW(0x+M)&{$m;k_T`5UPyry<2!;@3%^3FzCA z|MAezo8uz{Vgew$-DXTcd7FHUNKAk8kKV17QagfCV&`63Mq>?fpQUT=`5+oq8_?2ARv$>;9N4Jx6tq!ADri)# z`mD&>H`Hfe%{CZ6a4g1S+sEpk(dlHo2O9o zKl^C(Mr{x-E;MI!1F!trT<>%m^KyWw@EaH`{~RkuzXEG*hesu=x2CVrT345$t?$E5 z7pR@=TFC(nu}PQbWb@?F#^gN{bxt)4PdC%mnSd8-{*lN|V4GgObz))~d&~vkRst{q z!03FpPFS*gNR|o6TCZ9<-}o5$#AJJZzA?ElfqjOv^@W9I3!lpt0rnAz36Sgn>Ig_p z9Maw4p|h6y0a9lI>Nb=uojT7j=1KN5O)h;A?(ZOdCZNBgjIT+-78XJWSGPeSHY23FwaOM;IQQxVL^{BK^ox{qT&_)4c>@G7c+r>a&fBDgC~W zsOMRv&IHs)4nX#k5<>VnB+LYa?I{>b*SmglDyp965r+wIMz$}%6KdV_$4Qq7=-SE7 zrSreo>a^$i)yGcb2tNa%#SHE`U&ny0mWLM;kO=@ECav0HJZw&KjT`%RtnqSPJcu5~ zYUD;sC&umXuDJv)&18kUOjg{anb-!pav&Lf9SxvcwE=W>lzmGa-`fy;eaY;?D;c<{ zzHl-MD~iEa`cw{nlk8|?W-c<`S(veFKKTVS`5pvyC+BSKEL1E3%4>(@^V+v?gBeiT z(8hk%Mtf9&d`mGVa&vYLzO{h;ryVwqSV@R%SJ0oBKqUKh&n1f#v^q+$5cE2Qmn+E& z6Y%naldO)-P!L?Bjp#T~hY9$3-u=lBS2$Z8 zJ&Zgt0Z&JknWtkXX7G){)PbvnW&-HBlLVc2+((iJCg7oSvUq45Z%j^Tf7M#yQDlP& z*tloe*_cDydAiy1mUt}TnE-zAB*Jed7ZaVi#-!E5EEDi~*5k#Vz_GtDh%~0ID=m^|Z9=8M-bF1?a7I z+*7VmXdGXdt+(n&SX@Prt2n&F1TxHyAVZ|CiQ@)kRT#L23@`x$Ll+VU;U?R%EeH2> z@@Tu=X-uH5oodfcSc6*muO&Paz&Dmj{zVLep!JvqemH@d0C?!OhLfzn+*2o7^;vxK z$pT|ErgaR1YpLxwlLaPVVP<(`pPO$SqwMv`Np!++Y|JD^$uQg`roW!}On^VVeE7}w zV#n#gB0rkQOn_`xy_FA1<&@7!j;zIhn4nAmI&?f98gyczEit$`4G)0XIX-5kuaOZZ zU}Twmp3~ z2n%mv6D#sU*ZlZr(A@ebNS16ouz0v)-K*l5g}epBv^Hl%;0TUR+z|`Suvcp{Z0OEh z0o_Q`D3)^)AM?TYvAxnT#3aIho3>>FS$}d|M(AxO2FR(oq$OWJR&UO5Xfwv#cgY+R zF!#!n%v@^%?VH8~`@OD)^HtuoKD9dhce2R@Y`*>!WHVH)W%>JLnF&~a&dFt&Q7v!> z%g}$5AtqqxXYW^r;%yr#EI%NVOu*#-I=M`0ZP2T?A7b~H30S&g$k-fEbA_^odp%*W zM3{VHfi{}0`h3$a{_YLU_9-UvKaM#35-2uVd6T;dfvy@%Ro_KieUHXfyTGxhG7cFD z!jrqLv!y(-7GIbamMv2+rOBCq9lJPYXxfOqt;IP^vQJG+H?S%?kMT3aU;+$X0$c=9 z%W>DMvI6;CZ%qd~ZgNX=e4k@`zpFmK+#MCRfwCvPwZ z6W4AgOV=!X3_6{rPS@^`mn-@*hkG6x*Gz_jYLrx<(ce*x+TDJ6=jnMbP-ym;{Y1%tEMW9YAm$0dWE|Q$(r8UAwiY{_Fg!7PxIN>v zwMY~uKq;7!FE7Xu*3ClR%5a?2nSi?8(X@119Ie~M1QV8{NqqUVGtq8w&_-1DY{D@C zT)_-+d10CnG>h|G;xHKp&P?M77L#BM(6ZJzKIdHE`NUxYoRLfCT)We09-cYjhT7Or zks$#q)C&p51Yo)bvahLX%C3t$eIwGK!j3Lu-|5!WXg*`teCBTv0>6N!OR{l?3xNwq z!)e#*fI#S}X*eWBgu}0DI4oEO6X8W7wr>^0a!l4+IFK7_w1n#~vem@|sy;Lnld;$v zh%wooMWjM!2rF+U4xgBqYEC-LFB6jqFbifOVvHBWtpHP^7sv1C`3ZFn z10}18>s)S>VttKROn~)c<8%^fDY$53>t~Vf>qKM%#DX#JrI}0-Z2)R80Og$JABfBZ z$YU)Ki*r+)q;Jd8z4=CGafa;#k@lO!WCF}5Mq7FjVSUsKLXFbv8;Wi$FrXZz&()y? zt-kbm*Ze0tIj=x`PFC;mx550?WoYaBh;IM+S&_J)Gookvrwj!_Err}{m-ne^(-$m* zuVO921dJ6`S)Np`4EhIgj9`9FwDD?!F#(v}TiH__JtG4cYvi(pIuR?s<4wXKCXUS^J+z?$>s zWX8XKg|wM~c2Q5IoLK_ec>&%_5GEsAL>76@VL-FZYCg2c`-#D1WQ#;F@&bK`U`zmJ zw`ni2(1#*?m{gg7>S&=vsOFjeD9JMc`JzF9a;8qb%?7EDlQI)fF6xO6NjcB_CkVj= z5Csz&DOdf=0G9wA57qujl4b(Zqs0qPI?w*^5rYXZMhoN3maO~F2SICz&k%n2an~0Zv}9FArO+c(V9+H?@C|eXk7zd~ppk6>1rIQBCkOY~6@)^14M{U8G>0cp z^FRBjtQMCZXWJdYR+P9c?8B~k)!)Go-vT?yirxAGtx&MyJ|L-Y!UQ*}3APVr!nbrB z9Zt^K-yBxQ&Ie)VU#KD`;H04Ta}=_wcXxIADnj|+NSO&J$M*=>mv}NDwO6E|f*B|@ zcc$?LvVuW*_q1!?_$_Gt0sEo#mHX@~RC~b;lzUHIpYKBNyH)Q`it9amC2;)ow)?rUeGVGPc8QEWp=KpTPMSXBt(n*7R}L zR6Y-1Sr4C0R^8!VqO)v@TRweLy@hYXTkh`bEtz)$ck%Zp=jLHm%gp&KMNGiOwb7xF z^u=2Gt5}frTcj~2j>Qe#_yW3l-#4)v=xlqHoP9uV18=p@thpfE5f$zN|7g=<3yTFC zQ`LIY(pnwdNmk#kk1JbuQInSjFJexDdwZ*Z=6)&r_PYG-WZli0vEnj<&LsgIMD7Kw z4<#vB)si_kcQ-kASDLNDY#{RBIFUu{UOZBrYvK$D(are*DgP`vKOiW#D|`iH&kx9I ze$Un_e@l$nczw_xZ+Hu&UweU^*0*_+AQ?U_u#-55}49Ivz0=*+t^y-rr{ zaF6gx2DEvMa!)lH*g}(nW^Mvht}8YZC_FL%z4vINRqY&YFV0L=n^jC{(H_-$r&_Pd zmZdqyYfJf>a+#Bd+zFx;C0f~40Z}TfQtwpi6;JfZ)cZvND>9JDVIzoS5!YnyC2O{E ztkY$|>!H~&T0aXfUU1&D%HK#H^Jc%S~EJ#CgpeUx<|;cs05cZ1&i~Bc(!LTHs6P2L4S4 z2IrUdyyG2T-#pGY3rog2eP3T9O?~M;zLYHu8#QOv=Qa29n7h~eQQ#?0>gbyJh0L6B zc}F?p$eQ^jN;&fcQa?f|(_x(>HpLMkL9Zh!sf474@ZAlHk#SL_^m0<_aaOBI@0Oam z%gk8^wR%Z?Q8T`p88cq_&@F9LAjg`Gd$)vKNL3Nu=$gm=Gb)ThrRmaQa!LV}$?t#( z==Z89Fg}MClurRQza7=Zlj2ZY4lg!mWQRDW804F~B8$6Q#oa3W3nB6asJN5$y$_Q0 zH(3%DWUe6K%7KfI7zR(NL)g!$uumE0{ZH6-<-)+%9zW9MMEH0X}7G7Dz|_fSiE^C7BhxX2GhMP!rG;M zawL~#%%%*v*TKr3rL#h}uW~&&*3VddSzT2!48`&#l?+>Op-#n;3jFEu(K6jzBx?>& zN*M8!5%XCV^?3Q)xn$bb?E#aP9`i>8Dp5jiEQ>1MR*87Hc%%6;@%k2nTZcpHby=0K zl9mATXT&V&;Ww2<&sZ+&ohs>H5_NzR-?Ah$`bp|^8Ebxxn58`QaRtRk#=v#eEW(OZ z8FH&CgMPTxHUEa?j>);XyUDpbI6+yth5I3x4Mp_2(iln<)x`H90N#95TrXMXYI3QY z8dAp0e^3PxW{RpwuJ6HV#1oizpRLWYZw>C{TkHfsxX>6$A--U)8&?G#aAAOdbzf)eR z?9^8(2jvy;`NQQ9kGAivF0`v@6AZ(J0=K^R0hHXnx3bW#Y;*0k1{LzCazNOHfq9J< zMi1ti2>k-GHhVK!yVGW>Y~8m@w0%oC;%KqYHz!rNlpF*viYqzqa_?4Ufx4a&Cem++JV`d}bSm)Kf%W)udT{Jj!voa>Y-8+E zvT^5POC}d8JN*f4fGg{+=}SGro$omap21zyS1K6+OCq8pR>k7X#ypR7LwAZUiwrsTA7Q7ZMOyEK=_*N z4Ay;FPH$Mko5>B^lg=z zBBTcq->haOl8f|@8AwJ$a>a)0N)WEic_dgEoNpLN8sV1#C?A*2`C8k>0`ca7L|wqC z_!w+1Cc)moyKNvbalQUQQlh-Mj0h!TYC&r#FkLEx4<8CsAxuH|eDpwRT*0dNxTT(J zt|r~0Kv}{^VgXM%zLt~=BjRAvD0h`G7}Bhk=|>1@2A){xd+b1Uq=8KW7=b+PN0N4N zh%4w;1Sah9oSuNB`gt^g%7w2310{0thoM9w7efgILnzV6m4=dR5bq9!P2X*rlNu{bAdB&7I(e6&!;l1XsArWW~M{+vEXAZ7)aaSaW^> zC$m-?E&OV?*dFOrTkUj|MG&qSkSnR&p=2r{nM$>?w;hbJJf<8+I{G!+Y&B7BOx3NB z>+-jgbvgp(GnTiB(!yZiF=vzD4yG$)%ugPJX3zq^3;$dvHShVb%ZLgBEZ`a$Pv#lI6mMp@I^etJoo2{IpFYliz zx%@yHjHI{8lHP2EO5R(Jnb|f<@Kj>~Jy%RBA3ZV09Ri(Zr;24FonF4KEuBBPb`MBb zwp-GbTT;@M-5{Ogwy0~BGeMvgggxS-9lES?m96T*Dp245V8FwDoO&N;D7IHG!9>F9QA;||p zT`^eS`yg3w+wnJfsj%QReX)6@*g8YthO7hOC{(lI`b^iWwwGVm?;RXuL2|D z=1BdyF&SpZQe#Q@fckl$PGeqB^#d2yGXAmC>M1M zKmaF2b()hpUN50tF1zOHzh`GDxRb0t$WX73QH2zBma;UJ5IRd=17m$Ep6pwj+zK|% zO;}#mWbP$v+>*9im<5y{TTrFtC@-|9+Eoq~>o6OtPLcGyp8Lsp2ix1*mEFjyLu4{; zUNknHLy@yS*$O;?2_X&|-(zt$M4luY_V8#>mdd9gJBN(#p+qIEcJI+PN9Zw+Vlh?+ zcaqh29&J|+wkuol7&MDo7&-nq9W8xC_Es@vf+m@$X?^d5WW$}vjJb}T$&sF0oSDJw8@{z8vppif+U(6_?LK6} zteedQzKfczIpUpJESR+2=uWjgjlpco{>IoN#2mgLYHBWYD!0iCfZJKlZKa~)9`s{6 zR&G0O9LB6e<4$#2A@<9cXg5x?$U;EdyW`}Ok^)ynWB55G%rCZd9D^E0_re}BDw@6^ z{xG>}XF{ zn_THHFc0dNC3%nwNFY!lfeHvz+S8R?+jk6G9?}|8aJ4+Rdx>0z-NJ%Km$y}oENPrq zQOsYnn#cw8g8C*PW964)C@i7Bm-@zu?qc!v@v18z#c*3;7}haE8-~p{NiG_A3kI+Q zk}k4V7<1V*wDHhEmdO-ohtG44|1NcHk-zvZ_+FR4ovhnBKVO$=X|3QG`h$hReL=d0 zL?P2{DpSxD>HFTMw5mnjWhYC8z4g5hlJ&0srJJOyT7uSde<%#~sz@2-Vb8}$B37Nf_tfh4-2V5qQ_x;R58EfK^ zoKGYY2?2c*A?Vq_hsOnzF;P5xCWu`U0kWuTGWU`-dnHRn zSYR}~wm%2l(U+mO%HK#+-jgbvNmk*eVC~ z<-!(11Vo9Vc)kH5z#*O-D@&30HrbP0t9fpe$%~2}Cl_tEr`krC-dz^lfpRd(EiSy__X&HtT z73JjDwVWInp2Q|usEr0En5~NVSU-VD^ustg??@F*A}d*CV7{ax>$}k`2}ohwqavg# zBn2sVErCTC14EF#d&orP7ZyBCE<6ZUg4crmW5H_S(zfUEj&gvDpssM2$%@_cJPi6(nvtiI3dxsL%O2n4r5R^4?*eFj_MN<-3=s3x%J7Qk34(ZSC8`Nhcv zwE3{PUgW#1Z=U2bni{n=R=<%1tsIa5TTfhqnPq2d6~{tY9#;7qiT-9Gq|niZ%Yd?r z11uMsSZ@W7n8uP7i?J?$J8^e-#O3s6WCUKYBc`;HF`F(NVV}FjIw!o9q*t4f0T{uu zvC-{}^ zy6K>ft9VnR0DD6Ou0yte2YyAXnWqO_P=Y%{0X}|fd z4CUUfnmq6#s3y&aSW{;={2{JotHZsq#zA3iSVO#WJ40PHmaTh4Li14~m#V0?4~LI% z9jj~<^|y%Hr#|v)wM*&O)jdl5cSt;}h5SN^Qq;&fg1E0$lrxLJ~@(0w>cg$W2UcH z_So0Kb94+OrDsPTF*Q;EeLkm6dY&ccWA9!RE;<sJ2kYY5j z48$5SqZ;#2(i~vx*oaAh!HIJKONLZilJ1afq((JEP{w~%a+`C`NC0aa(8bW5hw z?xRSwz*5nsKZ!P5i~OW*I?!m(4)u@V5bxVRZY;q_?G*Rv7fpPPNEbBmp$)wy{bG}b(V?^I*!0OuuSdP*d*bNPMp zC0FUbp~|)UKx@ms{nu3vI$|K3;%xMxSWQCD3 zuDMO=!NB&MI3a&-?k>*p;z@A+I5~(A?fCW)0sD5_nDK7k+p6+_DC->S^0zTXhsAnx z)$PcL72L=Otfvm=4x2C^f%6Y_rx~{W;3IQ#EFH&9X6tssQ3SoJM9$>u14^!PEk_zX zz3Ze`vBwewn+Jzv(`|y|s4#txEMpxb+2n>c95>l!2UujU@uKMAI!J_Djl3{w{W6*WFCL;6+g@8gR`#Fn=N^8)|cutmAxcXx!Dl{ zZ_$DEKF&om^5`bn3{vHZcPHx2oUJeKpDB4T&CCOv4$Rdj8L|O^CjGKq*-*%UD~bW_D)9%>_sO-`lxLdA53YY zU~@1RD*~Ji&+ECLoVUkjt?aj10XJ-{!6$@dw05eg$B%2Q$=yxP-B0yz!#+dJ2B4v1 z4OgIqOH~AEoz8o*ab!bhY&pQNI^>BFZG4F-S67_Zb3Zw6pUoQ91jBkd*7#v-=nTeY zns9b}FA}ws^CoA%%ll_aF2_nhA%ZnVj!5c9Qj0`K!TUJUWYbS(XuLWnyp?R&wyWYM zG%8QUmzk) zwonm#F)DYSGtjM z+YmkwG$rT1 zR{PgkH##cFB^nR0!O;Tir|kh-R(6&L9(^bDa(wG3hdLj~Bb^5?XyZxon0Vnv$) zLzF|-^&ATiTL5N(lq0qNFy&B|oU&)GHM@qU<0Krb0OtHy<}k9zlsHewZeY~@0c zrd>7c>+;mXwk|i%BhcUq+pmotSe_=E>70wJid9`NBve67?U&9Eq%Re-QhW(1rd70G zWnO}YUx#mfJt3{0I(dj1#n-;d+{;NYTMtKvIyuudv2bF}9%{(Ts$6!>pZpPrI)gjO z>g{-3Imp~>GDL?uvjmk2#x6b&e(*}PO_Y6QQ;JyCFA-Qy&g;3KoVVTaQ`sXQEg)CX z(Zxatd@@1531(3?dKCXC+311xr7r+$ORP_v!@`utBtDT#VX)j;l)5H!4|dlq6haoo zM;oXGWK%BP1hF7or?<3oyR!O7f9*0=%xZOj4(j_#<)S zuy!8l7i3B~xwKD?6 zUnHey^p8zLMCql0(USZVk}Qhz4~ujw0;)D1l1InkpOaiqV2`bLh|o!S!&!^6=!d2< ze?^l0!gs7m8Bh>m zjVXzgLGZ1RnT+3klX#^=>z@9$E`wXiM^*DJvapmuIl%MWl$wu`=DURIiHxy*K!MfV zYU5OQIOg63Me{vU>=OV7c(tc#W1o~0=M4Wv;{C#0tOFKs?&6m>yI&nG#pVYD7!b*# zJNWd&v^x83e|ODG_-T(7?lM`iUA~Mf@%X{fI$59Vv_D@)TlnFBC~e_*d)(*Wq$p`C zSfJNtZ{jmA@o5|mL}Px0!#S2TZOyuhxr!lk#9bymFe z4(eO~HIyJQC~a&B<%f#lTcl?m21RE~6s@r`ucq~k5O^dB^s4xWVZ3_@ zVEl`g{4B4jR#e=_k#0<5@s9%9%NXKA`G0?|n~aRHj##(B~13t4A!iT{SklVrno zmmTYCZFZRGVbP-CvSt9ghSX6ic7c1m8r=<$LT6r;tz=jWqa>0QGLMW)`L&r3Kri0o zjItv1=G!ya_9_y~s!+L>HA9=_=Mq@NXFWp}d8sV&7wAPJTn~q}R0&wd7Fx#KLc14O z!teGD3QI3-s7@3nf}6c0NOd|TMq6odDqeqPKgm#uspf{@CRLibBjv{GD;_uSrHM(HEnIjQ85 zjVz-1N6E%rm=4*Ia=eW@BUvt@vxn*18FsloZn}A7abDJOu^rA+nfT$v$$R)|y-Bpo zMO{}8&X`=eEg&ZSEjfwu0EuD63yFcd=$@AX?kF}}!PR@`v7iDwUgj|TEaR=h)WwC* zlZ&YvzB*xFt?aX}f`#C4Az!)+SdhA+;gyd)FpWtp3BXK@Rn3F?Wl1i(Q6C52bjH}c zqX1@ZjK%x{W?%#ySc|4mkWQse&1<2fVi~TSd zgL1tR3%eomB-yalWlu+kiUM{op8tMzu=|xFnl^($K^cv8;v%%+F{lRYx6XAlu?k`q zNxY~?#m4VbGHHq8JZxH;q_r*uKuQz8Dd|d+IYF#)#l?SP+T8nr{A*B?TU zH7GIWIRx%oHe&Np5lJmpuX7*5vK8mu;+W?7#2i=*VoUWSxPgZ-2 z$LV^fh@y23X`?!NGnhxPiLO?NzPSm5Gd%OCIWH^xlu&YR?ryRUL()MuVeiqgh!zL2 zdyC~9deK6^bLgW3hH<*sL&8OK@O`&JQmCKTb3ZwcyGXDU4q5FqA=DII*d0gWk_bda z=ZFHcHhVK!%k`f){@;h*=xBW$ApPVDj@pvSSr2~{pbO#;lMC*2UlhVi5`)|kWU($- z4{i;2vR@g&8CnE1Z;~>wGwPMGp^{$GSqE}--$A-DUn=EFnX{9H&v%nv?(F2)a7!E9uVq%dUC)zpx(=+(}mNOmnkdkM;w6e(eX43Ifp|fH%AnUCW()WfS&DF6hUc z(8dua&IxZN=j=v?%C@78N&Qq>JP4x{`O_H%;NrsP$;AiwYVhHz@QlVX zDuw4`t*3rpLRA{v(eF#x$Iwr-%i-A;S&nr;k0a+oZH2o`R@`v_Db90kZa+3VE3?@1H5Te4BG|^l#|)xMy^PCdat=x4&oUt;^p|)`{!yOc`J)jCHL&sha<( zRL$oZC2}SCy2uEff3ZeB^gC*{M4E4tNWLJ()^r3^q>QmvvH{1R97y|^|3i{}OWOcR zgJLB`!+b>~r5pJIc1?dtk9Dvj$(1ehRT2n`)quBM5mNZSmA8Yhg2dXoULCT^k{=7= z2gqy@=n?53NON#uiPp)f;@Mw8#OLlEG^T?sI%0=^Bt)Neqp?A$Knn2{e{G%aUr99P zz0pA(*Vmj#M~Ag?vR@Izd02KqL)SF^F9&tp3&9gKqTNRax2D+(BdpDu1yt&&yw3k4 zsl1|NqYgUz>Lx$tC>*X#ud^SI55C?VH0h(Q?@fLKhCN~g-G z49u5Q_HjRnkdo=Zrzj~LCFb-BMa3J#an_oxIUElxOX?9JMB+7>d&!zz%%X>t$tc7y zJ?R$wi0T(c2{ zy(oCZ2KF5x9{@0tLtN#P@J~Iq8=w)6q^#Pocos zaV)E0aW+>Hqo)v;q{qVP3Wb(mbB)l;m)h9ghlpOJIL1qy+VDD3A5bu3oBbnLwz#o4 z;oE{zCesljTN+H2aDxk8v=biFz80fgnKRcDC0@u%`n)SeJpw$2qzm@{Mz@5gijoCO z+1lBzVQT*YYUXoYM!UQ(Id`WO*sqI?H?o~xQh=@@MbyT(gIScJ_?TADYZ%bNd0F#1 zpsfq9Aq4b6w%nq`W!u5n!?aR7c@UAQ7c-mVske+s+ls=L;J@_yI<*v zEpN;rh%@(4K1|B7vQmO)TMqDr( zNttEod62AkAeB2g&CJZGR^pQ^PDdeF*N`+Sq?dtxyxBjlgl}T0nw=}Fq6f#%)d-X8 z^0&D<$!4r*M!@uMP-kF7=X$QJ+?QS50<|&rDA_0`kQY=Zd;yUCgIET#*_y`05TjTQ zaYN)uvSF9Yp26#1A!YEwZlGVQEi#@TeU_YmThLVu*JsD)nPQgT&XAFW@fqorhR_GYq{2ZLnR?F`|r=|pfIWteqB@j>#aSlq!2;53d=e9xF3HAXSKoe0O4NH+ zMee0x%e0shM_#|Un1>-fYi6vPf4>k>${?TMxN*tW!`^k zF1X}KzlEfuVWw{nH|5&Kj$Csk2l5Vrl!zkbB#}VDt-mfRsN1|-B#DKLzT*t3Bn%9} z+96T=dr7l5M3nQDG&v0 zUGwRGMFVJ+zmcrE*=1!oj(wGAOPZTqdnJK}&R>Eryb+yT%)GJ5&9YeZmFab|@-`Tq zmLhg^QDBym9ZRb&c6e3}zCgzlkz5uY>tZ3U9Go$^(vHDZZYME*jgBWF-E6f{!I^ku z>OgGh*dgk2S@OU|h>hco$;Abf?a!E+ETB0IEb-luo!hLV9`-Ys2Aw<2CU;$c;%2VHaT{Bx<34V9DLz78lq0!x zyF4s%yl4j^i_h<;&b4QnSO|*MN9i*w`b9;LlZ$S{M*#K33g#I7i_m$rLy_hXox3ZR zH-6p|->s<6Hh2Jq)B1z@Wx+?*oWfDY`1w10qah^#7VaGEtNNL$8Gi&l*>KxWWnb4c z&Rxo$58{}6%+g*?9&@vN8*8R=z@2+f*6r3-Jya8*IAlLO4^LdFL|{ubkP>2(x`VUJ z`6(Uwgn;<-m4h=TSMGG`Oo_449TJ0tBTn4cluhoe#yT7 zH+(-6?PEvx`qzD+2x7B)%rAIZx_?i)AGP2a@yss~7^?ckM%%|1Px5(7+aW~eD@S4(ynnsOOCANH-?-I0sY>hRzJb(sG z7Z=_A!06v2!hrA@>#;aeof^M_8Vi7G%l{(%enB$UbMeI8FLIm@Zwl}O0t^a+`};bD z4PyQa8q`-l0`>$Wg+JqqfM0qz>tAwv0~Fi#VenBVR*;Eup(;8?fN9AYET*4WoWq7z zdjgBShn2)~uWMfLIka}ykJcInHN+iga~!{|2F2#69z`?m@K@LqJGbL72E;Q*B7 zj0+X~S_WOW;QEYg07YlpVzejQbNn!zt~9X3*Jf`fa-DWbNj|z@F-D#(bQEvV=2?1? zoOOrX1esWWEJuZt$h1}^V;S=Z`asMWu@*p{WZ1!0-pmc8C#yeFU4XyX{70S`b>(#< zlA6boTCdh(3(xZ80)?3x$#`u=*A1b{nQ$Mf(zYe;q~8OB>c7Hmcx$saleN3B;lq95 zOIjM&L=~4OuH@jtPXTK*V5ztGxxRTEB!LgD^8{z%2x; zG~+tWNhk8g*rQ}4dqGZcG{NKrz(vR2dg1QHd9v)_q>#ZBgot%%pB%}hck1h&flR+4 z`T?0<9y&*H0E6cs-)dC#UNIn7a>W6X@to}HZG1-OjC=W6Y%O+p7*D!dNjW&L=YDeD z?UFTJU?q+h-A&hvk{$rz&s6CIYptBs-FQ>xG@wkr#En)rru_LT9a#mUyWWMXo60%1 z`#vQX(z)~7{lWR-5tsGNlUyeIF0oJ(B%;UmM+fo%581*-mKiR& z5`L~Kku$j}Eh5`_tj9qtY{NQgOAg2Nk{n7+Nsq5rvK_;7){MVQY;Fd zv7yQ=VH*`a@m$p_!#^6Ocq9ho(GABMsqizN`$}Iq<M-# zB3UGUU%b3uKcr;t%;^oVrOp z8)VFzNxDxAjtE%_n0=V8&zzy zwR4%g+o^=n*8D0#N=DPzkb4YVB4!XDRh;(|DHc0-M8=R~WK)B>uxXo)8CU#uqLc`Y zd&U8p_p09{_z)3q7%$V9rmFlnak7!FY#H{Utda?G=C?_+AgJ9otg_PhB(`DDiNrJW zDMAhvsczfCGt#!WE?s?Q3mj$3Y`xXQ$4_Jqk~dI{S~37wpV`dI@cHKHndY4C{=ko} zdD*%L;*59R?Akw4n~x1f5zut~HiQM~17nmxL`|hIdk&oW07(Gzv@yfT&MMKJ3S{;X zj0wP=F=jCMihi9l1Ux`MCbZ93%u^GqiwBr*eG#sxZUFidqYH%gz%16;OiVRrb*$Xp zz=w}!Q3?Iz571p&lew2($~zq0**|_Z6dCUL0|*R=$?-$*bhyo-_=;&>v>yg!0@&s< z!K#}^z+XaeCIFvZCUEbz5e8mL2AF_>r;qHuAwbPu+^v2iu4Vpz`m^(|)S<=@eDLL* zMtwm7sQ&DlZ~ixY`D}ZY{(zjjM_06mQyh5ixnB|`-Z@U<;@DWf0cFTA@$eJ`T}jHLmqR`Q0_^{{v3A zV!ol5{ucz>Gge52f*)S4emI7j)^aTZF?c#DL@09|ZNvnkjGVe~k>P`Z2zf=mdl@?(F3C7{*A&hlA54N3POaL~HkQ;&pF6RMn zCLj~qXLNr9;hG+fO#7IJ)6-J>KXr8bcQAdZHLv{YnlGM%zROv9;r>FDr;HIwLEvjo zP+uEE`1WGZ*#c3_gVDN|1VTK0j6wueZU}c3;g|q!41qN(mv^`j@)|-i0p#wHJx(as zLi#oOob?DmjKf+uMWykqhJ?3{{_dLZpAE-b;V%6zK#rlZwR8!oP;kFn)&0g0g97T} z7fuQh%KQyO0+TWMM4&x-yT-gMbWjQcH+9fH7B*z=@I&-cNt)fp#!qeoY5MZ zKf0#-@9cocZ~F%@W9Wc57)5|9-m9)Sh7O1$Ehh3(m~bVr3#cEXtEn4+{utVV_y!wes+3>*yK6pnCfkDU(*FYF z7}|mXq(Z^#UaVd>26qUki{m*dL@4tqT89Zl8AHvO2UGXULVlW%OaM8CwqPF8J7E^~ zbA)9A*wNd9mUbL&miL$&;@#(aBXu0ACm$%`s3y5=#fSS_d5`jh!MsWOIY zIfPX-c;&0qE5}eRhvdaA-3`SuKcKakK$ zdt`ynA}|vG9~e1CI^s3{xLbTe+{JY1p5imkQ3|40W1$|MW5)f>)9u;%?92qddt;}V zaFHJN+qWeR)K@OH?AlqrwPwOVnaZU`MfGw@<3w;tjAR5SDn>s{+L{I~dlOK$g2=HXIVM2Bf>K zp6+()wphPIgHpK>J;sAwUvTaY6-r`F*;mW_UGw(;L3ePKzoEY+D@_&;cIBZI0G9fK zS}Gpw%F`1ArNSt6(`MOX0*0f(t{i=w={R>n?O_T30gWKaNfpu_-iOnj7dTRTzJ7v+ zZXBPOJX*(6MKMR30hLR>ElWPqeWOZ=IUZg&IQ%k2 z?&+@g-Yo0=arcFud(N$UZdJVu%JBob6h&LgxSCLoRPu&V_hR2b zgD{t?5)1uLl8cA`D+dwqB8#&gT@ssqE39Ky-JLo?#5^Ilo-n7Dv z=BS5%jZhCjZVw;XZZ>&;PobTWP^%Fdf{K(LCn-%hd7=q>>||ER({lwp!BRhBq0%6V z^JXv9g42dZaR(@QOR8g;MQKit9osJ9NQ8cIcBs|Gd9J}wzdN3<-RbVaxAAzn?;!bs z-eOnyYr-WQiG*;1fh3(MNlKU)hYoeQ<(tI6`ZyCq1J1J_iRA9|ORn1sn19;lQTJmm zOdHu|iC=!Do3ZEVEJlAxe?m7%h1r&=?f-*8?=bl(UyP)Gn%ONlI5k@k<>|8*QG|j( zB0Ue4^dyYv5wAgxEN2~@+Q~%GAcS*fuAl-|o~;n%AxxQR#-P#Cs|P)*pE9iCiWYC2 zwAI5ccBRRcQq^PN1Ow@Lc-iVP4*krKq>e#-lS!c|Q$29!@{zkf%dZ}821LRzWD+mk zGTa2Y(4&!t{4L%+sK0`N9!~#wj@#{~ru%!+NEn7DGxtPy657O##;oy+8z<_y~|;k587K6T%2wpUh%G7jnWIlYcv=vV0Y z4)!;hHTeUkE8%dc04XrYR8umQaP(d9sFUPv69jcG^FssL(aWh!!Pt?)^ViVJTTCP9 zR#H!9QlzQ!#z~mF3k;crC&l#k;?dZ-dhQr z9oZvjYQW6WAduP5u#9+ZU`yl-3tLn@jTvRLjy7TWP@R%l#T`DG)=nsdy& zsMlW^M8|vX*u31@)$TXDSk}{8y*kI$Ox^XCJjC#}m=*nNR%QIA8vgOrfP#X=y;u@A zW?D3hOP#SiEJ08=GEp=v!ua9q%ph{#?FiHx2}MIqR0NgZ)Hnk77Q)d0ETd*rlMx3|*4yL5OiNFNW$I<7G4Ik>-R_rd-e zVvC=2m=#u_AhUWb^^7SrFx%q%R5edg`yJg!s6zE)su$%e-2AW;s)b@xHVJ>}tM*c;W|rv%rXZ zi0$1Xws;Rci$^Uq%T|+Dzs~~&8c>eklQ=Vg2rPtoC}C&-6YoH0hRKB$LY+(~8bF;E zn+i{h)Cm2)i(+!QhV#VY7kJ$tn!Zf7=y9`!x1HXekJBF#ZnW#>&&JPc<(JC~nIIapVPZ!!5`+fJg;#_;ijXvbj6ctk7+)yDBJ7)3LIkPEKyY_=V4;AWe ztKDG#k_wIAggb4_9tFXKME_bO8lM*>IQBIf#HYT=4M5|k z4^lx#bQ%JGmB2Irjy~KnBd$|w2=hfs)hNdo%Bj(L?z)(Rc3U2~;sRdLz+3tE)yw8T zMDx&cuEi^q_gzt5{8Ym9OnEOw&Q^Vx?M_3cNn;hA;i%8Xul|-zER6u4iF2L7wzb7Y z^C+)b#(Bj>ZuArI`{~| z>9|u~{A0~60I0OQ1V|7duY+Th#ggg&yocx9%-6py;e) z`cyfB&|A;Qvx93m$RqD$Sc+;`gp!SbU#_K{{tj`CVf_rOwm0gc9KY}RGsA1Ie>cf z)k#bM4TzWOJ3|N&mk-n+5DkDz={N++h2?`igkUrPJEO$ZO#5v3o*zI-nViFU{P+=9 z5aaXk;bt7~aGI zJEfF|Bi_}QFF?!FfbY0oaTWj((g@7g2txyyanrt8U~(CaKz)-?G=Pde(L7ZG@RA)S z9(M-WRIAg!0x6k%+Z2zh^7Uew@2z!*@&vO0&B+#gy8RTW>X2}wU2mEnA+q=xiuFUw zfdvZkIv;VB$bRlokA@~6emLq9ri2DCb3!>Xe zKpFr>Ur#Y@R-EPn_vd{DvNMA41TgLpV7<^f-5vO%mb}%@sLX82)ILW;dxsXb+6{R6 zLI36WTOHPq(*qYY$ZrAhq2CJ~j!B(!9#TXDpmB$SvjPP@T?ls`;b;Ii z?m%ExxDgG8kQWk?29RgRN6;w|oeD#MdCJge!`K)&y?)89XqbmTj zjwn-mz#KSJgn|SIBEi)0FZby8fQG5YP#5#OCJl(E_J9SLKz{+)Ji%xHmf8arz(&*; z04@@c27rk@p!jpz3*7hp9?fBc4hez zfZ|tk_-E4t2>`VA4AI({vYE-JITN9S5&!D`>;`B+drXg-0%1;e4(4>~QXK`9%G75Z92>3q?xFb&yl$!0FLe-?;z{P6NVYCK@vkHaew`K z^(>)We*SI~=?Y^vU<-2`A0fLrp(pnmKsww~D8GP$b#YUh5 zQcY%q24ReuXs1Jo#6rNW1f&6AD?a^A2h0T*g0=}t1JLNV?7Zwx*`AFM;X_oQQwLzi z%sFO?ZLlVH`vD4znfmpakl_Ai%`E^d{sRBmf-+!&0{z`A`WrK?Ns2=cFkUR`Qx_mF zG>Bo$NsVM6CqCD7>a&ES0o<68IvFmIUJiLPA!z^^zq&aqB88Xx|NK{=J1Yrbl$Ko^ zuOKtBlf_J}-G#C~zo}(sHUXpb2xxCc(|2*b^miaQya?@5{UWqW z$KP2$Ll0*FGDYXm*$+i$W9CxR7o{bxk3V?}8vUyQ+n)w)Q(DSCgvg6cBS1R{L<68P zM>=V-Nz~2K^9WRjtxp5?V=h3>&fYuD^q`grMFXhP9b^!XCo7j5 z)gv4Y^AbHIm@Tk|7s@ZFEJ;4Rm+z;{U3B`E#`oV@_fx!|aUX5~z?hS7Gw>IHOwl=1 zwdt$6S<3fQ-tB*mygHgKPXp@Z`za5?^i#b3kAbLT2t)&*^8J(t3 z;YP;1y$(b+T&_#^Q|=&>3%ITD81_?o+589orTZxhBL1PMqeM}q`zh;KcOiKM>I$|# z4cM3NrveZWl?U~7LeT)KbUzh9<+AeNt|A-_^HQ>(qFcPq!{%Mxp30Ks!+Ys|YA`g9 z;S3?H$DPc63Y*YR(E^}!KV<;KIaGCQMg5c|uFrp2^6E(!pyg>my>vh2Lx`l1EBI^@_;-sIj~z? z1TY$al@`<5O2Z{v{oYqO=$TxX7SoPaU(aswf2N*0M=^0xY!zZM0OA~CIvw=kxAY9k z5~r9Pd3Cq*(d;yUC@m%*Ld28<-JL)*04gmeA1D`74t6ZTXaH7LOz_&sJ)fq<#C5oi z-x7;jI9Q;6q05l_5_o8F%s zX7N5u`c;3$yG>|7H9m`+)iu8y!&Wf>e?tHo0K_MHGXmry$w9tC5E_6)pOl>rgWo|i zw9nPz;5uBUi^IH|Sig0*bAc8IUcd`+$ZLqx#UYL}MW+zQd|7cAqU=!|S#{%uXjYn1 z;_zLIIQR}?5?5~|08J@zcmSR_9LQS;LQ_T@-Cd2mUABIe!;s10>8S<2+%w+<w79om^56@9z2u5^R_VPew&`yqPpnyC|P80+3Z+5=s7TRgzwjK)X1P0yk ztEC&3cUdJmY_u$j&vTkUR;SjE6`)oEZcWt3Z|gU4@z3zg*AZym?Kte%efSwh)JIe9 z@X4lqNGV3*9?g2AH0x7Jd7CuG6$8`v^f&QkK{uN=p>}zgMT6ij+ju&Q{a$z2?qaU2 z8~zfqp#huAH`4GBFN z;pal}brhYWt4N0ibT+V>EuBL3TunAKU~|=mXUNrZb8#n2+cna)q(uW-)6XJDdQ?0O zFjEg)Y@~qGZgQg8*u*X2)!;U1&3+qqQEM4JpKNHr=GhyUII;l=t!mR+I0ERd%9oA} zw-=Ec%?5Mpw-!3>E=N{Gl&e3h1Cznm zk`oO$J$2(6D&(}%9&Y1Z1X|v&CnFj#+CX^=qp;F$Bo!J^dG1Cxj-k@r+M3^vxhv+> zE30d~35y57x~1ModNiQ-f;~lVsgIXvEHp8N8*YnmdV(16bd4&FQa_!jTTaHI!JL+oQD zMgwB<@sKIb2^IC*up8Wo6^VNMS(hhIt(v9f-qzOgv}f4NuQPQHPpbVHPpTborg-4V zp8Kc3iZh(!`GK6{>7_WCbYNjaoL}qrIU#ik!}0oJXUPQfJ_Ms^5XVwo6!3YBcE7*2 ziWBwhlMM8q6PgCl)1Se!VXbpmWq($H-rU5*yfbVz4Tqb^fd(8dt}A@TywDo94CY6P zNdwGI-I&FIKS6LBfKPwQ-L~eGjcxlo{wZS9Y!vpe-?rGFB{mJPRqc)5 z88q#8}Z-wtDfZSkoR@X)b?7E;JjG1w98@#C%s{{|&KefW25(7V!G4 zHJl4r?U>6w8u=?krUCNydXZg6>-BYCCp-<{YpnTJf1$UtTa5i%1g8P`^p~k;R-XZn zh5sEgpaFxEroGr^2sF(9MnWT_@8hP<=C)m{z2Ua@0M%)xBl_}BzIo1U&eZ$P!VM$0 zj_lce>$9AfqwUWTmARd3ifK;n)Mp`(m<}BJHQh?`?y)3yjU2%-)B&kO;CoyEHkFm~Xy4Xtplx*hJou z(a|8fFa6($4yP1xV_L7fY0n4(G1+-vF>4xXRtH~_H%oAuw9&Z z;)&xf#t2h~_hWc8dvhJ?^BKDT3P&2U=8YHU_wl@p*5v~k91ViI z`TtCCO(f6+`1=fyX7A6QsM4R0J(R)GAh^HSTeBx`S_;R8lNlHd0^4gR)cW?O4o*Zg z2fgJTZCs-q&Tnh3w1)i--VLP7?=;3qgE+siw%P z)@clj24QXB8SdJ`auaf$v@;nU&E6axr*ZE3l5RMYyGJlO8btT8jT=U)%^joD9&MqW z&8TP))y54bK~N37=6cnM{p|)eJkCY7`>kao@oDeZi*$AcN13|mTns3?a7)7O!_E{C z7d*0X#l~r?z)S`evcsUVRR)y}?4=@XW*kTWfL5Lf8RiOG1T>{-z51qniFg}{SJ-+tJ z*7m{zE>*dKRLA!$#z%wrzP(4ggOUYUP(444K1Z{RexKu;er%yyef(F4a< zx#q9qdM@LlL0q5QyAwHVZsoH&m^bLip2x^&5ZMM^R4ul5`CgP6qGawC`#2x|i`<5VBkaA$AKX-HjsuVI`th;suk5mz7QrSkN< zKCfYu_(u$m2Ejdh!_G+-Vr!UncQm!mk=92xZba^`VW!tFe=HgL$<+K&IF$Sbo_5=P z=%Y1+iyeuW{yD+Xqm3EQ4u`ztK$6^WAbGVMNbcFjo^4iFh-MKliDY-B8~fXQzK{kD zyn&~-3zTM`_Y@r9;WQi3-!dW^M6?%YNdh!k`g_JigP5+~u>L4)L+NX2WekQd)EaPm_ zA!rfXKC92xF%f=-N}xed(?0-Tbi7Wz6@Ts?MDmDyo?b5f z17g#^U#o~ziWqc*yC!rq{fumA_FOZO&1M{Lgw6B|5~BgJtEcXsDsQIEJ3GT|A+ukT z8O=r}(4&Dnn1=03adlZI@PEmM25hE(L0ZXn8fD`>ORj0%lE)h~pf&vyb|q=?RFUi1 z(M z`+#%B!)$My@Ls&uIM2zXKHL7xrbixump32iIKIye(I7*EjYIczt7-f* zY0!Yi(>IWYd;6}ugF;kbQv4%wq5-GrXKJ>^*BL47&qfooS-%ZK-qE1j=Evkg10K_l zTo#}N54?w6a|v4ICuBndHq%cv%Cj-=D)QRpXJkSHCR0DbZiwKMSi1JdRrB<3gwStO zSZ(nQ(YT+biI*QPP1~cy{xnmcJ{H}}$8qPu?jz5`!y-pJ-$!fT>}#ffOLPoECXIwa z$MbpVc&5L&KF;H$UMTuE3%iiZ&OC!ML4T6>T+krI>E|9%=j*6G`ZpdSuY1zz_zaoR z?0IGoE+)52cm_o?`#hP^fZ6nK(~HKR(q^{%vhRhWW09%Q`%BWJ0ljSMe!YHr#RUH~ zdD4LAOMa7h%FPUZlYW_0X+ZUwJx7%zLowT5BQ+XOoBrL2m1jGkR?PG_$&m&eum25c zK6A^8pXL8Ynlzw!?Vh74qi!+J-z7O3kbBW@47p;azekodV0puD4$IMs{yvG)favtc zlGT-sc`0f!%l}MTG@!M6542yARx!UnB0n1Nd;V_%ztPP8m=tM1ar(1im1UM4VZ4HW zLSi%^_PmX6y9lvjc7H~OG+_9`-wcMM`TYe+(tzajZ^W)FzwzAunxtqz>Ny+Vas^Vw zy#6oQ(SY4`d!F5BPH)LioYH{c^rz4&%W1I}-j8%>KxYq3_Z*$b9OXb#qXD()uc=qo zQd`$L%M1E|+Z+oWOg=Q=vj^u)O?xmTCj$(*LrIPXsM`R(SjoWS$`DpPm96VBc3i@|O8VdsfQcb5ZNVfuRq zB6P$#&e$FP^@JpQEcNA%3HSXJvE}-1et}2o)WmuKM{^p4H`@?UAtN$2d=4TX8t|F^ zu7+aBQ=AF&>6;b`8s-oZp#hQUud7r;#A}bkNrMJ7W}D3T0nXSSxW5Ol8XI)@RSi5S zCLjLNrEwe5p#hy|%+yO&OUFG{qFLRJtZ4Q$t3W|_AS)WMTHdI(8npQ(1KlcjCO!@D zr@nSu5U}pLkvi84uG2#vCvl>8+Ke06hwa6+W!+u5%XD+|%lyhGZqe)FYmd8+7~Qe^ zh%@ZhI*+zLMg+HudloM{BTBp<)wAe=jmt&YQAi~+kt4#w|o%W$HXGIiHG zfcJi~vU|Vtxto`CZWH+v`7y}dPsknV$mu_CcplY#$tHJqALmZLaXa$yXx6mJR;CWc zCGFh@*wx(!oF{`9iQRn~PvQYge_xm$YnhHgx4MwOQw@^$K_4lgRs+20HWvh*=iS1vRNjOOg}VJwvGyLr_?joLe*}W;>uzS;E z?bSn4I(`4`;OeZIT#aku_VSu(!dvlzD-CF#Q53X+?FsjfO&XDFfN9p=$r=5&70PzE0nQSw1gZNL%0)BXn^wQ zNfzD! zPE%PPwD)2V=MaXbvOEm(q2oL{r>QItbY2YMLZZ-A7edEPNuEIGG}VOw=fx17L=+mJ zJgSmWDIE1KrhgjvKfg-<#X#l>L{nWL!Fabw|1{MF5+Ce31fl`Z+10cdfL52+aDcDJ zyJZ5<0N{d30g5^45s3y!)eL#VR@Y8-`*cnN=hX~(bY2W$jVLrgxt~4)U-!76;T=qy zCXXH{pD?An{IFK?_b49OhX=S58y8Ox>}dCKBklM@`}`-F+JTcP>YwoJ*zSW)b$`jD z=zCAnO71~!g{2o9*S|`R>nBdD!awCbulYF#Z=c*Too_Hqf5=DOXuxn`dWKWOY{td3 z6<&n7v?&Y>?!OY32Dt6oaJRKO+t)(ie+s6 zyo$byJ(_wyd`kaEk$L!By~;Qo&?b>?O?-|yl&@$Oqa-1}>`p*f2kuUy}Y^yBn|hWv;$h#FR^HVb#cYvY@U~|uk2{` zJN)trW?UNc{=}pK=ENCS5W(d57WpFo<<>5U0-wspmq#_yNkpOnQnRAy3P{BUZ4iZ5Jn&GHR!Db0=bAVG=SMsQCa&i#ju`8JR0ClJYGl)Yh1xSnYc8-op_>U23)`A zZ_z&u{7*d5GOPb$11=DV20#-pV$A>)_Vi0cpaH_fi&(QG6oXNOq5)J@mp8=t4jyhk5h z%IthD7z|}MZiF}y)8L(8xO@Lc>6sEI!1tWg$>fgZuQB!gxlDa0rYirlaMEkGw-#Ef zxWA&^+OfpXMcx;e1U0qG*n%|crD|6HUaBsl>Z$8Po3Xp?8`J+Wo}w?f!nk z&;aJ4C5EJhd7KW@h5A8yq=CmX%Xut{GxK9{A93h^-t3)4ZKb~Y+t8)ToA8C(x0Py8n`brb8(+>Ftoow zzclb$X6EAj7Kwk605kw7qwmE<+tOd6M;dr6qi=XDlKm=O)4=t^N=T!Vv;78L(!k}! zyMNcw1zi^Dew)5&;CteQll6Qrw7bL35HGONQvO@IrGeWr)BTQdTcrK>^iNZ=m6r!Y zoZZ!w|B)_fO13gx7U}+gzG>il;yu>uw6gZi7xS5eSbh*-XlGadLJ%5&l$mbw#i%X3 z`BS&bztJfToR*nxiqm4d{0F_$zL@}FT@JeM@N(0hEUYWztmy*pD!+#M&W zuEB+PoTQRXAU63Vm2)hAjgwSczoFxq+`G9yE1VLM?OQwDR)5z#P9zSH8BAh!Eo0H} zdk*gwpaHihOdMBJK)e*`*0_#nG(ej?6`PDUCYTq{Jq_GXykf})Fc}Qb49NDP`(hZ^ z6Nd&k6YtPk2M4#4ul72FL9gp&cP`cxFlQ&7CS_di>1)B&-H#gaRgzecg_kYbsZPmp@!F5vT2_9!&qGI5m7 zxr7xMI7JHP@tNsn(?okEz0*|XowFC`{h9Pm1Md?xIvw||Ym1A#Sw|9e4V}}#`NWC- zw9fHz665+gbWH=-6Q{T{xaJK~n9ga9T}S^k)ltXck9Pe6x~75ai3b$ZQD129=*(N% z*V8vmHMI5DQVs1F(=`oTpD}3&n2vUP2k#Nk4f0ZYrm4m=zMx`N@(OyUf#-=c(djtL zubK-To~qH*UrhiS08AWwrvvD>mpTK!@>c4|fV_?%Gys`6Ud;&N-B_%Hc>{51s>#Ek zwZqEtPw1Hjo+n;2o-P7Qopr|yUn%#x6(gN zMgDo@=nLr`^iKo-6Q?}WwGi(34Elw4(>)E`S5OEz)jHn}+ULClpaDPyT|EFgI5f~r z{{gzDf$Iu}SM3_NDH-n{qIVj2pLhypx`y9j+^IvmibbE7)zaJpqvzfCXbL_=)zD@f*Gte z=}CNxi@BzgHAg20*7IsYl#30Hjf2JCg_dZ+{i{KuT*22cExP(^s`=)NH#17k%q%<8-^%CZQ1~ea> zlmqx`%&dJx04E@5 z?8Bw86DKc$Pd$pcErOud*zhzU{_v!RcODy9g3{Sy#`$5)0vjrCoI#of2e`1*UT7}# zhE04dcmW@3%u7nAM}9DeAIzB__w45PMRrK_og~#e zYic1D+$1i-Lp_p1J`Ex^-+`+-Vl70OT;>Qwcm=KG7WyQd45|DkA-jFrK`=Z zWa?3?sH_9sy0?gyF<1AC`UxD*2rY=HmU~OJjF||Rfza}F5$Ook5$q;u5Y?D-Vx=La zA_~Aq5|{?SW6p_{2F{gV0KYxKX#jpfROPAIjRMlWDCJy6z#DVqHZvga3KGq7DN`T2 z6oTDP-vE=@{{i=yc+ZjyCqU5YgG8r~uh_qcG!IE##az)Kn5v4xwH?O}BToTw)o2gS8(vr!P<XGO!b4T8dS zfvDq|9U6pDQIY#VBF7x=euSd|Tt!vq!{s8(A%BmMG=QvTn1=60?te(tX*~d-qG1}| zw^_yEw!H%{;V{jO7^d}qfU0Piworls)jd;GSJ5zS-RsUtQ`ga`J25LXh@_%nI)HM* zGtH-dn}9R`tZ0}H00Ze+(7O?ohWV;wm?kF0XA!QV`kW@Jt6<#HjF;x~xwnMP{ z$%_3Sa21`}ac}|zoxV){-l~B?2XL+r;h}ZS^qz7DHo0GLnJ-P$&ZOS)r+5D73tZ2&We9Fj8 zP{{EkBFBm*TmgpGirXS#s&_GQGzjeRl}xxCLSuPti)}XDrs~7YV%V4!&6-zQL)=25 z`wv;n)U9~W`Tl0jEg;M>j}^>%J}rk7EF|x9lDvvaJO|L3^W#!Yri}*iRHT&xoQ!Az z=vIQ#0JNfcUI8@kS_0rUfoTBzxJpDS?i&HhXQ@srm`dBV-?_BO7vEZaVttP5nOa?g zNDl@Lx5=*QKVWxL(a0nij)p)(v)>TSR+rBpSk9n5WIKq$kPUNs18!t`GBkdxV4GdVXRYx!6K)Mkl!2on=#cpjMCM~|4=oF0J7{LW zi&`DSj*A9qUa3@RE<$ex=;uKKSN9|V8W6aoMgl>{U2KJWkpvA$;4Yi_!SQ7;F!_-> zwfhbKPn5gSTrRTeMoNZ=S8Q(gdvva6>Z!ZD9$jy8WvAEB2G#cHmWDt>>OZfeN4F@x z(sevKV09h)Ga7_fZI2!R2R*t6{{q6(0KVEDJ%Arkxkur8QlJ5aN_%u-IE{ON|K<1S zdVA$JvQ8ez@t`^X+z%_Yf+mnO6r@RQe8$)PxD7f55kDkU#+C>)-7V ze02{>fCka7RodA)BsaMTD#7hGM2;g78W7o4Gm(*+D3bYIlA!^ar7C-W2jr^5Z87bz zKjaV>V?|vs-XLnGJbEcpkKKxj*iTmM|A@Py6Q~YOfFStWiQp?bf$IEgm3twn^Ergm zAef3yDTQF7XCLw+Lec=TqKRqHy_R7fjXH_Bp+O`SodgV^M1&q-gMc&u ztZ4EW0Ok_(Kp#R-8s@8#4wKFs9>U$JKamD7D(ajrk@KjR;3~nphmhVav7`+k%v*WN zj{O25{vo>ii|8sUAH$z#ENl$wY>r(th@qlB)`JnbIk3kPj0Rv8soMj~rRD(7B_Is| zA5n?WF6lR%_Y)~HilDl-8{ln-_9j!aoT)7<5ZeKEHD3a3MOUUgSb>A~P8ID{lqU~C z_jxuN9h~|BI|LepRMALS1QaQTu>V3>8o*X`-lPbdi!y}%H$u|@`n*b%Y5X@roKvV# zryYP*G%pY}G`UMMT}f527L^*T5Kf;=B5@~o)Oa{fh}3{H^L8`y== zAef5gg&~*`rU&^agrosvRn_3q72fe7`O?W#Zz3!WV5^xIYVQpn;~dJ-s01)obzeK= zwM>H@cs1gYmqUpAa8WE^D!Q-^pK>ft2uQFc60EACOb|?v3q-w*Nufa)6|xv-7^8+i*}Ov!0I0HCVwV#fk+Uy}Y$mNWJ9 zfgYyKDmq=W1la0yZeaxuB3u;_Ry9m}ff*qZQP9+>Ocf16s;Xlu06IZ>uxAjK2C!8P z(*@W-m>%@Q2~7j&iiT-Hra(QM9!2UarlNe}HS~jCACCxYsk*gHJ(yzMlyC5t5o<+9 z9L~S=n*@bqpC*#6=x{T@(4CswB4MfrF^M$Q>Bm9nc4eiAaNTwT{a`}V0J@^91`fhO z=i+ty4E)0gPXqXiDw$E4sg+fZ_?-3s~)9Vri<@Ro==)QTyR_kQv};3_(p(*8uk1cHQLDH5(| zcI5nvc=M3d=XlghgJ3F}UWQ<%7xo~(Ku8)uRy1b`Aw7|LuwNuB4PdJ|n9`^XZABpJ z6_jMIj*3oA@4#2g%_SdM%+!7On$Z2tnpKugk(OC82c z(IB3R2CM>{h%x}ZH9=_rTG7B!0L^6?0N<9tGytyVMniGm2vFWcWm>@isVZr<=j~K> zhhEIo3wm0bvIa<50Ay9tbdZ7tY5sY&(sTeKO$k89r4Ha2M}v5(l4b~Jr0IhmL{J)l zRwd04)RU$Ud3j&KxnXaPznOEtnUmjS>V1o-guAZyGy99NV7%g1(c_S&MJI(Nv{6N0 zmnyn$;~LbftZ@v5oq8d)MuVogeq#v+6}S$~j5KLL^CcTgbEHz&q52Y1r2*AvS8{~8 zj@Dd74|`j5k-^$3+hWShWczC@bW=wYt7Oa}kN%)t^tF0=&t~~tVpG5Fs%bu$s4HA{ z%;_C-W=E!;xqz}hGP=)h4t=qJ$K0utN=;axO8-f!bj+FJRQGyz7Hby4RRgMp29b@q z5xx|(6xjpA1jgJ5Uy49pJ`+gnA_*Fhh`%Q}g+oIS@rew+gl&rzq-pu@vlfi_ zMpZUuVznNPQRNpT|7*S{>yU7xS$F)<2xrFoxS8QIML?+gzeL?*PSwopSIasGR*=*+ z%p?th7;~y74NQa_gM1DlX#knnZv}4M6fu`>u-`;_9bstzdrq{UpD9pzN1!KCCQki~ zA{Dv#@<Q2f(>gM`&u$KVmFS+wQNx)Xuz-N~|F&-F#O`^V zd#&TxPQg_z9$eBO$%)-_%)67As5rAe-(Gj>s^IrdC6h#=nKr^A?TI0rj{U^D=WUwuvo%f*@J zNS#PP8s;a~@6L?Z@Vp;M*@+C`zltRFy7Mi$j*f7!n5nPv2K4>Snp*%|{BGdc;&E_- z1Hs*01Q$P>KF>piUTO|Nz|+`gJG+S?;Et_hBpA}4RhF#skig39=8g%<*WP~4(suk za+RVX$Pnm>BGCAxrWAygsS95))q9yn8blU9AygjLNwx_70fN&2JU*u=4~}f+@+}hh z5DCzLz!S^&phiqo3Z<;k@M!@nEp3IYpBpCXd3pkFE=XhnP51X2AdQ%Zxd;#1@@VR>EfDD;~N zO#|ro`TEk(xtd4e-$r;Ez(?QHlZxIDEPN@$=}DbTDH~Ba8J!(HRyW`Kjm;0uuFai6 zQ#uL#qPfAGUdhy}uYqz8?AUcK%I~Pz)2aXy49N5xk!idTW{v=ta~xG2g*xR4NDd8{ z$LAj@Akt_BsM85W1E~1r{}iZPc?Gz$2uB0B=*Nv_Kx=exa>`4-dMsrYq&`w_x1K8+Q@EK9HCIRAv$;_!Hg*l>+_)tDQ zU>=z12!YElWXlXDQ)fRFB0b!QG~domTB!LZ1Rp&)MmDdMU(b0nid zXsvSj_PysRm#wZN(V$OZ+Q&6;nc=&OlYcwfVb*1v&G-v{wkBAjsg)J)V*B{&VhqYp65j;-}9P)^Fag|DWRW9m6QT|FK7FlcAc!S^mN zdnN?CuU z=Q4R5qhnSw^&ijDiLmPcvx}t?;eiPT67lx3iSV3CA}m!Mg_>g((13aRv3wE4OhrSe z69`2EsPxG|5z4FW5bi|6(Eu)4V#Z~|C0JVRZ6YxX2!!NAdE5*+zpc4_XRE&?j}Yq( zbFv{*58-JezS(hpo84ws&EJ$dlrMq{9%T1nkzMkke9^I%p1)C$)I*sh8Z=?_c8e*x zdfzSIjW)k+i)|a-eCj4eS zXu-S8M+uAsepV8gJRgntmK?4v4?B7A5~%tGyK@?Z6a6^IG-(VyHwp|4(r1{I4*8rxOiR1KXr;A%%bw&*AmzaLG zezck6x6(|(WVPSHh1Aya@`zh~RHS#$VRu9io1P0j+;PG$%+9EHYU6^`Df(p6nIbbN zp;M9pc@X z%|+a%q$OiE%y9$WqIDHV@nD-<)qhiJ6fc4c9#a29NqzDtUUaOJ?Qaw$buiOQgY+hk zIKJP)xd?xkfjpFuH0*y;rS1E5koknt-)&%zAS?}FQ|Bwb+lE=emqVOT)IU?HRxM5* z$;V3j6 z`T!>*G~l0noRNEV!jOZSe20Pi5aDP5S6cjDT%$U)8B-r2Bn=?XPV7$eIC2d-fL~C7 zRu@JJ>AgrBLus?K^%kxV)m(pC!sR)~#AnZGdu%BE;*yBKa ziR&g9FY)AAIVCq1Uw8duevm0rQh(2Gk_Iiky@UW`9Hao;o-LACTMHWgjua=A5exhr_)_s9;pkn(bU87ybyOd>mk^#H{p0L|9dt-@@0Lts_#s6 zPi*LZPIRAqSwH67b*?^YriiG9>|SXQQR=nzBBtoefLU2-wEHlpY~Y{)*qX`L8?-Z= z%+ymItjzIrC&msQ+8*fE^BuwjlHGIjp-$jGgj5w}gRy1$_el5gx{ z1U|UnAv>o^c1q0veaEht>_$OSpJtY55Jl?kPJR%QDS&Lz4QfzMVY=9eE?Bl&`az^| zw9xMM0M){47+f7;ea_pSslUG#3A~L>pubCR)r|bDAeMZU)kf&~lWvkEkkv;^R+Dc` z8RI`lu7@qbt1Zki4MK}PbvEVrN9lOpy;OT!4d&U*I9ol|zUjwo@W;DgT3eS3Gex`A z42d^A9Z5feNe_4EZJ~?O-MB??Q`bxp9_fC(q&xW{ADeH)yFU%oVUC{$mMXAOVB5(D zdn8!(Lr(l?pt0!d0H@Sg;9C@CH`yVXL92_XFD5u_ASSa+H)gSPF8#Tk27NL?!(*RP zbGy}kd%lC`h=YT4v(X6og)f4T_1rGlF0&E;?-_Zixt;G!IxS*D#oI;2$tTU3q@r_Q z#5%wx>AMyMn=Mwr8ck74dQR#8o>@#j$ysP; zU%nc0byU8kdg4pg+H39Ru(Q&}r-$4CthdgYt#}s{Z@SVwakxW@H*it9Cl0)ch6xW1 zUm+SU)gg{}cf)S5M?zM&rJ87v(J~!k;9KORH{tMC8s6Yt&gAM2G58C%Y4UYiR_)Dd?_*Vg^9FC&Vd#A*7 z$m9F21z`zeRXh@! zAJJnSk0Rr`&b7}+T^-E2vYYgp{R39ZnPr6I0Sg!kGuH_xomfPdKPu+s5paER^*#Q^C zcrE6T`w)@_kjeMfI7Fwy9N@1hL8A*Rh4f(rFI`?}n{SWFa;6@@$5Rd%nALm<5uKVm z0_H#h0Kxs82rm5sMeft6O$Q_X)iF#24QQ9pblyI`&U~PI5{L#s>6f?)vG~264|Xqt z(E#j>&^Ib*1>A(2*8a-<2%M68 z9=uN+9gduW(iy^g@UcP8MrP`+ybye=U>jHSzhO}%U&;3!5nS+42)Fo-Zt3K1uIN~c z-`^-m>O7{E22rG50`uKA_!e|DA6|kkM=@+a^}kHtNUJ3erT|>-49wRNdvjdIw1@Zi z9e_mXRW9itF+ItHsRtwg$jrf#ndHIL^J$Zk2cW*rc^gehNxSyR2UFW1x~0^&2t)&* zGAavz^4=r_`wqcq0Cr|#=V3f*fq4yf5YiDOJ9)MX0P`+`{Fondl5Ms-*z`Q8?6Bfy zZVCRFsw*S!A`v{E17N7{j-tNgId*}k8mHJ=@Ek8I37WTLAcC0@48Rk?8}J_|$p}+@DCng#t(~ z*Z!_%dl~otbbDPnmp<(8n&Xx^ZpqY@oUtAfZq)1fpRuP)KIaP0xhGK}A)&%kMTP0z zL(#J+(cdcJsf(B|8Uzyk!uJ%HK7u&#iB8N}*^2x$mu*IM3KPe+%p+#oC2Ml6%S$P` zgU#=Y&>Mq$B5vjl-G`5CH=De_Cz<5?w_;>6MQr5q(UQyL6WTH7I-SKGf~Z!RQ5r;) zdLLEMbwh6`+o~cmsgm9e?ylZQ@gPcbxDGvvch8Dam)) zO(u<5Aecc6j~6klr4Cw?VLVyHnon4$w^JZA5J)eviyqIzO2rWyihBwv7v zyZ7|qBMYkf1a&}zxSm`}2flNgf3wZrbjg-h^Gv%m_ejeoPlY6O-W=~9A(4dgQ3QF2 zWD9RcKeVvbYzQ8SNPgIMlms51m%Gq=lG>6ZT@WAVdm*Brsqb^LPlJ@EKK2?qw&?`E zeWZkOsV-9~O&YXd^0O5=toJm7KC0Gx^y5F?o=iQFucf(de5ctSd-x&w5OOR*p@Jg5 zOftQ_T<6YAdx7dE2ovt@6>Rk=mNE_UzEG-^3+O@mM{##i1(JhUTPNS|D{UP-4d6+^ zZa4Sn-^@Y(HX?*@m)Sb{j6(8J>KI~}ddc|yERjITDzH)HGuvDM!9KxN?_>IDkp9#s zj3SZQ#_dS7zv_T7_v%)_HKp zyq9miJ%5zpm%P2i)Oon;hCANkw{F3IR*->5GAvo}fj>z;*&z8ZucY8d{Cn9C_Tf2y z;Hm?dej0>UuHXajHvf8~_k@GSe3@79!C$d`lkc>bZbx4y@Qxon5$IjPG5xW;>V7-v z???8U9dgmk^GK5MZ$C{vd5@9I6xl!re=Iskz5`)GJLG+Tk%6GAmr)Hgh;gaZ=wAe| zg3#LwhyM&*y@8^TTtu7vn&?~zU!-aG@%RkBjIeyX`J|#gl@t5QjQ``!{*O1?Ydd%# z1ZVN&WIJDwZ!a|I?IN8_-Rnm79jRY zPlViP&_vIS$<5DLwdrjLD_rl=xiyM3yxy)ms2Fb${qP32Bfm=C=`M8e%GBnL*76$u z<2Sx^A?e;NqQp5|6TCx0`Czp)ogPkb2!eEh6`X8$4(_at%@{_}ss8Y@!_9!2p% zDTHTIw-{Zc2)hgJ3N#a?{+yL) zq&k!EdQ&8Jh%aLdh8&_cyOODMUXH3d(5-umNJ#v7tgw5_ zA(H6`3&{IZBJXL&oeE&JYF*^ICDaL&BMqY8wL!_?{6+@v0+|y@h6ZHf4;5CP3f(68 z)y)E-2apgA2t{w*tCUZpfc{BVRW4O}Eq|C&|!&OpWDYQMEEyyLq|T zU53zQBt!#3^_7bS#W!1n+LAGfSZmk`Yv~)gdu%UIEt2>Ya4Jgz&h}vWq#cyfc znKWoXBYJkGsw_bA7V~>lyVe{)<5wW6L0wx}X*Nd6@(?5aS_n((Fw*VRo^-UlI zO-2LaL-+qFy024udF(p%Ui|7??CWR{cl_#p)y?k}fKTK*Btiosbq+~|wyfY=IX%KhKCE-ypQzI`CYK}x`K&0l9@Q8TRBA?6&Btru- z^_B!a)E4C9mQaJQ#rO?cm2^|vaD?7l!W+T$K;hOh^{Y3bFgE2I{ADyq{JLrNl!OQ> zIG)H3j3;IRG-@1A zavFk0+2@v9eeGC^}qwsu^dBT9jUlu1D4rKCcG6x2AP6o}*n5|DWX z$UH}Xh5mHqY%eP3dh4go2BEa7Bp%+3Ly`3HbWLO zb+u za0OI?;_&GF3+d2+POTFzVzN9u?Cq=%PPp_o5U8==ykxD_9d?%GVS2lgsfWJ`C32u! z_ZC5?#+ybgqRh3(0#))9sgfEm5BspXOzZ|}33UP0K!fOO?6@teJHIN0VmBKyk0%)# zkg4&e5sT``iD1s^_IrJ?B>9RToCiR)?bghg~ZT$UnY97=Gz`a}n&fc+HLmV9C$E zJExIx!|jt6RQnQ;27sw=9&$b#Sc3eh3gi9{DZWquXD7E|e+hTdFZM)m{Utp0vDnMh zPDu5?c^FKz4qaxiw~E}`=r_QdM#5wdOdQnDc_)%<)`Ip-v<;Jq~l#>Yv1?k^5KP| z-pYi~l&KDjA{p`Bzf-Ei{(w!C-jT6C@q1*h+dlanZ$MrS)?=&LWY$cv0{F~yQ3t@8 zA{erBlVm6PMPr(+7mz#aX*(F=sP`~KGzcNR!z{F&gOVpK0>JkZkOqM9`;(^`JR^Yl z1YQ9VuL>r%$|FdI24tcqhtjz;q#5vVo>8xREx5_Z z=UFO7r|w4>RYk@ilsv_mZ_RIOHy7oO4ZSkAh*Rii@?P-+-MU%C?@CQ^d@#X)*1siM zPoCoVPW6y#Hwc3I8uLbjW=fsnSeFgGfbWl)CQ{#IVx*l+<0KCW^UIyp=1L1+PPh~= zWbDf=ncO%h8}YKs{z|6q%L&inBim(@|M$#P@|zN4WCR--`@Uo>c`S-Km&_HKKoHgI znL!#v6u;&>Md^(N)g#m9;%)mqCpcdeR3QnzhRZ_Cv0zXXy#thm|RB7aOGk4!xf za^7sob3}thQAI}{hFsBX%NnZiH8e?XzoI{+YF$) zB-g!V^ElTTJU?1i=Yf}pttA1{3y)O?8i3@XfrN-p5)miQuSPtF z3eLk*_vciS27#2X89H_XDrnaOJ&B++0FB=|HpKuKk1?WJ54b^K8UUw$i8jFX^ySqT&a4aT?YZZUWrmI0fB^4&!|eN)^n&-&0L44 zZo%$`rV^zFa0R7$p!*P%rV^zFpb@2d!21)JrV6FfucuTG=JZghdQT~#T#DzRB!j8SxGoo-Z;?K8c&V6#aSJm0~Jrn2Pe8HGol^53@oT z8o;FY6nXpWLlAoaxY^H!S|t<>piWC2xiwNF@OvKBWK#{_$+uoC_SX8HcE8!io9xV2 z;?1Tx*_5fBFNLfQEo^lg%wKYvnf#@LQ4)d*xh;s?lBd(7uC*${&4Q+mVzOuuOY#AF z=(#XNhdT}Iod`<<*yMR_=-I*MU0?VE1O3~CrUCT%iSi5`H_R$7pK3)Jpn2-mYRK*a z=ryTTzPQ$%A9i|OdxfdJfDat((62`2J5d+%vt9O=_L6FQVb1(gzX?@-iO<-)9V)-a zbU)62HxZsSkv!A0OeP{o&rIqlm4TGXbL($Xc6d|qlV(*9cD)u%39)+e?#vsu1v@lI~JZaRfvz28P9`{63pH zv#EyfK?Cy1({tz4&FFl2v1xR>sd<9Y04#Z~JPKA6Sq`{JKpFt1-Wl!ijMQ)~)W-7? z%FT#@TY<8YIy~@+7~X`fTW)|mk(w**m0n-IJk6(Kuv5P1Fu>h*bFwp2&*H_iqsH#n zyP|$c_PjdC3MYv7MiFoPsmv)(=uK=9t>rOICJfZ0nS2^V8hvWL1cwI5VW!4gOE!_Lz0y@k$ML+!*+6wlYBvsPVmw3=0ayhPIF-c zzY;&k4Vk)upRTx7uuZSJzhP$1DpQ6&xZoi>ACl~(cj(2aY`Ix9K~nc*mS_+~@_i8_ zO-L{^fOtF%`0Qn0;6>`!e-yzU$)l<96#kF{c!A`aESkQ6U6P ze_k}*D^n~k;6h_qc}MmOzWOEePlGU1?^Pa?4v~U`=C#fs8R~OX1v4_P-IK?WZLI;G z?CDC+g%vyl)J3m#;p;e#xOKg#e^+W8@xcTGS^cVHHF+HIo$7JKZV&{un|Y%_-jWY$ ztk1&q)^0XX&nFZOppviDTAvOo@0IK>1NS1r(Eu)WgtRUjSirp2C0~7olA{7#+LI@? z_7llwV(U&UNrZC4y`9*)oj9(3GcQNR=v+i?&Lvm>9^<_)WJqW*!>u!)Jbe)3Gfl3Hlb_w#oH zn5{UuXtrkR(hTA_VswYwh7*SN$7rPF{xM2O;Gu(m7ab(eLZaRS0pwBWkkwat-h>80 z#XoZ~L+YJ#*Vo9TYlM~rtiC~T8i1GX4MxH9j&2-*Z<7EG2s|-y4mRRD7rdin;{7p& zZbcRfs(-PTO~IiHBO;5gv7YIfUjylJ;pp>XGoVi0&J{1$(w8@sf^1Mh*t z-5$YIhjLV-sY2n-`51+}{RaF9g40x?aOd2Ck1E{##t=A?1ZXNyxbvMW+-)*&{~IVg z-wX8QLq}U+YpV;bp}G0X4DzxmQ%`#_w0)@g;hfp(HZ;u!kVw8%KT1MSA?d?J(#fYE zM_mVc_G484!48WCv6QYM@$AGD_SFIGPYFu{*yKy~W8xguZ~*;tLel^`^-_I^oU1ng zIuvP)NoJ6GcxX{~wECUa)@6LP)J=S(&5elN{`^XPrXIs*^Y3I_;0vb4h4&M;7vGK? z0pMX(^1;bE#DyG$|Jx$`owYR(&e}}iB0SVP*~8Hw-vTnfk~FAff%unp;3CP4SvI z-*+kzVE~=nOLP)Hx~V>Xo_g`yK;6uv8ydtO7i&Evq(cp;{1vItfXWmvQ>-EldN9d5 z*?`X9kPZ##M9)E0+Axg(`#9E&l_&6PEf2(j+oN=O$YQ3x{yCP1S#t{@QfqnSM1%p# zmWP1i zPFIRlbfHetF=p zLJJjirc}_=q7xA`VY}bqdm-_a>+}wF1YH+WuvPe|tJta1ph2Fs@sy;jV#KZ{F&Yq? z;th^fw^d$bF>=?E91Y0rj7{U}$YX;{c)iTmxjKWTr^TM{0jv0RqN-?N(l>0&D_$05 zIa3e(Agb;FyP7Y7O#CRUdNM)+HFkm2So~x9;GES+WQ13{9x1%h}Et!jY5m)j* z&)J+=a|<9+>ugT&IIR>0sFSwTNv#JvIjkuYHis}!H*wBFgV<}G%@s(PVaH2{`Y5T; zfJ&{ixdIixM7);y1nJO#PMxzkVS@tkuoqY#R-VAGy*$?BV232uFs1z1yKH%2O^9Ft zL~1V&AtDS=9>WbP4--GTZ@&#xkKH5@F!{CLiAy2;`QfsfeZLo^ZmFT9C#Y~<1NlvxQnp*&oTBlk$5n+JJd974V ztw$m`tdxyz4q>1a)j)&T>n-0r30}eYR8~lZ22^UDY8BeUD;1y4D(TRGPMuRNVbhTR zOjcgQ3bFD8e$D0Ku1apx7br8eozI&CpF40QVirK8=JK#agaOLq?Hf`a7S@!9j#{^Y zI+gQn8pK|6c?2Y6>gA_Hok1!zpi*;r1XTR;@LJ~Kq(cKb^_B-gQ63)l+e~@rO~7y0 zIkt9AkU{l?OughUP!_lBoRDb);H~uo3o1(C!%_;h&hBiiyr;v&t1f0gNP~E5J-hCK zi~Jphc~YPOg<21PJPNt&9gRiOpaG5O`#LK+_U)X|aF{ny>XcmFq3hRJ&v!19d-vR0 zrVjfQk2dlR{xV3_sz-;)5)>+^gfB=X)Y=~h$a-9GTZD%iQVld{gj$a_9I%_*OL@5M zhR{wDq5+{=k2V~zBa|15+h<5!Mp85&Rp-%$!)>@F!{BCCkf&b|sdcu!(%aE);jLJ@ zaqLQ_uK6^|=s>sbErQUtI>!-_*1ymV(Q{>L90Jz)@cxOtzDG~S;I?7 z0bP)O>R zEH$feC+Yax>?&?8+{`t=2X%(MCO&Br6rb#w8}{a~CsV(=2~~Jo!+tK@>9#imcdW~r zJ5FiX097V=q>BPQ=2gmVbZ$+{+Abafwly#8VyuM{KJ~-3c!rHPe2|-RMmkk+7*6>~3!bmHdGWFDV zqskApRc^Mr4S0W{?zPac-HlK|PE?qopzk0BUF*@k9V&A8pps1^=(bY3IEK)mO*UkB zE079nH=uSosnLMihKwZzYNOQ}(0dx`(SY8r4JcCq&+9WFa}>+c>fV$2hO`@c2M)l} zVFY6^_HY1}J()WGqy88i?#w%tz}<$8!2zm_!K90lJ#GWX;1L!<FOB++`u;1Qz2 z3@B>3{ zJL%DY-eq-;!2x&!+U7e%A$k1gG_M{YgK+R$>U?{hbIpEl_#nByt(WkosSl(4_LCL+ zKS|k|lz}d+kv+moZKj-P&^XuC*~N_zaKnQX+{k`I z@V+ES1A;HyGX(QO97pp0BuN93Pph#gNAMfmg4v~4DW=`dW3}qS2={_vt@nxyTifN{ z6)t4ze?Noz+*dD~|3IMDCq^s*!A9XNNa59b^QHyWwU$S&UO{2dAnICgnFo6bVtW+!2#CK_?C#n zikoGN_s1NxYMp;Y$YzS%mq?#48<-%oj+824t4%EEr-oz-WtWhbvhd6s3r<-kji_Kh4Y9{hr({ zImGImUd_}YUqEdf<%Loz^~xiFmLbV)5+>@eDGwU7L%lN! zhg>*nVq#1#bgI;sNr?uO>K(TovZLhHklSfm>T9G$16r5VSx64J!KT>~w9N}xQd-No zd}}=_@UBJL3w<|!4E40XS#t|$m0BO^%86u(3{XR_ks7M?gh&pn>&I^c^*}0u2C>(A zNKzmnBThi&_eq5YRBF8ex>U^Y2KpO$}t63sep1^-roxS^7w{yu_ zyNPBP;F~K$`)wTAJm+oB)a8GUvbl9+kKO2d;jq--c;dnmrS&!`ty+&y#36hLneeHRYj$)eO{2C<2=L z%OfCR%fqAcGE$+bzdQmeetCFwUP(GMwU-A$Q63)l=S_L&O~7ATeXs=XG1^q$2nzi*HF;OmWXgiMTme%bP;5 z)lZpr8pJxqu~|uYDT5IbKPL$qkeK4cQ%Mqe0gMp&6^YP*$o#tVtTY}Cjf(H@IRUC~ zQvaetC%lSlV5#3*Tg_`gubLXT_xo4_-WIdss8n17A(c!KA2sm9T52E!(*r`jNwC$M zn01=!Yaque9FgQZ42idr1WoldkYhO#c@5+{4Uu<{2uf3>f&3@z ze5aTu%~FG%E(V?Md^;}#yTw$(zWgf7A>qb+-PJ?0+A+c6Ia-+_5tPI)r6elumq+k) zRRmjwf%-V5K!aRNaWGLb7Z{#oe27u`B&pDV$`l6^<*DQq5~K4O(xCyJPNf4yfQAno z{eR-#J3z9dx*C_zYFCQ_A_!xHK}3ULgmzb?CJIR)goHpsD6mq~JJU1MwLRUV?w;9Q zVF3b!zzi0l!3Ki?6J%q9!C-<3Ci%lAm}Iaq_#b-umQ`7I& zX#cqTLeDv;s_w1y>eW-1b)iDXF#p3)@owtfvgY1Hcb6cyx^8or?k))vxiB`Te+IE~ zT<#iAv%g^gUr}$Qgz&7&R0RTM=eMLJBA#V##xaU?5+~tB7` zMoD@mKYy@s;j)6N&I%D1Ou{-m1 zDVpx?Fg|8KBJmMkgQVbZQp869ukk?@h>zQ)iH`!E#z$~*Y{+jONl&0j5FY_sF+PG@ zR>)ZtLX#jq0yZxsh>zg56>~Pl(9|Cv0a>HFI~N~PAit*Z5&VqKSa*%lpT+hTSW&&q z=PeQ|8Ya9xxwX6%suEyT5kRaQq(M=x+`2AzXlzW<*>s2 z1UIZZt{YzCX;w+6sBi;#t#GLV-m*JQgghx zOoPPMUUz#k--Xb++h4aL9#0W85K(*G?a91|%-Q`tE9627p@ERP>u%50@JE*Q3aPuZ zt00e<1m9e|Ewq-FwDOjtvFW`Fj(@bCxc@S{5q} z5*YEiq$-n@`y(+Rmd~P4h7sm0W=VBSipQ znmaGxr4&E|0ktHIsZ2q3_^&FqS=+E`fB8SADw2C|x zgt%DKxQLjXsD)QzB$rvL#C(N5LW44jc(tcKF&Z^xlD{bWYEONVvN$S}^$p6R zfvk;R?WwE^3!ufd_gW_vPd3kITse2n+&ALMG&Y_cMa7o>?vze%wLKU$m)nD-l~HTd zu?>q}o(V3GO_#gX-m2t|yBMM{+9JL`P>)>IhH(2s4YwE%uPL9fs$en;Rgd`<`yDjM zi-@-;>d6bK0x}n0SKQ6$=QI#^V8d3Ux;Csepr`H4If?j`c?G@QI#%vBq(wZ2*{rs1 z`yl^Bnh|?EHecqaV0XCF>%m!SxxvJ|n&%a4BknKQ8o=7H|zhXl`gDkpsEGZ%JP`y6kq|89`Av)<{inn~<@`ZM z)Wnv22b%LMz1il0L2DU3-sWh~!YbaSzWqkF{A`9lo8ix9?9XQ8XEXd6zNYwd_~uyr2gz zhl0hILr}7Nod;kCI=aAK@c}F9lk`F@;SCG#;%d1$T3T*mGThE{K;#Ur%-{<4l)3NC zWMCLxJ6o?5SEJ;i*3-l^^q_{UjO`^QpiSt^uO9E{DAzY1sECdc+a zB<2xS!4(%y_fvJcsjDFh(}4+{%_}xvz5-cKL$%XpJ>VJv=1-W>niW93usjb2t+`IS zH!6K4biv&`r8U=DY7R$j)y}gSo{i1J{t?-|GrOS2^3%gq*ABO|594m;NtFsE@Cz-0 zby_0#$D2TwCfp}bdCYxS9yG|g@@W#EIh&^9FeOWzCA=>QX+T)M0A^~!Ear=;+)Yv% zke*-ab(_r31{u)v@V;UGKRTf}hhuJ~nS>C*s)flAbl~50K2q zRt|%VTnXWm$9-F}aGfs1Ch{=D&b%^AocRK~5Hz*8Ns%t|%pB=IlavOe?Hcn>(pd1$ z9PyV)OatNztNN!RTMy0A9E;+caFp@~`jJ7{KFE!d+RX!<(PGp8ja2;h)(mgW_*-MM zdL(@Jw(H#WHwuWXW1m!|MAjFois0P0SLZH&3hWbb_*!s%8u5Yh+p56)FMB04NUN#f z1mz?Rdl^F{6v*DJuq^v;&^KJMl;r+8J%PBGXYPqp@Bq8{-V83VO^)q0!GDpIMIx+lLkKXJ0I^rSbRK||?UH2pR8;E*zm0U6{{R%ApADc^# zLhW@F57h$vj2gfd7_R;Zb@fUeI477z=tY}bvf`qFRFZ30KB z=%s^U-b)8V@1+fPZ9tb@(zAfPqL=2#$A*OP(#vY`(j2z+Qh!ak%u%dFXsUauhxQKR zywu;Zq}xeKQ{78Fv?mR{)ZewlJ4sAa*-Je#ymWwxLf7kJ0h&v#m--*EQ&p)B=r4~t zOW2uX5W1?r=>7FI$G~4toVXrbazY{K@l~2R&k+b38}h?_JLA=od&&1NusR{UUyeUl)I3bHGpn4J2G%p+8WBZ}0at0XI3Yr5;oJw+xz~B75;vfm zKoWo0yXV3E=wO{FjWM7mQR+&!y9j%mqSw&$=^ zHG6ZpSw6JmxQYu7xZJwcJ%y(&oUF?FYyD_Ra6UF4_$&(V*znTYv8QK$z+!tqX|Zig zq~Iu@7i;;HKLgwtM+#!0-Ca>Yvy&rw8fZIfN^OF<*c!|Y4|Il$7Wg;<(*XEURe-zg z*8W4-Rm4la1(9ihTt429%!Y1%p~(*!F0~F?(YGQr4WKLK@KTl$ClQmTDrS%cw<9JE zFsF81=F+gUu+;BhvX-uEZckX6%CNayy(3|109!u)8(Cm1tmWg z<&MR>J@IIO_t5F_WL<{{ydwc=ssVO-^H$-V2}lFL(<>-!AJET+i^{tZlm?)UNLTem z+wezLVu{0)cb3bYZ#3w4oAX^P)9f#+uY!OVXLxZ27x5J8D`+B5oVdPr;u-qWlljw= z`BS85GmbGqu3T{152@2eHx*V~J|#@?EY|yVY#PklSV_=8=Q*1w&Iz3o77E?#Bh;8f z<{d<*0ebl}x!59*-}ML0ZoiKOE&~28g3|!Jd?DLrz&rEJc6W%l7VN(!HVv@Lr@%IY zJsKQpwhzv>mtDTRpYSxbz#mxbblYLhe30-o%$fLb%9SajiWf3Z)|~ku+kjFxkFT!= z?d;XRS$i@zN8KK?JIDC*wPVh3w~&m}qJ1*}S4_mt7d3VsJ`IRCb_?4CEWkOa(Y$CM zvX=(B9##QTUW^dLF%fBi7~NrWIpqhPt)Yx}t;*jgCJiv7J698!v;E~m?i~)1`U=9* zR7!k%X?cXVLIm+uM5L)CR1llp4nLbMu&*I34PfJI;J|ydp+DsCUPn9{;6-=;Ch~KB z&|hlKb(itg2&?mr#HFc}eB$m~nV)ZCxv?bwPYFu{*y$ouYq)OL0{%GxX#n`hsl9$4 z8@h$1^cO^>0cw1AqF72@>@1Bebw%};1f{74+FuAk|B9eAl|Yx;!^MRGhbmG^? zK%>X46HaAca|xsWy#%HK@booGzt?UqvNad6A0Q?TFsFAZV50LOfFB|t4FIQiDFTKr z^--eIR6-r~^I`fiqS91KJU*-G;_2fAq^SysIS|RsPZ5v?fYbXD6s~X!fX=Khrq2+V z2Efy|clMLGBK7k`qyggeZId8|CI3aj(f~HTpIod=;7+6V+^~%g#o_Y`Hgms3Xc|C2 zFt$r&ksB^xE!G#N%y&~MGnwuU3^SD`Xw;hFCdod)O?GCD&a^)2!bh)e_I=xTOS_iU@z zq-=}&Bcjp(HM+VfL0xRm?&l!2<$!-mU>X2NkK0RtyZs>|xrrI|&RjF}jsGG64G7MU z?a53M%(drRE8P)37P+*Hx9oEi|4j-SP(;^6>r;g4|Ci7-)w0K_mz>XO|0M}%KoC9l zU0-{LYZQYhI+9CiXaIk1_1s@6;%_594e+O|SK0FoCGQ|44Irbt{v|oWTxjm=j9kdy zoVYaAq|Re@&c*uigrosv`O8Hm6BmaAkQJyO*?W1Ucm=l7-|irdb=`r`G!>zT&3%2$ za)zq!L}(g7S7_bvLTXusco(A606luLZqhG-K3QSio!B(Mu25kCd$BcKZ0*BjT9`5S zBs>k^D>Tf2FIH9eCNd3>EA)VXT+#zNh2S&*ui}MRK3LSfi_kRHpqDXc(Z~BZtQK9x zavGs&0R4pNTZbHUvp-(gZ2!P(14^uCoCi>y6K}xK?92N)qqirR7f!q3XdTN z4LB+^Cekx-PAl^`E+Eb&0SyQ$w6wbO!Qq_hd=k-AOG%z6bgK(UKm&pb!I3AJbgYX= zLj#%$HAtSO=vtSMga#xROkYjqNhX}@$z-7cONDxBvKw&)foT9-!E3EM*(xe5>lO)U zKv1F0v;-mY9Fb{&T%qo>$l^XB`~u-=0AHa=w(xM95Zn-)2H+LCSQeb_5~42=od)Q! z57B)OtHC3kF4F0U6EWpem_&L|w4=9IF?}e{rRL;tZ2pHk7Hzj@YunG%%TT&|^Pq}` zX{oDpS}OYKj?#-RY_k>d#Ty)p$FoW?4dXf_Xi~C~bdKgK($Ih=zB`nsSwPRUg(rCMC_8(Z_mr#2K?9EX zK}UgO84n*J`M1vtyi$W zoxagMEUQaZ&>NM}(yTY<$nJkRhs; znEs<$}9RElskIbjKa>d5b>xoHIA%92x5k3t%(P-X4Xqqa}(v*yr0KHJr{rPAtVhTPm6q_teP4*X@}TR4?5Hj*c?{Y@6}f2>C*4d^?;*mhjzEU zgl!M-`h<4=gY&WZ#c_PuIJ~rW>{;0#Z0fC&0EKmtf@47NQ5_IOmrwympH%Nd152^y z&$%j@1|<|-;gmwo_8sP55R(R&(IboXF!7R#2>nZf(rm^%OF`$bFi9Z)ijXvwb@mq6 zg%i+s6O^WMh7LP;%Rw;TOH7)|LV@Wr^aBK?sVo#PJXoP0A|_2`p}^d2K|e}RnmRyT z>OV$M8h}Q3I?CJ$k2+Zw@D(+y_v3`70d({X$l;*%GY=O1Q$(i$dUTKVaOmAO1`5N) z&b+N+%xB0z1BU39>u?P0j)@e$F*EReV?E-0IgI|?E&605}iLJBu!<=gLqv; zAb&zg8bDTZ(e}Y*SN;Bsm^78M^WgH*E-Uos1f{78ipgyspf?hf2B6W;-^<)dK(VcL z;8edLHci!>onP|J`Vm}&L{lBJ??UP*V$uM!lAkWjI>_yWqyc25;9uZcQH~A7S9cPY z2C&gn7G$ZaF=>EVsar(MoU`7I$TXERpznP3w+KlC$Vxti7w>nSYIF6s2})B3sB5xj2ucIc zYDLvwa81^!#H0ac^s}6@NJZ*fbND`{6T64NGytyV0}j|pzCV#^fLy8H3dtQzCrWvj4KOP?*q}Yz!MrjmHLG@($TUE%EV zsSi5D=zicr^&nAcfLf`R9j@%-hpwF3rxKS2xRnYjn`3<%A!({+Dj?nb&NalO0cIt~ zN7|RKvSIpcg3?q6#ZyuXdL2P&09t8`KN|4SYi^AHyTqmecI;+CL9ek999y*?;e)2) z6QKAi>mZgEbojIhJDTAU&|T3H^%utGYxl&%rsHzg){Z+X{0Y+Wz}OW>A&x$8B0ios z&HkHYNa?qMN)}y(IQYatQLxzuxJjAO+Z5T)Pf2#z$XkE$UGzS4A$(^JQ)vQx6b}pQ`KE-#V8lW0t_gBa z2Dzsu$kQ^&(`tgeUj})H-=J150lHD_}BL>jndbSG;9bg+Q;JoqY{ zU_P3dG{Br*C@_0iDTJHGysk6WKIgj)-SpApGR04z(zm)nSdP*@yT=d${t@g zTJFlG7^3{~q@byi#j--QIge+Wf_Wh^X@D8s;uK}ic00?>r4}|GIN0p<2N)^|_LGQB zQyF`;&1Fv^_NBz80e19^!h~*Ykc2KWzu>AbFp2EFgr)&>^xB*W=#{~M-}cytZDQKk zXLUG2H(cPGgr@;~bf>8ZZ&$cj$bE#Qsglv{P7k}CVSh`$ydqmAiQG1^X@DKwwio4k z?70=L92Ve30@Kt2yo||r3%sAeGysm?>|#Rk!OoCxn~BsO5ov%JJ=iNE&i7Xa9k?2{ zq>$Btf_x>BX@GqB6pgv8cUgaVvTQ9YZy30wj7UfW!e(W{lBLR%lm|#jQ>8pGSF*^F ztmN8NM5F=Y)a`;IHaU_N(5neb1JLNj)x|<~tE=?|Fx1~%RoEY3T1q&cK@J*lOx;M5 z1J74nE&D8D(f~7ha95_AD~abiOU_fCLtGl*PTinU>!6L-tOsp;YXEZ{D}$j-AxU;T zj}$ajvIB4Y@++uL_8Kv1fH`$B+IH71koW8HZ82U?4jOPoKin&3x#O5?V{;h}gDm)q z2~JZ7c&C>Ke<{If06uk1=9IfnN=RA$0g-8d9Q_K!dU@iO^bcKEsO_Tk4@pAx^HE1xtF7KRV?=FiA@9SsXHkaTenNf zWyuYMrvd!b-7CP`SDnJ#eiNZ-03H3_*My_U)Sfurn~6sQyb2yM#0+f9H85`_CQT(w z)X_tH62+F-+lfg7%&EN$o$T4g=Kce%!Gf#s-bq{<;7(ms`uGIX(0F>=>0#nrvi3cM zrU7*H`zghuVzaVNbND{u(*QsE?U5pW_WH;=EPq25nkpF&_ZVSy2llS;{mc&&mj<}e zbG1eF4%c@>{+6gTK%KgV<_jZ|8%=!^MN0GUh)e_Isar-O>qfZv6hV`d!R?Ua6Xc)) z$JA9GIb0hP=>G>|(*S$wKo{(+^YmF_(g1Vnpd=>NJz=cJ-G?Qw|B<*fz@55!cDQrx zULW`^dGkl$|B3K4fSmFvRz7$&;LSj8h}?S!(~3(!s6io`(KGoQ&l*&_FKWe zBbYz#uehGm*9cAn@TsdS<_flu!8T750rXAc(*XaHX~#~AkFCi$YHJ?A69r5nPX^L= z$VCILsb{IkHNsxua~;>PeUGp-fSqdMmviEhJ=W2GKtLJ*PCY$feb7Cw5EuUufoT9d zeeJ5wEl-#Q^`}Io0qWF~FPO{0dR*83{ud!>06BfNs&D-I89)1}D#!8PmyY0r1pSv%c6jQM(;aY#Lxs-5FEt z!*mc%Bnu5#qF)~=cAAu>q>FHCqSF9<>dup*7aH{25}5|b(Qj0i>n8GKlm6=@paH?u zJqDFt)~Mfs@HEx)y`)*c6VYj^i!W=~??QMQz(>CoRG#_kH0^gM0}U81o3?4!+#fD( z*tp-5Y&2k-x_(f$eDi*90@DC^>UKguU?zii_mt=q;?e+j>M{H3QVT0hr5WBuJR0Cl zUF%8>7W6GoBPb0(r|vRY=MG>WKv){U-aqoqT?R>QR>83v1y14U4|GP0 z{tJ%i*a^oA$Uy^+_-9oU9L#Hr_(CGm05N*Mn_OARGbMKgE!9x>|5(QUQs{?>?3a*) z1|;#rhzZ&9QFj4+83AbkSfLPuk8@k4FDEcfRp9JX$(jYPBrpwt<2y1FS>Qii>po7a z=&vR^4bbCz(G%#o&x_g|`C~%U06M-8IRUM$g#Qqz%6vaUAsi<|&q}JahG!3Am2LUBT*0ena%=}=!nh(#!BVIsw z8o);nVh#si^otjgfTlv$%;6(zi?ZnegTs5sO9)K^=;)TRpnY!8UzX`Y$&Hs0kp_s< z1{^+Hg!M8udtXjK8URL5SrsI9hodFm6o|}M5|sw1)B1!w-f1qjTXRi5#^~`o!dCRF z2~Pv~=neb|qI+C4AY%WRXf!~Jo}wwB4f-AI1}0xY70fpflLna4PnHXqoSxwh_;@!4 zFI!+05}uC~GU882Lj#)F-F%d#q5s(|xPYxz(7Hs=&#NyX=?m?BgO)a3;$AcM(%8K7 z3s?$#g8tB7T|41i`Ps?tXPYWX`O}b8S z1K6thOIUst+(MsEXqp=Gq1|zUFCZ#S4fz06yqO{Sa1mi?YRCt`qEE_AJp}p^Lel`c zs-JawSR-n2pG;hu8uAxg-&oWuh)M(0=uY`Me%4*_+XPBZw1`au?C7!8I@nl$fVRYn zo+B^~fTM>%>jP)2heh@R(P@Al-|m$Mv|XEw=Rm$34dH3(6OT^vew#H*M5h7z`O(9R z!-^03T9QA@q@V#sRR>3>$Y;!uxHQ16TIDTg9==Lg8o)+R`K{wDSGr(4L{J)lM$h-J z13JXJI$Qk*3&^Pqd_n0+`u4d1@q%$2q>4ffR+fF*k;n;lkU%6{OK4ga*V+;%Q0K(%Z zojjWP5Qt>xB1u6`5X9}<`bz|}$mpX_jX@Dqa4RL)y0k_d9)XT+tcoD2ML zbx`U2oWL{yj@?Qi^sq*FVsrMhY>OruiRjNjqvND=h&&jZi@uE(Xqz0bZ99*bAobMP z7T$p=4qBT3)s`lDiq`>13p3weYAto`Gkgj&58$Ff8i#8#J1C=0+B)FM;UdNDS9uZ(6hrJ94DMbA{QRjK(l5ov%Jy|^KV zIJbf?Q=lv2mUnZ5q=U`bMZ8;uDotd6mn1YGiC#{VBT-OZvXI{=Bn=>=7qAr|WoH0< zDFsVo0gT5N%<|pK!0Y`LaHOC<L1U`IEjd2H@erzICU_Adxb1K{a=jx314Ru4lt$>Aed zSL3RT2k`DS8fU>hinugYrDo2soscwBXRDQ}&p9*Todl)m>?H9-|m}k-RUm2*PA=A#(Op6}OWf0O~ky?VU)bXJy z1)3|lZjA=QqWhl(RGy-FwumDl(f~2K_ANo|FG=xwr3Z*h1Kj8qs2q2t*O`~idL#?3 zA}|erqgS&PfQM}^H4?b12}e^QM~90m^Ya`O3gR<}NCU*!IX>0b(ElvX8FcQz5u=;i zAy)d#F5>NIad3Y&HogBsXMAUNVQuGy?x*zh=svzj&`CYQ!r3p~WDSu+(GL1x0h{@% zPV+DhRcW9sy4ESjQeL!kH&9zi2jBvYNC2aTXiVa+4+|)I5=( zGyvU%6Hb82_lUUCRZuS`DosVHvRv9py^NqV06itLl}3ibQ*5c4{qzx6sL|Cmp1zKJ z{iVlabLh+Pk{$Necx}gp_6D@YyIlsXfbf{B)nnqT*9^neS`?*t=CvFk(Lh%8V$CqU zbep9B@bv_w0bq0kT?Ew7H;i+{0dLm+X9Op0^!6ykmo(jMt96F!%vvHb0Lim`@-kO=X$vSP0}32}x5`W>E4M6O*Q@%;Cs6(`AIDsSN2o z>2gBSRE5M=S~fGELP#1w#%=%|1Y{#PwumoajZzHu=+=lIY440M(T=^J?eW-rW*cgg z9qx2($3^-h_FbY|qX1X|QG@)M)*w@fW0*_lh2qS;nT<4%G(8-r=>+Z+!qEUOy1fWe zC~al8&*$HQw~Kf*Rq%!_E?5)1(}+g{yx8`~%4^vFEz+B${kbSB(DLeB7t`ODneH~W zM6<(Fy>kj*3lXQ$m#4n+c|Hn}WBVVJmiJSmp~r@(aGUq3+mt^TiH4Ih%G8>BvQ4L< z(z5GXaI&H`|=6!$lT1JC}nKO z3}^eII$N{GR7xjM0wm*9KJ!5q84Xg?u9-4)#R=k%keCLi>)OMIr=e{s0sesz9YsY{X zfLx&p3|~L?Rp9QqpsF)3{}$XyTsC*zUCMiLg(|QpWh~5awx3n50*lbT1o^2Xrvdr&Rba?1Rp9QqTop)H zGXLqT!0_kv;|f*ao~#PwYwy4KjH?21rd1#gKvAIzR0_q0S0456l35jcfmXAt0-bL2 zzn7ydXrQ-36&S#0e&@&UKXtV01?H}66&U_~#a>_trM*Bh!`W`7&Q_rpScLXfV0dF}$Y&nN5i|{o ztU?tSB9~Nw;cZL&U=q`SxIz^eB75SZdxlk@r21hbrvdr&Rba?1Rp6d{6)04t}ZOGdJxt>~^reV*&ekVUf!LaR+;8MlX%cE6;!l`OEN z%7>_Uutr5IS?X9}N~$D<=8-I48lARTVRjJ=G0wq=pF7f zJBrNxx&)~Zc=|c&=?AtlGh}qGnWH+)zjIQM2H9}+mP_Hseq3o;LH|KPG!S&nRtw4k z#rcW2jrlP}(LfY>8MDLtW{<$=oc9gA@xFO)oYHw4c?FMQ1bOd;jF|SZlF#nrCvEWN zg6u&ep=7Vj*j-6pbUp&=`20nGu7AcpRZNGkUZG<{X$Y}PHN>8k+Knc&ih-89s+!C- zZ8#DQGUj4DqNgVRA$u0LN`&$w*cLU|l83ubJ!4FgD>-0JV}FJQ zsZZXh=0x~;M_U-?0hB^RKi#T=a8q5`GioQNK{+(^i^O5WjN$Zv<6dBlc(05Z>{e+DdY95vN9#m;&-5OTMytg9)D2C|kDhmoUhxC5(UmEn{* zGL*!O9IJ&?-$oPm2Yc!HM;v(s|CxI|77=w6_p(w8B{9S2I+Tos93k`^4WWMW5VAQy zhn3yCn0Rv*-GK&4PhYPE612I=gq%$wG!T-$IthdXk;1*>Bv&3wF*Fb}pE^kTBfQn) zn6G7Mh)04tc~oFmQ>igzE7nWSWH9hhEd(SF1}k7}NRD85=@tcpOE`nUC*J%!yBIV` zdh%chC1@~YLjHq7XdoncFoZ&~V93P$m||!kCUr1?wUIH8B^Y=P>T6S1klaAD45DFYPS;KONlg)_>!AUVlEuZa`FR|NduYJByOmRImJL-{0)hC&dQZ`ZI)KD-Yz!$xD4 zA?9bC4W>ahB%d=cO7RU|An4~5L_=TRf{=6NQkZgZ-XW!BZlow0h)O+YZkZWZLALxQ zqbc;+|gQ$ekJctqZ(>a~7J!lge-U>)4hE``kM?Hjc@AHtQxt zB_k9+tf82^hF@2SIA7^q)o6an8lDCj_VUzGQ7S}Ap7nKQ%<%p84!2B}Zpfz64~5ttN!6oy%#6dFiLzD6S_CF^Jfat!6r&@WO)3kswWaQ_bj zM4fZ1%BAhQNYo)`WAj8VWZIcs2#+CbOJddwQ#pv4o!{R&AMxxyaDuEcr_x7gkQw+~ zSJG9ez7)h!LKVj#KMEz2dE1l*R)tF4<5l?->gjk;U%d9`(wi0hT!RgLBtx*-kRF!_kJREY1`YOP-S z8!Pr$ilu?rSf!cx%SL zgw{63W$tQ@G`g8bnnO*k9lNnia^+yjutR3Ue^^m_~oF!jU8;TkmYC)9k z)+kFpGZ2z%jM*$wCFYs*7aHV5@+GwsVr+cnC0$ENG?0`&=tGa;9C#30d0Ee;EE>qV zGIe8TsT<5OytB@QgLE9Ti%}(>?A$l`&{V&N;)9Ccp3$hf4W9?^l-qK_9y?*lhd?=D zV?#LztkX5Hk`I$}>>63}Ssp1XYB4{f!_dHClCN}_lw)J7AnNB7MFUaE*V;{r3ZknZ z>_!Tsfv{of@N(P@QD_593hfaLFm-C@$Xir)xyn&=;gPFr!PXvySUaI`)n34(C2jTC znhjFV=4zQbN_K0y!7Di%0-m#QN z19{hPebI@$VoVk!oe#_0T}g z-?Z}XMR_z^5vX|uUS1Zc`5#z`_n|}@NW406pymZM>}mEylwn}5kT}i%lxF~7YyHXl0&v3lafb$coJdx}oJ#=lIoYDC2LG-8vl@h=l0 zFw= zf$+3r{J9*;@3v$DA`~??)B=w>q#l)g0wN?=PqJC0O3b;ewP@f$$tNHt#AuE0E?Y_G zQxXj%C7*zB+$FWVyJclvKv^`9m3jigQ8#d~S3Ol6#~fsA(UZOVCZ8xCwR`vo5h5Ai zSC(AT3)~QyA9=a#p@^;Ha@X9c{taVnId$KNmB<(D)q9==GUVe@3s5&D|b} zD82Ql`phTkg*3>jD*1x7#y+fUGmgW5$aa8>&FK{*{Jn@)5Tt*Smk17v{rs9~$IA z@&|$iAvO-}8v@J}^S6{k13Bq?YQ9LM-w{MxDCzGgi3XCosRK-i8@UpC2V=;&EHrc? zJheX@wuc+#2nV;t*j3|Ky5-zXV$CaqD zzsqlJSoboYlX~820O@Sq>F(~zD*5g%Tf={a@2~D~r#$k3_2h&C@a0z!!@0kq&K_m`UP?~?>snaHuBCIs0LKakR@J;=&PrF&Jpp-RlH*p;S95oAS9 zKLwycR=jN`okU4ADT1uX=_O@BR{V*Tbvw$UNf2a3%7(pwx23x1r0HOoo@0I`L00@d z{kQgJe7Mx_j~1I@cS0}CxbB)cjc-VuP`K(YxWA;hm@lDis#=;9Hx@Mrty^el)n4gL zQc7UuFRKdkde+D^NPEn*R>ic75DltQIX6%a4dm3`l;#;r0xJIln?rA+BpOJH*w3#* z1~rr)VdVRQ^jmWR{G`lR>vx>~JSVOP3!R`#IK)Lf_Tfd_T78XAe6S{}a9uBjf1jka zB5z2-avU3KLP*^)QEOF3szFsyqe{#d=`=J+{J6mBJ=q3U;kK3ZB}$@!q}scL>*i0^ zS`~j{WqpORXdtWZE@6=ptNiBWDGZ(2wN~^T^P3DYap};t=)Vy`w$$o%ma#T;)amy& zoJ$UWd`fHB9AXveTwB*aw1zYGbZn00g3_A@S9s!nO<@raVnVJe!c+~yYbH9p>Y~;L zBTKmCi+KRMI5fzIh-RW*G5YbgqND~T(Lho}c-1N?3$nmPG^ZX)Su~Kf@j|~kR5e;d ztYJ{ER>v{-VRRMTH)0W66*a^DY)5v>Xbxvvy40_QsSbN_h8M@?*ZFyz6DO|cF3I0B z-XfO$)hk%_A?hBYQ5Uh)yz~PL7@6TFb|eCFu3boKW!U0>b6_MQFE7V1NC%f7Zw2C z_F>WnW>-*&_+O`Q13i^?F{uX8_}Hyz19Q|GhyIf0i+LG4PBieJv~8egE_5`5vXG)O zFQ+6LNJ`rVPD%>m&EK>+^-9X3fvlu$peJtFtl0~%wj$2aHqiehec#ej?as&5ZV37Y zpVGQen!y!+(!>dJDQ({}Crs5Kt}ffcxUzY|Ieq8EE?>++dJD}~#Z@Rq+ccj+nmOjF zlti;taTQ3Kj4Pj0PopfFEsCq%b6H$@5truTO5Jx$+N(YJxY~ob`Zhlf=i>@j{7Dlh zTNPI-Ow}N+I$Ic5Hc!I1a`|G;XMcxgtKupYlZz`a=>kfk*{Zk-Bu&PZmvs?k(QHv% z?Fr(_i&)IX6)r5D(H67NNcG?18bP*kLE z_zM^kiThbW2N(vKySbZ?7x6@N`av7MKtH>m<1hEdxm@711ul%uG2B-9xZE{+YX64L zAF&x(eF9Yz9RFH%{D?O>>mwJZ53@|wn5VFVLWA7ccmun7^fW|=46J=onP=0Bw7h}> zidaxpMN_{&)V*S77kM}~pW|?PyFK#<$ea0%m+jOcL>0hCUZ_42@gTSkTI(HI9+=nA zFKCeVjW?aHssSDma9>YXaD@Q=wADzzyRy{7Y;0?Gzf{7rasf{naA9mNKToQW@EW`{ z_?z_ANI<5uEYt)S`NOTKMhfKWD8WU|Av4QHi3Y`$bXp_Kdf#U1L%r~pl{HUUG>{eX z_H_j}4zk3{%9`>LX&p+VfwZI*Z=kH9I{56tJGXg-R=mN_=+Y4{##YHKzSZ2EAM}@+ z!}gUc?cS`dhWorR!y7a1#@O^vMGW2sxjA{yUCv`M0TCO>)Sm#=ir9RU#^wu>wi=Ql z`ILvgH<87v&U}q)F=>!X5qpW(pG#7SxR{;v1S|8Klt}}bzkgHa;|SXT;G<3IfBEdT zQolo~G?4n74HrMxo1utlW+8SBLC_$wZ8%wFf6Cytp;M3!tx0=VbHn9sM?Y+*hhwvi z1JmvH%pX8V(%w}jL=_-B-=pD~w0D)!iob_>VD7-mp9X1ij8k12@Ipvy_Q6Q$5V zO2q26+N5NSV@}RpD2E1eQuaHQw2|X}H-p8wC-@`WV|LJvThroxcnY5Sck#{1xz4Pe zzu|=$djVhkTw#ARcTG>-->_|qc!$98ZMdez{cu8W35%pz4` z-nIa@ph4;*p5)aeB=gY{N$;Q}8c15&u+p!l2zy_2uy#1-CFWyvS8)}815#!;ZYrnK zvLby83RxMO)qQZ&qxHo75Aw^Ck}EAd@(b#b5ifdGNh+u4gXEg)=TYD^EbycW4LV4n zfEQB$4Fn{so3xmj_PqDoLN_m^2pWjEB9Ys#h`&3=f25yVUju2x@N)B|zQR4vWS^z> z0>8)GTx#1TQSJ`LBXVbkcgE(%4g%n$@|)RpbjLC{*4#<_#;M4$F18VGz*iij^I565tJ>{0qVn~T4oNE(QI zMuLDWjCe>^M`7Fj3!T&~g1L|3d5=c`-=_3l zb~#gyKY{Rw=LPi%SB;3?|J3M>cu-a!ximp8cXHVvIcL_`Pp3hyL@aKsS=f4^>k8If zPkA(u7x5ggW_el5d6*o0F(uMK;>H`j*Q2mBY<;Hvlu_$LB3J0pxHUmLTv?L(&t;qs zTHF|$Kf9aw8C6degaTi^F1_88iH&9d4b?CT7h z2QVD%ACPF(D>Hg!Y<~3=gz545i|*Y183VJOqDwU)PURpXZ>bR(G2d24may}i)1o@e zRqU?OAOn(AsX5Y;zGUvc6?HX5(Lhu`K_4>5+0e7S&J)C4%!%}4>oe{S)okn|?QWYx zwga7Ed&7yR;J2r=y4_j4jjd0f+{xHH=K?tIG5$O_gq(

VRTuIjRCadq?%zh%l~$ zR_7gTwx|a4Cf0Z~NPWbE`1)k%dc?e#H&YA^#6&EgsZC7QHh8}fKQV8mAQ}iV8wO5Q zJ&gkUZ!%^wSA~X%DY2KQU`a+IZDr0{|RhYkL6-a{&h#|=adc4QD5=jBvxno6oFdI4^F>yxG{}sI)gjaN zE^^dTUNS(E5lZf!mGvdcqJgZ4l^6BO3Ii<2M=R|sltu$-8^3%|i!y{7bYK%q^>-`e z00T~4+~0wwgrkVL&iuR-9uLOm<4<7UOpfh;pikI0bM(rLK)Ox?DPa&hN@;AI*GN!`%1+CT_0!F-YxA`Oxr z@qn<7Qpg$)R{&BT=F^ly11Sk76GDg3hSd#N@^U^$IW&;7@q+w{8H3OWOXa1E4)323 zkg#2759VhjI(RTPAGw0xugx5+Yv6 zoVp@#5|kXi|8@2KgcAvpK1sGT7Fp8G{aD^KNOa0hj7zjcpKTxl84sik8pudEl+Wiw z5CDOc2U7|Sq|Bv@05UcLCp2GU3|LPDb;3^V!k{(R!QxwS2zN3zPg+DM9OKV}L&!<^ z$j>oSj;cUR{8(cmp-YCe;+5`#YA|1Aw}1wzPuQDttUfw5INW6`<{K1412G97-#At; zCJPaF%L@871<^oIx<`JFwBZgc`;QnanX5uW!Zu^^&~jg6MUKYi6$@-L^u+xS2?^T_ zFG0x>AHPc8W_V5sjv(pg3oLsYBsyV$<^^b2gfjk_GH4(pVVjYckp)C3<;#>p11ag+ z3}I}9yuXw-L$823VGp7+%wD^&$78d57J;zCon}Xnl5qAbkfIV04k!Fj@;+hzJz$l9 zaH*C|FfXSA(4_Unq6iI&yp&f`3Js(rd=ycXk_ARy&Z{Yh26ECpim;rGJooYNikw#_ zY$dvLZe$@xV{;cyPaUl%?tkP#!dAjdP;!LDZ)#X1tQS0|1VxZ^^C1>I4HBKOmB*2g>e1t_RJqZM#MI7)6Og@ zn+~JNj{tbE20+5egp5=}AV|M?2bbs2B=)~7`?JZ_uprF4D1-(==F|C~=xF4a8}vcv z2VhTF`7ZV6bdekn#^zSs>}s1F+y6kHu<~{E$_(E-J9*{nD8=)#RGaUyx}iae6IQ-C zdaZl|5kH^^8i+_(`Q}7qm2V*AM-)QC@=xacBy0q%kCw_;E`T>-<=boZ+>Ri6I5xN8 zew^FwnLmJxgq3e5L-`Q^7bmZLGg1kGF#YBR&STT0^}m7y4TGGJH&F-;ge06uEeOd% zAt&a|6hi|s=~@D%Y~+}qBrSox1ong#Q?Gq+)S4gJMHBvPjL*FzFm`4a!edBE*f@Dk z?VeBwB4l18Bw_WKnWNcZ-puNe1{siWzGPB}4V8kNw^9xb7r{MjLp}Z9B0U}{SWjB#~F@ZnGq4s)`&>h#dMT599*hR zmlY!oQk*m(ZH8x~+bru%pCV`=B4I;^pj${bR08P1%G^N>yoymX~O>MC@WW z?KG52eV9@7+`@HLWL`(Fp+S~hmu~r8f!r@}uqJ7QW_1UJ%8(^1wmFS?@uX@ z2J#N2i?=*?!)4@N=gQ*q=EV#{@A&Q>lqG!RcCg!DI3y)0M`LpW-wQojPu%~IknoY4 zm!RZ`uRqrKN*LXqQ<|e7>E>me=A=QQ6Fzdw3(yD(WxSj+XdokD7cnm*iYSLY8z{EQ-KAR=LJEGHs!{XodiDTIdQpR9EtVIyFDEB#*G z54;f-??M}&X=`;i+;r9c?vz1$ZpD6gP!GrEv+}6To~>=S2cX}(ahp9oz4F50Kd25L z5#rO6iK~a{HScBd(jc7?ZB0dLb@QBn4^RLN1VltzMFE+M=R|ynB4{9Dd}n}`3A-d~r7gOrHo+mY9rJWT+i>(d%tFTbg>nFE)@7KSP{tL%)^Ak$v5 zVRc)3o^kKIxxKb1_j;GX2PUo0SegGo_Z7D|Y_UhYKs-$n%&M*q!vACQbj}+c#Y45o zxXaU&vZYl@_|(6sPqmY>NtNvrY8L4qG)U&&B>n-eM#lFg7PRCp2on|Os?p-a|6}t4 zZZUck57nkCPD`tlD9&#uEl!t6Rs=qw=5N{X&?GBPa5XZ%Z%J|TJT70U)`fnndkRmn zJheUOaMOKUXrUolm5*Q!WdI$Vj}5+qf_G8FOKZoTp8WwOJYnP5*`x%eMREREi}SMD z86+ZS+x!wDQ)sqvzMcl@xik%1Mz(`wG$4CQ8nVUKU~afL==Ap61m2vSG~m1<9p|Xk zTeOVFlaU6DPfo*#IiC(*6O$4=k#scaG8J@q(z4X=%vsJ`lanT05|;;=-`tjTH0kKb zc7L0?Und<6=ptH;O~$xH;BdCpZO=6Wuek$BX+WAN?1x#7-id593EAXxtKy<}AsY?Y z62<+nKR?RF{oTn)1I|QII1GyKo}{BmmqfDVl6Y@&(txv>rlJ`w4%)-Te%A&5DWs$U zWyIUC(}aenM0^Bwz%DY=fccUQ`;MC+ZiH>TR;fQ?N2A!T0M1UB3C}hV4V`X1BAytr=?`LpmDJ)zEHE&@Eyg z$WCt|pT=`ZN(0gw`gbLyy+W>@PevLr*3eQ!H#U+26v~ z#|F)P?IF4c%{h#YR#EY~@8L0E%te$y0|_-W-xCS85^|iEkdp?S5et?#9WYBs?16S? zVG$q9ZsAkq*#1Y-`egFbfH#FZ_2$~Wl_kvfk6hGTK}H%drf?^C6G&b9T4bY1#J1e; z9$Ia6ZEntyjRtHH42vhi$$wvde6!C9!b+j_OpIh1q=a8H<;H;rW`+8hq^1FN3MbBeDAXqRT5{5W^MdMqXxr&)IA^vjC!<@L@5$CMRGDjyTFud+ zW&Orz+7BUq&uH|XO(p3 zSA0Z61J9_Tb6LtL`z8w8&G>weCM6pi6Ja}=Y&2l2p^H$KHat+)ZwXq;V@OGpE`gXI z!RN0efya`K25gDkCHsnyFrGk08ZbtzTiR?C^7n=B%?Rx+NlTM1TlLEo!gd?7(SR*M zRl`L3j{ykbuaS@@UGj7Tc47MsveAI8h9`PuVIg~93)ydyj0R*iO!<_OWqStOxHy@l zH0knFw`G+i-j!@LV5?ygtu%?c^QO?|ZPZIZzIkd6j) ziNeosfF*?YB_U0^^x2Jugl;$KXh4^!$<^&$gzbK0qXAnDGc0A^>9+C^z6X+zCSB^# z3&zeJ!uDXY(WFbAeHUH%9!5SI@FnU}1n>1q5>F>34JZ?ZgMUj>2+t%TO}Y})H`9de z(PX0mTf|zkX?hgyWgPdujTYrOB&GpzqH5c|>mcbok90KYa#dHD3)|z#Mgz9$4?}~X zZv@9S2HTuoD2|UVsy@oJ3z21bW{=0_H@F4=4tKh?v499NJ;aCk5 zeqn;>$8O0q(`42-6-0xSJihWM+EO)KMoGSzH?pL{EUTgW=lTlz$l9Nc&7(#rsh!z{ zwVjW43%6^U=keG&d?q2v>o2vuB39dPRF~xNW$?Vg8fPjnuVO*cpdf2_P(3L^mahuc zYe+?tib|GN3f1dKMFXnpPy2nM{Fc>tnkhVQql@M}<-+Q5-EAFe57a~TaBM#M0=VaP zd$zXyT=@kZvxfPxj81vrl^;^Ctl>#z2CnltbFF2pQf)U|s|)xhO24}cOL3SubL$R@ zj0TC?0^Z$@_qODvNz02_B}uR6{dMxvfVYOBW-*^JxsK;S*e(c9Fy-N_Wbz$IN(0gw zdJ#p^Vwv8FbTmone3ssYbTmon_BhYEJLzaZ_rzMGUglh8@i0IN?VjYJNy9Vmc>?XYN;dBqr;&{&30r$V4$U_638am7c{{RmbAc(_1lteTjir8vkqmEI5NIRLMcC+2#CWFoPl`Hbn zge89j$!S1d!{g)$@=;hVH?cyX*T(V^N%t9~rb&{)ojG5lJc>j#X^1kHc?^kYK=h>A zt4Mspd4#7Yl6U8li3UtH^kWOfrY)(ZI-gWDpsHbxs+1~hv@akZ4fyJBv|Y!pi4Ku=p!Wwov?3d(AYe-6(B&9VR`Tof&iD*DnePxFxt)c%}SN|Y~ z`@!J5hG)v%4nw%v>MpeR4Rq5Ny)mAKOt8Wv1d(zT?HeGGCf6zx4LehCh z64HRMhL;l7shCOF)&=y!dS|lIfHj?WFSYi!o5R()X0P9C_Sy@W7+A%NEu!FVR6vuo zeD&>}rhLa(Xn%{eG@wn_IAD=NyE*48>)$3RP0})6TIr5D0qYD|X~0^?)Ju5{rmTeo zpGs<)q||uPhE+$t-q=HG8c?TesD}M6p1PpwX!RCWx-Hk&xj)HiK%UOK7*X@x4qj^# zmwpgQX+T=TB8qit5Z%5PNp5k8tq?zi#55pI*QXo}us;)?xy-R9vCI!AGYy#2HH{

CXXkk~pN$$C2F!SL&`I{d0*0?>oYKxA=cA39Q9TvRS| zBMXiOX{lo>HBYx6Z{>DYE!8hbMFXlDmaH%lwv^~k-Cbd_j^OkF4Y=y4>Iz(aKF{t9 zhv+y2d3h8`X_AmS!d|x@<{K|Zt#VxM+S+mF1%Jau z9~V>~+=L9eAc@SVXZC45Q$vIlDRcqIusP&-xs8^QjOL3hL>i>4hECr)q{IGfM>_LO zY*mErfKY#l)HL-tZ8`O*+iqcko{v|A^eZH#*#c5NWD(M@l9Xl(NcpHmNWVc+nuI00 zZ_sbe%`$_Bi>+nuG9lF8CN&MHYZ!}{mMrECXZO>cq&F?J-z6;#XlodYuS47K4>2Yc z!taxiCS^MN-Ib*tq83}SSlS4x#1L>B>cC@Pm?m?DjQf|GSG5OyS0O)~q%2xYE4>az zD@|?;+MZp}2Z-XkXOWyHVQN>yPRrROq)AE`bXp!uLK+ZWR{5>KFn1f_i4D#cC+8;S z##U>X8*`uEirm0xNxsr`#u&3%S79i#w(UG#Kpvb^pO KIZ5CTIc7^sh++3%+tEk zYskhP7N*MUu#wrw-;d2Lo`Gz93?2!rZF?Lq)RT=)i{c|2KU`Nf5*c5&UPpQj-&E-J z2TS_oNsjQ*=x1Sy_-H*@JNj|F&0KnHb!YQbN`h?qgl1C>y=9Lr)4;Os4y!B%OG;&~ z;*%g6Rvk5_MA#Mv{gvgA?P{{ofUSmxC!aRFR)SrzXWJp+Ge}4S!W#N$c|tsj;RRWf zWV7>Gl*oJz;|xt z8dy@<5NnI=<80EhkgnmuwQfc#)vz9p&A&XC53cRm+V%@%(^=LaH9WY^=#&Rl$Tw=M zLNaizL-6iYf2G^)D3$qp77h)PQo|b$6KwnxC-csHl0-Bhs-dnb5Y2T4o!P~18*QPm zeVS}EV5{LJgaX?FHX(QE`W%^Pz*NK2_yUuCSZ!1F1#;1VtNOEBrE2JZmf`D+rNFyu zm_-|6ss8LDMxzo>{%mY+cq2k;XLez2=Y{U446O63H)tMPAJ&o(vGrdXTQv;Wa`+Nn zE4@K$72As2?Y7BiUd9eS4H8v-Uj@(E@JE`J=4ULsd>)SK$iq$bM~4i-ORqt)pA0`; zJL*E5Bi)awO^BkS7=NY3cy{F$1(K1MrLt?N5r=(D`#I;=66O=H9UZ#i}#4|8Qz!xX%1T!pEu!JwsIaMuena$#)ljSq;d z9hbYdcHD*h5`Ft*{Rz@r!^)PT3}uGjoTPqJ!1MV7LqbTK`WPJr$X~0^2 zhAt#+=!p$wiFR`v)-n?@Uc-PJ1ME>}IO>S%yV zGIJ4O(#Hm7m}e8pw~~@3T@pKXOeuVCCm&5ZzNI!66}c>ZC;4c=m!P6yQ;RKDm*n#! zlEC+nkS1Lj3Sp4O_mPq&U7nKCyXoJMk0xoJ@?BEvq#q_B4G0reYuNOsH|lippjS%q zZ^=jl#_Bte1{F;sIJR8(Vyjqek!l#8;aMY=ENa)=9*@nh-N50QJ6+pxk^YDS*&2pt z0i{x*0X$C|z#1Nx2k6rH^|5szU$Sm4v`0<5v#ZjYS8-y32I;CkX0pT$`@iKlm*o~_ z;8Qp5%yhoj zVRG%+6h{Mb2REFds_Z`vmrZ+FfP4KWq4X$oF+V6@t@;qY74W2*-u33P+n!rQzr@%empmMI&y|Iv*D_xoj<^qT>B7-%S!Z+3RTwk4F0CW=9gz>m;8qZh8Bp4A z%y@LFfZ`C2tEs~=&ntZ>msxn7GTV@tddyqsSTsq)F{Ab4eVs5~U)b9yj3#L~mIx~e z$Lv??V&)wbN0TxfGu9v+aZy`G=k8`DACB2y(Yse_?^hJInAWBd7iV(&PVf0Mw2LQV zm%{vYy%g?+N|6!IbT-++C=od})P(rER^#u`mgJ1Ig#|UL#C)EE7aHWim38;93X~0& z#NJ%KOLmxN(|M$vayKC~4LIls=6Xg2{V{OCWbxqoGd3PruW!%A1FmFZaFQ|}RE#P>JiIz_JOsU9 zm)kD==1VMnnw0Sn3efR^Ep#vAE0jT#G9CgMlkwoCe3epY62=4j{%!#7iT@}U54a2g z$>L#;9d6rr;Kl;K`jfDIz?Cc>Z~`&O+6NV*3J?!(NgNM0?b2(oj_A^F{)+tt8l*Q_ z`w$Aq#e?vSOd1wu-Te-im)afY zN~Mf=L}D5c*IucG#F-~&JRvdy5 z7KHUXs}d?1ob{8boYf|bp2M_A;>=T7Y&1w({mvRt>MTh{{4^5NfVh5V4TuA0^{Kvw za6NJwNIG)j}mG9nth_^d(TEKyVKtuhsQ{B#L9wA)`X6lLdJ&l zaOE$nD@SaxQ-MuuU&pW9=7sEF(jc)B-zKa|Z=Jg!;w2P80}-`PU-`22!{ETt3qoE- zAv6%OukO0paW%XmTL%9^*AILU@b75@ zAQ)^Fl5Q?%4M&qO00R140J!`&PoW5!gaHtUm2zX3Q>9l!2hHTfM9f0NV@qC)_F7u10bN!1%S(c^J9vj zNf-cuh=~C3LjIFNXwn4$#+Su1`0p?P)bDB!0RJ^XX$Sq;*qr$s20(TpJVq|m9sr(6 zyFjEz037pE$@AK~Ksh$)0{JVNbn|)^IZcWH@MOOCp#k8pTM;)<1Wk$n@MK;@76AU9 z74jwup-B(`o~z-HEb9)Ge!=f*AF$#pT#|nI?AL)e!Re3Up<1N2_5rIU92=6s#eYp* zy!P1@moN@ked5gDvni)R(rO>DhLq~i8Sy7cOatQD2dp7+=ENEKr%6r&^127CU}CR zH)r&#xHH*TaZi6HeC&4X-p_7Ld{7sOh}eN}b1vd^6v>!~v7uJ@=N|RX=WS^YvYK5_ zohmaOHlj4hnP=AQOzTlM+>O09%kaPd;xY5f?55lK0xo7O=WMU3KO=LWEVZ9OwvIRo z7ZA<3FC;(j4RFKTV ?UAYmiTX7#&hWLmVUN`H4>xmy5s)PeROdT*m2(L#iwHM!u z2o_(tOb}J(S~h_+$djkl?tEp$aJ^A(snOoNqKDG)Sfpj5p|bYYlb^sAC)00XUyHpR z*0#y9{STzIx1Nr4Y{&=ac#Jwn?X9OH5?9DlXqv2bXpp+vThAP+ww?j?K2p^%<4>FtKW6ePf*vz0X75VI*4uj06IE;@*k5}cQs95 zZCJ?%*S#c_>-yB85tZaf3eBIf&Z0r;>UZ6c)VeM+RH@%WY8p`2@46v%;JO+8+elBt za;@8SLDL9w`C@fll7p@GaVVL3-goh$?)it{yhqFBvHKsy5wDYPuA%nCN(uj6Q2&kC zp>9eht$UeZ8#}gn`myyZ5Z2$o_VAJDW%Xn^9Geq40N<{CuCYI0YHP2HJ-M>Nn^)DF+v%v( zorAQR@3TZ{kjA}r*Godwu(>IDYgSmME`z~Ye^o4`eS9ON9h9t`kIhA|L-8IPbg8kG zNO%T8^;eg9K`H{JeT|lOKTT-|8Nenu)1drjf$b3ul3e?<_<&B!01|A2JR!tT2n~eP z{^mxRkf3Ip5VJ%vG!QeNBpRe#Y)Ax7X`aEjDEeaU4UBt*XqT?U#i@V&{Hd=+Xxu!w zA}7Hz`Px_F=EaN+6(BBNsBuwy`bd=L$F}Pa8Dv5BGN=^AALZgfT`*ZZ*fkU`9=L4c9{iB0j|W`I;z3t3 zB#Q?XqY4lYZ%G^v!TJ&Bh%Wu+@40sdP0Dx(1mxqv%lIT^(4>rqK*nS|cqyNz6qmz zIY*=>N(!so$7hJH-9|uOwXpipQ?JQx~jUn8Wcn* zg>PIjwLJ1|WDMtTz(Iu5DtKNI(%5z~7W^-0DY!Is4Q-|HQt4`k^rl|iJ3i-f$HU8f zqvVkG-M`|;r~Q;34HE*m@b%&uz!px;=|i?TT~_o2eMVf~fRU(?|EFiL)f8`+OFpWQzykixH&_@FkP%Of87@3F^}psiGCWAk}ZKZ0hYf2eo-~@1Utkdt}KT z86{Wh6;W5*Fn`d0cmEq5K;dOS0cKHD+t=CJE_?}KBBH7G+)>MroJ(^@E+1{)srZGl zT*$H0Y3?_Na~?Q|>fv!kcZj)wDNJ@k&He6x&Ibq)(EftkM=oB?e!IXM(YQ7FJWa+~ z*8d`s!aKjdEM!_~ax@>kONaZs0u%|8lSc<1MX+IVUX-&j!R=L6YRkmfLX37sFJ z+!cP>&jqyuNK=xgaFahKG=i@RH@dG)?kx-ao#p(Mgh!~?qHV1(wIHisH{HHDplF3( z_aI?=nb>?9B`@Q~!{h81|E~fUewjE8Y(vVw$NY~e(84bhr;$(V9JOgeN=h%#9C zDos9YW?>(EgW!mQ7d|D<2hW?>0}KE_1W@#4ViVuk*hl*jK6buRz``FW=y#osyNdX0 zj8*pNkRB*N6|nFJ3S2-NO!hs++PC-?>M}-eL|#nhlC!8hL|H5P)_O&$Wsz>Ae5Iv0 zqZ?>9JI(I!U~ABvy6JNE^WJ`QxureF{VOE0ucPEmZ&#(A6dcKYQ9jR}-qUBP?<}~D zsG7T#t+^S)f_am7gGQfS8!fqdzv>N9erEJ^Q2|{)la{gzdktX`g`IJ(jtU#}Fyo_GTg zfzOJ!Y7p3llT&}eI(0_pId8U1&yvqtQfsT$5M^e@lrAQmw`s0ClV2w&qM$SGuZam7 znlvByJ_JS-_@Pq=baTX&Me|YaghK<*DAIZmwSo^~ z)0f8{U_EwjQ3;#6&vKCTsRKmx(I*Q}9~dkMwMi&Mp`ttRT&T=mLAXPNL#UU?E{$Ys zLE87nTek9*`h(*u$2&{Ldhk1BtUUw02FI!bJfNTeHgUP?x2&t8J6} zJR`B&S@u#aa zX=gLCWuqitWz`%hruNeUqpS2*3&MSkaEQXqSd`nrX*i#+&~8D<|0X1&kY~pBWhSC5 z7o`70Oy@1381dD$xo_BSxW{t`?u%9!-zDo^Km8tjBxBL`3xe8MGT?Kq0po`;LE_ee zxm+dxL!W>Y;)?NL&W8Dr-zFrYkkLzizEaY0XJEyA*zXY*QP}A(=i7n(UD7ol-qu_4 z91NKmMUkQ>1H*Sdh0!6o?Fi>W&EZF@ChA3FDtKvA4bU= z{+bb+`Rx8tkm$*P4`S1oqyE%7Dtb`h6E^)=mV@L3Rx1(FM^6TFK~ht>!b(me6rxbk zlYv~QoUMGg8xjtoULsGRM8jAozPa}s8<&_~SZC0UOGe4_dF9e^_KW{l zfua{)O^O7vA>^;Wvi^!*cuiBb2FtRMT+2WPQ3m2WleDC=ky=n@$)^d1C|LBuYd%kb z$%5SdGXW6=j9qv&@oHgq-ht1Y4-}vPqiuGVoze7Zlsx2p)@Xbo5dSJr0Y-CyYzP_c zBZV2wrRuu3>09rFpTTVO!3%Y4F$K%iV7h5K+K*qbXe( zEld5w&S)GdEJyW~)`8ZFor#)YOZLDhxy|3mb~nf!b6?&61H?mOCkH0|0K&$V7e8yg z7=0~rJV0hipAD1Ku!V9VAks)o(r@2l}rJfPx_~OOq*o3#9 z&x$^|8xV*fHjffS=KcWW9)KX!|5Vo(RTs4&>Q}J8wV&cP7gqq@^``p&@NZ@MJ$$sP z&@=kgBJ%7)j}pSl@jtMR-^LA>LA%{i8~2%IyqRV=c{nwUD7(GImvlDR%@7^|0wRQM zJho6o{xh>@7>@=65ynLe^Sa{IvY6k;>Be)5&HH+zzcN_wx4QdHFQ0uKCI9bDvi(WH zk=z$ytuM|MSyVffgGFuOq;Hx^IC!)In@%`mv1O8+$8rv$GI-okMX~3D383=Z@N7UNy(k!C4%)-{PkFK6hlv~C!;s?k1Cke#nzU`u@q`Rx3mptft{((sOe7V)cpa=kh}p~Ajl8fG>hH{+!;{O%GjB7webRH>!4X*ZaC)++ci!){#(-WHtnIxa1k3>`k3+%MB zxap}ZZ7jJ;O0EM45zqpMUsHf`%_a}^1)vZ?EpGUgG0}kX1oxm7g$5SM0?#KKea)Us zRhdtt=kGb@ddKiz@^62}iNzlE|B7XSCzh0DWP+>d+<)OGmNce0vDn<2=*gY20-{VW z@Whe_ux%y8SONnP#sa&LJVw?+LX=ZML4>ln6N`yh3*(+)PAv9_LNBm2&=~GvT7&sC zN`C7a8iD=d{}sXl8$pU-gR2odeBq5CjcFP|koDv`u3{p}^a2|}9>6w&5aSDAAi`K+ zBgkW9jUYt%5-5mJ7S{+&L_OOjJ6azk=b1)ek0|s4m$3(WZnn8nPp4k?`;wjUe22UC zP7V+GZ{~mC^4tR3=NQ^30Y^<_#Ws-z&Wy(*n}!k`vn0t6=^+sn!)1$`4F!S6Mp?lx z4(S+X1Bj5Gbaauj1~iGa2P{Nb7cXp*62z_9&lgym8sj9(v?*ui)V?#W!xk}f9{8~q zA4bXdSt>r(e0Kk+Fcx@O(1*8?)occ~*(~s~pbu%=OPcHCF*Fo}>R+HMeSv4!NwT6( z8bBa|SY&@1LIiChD~%OE5bA$%jX?oxLH7H&-`Y=c7is&Jn_>*~VU#TWrLjGq6`p^{ z_5w}d!rREQ{Sy~&dl%B$o-CSNCx1yrBg*k2Z6AiWqp7UulXn7v2x5`84@;MBXEu%-m@occAuMoSZerOMLvXd2t89x| z;8l+_rfn=)){}eT07RKy+$_|@uh~*g$aV5!>fM#QLNBoQB(p*9nSC84PkbZ2XK*C< zMOX{$J+r9R3$VxwuUUBSnGb9XksY#SlKdvFKvV_`>^-x%W3$if2M2T(K!|`A*n4Ji zQ=qK(%zkuG4*?1h)Z%*2EUbAx#9G-AyxR1h*SMRxUSu}*L!VywJiNMO0NGl zHKY@>1L0>OEpSSZ#*NZS~v6^CQn-*l*JfkFiJl&zazaZp*i zn-2DAzz~5AwrqCMTs2RTZ9I>Gl26jyQfvDP71K5*;yZ_G9&Xm#t^M|)J$+f?%P4vC zo7KLqpMEzV&EIjJ+s6Bj;y`SCHKl*IO=%l*@wkAd4f&$5(UW!TfMAD3_|(Ts$7Z(G z_`?okKNyHG7SiAPcqvBKPW(>}r3(rol&#+sIe(4R6!!w_HeJH*uon*c3v6*gbglJ-q@OQ8@EwJ#WPOuIW-wi?oMxoD7#x< zL7h9gUQ%v~-sU(tg(^?WT%n({h*8h}hTinhukULPbk9OvyW_VGXaX9%I?VpTlKq1v z_Xlau^&ZwXZ*#=I@jp+G!2otxM#e@7?DEyEt*@S6281!&k*dH_CVzwj5tY`9O9RdN z$88|L1Y|_Wzq^3x+mR4z_QwmH<+M+Q^>x;%QuoQNXkpI0v)#Fnv!J7&Y-j!zeIH@V z&>Px6^R3N)4~7NX*k)ko{m}&6C;>-p_Cq%5;0u^JI@3jS;)#)M`w$J&DPrbu-<75`>jJ}z@Vc`_UMv5 zs;wEBqTOWj2Xic+1m}WF$M0E%i>L?q;XiZw&3SVeoyF{1~_JoE#p?e^YraWNH~i#9tOfjqQH6u`T4J zIu_G3v*4IzNPZQoAjVDJ$t2>Bis@vz!WIVY!)r}~-3t6Ea z51*Z<@*uYW1X+;pTr|C6JgE2Nk;Zram_je4#q}GyyQ@=Q-Y~-m`)z4?W0X9McR-$) z9q^y^rwsHOioQG)d#t?57JTU{m_Z zDh_Z};EH`AQ#XgO(dai;8_TDKPVmP@$zERHbBg`brSz~rQcsUiObhgek7GwAK*=F} z>yU-al%^F9i{4|$Z2={Z#Vv@6VG&oo$D*d5@x|gWF2*^ovT{|k$UbD~Ud?HGl%-*R zl-!d0y?h^{1O9VepBLPRSQv{ShdgfaeTd6`;0<2{$qBduS!^FN?5BQ6Lq9g`Lu|1x z)B|?gCD%<1HF5Yd53;2m&W| z8laxx^`S4%dB7C=LMCvoa~f_g@At3ib$x+3qWikpE#-#Z9QL69Ubp`no><7L=mea_ zkuRQSeX+<>YfvPiH-chGeja}yDu6{SK<4tFc_c)5E4XT>|BU|$`rq1(ckU9=BZQ~`M>8OU0 z*%prr>FyKEO4|kg9Dxx9p0Pk17dV?ZP3HPKf+Grk{?zgFT(N5|(gnsO#zo1M_}5#> zo9C=p^DH-8c3RGdQSzC8kzch>v_89kl(7dE6~v}5YrfW6^W35mHglUS2gy}b3qrLN z8pOIV2=y{TAqo}UmyoWRpwPxL-v!}bK{$kZi8LI^YLjqZ@5wbd%vQcqe{giU_3Vur z%e}!UIrQ%`)*e1uRe%Q+6u>4fSN(-`Rdk0c%AgV)eDZxt9ufM(3qm)(b(Zp_l>CrD zhyp#b$UuRi(qPAQ6%0|Z*f(sc+-hlMCvV41rpA?Yd_UD2*f(q`fOcKI_T#3X;My%O? zTnT;&-+4f#@a0m_I!dN3Kre9=7VKs3j_W>0TBg^ed(J?w-%=U9h~NTpa9Y5 zyk>vZjH&hSD0%CrWwJedw5kBnlK~gNCN6uO@NH8v@h!xGbB0UdlSeVUL4+RNXF7D_ zUuP^|O38%;LKG<8!$DpGQ>DQ!A{e4zv6BI1s+N`4@v4oquH(&g$X?LZi%>?%sh>4w z(nkf57GfqFz$Pv;{X|h_a^S{H9zN+(>_{PI3PLzDrGYLc5K@SlfFWUKHlTDEa!AWT#`zXZMfzqi2>rh)rLP`Z?>U=y9V@*q;2- z93(elUXO@AdQy=KlA6jDR&oC3196G>qlbz5~v(m9Ny} z&mD(0I(N0FJwA<+8~>{rU70UByPAI$D1LP11KAMr*WInZ;zw6LWp6N_jpQA)Z$uf0 zKQraRq!vqqy^COog2j)na=~&YO9Q@#fQSM{kFJP^&C=BGhR?G4k2czByXUSxnNOo+ z_!*35zxaQPFj^YOhLF)tFUV+V%Eo9xHj)*p0x801`7qXKVX!rVAw?K1A1pIk7%(9q zQh?D+y0tL%`x>L!BZcM2y+GG=Y$oaS-OXS6m~3~0+%fkxc&57WrttuoC4Dwb#N;}rV2Fx##%*ESU)`D-G%#pB^cM(?DD?i=$@$dKV|LAl{}SO5 zg^zuAa~R#4H+y$86`P!kiLI+Vg~CP;{8qJrgY~dJjFPAQ8v{QM>XL%_M?s*`uYIg7TW9ItQSw!@ z_QA(1_Mi$7y^!Vt*u>?k%dD%S$EYq{(_g`A;FCi%YDDPK3u$2pYpE>Ir36A0D0;dQ z2FeVT1$#Wf5Cw}}NK>k{AZ6U->pFUNx5kcp?rui+d6Yc+gX*nL@L#h}%1gX^vw${` z4E8K*u;`Ojm>GI5p97PjX{(U;a-`t|IhhdZ+5E=c_22V}?_<`1Ud?f*v47d@n!02w8O zmPN0$7M<}h>h{O@6A^50XsgiW#KcU7R3xH|Mc>spJ#5ajx!?y0jwpC1c5*R2_=JIT z0G9xO2;k9?L%m#lZ{`bf;a-HNy}{fsiX1%*Y;_uIW`@CsQS!h4#4yl&cK;|y^bErX zvFXdK*I2VgHwT}v@o1KV+PNUskwK`35emTvu|~{=%KR6E`z^vD)Jvr8 zNVXQF{Te)GD_^Nc4|Q6D)mFFV9;)|WM#&%lgDiIa^n378LC=gX!62xOCA+=d+AVra z<)LkZ(fQjSu#u9l(kCFwN%T3#r=13K)^izjA-_gQL?NU5{)v!*1@mG5o3Mz&J|xzL zF6o*N@3Qtb?3fuvk)j9qtwF16FY=pDqvUU|l^Kt-U;Muc6n(WL4P-;egCDRSj2;iC zDce4e4A~gTX><*UGEjik(~^?Uz4fwSzf3Sh!J@~i`8ArXa)y(!aHyi6CQ|L?fYTS76S7fIU79WyS`zoX>IpOWGB z@X@LQL@)8V05);?>^s(H(H*k~XZ0n8PwqweBSMe1au~w)XIY?o69`eD=&myilo=}v zc3*-a3KqM>r&McM%HPIMrpA?Y^c=LU%~P$L^kJ0zjCsJ1gSr%9{!x(VIj9d})0d-; z|Bfk`=pNW7Z2B#OYjTkM9;J_nK6(zC3*tLqgU zPqbQ4YR9QovRaRCB1+z_mZS#rOLk{|NWIocgmy>lmuzk2?AX&KX=lMl2@z$yn_J^W z4`%Yor}lFhFwv5yF_=MARngPKDFHJp=E6RMu!zF06J zjYZQHIVv)_8BR6+aq$%}{=C|=t8wj~7UTZni{`wlkLqis3J`x@wE=A6GUFYr8RO5Z z4&0nqJ$&+YdJ2Tfi1tAc!uc)@^gjeb6ezya2m%F8OM`uzV2FZ6pI3WpwY0L6+v6!; z*G1IHT~D?BUT^KLr;d`9&&g27DV)Cef0c*mNvKJYKsJPIbvJ9P=+%xiW!t@F*+{OS z5|Dyw+?5pmP0i)YEcso6Aqp1XZ<7mCEd;K`6rbix3AoI{eAx1NSYzP_cz6Bc1X2JDfJ{!r;ax*tll+m&frVs{64dz4rB%u(6ik~Tjp>p=};ci7Z zgnEe`j42xC@@YQ=Z`sN(sN5PW+V9sk7{#&QM#*>oP9{4sI}m;?o3L8I_oeVq0sy_6e5*ktH^NRAS z=|l4++r_P+eH5>Vj;FQUXxFs?p`U{AeM#R($u(b=VNaG}(?jVu{s(5dMGQ(q02@@E zeZ2K-^vb@YPc!ID>tot@$t@UPA<9w_9i2~pvVZlzxWKn2FrvV%0(w}Vd>S}sT>q;J zep`Yg3Ld-XTu{#RvqZYUn8dg!c^u~TR`TX4%)Q;7-B8q9Ro_R+eYi==hg{-N`mN5l zBHil%Y*4xPnFYJorSC@urXIE1B#qEYtyiAAuOV>MGO_j!%liO4gEGkBMKe8>TNsO zdas{3HVyQL7?!bugTpd~^|pS0T5njhKkcjjIqYpYl=Zen?N96T;{ZkpL1o(46x`do z^mDEy4<=snL@E(cnHDxy2t($5n+1Lffe{5RY^)Flo^);&{AmP76uhXhf>O`Cn}vFH zuD9j5Vn(k~cN&LUolSc`g!?>79`Z@K_5}Ym`=o%;7m0#^Hjte9HtW>r<)a{N<5Hgk zlcD6c)D@y^MEB(5p{zUe0dGe@L;<50C&mM2uFMC$13?i5jeSDJrCiHL_;ZYyx}8%zQ})4z<3j80c{|e@cl)ZFiYE-Fw9Vru!Mss8}TL_ z3*}6h3)mqbqJZ%x919qjFc)-#pooG-o6x3Q^Yw3xk^HSSp^K_8(N}0Yo9$t1qpf$d z42HM&Uq;CaHaW49GMwKk)kV5_u1Bmy}DlT zXiTZEOT*rhzK)W+vyIkC!4dPt{dFNzp?q)~QRe)2YtHDtE1$fvXLiU&OO9nF1}VZV zS?cL3khN&`gA02CVG)Imo(g5Dr(rXjWnClMM^=--N5HO&&Q>7(B0(z^gFxkz8c zt{5orOmrXGZLT$jdWpQXtNSuae)}Wzq5j8F@KM=}?n8aL1huhb({C5lhlYt;ljd@j zyn>zuQBI=!(1~Eqp!twj6B1F#=st8JWMIyG*lP%jC~RyW>Z8{D2U~B+w@e?J9#o|0 zIf0g?>@9BAlf9w8h4KbGJ$0gf_IFV7IlCJ!`qF5cn)M~&NBRvj1t{xZuADNwA1uoM#;UnbbtNyd+4cBk6v^632c_-?0*S|P%n|=Iil5qtlS58*~(YygQ;tHD~(~JK0Lh9ybJyO z>SlL&*y?rlurgoMANOu{2hCx9rMcSBf>T{PZ8r3c|IPGv=GP_n>yr6($^1G>KKp$c z@Rqax!2LEYX->e?PcA7}1hhqycOPQCdvI~ZLs8BwK+BQ*CkrBoGJWwhAH?RlW(c$+ zs;$EdY$fVDwdf$u!7#S6{NIIjO@;J|E2dU=wukhachEDwA_x6s-a*;V?w1rdO%&Ma zUBz4_nWl^3M+s2!&ZDh&3T#@rIHnuSJ170!G9-7!H;A&^Daj) zW2VN+Dcue~de2<=b$R9%dCvsDyPs0tEL~jlh(!U961ZfWRco8gMFpDT zn;?sZBI#iqghpMMak4NI&f%xjIuu0G#5%T?W>iH~13u7bw^o9)l=GD9Y^>yjo+=noR;I2L?L1n|L`f@= zEF~LMqAkd*=%&waSDFV}%hLxM=9j&VL0#ucdEtO*-;KeNzG_@?V3a)RJF2gff+KwK ze@&~s-}J_`vye89s_C(|nx@YQcbX5*{{gJYOY&~oA0qatyNT=|O06-tfU;1{__9ha zrC!F$X!@GKb^>+H<&Lms>=9czx1(}ysLBZr^1Yt@Z&cCr)s&rwm%$ZKwRE|yr5S_7 zZB%{6XAI{mDm!W;C4WU-AT}d)>79%x_Efwxw-?TC7*cYSKfG=GOl?mKt2rlD*EIprWr&Y)dScav;5CX>Cc>P`B^>0k5o&yI>KLMKTf7j zO`bPjP5OwFiQ<3DrMmrVTemY7I3ml1HawfdG94K~neCO@z zCV3YoNh>J(J72@pL2U78q2kEK3H~6n&R>07*13((!qT+A$$qW}KZoeQ6=|O-$yx(J zCj))h8feDq>b4CuBaG=VdJdVWhOWroxJD z&Oz>)R_7b-wwVx{>t};-ysuxE^sAXo+h5ZW|Aqf66Wwz5ADG{!Cyn#xoFE?&SIcCA zl6S7P-kGt0xRrN~7{eH6=3iKX4&CCcj{h|kC+j>e?y`VlZl+h$Uod8e- z$tST4l{32n<{T!kZEV(CgL>mYqt$NgYun2>I=IvtETsoW$sJgGzwyLzb13)!(l^L|D20UTVPu>IpM#o6K1TLZ`B!W5yhC|2!CTKlC$s!qU`qO^2ZTk)a-8>il~PC z$>V~w4jsaOVjEXcMOTGxnyxR)kjuTk8@cMpl8!8yBctRc|0kE+Fn`c|&;B=@Fy}ho zM0gueb^kqE_j9iEO{8mTJ9pGZN^Z$m6HzASTj$HATGKZz@X!MU1(@Q3*t(GhY$z7-s z1Y6D3;(P>K89~x}1fDOJ={NFjd6pr9PU7wy9*(>8%hWN~kEw2MKK(~?d@?y|Eux60 z;%Ss45LMwRwhHH5Xr7&Y=66$nwULttP`QXQw=#F-PUOwjv<^=jRw>8Hji`Cbe|kC3 zSq>Y`{&G{dG;9tg7u?-%OZ=8waQ`dT?|yRD&*?AYiDHL27u=74IZD8hA#P<2G3Q+5 z2oX#ZpYgkmp1go_ETSyVx8Ob_{hB+jB_P$p_<}n*Pi~1Zd~HlC^EroR8+~qEm_0u; zzt5VXefAp+&5raZ?$_x7u*#f6vn{Z7(~!_)m!GqCnR95iMHFk9*#&4Rk|$srMA@Bw z|I}7P#3OLj%x_1WuTd1q9q^B>s@at>=UgVd|IVJ0%tEyeYcy{zJGfE(D7p6!cQ^5(Oe3-#PT@Me6+1asl-%5nAJk=Xqtnf%{$>v6rU>SL z5!%`Ft@)A9X=s*075;0s!e`t+wN?9@mHh2D8vRD6sn^T8?4Fn%xZ=czq(3TS(;s5p zmerH^ozcNue9YPGDCjmwhz z5IA4nb1puaa2xHGZX|9j58eJ(I=D38;F3M4CjH;?_Khcwn?rT;r|$nJ<8v-PO+&Gf z<>#}kpCdZ#kTSilI3Cl+OP+$85anjR#i#Lvos%e3-R^6O+QmAPx}<0)%5lyG-HD9m zt8x!lxo(g<=DvC^W%~Yec1vSU(zRwqQ}sQy_$CkK`qML%+x^{fKZ>qjd89(ff z)cHg6Khy9Y6jf_JC40??u&TIaTXEALEZVv^x5XKzY&-J&ahu8H4{3FXvNClef}O@o zYfu2(-Q$Zh*+(tfGR>FZ^k;syjH?YZ?BAGsT%4F4;BzoAIeoqgOVe;w zr68)RuC1y$=c2hZO(msAY&MdArFsxm&zuc8O)~9(?E_}%aTn@~ghCW*&J$ajWEv{F zha~;Yh5It$5ZcgO{YIK%jU6w-+D|%oEnn?(XKASYfyeG29QJfDw~p}=bFQ8^e#MQ= zq2T|II9HD+WsOK=8S!z}h;yE+rzP$Dn9sfziWM*U9V!n|Nf}FQb$1XY7LrPOmt**Yb%>hx)Gbvh+!Tc=|` zXf=|11l~fOBC6B*#$V%^sp-JP#Xl44a$BY2Ac{Qav{CmROw2+}wVEF$RtWZdPgQ%f zslU0y>QBa33Fe$O&O+1pNffH)=hEkC1|Kys2`(f(z@*(q$9c)QWL)1*# z-s|y4)&%>D4iMO2Jid*c>|p?p$Oz2{BaA2St-x`AdRG5#muabIS2StQnt06zwlzCC2ydeBdXr1 zJJ;G4dW0KP#^TlZK7OJmW67(iP*bR5ML7M^ZnNF&=z`I~)?n&0QNho98~g0_UHv;s z{*#+>_VCfFGB*8+dyvAk>;*sj05);e&>L+HoinvL2LIzW(>3*z!Y98>oghM=er;mj z5ay2XEYPnK2vMNv&1ud+*|T z`gwBhJmpR1bN2%RA_^G$GE0*YV>6%nNAa2Sfda&z5LfIAi}a49QSuA_Wlo6ts7_L< z0P!b88^9(mdwt&8E53y|a8v6ZJ~@}dM}!`KLJULLzAFuM9)S=AiuZ63C@@tT?0kYD zmye!*`7zf!hX3Nvj4La(wAPb<@JY8^a^2!M`^EpOl8f)Yd>|V_ z{`z`R-Iq_e|z!KIlO@9=kra!Dsi6g2WHOTo9YSJoY2&vG^gFr#GEgnuFvN z>Hraa{17Y`#2PFMbyGqi3Kc&D3qu9=%EH~8a0vAhI|Ng*+5y1Vd-8vH%T~TpkMF~j zvKxZ&Nf&&X>K{kIb-m`<{;NRoeV7kqL&#q@`o1Zk_#v22+4f;sHj=A3qaeya{OKzn zCbgI=v*a3rAqp1XhvkChP38l>j(~^)M)zUFGdA<7-%zy^)PH;*Hf*>)OdoVni`x{B z)oya8591%@BEAoEL2UZ+*iTuH#rI(@VQVpPO%9TS)Bz&;_&zKb#2PFMbqS#mg^KUP z!cc*|vT%=*y90>$@X zK9CI|fBjNXeV9);4sG*@QHeF%mqSRqEsg5{0o1D;MmL;;I1nogEM+0{~`tz)$4?s;F! ztn;VuA$H&GiVvf_(o$#(*t$)XDWb)7FGHgjE$~7 z^^w-hg*ht=k@Ity=j7g0E~30mzj{4K?T!Vu%ftCvu$fNoOL#=#d&L*6$@iqUb0u&F z2#63aj2u|z^O!k27w{37+D*GKWXW1HLQ2-_-j(_$579 z&r;zOGJT_!IlPf2ORr~1PdFy@SB!H6hC=1m5(T^ z)1U60!*@ZL8N>GAFC55Y06_$DxTu~z2$O(B=tZkUkY42`o zWT$-f>YXE)hZ;egOi{tdl9#HB(5aZeV9;pRuOfz&ESwpBc((EM(l(YeD6P8?`OsMQ!pZ8d`?9edu!$f=T760E6AS# z5~+?8J6Sc~9y+8tbU_9GJamZYo>`3w9<K^>eeZK@CBEV-= zqyz=H(PrZ=Q-pVc5D}q$q(A-)s{8TA&skGX*>R%?4WP6}IN0VWBKYf3@`-0@6!Eb` zj3Q3YQi&f$1VQZBnm`&wyuOH0#8~2HKpobV8!m-^W=9d`b>z*1^?i-y{Y}?epS-YsE-sqJ9w6h_oK(YCv2Vz5G@phB5zS?#&`i|T zKZAq_>C&T()ab7buuxWCp9cpK&g09%$<^7vL4=6tNu?1@)Z4#v1f}+H$Pkgm zt+x4QpRTlq{h1#m&+aYuwp-nSip*E%BLG9n2kWhcV2=h2DIKiS9IUVPnU$Lc@EE`l zf&EUY4Zw~%>>0tqHGo3|S8iY1>o)7_JzY#Sg|-40BCc{=k!1*>^o>&3Cgd?~|j+ zew0@XUi#YiBM)rTza1q{?P+BD7h2A`;>7#udeqODSB@*sZquMSGo1#ot2zYH*!J6Y zY#X;mkV|^j(nr#`U^cv?HwMWPdaTDIDP%xW5Jt5nNpF zmc^YLt}(DLqBmrJ0~sQ+xC<=>knQXD8Y|1mBDT13WdUp}f$=^H7*YkW)mC@a*XBP0 zhExHp6@YybFhpQ+m!k@(O1;u*U$578FCw>I`zHVq0mfbJDF$%0-D_yW@W6DRg%A;8 z={<>xke3yNeE$L;Qjsd&90&YY01*K`qwKC&?@rom59>kwei1xGc<00n^HKxW_+*Ds zGY41gxPma-wQpnn(r2u-i|A)$`^&{&L=S@421y__$UFbQ6lmNaZY=Rxtup+xtZ4>EUG|@$ z>?eq7I__4yAZ=3-Ga705XH&t#=4xu_Ss)@pjGGsRv5zo35C3dBqSYD*Y|8L;Kq7)1MGcD!hxCt+8qU|liHP&}tHqf;;^%z%CRh=%#w~;vUZy;` zWyFF=Qgt|C3l z+Oj`udKzxFfVld- zIf#f5tI~cwqA$iy-l{?F(;D;gNIbdgW6lm z-$QdYbcpCG(!XSPN1Y2CQl+9xZ;m<-I;28$7x(>u|9t2W(N$#SZJ?`~eLp&Q6nu#I zDl!TjZ0;NOwWFD9xEDf*h_E6}BfIzQBH)nfn9siI#PoT~&>^C$NSCad-MGZn>?(Lj zmGCyZ%MPyv9wNMoT-zM>g_pm!*@hAkWz;_70A^UM-CsMF!lNo;1R+9an<3M%?7=O`=f9p;(l4x zxijp41RD|dtE-M}Hf~<;x4PP5$rSo0p+`jjs@*_uPtb<_pI}GC{_?7`v*fNpnF0SS z;K**UjKI@vj1B$2K#%N(V&AYEL>usb1svH8;Beo=`Q?j%BLaU-)r~&Tx=VAV9<;`&Vo}>R3^oZyy zKXM$dYfpytUR$et#yH;v9ufSXR=uA|;nmp$o%|2T1EM^XFxv=r(G6xB!OQ1v=KiD)caqBd+;iTRpWAJ|hd_?$V^n%-T3|nOSQOhksMuhyj>iT4}JLvU? zI_C_UYplN2J56pBHl=AdDDV3Kj|jemrP-aqH`?vxc5k2yuklnli&2ZlzZe(|Gr|0bl z!Hw(&qwi~V8~v6x{dQ(K6L@4d6uM^1iQ_&8ZbaObZ=k%B#NIMxjQ&vA5wXAa=$|Ne z)1b8_K+GA67MGei(2>;FX^gwVQq4KpzV?BJNjIeaO-dM=X~? zj_igK@AOvuAn}QCBfFu*^;BQB{Q4Bg5s_DZ#iiRkG;FMz-Ed3;eH!qH;49xLGMUp} zqpm-H2I$CcaJn9j@niF6!HtN!gsVO~8@1?thI)hh>f!pZ$yFd%^v@v+h_X=mf!873 z&Zj4Yjon9pBfG&fmo$fd9{K{f5ploZ=%0_)n%!n!H{EB8=kCaq1?Ve5MTGj2ilR;| zJYNMgBIrM=Ds;cOvdLRdjgwynF(Tp;F0c7X!65X6nvt={~q9xT>!83KU4B4{QH1M1b@}h??bj_n{l^%0A{56%xO7)7-ppU%y;v~{(G1a zF_&=9>vp`c!V}NOeni zH7()K0E-Crh1KlW1gpLCOwoQ0TBN$Pt*ohC2Q5-z+RO=GfEE#L36rMn^kTYfKJ>Sy zehFMexFt-bw}so)TB2_J)CSwmzh40w5p+dI5q{*8jyeAeW~BPe=_ukGFeBAxPDc^n zgc%WY2@ghW$Iy6Vvzwcddef>tT z(%CjYxZ_jSjBWroBJL8Nim`Y*;htDRI)xk{%E2`yjG1>_@_QRANl!0>ccYM-!jFjm z^}B+9Ut_quu7|98o7vUbo0AJfxhP{HZ|Ak3dxiay!7YGC1Yg4awsSOsl~!YIRYO_l zp<9yyL>VaIF0FYoklyTcTiB6Z!>&ggs}ZT|46Him7kTcP2N8a`V<*k(+hd zO4;c3wP|j>)8pA&S2IiG1yNq!yesm;yO~;zww{5h4>ysN=^{vWOtn6_V;^! z7H~JS0HO@+j+ujb2Sbp9dy@l1Ie5da=$dQ}#wy~zWCPhX+0dPO^sxEv z^$fCs?3xBa=d{{x`4;^^GJq%pf3_>^Wbc&Ja8SG5yKd>hWCBqpcE@bgY#gjbeQo-2 zz)$GTCKrfuu{#D(L+w>!_K4vfEV(;a&m}L2@>0T+W^#T)_}5p)Ts@{n#D&=aSdOTkBkU&12cPVpOq`hbe{#2kId%C>(R`lYZVyN7+#kKSGmJ0kWH z=CwOEO}2CYs~|^2z6*x^>&?c2)d#65#vE3bIS8V{@oGx_i2zKj@e~L>>_3p@i+5c5119 zZ+K6CLi;<=5uulGpU6(p&5C*Y0;cRq*pHD7MA_H{1L&dd|8l3~k3)`#yo5U|c3J_D zPd0#S$po@H8o;o(QTGdOp9UQf`Yu@b*P?%?&TiCxQ1s96BjVo$%WS#R*ymwK#Qw(W zk1961Ev<0Y^>D?YxxC4~DXtCw8~H$XM;#mpXOaI7JF;8YgIVN%z>bK$gk7P!y?!UW z{lEyk-sVO~ z{5^;f5tne0f9o=Cb#+}zmvchs{{o`goEpxe*`m9S?1Fwn1Af? zVn!;jKLs#SPWcYB=fU#2Rycw#Ej>1+SGzs9h;U0-98b}j3I0~rx=8GTy@7j_fb(GYpU zA`bu_5qt?Ni$Te5175FoG%xFOUinSfk=?+)-0Sz3drkiima||-#9qQiXFDtR<(_|- z=pkSu!Y<(w%nq?P^>#sj5`P%v$ZjD|pJ@Fp$PtlOzJFO)@7dEU0Q{QWBY{VDL$T-H zM|lC{$ZjC-GBA!A55FwdSzy-WcWz{Sx>Q@jrZ}w>-GZN@Lil zFSi>!Q=R|P==U3k@6tMOcyIVOd(Gj!VTIPhFD}sETzc#=SKQ!?;B7b~h3rPHb@&%q z@%kNY__EnqAnUE8BQo(_oRga_EyV1e<#qA+ZL^*1MnerSsHa8U{0{>T{% z8dyH7_fS?7M7exYX)s~4F*R^cu#j@G8hY+VPn)sDpTW8pSctHmQeJ797L^0LH(-ds zo>L;2I)(nQKG@vY(0a;1OPCw&22bjl(z`E^h#;R{9^|r~=J6ZF*h~9{?hNRV3ef2W z)?u&ju814D2SSI4?g{0U-AZ${vDwy2nSpvRP)NB&)@*fq8-sdZS2A?@WzE~|Z0Hct zU0z<1rF8anex~5g1r4bP+D4OYa1Gjdpdmv0?Gj5(k7EpV@1bEjA0|XhPb-gUwYS-C zX(t{%e5`H!9NVK{L&`0$wZ>4JhdQPUVM4@I;z`{y)p_dHRO3ZpA;NlUdDX}ux4YTV z1GOD*uw}>)kv*|IvUP2@!ONyyd96Z)i0T>TQMr?NeWkhFZ`xgHO?9@wL#lzNh4~y_ z8$3jKC3YIV^fos%De|304>qJ+zqJPT6~E4JeW(yomDoN-rO8Z=Y!fm>WF?Lq9hq*- z9%{G8w7We79U{8lDY2c>dDypXG7)!`dMR*-;2vKl94mdM-*`MkNVzuCc0k&Zps(FW z)3MJJAVWm<ULWEV~iCpiN&|^$GX=+UCs_{jTAtHNl%yP0@ z#jNF5Gba{q`*BU*zv6!HHdc`R-;R>IpQ1J7+ihqK`NRjLN0s5%<1P-YJoZg78oy>+!ZG3Lv?hG6vxX8I)S^$`Ku97owe!^n#mcT=V7k8O3 ztDm{?d=i?G4whBb?xgBU@>EcfDwJfq(b<>ByBl~&HSqd_Jl;LPLxlJ2k~@{XT$k)< zSDAjE@t!auVti)VjJnroqwXE)EO;*f5doePb(ZsOx#lBi z{%({U_X3^c9&=ddxZ@tg|H)O-`xgUX6W6)zU+lR}SD7QOJ7@Wt(G}W1$W9<(1{=y? zf+%;7D*+=shnW&z0SFP$1EPzi7Up%VGTTwvb#E-)de~(DaFks47WwH}+yij@nT^BE z{s2QgpdbdDyd3pa>!V}tfW(2$bLirthA(3JooC70D{D-&gP z6=+DwWyQ|TrmS8D5K?kk-EFe0UI7|XBHBuGW4L~>H88u697r8@HE4*?;uewTZ;dPc z-iF?m>+10uh!7E#)rmTyw9k4SOi1}mY0bSJCZv3(v<2nHZv*9$T{)zuHg&Q{$AA3dG5!Qyr{xX}m*&lq4ZD9;l7zv^R zh+DTB3mXj>4#7>m9RL*(>hBd?S2HInIRgoa3&*UY=E`#K@_Mh`9PHOs4?}twQbeSY zEk7SWzEGF7VV#yp4CZ6OM1&c4Pi*0JzryYs2J$i>5kbaXrz{>)uQzv;PlOVwo;S1C zBAD`g3ZzK&D&4&D-atMLNThm|&b#ehr9T5oq`(fv z2(w}%lZ~vqx*AGElyTQ93$Ol*eS5kFMnsHpI~EqsIB56Qvcc%<07a_j%t5csHpr#{ zy&gFMY_a3U4tY%XUWeIJ}i^*ow;s?=2e z2Y^Kc``T&^_8ly@w(f5ptPc)%I!(QlVA(yn>)iWcGJq%pkBnN~&8aGlna{Br}$St_%)xk0zp=$4zg;#3R|l&c@W#B~T)wjJv>ABqcj&xMF-9fQSI&HYP3< zu*d7d9pZ0;hzK!m`du)ho~P5z>*n>1rm~*|C?e3fp?Hy?+N(+9aQC#l;e0BbNTp24 zOPXDc{|XHP z_=hke)hb2%qA)}FM-U<+j9Zz^)!z~Bi^%=mta?7!*k~MTYQfJyz63}_kkuJe*gYu? z;2#5sRLYB+yr*hemz@mbD`7+`Rfq>#O+5f_0ACFtQYkC)M#*5r^I9MgK}PK^88(Aj z_{EjR^chdw6I1prVOvkY%-@ZYyPT}NKKKcmc^!8)FZ7FlVk!l&iEFO)B0JX_M4e*N zWM`dQ>>p&Ejrr~}c(yW_Aga;0dwb`@2xm~H#Loo?5m4N%>vIB`8%Et$eun5gh!7D) zJ;P;yYGLV**(+{g(!I)PYlGWA93@wNS8EHWXbt6x;~#3?k{16ASH@tIm&adS#KL5j z?ktnLzsOu}54c?3l;t8sbr`oWIX6k@bW`#-hY1l=++FPRGnxCvyS+|}EmIBEEucc8 z+u!_D{GY9^)&mUDtsz206t_YeN7U=M_c1!I+rov2D{gbyXfC~hc-6f0)D+n507FWw z!om9H>MC2*7@|8sgor3=wbqtY&Hm#OAMe59_7KV5`?YmPn*Qx5Xxr`yZ3NoZBWbF55$X*5+BC@!v z09kRwl-WUTl&X%zu)P8{L~L=785h9T?RA+SIkc-mLxdK0Iw$}wEVF9>Lj-nC%r*Cv ztCoIpd7skptwzmhcst;B`d@X5_q@Hb_k|~_=iT!#J*J^d-mi$zHevO)pRm1cr-(#n z_ZwsHYjoNAlCqT`%GJT63J~_Bri8x&3L=!a>!H4GXZE3EWwBSI8?7tWwYk45mj8kU z5zD1Vw^$sDd8eEf=uFXk0~|y+aZeP^TQs`AR$FkWlQcZvga;|Dc+5_6zIeU^4kDb> z$9e=%@ADtF z_lbM&NSMD_t`#x1$5zMm01qFl!9oEQTW_DZG(J_Hsbthfz1qp&oxWAlY#PTup88VQTQ>kRc+ATkngi!Jw?Jg$NN* z)Sj0PsOJ8i)oH}tvKPKOZyWtr_Kw$4^38pkvwm??eb~tl3yv$>XU6qoSz@*?Bar&C z|FeBr|$ zuAl_wimG6`$(;loBDjY|&9<_>q!yewT$riDhPYXnfA{6q zqZs#>qvXvOX$135wXiErc({EtDeFIRv#~)!e_cn!rZXnfhSAv7u+S*S4_)>;F{O;@Dw$U0dB=asBh%|4(ClP+=rC zgj(ZX+Zy9mAw9Us zdSj>h=I(N{uBYwRdn;OVGi+Vh5V4&Va~AMnYyQK`ir(@ThV(T|ldl|3f7;tn2_GcA)`K#hp{<<&OIptaWNwKOX>COHXkWEX(v+6U-3(=b z6Mzu`zo^ho;7B89lc}^`%(o)~51JP{-VVHoc#B!Qi7H^dFr%&aj%r0zJE@r^-a4y$ zdJB5

Z*FbL*Ky-vAvE`j)#Eq=mDHE{Mb_Z*A&Q=h-A(1~FzBK!}KN%R3zwPpFPk z?u1$f*#c&ZuB?1&8<#4PlFi|b1~~63u4aB zJI??asfG;(?UpVo>fG+z&$Hk|#8-jdQFqVfT>2dFkkauuspxSPJ+Q)v(lzoCc!=<} zyo+v;y`$-T7*nijM`?d*c>#2Y=(fBG_NdThgGyI`F9Z=0VyPpCv;c?wO<#Uj0*6!s zZcyLX>#<+BIWb=a93r@4R!-*Z3vI~_2F<=18xGBsVX(O`yKe1>Uj{K!S>k~ze|fmc zW2vT$UjZ>9;w|@)T6_btW!zfPPO~jdAROe?Kq7+t!!l=Lp%GF@O>**OdJVXUaJRhe zeeq=)Omtm&z79Y{fTd2iYY|Fil_GtFa`K_=a zV%u`B*@c&z*gCy#FywXqdpnefC`(;&H2#yUw)Flv(;vPAG(>1yzN6wO6kvDu$>v?4 zBGp43?-AbvDk9WUr?9TV*~8pa_xk`t1Xlj(Z@J%WXxrA-sve{o=oIK6KL8{m$SpTU zUA!kZhrLx1vH+!5css@q!-!O)AXCP5UNh(m^6!B}1X=!EW~JHO&@$EN0^9Pj<%PG|m0&gYbC4k- zE9SnSm|4}z=7!d5==IDKrHmEqB^g(a*FlSjcFT7gExa68TiTy|+Qjb*U?SDR96t|# z2~0$o6^+pK2%_fxf+(`Mr(P0o2@C#u=e|a zA_6UcS=4~i*z4^Un*kccAA*Qf0&!jYcIuL}ZUbnW7uFfXW7z%&5n}lRpLMkuogH2A z?STyuTlq^kj?Lap;Ruh15D{VdgY9&+&e5F+9U{8&=lLm}8wKUA|K0#pM5yJTv@=wV zwzO{I&xWT!iHLH`SIR7Wpq5dN4}oq9CsGYtuGV!o%wXtC@#fGWqAS1ScHLopb7Ms# zbk}lj0U{#A@~5fU-3Yga3lZ1vm41;RyA0?r66vXASAw^N6sd#-IVabXp4t0@yI*ey z9U{6?FPGCvm=Obak?}eVb5gzoc!==IpYgYQ4L|0(BVdTY%5N8)hF(!+3hd5sA>t~3 zq#&+z0_{7!B?u7_mOoO^la0BR%~PR6szJBe9=7ymT3@?&gANg0`MsXmlpi{cq=QWd zj1TVtDI(JH`<1Tl!Z9mO-h}rA4-sDZ1HztmMLpQpZ8*96lwFIy7pRC(f4}rI-E>r6 ztoMc$5o@V8SDLely#=q?*%{cm9bj{U45ScBO=D~FH(&$`ig!akcc45 zUslc_&Ei8g8goVZU}zE1mfsnrw7xLU1`iQl`8T{|c=hR}c`mq!aLd1*-*2vLF8kTa zd7vReE5EPoH#_Ps&4PEk*qcMiv&msT3QR3NDLs60s1F$;vhvS+xkckm z&=8?jpy96f^tMnl4Lk%GBCzsLasz>->k+!GyXkK%xfD!9nB^~L4_cQr>%IPpUMIAY zpSC_8PDGsL4`e5vy?Fw7i15l^e6n~4T8-dB+LIwfL|B2|PcIm#?>ijuT@D{2zVaui zekjvu>neVFv(wXIM8sJBh0{+X4Q39b7hTig4={%1tKEE@`u<$ z>^J;K_BEg(LM#8l&SAgR35E@S0vu9}a_ehIv+P{=XP_ZMD}O#0Zu0R)$Pkg0KU&>n zgY4z~=KcZS@x28?q#A_gz7PPj2dLf#AtJ)^7q`rgGb_#2hAx}ZI>g#ePj!C@Dk9YK zubmoHJ@nIWH3!@sODE{7{hg2^A}#-9|95)Wck-uf}(6|F{eJ*Xe?*x5!xk3_hyZHYfv8>@&7Y4h-d~!nWo>|@RQ8XgMkQRtCxIi z`(EK14^ucp-D;a$b8UU$1M_z3=wQSz#W-ZJy|dXdf*C!e0BRNM$tXM%<=_%Jp336K#X|8XHLDdd>?I-MOOyWJOAL}Al5!~H3^5pln=^4wi* zAIUXegZ>%N5uq2eA!p%5o-69l!HZPa)vURMMSLB|h>#1}`Z*}!TJZTu-QkumqEFkw zkv0G|dnu@|-sZcQ{GX4KpZLD|={xCVELU9rboOIV8g$a<7SmQ-infO)lzQkZY!6+` zYOv49mc5=Q8SC?BSi<$cuUciTad%F*;h**o+3$|!h`#5)7 zD;9dx$&~NuFe76AgThZgM;yERwz)+gvAWsT9(@M({=g!FEoQUE!V6fip?x0&F(Tq( zHl#0_SZi3UV0jOp2{2M!;NDsYd=9`!Wq~`*!TMUC*OVC(KNMg@z{R{Csc1{s(R%JY z_i&&QL05Aq(bH1wdQZ2xn?imByoh+K*{z9J%XbF$(ZC{tt!B3dY}lcEMJvzUwBMR88dhBiP&Du+5TuNZ)e2(?=Cipeqh0a%gB6)UX!bg_(E z+D-R$7*s^4)mqD88WA@C$3lvTw4m!2enJzu*f2ICzYI{MdZ77{_!9v|DhE0?0)Gmi zh(N0~IGi%_ej2cdV5@bS%8$680Vg8PYPJ0F!RxaiMMPSy;kH}Eo#<7c12H1vYAr1J ztAG90rnckIi|x`$%?M^h%*EVJR@AU1m>RqQNTiC8eoF8{AQ3@UtGiN3j#vAYz#@XJ z)@XHN0&o?mh)^G1#4BjML2Lel8x&1m=zDx2E3Mivtx;#!b^J}Z>6MwV6-aWISH_g`F*7wFN4qi^JT~pkym!)qEcu3udq{Jg&V23%{RxvTYw`1e_2(nqTRT7R53W~x4}k)UCiQL zfoFXU4$XVs&G4!RDI(I!jcKzncy9jChZzxbF*i>XSh^W=I&av77ZGnU*TxFu9h)y4 zf)x>KF_&=)WDUEtO94fy2pW!09}g%}MbL08^aMZ=fmUv+GHnd>WPlL?SFZ1xG4{C} zW<<=DTWJ#WE!acu; zW&V`5#wWXUK663+P%(qR<^f$=+wL;I`QuUYoo{N5|D%^_jsN)j*+VLUa|-6MVYIsc zOV=}xfEKgaieA9!^Q)%{_nH!4Za4Ji_5qJlx`!&=UyZHmhPnSo%7Vs(v2~n2MWhD|ZI&JDXJJLeTFkpX;!89u z$$x{_mx#=E9so}h2Gn;q?MaPtXU!=+13Gb)WaK-DfdVn6V&7x;Pg8X}%*3esRTeii#yc-(-QY*W|EIfyzujCN)(7jYRiB4@kOxG0DCYX;!p@%FK1)O?0KXc3Ph|-WrcQ7;r@3#oWQLIPlg1y%OAUpA9!6 z?uyTbnip?2e3LvEY(&@sH(hJ_|J;3dfFxD5 zK0)%5vw$`(S!Ol?!l>Y~OIX-l!Y&d7dwY9oX1cb+&|w1zf}kk2iZUW%03(WmB8Y+@ z3ZnQxF<^M|%o!hwS$u}y_uW*ts;j!IXKH_4<^FMY`qZs+zwhRIZm1ezQvi0#2Pvfn zDyZ)5>%>g~+$rzv%f*T++AV^n0O*v@b;?ddd&k!kH3d+oe11>VzGm=ZVyDPJF{zEK zVsa@#Qvh_zTflN{eBN9I`*Omj$OddZn!S>+DF8d|m9jRjoy}JfH3d*7b5Hd~>)%mE z3ZtWrnLb=i=oEmSa(5M=mx}n9qvvpb1Hn^d2Yi)R%ZV}VH3Uxq@M&+!Rmz)b(6z)) zk)4G1oSfGYJO#j~d=^wGtS?nsdc^W}0;k9Ta7-dR;O``G3II>}{HKBwEv3mazCa)< z>5W8Ak$&V=XI$NmFOa{N$SHt4<$V&`MBg~^1B6bI{zRXwHA+qK)d!L2A0l!JAW!*3 zXp&z!7oa~v&=dfj^7at^{Q2gI0b;Gya%m2#nNQGhT)6Cemk*K0DH=-XWgmb z<1_f4yMlfvp;G{Q%4bCNTFdNC_!MDN0Cvi!7LC%l-hOirQBweQ%3Bm~gVucnO_7D9 zHv6+aN7NJa0Rn9{|SPn0N7-%XHOoiw^!*0L`wm*$(+>OC}?%7@ngcJ zNO4IpTkwBIuoNjy+v<2(ciX=tT#6JITyG%yB+*i&IB~5L0#6YxMT!&G8&W(?v=k{$ zT*;@Otch0o6K!Ti8mMio%_2HFa-c7a}Q7QfbC7T zdlD}N@TPRKWbaLVHsMkLZc3|~w?ltFf~80?ShKYzN3awCo6;s1`+)QwrrAVGk>X-& zogX-ea4FIY*FHCJDB)57Zb}!QLe2{uPSh0XEx}_Ib1lFeqNM=Zl(uB!MSUJ^KEYA| zY)ZRf{}GHM377(aQ|gKjJ9=?6VN;~H2$w1ay`$lUL`wm*$=s5d_*f@!K;&2=rU2rU zj&|&WAqxqYBF%8U10jnEmjZB8I`;J)1UZR#DS$VnO|W+W4vKhcAQJN6o8x7%H|#DIG<=K zfHtK!)CCW6z-c$}8c)5g#DS$YoeRlAm%VmU2k={fO9B{dUh$(&YrARSa?-|mSv-ev+`P0F_xaSS zjbZ;cpS&j_DfWA$m`j0l`gFD!*x%d|x&J3}p#Yc9WQ~g&a}}L(OBLq7k`4vv+>=o{ z9-F_D4F%YIKBH_V3iZ*(M7>m9qq69qBt-#I_h*=t9A=10w8@2_L;*?mKqG4%W5?Kd0m)E+ zOxETv-fEKRRE{DY3ed^gsMw?9?^})`CyMN5k=@0-h;%5jOULeMjw2lk(8*j+(}Z8Q zn75kfN`9jWx14fy^ktENiWH$K?NHlA!>ZtU1?B{-~kaspLWd zE?IMR8ZQ2_ww#nGKxx3MH^myiE8YlMz44xetlq371B$^HFb`*N{mFY`Gw4{oIh$N4 zz$Kw8zU=j}dZQV8Ev?9JNg^)-3u#(y(@?eJ0)nRi_yG_7HOd&^JMv%^X;6U1fc-Ch z(a?QL-5dTFNreJb2HcVKLuGZjP+U{N;hJ^$f&#y|A)GK{Btro*19nyRL&n+QkNrwV-ZqH8TnXHvJtmOxJL~C|2Nl<{qfPEPKxkOBlh zn^l6ouILS9L;*$v-XAoLS{2nJT|-tBV3nbvsj681j_F!*p#YcrGFRp>Oep6u_bC+} ze8ODxwAYak1qfwmh^jKDRc+MjO$<&O&N%ls=POPDA8QlL-cDu|VD?bvvZ|9AuhtaA z-brE<{~5#@yyij>yOG2wKrDL=`r2B3b*bT>CcT%8D8T5h?3BTfcH#qMLIEZp%N7&8 z=lesXKmiIF8nbq`1YR5W5mKVaR*mVTWE!{I$cQ52jJ#Iub~2&>qYSx9!kV)?NreJb zJ~G%wV6@OIBJ;QD-ei zlR*|j8Il7J5;z5b54abJ3A`iizeoxcgQs8}A`E1J^&})09wh||P#CZ$$^sgXLPvf) zMluv2GvL`}|6~f~axQfRQ$b$krGFRb?waE?g#w(F0KPDFna2c>Wss9RJ zthL~Asn)6}V>OjIKO-TEEEclS(%6{d@k{cc0FMC=+WXI#(b71U)eDNslcYkC#Vo*QCFTK4+`)Y@HU|Svt-Py&pu5W6reHS<>qP7DAx+jJTCP#y~-a+ha!umYs?$6 z{DnLyvdN>SPhmYn9u(j);5qIzidP-86;<8;K_V0&lDTev99PMfupXhf{F_`TvY06o z8zyU-$YymAp#YK0b&I8jJ=fZTR4B5TC*@JEqHIkf6d;nhNn_cm>k7Xec~E4LN2NBZ zhmJdt2L*Txc+IE(78rN?d7kT?$%Fz-GUq3%I_sN-v8EZQ>_##aAd|VKi&I8?16y?` zdy)!87HbM_P}U>*XOjm7cno+!uK$|Sm@ME-$=HT`)8Qrrl{Nd35=AB{$+K_)r(}+l zC_pK56Be~kq~HzoXOj*^rs)_L7Q+X&kQDiuaEQjUcq(cEZ z*=y!x76ts4b4ZB-l)f<7h2UwIx-j?UeDb2maLKd0m`9Qh1?UWTL)Emi$?wcOnv5ti zoI#dP^M#~C0XhRdIX~?T@?4w8k_`pe40!wU^x1THI2V!?MTU!<<>*{YIux0vWBi>b zkq!mu4EWT>^vj&(_B@4rD8MJHgN1MP& zU7{}~9}4iv>Xg;;jGjw66d9&tIY`eZ9SYFN+@=TRQ1JOl^CUz8LRp=I2i>Ks$%z7- zvf9Y`y`~NsQDnFlST&g$=lVF;I-8G9=~S zP2dy&KHwu_F@bla{d-7(0u%<^tHq|Ex`VMXy~*VLBtZcZ10IFuw&RFh%z~xs4sxK#9tV>TcaZ}{_Bbri72|Glpa6#f-`X3uER7a*|8XzDQ)CFd z>HO{|cnW~e$RNb2tae7(?Wqy$1EfHao%Htx9}f{c1;F2ujaIbe75#^ao+3l&y|jOX z=qZ4Hz*FeBtq#s@HuddTUnP7Bz|Y9wyHv$Cb=)&oXlh5y*GYl`Br-CJ&?6x;Mtz(d zD6+@Fj3T~64iwqrU`7$&BL@m_81Vh(aqBb7Qmg8l@qC{wD8M2kJwn}UQ-4JC6hNPm zHkIggoBC72rvUr`uav|sLZLo@Uyug{cno-NMvLT zuXDm0Ms7ye3>sP9B76q%)By7OI0g(9<5On1Hq zsZfAQM%F7;l@FP{?@clkAd{`0#G1tKOA-_yk*!A9p36U%EGWPtTf@Y9Rr@2JM-CL3 zD^88387Ce{5)>ej5s#LI{t%+40Qy0@gi2MXP|p|2jS{>iN%~xvtx|k}2OUaD_+y;E|ZkmO#R4p}2g)%OO z&o^7eHRg`I)5weh%(B@jt*O`aB;ibwp#Yix%489&6xKNT#@bQdv7WCw;{|R8R)z2^ zvZDaI0pAlb%|a-@TAat2Tv0lQlqf(co1+LEa(D7x&-*eGq5z?6&Mhjfa?2}a~^v@t)L0S}`^;nj(EqWsPN>Zc%#jj+UV$^){RU}9O zf|>5jtZC(|$%z7-zMkbw>o&W5ElE;_R7?ZzDU3tXDQV;l|1(?WwwfyePmco8E0z zCgry)upUt`9~5{Oxlw>yrf1j9daGK*k-Aa3P?d}ECX%B7xl9i#o6WrH+L|^07f9Ym ziWH!j&E;}kHtm&(50VuHSY^{U9B4v5OhObO^!ZE6 zckDa+EGbZc!l3ue#HFCRnu*qGEb^D}mKrB~o?IxvWzf4D`{c5woF6T%RXn~x9u(j) z;QIubx-sg*a9-s}d7hmiUm_6-5E=ARYQIEkyu7Q_XkZcFDq{adMikj&q}f!-e2avMm`kT%b`YXj1z?Vc*$4hzDY(DU^M8x|1oo@qiOy& zIZ%MZN3+pW`kLhbCVmRwAMnkhahqg+wfG+rpa6kEpKpy>h;SKuSQGq1GNH&0lZdAG zCuBkaCK(y8gf_W9Cl8A3K){gb>Xz-z!; zZDzu&RV`iEa`+94hEr@=o31x$f*%F=4S0q#9e#xdCf7K6;^^g&&B=%2s;Sl?gI+C| z9-~IBSQ7i<^NnIbZ~fnryeKl7PtCGZXf*TYhK6m(ha%g2%ryZ927Rb-h*?EwaQlCJK{|Zq0WgD+;j6V82_em0Oi6-HF9Ds^8t6j3~fpz}uRp zlTYZ7u%MkEtJf;|hJ!AuYQEgF7nxCj*?^tz(_uE+m@Jp{`MQ0`g(9n5tP=Mea-qm3 z7t9F@=9KsT11K#dFoiY|SZ90IIC_rhz2Og(I36pv(!>iWqV3MK8W?AF@s&ZX% zIgDH=vdg8VN7+N49kk!hX$y_p_0Fw;*gC?B9+EN4aA63W}kPbyQ3)zI- zX&yx`6j|kBb(+VJ3kA3g*qc3_3R9Y^%GZm?gCd*NMQkuE;*tPG=Qz@#0G)fX=RU2} z);g9~@p!VK0Gk1CjhId$n=I%?`2-T70Few%)AYviF|V6BnT#mFD1&}_%}8&MtmW4_ zMOBARB{d3A8}Ny!>6JQp%)C{#vTHdxQDi&2kV*OAX6iFYjUuDj6}FtRlAI{OX}~wv zPNxXgYt3VH2YWWDP=LySkG@WaidZ^sPSl;o1R6i@(_QD07DYyBsZUk}R~s%MEsAW@ z3OeUkkru^&1TEvEFOn9;e*`V#svjdQ3eXzx@uq1t8M1CgcTY~;&bEINr@uklq|*C5ntwvU;XBkP-zbWpHIil|AD*zlL-uGF_E|4)kluiUO<#eCB%w zEndKnejQ0sfK&$eM5>bKxzpcHJ`~`S-8q!@L0jF^J4uWJ#J-xnY`Jp+Njm( zu=SklH17t`6h8bMOQkiFar$0nS6ks&qo2zEf z+($X7KSFjCV3)xYCn~>qD5LYl$!+9Dk?FG7tWDtFIUiFc9`MW!jO zwKws6ij*iaPRW{>+(Swfpp?PQZ`Pr$`^ba>Ofoon4{zx{M^Y3ZmBGbeyNP>{R470t zgA)-P%<>$hgimY<6dYx~O z3kA5`n4-CEmlHhSB4i3ce&1jrS8Mf3@a8h13%MfT3BslT>;YeA5({?6r2s!50SXYf zEd%L3EWR3oPeRozYER*h$$%m&494rV)}+ngXJkMD1_Qnb}dXgL{GQ(kh2ZyJ~fg&>;WL>cH;c0T90EYo@PLEfXlsl!P zZTcgLP-KiqM-%lI5}^Q*0guM}%8{^^>KSsO0G9zz`ugG$(qR3AR4B4WrL*1oH>pr$ zjY?PC_rVv*YMVHez{f&+!!U5A*0!?37i7J2Yd~0OyC{k+3iSyB0Cgt`EIq= zDwj)Y6tV*;P=LZMgB_B`&4txYv!KxLO!O4l$$-&Py;PhiJNgEO-AI7~6h4xT3>Ys| zDmn-DBzy|MAMl(sZuwF7I;tY{Y!aXVfdM<@QVq;F@H>V~^GSpPL?0RH9ygRfz~ zUuUx zBO3~^8Stb!KAW<$o`F?sdO9gkfWm)2{BI}IIcRn35qR29%YN1*&j3&s40*nT{MALt%TV1LaYpts8aMq9uMHaafYxR1u z=8UP%vq~-$;Bv=+N0WUwZN-}YmfD4+K>-?r?k@YMVK-(?GNH&S6I12akqHHuWUkko zz&N2cUN7i_8(BZ>^yqu_w&W^$s) zb}m_?g3lUyq+l=I_GGw+n0ietQhcaskV_zd`dYy`)6}S{IDg zij6s=g=QgNEEgILC-4I&=9-04)v3=Zt=%wehZ{DJhVAk^V*gMc$lpvpYm@e@6V_vG zvc%*ql&28&MTz(##~pyfVo$x%oL#Anw#v>>7o;lmlzaZ>o8#*08gOlOlC(fbrzZ_b zMl^Akd-WDuFu7lsbOf_|lMS>%{vX5iSMbzAJ@r>-EA0AK)SZQvh%>+hy!}Io&d9)&kiuVQ)jDH93h*0S)Z5 znk*Oi@jX#E#t5DQ;NP3R)Gp$~T6u97-FkIiQJ^jnHARY1piSWz8EDa5lnZ)De>>q)0B#EVytRdL%gKv=1iQyX zOK~R=Qvh*_oSQ*!;im|b0x;j2o+>6fVxO1r9s;ER&=id!x_bxjBWMbMPEnf>;T8NG z(Nd%kZKpTzL87Hd7h2;_^LqimNVF6{`?mDdGlSOh{(YHHDN+j6^7=hWs1$&DO^Q<0 z_VztSj1<6_BF|)~m+u?IN|CPg^m+HbMT``{n4*p~=+*l!VNw9*b?GUZA>O`**Q#4@J{-mJy?#F~nkxsZluieiGmjZB8)JW;n^?B=lNvss_+r#(RQfv=@Q}R)C-5{>%1-FQ6{nT5BH`#O({*$S4Gg8H+KyoD1 z$Lgp=K6TqDYy#%Z!Gm?B<^(QqP#K*stS;tDl}T>GW)|K;uoM8B%q{3%Ts&Dy#i)?fh5s6vFDa_`>^hs~B^uHW8b3E$>Xv*pQxk&$2|F<*`(u1MB=x6V!`h`(31iJwkS z2L)KaAqBAP!(}38RuCWs0G^gasTAx->@)~u{`y3cpWx4Ug?6&E|VgM z{!WY(z?h8NEdh*b%!={%+IcuRA%OmqKq&w;nGK{#1I;&a6s$2>YryX=AaAk(kSS7{ zw)1t`Zcd;SDNWn?qaA6xB_UI!G;J5?wB3e4DN>rY3p&$w79mrl5b~%q*_>EcYB+3n z*P0T%BOy}&ax(6&^EspB z@bVymGnyZ*;R6-8u(DNbb|m*ECuYaRM^WY zdt4GYdn4hL(eg$_xipZ>x}~35ue~IJ(1E1_krX;5WFp;xL~<#RFv;v12teqya^TPI zE`aTY1d+dY5jq8+-?owRwCi$AAJFys!bGj?G}hplykKxQ8Bl;hLi1WbrUVmTGpN@Z zScn$z?s|@%m;Zp#9M%o^H zE>(g5I>A!_{719VbK#a(4CfX8$BCZ;_>;NPeWSOXzFTTV2k;$|pa6+aWF`~prS*AS zz+~#d_sD`Gb6J6{3u{z)`aVfefW%#y$_i@(hA31&A`=QQ$w;e;gEj&I9j*;i5c8!1qLLPo|! zl7d|e{*NRmKq4dE7kXgcEHCQ8zX+cK@G~;5UR$V+n(lYgi-DgaL-?JdR|lR&{1n-# z1HPNzL?POWBq%`Qp=`88iUd#Ou5s4o8yhMW2WQBO>f0Quc5F*x6d?A&bQ3H3{iNFy zIR%g>v(8Ke`iPQvh}{mr8E5X|gwt+m)ax06LlL1~wjO&mX!6QB$P9YzO?H zdlNZD`qSI;f9^}v6zNazfZy}EL{0(Zcci-&RM!dMn^5q3>fME^F@GLuP=H3tn?&1f zdmv#`0CvioM9;5q2tiW-^!w9YWPEPg=My&taHo7u+v%PiCU^>fPq`~ffw$eV^N5}z zGf8i`V~-$s3V=`f!n#WOpd0oDWIzE1DQ_KZ_v;8@Qvi0#$6l7(^~FR@0o2LdFR;-@ zjK4B)n%zAqZw#g_uW~>{q7TQ{RDZ>}DL~YR_6`+2S##vo;Ds86~>3=gBTDnG0iVQoW8a z`NI0UH~W!Fn_GC&jRGl>jLXc9Bq6MJwSWwc8wIsK^HVP2PFw-};{;9t z;K|IzH!AR272h#d(C;903P4Y0hvi0wj?~9RxswI#@)K!)7YR^+Kr*|VHYNdQ{Uo+F z;rqrFZ1NNM?fmBPLYYS-l}3eV@k~Th@B!6B?i~i*Q|lq_X(Z?;FG!JVPh0`eui5W z@gET|1pp^=lkr9YY>(D|O2`y|oZecATl9jX^j{D-1%M~B{IoIBx^r~?YvQIzb)mLK z<^M~-6sayDA*1o%5jX{ar?)oxM&W-TWC}n|W{c0pDAfMZ_n(QGBGm=j8g>7TfGGg@ z-5bTZ*KIw?mm$$^w_$s<{eMJEk?LaMA7%fGm?_eo%GOwEQ=V$00ODkJ8~O6O#~new zu-(dqe^mV}f~ElI^p26N(ezdXOp)rc>>ovMOUx9hE*XK*^Y#Qy0nisDu|vTwp(FMW zHTn%-K1t@2N!41t5_fBY2s`B-em$0S>S%!4TP)|>$$c`(fRT}45vM8_ajrrNCAY2>>!gVIU@g4^)om~ zN#<+s4SX7@I8myO#~e4A@Kf&ZInj6}#)<81R%k06JtgzCcM}nT$;dE(dZ!#fy(y6i zhcAk5V<<16e;8%-DluNgkuwESA(@Z7n;3fS6!QW`K(vQcBIjOBuoM8Bj62Z7(8K5B z1&jo%##V*;c%`sjCGTsAm?G_nOZX6$NaNQNF$EAOH7$j0zl7B!fj=6j+nnx zdlNF~sV6idX~rIhVNf(u#|Z36oLp#cz5*W}0P&?s!jKVQ)OD{MbzPFA@$TcT=5TOi zpy@uv(;5_Dd(}Vz*&`~E6HgNw1)wG4NNYH^waBSG36laa6LQrg0@L$*;P!8nasl?)1WN(13At*L1S^Nf#OvTJnLxZB5mNwh zLKECX5qoKyBT@<=eRFCm(=aCCRsonzkQ4x!knb~znD<=(O!t2}DkQijXM)Ihi9NqBFP3SGTsoVi%dVW?EltRVM2- zbhZNcJp@hx;K>{b*_gl^Eo?LsxbGuw3gAv=O z;sqLjy;AWQ@lvE0uT!dec)vls6u_I%Ow-EcL<)phVi%?NTLeo1u*vMROuR5uoPutP zze}_fDNb6`aXdk=6zNS`tHbyK(Nd&0X&X&F0Qxb(QluEH8TI^(U@6iI*6YoFNw5?E z`?5slcV62yVl@q_^9-F#CF9m@;Vf3Exgq8}PlcXxue%F#y!E*6w7u0?(gK%RlX2@> zkYq%d+vTS&Yr`GoVt`S zDF8E>`LT|FW-vujFUoaT0rYYLrAR5zDy||GK(8cF3II*!Kvg0sDps@wz^e$5B4q$g z3SLcs6abirk4z=ti26UOk$OcUPN;SD!X!S%5qE#E4nF1X_hYo2mtKmNbL+E}4K|%; zB#uf(g|_nu*>)y#wWcQ0%hzPW<@r~BtW_=YHcrL=a`1O4z&x2vX(qlN4U!307#+>S z@#M9i_}&+qqiWH~<13C6wNY#m5P5Yau~Go*SxNNu8p4SFBeGERTv#6~6q~hr=^|$| zFFzzOr^A=l5oCCEq2YAx@55i2a$mO%Qew{KD7w!&9yVBPFX&ZlJ8boXP)3O&{1RD& zdoG#HD7MbAK!-V*cAi=$x=NY(NEw#`>C)4;>)Du2&c)4TFBXY(IFC|ZYUc9_@{xp0 z0mwZ!VtdB^|3WUTF6K*>No>^;1@LHMrbuxzS8AiU36dYF7LZ>^$P|Fw^Fr+bC9^!~ zEZ`nXxD+Wa75M0`uktM3<$j5(9IqI#w%>azB7b>BU4%0n|OcqJu+?Z(u0E zClN3O0Qb5@V%m5|*h8rZ{oTzTb4Hy?tud$W6hRN5h5Du;m(YA_b->zZW`z}%@a)sP- zWg-U?Il>~UT?9@=VnqCqmfdrJ%7TBWFQASUW;HTlmVwm!FX#I`0YXi;V2m<7el4$5Qgl<2^IBo>|F4LS}8)c8NlR;36LvQ zb20#6E$j=H>^8^BwROOvP$@9Gt#qo`VREAXS=&-0Ui}Ip9_cG$x3In=#_dm8c#frP z^S3{am-Q6~Cgl!Jov$A{gr&Y%8+AnEt&2a0kxm64l@YmrsG>c*(7eUmFmLI~5qzs{ zUdSE7+~EtNCDv6Z_yUsZsHhgeS7S$j8XtKQRajO)Q9#{`*ch^e z^)$1GfMC=wogJqwdXL z;7#4Z3^gYlAY@bF6iYk~B7p9xDnrNPwtkYsi>R00i-`V3v4PJ<#$X?xFpn8x3qunX z^Dav|pR|=y#HoWLzAlY!kS=Sfzq=DWMc)>qyTf)pWLG1s0tI7YzMJ|ww64^g7-~2; zV#OX$9L_3@VLPGhas`INSR?{(tk7>P;&CqTjWz>&RVYXEIUP6`2#ge3)*o(8*2_UG zUZbG0Xf^@&3fg9dhn>28g| zk-cloh-?LX)mmEr6sW6q=l;NhF)Nn1uTsOBc~$ zTE+Nots}h~cGK{jC3dLgGL&#$sD{B8ASVMz?}lj>S~JcjA5`6V$)*hRSbWJG*9MFZ zt#eA_6V1lZPd<8;SI&;`5zq~qd>2(hzk9a--L~&FG2vk&C!0L)wVZk_r=mo@oHJvx zsxDUwjWx^}Z}nZYDSN8w-0`@rp5)Y%oOuzb+!>>4p^k9oCCeNN zH2tJ)DRWv07>j2NLkvJfrfv?;*;HFdSe~4*W$k0Y3IMW<6-L!>3|}oD+E8uGuIqEO zD^0$}x)S-C92IzPi0s1~Ir#?i%#J8m8#ArJdDCvQG5AIst;>d(kje@Pf;n$EL@rZ{E#EIVfcEFe6Mz|765r-Te$=5^bjEQ;>~~ zyXiKJDWq$kLE73KrLKx%>S5Q9Ef{f(ej5(92oF;4+F^|v#5|wXQ&v{5!_KJ=Tlbza z1GXW$X?MS8OdqqV3mx63gta|kb?ah_(~lW_Ys~IXV%eEk`s*~8P9L4uTbk}q!q}ZK zB6`OcPd`4>ExLO%0^KW?rf<=7hqBq})=OF4$bO7{Iz8OE(fxM?XI$l&Gmi}=V5%nS zg<{buJ6zYqh|dcoM_Ua!S{3Q?%psVsAH2{GzHAu=q$@cF_5~M13SY>a7gBl@8?r_+ zB!(S&XFI?LEj8#d;^=l61LMXA`^CTye0b+`T>uMg`EL%l7g)< z9NU%)tDUl@vo~r+l#vztLu3|CmV!4)qx%P==43+r13q zc~lw3qom8QLE|f)Lm_3DxO{=a%CJP3L>WGE?##-tejlxMly5Go3?Df+Mj4*dPZ=(a z&QqDbIsfdp)I~2S%7#dcK}N*rLrjvSR>tVA1TT*el|b#X+jC{53;y%ZvjD&z3FZ}klM5Iyg*%ZBKsJ%Dv9GTc`D|{qae$ zu-hH6-y0E#a4jS3*+|Kuzydv8NM4r0+!p6xGhe>MKu+1+!!3AKi<|qWnez z>$CHlNtw|7jQgrCWkU8I$&?8b;cH@*2^sZ_%7pGV(2A%Yr^7KN%EZ;(%7ixJbz328 zLtPe{#rV`Wxt?v$kcTEW$Puilxwb=K799cy_#6VKZ;)eHJFM^q_=4qBFyD+@xdOUu z8}9@<n94>C&N7u z%Kxc~z@Ez@9=F94Y)jEE>K!V~ykcL;>+pJU>H8Hukf_-NlGq`=R^2 zeKE=ntcsZX2yL4_0=Od&yUp=gvAP8JG1~C@gXqIDJ`1WN5Usmc0^D!XSZLEf5jmjt z*;UzC9nY;=g$EI>{;E}?;T1vrE&r-jvMjpaA(9!k;n6d7A7CUHYrbv$3d)C%V|^I}S*4@!H_ab8@H zH$({RgB)7jDwRiv&>J*slQ?TQ2PB@4?n#@(D|##v{)#U&j(z*4TioL&BFNQvJZ_T7 zp-( zqw`f_eO5-N_z_rJS?iQ*yygvc7~hs#%S|8pkc{dAyfA3a8Kzdo1$4D)p*)1p>uU8i zLuPNtlzS`d^5Kh(-5&2?T^5TgUT`FdFN&OsA}1Gs7#uZPJA3*fBC(+aEte%o?Xit% z14rw0QuV+HN4kv4UB(>fo7}-Fzf0I!xLynrnk{t9IEBy>ms;yNoY=qnpQ0Y1~~SCVe9IojUZGm@ufA zv#6kmanBBeGTjx4u#wN~j#o5u`(6`)qMv(Bo+le~k-8%$?Ziw++n1o+moodhq~gA| zC6Nv`X^}hb`Lq$5BD>gc+lk?>;ycz5@Huu!jnTeNg=yf9@~w#LRJ3PRfXpKk^D<{d z>FUTqw}?Zg?YKF+kIJSn+f%|6id75XPznx~OoBm2gu<72gy1$K6YtoFNIC9WS1&ak zambI?R;WfyD8=qIDyQ7-jswLV&Sp??c3)_fLhSeu3P7IIXH3#GC|@cmYY%0Rb0kuJ z;S=|F!1*9BZoNqVZhL!PkVV| z^Wy|_sL`yqip>^QOjV>i(xW!C!c(_}CTD37nRd6uj*KkzAtm&SAZCWydLQR9d0+B1Um%i&p9Q`Y!a|97`7Zh&k2^ z!rPC|x`dlYQM1K<5wE_xm#{sNmEKp!l?SSK>Wug+r+Wnr`l@AogkF6l%&E6-y2+-S z@Smvm?o|S6XJu55!x&IaEfnUZ)z{N%XVrUA>|_N}?GVGP%c^tkn`kZE)&F$@#ASC4Y09=UI$?TC7FOkWA3D~x6Q9W)+VMdFt^Z*I=I;oeA- zzG1zd3U#K!e4KMHjqwU#(-8`VxB+U)J>o=kg4>?OAX1}#hzobvZs<+haV$%7==kmj zK)kER=yBe)re^|E)buQ}i?E4~2#S(}py+;ct93O_rw%K+Lqa#@{+Q0F?UyR$2@E(Te`EbMCx4@@8IEii zLSvD3kv+eY*%RGVg}y#pG%yO>7NYr_YODXdHhkgMM3vFjL`8u$`9G{h7oA9JvNS7; z+nC}#)wceIGFPXc4 zqAf35V%xCt!~L7EVKO7KVgzx(hMf!UKWN9F{Bxtm7C~EH9b>w?n`{SDGV#^Q!_vr% zJSsm?TgMG^*g^?kU$KV6bG3Ry)ipfh8V;TzZS*tTN_-IN-0mlbJ`{TT*tsXudI`lT zdKA(Xg^Uk%aX0XSndkHw)1H-uuo*euiL&X{aY6S$nv7Y;Uto=O3e^qya%pwF zP~V{HxB&~F>4qWoY|6cAF6%hbK#hFthn5~r#tk|B5_m<|@vbOje5m8cfEUa}m+G!& ztR6_<@4Hk-Shog8HeZoQ?$OK&FQtMh5}DIcad|mS4(_oXIjyfM?Cd~~4&=00Fb>UU z@np&^@JjPt{kbe3Sz5tJYLPY3L!mCQ%b1YAOJx2=dkni6v2s`7R=JBcX6+$c=hMsJ}AO|hZ|eij_1bimLQ&&O?s<^*?zp$dI2;nwY87UG9A|`t=AKS zX2_)bZ9A{F9q z+58a6esZvBl7EC%R=DWBD(e%EJbmlFvWsCn)<4G4E`XHApeQkmno zqIPL|?rfF-cMZ)%xwD@eWYXca7B*_M5$3fHWux=8P?r8VUwwE5FDsbbcsS57Je7mCpgr=lO@L0TiausG@@VrkkZm-iQ-u~%|+9lEepDy~5a*Y(x0 zo?^_V6wr7|iQ@$TSthYdTFUhV;zKYJ~cEpTudS6s9-0X2&*fCb9V6$eSE)Q0T zep5ue`$-)Smv9t7eNMk5H_cOzXmq#G5sgk|z1k@3@8Fd`xzcDUbb-`ebB9G;C}pE9 z?9E!?TSYWKd)i{*R&e~?z8kS61MZK^iDEWaxY)Za+7cE2=bJbQ`#=P<^8%a`d@1d2DGOao->vdh2 zt(QN`mph7Z=c}sh%7Q5x4EF)?YOur}(2)Y*EBm`(QFXsa3sLQBCk7NFuN{>b{!3s$ zx%3_&7gW=1G3Tqk66k)FZw6b~XLo?-i&lwqzrol1O{{8`t=PPYvdExs^Btc{MEkGT zl_uxR&5IqyoH?y7*U(5qGgmHts`2So^HtY=Pc`HFtR42-;#X{i@>Vn!jYA}h9; zC9zW|`f%#d%+^%Lt&I z>oRr)jb+YMCShr&IYpplWHzAgtnSh4%)Kw@{XqHC=n&{=D>f4|R! zGQ~oeH6_AVHtg=J54=`E5yq`D5-2Zv(@>w-y^(>iA61Xl^*(Wpqc&rJV9E||ZPx`r zlpS{&%cv+oQKiHhio{7SUB5}fT|w(!{Z>mJv9bHI(>-B5))w8%Y#^vaaZ~OJz)AoXILZ(867I@^&kZsU3%h38?zM&1$`?84qxWd zf5C8o%mn2*2B+!4r>Yt`T8J|@jt&QMrAbeRJ7p<=?74$tpxQuOLgUJ&5f`&@S z7x=8P0S!lHaHi48eb zu!LJKS88D7(d4!*Qpl~wW0@5Q>fj`&mlX_yw8xO8R>_I15I<#B;If9MHY6y-w&Z1n zFekDCWl-G@6tC{1Ek^a#yik4ZBJRG8ElZag9zBiR;cP&iWTSt5&TN*>3Iz5?Q}$)!}yLi+b3HMKAk}Srma)t5kh- zKfpx!k0{Z0M>1b+)x+nR=gf!CXHBhMEfv%_b3UCtQiE@Pa;MLBLUpPLG$nuK)Gt&O zy=Q`TrJG@C4877_NK?G0?lq2nZG_S0Y$Wa{nH>U-1;8GUE|6Q98gmwa)}&J}I=C`U z@9ELjR%ei-(g z!Lm1xLy*;FY_l$njbWEot*UZz0o?=g*^qgL10st+dw210g?Mpjv3?P&w$yX{0fRYD zk3_H?;xS^E@gOZ8mT6%PZM(jWBmn@4Iu}6geu*g)4be^@am+klL)v1Dg{$m>cT0%p zL*8?1S^Gy!puLahWdlQ}83Qr^m$22docGMPysdXtv1Io^G37EYB+}PqBH2@+9l%d8`;D*jArNxWc6;`WLEb42Tkp6+MKDVqrlx)9a9Ozw z0`vF@^ZN7PF}RCeW@0|e>0t>Uh^&+?XV%jC)oi{TKsg^)V|hJJGWyA;kt z7sY;|t-^X9mFT>Sx!fZ~M6<40+gjtjUm<3pUOVA9!nj{zPmQ&}q z?nRltUE!V=fxF9#ZM+jo!Mr1y8xm=Ls8=R6 z03Ctb3@7~zUN}}Q6Anlb4oLNxlsHH^|5DrEycktF?Y;sJ^&JW)YUek)Cg{yA3Z5P@ z_tU6he!<$SHU)_GW!7S;TZS4}Mx!Qw=H$;l%@^wq?k@0~UnF(fy!`2zx2Na5N|-WV zo5anCrHi<0R4~{{MRA(Zx0MQ=lnx3e{X|u&PNLZm)7?TH+hBB5ON@S{)MJMqRbu|6 zREVmduB=>ZG`yWjlG64|snmPFc=Qs#%>@%IZ~er8i6p*ufC+uM#_Iw_qHVuYE0DfrK0jpeo8}+^=!WB1aQZBL>Tz79Ef7@7Xe`{@(pIZJSPC zJ^^lPy{wBpyXzJy;(m|jI{Nezy@_BKYr2(S8;CACS1J3N2;G^xKVTd&JL_d}VwSzM z7g=;iDoOr?0Q&2G)s^{O8@7>Zc<&-M=vp151n~=k=%Y_nS3FJ&f!9)VIPL4-B$y`& zW_rD&wR#*~HgvZb?A>JSzh&&*dO&s3qdRxhw~k&aPy}_?=l+2)#_!kEF}?2b(~G6| zbDIQLEx=zGUv%#ktG3E+OYdc4`{n+fW;;5oSk`1W;t zZ(@(+0MF_v*ByT?%~ZC=8d40gPjx_W)5 z9fDJf0)|nT-1>S`ds)zmHyYiP%h)k@T?D%5bnNBrSO$VKSV6{gW*B~=n+xgO>@5H> z^!7 zLVJ15gwNVQ)zhkP+9!-IrBU4@vhf$LTx;?h&!)Qb(C+)((`h=YtFsnad&Queu+DBu zG)V4B#?!qsQ#W_SC`KdJU|!|#IkX?_y!uFW*=wmTNkTqfqnNgG@=Z zdl?zSD#p;GGg4phjFT!7kK^xBWK5%sDYDP$qs)uW#`Gi7_+>QSS%;U$PbrBU-9@*4 zKt@((WU)JrK1zVfEvv_HCmC1A1g;O8YT{+vYzmvfZlMpG3a8Z{xa)14rWdfL#l1?Z zE;+iLmr4B!nhk65PqW4jqmDCK!HwD8Vs5@vQ_~|B0Pp+=M*}+a!3}Snw}d+xws zsCHRQ2f6=A+bBhYU`8NuBNH!RRE-5oUT2IYT9r+^EUUo{?|;&kO0@n~a4@qcDBYMf zYWP~)gj2?1u9-b!EGx+Ez9RG?95&GB*#tPqnDQUqZHTU`iQq|V`6V_hj z=*CrlDQB`Y>2NJk(cDRY4#()*T9q>@kc%4){hFNZjn>vx`LQq^&ElZGy^~VqOi)BK zFK!)&IhyBEhsdsNX^r2Wbl>d4PO(WJ{u9)wU7AfzWW3X*wwx#0&g2S>%03yfk0Gxb;ahwu5Fq%7Lwy6 zd)&jXqm56trrbLgVED7oVl|YqhdK;$(&=a6QWO2uuI2pt8K0ui92g6Rj0$6%t#=S( z9Q`5V@boj_OVwt*HmXMf0`06NwhpsX`zP?|n@4+E7W<+2`M8N%b;0n_VnG}IR%=p> za@IKYD%SjE3LT{8)%bE;*U)Vp5Fd?G0mV9nFe~bsG7Fq1#Y(r?MX^_dg9I#O35@(- zG)oQm-X<}I70I&yqMiZUGK|0>R>i8LoS7?Qm|MXZfSnc(m~ukcu+$by?AySmctWO0 zjHU#@Lv#)Lcz`fmgM}@_5F1C5YxWFq$UG}NO&UVX`rFu(#D~MHpco_S5 z1*{#<45-`GhzN8*q=~&fqDvGo%MVq_V*tjtEhE}J{9#+`F-ymX4s92B%nA;>Dpv1{ zXxfo3qu!@mkhXc6^Y%R3FuIT1P4a3K*d-lczH8W{w$|qGf*oC-NiEM_`1$H2RR=Tl zLocc2DFLlV{)$miV@_0?fyc5DwFgLS15G39ZiRNOXIrU0(i<5~XLILnPrDtBoVp~p ziy_gv@jH&PbqjBXMDcKUW)yw2TrcU?d6sG;qRHyo%E)+kXT0&+q^_e{M5!918103O zdT&PEUn^ssSJ$P%8`J^2s`}&4K3#mynD9)L1XChqd`q)w=8yLAYgB{HOPY>5xM>Qii^1%5C$rC9_YE zLHVDaE)JcpX4?$9gnPuTP@GYTVP;N;f+LsVdD8eMR=vxazUN_}+ zG$Q@yFYWQ>%FZ6LEniX}_2sxiM<=)I`Mw)!^%#X|QCsH>73z-qHf5z+YRK)^beD|P z>KHTO1fu@_pGxt=&$i!LwtUHom14`b?;ZVFMI4?v+sPpcb+@hvF1BJLcn(pZiNeV` z6C8PT?zD(B9TpMX>20uZKd3r`hP{;1FC%j0fR!e!n$U@1>|%A=RfTPP!E$=u$B~~3 zhFvtmBmmnd3E~%N?H&;0QdC)Q#ZiFV%jd{M4IEl7mx8C-=8IBGh4KsP@f+Lo`a`+SZURLs+t~#ATUqx4 z;_JKZJhMMsrqMKT*utqsQ@3z3y$Zw=yGgV*V#g`5x-AsNAH~ybs*rIzjJs>A*Dr5f zE!f;ewM{balH{#l=+T&++F$zXR?MsRtPj3c%&ibW@21LHjgOP!Y@@tbxe4BDqudJ_ zWtaBIzJF+9EbrAZ+yqn7*Zxkl#>c^C4A&&v10;r+a!=t$#r8Q_204*ItdY=Sr?e7o zKI^IdsdVuajiSB-mIKKs5HcbRKHm&Rc*h;=wjdV?}uGiKzxb!2ay;$CjK3yYi`F;-X=T@H;;(#SgE0j;yofQ;v3%KPx(N6 z$%?(BmmDLUPT37X&&a(LLP|PyHVi82-Mpk>>ZxaKOU)EhYD8=Av+EfxZVO|BiXo54 zvTarx1#aXqf5YmD)YQ;=o8C)8;iVp7_(hqx%LK)1wlM4OU1X3Opx|I^KC5VDX_o*uq^5$T^86_M3+J! z?Q0Z}z3|)vBF4Asc^i+c6p@br0j~mr)wxCH%m|*yiqTopo)h zsFjuvHab>pnC55Rf|WxQHur;!t4sZ{8tE=E_~_Ub$GwI2BdZDa7*%T0hup=wsR9!6 zZ8Yhx7{|r2g92^R-J9Ua0xd0nf|h#~{8(|Jz1{!P#XS6lD2~ty5yesZm-}@Y#nDEg!oQG;M_&d5FT!6i zaGX{M0}J&pcezBc$SBT`iW7`trBs|`6w2Z$RQ&xEL~$zqLKMrjLPT-8{^edKF`j7@ zS4hQ5qj-%}ywoU^#dE3n!!ks19{xfU7ifiuBCmhBACv|PM)6^(C>n(_Fh<3b=fmPS z{(?nUD}=?e{^g!8Syzohg};!BrRTvw9e=?Up<1ZL^lU4`=Z`QxuuSf&e z8ifjf9Tk6gDGa;~f5E^FS|JR)Q~z>zkrdu-6uV2sO-8YoRJ_+Hl*JEFas3KJ@j?8B zC_bzeB8rdbU+%9Y##@czH&XF2qxh{<+-?-g;+<3+MHZjLUx?zB8o5TU+%urz#~TST&ehqQ9Ms79y1DM z@f%cZT|gAy#9xTw+gc%__^$rtzEK+Zo>8dq-=|{bN*MS7{(^xYYlSfIQ~k^RgG|St z8-)u0D=Hp62L^tPzhK~hwL%#9t^Va6CJ{Vs6e|25so0AR=AZBv4E$9qgn?)DFZb^f z!T%YB3jZ%E=CP^yH~xZw%|5Rb!oaiiFL%8(u%%I`@Y_&vJq>J&zhGc{tq=xw)W6(U zNCP_?g$lnL6)w|Ycl-qddufF*@NE6dJxHd(zDA+KKbMN1E{A~}{(^zoS|JP^sDHV) zO9TfS#hp@ds8M`MDxPl?%Hl8;A6$hf=HM?xF<&c06i4V^?$r|GQAVM{A4A2Hc^DYM zUoh}utq=x|)4$xyq=AJ-afMVYGK$wo#R*2CES^lo*6f#-;4eh6R4YUj%k?k!L}}o3 zqfp^jP~oyVti)e1aJE(m1Lx{r?pvgRml=f$|8gpJdN~Z_@fQrN)(T-@RR3}(q=7M` zSR)k^Mp2at*C>?53Ke&qiYTi13sGFC6(Wj;{^edRbFyU=D*SpXUdvu;1O9@6S7?PW zaH;;~o+A-lW)v#?6;wP*l2_s{7`RF+gn`%TUv6C*c)d}yq~Z-mv0f_PWE9HcTd4Rc zJDF?o7oxaMD?}96>tF7-B*`0$;=5AuPNPr;ZlvPzrLcGt{({B#X@#)(0sYIpUK+UB zDBd9zA2y12OT|ZwLRq|xir2D)e++*iice^Th~iHD%YB7peV0+F@OM+O7ct(0zhK}# ztq=z8*T391N(7%biZ@HegGMnW6%QGOviL9+^)nI0m+=>(cvLGy6kpZ9-2agVzGf6E z{5PrCl;elT@fQqyM=OMZ|JJ|U`=x;=jN$>Q_`Xp*Bo#k23T5#pRJg3hKgC~&;ul&W zqWG2m<(?wb@kygl;h&=78jkFKi@#vt_gWzg{89gM-zyRP*(g-_zX`>;Fz^iif`NZ% zg)s0h{mY#%5p41RBV_m^rD8LqI9e*6WfaQdR#Ys#0IzI~zYxWCS|Os?UjK4eNdr3? zg$ln56_>Nk-xYtsz#dv54D6+UxwlG^&o&Abem^R1JPih(gTG*4f2|M(X6s+>XQY7x zjY5S#gow3kF`G6~e$V`j`6`iQt7s zp~4?a#ZesR9f!YQ;CQVN1{UjI?$4xw6OBTJUqZ!g%!O0%7Yr=Z3SrU4`Vy#qcFp7($;u52{R4Ohv3We%Qqfj`mG75#`YNJp%-e438$2CTw za9nE?3deOup>VvNidQ*Eog45MQs-S-AyVf?{mZ>cK7OB3yk9DAHi{2P#Yc?dqf+rP zqxiT~++h@VO2wy);?q*`8KbyYD(*Lm&q>9DM)3uy_>xgPEESI!#iLU3m{EL9D!yqH zk4wdOjN-de@q|(Qk5v57C{%L)n({oE*20{zM;R093RC{zOd)+kg0{oW{40{zJ- zR093gC{zOd-6&K7{nIE^0&Vi3&S{lEn;V5npe>C;CD1lTp%Q48QK$sk(I`{`?Lx(w zlPFKS;xCk^J+wlUr@izqcW?Q4U!&MhDso1#zf>Gx6bDMhAx3eiR2*&;LsBudmrBLuM)4}Cc(qX|RIfD(h2!-`p>Vv>C=`x28->C#WfTg> z+l)ftxWOnCj(1TpyM)wvH~vEEyhkfU>by_?(vLq#g;PWLn`QW0v_gdcsQ%^NDj$E` zC~lXEJB{L#Qt@e{xLYdjH3}8Q{YIgTK428e=tD-Kj6Q4>%IG6h{Jsv{kK!-zd`v3@ z?yu`#`tjpb?7arzza_(eS1UyL@9AIe6Y}v7jN*q<@e`x?sZ{*JD1IpwPa1`a;wht0 zMxQncW%Q3mp^W~;D3sA>sJQ%}eExNyR=!v9DA-*C=vQG218(kcxwi;t;8LzEK=56?2SY zu2d{A3dQ{>qfl&*F$%@@MMk069%mGa?eRvT*q&e%itWipq1c{k6pHO~qfl(mFbc(X zrBNuhXB&lLd!A7!wii(GJ(kdy<1gfNK`TT~7xgc9R6ZUziV3M$V-#hns2PQ_ST_n~ zqh%Dz#(JYrHZG>(m#+Y-SKu$8dZktfRF~^t?yKbER~yA^q~di(akW&u!6=l)Ym7qK zxYj6?jq8j;*?2n@uf7DRZopqa^)9UtsBYB1+?(X%_Zh|erQ&9z_>fe5#3(*06(2K- zk4wcJMscT9e99<3Eft?JihHHvexvxDR6J-DUyzC~8O6g=@rY48Dix0z#n+_bn?|9y zf7>V&+y6ES#rA)ULb3g!Q7E=QF$%@@=SHE}{>ms6+us<4V*6X8P;7s16pHPij6$*f zt5GPne>V!n_McRYG?3H(!e7YgO&?MUk<**&U+%N;7anhA6kAKhc1AHvDt0uAoupz{ zqu5O<_B4vUq+%bV*jFl^YZMCA^Nd2_IM65*jzf$>;ds7LC>+B^p>WJI3Wehcqfj_r zK*d2EogR(9K>vkWAyVhX`j>wE5-QHU5aAcf@QbxVgg;UL(vO!=vCDddKShRLrWGRm zY5JFbd?pnKv9(ws!@pE3MEG;`FZW#e_V-)X|iVqmY2c_b} zMsbT&+-elJNyY6(@d>H;q*2@@6?YrOJyLO>QT$DMK<+mRh5G@cP)Hv#3WfAxqfkg6 zF$#tBt45)ae%&Y((#MTLA^na~D5T$`;^h@2=o9!08Sn$G5DEGt{mcEaeEc(`__)omSt|Z!6wgS-KaAr4adFpSTUFZ@z-j3c5fEwV2I-KJ zZlqIs(cMUQNtcueh=52p2uOnNI>KjwjD$>ptc36I?AZz0nTwz;c?sH*pP(&;2-;HA!%Y8&y_ih$ASDdK zgOsw(E`RAEXFs{WEbgyh5bm#Jo2!h=)ds(9oU)4edkF(Ec9wca&oekV)R$AcJtsA-1`pxIBU| z5-^4^7BGP@5ipsc71IbBI+LKGa|jwb&%+V_|CF0AlN@uAK{)1O+uRShyo~T8Uxe%c+pctVzpd_Ib;7dYTKm~$!RwigmHG;O(Bxp-* zg0|H2(4o6LNPU^)K^hr^2WeuPYl_Rw2`vDv32gxF2<-u#2wKsVprJho8rqwnq5V8e z?kmUaFOwYe8-sAn!M3>}xICON0x+5|1~8s50q`wBE2a`ObOu2~XA?B^I}eNe-{I%U zB*$E65RUo1ZEi6xFC{Dk{6ts*_?e)IYY3XLo}d|V&Au1p`AqF5eL7yxhL7ycdL7(L# zf<8+Uf4<)-y^0c`O!iSQ_HkTKd z^AidH3KNO|iW9y7lp>S{lqHk{R3zvjst~lcIzek|5wx}rL2K(1w6>9lAI8a}uC5#& zwW&dP)UR!GYjL>+VFREQVKbl&VH>~^b^_WHb^|&RegkwS8~}7B90qhJ90T+uoB;GD zoC5SEoCWkJTmTFtTm}pxTm=jvTn7vz+yaas`~w(8xCa3!<`R|y<`I?y77$hf77C7g!i}0HrEuF zcN3Ze_7YkF_7U0w4iMS{4iP#5ju5&6juCnQjuUzV{vh-NoFWVaoFNPboFfbaTp;MP zU-t0RO#d>fgfG)ogYYu0+2)$!@(n_Bz%4>6z->ZXz#T$+z&%1Iz&d)H=I)@`Td*6AiUwvZFAq^Bg#*h3MfdJ0VqtE z4Jb<@9e}S0 zzXIwI_5$h=_5&Ia4gnewjsltxjsuzzP6C<}&H!2x&I4K#E&rJ2aF)J z0*oTG1&krI2aF?h0!$!u1xzCJ08A$I223UN1576j1k5B12FxZ51I#6i1k59h0W2Vl z2P`5?0xTxz3tj5r_l5F?m&qh=_$Pz#hF98VmsfjO{;k~q3+`WM5bob#n~R2zbQ2*4 zU<)BOU>hMGUv;YE;cS7AjAV4A|wPHA$$ZlMo0oUPWS}y z2O$OE6d^U>3?Uuh93cbX0wFWt5+NJlPeM+>RYD%XH9|hX4MIV{EkY5%ZGyhPyB-oO zl^0qZUyJ(&;e|f5&6ULEM}#tfCxmi0!-Usdy!me6QXbgo^jJ+2u%w0v&*qOOkW}Q$Hx8f48r{hY;#j_zz+#C03Q)%13o5bVloduO_PdG zWRfGLFbEZ?Y;y(iy-hP{R!6r0|~bP zg9w^9)Wh1zQZY;>sTgSxDn{GpKEzjYEFm#qJRvDyB0&=;d-!{*R7{acDyAERikY^# zTnLy=(EGphuyLIP%#%q178-fr>d z33~rp58H=Hz&e>EV530@*le5o0$-M`1igQUhm^x5V5dwHu-hO6?6u96M!-IT-ha@; zWdAptLo!LgQG*chyKSyEKIjt!z5kSl*3%{6v`i9k&L9L_u+5diJGey9`>%NTdxivD zl}Q4w8-#$Hwz;nm@Hav4zvH3lY6-Y2lLXv12mudmbAR9w9uf5Zryj=opZU*Zl7N>6 zA>g%b?m15ImhcMjp70hB@$mm7M)A;Tid00ENh+cngo>E9xla)gn~(|+myi|^pP-2! zdMG+VDiX;g6(1Xfilnx=8u%)FLeTqDco^)zODScNfHVdnAf0Wl90Jl4DgrVRssJ(* zG%=fp^8Qy@cA2CimqDn=W1IUN5BWJk?=Rrtwf}WqP$mf|Vh{p~+2-Ekv;Kk*34ex5 z5~2c16Ev}`hxz_JmXk>;DjI}}%C@=Mc*v@RdI5T5bk#{3QOiSF{~rN-C6i>IZ!27)GT_AuQ4*xe$NRBSg0 z6+3Nn)p5pO33~rt4}G>tKyCa<+HVj74%+7G;qqZZL%>l&6Tt6;uK_0rT5-z5kgL); zrg}K^S%c7d-ZnQLmoE|~0WK4!0Im?G1O6h+0$eA|1>7Xe2mDP~1o(&W1K=)U8Q@>S zPk;x6Re=8pzW^Q+)&ZUpHUgd#wg6rdwgX-hb^+cJ_5j`!_5mUuu~&W&5SefU5S5@G zN^}qH*2|}q5T9c#gYYTEvCSpM<#>dofCK~$NaUf@B}pue&W{a3Vp7{&SzP{vPyz5M zp)w#Pp&B4Hp(Y?Lp*G+%LOnnRLPJ0%LK8q1!qDgpPpE30(mB z3Ecq&3B3S?34H-Y2?GGd34;J72txs-2qOSx2>PLv^N`ek?&W2YA1Rd#!lzWlHoIKi z!*9ps{!frt%OKoe+cuX1m+KNz1L_mf0U8oA02&iA1DX=D0lp^W1hgRJ0kk6I1GFI& z1UP~|NCywaHp`Qx#5cOLL3pyRwz)L8+@0_lpeG?Cpf@24pf4dipg$oOU?3qcU=Sfc zUKn&UIku!!&yu$b@$u!Qg)u#6B1pZjuxo@%9sc01*mqwtTcHVDUD zW1Aa`%j*ae02>Gzu-U_ueUf+$cWg5Vi92j_H*t9vLGRz=q5F0TXoWlW8H9iXwz;;r ze2CBnaaE#CuaGcNs@CTtc;1r=B;0$3P;2dEv-~wS7;1WR}3_=tS4(eTmdGYB7S0oz;*TrNb24Jbm;fZ`se-IBxyxTB;&NGxre zdxXnh5}pFe5j3EphlLL$F+z>-OS_6eNUUa?i;T-P2+;tw2r&S)39$in30l#>L#kua znEq1Q<#f1{g^g1sF>h2bf5h1eijY3YbBd37A9BN1aE|hg(R{hg(e0hg(X}hg(k2 zhg(U|hg(h1hg(a~huc8VhucihhucQbhucZehuiHT-+lQU_sArl<35A%IUcahE+6(V z#D8&);QrqY!u=;~bARCSX~G%6dBO$2Wx}6;zX;a=HwoH#o1iUs3EFa>pe_FqwB-pw zTb_G(>VMC_kV)ReYlHA)Z*8;75su0Iv;5zkBg!QAM==QZN3+c?$MA6Kl-wT^_s1~^ z_s6r%#mD6j35ft76OsTvAtVQ+B%}hQC8PsnAY=q&A!G&QAmjw(A>;+*Clmk_Cg_tD zBj~e~An3D{Cg`)2CFrwMAn3DHCg`(NBj~f#BW#3@3~Lj3$f$j3-P0 zd`p-Nm`0cmm_?Wk_>M3Su#m6_@B?89;77u8z)FI?(A5Neg=-1=3O5k+6>cWzE8IrV zSGbd)uW&a(U*T^AeYgVzeT9b!`n1Og`U+1F^c9{W=qo%+&=+)ppfBh$L0`~S59$7v zZ`@xp$v5tXLHNeqvd#UC%XbKO0rv?H0FMZd0nZ4}0j~(J0q+R!0g-;UQ$?0ZP8E&t z0U#zJ79cJm9v~s%LqKA}$ADx6efCcY`n0JC`m|{Y`n2f@`m~t{`m|XI`m{L+`n0(T z`m~=D^l1wa^l1wd^l6I`^l3{F^l3|b=zd;4=`u3OJ1u7rKIsa!+2zU}E(16eo(1g$w(45c$(3+r~j-V|a2-?z_pe@}9+R~GtEqy%fJ|s`p zS0;HA0}R5GePf#&gv&z-!vG@*qX1(G;{X#0S}~cRq0*Gfy=;KEx=;OyC=;OyF=;J3K=;J3M=;MD((8o_k z(8vFjppT!*!vp^lB(+TPT}WpTz6W2saJed>8lWbj7N8EHE}#LSA)pDNDWEx_1)w#d z4WJ#NJ)jezGoTxxJD?Y#H=rM(Kj0g}Aiz+9eeTB0K z`U>X~^cBu0=qp@A&{y~aL0{oAg1*9^2>J?F5%d-QLeN*Zj-an_BSBx`7J|OQ?F4;= zy9oLU_Ym|I?jz_cJV?-2c*MimKjb@kR3`aO9ybWz$v9gu8(Iga?2}gvWqqgy(=)gx7#~g!h0*C;sPAqZ0Jtq7(GtViEM=;u7@X z5)ky^5)t&_J|^hHB_rs=eM-=WOGVI!OH0s)OHa^;%j98{|4%S7%Osy;HiPgv=CIA> z#N|AMyny_K0)WBJc=tAwe^m5H#a!f@ZYzu=;|Ws+CM~s6SQ_3L2G9cv~~_bYv&QPcAi`=Gn*du0+PQx3JCzX`VicM10Z4+swdj|ooz z&k1_&R|Ne>-V*er5&p18)ssdh=t-jy^rSHedeYbgJ!w3G9xS1UmUrZZekhZ?(8LDe zg(k7hCB^0Bgiisf2&n<-2%iBm5;6g@60!ku5^@3Z5SIR-d{c2Tzy<_L}(0XM)(@glF$m! zmf!##2ps`k2wed^2zsjC1U*MTf}Ud_LC-OmpywDy&~uC==sCs^^c>?oMEFhK&IFm{ z?R;wx-p&-;+*DkiL6`}cLzoMgPgnr>p0F6Ol&}o&6JZ75XToa0TEaTOM#3h*R)Rjr z4uT&2SArgWFF}vKpP)xSM9`xjCFs$Q6ZGgO33~K11U>qBf*$>nheJ=~Gq^01d>JR>{@ydt~?yd%5^L^^55j4YEJGaBIoKum%@ zNF0J5Jw8E?{vkn+o|vFVPfF0ECnxC9Qxf#(X$X4s&j@<-j08P;77s&?%4d*OCV99V z2H`WvWt+>5%byeS0SXcd0g4hd@e6`xlp<)xmjuly@8OdFD^&%VWuUxFTe06~vFh@eLw zO3p>f*ySuL61Ju!<2{e8O)MNK7+Xi;WLKO3`u0umA001^}00g@0j@e>aTUPwi9nWQ46L8wS=o6CfNw1ljH z&j>jH83>w~*~8tJQjtX_smN{+DstN9N+2LNp)?>bp)4RDK@$slI2lVm?m{w2MNxxL zQQS6{5+7y>LK;9R!e@Xo1WhdG;bk9h zCOijpC1_#~4^yAX$K6vVspw-6D*D;xK0?3%LK46?giip237R;}!}cih6vJhbictok zVvKEWKLW-P4gn?*jshkTG;xZD&tpi%RGFk=hC!&9Wt)4CfH{On_yT=Lhzgib(8NU^ z{__>z%On*`3_`^++guC;EGOvwD?Oa_ALc5VB;Xf=5U|!Z_ZnwhPtf}}d6*Gd0yfJe z0ox2hzz*BoRs`%K=>2;<9F8jidu5V<{RSc6plz-U9^o)S??2{Y>09}-{4SFO{9zCR zPTA%<;RI(0djEM3+58Xs3o=Q-WrGlK#Wq(SC-{q?_uugFUu+4uDU$@;HV6TCY;)NV zaF3w(Kk#tW{{(#~lLS0A2mw!Rb9wLx&k1_}D-RR>30})20q+b#K!nqFITKD0iJA0w z@Qq9oFvK7P471I3L%;}v-ak5ke+Oe^l7R6BAz-3yt||h)CFuQAJ*12zk1$Op37BaR z0%qIhmLgy-VL4zPVI^PzK@-3CaMYi1u}o62)F4#+Xq&5pfS(BU0V@fO06!BnagB#~ z{s;3~nWSQaL8#bdn=6b@atomtU>l(XUO2rA8q~er8s5oPrJAv15j&KTafp8XZiJ*yBJiPS3071s?y z#ZBAXP6Yf-(EIOrs2N8B?#d(q_YFe8L)%;~Jme!nUceJVe!w$=CcgA=)c>J)C6iRV zH3${&ZFBu_#)xO^{(*qVgu#HQ1WkP*K4)ce-}CT#0ZFP=#<2P>rC8H9Z_EDHXM3l8QP8p`xB`u1oE3xdEX&pb?=L zpb0?}zxEJ0l~gpBNh(?ygo-w{x$3pTWk;w5XiumE=t$7SE*{pzmx``3NktEXP|?da z*A#!S`Vg7}`Vm?I1`srHkcV6;q++m4QZdXRRE)6A<;59C5%L4Z5DEdt5j1h4hwc93 zo+Oi0Ofd)*(`<8BYKO}+2-g6!2sZ(92%0$0LtOuH&zDIm78!(!#kRTDwZr8l1P53~ z=m1zw(8QG}`eBNcaKl8S!~Ld65yTsH*# zN9YN7Oy~o6O3=g?9xnUO;-ySd@x~xjytB=kJc7J<7Btj=Z6oMvx;9+xesfaF< zRKzj}6>)5HsSps4kQR`@U|J;k)#m@trN@;I?TSSw_V86&>H1hE=}Kl0x{}-G1|T2> zVGtk{VJILCK@&goP@{xYq?bu5G8u%5EVj8uwZr9Xgr0DU(#xHV74UZF9%*Q@cLlB%mST44^SV6PtNxTU#o=mPsmF8ib10 zwz;Ks!sWJv<$!jCm4FTeP3-Jpr~d`mMJB1}ZV)PZ+U6SI`_h}B_xJPAr-B6Zmq`M? zF$e*JZFB$N+c1=%_mA+9CA|bJMa5`?5HQv@w;Y$p6IKEy5>^AgC9DNZA#4ClBWwoD zAZ!E7BJ2drA?PvZdHAf3ocotL;lURggmZsyn_XVw;ZOp(za2jA9}U9&KiTFw;_^yD z7r@Vi?totiy#Q+oeF5tU0{|Ndg8-WeLjhX}BLLe8qX9b!;{d-BCIa>lCIfyWOatsE z%mf@H%mExG%mW-HECl>cSPVEpSPD2vSPnQ%SP3{wSPeK&SPQsF*Z{ap*bKNr*arBE zuoG~dup4lbpx=et9;*8<)A~B$%XHTud^!HL&27Tv2ZXJF{|Gw(j|sm5o)Y!~o)h*1 zUJ?!gUK5T2-V%-j-V;s&BA&AcIRl7HI1h+QxCHosa0L*9pf4k~hfU?=?ZlBue#XQ% z2yZ8$ZFc#i07c~fxcH%y#30W-7Vrh30-z+J zGN3e}8sJMpO+Yz9Z9oM=JwPRbevVZ={OkWkrx<=J*DwelY%SYd30$sCC=IAfC<~}h zr~qh4s0?UK(9UKacGQ$Z^uhPFg+Vw(E8ARuTy8`72H*%o0PP9G0UZgW0G$bA0bL0b z0Nn}S0(ugr0(ui>0QwSU1Nsxb0}LcA01P604;VtwmoeN!^Ca?iF5qX~D1-2J#@OaA zk=@Di|s@CLAo@E)+55DD*g4IwIE9YK$|(L?k4a_$?rV~asJ z_cq(y-?+Ska0jr9@GoFD;UQoz;W1zz;ThlnK@V}*!+{KPsy+B4bj%=}>bPxgA1?nv zI0!gJI086B_#JSL@CV=m;WXe9;T+&k!bQMU!k>U^guehc2sZ$?2!8`^6Yc=+5dH<+ zBRmA$Cp-o`Bs>E=BD@4VA-n-RBfJN^AVk8yuDl{d1-v0d2fQQ10z^1(A6r~NBtil} z6hb0EG{VP#=!9f|n1oLOu?hO+i02{sC-QBHf@eu+5WX#mY;zyra$-VEKoUY6Kr%vn zKyt!|fE0wpfK-H}fHZ{UfOG^sW(E%({om&^$|Qd&$zl-Boy|78oYOodg5biH(5biH-n_VvHVM-;rKL-9>mN5wTm$l86lSz(Skx&Uxl@J>N z)d}$cH3czZUZLRb8oTDHN@p@1igQ!hqBovAPas{?luSkdu?;sad{sh7vKOPFW?X%Ki~+V z5a1Z0DBw8Z3&0iqARRNa>H2{ASz5-k&)CF84GyvQnGzQ!v zGy~iwv;f>8v7>Z)|gYarqr# z03gBz3m625L>LN)LKp#vMi>oNtg(TO_&UbOPB_TPnZcvNSFgiM3@IiOjrm= zLRbt)Mpz0+PFM~|L0Ab$MOY0;Ls$z)N7w*JPuL8|NZ1C*OxOv?O4tp^PWTOwlW+i# zn{XJAmv9V_k8lD|fN%;>h;SBAgm3{+jBpw71>q{7B;h)sG~pKDOTs^Za)f(;3WNuM zN`yy%DukziYJ?Yn8idz?T7-9i+JuPscb>Y0D1iEe4*(4bF#(MU`sb^ehXm>558O!n zY;Iu?{=l`e&5gn3HiYp2N0VGCd}VLM<6VHaQ-VGm$AK|i*Y9=f-d z&vBJZ^7rOn48rHQ);2e%Zn(Ujp!aX`aG<#aY?es^wi$$g9k#i)2-rnv57qSe zU;;rCzxA-7y;Mw=Nh+opgo+uqxhr_nvk2D!a|ky9-w`x%frlIIq++2=QnA<|R4lR0 zokqYi!a2Zl!bQLef+qg#;f()%v|1*qSZfd}*4yUhBVZ$85nwan2f$W>ChqW1rL9!# zlu0Uf8-$9zwz;(k*hkR&4|<60f8`yLNdk@9u_y2irX?t#a)9?@vm(zEzbCWkRI?K zArs&+K@*>O7}!TDp35W^uM9%P8{6D?oberD5+K4Q3z!0kM9{>j9`^b_SkYvXiWml= zB9?9LGX%sTWCX+`WC0`~XksD{)xMUBk7SaHBnF`(nQiVXyoTh2x_}gf27puqO-$<{ zc~hxKCzDiUFbEZyY;*Y$kcChPkd06jkb|I!xjn4wE){uXl8Sr=p`w6ot}RFsrSD#{pyin6x3e{ja~gnNLBga?4i1Wl~wp>98^s4kOK)G`Pa zwQX}h;EZ(%%K-HWKLHvNG_i??ME#|rsZ3JQ+#po6w9WmDfYyXHfVPD7fOZ5;?C9Y| zH>v0(lT>sy2o>FJbEOc_lkg>=H=#VBFF_Lrcqrm42FfHAgAGE(P}^KV1Pmt>0gNOR z2aG0Y;y4e{{9j?l%On+(3_`_Z+gu+6OeOROOecH;m`TvYIUX|lUpRARl8X5Tp<z3mu++3BH#*PD&Q}|48V1QCf@Qetc6tkEt6E-F$fj+ zY;)ZZaG%f<@Q~04@Q9#^Pd&Wxe`9?nlT^Gk2ooLxokM&Cxo1U zPYHPdDG8dG#=|-PD=Do^Qjy*uRAjWxl|VpdLTNx&LRmm|f+ptju-gAcEVoQj@wq{$ z$Zwn5h=78GEr7y=?SP^LP5i>c{2ifLU z;HifY^#0)|*(FP%4tZlA00>%^i0VWa#0=^|^;#3cPhe^dWnWSQ-L8zE* zn@fs-xrF3^d4!aJ1q4m}-oqvTVi(IK6-y05#gDeR(|C_R5%m659v%&sfS+ZOfHejo zV4ZC)8&0r+kQ19WqJ9uLhxFk8Q3P0)8Xt{Rcc;@?X${GD*M@ zgAj1cHun+_d7Pm4pY*VOlmwiTNdnFqgn;w5xoSAUMS|Y{r-vA0CE$uo5^&8R1l+LA zwL!owg5Lj+hlWEX;EqfZ@UKA#cwn20g@FGEaRHAB2>?$Cn)t%QasM~VmoiDk8-q~s z&NjCNZz;l`cK>!jB*HF06oMvx;Gx~OQW0Gysfc9|D&pAY;^J}w!a5xKLxKh*Cg?ws z)WfT9q#~J2Qt_!ls7Ps>ONGm63D zL(u#4d1&Xq4f$n~fI9wCL*itD223O9KQhz9(lJsoOD3t9YY-~t+2-cs z@*+YDR4gWFz*2(#Bg;LEo+uSR$s`r43_`_f+uS@Pt|93C>piR*Apsj?l7P(yAz-U* zE~LBJuxaKI75D8Mm-CZ6z6Y=~6+A(K>` zHV74GZF6t&jXh6@fW(W0$bicPO}y$Mpa13fmrPP|!yr`LvdyJMz->Z$z#T#+z&(N{ zKJakYe|8ULl8VO$q2j4+ZV>{W6Mg`^BrF5GCTQY24=Mc*i}x}~MWibVp(2WHt`-8K z5%m5T9*X&&$uVV;fH(#rAf9dRJl=Ey!X?0mge!oL2%4D0LyQShkyIwBNNx}+QrPCk z;f$#WdVg9E-wu#~bTUam27?fg$u_qaC&)tB56DJ11js?q#M~a*`7`E`Nhha++GAY zg5KZ3Lqq?osiRC1(8VAGbhFL0=I z9QE&Dm`oBd(jWwkw#{uqz*vIbKfyy8|1*E0OcF5JAOuXc%{4{9bb{VL%fl=Gvu(Ca z67Zct2$*l1`v3t833~rx4;lQAl^HUd@<^!}ecWLhc#t7VdawFV(z zy>0GLgK&8xLGRz@WxcyKHl55U`t|_y6Xh`Wy+^CzAvmGzbBQZF4yh zaFmb-@H-(N-~>SvPk9)yKq^klBo*fjLd6B!Tz3RqBJ=|MN$3l>O3=jX9+Iw@;vd^w;)db!T|!d8zl7v~2Lw%g@Q0(i(({&unwk!)uWLMS~2aS$H#<2y+2h2%4GQ zLx&|&l0zmb$!!oy^4jKhAs`=N51;^HAD|FH6N`E%xKJvJ$s`pe3_?XI+uT3|lpzcT zlqC!UlqYCnB@c1tN=0Rvq@tQZsHkC^D};brgrb1jgf9Sf37XizL+a&H(NHF-Xkrj5 zn%U+aBA_|pF`y;k8K5;m6P<^aKT1VAnWUnlL8$0#o4bX8u7rO8-3j*qJqeoF$3yvf zQqfl?sTg1oD!#GJ)keTzLOsAxLPNlCf+mjgkawC?jFw3%#u{){-~d4r4|_Q1|JWRnNh*Ff2o)!6bEOe*l28_Knot37mY|6jJe2i6?JvqC z6@MCpimSG{a|pOb(ED$C$mQSTEtw?XAA=BZ*EY8p0sj(~0v-^S1O6ju;u8<2{V%s z|97qoGD%`)gOHfjHg^n1%1$@|$VoT_$W741&plNBSt|0$Boze>LPcTQTwc8QqJ;c_ z;)Ftg5(G^w?cqEB$&`^vD#{sziVC*52smRULS#S{LNq`%f+p7V@auf3s3ntB)G-JZ z^=xwv0SyQp0F4Np0Zj;+__c>#v!tTAOj6OxAXK!m%_TvABYXmAPe=jiNYKPC9%8JP zimozAMGu2e(aSbh3~#y*LGSPH;dlS{nE^6Mz#xMVFvK>u04Eqm(ECSv*y#Ur$Wby$ zz*vJ2Fy1zI6yMm1gyVp32`2$l2%0$ELsb7!&5%hdW*dZxxwg5cIO9A*bHD;ZE5IUx zCjQ`Ixc`&9L?)^D(I8a(WSgskfRzNjf3=6F{_j)2$Rq*l3_`#L+uSGwY$E9WTRlwk z|E{x5CJESS5CVR+&80`c9zrI-Z-lIX{RB-sl8QnGp`wUwZe62rxfo$1;0wYQKuLlomhn(%y;OWDlT?&92o)7=b3<{)%7hVs zs)W&i>I6-!<)OefsrX7Jsi;-fpXku3nyVpuZH<_fOr$MObZJXk5U`Zc0q`TCGvFtJCa&_(&i~r~SthAiV-PCV z+2%^&O>ZE43D`s^57HRNh*#Tgo;0GbKMbeiqH#ihR_#qj-ZJbJ&Zgc6_;d^iYo@8;xF6WC8S%Q^-xv^?&gi646y zxK1jP$Rrh?7=(&XZF7Ba#*~EqfYgL<0BH%DnBGH#3$D8g$m;~rY zm;x9;(8NI=svnh#!7@q3FoRGr!ZvpRXBZT=1{g=s#EBl_9FvMkGD*c0gHSQe zHunbtW)MyTW)aQ-<`6V-o`P5H#@v4<(LEMRb{@B9=j@h+~_3h_7Tk!ec-J z!ZW~!1Wiorq4^%E_*f>XNM;Z!lH2A=A|M5!3?LPu93Txr6F>8C`xmK5FOyVcG6)q} zY;$$+8nO}e{+u2T`@bdSl1T#c8ias+wz+{gK>@;GKq0~~KoNo_7WXjxcd7V7CaEZ8 z5Gu;p=58UNEa4wOdBQzFMS><)@lbBFR8*BoDry*nidwe0&3Fy93EKd52|EGx37Xi* zLstK$8_OgW%?v_CbK6{H1hgbn1GFa81hge+VtWrAH%dhZnWUn#L8$0zn_Gy0?u5mF zo`j`<-ULnT=b@DUwb@@LsrbeqR1CJwO~#uZN|**1PM8T8NzlYG9uE3nIAdj!iU|gx zVv=p{5&|X@t^lSIt^uYKG;x-P_WrMvvt^Qs?+il4eB0c6yoQB@NJ#vipaDxfT=f5L zxKt)dTy78&SJ>uiBVZMw9$+=0Az%$b6W4pV<$r8$kVz^w8-$9jwz>5<^mc;Yzso}} z{~uTUDw724H3$LwY;&t|f&&D-|FDM{&n4i9OcL0T&EHz$M$`__l7ROHAt2&SyPOpPkqJ2fQ3<&L z9}qM#riZouJ;strD&iW1iuks<(|C^w3FiQb2p0i~37VMHL(hm(kxVA3_|za&q_oYw z#(PXn(EHPQcos9K#buI;k_Mrov~4Z{&iExk?=SD6Z8iz0Ad>`CHV6S#ZF3v& znyV8w18Nes0lp$=VqFh~{Clh?lT?M;_^fd?-{cUrpnuN;(326a?20a6kk08$ek0n!ql0zMj8whIwn+O{KTL_y0+X(vQ*h$c@!)_06W6O`{Ju=DHXP-g% z`W&#$t-xO=4iSC^93iX$93!j;94Bl7{6W|XI7Qe2I79dqaE`DSaDlKNaEWjT@F(FY z;40xb;2Pm1;0ECg;1=OL;5OkB;11ym;2z-`;6C9d;345Q;1S_2;0fVA;2GgRzzf0? zz$?OYz#GCVz&pZQK!m^TqmO`JXpsn!0Z|Ci0MQ6B0MQAt0Wk^j0I>-P0dWZ*0pb&q z01^^D0VE=%03;@)1|%V*10*A403;`52BaWl1EeD41f(J40i+}31EePu1Y{%>0c0i= z2V^Cb1Y{?a0pui<1LP)D1mq=D0puf82NWRG0u&OeNF?OefR>%p^1f%qBDe z%q4scm`7*{SU_k4SVU+CSWM^$SVHImSVrg$SWf5#SV8CuSVb5BSWOrNSVI^JSVtHE z*gzN!*hCly*g}{H*hZKP*g=>E*hQEL*iD!N*h`oP*hg3hI6znoI7CfER>&fLDYEfH#CkfOmwafC#tk2ha;Z zB*JSz6v8_|G(trD4Kg|*3Lqxo13+v-Oh8;h96)?Rd_Y3Nhk!(c#DK(vq<|!Z*#YSZxd0gnc>$RT`2kr8`eQ!_L4PLa_OLOg{36LC zll&sdXApid6tK;W#9!135yk+D5XJ+F5hek?AWQ+2BuodCCd>kSNtg>LN0<+&Kv)E* zMEC(vg`iJX-9zO}@~Aarl1Kf@AUtXv+gxw_>uo(kKR^S*KtLnHU_cYXFhDcHNI-MK z7(h$HctC5yBtToj6hJ$|bU+8fEI=p1TtFAXd_XtCB0vwq4}e~TWq>{eeSiHuY&b1{ zsTd%WywE`g;e`&d&6UD`&^nCpC13=hJYW=|5?~CWDqtL;24Di=E5IZ|UBF~Q1He>5 zW59GmGr&wj3&3nbYrtHB1I#0I04yMM1}q|U11u)=1S}!+0W2f*2P`Li16V;A0$4>D z4p>bX1z1BE3s^^(0N6nI7O;sh6|jXc1F(%S8?b|*UyffroVYCCmfbSRx8*m3@NL;| zo7<0ogM>qX!-S)NqXbPn?xD;(sW>5%RGcyh6=!U7hw$U^9N{S70^vB|65%A^Pr@0% zRl<3|HNqvp4Z;<`Ey6XxZNg2!9l~wEJ;GhUeZqafL&AT6M}#MUCxqvKX9Rs+FFky9 zQ{LYzndJSwH3;wTy=^W(enUt6$L=o#h)gI7h)U4J=pMHF|5thpnWQ4NL8yppo4bb3 zI6mPfAR*y4AQ9m%ATi-SAPM0=Kr+G;Kyt!!KnlVuKq|spKpH{>JZd^ZWI%dCG(bi| z3_xZ=Y(Q2*JV16rLO@Q!M}XXfB!IjGeZ%=Z{FPmP?-h_qUU^}I@XCwY=8od$d~t%_ zU(!Rv7!puQCJFe`AOw`N&2`b=&4ljyyP42Se>W5Q0;&-P0BR5h0csKS5Oq9sd@A3h zx-!YB8W@CAHL}eW!?(Q&p#-2Ap){a5p=<#8pF(I!s(^c16SUQNnEgzS(M~2gMn{8i zjLx>X>Impcs0HXwr~~Lps1N8((29N@`dpOG{xV7DHwK||ux)N3zND*xuI(OOTGUDUdP0;&)^RP0j9D1Kj5^&HU1RS=_t-v4ZqlBLUzZ2E~ zP7pNll!wp!&yCYENyRyXP;tRFw+jK62zvm367~VE5;XC;hxvcXYq%kkRQzoaD*my} zoxp3jOE?Aimv9#FfS`$wJj}Ww6^~_-if0C);)QK4Gk$!&B4h)+A>;(SBWPm8J5ur1 z|JQya$s`p~4MN2Swz=2%FVV#yyaU7{M8s3XA!uTJ4@aZQXOTcAsYqlHDiYh~3g8Qu zgisiej8F`aoS=y*J)HCZ?XFZZNkv+NQ1O{`Dvl7Q?6At0x1 z?rMv0IXB@tATQw-ARj>!3wk(}Un&a8Bo##sLPc@gTuB6!Ad~@=B9sG^A!uSb4>@y5 zMR}Q|qLM+VsA8MDgYR@T!oPqTgol7y1Wl~t;oGWGQCB9ZXkZX38rkLsw+xq?5QYJo z5k>-<6Ev}vhYk6pqP0v?;S54Wd)r)IyoQd1{D97cLV&IWP3+;}bQP)SDU($6F$fj? zY;(PE#sP%BfNux`0D}pdILt$)ic&FLCaD-@5Guyl=E@*o9HAUw0-+*c5Q)n)r){d;UwiMkc9PZxAXr+UB0%E4i8Q9I%z}3b37^iMu=;FC!Jd$|Mzg4MN2} z+uS>x@cEy72D+k_;5I|NPq*F#tTGwQxfQt_WbsCaCfD~5ol1ik-- z2l=me%72wYCJA_B5CY!W=2{>i!d<(+H6Rkf0iqBz@dFRF{Evs|GD$@&gHRF2HkT6t z@d$c?MFMuqBb%1OHP0Z3)JP=ug~#XThQe{8;x zNh(Sigo-k@xhDuHOLz__Pk05WNYKP89>#qs6;)-DiW&x?qLytgI{r}9Cd2~NCBy~P zCum|L4>LcPipDZYMKgm?(cCtd9%pPx$OLFj$O>pn(8Ts0_E(UK4l+qaXM<4D)izfG zXY5YU`+IqqR6qiH%OnB)3_`#F+gv4_;2T0!z+gfRz)*rFj_^>ws8o!UNh-z|go<&t zxp4@XK$r-aM3@YiOwhz>9x4@-is>>*#VmtRF~>Gn8v)-D>H+2x8Uhv)G;y(qbS0(Y z2brW|nL(&nZks!TfE9$_0jmgq09F$;ajl0oC8T1VOj5DYAXIF&&Fx0OR>E(9?Sun> zodiwX?O|ahsn{cvRO~Yd6$fl{_3(W;L}&;<CawM$p6)9?}<e7@pov#KT=Kt<{*p;5ZWx4$Tei962)Ip13AjT@1Gq=f#0MUh<(7(v zGD*c_gHZ9*Huny{`JWRaBJm|53g9(C6W@6#S5_+C%On+%?kR+dD7LwTc+=4c9|58h zk^o{7G%=2cy#BXAT$!XIfkCMF&^EUiXZ(n;6!0-&IUp%P6O((m>i=APDw9;CG6)rE zY;$K2kdAO3ke+Y}kddH?Sv$U{>9 z*Yd(LNkuV(Q1OLrt^)!}5;_A)6S@JuBxquJ4~dIOMFp9pqOw7#sA`*=j@M9~FbhzV zFc0CXXI1?Wc5#GW2@m6M8IGD$^WgHX}mHkTd&0|}V`g9sWh)I)Utcf(;a zN#aO@kT}{l*A!1ZmZ0}f@bHKK>?X=20h0|vz*O7Z0t8Ga=>4-iG^#8Cvt^Qi?+ik~ zeA`@eJiwq1dcEhJ>imXHvVkdQ6g zm@zYEj@gIHTqF3zn-<<~AuVpnNLu`<;9A_(%B0|6?-M=&{6!cGctr4t0avBPw{4_FIvGie zj0&zrX06OV1Y{)~1Y{>11_Tm(VlE3$x=M@OGLjZgE4UWJwG~8WMg2G$Q!Kw=7(5EiIbJNLswD z;99(+mD!3twj}HTyi3>xXhZOc?JX4QEiK-Yk+kTf;97Li%B;s*wJYIgKqz4gAdKJ> zyIXj^owSIQk+kTc;9A6JWzJ)dafC~N_X$@4i3Fe6%fe^L(xSJFq(xr^*P_2x^4|t_ z(*p>H0Rss~0fPxX@gob{T1tyyGLjY}6@a(U_K!X z@EyS?F0zotwpc79X|YVfwOFo|X^nstgm!>cgbsk!1fRIh!m$Wxv0g^f;%5cdVzX9e zI|8;6b^^8&_5gk%_{7~7MkPv%Ju;FO`xRV^gIbwXob(~WXMiJwae$))pLpED`50+& zLPpZ!w1R7KRx9%|0?rd^04@?<1zaZh#A_DXMoNq8GLjaz6kLnjTAAZGhC75)fO~|q zfCmJh_{hSr{6XpX#2tF~)!rU-v5iTQX5vkx>7_H2F>@k|K5D-gP42UQA#6%0hy`)8w zjHE?x1=pgFR%SW&*pILh@Bv{p;6s8>9Bkoau(TK=BWW>A!L=Bnm5Ih4M-k!xDTD;T z7=lmy)WS9UP8%yDY4N#&YcXCcGXnu%5M}|sB+LO!Ciuju7INC3qtj$0EoLgX7PGW6 z<8VvPCVT;yOPBr;Mb<9tGE8pH`+9PWk}BuRmnr zLwmm*mXQP;Rd4~vv@($hI6?61Ph0rdK7O8&kp!GqZ~+&!GC$)IE))FvYZjIn3AipJ z3Am-;0&Z(%GUArML&yTSN5~F%K*#}jNXQL%On4d)a9uZ%ACR8#EFdGHFd#GGIY3rI z2|#wj3xGgE89+`#IY4egML-atG9WL(AJ;P$X2i<*)y0Z}3hw+0Yo*iAS=eRQ7n6~k z_wx#F{R>)|Mu;m-cnk0%p&6hY;T=E)LMy;agf@W6g!X`{gpPoh30(lM5JCVo31NU& z3Ecs&5e%R%AqMa|As*0xkO+8#&v~Rjn_`Wy-M$CrPG}(?6g0F|G@fS1-Cv#E1eFr@MU{hA1))g3nCTVdZU$jg12on zAwBYA37G)#gsgxB!c%}GLQX(0LLNXeAupgW;Tb@GLP5X)LJ`0~LNUN#!t;Qkgi?TE zgckuL2;~8z2rmIr2vq=M2rmOt2{iy?39kau2z3DC2(JSs5E=p|65a$%A~XR^A-oNk zN@xL?PVg`N*A@!eUt?y;NbZF>3hrL`Rx6W&n{__HuU}}PQIZ6FFCz(9qTm9SX=NrO zU^!tbUhfZP=XKyC`rf%C`Bj$C_^X&C`%{`C{HL3s7NRYs6;3Ys6r?U zs79y&s7|N^s6nU-s70s_s75f)31L1iV1-n%K&uCptg zevF0nqa@%H8A-rc1s9N}l{t+aj3b-_OdwnYOeFZk$rdu(7E@#-Ev6~B7BjRmhY|2K z;V9r6!g0VHf=`@h;mK@iF<(Z~VxfX-u}CYk6vwcHupF?AuoAGG;1gF`$TL$~tdfzm zSfk)ttkcT8kAMw?B*4#v-hj;npSaD!FSf;Y8A*$s3a-U&txP`z>?I5U>?aHY93=R} z!xk>2BrSeda4n8&Wm0j{CkdYcP7}rf&Juj$1q)wHmlhXgBrUEexE9y6GM%x< z8-%WaTZC?a+XSC@*TR6&(&C7H-7O9H1CW8>6EjuHae(YGr03ASdA)KyJcZKoG$v=CjayuC&N6BWdxhf@@JoE3*~HP=v4p@ElmAQ^zY0DFC0V)!FKxGTB50=C#GLpoX6r37pWqXdEabK?eoq-mi)01YqOVrwG6MP&{Q3_qw3#6R17#!u zLlj)VM_QTgxX9rI0~kq&0gNX2#4#57O_LU%$Vgg@Rd6lRv@-7?U>uXxE3?CG9wZ2H6aD?4dD~O9D+}rXQ7n+&3(R%q{Tu7*J6=YW-A^> zmJoITmJxOVmJ@v9N((FJNQ+f6k``+eT#I#DnKjts2Euy4&xD@=n+ZN~n}uZi3(9sG zNsFBduElPx%zC_S_7eR10~TJfpZo`9BmsvNT)=NynfI`R-wA&G2@8|$Z+<6bBmrj> zT);W4OiQ-|`4<*kAhpJ(E)m)Rt`L0YbqmAo!|4qfNs~VmT$4YwGSjfjyM&p5`-E=* ze-V7*V+%9vhvX9(NsIJ33ygU5>Qyd1r*iF%<18#ixK7lN)WySlqC4X(iYM-NsBTvk{0C@ zT#E`?nOf0q`X$0^fXak=fT{$aSlz;hYo*02GLjax6kLniTA7R3V;#a3Ks~~BKz)Kw ze8WP*57MHMjHJa|3a&*{txN&}-X`<}yhBI^v?Tb%))tzsmKJSfBrV!2xE39>GTRZ* ziLevUg|G+EmEaS*Sx8+jEy83ZExIeX7ExN6fe7e97y^hP3Wno zUJ9;7vQ}mk0{Rj@2J|PS0tOI#;vfq_^QFaL8A*$e6kLnpTA3?&XO1LX2aG1%0(?yH ziK!M|T_-I*m65baQ*bTDX=VPv9w!j)045Ud111rC;#U?nEtVEjWh5 zmXWkrr{G#_(8?UbN&igv4X~MT46v2p6L(l>u~}ODA|q+BTfw#1tCeYpJ?$+k`^@; zT#Hw=GRLvU*9fNobqQwyuM>P?LknlVmlkixNLn;ja4ni>Wy&I;8KDB8IiV7u1;Ho2 zYoYBtY0+9n(xRP$Yw?~|<`mw$9SLUvoe38J!33WeYT>T^r0pgnX%V5|T10AP9$}A$ z5P+kPCS(A_5`5zO79QA}HbF+xqNjpu(OWCi1ugmzLIC{;VSo<^K5?Lh3O`AUK{ApS zLls<$VOp7=5HNzU7BGsi0gyuQiJw^Lyg*u{%1By#rr=t9u9bO&lO9h9K;jpK41g~Q zK5>eLF#99vD;Y_P=?bpJOs!091k57%^>Zu?ULpZ=Wh4Rf6#*+ReXq{S8)NsH|YuEj4} znWqr2i;xqrhmZ%bkKhvzTF7EQ9)6XPv^b*RS{&8N96-P^!Xdy3!f$|61fO`;!m?%3 z;+%}6#YF|z;<8pI5&>5UJpk7Uv4EQdpLpBCD+{H?pE8mb_Y_=<2U?kY2zW>+0C-IB z0qOpf#6bHaEWL~*F_VHz%%YWPj`w;tLQB9?1Rs#o!qi2Qm`g^I7^L75^J-eC1hiCe0q<&M^5B(hL-6a{Ti9a*-jk68bW(5uU9>X!5YUxS z01!&>0pS+jwZHvF$Vd{S6kK8tt<2ZBrWk@>A8(nB-gcvb=?%SZyID!72@TA8CUZh9u+IA9jx6ks;NCw^<; z=m}{tPe#(>I|bL`d#%h=1S}@Z04ycU0{lSmi7PB5pO+RZWh5jE|reBxFMhYm=KZ8DM;zbLpCyR(kJK_YP8{iZn0&s@l6VF>%vRhhQkdd^wtl(N))yix{z;(iAz)iw7z#jyk zc*jE4U!=ud8A*!=3a-UNt;|>iJSKb&2)LsG69DN6J~5Mp<-bXb%rcS|*%Vxhr?fI1 zaMC#lodLNBT>*IrJ~6L_O212sd@_<21r%J1f?Ana1QaH`4=74V0u&?o#OE#CxF9V` z%1Bz2R&Xs|)XL<st=tS^|!4^iGkrrKLBrUorxEA4BnZ4L!cftWc6yXq{2f-)CTG(jc z7jZI@76}TjMUqx#686}O@D(7LFdfjB;1fTvaK+xV17svE1}V4}L$or<*yBfpet_YG z0f3QzgN!6G#X{HSA96CuNLpl7a4oWHWyT>OknjZ{Ct(sGH^C=9ZK2r?X^~e((&8Bf*Wy{N%m|!x zA;M@t5yBY2a|EAQ!osR^(&Bj;NsCenu0t6#+(n21>> zT0GFo%)%ZY66OFN6XpQ|?)_V01`C1q@gSp&q(v45*CLx%rVL)prwHW$IS3U2xd=Wn z$U<%V8TGV`q(y!O*P?({W+C=ikgym~n6L~`l;9JKTL`c}l1j)(TD+j(T9nqxoWmYp zBwPfPBU}MgAo#>e77E*6?JLVjT2xbTEvjo}0uWGxkO5GOkQq>$;1law=(=B8)RU34 zXrSO)yrGr3gJXD;a3Am%;US0ImyrZSD!2fnm5D<@G{LWrvrznz1jNfo0umKm zKu@hqmN+-vo8Z^?wJ_wa1oV@U1PoAc0Ry!%8?b}H1i$_x3&m}~Fd0d}NCg)#S}U^# z0Us0m`cw-;>?M3EBMC@TZ~^1AGEdNSgDoSjDVjA ze*Ibt;ZG!Bos1-4qk;?Aq?IX-Q`$oC>$h82b4LPp$VdWqDY$?=TA7vD!9Idtf6zkb zhZ69sj3nTQf(tmRm3e}IV+6ncq=l09-EvAs5^z?*1)SH)R6xK*f?t2d!e;wIUzL#r z+)!`(k$tfFS`H*&FCid1!LQF@p>ui($SETU$fMu_p4Q5|iGX|rzrKKlHTGV8Rz?y~SiuDp)yj;= z85AS<_0L=Q{iXzzl#v9KR&W6?YGno?pd7)kuV|s}UlQ<=j3l6nf(xjomAQ$4>IA>O zriC^3L$8*MB;Yj#7f@F#QxDS(2#H91gWv-i6a2R{wNUq#v}h(HY4MJNYtd3G^AQr? zCHVDiEo887w{|j;fDQ^Spp#an2wtZy1iwDSLh;)Y5Go@H2v=|c-L*1bVh2$KzdqW5 z{oxcNBMFFCZ~+NgnbQbJBAf&CB3uL{6MSMn3)Ac=^_P*f_)x*M7^IaMiGU#lzkZm7 z&h|59xQrxVl!6OL(aQXQfH4HW{!-zH6_`NLt)da4l|YWnRGDaEDL^aF0+9@PObGA6YnSpH?2rNLr+O z;K8-Xpq0smfJ}rSKo&wiKsJI;4751=K-?_r2w-DF9PNg$^+&RUIHv2 z_$&L~!oe|ese6;%r7lr$m%2?6HWrw63zhD6V3xR5-tHY z5v~HZ5N-gr5&VVxVj)W&xw3lk?#gy6xGUSMm1%(K{e(t zKyJbbKoH?HATQw@AV0w$#Vu0&eUcvROsFfLw=}Lq#fGUJf0o4d;fa-+tfEt8}fLesffZBwqfI5U3 zfO>>kfck_vfQE#5fJTJx0F4QY08I!>0nG@@0nG_30WAot0j&t@0Idld0c{DJ0qqIf z038Uw06GzN1G*6Q0lE?n0zwIg0bzurfC$2IKqTQ5z!1&?q6rrOv4qQjc)~S60^ueg ziEtaxi*Of^On3n3OLzq6PYC$X-L(S<82|$bnE`_d*#JWcfq-FzT!0aTAiyX>K0peg z0ALKE5FnLM6fl-h9FRsR2^dEx4VXYE3z$f#0GLFm1eijo3Ybc$4wz1;37AQ!4VXo! z3z$u)5131M12B)!7_flQ6tIxc9I%Mc60n5O8nBGe4zQfi0kDG58L*1b6|kDn4X~CF z0a#Cn0&FBi12z%-N99%vMOMmZ=gNrwA7TX9!mS=LpvU7YMfimk56Xt`P14t`YtM+#sau z@6PWQAtT^6Av@p>AqU_dAvfRw;c37_LVmzw!n1&Yhx$4e2BarE2gpb$0mw{v0g#nY z4v?Kt5fDhI2FOWx1(2KY8X$;J50ID80Fa;12vC6V7N8)Z8K5xX9Y9e+D?l+q8$by{ zdq7D-M?fh;7eE<82%sz>3{alX9Z->A0F?+afGUJ|Ks7=lpgN%!pa!82pcbJ&pf=${ zKpnzhKs~}ofck_HfQE$8fJTHdfX0MR0Zj;LfM$g8faZkBfEI+QfL4SVfYyXLfVPBr zfcAt%fDQ_ucbXjF{?9DMOedW&D*;^ys{vgJ>j0sIjes!1WM;6UigwlYSgtCBHgbIM!gi3(9gsOmfgzA6=gqnbbgxY{bgt~wwg!+JGgf{@o z35@|O2u%U22+aYj2`vF@39SL^2^|0%37r9(2weeN2;BhN2oZoCgebsHLNs7EAr7#Y zkO0_ENCq4v^aC6s3;-M<3<4Y_3Hgzo_l2}=Nv2|oY=9_gdV3P5_oPk@Ys zwSdfo4S=kKO@Qo#t$;wn4nR)AELT^9d60BM8{fN_M*fC+@IfQf`|fJuZ1 zz!X9hU@9RRFr5$wm`O+g%p&vz%qAoQ<`Vh=<`D(}77zvj77~U677>O6mJmh(mJvP% zEGMJ_RuDb|tRjp9tR{Q`SWB1$SWobG+|L%O<&s;lIR3zXi-Nlaw`pZcVtNOmG+-y8 zEMPaG0$?wp5@0`}D&QcYI^YnYCg2F6HsC11@B6rgOylK3y7X~R$fp$Cg`CmKgkbs{ zAq;SV-~%pOIQ4@hj_KzTuPM018(Nu9F@1}W2DnWa54b~^2)IX>40u483V2AE0eDQ9 z1qgVo+nfVPPnZYDNcawrnXm|um9P|$ov<7bNLUHTNmvcYO;`sABKY&mXQ9z`Ina3g zaasWdcc2BeGKrWjOy~tDO6UV9M(7VHLHH0*k}w!hitrJj3}FPIEMYXDJYfu=BH>d& zB|;jY3Sm5;8et-!I$<)P24O0o7GVaUHenW^4q*>bHX}63&KV~E5c?#Yr-}_Tf#4Z_5^>obhI!#qkK6!(7hkKD7f3Ft5)VX zrb7v*0AYl)fC$0`KqTQZzz}@T7z_FG$~~Nf52APlw}}L;Om9pl5&8mp5k3GU69xkM z5{3Z!6NUi>5Jmz95>fzz37-Il62=0C5k3cuAWQ&^B76x*Axr^`Axs0L5@rI%621YX z5#|EM5#|FX5c~;$Y2l@(^`2qgil2!2;ouCHP$(uu$`P`Equ!+vXt!x6LD3 znG2XcO1KO-Mz{tzLAVJxMYs((L%0h#NAR1tXrWUE`LYSedqu(R>Y7$&E2eJ{b^vY> zb^&e^_5$t@4gl^E4gnqz{3ae*xE(4l>A9ZntOA~RaJx#cmAQ!NjD#zI%!KQJtb|*D z?1Vo7frNX2oP@ssxe1Q}L44E8Lgjhgzf)A)^VRI(= zaviU6Z3UNDM=Ns+)Aa~{0_qd)0U8qi0yH8#1~ew5!zWr3LPkI{LKZ-CLUuq4LJmMH zLT*57!qb4Zg#3W^gl7RA2!#Qi2+sk!5J~{L5?%m=63PI=2;~3~1b^gF7H-=g5$&-e zTEV>rv09mqn2slO0VEJY07--}KrcdfKr+Dq`VwLQ{R#1a0fa=rKteCTU_u|jP(pve zFv5p`5rn~jQG|~GDTEP#F@({8RKgg*Si+}(G(s9+9AP|Q0%0OxB4ILM5@9M}3SkCd zDq$92I$;iACSe|67U4UCo0>VnbLc(gmBEmYr62eBnGQwuSa>6#i z3c@ddRfOGu)r5V3wS9 z{e;_qgM_<)Lxcx_BZNnQql5tb3_nK5060O&3^+x|1~@|q1e_z}0$d;j0WJ~p0j>}V z0Im@V0d5eA0&WqC18x&a0`3q>1MU&Z0v-@503H%50Ui^o0s;au`Om%Tfb@i#fQ*FN zfXsxtfUJc2fb4`f0D*+YfSiP;fZT-UfFMFkKwd&?Kz>3yKmkGrKtV!hKw&~xKv6RS1Is)d)iY)d|A^H3*{s zwFn;rY7Ji2P>Jz>IG$c#{G$MQjXiS(6XhQfJ(2Ot}(46ospao$8pcUbJ zKx@JhKwH8OfcAtHfDVM80G$YH0bK|i09^^20HK7ffH1-iKm=hIAd;{bUQ zSi*0Bc)~G20^uYeiQu1TdRv$sA`h;+@o3vu!9C*i*UId}^Z>#^z(B%bz+l2rz)-?* zz%arozzBlh#AploAIPrC;K_81g49S;|SFN69}&WCK74^CJ|l( zOd-?*OeHh`OeZt~%p|-8m_=v?m`!*GFqhB@Fptm%uz=7Wu#nIZu!ztFu!Il-SVjl~ zEGKjatRNV`DnblkH6b3bmXHWoPv`~MNazFDMCcFLLiiA{jW8IngYXexCt(C&H(@kj zFJTN|KjBlrK|&hf5Meyv2w@`NC}A?-7-1^l1i|0Nr!5SbA@_Av{2|9V1$SRx(8^TD z^d&+~z!gGmz%@c$zzsruz%9ZXfZK$|fIEbyfO~}IfCq$@fQN+EfX9S(fPi#*sT~06 z37r8M30(o13Eco$2@!zogeX8DAsUdA5C_OjNB{&8dIItik^%V%{Qw0B0{{gHg8+pI zLjgqz!vVzzqW~oc9|KAfQURq1p8?7c{OwcD!rj|)KkfO@{V`8P1$RGH(#q_|bQQv{ zfNF#zfa-+b0W}CG0JR9G0ksK!6Ll@rN|Id#_IA6fui$poP%D!Q(~Ss0fX0M;fF^_j zfM$e3faZjvfEI+}fL4T(fYyZ4fVPCPfcAt6fDVL8fKG&}fG&jUfUbm^fKWnhKp3Ge zAc9aI5J`9gU7yw8m3<8WL305QCHw(6Mz{kwLAVb%MR*7}LwEu>M@Wx< z+Vlb;6W|gdE8q&@DZn*CPQVR99>6U^Ucha_Gk`mUf`EI3B7g^kVt|K)=K+rir2qlx z^@q!gfb@j&fQ*Ef0GSC@09gqy1F{op00IfG0&)`S0CE#v2Lurs0`d~x1mq_)0Tdv- z4Jb%x0Vqs(7f_VY7Ep}v9-suF6QCp^7*L833MfMe2b3j50?HG504fq<0hI{v1F8^` z0M!V+0o4h80W}C80BR8i0%{Y60O}Bi0qPM(0_qb|01XMB02&d-0vZ!O2Q(o}05l_f z320830%$>)253c?3206D2GEu;7to$CAJBoY5YUOR7|?~V4A7PEBOsKp3J^wE1Bf83 z2SgHn1{lH?Kr~@HAeOKb5Kr(Ag^3n|3dvLAW&9QTUJC9hF5hg6V3pF2t9N zc>z@j&j6|s3IeJViU4X5iUDd7o(I$>lmgTtya=dAC=aMlcnQ#uPzBJ4@G_t=p$4D{ z;Z;C0LLESJ!s~z*goc1tgf{`L2~7ZP32y`16IuW|5Z(oJBD4i`A-o6ZO6UX#B?JS) z2%&%oLO39j5D74Z9)M^%;+1JVe~0OJTh0wxev z0VWdG045RE1Evsu223Sv0Zb=s2h1ew1k57r0n8@s2h1h>3YbSY0$4!!9k7sa0Suu#J!f zu!E2tu#=Dju$zz@u$S;OU_T*0;2_~yz#&3mz!Ac8fTM&GfMbLg04E4#0H+8Q0cQx6 z0p|$S02c_a04@<~0j>~U16(821Kc1q0Nf%p0^BCN1-L_K2DnFf2k?N<3hG7>@nnF(Qltc31>>;wY{B*Xx665;{535kFpLN7pGLLWeWLVrL3 z!iRu@gu#HqgpUA42_pc-2%`Zd2x9;x37-N=5z+u<2;%`|2@?V336lX82~z=;2r~dx z2(tjy2y+0{3G)Co2;Tu}5f%Yz6P5z%5LN=}5mp206V?G55;g)F5jF!F6Se`G5PktP zBkTq=C+q{XARGj=A{+*^CL9H{B^(E|C!7LwAe;qsB3uA;AzTA=CENsr5^e*+2zLPy zga?2~!Xtno1SGjn+-O1u2l6k8h$Uslns`DsKms8UkVMD@=tT$uBop!h`VtBN`V$HP z1`vt@1`>(`1`|pGh7w8xh7rmFMi43hMiD9jQV3N6V+hp&sf3z4esRnS^$LS%eON*@Vu3xrDBOd4z6&1%wE|LP8W^ z5g{6|gb)W*F5IzQMBcuX$ z5IzI!B#Z;>CVTZWDF^?hy6@?hy_E9uR&5JR}?gJSLn3 z1Z2`DkTZbvg!6!mgiCH z3ZM$%Wk5AT4M2559Y77j>wsE>HvzQ?O#pQWZv*NPS^(-3-UT!yv;{OGbOJOc1Ou87 zLIKSP;eh6ZNI(lh4?rtIETA>veL!165}-YyH=qNdFQ60Q13(wTKtNZ*5I`tl7$A%= z5)eU10Ynl$0T{wqKs4cVKrCSbAfE6gAb~IikVKdU=tY?k6A96PNrX7S6hZ=EDxoJ}Iw2V_lh6+^i!cB%n=lA4moOACk1!mtfG`TM zknk~J5g`?@gzy<)8DSh?IpGVy3c@77D#BNQ)r9GQwS=z$>j|>~8wuY6HW3y8wh+Dt zY$GfI>>&IA*hyFc*iHBeu$QnFu%EC2aFDPGaEP!KaD=b}aFnnMaE!1QaDs3EaEfpU zaE9<3;2hx?-~!sCCCmpDBP;}zAS?!yBrF4zBK!y_Ls$hUOIQOa zPgoDANbna@*}@w8pL%MBSE-tUyRzz9nHHF?L3kHXi{JxZv+zr*B;Ll~2vASKCDzx< z+{JW5!UI4f!XrRqLID2R*(QVxfM$fufaZj3fEI*6Kr2EnKx;w}pe-REpgo}gpaY>0 zpcA1epbMcmpevyyAe2xV5Jo5qh#*t|L=q|i452C@nou1OOQ;EmC)5Tc5b6Sw2=xKI z2yXzA35@}L2~7e03C#fm2rU5v39SKx3GDzw2^|2#2>u2eY2nCRx#Je%Z<|h0!1IDu zW-+Ey3CjRu2|ohT2&(|&2x|Zn2qjkKsXIpNH_;rM7Ri8Lbw80Mz{`GPPheFLHHA}if|9Gn(!B3E#Wa> zJs}P^ zcmZ&fPzG>}P!4c{P!Vv7P#JKBPz`X7@Cx7pp%&m0;WfY&LOsAWLIc1JLL&; zBmx!OXGKn}%nVHDCd>i^5#|8$66OK&6TSl!AS?nDBrF9KCM*XOCHQR?x6t%U+4nd2 z6fCLW_FYOVGZ)ik2=f7D2@3(`35x+03CjSL2tNX<5LN-I5!L{z6V?N25Pk;KB5VQF zCTs`PA?yUyBkTdxC+r6_B>W0!L^uLyO!ytpgm41TjBpyzoNx}%f^ZSgif{$cns6P^ zmT(Kup71B21K}Q^6X7pF7s6veS3){`PKFXP0>TJc01<@jfJj0PfFbxBEXG3l33A6J zpl!T@yWtC(I-xB=Km_ye$sa0jr3a38RZ@DQ+r@C2}vkRJb7 z#co0-z+OUDz132XCt*3hv5|YGv|b`WWFEzzIS@z$rozz!^d@z&XP6 zfD43DfJ=lI0apm+0oMpG0d5fdh5TV*?lW>_-{Y6$I|}Z~?rCL~VEO^!2f#zZ3czE+ zPk?}|+F~srJz)bNBViLDGhr(rD`5v9J7E_fkgyk!lW+i#n{WsaMEDJmmv9V_pKuaT zfN%y-kZ>MQnBWieISb>K$q6Up;iZIvJK>UAnSPiqMHm1mLl^`oOBf0$PZ$oUNEijE zMDUxaYN3ezuX+s_;QnfObp^Mp8d{k_n65<_3aCx+0d*~m%qD-B@)G`iE%g;#VneM= z6-+lGybNeer~zm~cooo$PzTVQ@H(Icp&_6Z;Y~nmg5PF43vJ5Te>s$l?0*7N!R@=V zR;CN4LkNC-7{RaTZsFyZB{34;(nG-|#%QI}@fKdGB8hRKRD1G{AU*-^4_MZ#$Xb+fF6;wlfI6?JR4A@544%kWX zyV^tW``AzL`}mdM_i=>a_whTy@8bl)@8dMV@8g_>sOoY$=Vc_Pb4kIS&K0f9RZQO? z+yvYv{0X>6xDR+pcmxQ@rajZiNP1=@WCCO*WCH{easYA@@&NJ@@&O7Eo&^*p6af?? z_-lWj;IFn6!C&o*1b?;V3I1wdBKWJVLhx7nGQnSM4T8VgR|)=V>k$0azE1F0+mPU| z_DzDn+9nq6myuVxsf^^*n=80ix`kFc{jP=WwPby3tZ%2_*1xBf>453Zgf4&(LMR}d z5CMoH7(fgm7VthH0nn4s3($wq7w`dL0ALVdFyJG?Fu+K{D8R>rF@R4A{xH%A{_@8Y z{N+z1_{*P6@RvW8;4gm$!C(F?g1`JZ1b_MS2>$ZFBlxW^BKXT+O7NGzoZv5irG-Fy ztE`fd+$w7n+)KYsE1lkG;rGh2{%5S;qTtqV)5>he^iIMqz+S>Wz(K;VfFp$80LKW& z0jCJ30p|$k0hb7u0oMrE0k;T$0PYa{mE9-!Yk5fU*YbqmuO)qUJsp27nF#(`vJ(8Y zJVo%=l9S-CB@e-0OJ0J%mS+h5S_)d&SVvx^LNbz9wWxx7m5OPl)6ZKt{*tUOiS?xw z-1--_GG#Gcf#BCyBKQ?mEgZHFPSx-&uPC_0np){}Z3~&o%lg-_zMg_xUtcTJ0Mm^K ze*IenzoMCi`F00y<6BxNxWrak>2wZ6rT_qXs=U0MGD)(=#0>j!IPhG2RaVK`tE zVKiV2;S<1E!e@YSgz1;KCZCkxdY$@#68k(~EB1$TZMv@#npy_w+GZzK2>zgT!wRuXsOTlOfp#C=+s z{h0oh;MX4^_!YlfSW;RNkKtQRD!9bcTA4GLK2PxLFA@BTs}@e$ci%O9%S{EB_=i^J zHm2_q?g9QHJOn%;1U%)=F@yZizqH6q@S)iVJ~WWvLvs;)Xpn`GrDWev%Sc|W{0eU0 z1++5HV!AM)2%s3DIG`lq1wa{sZ&8lmLn{(|Xk~&Atw!*nuUHsve@Uw$BiZ+>3U1%8 zX=UnQ`gMX|-;m%}ylElC{#w}>-_lgUCBChdX^!cZ1i!vD!LMj%VWhn$+T&X~D!9bX zTIqCG3nBGneF)ZvDY*3!TAA*cHiRC4SV9~ifshF3Md%IaOXvp}K==?am@ot|j4&K9 ziZB{5hTt#cQ-a@m8o_UUJi%{$BEfHcGQn?sD#34k2ElKA7Qt_Q4#97I9>H(@I}26n z%WJSuMsi;*R&cMuQmxD~O#et&0r-iq8nBMA9`G|^6JRT08{ikhPQV_*UcdpuLBL^x z-}h01-|2CJ-{~oW-|1O`-{}Q{-|1z7-|01i-|0<)-|20F-|1ZoKic=%JsHUf|E1tg z_>orTv71f_>=qXt5?Ud&XHrsJY?{d|ug$-iWTXrHx6q6P#F#7=^4Q7-@Uam z$(Zg(=nwdiFc2_=FcdJH;9HC$_|T6DJ~Wl!Lq8+<&~X+%Dk=LOFC*FaLRZW3+*{v_N1+$TH$JR&>>q|2dKmR?43(wPXE0oe%I0XYac0eJ}i zbn+7Xc|1e#=TVU0&!Y&zpGPr*Kab}L{ya(%{CT`c@aIvU;LqbFflS*~kh`V6jO0w;P;ht4n_8L1m~KjF26%_i0`M-OHJ}}#J)k3@ z6Cjw-70`_k2Ix+R1oR+81L6qrfJ8zPpf@2I(2vj`@F8I!UjjOU?*W0U@u`G;2_~wz!Ac4 zfMbN?fKvp2WoHTgS}qX$wOl6nYq>`7*K(8KujMwuU&~#Bzm^9Ce=Uy){#pWZ>TBSy zB?G}u;5YV(g(mjTol<2a=l7X{JHOAhGUG7)1;MYM zMDQ!VvT)V@nd?-1%M1mV__bDM7N+MA<^tvu7685{ECMVgECc*VSONHn;5V_B;M;B> z__mt}zU@|mZ@Yuw+wLOxwtFqu-v`Y;8OdoLRB+dRNGm_x(+o@(5YRLrB~wy(LQG=X z2We$evc^Znhet=nhNqcQ@d5H5oNZ?RZjF?{s9t@Fg@$zN5gr?s=%+SfDue!4ZFVJQ3x@Peii-(Jis~jC3k#PovAx0*5~Y`(;d;(>#i)Z1%YS>FeMH6MKfn#D(>g z#*yLC@!<*ovBAr3Vb7jDQ!>jzbq`NWOL;0WJ~Apcxnj?xsOYqm+>PW`ij~`~O>ETr z4WqgxrG1w6;-IuL=HvVU0iVeK+P{M(HKjsWcuZVkaCmY^Onh{BVz8V@FeoHCJUKQz z$yLEMf-6-t@!iwpO_cI4-(T_n?fa{~{CB`qA7KARiPV((|7C!?uHeM*?lIwV^V?TC zxOY@iWU!oBa8J9l%2oajo$cu#{px=$wC3NT)Bd+Yt5*9vbo&2RXtheg zmG$z!_M!IgTll}-DGA|;yiqFKP5C<|)qlVJi`l6u|Mi`c+&wfdF45m<)oT2`fwBLi zfSP{?eDXgDc)9A|0iXVl0;>HTFwzIuzZ8+0QUf=8ba+TYY;aO!cyMS)VpO-p;7YFq z^W$IMf_;Lcqe2tp<1e^!rN3X}QU9M&|F~Vg@lp0ymeiCo*j4YSczLsj$Hzp;XMlX> zbPJbHt%TsHxZrA)|GuDc{#)&HbZScJ|J%39cUJkw{?q<@-&y7Fo}d5szVja!I{v@+ zoz?&D`Mv*6`!t)HQvL7ilppKCNpZpMe-h+pa#U>hV0}smj*4|3PgVc%A(G^S>|K-LeBflOkmXh=B zuojLRV5xgXun)eu@nwdIZPCM)#4-tlcAGbeu;HO&*KnxxwDT?)mK#Nehcg zbez~neqtx58TsH3NC~p1A|=&JTFWbGci1x_IykXgWH`>gjCn=YHaGGIZ1T0H z`zk+n0-E>4OB*JSjZyNH*gPdD!ai)-w?J4_LbyDr_6kpv-a)ZFV?yQQ%05>HhepSB z>mfIl-2DM5x$tVqdp0sWBut)oN2cVmBm2e;iR~5{mynnyPyKn+5~F)|54KN~(kxqK zQcQGkOt{=+rl}2kIwCGEDK;)C9B)7O0Gc);CAU1(hb7ui&0zWX?3omv)^tls4ta`8 zl;-k4<{ofc*?^pa@|s0Q#YD+j$R69dSbIKE5q+d@-@f+aUrtM6gTmxtIWkxdP(C5# zuX2S)Tg~%NO^gre7XI%`!{iNwc9PnUb?-yu5M33>gCep7IS}#c1ltA(e%>)DcxFjn+Ss7ksELUiEAVf zAe8YVA#mak_=T0@N3x0S4f{yQfj=0Di+_-xKpd%>*_xg8dL0K2QOEIA&%3+2r^7zW z!VHEmi6EjF+i`kxzdqkMnp&Gb(`Bh9W~qX(KDl;kyC66vo@=N*iKzYJ2ePA!hj^&e zupHD5dey8}H~Ac19xeh$5vwj7>6Lxoi;LKm5UeKLvnE)47`}EV^Mts4C`I)M=Jau-%2gWVHR@9zrWH>u9ud-JU;1lO!8%oi7&5*t5Ptf3A0K;z1ZY z&jC17=o$4h_JxP9(qd||Suxd@EbOo^{g>aW6h5S!o+!IZkHxU^(fO=M@`(Y>|+BJ+^Ne zn z?Ym|`E}ly=@Bo*vC^~kBFNpDy`K|Zajcfsf!v#*c%r_$rvVHrQQ%m09VBGs!<)HmbyV@p9WIlB6is_65Bssqz6r^;PO7g+#w(W^tyOGD7{LePmq z&?`dF)j`mILC_&V(8WN|S%jfHJ`19VUW20hpmN^_OCs@!#v6iG8iJM=g0>Wbwh@BH z4uW)+aaUh!FIFsZ&HB;43D obD6E?Ca>0bFfn{?F|au9XO>M1cBc_3p;L_nclw-y+|1&+i#I0tjg_mbkniQ5 zW?R{O(j5R&q#Rvs#>l5X8d36GiqT9???oNAes4Nu+h4{I@k}uT#c>Upo!((~kTLfg zPT4-rh>(M~8Eu_;Ir*ux(`3wCq@MMy(MWckHNspu>6yiq7wGyRi0kT5MI9dIx(Mdi?GzZB`Q_!ft7a4A8SBkWuD~*maI>Q(y z6>Ckm96f=~ePA5&L#MU(7U*6mqbR)!M%#uP`+ur>L^LzJz^`S{^!!UOYO@^h4d6 z$)3Sxlr$KO2449Jc~@*UddsDk4Y$!LLqd-kEu_>m`^whOQTam;dK$_SWNwsurRj~v zG(^F z2&z-RD%9*K8y@jP9d0w4%ZNx6aA+b@bH4azE-FmR&%i+B$+mHryzyg=_Rh?l{Nnj} z_VnFhbe6Frt%kD8-v}_u>&ca|o_btM5mn_zN291j#?CcHu)IFbBIH$&Ct(wiy=rlJ zT`LIVe`dHdMtz^E78b`kB#QelA@dpG!X+e zz*U%;R#I6WFJt}9c2dy~W2y#Z>+Pr*I9PpIu@}7@|EoKoYCDSdcC#AEk!~2MGl5`w zieZfGVX<$Tafa8GJJT@3)hKeoIu~RtNCPiZ3uDFe=0GDSpYuOU#(#;-F%ogIyrJ1r zj3`U97r*?H%%Z{?w&u4Q}nX{$q zMx%}tZ8Qc+<7rqo{q~~C!O5n_KQ(hvT3#WTD7fx8lvI)ItREDZk(pOe9G5*`b;qS2 zjVUtVE!1lF_eKl9MLESK#k!T3`&rFp%s8;k)o;5KC1#ZwAP*IyMuiW6+ZOx*=JCO! zNQary!OG9h&D8Ug6UxfU%_)?A4`KdRL}0)V-U}|0UjRAqpCrsqvgrO2xXE;*Gl$B& zmSD9Fry0TGDnj1Z>zG~iOwLVPoLQts&$rA9)tpz%RCWcS-4DEjdTlud#-!#J=Zjy# zeDtfFnr1}03X2M|a!|`-CyYMQ`!K4n*$V3GT9R2*kXo1~P4*cxB>549p^G(JHFDx* z&thYMqeRvpFe0laTA{&}fNy@)0M!)_zlm6l!r znKDDml>J+c08YvJa{6I+JKbSmRxM?1GYH)kxkj&moZ{59qN23LmE|op(~TQ~5$E!j zqvd9tgigW=j2Q;WoI4B)a(a~6i7YIfVy>fXI|C^d<}!Q9(I6`nD}{ntR%}PTwuPXN z)QHVWv^vchW-mY0k#gk%Y92WYOB-t>Mk-oDF7#-D^$LlT zC?{WX*TvKusHUDf9YVPzryyT*E;49OT5fJ?=Dhi7xn$;;{os4D?R`}J%swMe#$Gkj z<<*I(1oaAWt}(*o>&6f@N*;doAp#z1Y9?Dbd1={tWkyV}>W~FbH-|{+46v}&aI=l9 zztP!InwMf6Aw)3eml)&Z!>>#ZAz}`elXnuPtaAu^;ourc0@m4GW)p-TRd5lhS>XedW>6o)OG z2!8R%0n81>4+}52`;x0d@<;jgkcZqD=F8I|WuG{R216iplMy$Yp_+4GMz_`q($*xa z9d#|6*S3~I57xy~XWf`+&zghH^g?i^<(PJwxv#>^NQ$-mxT3&j6RlX(cI@w}wp|VA zHIQstPWov*0xKp`E^jbe$TYRCb;&2P5*<0RvI(RBWv8bkEq_k&oFWK{ z!!w`~9qk0|L5<|W<(Log?_f@|6;^I~9#-}9TA>?hFX(TL#&Wc$RY$ITYmAhgJ5WER z1BLE`WKi5)=^9%+7Q_Q3CZ~rpKTW9>$^RJRtelMW60IkM23lS8;=i;3^fgfGvTf-iwK@1j2~};37$1o55_uIIV^i?($F(Xf2LkjRw+dBp5k_D%cZMh|`zd zL2~IKpr_Be(Lk!a&{ldH1qQy9HY8*ZYiFRGU3oK%@?}LXf(N{4>gIQX?p#-R93B z)39}>ZuoNdl+3xi{hC|gBOLT})WXq75{j4@p`h_u@>Z}WSH0pRX;=OeDnev6llh47NR6`dQm}fv1YSJ=c8B0&xL9n zY_*bQ!RW!KK0*qmflTY~>rl0ynY95u_;n!m8cL04R%T`np`>?RM~* zxqHA;z-IbO@Pp{^4Wm$W=z6n*tbNgN$%LIoiesT%8DjO4q~Xx?WV8_~#uanA9K2w9 z&|w|5(EXvzXsDGIEb&gR!h+nz&>Fc{wl&VaA7G+(E{D3ZYYdbxrClgh_dUa+x->}1 zEKhb(T1HN0KJ_+keiU0?^A|V*Rwx$M5^OS(kD}>+cQ(UnZ9KpXl+YdQXu$eF)3iJm zmHFv@nMGOYl@fXxOh$>ZU(yl$z)@#sS@JQIo8$&oUA;^(rah(3F++8!1f0WeY*i<4 zwB`j^T}tFUxf1L{Z5Y5;+RM5?a3JiTW;*Q37iXpwrO)9oP!V+JXJ$kGF2D|K6$(0k zt65Lei|5ZSDFS2FOUtKkc;xUAcc_f5GP1?kjv_DLYP6BPAF*(53bQc_E6aOoJ!-^Y zGX~-W;s%-&O$RSe$G)FDRZ{N)mjDkLN&Tgna5!Y&7RWxR+**?R%`GaxLMNjxIAl(s|?n(#;8`u&k?NzPSS%&4}44ovi zQotROpG7C1IgPC#WYGw@`W3|xjVTpJA-I&9k44qNgwiCAFa4Ts>QDD!%PmJywajweIx1lsC zqZqV>&Sa|)Q4e6Ueh94^%($Jz<)hBq^E?p}dxs|mL)=5sT3TJr{JdhtE3M*^tP-ud zhg%(Wh0vVDz|4&K>6xhuu|XH)nAn z_M7Bpa(xN-d9_k3m;0Cvwdv)>TqvW;LNp`9qG?i@#p1KUYaz1R$@QmD5M+6asy1ev zm6cVJueNCJIcdeI)SdKwG&?$)Y7w@rBM6$aeS#sr=>!&je-G+bc?A8Tv>mk__K$_i)c-5YtnD{L zryQ^rGHHcr_Lr4k*n1T@7|9*k4kJYZQ?R8{+Ziq(YN>gdY0~dj@Kp9jRV0*dB_v>6 z<{pTf!K!ay@;dc_;cA4XTUj2d)w#4{u&Ls>_=MDwOxQu7FztTa$dIB-#z03C+4H5R zi56qYr?D9iZR!^y_t&GDgzItJH&`3n9>EO3gj8+mC>5V$9F#GNmOh#_Trk=6l}0=K z)IKT2#3WJU22)%IGbcNrrohOm$ws?Cm_PJ3va;OXgFNvZ7@JZnmGP`N2P#vI;Sn6s zX=ZQ^+d0T)FM3yNz(r;&xjqj=RWoZ)U$@yAOclyxa~V#%Cs^eWM?;zSjHkYw8Vxq& zIE2Zf_-&VEV0u#mxLF5xmXt2obS1QbDM2wLXym7RCFqHS9t2xpsozgXDfI>M`66(Ulb5owOLsuK7 zF`(Lb%@*`K@2XD~qPMdkySOkdU6LPyZL8u9F!N-OnFO((pIHP==}cpDVOXdh>Ur~X z(&vIp!~Dq=OBK&AM=jaiiRcgWOTT&&_Zd3y*tci`g^1SvFa8cCY}Q-u4p=|-PO~R% zk9r5~PA@224AXMHY=4J3GZcfW0jNfL8{hu7u*?icQe|d=y4VKz$?JYCjq>(NPRh|V zFdv`oxkJ$Gw375Wsrdy(d6ngHawywq<0>vGnx78kO&z(!F9D}753oX|-YPwD+=T_j zIZ7p3`8M|8|Gel9kf*MKGlU+%a`I^v-DO-ltO%DbLDj_243vF!!5nq;2$mx6R-lCUx9`Xjm}$R>ye!wK{(RpC`UgshOO~5M-EU5Hh5ZDX@xn(no%pQVBIa~C2Sey%3aqWXko9JOnrBT1a~o$ zVdg0)o>Mg%vrjcb$%9kPl+jA@;nQm{TJiJ9(62x&s7)NCM7$JCgSH0EB3ugJamUwM z0yvKdthR;0Xxh}r%hZ%VeHuFvWeHbmTl*LY%7k+0d`d|vEQ0vh{g4~NnI>M=#sCjS zgd_?05qpl9A6yYed4ilCW+o^(xbh97D>Mn%+tluu%pZ)lc#hV>l{F|i%BqLB_Mt}L zNif050cZ<0yUCP?Ih=zXj0`Ymj&1BkjO~A{=s+I2O{%4|H?g3!H!C%Uni){Ql!PEF z!uVp_JXCfc$Mk952M275hp+n180@gQ4GhAH+f1c2@XC=uY*z0Kf^x1TWBlvb7#}pz zawTvMM`My>=V0r?trmjs{ocl$MO&8Etu3t`TG)sw?WE!$3<20ZwUE%?%~)$T4+fGS zHIn>j__9sI>I7nQn6kWdld&&(;^g2s7x$7a)Cq&U6NDW~oe%xm`?hIarQ(2LfmfgT z&eH_(Y{s&64F-f0(#k8y$f_|Fx=RWQQ|DHekJCqK2dA3BSdSHxahPV%L^|tnobsr1 zOEm@hHsbF0ahx-NapcdjSFzf*;5g7JeeQr*gpts;idHo@8|b;JY=H5<81BHzjlFMh z+`xb3Q)KP6^6#-G2pdO(=z19b*Q%k z_8M)p{h9{}u7cbJnGk2(!9=3{1zL~a`3oA;{3Z+!JKMjoAg8z(+mrIP(zG>>=}wM> zR8}T5RdC3I$XA_j_;zG2Pg+s-!a12mJ}m_Y9Bq(&b1f?xANK?^eSdAbYsjH$C^1tY zQeX@mYhW9ubKmTatt!QkD+#H}>bb^@)@NZ{5ALFZ`T01z9ID1c?@*Mw$quygGmDjm zrkJ&S@ikZ%jR0!vMq4Bla&E$t^TF7Z-h^$b-W_wXYJNRd`u>ioS~GJy{APF@Nor%P z_9!(<)WsMqKOd`UDjRP@AGSP)en0-aeS#_#-=O1aQsDeMP;d0qqWCSu3elxDmk0ka z<6XI#i)aSdTBq8)-M7~a2(K)!t7X!{oWeL5YV%r+1N+ zIoLPmrQyT`TYoCNlGg)`!ggpBM;Q|fim+lyGUl?;*lC}I)SN|K?}cp-c5X`3kkK1W z%s|>|)p#$T1XMxuC{C)QWW_Kn^2V*r1cy5QYAr{1qo>t@v04-`q(*6urc%%B4y$6d zhL!rcIuNwaX@2+yY~gZWCw9ZJFkr#7k|Im5q2^G#XH!?0;-9u4JGHQ&AeUxO+BJ4P zV6=y_t_~ewgSDiv3AXsZo}q?y!QG{nmj6U57N26x$qmfTGH(d1V?ShL%#?7Z4NV%p zjGEJ+qXe@b4*0auX%@^}IAr!2fco;3tVFj-okb4sYXzg@!(mqpSJofd6$4SB7|IgG zxTt0LPB^fg94D=gLwR2}-soG)jz`Vb%*t6L>#rHJ{c>?~9wljWJWfGeDNX(f5{ zbEWAFh#4h}VY_T4yYf{p>LUkvrx#QqtqaJ>A(jhMOdr-=^|Ry}Wi{jrc-KIyy_uPo zFMXePDh@G9%qn!75;U6{Kx0rHe0j6G?Z1!N7U4Jrvtyvd-wKhc<~PkF7Ob6fIP#OL z6$R{k)kz1DW@%97imUg^$P8+;gsz_tcxBXZ0rtYC21b`rl5 zO3c;2z*Uv8IR|Gz^goyr6j-nzvuHt1=EAtFw0U}=sC~=2Z{305Id!UoGcq&j$pOKk zG+H*PXUz!9`%AH~U{7iz@p%w(HC27A2(zQE%j_Wmk6|>gJF#O>o1Ka}W_LL=4QFSN zPW2?Ig{O`jKY_!ynD3#e&u*iQ*N9SmI1a0y%S_8(%%jM@GOP~xC|k~5k!+nn^^Iq> zie;XB%5>>1X3ROWcVG@q+cIF@F35+1pLQRLgLNlScJpj<9M=KV-WGDJp=1qB({2b+GKorAxgT2$ZsO$KC!luo{IzNzOl{gk z4ZEi&BNHc!c`(vS(>~?^CoBYcSQt3IvhB4U`$9WYyDNPdG=~R#SYOKEfE}+}`5|Dd z)xs|qPD7)$eJt)f7;$RtAi1cNq{LcKwhtaJr0cbRbU$hqyTibNLU$NK?Q?~-IBE|G z&L~JPj>}oFIF{$DFl($rwbY4VQcqM%8E(`$Sc?WQoxob(Qoam;FeP`!kal+TtTxv* zR0dVE5Jn$Ntd`v5_fhtF<&mNM%bulC@6~ebFwPHy3ciwNiNj4iAzUTHx%JQ%*Q!(K zYh`e|Y*{U&O+$+2%SHz9XH%CSgo&HC$eSf9{q#NAFyM+ZsBgaT2KXvav>567rT_%^5#Hv$*k!{bU>%n`T03ni&N9F#A6CDxp)j(bsE!NjWFhU zKRLb!RZ%AK(}9?hFE=(@Y8?#>yp6<0fQjH}JjKyp97jC;wV6Uq<6)t&KHqf&sbemo z{!o#+`DYXr6vESi`th+G$b`Ou&;YoSF$?_yA%u!@7U@lAjVoBSyBI_>Hqy3T;NDCm z$KWj1XU)*lVx9I$zha1LR`8q{GYh+7b>N_?wJj6}S6a90Y9(my35~F&Y`zuUqGps* zFG^#q;2H%HGJ8HJD6L}I=^66jK(l3|m!hCe+Xr&mz#5yEQRyv;1i7Koge7*6>Fhd{ z@$But_GXDKDlVz?&WNZ&4MO6Hd$dCWE@5C6CIAU3CPasKQ|@A*jCG01FT zyb>v=2E!JK1Gsv|-x2c9AT!nof;n`sImp?cRf2m6edG2wG{gLTsrN?86NAlo<3*J^ z!3c`hxxkmBp0PYa1`RR0I{M1eA!awHFp~~)GT3M(Cx&2(b(gb4%wCQ@(sU@?BF8hh zojL+78EV#Zwu|PsBnKHSs*4*LDK8B*yEuEWN%~A1$E6|CXqf4Ce$RGyRT=yfWJCn} z>iB1PH61!(6XUih**?td>3BoF7-sf0TEN|JxY@wC93ef1n{kfbGH1Bi%@`CR+lHHy zodK*?XGx7RJ62a?WrTDYVYYGnBr`^!@gGLXx)I2DS(NM^VJ0~5VMRJh!;28&!6Qw# zfqhNnNOVM$jK&{leb&B<-on7Ov3_;F@F6?I2s0R=6C-r+_*!whB#bgU8nJK#9A$Pe zx<<>|QD)~Rx3jGJ)qD;6yOPYT`MG)~dTXtNZYL*ursB^8$fl;Sg_Q6Ha7&F588uLl6j;xL|f}E;|EIBv^ zoB(HgVUE_s{jTpF*w+Y zKMRpQ8Z|dQj*#7xAf@2_(nz4V2ih5|Wr;&{2It0_LC$l`(JrXxI5WiAmIQrTCuQTz z0B16js51KmDX%PDrWgF|MqPsPuYqspRMY9aj}=$3``eY<6IrV&@bwCmiy5ZVF-N`} zZ;o{SR-JpIcqf>F&iGm_e|~})V)a6Wq@Ty^8v^UDF1xs<6(P3Xt^*!`HqMSHEJsJ| znuz)|sfjA39@Ay_!*gt<-SZ2J(hA{dnys^Vf(gcJivrB=VaB7X{^Ok9S^;p+32^E7 zJ7wl%ED#5)Jys`!e^ZFDUiHre=M@In`N4!A=6FmF-e^uUu7=C{8RpQswsliyHlAgu zTn5ShDQ2+oSGc@C#T;)`soaJNj?0`<$d1lr3no=tKI$36qc|W#=@b}fOvQ}gN69p^ zj&mcUj?z)#;T!1CnbpzmqPpaj)g=#n}&i@(kviXSj6iuOu|x>|;bk$r%34h>`(N>Fj;>l`MpmE2+EaH~q{Q7+L-xpNFPN`H$k=|c34hfJN{g>czE*PP*~kZp5eMuc;7s4*ZyQgh8=kPd}TqzN@!2f#B_$G;m5 zS%{`V9q(YbAxsX1T2Wd-#{o;I@ol8cbE11;LTe@Ow%xZS79W)X6-dU<{yC8xU~GU#n3r2wq^tR!qlH-XT__yHw^AyjP> zW)#3qpz9kep<%wt#TUXb`+Y3}HdetH?Xa7Xi*J7sXm@E?v~H+Uj2q8GBjTcU1!(KA zbKffogOEEYoyS!Ea}I$D+91HKj%L9r>+#rh5aa3JE1kt;>8 zp$`m#POBVsmlxyM^-DSQFek&~?w*d362A;$rBR7l-+0DuF*lv^_>*ooO86y8R+g9( z9pC8*bh!jBUl;7Y_gOLAb_3r~lQfA(J0Z?W?>|_H5;l-~TbeuIpBjM-H$}+Gc4)!2 zg=U;w-0u!UHLu9Z1?G5pb`9(_2lu;UrO`r&lkMV&Mpvka@EHg~;-!%i!bJsIl4HM| zUTBUmeu|X!w{y_mad$JKQ3Zra{Cn;IqdkavRAQmMvX#*yt`&?pM?Z602ym*tN|K5b z?oeNsL`uR^NV&_f&voLsopJYdyrcUcS2emLRpSUrSY}ReoMa~?OUn1|Fi>Be5Q^pkkZ0^c}qM>%Ft*~qhdS2?1< zn=L>}UvWE)dWvzNNcyLY`ppe@8n272AgcPxRVdck>6PYKD~GDVh&eVJ zRVCpVC&V#%;T@*OSgfn1jtu3%9gt4-G@DaVLdvnB>Yz9`E?qFu zjB>Ebbl*7h>cH-DG^W(f2Ik9d#s@ZwkGa$AYLwbFL+Uu$a;NDs&}pi!igJ;Z@51Fu zHfm2Jia!jqx~{KC@S|uSul>p0YoSlV$&K@av7~(obQc}3y=-p=)}+Xz*P+7ysD-Ao z8)*DcEAIdpXmpxp(OR;j4((-31)BYCb+e($RiI~Hvm2?RoJSO+l`Z$-mD$7bs%$Gl zWweLpdJJ$(O+(wuNl+Xw)XFmUF4N;Es6|*t!ocd`XfN;>w&d_#=*&wsW71xtHX!c; zJ8$Lfn!f>qAHu;l2)2SG?>Ml}sWUuopC3Mfhcu(!tUiqwepB$UG0uq z6{#n$%87T90;*?lR>Z%8q~KmuCbK#Zy!~HUR8Q1re7a^&XuLW1pTlhFyEbE*)T=#B{@M(0(u!JhcQpLt9l5nihQoZQ@uL!(x&XKt`8Hz5YR!xwb(X8^ zlcVPs&H4V-3h{fa!zkkqJva;t$jP6h6I`fH(9u(5@7ZJ3vP8TDdwA;T&Iu{DeSLM( zKB{T{I33d8J8Bve$Ri_7B}*b#Rg)E-!i7sT{Y(u9YagVHjhdbuP5sPXGq~RrC@;rgrQ+Gy>8fqX9ReuhnP{gu$9T(5n)0|g)PWO%L%sr)GqjEiH~yXG%ph(uyV}fUbTz=@BXX+%7|cp2SN0Qq^RJEPE2dWOVJ8 zoJFwXsGNDm7k}bzSm#Xcym7;~v6*8xKPXbd{xDls?J@EifkX@B#+rXx#%i zcuTfpH-^Tz6Ey`%-7@k>=~Gw;$8l7@*PJXkoeOeYl%^+9s5-8Ld%8#9s48nfnYTKuf6h&zdtm>4myG z_OW?+#(YK2GTiEKs>hy@->4G3#>@8jAPV)70W*r!(Uw*?^*y!gW(C?E|>{mF( zj&kgjd1o~q=_t2b&ihW4>tr&eMn|qKx0(_@VX7KhxvKC zDRAJkY*K)lX*zw7x+$o0cv7`~2CuOC_U?wJYZ8~1SnVeE(hD(_h~&f;qx}Y=&1)SkbWOJD|r3acHiKx zX}F{uhPJmyl8>W^orkfiKG)d)2!`ugxQzMTj-7J^2Mrg%ycGLUulL{#?Jw7lq6)Eg47x`L`ughwwOe)I&=VJnyoyp6hzU&n?)VR=FzM@qxTUq5JlB#UIio`q{$~}@jhL9<>wuOt8qH#`jivJd|ji!E`1BOM4y_4 zP(oIIYL*%aYL2(m?%_BFu4_l@0m1c|xy1Pi2gCMcg&SC?ai@mlHVpf7#D#B4lN-3;|;h_B~EBA8b?FEWN0H{kV)6XrrkeTh3^ zW(eG8>p9v`6fH5PDE6%@3rB%qBN`j;Z?I^Ur!QRR1Eus7rdo!~{0K?UodQ>1S-XL= zPh(ggfYyuYsT09HIM8UMW=ktMc>vP_4)FeVBR;R5iOm?+*|vy%Ya4o+YhNALR~WTb zux5RQDGA4&aN`U0k%J>1rMvj9kJfWsg`EX!0Nw{alUMU-RtEM`*tNbf=Q|e4fv?Rp zaes@RaH@*VlEwV!t|HEobNo09L)kZGs!TnL(mu3%MY(9@A2WOwRJf#Vzluoka`P#m z+hy!`7_&mQ3qCV^qyMO&|D1T8usDLMSiaF5*u zu<2y`Aq76eOi=OQ+~%9SEA-?=|ICmlaV@m!GFnmRUyfRn3p++Nkfx6G8v)QENU7GO+RJdQv zvGT`u@XjW`f|E4V?3Qn8^t9PL9-%pkcBsqVc=x6b?tIh`@QhEOjQI`g4i}wRW8ao zOjq+P7ZzZpL&GI^sF9*1bW7!*8*KaM>SivHv45J2orgI-^TqKl+>8qTGJ8twb4Iwm zoZsPcUil%ev*iC}j(0xD!CzY)b)8GvAykJqNM;^55vI1vTWJ!39M{ z=>?g#DtE7pc@}*^k5x~>0$rKkDeo0+pt0E=d_+j}`1I2wnyafqaEmd-nCsJdQS8P< zE6|9nMWCmeZ*Bge^&+MW)>o%&A#^}u99EtILy=aVS^x76E6_j4_F(tI#>G)nh2r=x z$WbCOFZu|$a~y26(E?p?v0$LhE4pHv$a5&=1$3Kfg;-l`^EBM+a9t||UUI2$sw&Ve zzmKO6Q93p*GlakkS)JUdXP*=;!;`#2L|33OYd9XC-2jjDd#r?H*MB%O(BIbUnAJNZ-lu+K*i!Ba}t zSNr)6GRpe3x|dZJJp-&@ z$2MJfS_YW@8hC4RtKEdSxpR_EgnJ>)*KL7QN z#p-~{p5pMoi#9r8mNn9Is+qv`Ek?4-F-d&y4}=*f(3mi5gb{(O8&OtoQJ#;u`VwmN zi&CZ=brW1MX(!bf}QRo4o0 zgzGU-S>vIvx{d^W`ltwa)~}B7HP$4LbY1PC zdru!AgVHt>)&aaL=-UzhVjo{Jh))BB*vt8T-_Vhc8{2h_H zqT`}oT}NZx>xuvu(t1V`9RBDz5`&9+cCW6s+XYfF>7n$czhehrg~^qIy});$FWRX&J_Wd6~m2i?1I{2?Z6K`5n8?SU_fY7 z!P7gw=6qs%S19_Y&9MNwU}|v)aM`}KUHr{jF!~->^OrxnfUT$`xT@sS%;!h(l(xTd zn|&my!bi5mg#J{W$*K-%Dpf75W;knr^%ph69fnZfTbjDtFWS~x^$5W9R$#uNK8B9S z{Sv?Cm&aQbtOa_gjM=LyvAq^hhC;dm!jc?#t=sgC(>|vv8@$|%@#at z#^S2$ktnxy zv;wU$)e4X*kr%-Oa1mVB^bvr%jXtRpI8R%BD4__u zI-&D2>pTm)THWEKtxj-MEiZOOfhTKXhuW_S+5#1z9xfbDMO7>_LT5lg@};zy`cu(s;8)r+CY*MEjYx|GSov|LiEQaMBOQ+S}R9X z{icaj^aR%|wuOa{9BF)n+1uN~J?LKGg@3?OK(3|=;1wX8uiD;fKia#5>L7Ws7uI~L z&9W64w-`emH%n-5YoyT~#%(&JsQ`5u_nzLE>tpQWJRiBPThrziD~X91 z>tF42X*?v?#n^8Pd_I1tf>D%G*#Aki;*3hWe(L7foIY3*iS}@j5^TQ#rTYfj5@)}P z`d1&!{R>;wG-^e7tUtPTmhz>- z%GrTq`oBQIdeyRT09HkNy+ZhQt!x?qmfTLOkf8(7_ZJ6XD*EXXKKBrms+GpuQ-Qg;x;Oo} z0r8Pr*~KKYnTdFiHq9;~orJ;8)3gM1Qx~_T{tzp~IT1?|Uj4YqooILYJyDWB#Om){ zi{fxEf-gJpHfNAymz*DB4RS7Lir$)z$Jy#T9n8}v^qypd*!H8bB_2Z!)ps@`b!jaso+%5q zE76Qux6=>W;UQ<=AyR0BI7V4b`0%j5-Mbywy9XciG?KuPR*>@y6Sl8@39pXvD@<4; zt@cpBMvcTP!1s;BzW8V2m^!$+KR?&j0~@k3Eo5aw_>(0);Bgw`RZ(${&v3oNipQB@ z!DuKVO`h@K;;#2kxpS1&+L107NIWtMjO1*ToEl|ybfihpXse_129839>IWDD^wIVE z%%z?2I=I+qtk0D1J^oeSdo1KQm^tE(&S>anA4kf?(N=3`0rP04Z^XxsfrfPv2IMi; zKK$G$aC_82cYn~T4thZ9?ye`HDVCozfo+0S2u~+Vd<|32}Xg&jE9}8#&|3@oE2G_`f_BPr#`;cF&uW{JA! zFK}e-XBzPQLV%oNm`VRMR!RvqH ztro^zkyQ-g^T+bWc#PUKScFNrh&+vMQ3#DQcA)PjfD1mY!de@Lbt1fG4Uav! zZ$#_lSQ1{mKuEBho`9mCfu@5h;u+v@Yd&fyaeQnu4$mq%F0qvzja`wFKM~KK25|h_ z!H#FNvitB!_EwYX$M)P9$vAdvjPwijG_)fv(QEHagr^<6PN(Ch#6;Ad7bI;a6)D%p zqmOV4Hyjy!$2^-$)3%HdOzjk7`?CuT`88_48L?fQWzV=3|wH1hx7ytv_9FGSvA3?Ubmg0=$+cQCOIu{l% zxV@5^k_QoWst^|i`cAQ2e!5fCGc~iOV1B0xI?L4x)E7iF=905WPs0q9XEV zEPs|W$vC3EMB|Bg_0T(ks5@yBiTV&tBI3v&_@6=L4-Z1n| zBjTMx?{uQu7(9dM4TjDnYC&2m(Ph$R5%nfYBN{|BTZOWabRym|^kxvPWN0SQPefTn zA4c6!dV@Eca2d0nL&RH#-W;NGCiW6V5zQsy9Yb#}ksssb5%F4~H=pQsq5`5={uJ`3 zD}Uzkhj$9SMMU2*zha`&VE&fyhqnm5^NDzO(7S+$R|UNbiFiBEyNEx$5$Ih^ltr|J zs5Q}2BHjS>E+gWNKkrRMyyWLyPSlDt)#o1*t%xqgFR$=}Aw zQk{1#5%1A?*AemFoVSALQPS2E@yeX{E~1^xdIJ$J%6Th^))Q?c;vG3}713i%D@0e> zmvyqBhMA}P4;}~y05pRxpUnb&JG4BDQdm}ji z4iYxy&msP_GgfBYKmlA4A_F`ir!;i9-1E4u6tJ zdza`rR^~mRQg0u^_eqRm@L{4n(vA>4McPrK-uyYnpJgoMIFT^)10stlJ|w!pA^C`? zf}tN14Iui2s5Q~2M0XQ?rq*H@GyI&yZ;8GjI>g{Fi3*8M5aqLwlSGdbog(_4=rqw; z#ydmw1JPGRvCQvl6_4l}qQ98pTcR*E|IQM|@#j1K>}BxxL|H^X5FKaYb3_M7`;n-S z=sZyj(FLNVEchbPmrQYqXe2`~6FtMwD@4DL_7hR*cO+gVyg>9b(Hji@g@|{VyuT7{ zV(4!~R~UMYs4vm)MB5qf52B?+e-iB{`itl%qQ8lvnc^R!_M}}`{EzpNyf-w!&mAnp zLBy*_UW2F}kx8_W@hl=Iv+*N(gES}6WsbXx=pEABM2(r&Lv)fU{E04-7C=-5TB$dX za4(5LL>(D1nCLgsLWnLg>rkQ*q=gavNLn2tULW$-CE~pyZ#^Pj8S>UA%4221iRuwW z5V;sHlIX1Be^G>KBt{b%?4JfiGnq|8qKOP`M3lp98WXi-XcMAytV|5i9MYN+wPU>{bsAU84zf?wSrIIjWYobu1HbhsLbz7nVjMt8+uNpw2MAAACy~hkY z65T}uMdd#K= zQ3s-)MClCeMN~@Eo9F|ECMp_p=|g0a)|cqJaPq$-!dI9inW!lv_9JS~i2aHFVJ{3I z`hjR5Q8U(m5YfAgH<;)(<}!q+6=_3>UL|c9Q4Dh)PV@ppM*x+23kXM&IFP}kh%Pb7 zXrcnr#t?-Nr4V%?8cVd8XdKZe%w;@LKUQl3Q52Q;Dv#ozsXuV3O%X?=zbjM9(tbOd>barV=%0yjetZiPDHVF~w}6M@dU3TE(;( zL|GA>f0=}t49+5Yo59&c&oJ>EqAo-^L=G0`CCX-sxkO!wa*28~Z64A4MEOL26BQ8E zW7B)W;{4AU-e!1T-oJdF`o5*duRifAm+YN93#T|?B6w3~_i znaeFiEtt!#L_aXzZA9luyPfDQ(#nWdfmZ6hgK#T@%ZYjr-AOc;S+6DfooF4=&zuz% zM5ma|dZH?#yNG(R3LA)KkXA|bEYofzs$|YpL_LXw=#^3i-%U7~#CwQdCGB3Kw}|c| zDq`p+qUp?fvx-Nwh3Fr~+e+kO6}Ax_Vd!?EFBy72(P*Lvh>kM92NnM_nPdlvK}_-x z5&iDH4->Uw=p#gpi5?|7&cu%qU1Wwki2|A8aiTFqPY?|z+C{XK@t!35g|yv7Es09^ z5bk4!PZ7;0@o6GA(O#l&h@K&Ondn)f-puehqWg%RC)&x-7l=}r--|>C8M=>X7iljM zO=Z0OL^mq^?`6Vu3_d{g5tAGw>P~cs=w~K*h3F-sSBdT+dX4C7rhT0#p0qcJ9%9-z ziJm9zEusL@-X?mIDc%7p^)4cOm&Cgn@jaqQ(%vV!m$bt~cQNr1qK8O3N;H(TV?>`Z z#c`sqN&A3kJ82&hc{p?*5k1Yc9~1Rtyie4!yPxn=57eVTOK9l&SW=-w-~}h~E;u%!p@+t}^0x zM1vUmJyA4iKM=i3bdIPY(T_x3iOv)4VJ;VlJ}0_Jbd8Jm5)mDP+l*mb1GotQ{*SsO+?^zbtg2WFQ+>*${B&~?H6SXFyud%lc(KOQ9 z68*#})sAQZL)#PeV=f(tE-_w5q7E!Bmgr&9;)qT#MQJ>to5Td7&WzZJr~!jJ6V+jc zU5JW_x)L>KXg8v!q;)5Hjk)w7+E3JzXa(c-BC11LZ=%UWi9{O}|La4zf!XvWiezvS zQ4`XViNc8b5e;K#f1;H5shOuqlwlNjUh@RN+Fs@G?r*4Q;Z{;PTF{)lPq`wQ3}ySq9qKS zR7!Z5a5B+5Onf8JgN!(ZD3GC3i53t|Bf6JpI??Y;F@tC`X)}qAkd{g`m$}R$iX=)S z`h)Ri6CH@;{7Waa7@R>gkcl&iN=VBhYD1Jw)Rl?n5N%<+9HRRe>LrS2=v<l26AS%61Vj*Dz66X;OX5u2EUJNZJ`i7{4=pz<4pJ*uKEg(uIT1d2y z@fH!?#CVH|CNXpg(WgX9i8?ZLSwrf7bo%t(L}D6=%ZU~-8#Oq;60IO@8$(wT{YA8j z=mu7LHPIK$dJRzzhTcrnk)gK`-NevaiEd%&ZA7a_7;9?>qM zUs(OpCkgLo;@w2cnRpM;w~Y7{QD@SgCVHB*y+l1pdxmHN(X&K9G4wg2>!dwTG>Wtr zh=!5&BGH{h`-l!I{`V5$9gMi2=o-<>MDrN&08tJrc#!BzqC-TD8SfRMB)0QaqSd6m zM)W-6y-u`-xx7Jin6x*E){^!XP^q^mle|shG6ugx6i(W^L|2L4Bl?7)?-O-lafgX+ zW;RENW;66C(R`*jMsyoPj}v`L+6P3@jQ1hYMRxy3YKet1;>RQ=Fybdft4aHm=w~MR zj3}J6&x!hz_61Q(qA!VrX-^OhXS|a{F$_IL^cX`=6aCJD&k%(w``=fDUoqm>L~jv& zLzGYSEl~u~S)!xN<~yQCiM}VALi7WX$$008#t{8Tbd;4jPxKOL7l`Zi-$jjg>MCDBK6VWKrt`bcl`kCkkruc>EZlYg_qKJMYTE}?Th}trj--$Aa{vi5> z=ugG}-X#2s#K(#LCYsH}{}6pjbe-sLcH9k(@N3HzNiRjUoypx|Q*Qh?=mtU?R1J4IwIK+EAj8 zm?Dhm4_3Mk(T_}9mnfB}9?{Jzaecz>OdL)$hQSd;qe+V-`jy#45$$Kz(L^^BH6W^F ziiSjqq%|UH#I%ix-ezbMqOC+RL_3I@HlqCfjS-uX*q&`_PV@q^X+d%y_Mc zhBLG^(FW4m5Pi>hZHZPe>vlvQhPEgAo3su@50KW8s4h`yEa5C>7)R8W5#x#4la@f# zj;IrnACq(@+Rb=fh-MRYB^trdZbT(a(VggRq8>yGiFy+Gv6;Pyk|Qa9dlRNJaU#)a zqCP|unRQ>Hdx(;V)-s!9qFto*BU(<>pUAEb$Mf8r^|E3Z4XOh`O39M^6QFGEVh)xk@5?vJ9${i3auMB4^cmybLo|Z4dx@N+-A5Em+9sk$nDb_$TN%2AD1@O~iMlX!TcaC- zAw3AUlQ=Nyx%125WmNhlQk1#QZq4ZMT#!?ppq06HxHHvPUllfK@FMlKP<VVqyl49!Vx`YtFNC_!c&<#n~o~%g}jw2Y`+Ri&ns462UOUvGiIr;E9$H7 z@47O-sIP6FY!!BjN@1Dn&94`$&wo@l>%J{eUvH?W@7|=pl2w~pJ-J$iRjIJymrB*w zGb-$2rtY;Y6?X31nJR3r3iF@6LVYb&U#EW2P5O?90%fi!GfxG+p^Be9X_@+Rs%)y3 zE>&OkRKmMbb?2W`U+4Pk%Dkh}4cMo9ZG;LNcf0P<3+gMPb-v1_ugY`PUGvn}MTC`> zxfYe`Rbjx-8WojOyv(&OXtVm_awv1{yL6xWA_FXQeeq|N`r-;M za}CWZQ(s&VWv&$)wx}X0NC(iuy8FV#(|3Yp_cA?05Q$BEQV_PUkmN7{xxO-sU&e7ezl>|AGE`Nu{fQ z_HBmEFAvPfEX>4z6@&jzVBQ+5w~I`8U1b|tSz)!5vt{sGF2BtRlKqudTgOPbBKV(~ z8?VKc(QnJF4rYb7ugu!;FVe#QCY}6OLaPEN`I5H5iv5qwHp!mb|CL$vzfz*erT@ww znc?Np|IEx&p*$1VkcwOJpOwtL)oKNI`ZKp%jb-MoRuHnmYqf05FtM7mF)?gsAkvY! zGhNB;Rxg8|sJ=7^Bdh+lZ90aEAxY|R@rt@-y*IRAfI zRqwwmaPGfJ@6;6Fo6#fw6${m*4;5M18KVnD=HWW75q$c zHd$?4WTOnA^x%5r{_73v``MFe=zhit)rUiZXSIB&;nMLrWY zTP-}~tqh$kD>qx+rF0wq>+pqJtjY4~W^073*lZ1u;4N6-L#o65C3LIh@sJJwKeBBW zP@y(F{|;Kb)oO&A;a0?3TdheRvSvmZS)DEZ>$`1MQ?v^{)7z|8$c7x6ahl7vZTKH= zu5ZKt)3Rk7ZkN3-q1&yN#$daZBeq-Pc}HT~cB`p}?3sy%R%h%l0ry*;@W|L${)a+w z>OT~U!~cSwm4o-dB;i$7F*@rUkJ_(MGxf2iQ%k7j;0pHseMAZiw-Jkao^Ih6Ml_YnA`qKZG7 z$tYhed{HOGA1b5xqxppL_QDtSPW;hJUwM+@ORr|-b%rnMl=wqs5`U;g;*Va0%KHsp z7pX4euU<#WRS#d(4e{syqwKo_t16nly(jmavzPQh8W57uI|-qN9y*~HkxuAbS_n-# zDD6^%lo6$h0wOH}UZkTUf+C>OloC*iC<-Dfpz!@>_uLYE-uHRG`^TLJ*tY{^T9j%TybXeI)>Pk^tB{0${fYfc+r=c7y=f0|H>z2Vg(x@7Q0F7BpE|5CB^c09z0M zTMz(S5CB^c09z0MTMz(S5CB^c09z0MTMz(`lmI*%0$>XQxUT?P5T2w30kQ=Fumu6| z%z)06bLzU<(4^$q4{k5CB^c09z0MTMz)xJOHEx0kQ=F ze5C+e5T4kA0N8>6xX%RO83X`Z5CB^c09z0MTMz(S5CB^c09z0MTMz(S5CB^cfV3b$ zwjcnuAON-?0Jb0iwjcnuAON-?0Jb0iwjcnuAON-?0Jb0iwjcnuAON-?0Jb0iwjcm$ zL4a&Q0Bk`3Y(W5QK>%z)0Bk`3Y(W5QK>+*d&_;VL9PV%1hHkIrZu}*0vbTqexOfM` z^|#_nu|1n`s!3f%QE0qgl49NkVw^%uo{g`UT#UG)lH4t!7p4b5@CotZ?_m_k+=T(4 z*JhBcq-#0gI;4i4KxY|IP^D?L*B)g%PQ5qVYuYAKgO4z3{C&|LM_bJEEh z?WBeKR0%mEL64*OT}X(Vy1CAKt z>f7LOkrC-CL9Z>4rQrua+*ODk@8grL^^B;i@>q}qy9#y#@r$Bp6QUQyZEqQSU;+4o zl8v$MCe++brum8yICy*y!t)e;F5k{D`~w|_3p4f%CGN3f+WjHIMHI!i?;?vg8Ih^- z+;)N?z&j%>6K*mT7zuCh^x zHt$0_*~Eza^y?LS5akv(3~GH4pMrmzNCOVqJ8S0?>C7j3GTl3fi%l=9v?ovCBl=${ zc|S@zL1nV}JG}tz|BxtyQTS|hFHra#@2I_|7K3l5+1#%l!T~I}3Kclpb|$m(4a+i$ z29_-P!V9DNWDL^ro#g#qjwo|bE$8(_e6@9duU?kwl`wFWcu_xTa_GoOqTqr_)Ga0R&!2*-qe4|?s%U(kY!txvrjn|PN;u^>45RuHsOd+QY(aA) zlHOv(Mn&=9I237o1jHtV$Q*1W&=^L{R;t+gmQjwrV}zzCQWqF;l>RY{uj+1O`+8j? zKjq-j_LoX~$1O0#zn^ zIvLS)lo1yd*Dns>FqwSCDB~#lgn=s6n(9VDE!x6Gsf1mR*`u}M3P;SFCh|!WQ zs_u#^w!TqBt83vJSu%XB$7$&nu9C|2=6-vM_L7AQR&=8d*$Zj?EnHf6hWy6!Wu?4odjJ z*NrfG=W}~$=tlMr9~4BbK4Qc}rii9;!Daz!^#u@56vg~6>~-*cvZT)a0$M$x!Y!(s zQPlJ#2-6f|)=5-UvQ<&J{mdftkYjJE*n1<*{M7VIATktU$XGL$)-VEJE%HEe9Zn(gC~GO2mYl+wG)+{>J0IgK-zOY-PN^{cGc$r(p0<~!BBwyR{R?EZ z8jt9YWJhrMG!pMuiIdLQTSyewZ^~!c_dTFXoI+z#qF~ z&f*+mkIb3OA$H1~bveX-nKPY3yvpEwi9_t1Is0>n{WE74huB4PPUR4LY0mi^Vn@xn zfIb9Aa`opUUQ*uQhW z${}{~oY@>=FVDG(L+t1|H*<)6J*S&Pa`)pC4zb7QJkKGyC-y6c zg4)rELN}{6TZ(aroj_+Qhu{Zd>x)C|2|7D+h@C-a28Y-mbPnf`+*+H+A@&NLb2ub7 zTb6N1ZnnI|A-S)zokQ#)I;ZaEpxib(&LMUbo#!|tw~fB%5W9=cdmLhq(fJRD_R%zImBM1^Cb=i$FlwP=O8TyVJq_*Tx6K2?jLvkZ^0Egs8>L?EJYN~S@ zhpcAa|ExU?j&SnZdU5*VEKUlP-f-!2_Qqs((IeGWSUFibZVEbwLngvvjOtWBT#usR zqu^1#d)~gBqDJe5wX?I2}ngH=VEmJG?m()HSOVpKp7Mc=a*!hx4E`>=v~ zAWj>#eP_?0&!hBM+Z!r(lDTWMN>J-N=zJ$e>oK??SPF3XZ@9-Q@jvi{Wa!==yWPQg z4=UswS%M%>^75bH2MzZ{dqk_tT5m->xxgqR<;xte&q8PI6Xw-w3x&xqS#)4HTSfTDl2 zx24<|xU#1kLD_9fVRm%#N3i))z_Sb}trwz6cko#9mc4>UUMlI;7Tx&8o+9z6K}@I; zf3>%i6Dr#?%DfFjT02l53g0pDmc24%->{q7qms04x7nLE4bqEhMN8526?zR@JhgiO zBg<{3N8t#+^uc;{TVY1E#VJ$(%H-f%%CLXMft$DD{*bwNio25TZ$xoxT0JS(tM*K{dk?W;zqV;;-Ux$;?ueQx2B6AXSgIP2q^Pn7~K| z+zM6OZBW_5Mthr?6OD;Bas|jQX%jD#bit zi8*SA9hf-ADIl zFb)E9PaJ?NcJ-R@Gf$g(J9_yyd*QHUcI%|z$xG3r)wCE@^D^o=4hE9+z@C63(tM1P zBqQyGGIS>1Y)2J;$0;oXth9Z-X%GL7KI})t*?Rk>?IF|Bc}-Vc0J244yb8(nDa2z{ z3Cj3+9YlMljB1oH{tVk&%*yH^)|62S`Rs{3R{PA7<*1TnR~gm0zx+2=Qa9$Z8wBtcVx<(!BmZxzE9ONTtx8!X z|1SZ0cMNnn;kwl#Dwb99-?HlwTIaH=LOU`+BduXsir}LqDN`>EL{}bi7^B>I0n*|A$lP!uSl6>JG^6QrQc8# zDt|et6)mhBEweNnHC5C%Zn|9c6Xi={vdO_`&RqRhtY*ssH1zqijn7fwf zcP!B_mZu5*QTw;7vj3oD*RH8NJ=G6JUU81(73ZN6hZkB=@Z@r6e9~!+Z?E^z%HU`$ z)_=(gO8>DP^!&CqOjT2BiIrY9`dSreYX`lw*1UpJf0GKz-W%eX?fw0ZSY=Hr2i1X6 zy0m>d!Mnd%4qEfjbbb-8`@4$o1|Q#tFY1-G^%mc?KED2%hG^cR6|0a((^uJdY8@t5 zjD59#+pm!5^lJ09vO2|(UP!xP75BPT+|z`vFR-HO`UEAXqU-y!g6jIlzYc}zjI+8v zjl)*Y^~@?ex;~SJuYl3ku((w9a*;hn)EnskD*JJ%^e-;mDDq7(=x;IT<7I$OFoBLC z4u`<|#OR)vfxoIyEU&7r=2g{G)d6^y(zUlMs#M$%OOiB`b2;}M@U16dBrKk!%ms5g zTwFX)3#RMIP*@`6G()Aqa00a=NlL0NQ_zn!O;U}j5fe1hQj*A)26rIeR7@EfFwSaJ zbrl2YXV+3;f5#O(rPdAyLu)cCf359STH{?EZI&e@OZTdUZG17wu8t0M+&KCX;sC zlCON6o=Q7L1~}-0EM#>EwMJL^EQt-d9c^iX zxvr}Xy4yc3nR_+`CatZaxt1U9apz_j#``C$VYE-O>c>GY=ZL}05!owQb>`jS5wi0F z?pzX&Q9u-L!LI(hV7rv!d9zG=J6TyqZa!rhvGhZ-9;>ZORwK)59RJO>D*nQv`R5%W z_ReHVFtLLD@n6`_oX`nk?@N~5x+ila@no*OsiHg@#ZjZ^@u`;^XEGX*SIXuN$;|7poC3&qs$=2G_juY`!E@R-}X!c!rUcRj;40 z0Nrgd6>(a}x>AB6W79=T08$dYn-vOdt(UviKO47NTj zTOWF(G91ErmPB(@#!{kjm8nLGUKs}rODQ3Y6ifALQ!A@pt!Wj#n6}4CjZIE(d5{{j zh$ysY+c}(v-STRBDeZ>jRx>ZJN>Qk=`o;BpwECGDu6SX? zma~&ux|D~Pza{liYLW`&H zI?g77zG;fLdl}%V!ju#mRTK(C_rf?S7rGZPkOM(2Oef*4pp1dEpcs~q9`%DUB9W(T zIP&OE#tzR`(6 z`eJgf!E)CtgAuxs-)uz#*P?3e0vkWV1>%-_w7IZAv0uy?g4QO*6y$H=5 z1KJ~o;* z1fdIiUqwh^wsW|qZHwgP5oVDRhEA_!-^5RryGj;*??C%g$}*J>j}FL3FQ%iAze`#r z(0vvtQdxfXYsfjgC6={uLB*?>NkmsuBal%|%?}PEPAgDNjX>emXk=-Kgh!rD>}~~% zZ>rKY@}+z9lf5wg)I$W*l-BSy8d!l3sc)zkpDwVG-G0~%n> z?wk_*YfJEts_)qd<)Jk3eeIpNleM4kV zk!?Yelc&Vx)Ud#>t!QVg63b~^(ifP?5WMIp^R#F4P{g%i(sLAhst(q4b_TP)}RAL^m5u}E31u2vl|TvQh8P(Fz1?0 zN0y<)GyJfaXW&*H-fi%__LG1_a>v13g1$Y(jr|NufFCUZKv{-Ly{S*Z%UB1NLc44B z=%wl6oBCW#*fQQkWAHlU$P`zMbEY@*W{SR>w-Q#o23F%&VWdQESyXhjrx%wyI+076 z?`l-tmrL~uPHIQ9D zg5X?D)j+;xf=1d$HMvu&Xgkf1R@*qK(#l236E#)G)a56<-v&>U8<+M%s;UblM$c3Q zL$ojPWy(nh4Jdc?|F7y5ORzKZm#xPIa_B`#ffSMN+4uVQp+vRS{(D`wGD>pf^V?Han( zAKwEGt6+ub`WE1_Qw^Q4`h|A3RX^zIqXr`fYrvu<+kC43Q>k9Q0+zfTl{;%ZOsV%G zy$YS*uCJt|Y`p0>cL(_HxNn&BOE$WQ>N!5XC2INjR(s#a7fTYnmnq*QJNrKPO7~-0 zE1Z*l@El%F>U{-EW|MXz2iJM@?n%3l16-yO+U8oa1yZHm`Y<%RRl9x7ZkXcfeHo44 zAKL{Jmg`}XfA&8jgyPHT`m$;0XBxS|9@GgW_9*rS9V-Vv?$bTK0{rM#fTJJ!3Xra< zN513MXD|G zgz>L8*>KZT&OyE6@*wQo9LU1X2@X`(NvmfRvfbmD%5?gcZfbXHldYuDhBgYks#cip zeS}66Scf!+Q3~6h_m85%N7Yf?Rb$hL((2VAyeX9|_@yZH3ALGoGl}9w_PUpH!DOSfZJDBcEiWaqs6!Q!jQm*9@|1aM zh*8qEN0DRk!6T=XD9T9o2nvm{pf-GA11);$=&~{hesNKIP>1ffG#XO$LF9i=GSu#( zSY?gYbo?L`o1aFWhMu*$RQ-^VY73+3C$0Lh1#`Hjmai^rp$-*4Y{Wom9`aWY8|9!k zA34@J{K+$pK*wFYa@8(#8jpMw0lANke1VtJX1pi-joyZiUcz)dl&)QZQ9i9lr7r6gwV?WR<~(%h0AyVn_;fDFs7sD3c*VH^kYkM1;aZP>npWoJ-+8X)MH^@tW^hdp{=Je55y953M{pkDU zr7!st%D=!zzxpS=zHP1_{cIn-pM7yHarX=}kTsy+g=+Tu*i5{ur(uQJSF8^d8xMWv zFPK?h_0hv_3ebP{-Ct1|8nydfS!K{Yy%JvN@#XNhB!{QE z;~u6=CA@^)?t@9uG-bZ=fR_0}es3rKV?9-zo3b?}d)kYk+Dogw*of%C3>(shy?Ry3 z?TJ^zyIL$erzwMdb)O!AtpO?D&@{TV4{rMe&}=}5VdXkHjl$3Cb;CRK9o%+&f^Rfi z>rEAVKrf@MvN*qyCs{rE^MD>|``Am{>L6$jr_r?q|H^^N9@4|`Mu$h3>4!l2y~Q@y z$5z%|kHeU~J1G1K6br%kAI8i88#IqS7Ky!?$50`Jm*g9cpq%Bsxy8yc+qoWHzGq=?;4U?!Z{NcAG9jQ3AK z#v(K_099OwY=+^fhgMo6AJvV|^-}11Bo#h7@=?{HLtp6mwShj;*pnzlKSi41Pg<8A zpTxHPTpwxMFTr)TBAww+T8GM>0_j#C>9kXN3B1E31=yIE6l#glPWwoqk~n%e(GeQt z=M$b(Nl)ZWy6y~;KJX@8{uPvYPf_0WQTjDwZi?J1b(9wFZN|8T>j!%)`7MZ6uCW^S z;=36^wCFQj#?BWdQTaHdkXE{}>?F{4+z*4Bj8(@}IumD<)Y6fN{fgAaRJRDKpqWJo zbePeSo)*DaKBO^4#~T&3tj5$d-YD|?X99>`6>k*Qhct$pPK$rm%Stafwej)-+PCK|>616l2& z5Mb@|0??YGMn`RxCBYj?0_<3{jWU$u0B^i8Kh@OIWTet7uq70>s2>(nRjfL`?U|nN zXEu?6O*}J`3V6Nx-!l_IN1_ey%%mFM^cRiHv?gjQGG&wzsUyiO z-ln3WE7wHLM^=x9_tmjUp7}^S59=r`p^18(r`;GhxveE$%|X&RY|TNM$*{+@2WM$c zr2*l;(A#72P0Cy)3G;J|gU5@t7nXJgXxO1YGR`QjZT8WWf7z&xPkERI@9%kY($;~V zT^B4{8B}<@5uu&*B^omxe*FoR=vdxF(&_3r!6=~J%d3(j6QGj2D$Sj|X=FxoCmQ*+ z{7sc1L--#i!mz`ds$nr0knN78@@r3AC~i+s0MDhgG?m;_3u`9x4A5dx+hW1W^30~R z{=WQpI;HiohXWcG*hx?Q^NN?la2J;F3mT z4gBNw8`bGjNq8t{KY^RZoc&6}QnB`yN*3PUsDfHV;ZMf2TFq2x_VhH8culW743X#I zSkP@-7Sr&D-M;9Kc)3^5nOC!#SIV^x-rk zO&en6F{rsRyqVJ>^Fk%ZrmJK%K%&BwmgcY%KoMc?%~dcV41 zb#mSGm*RR`Ol8$#Dz$?ly$+__{^yr4^3l&NFidZ1XB31B$g*p%wNUlZvb|AO+hgUw zu>~Dyj};mm)jz%(kJxPD|IeI^NIXlQ}TO>(5MpH$J z%b#{?`LV;t;(qj=k*keJ;h1+pu&n-j|}@cB7~^)*>F|N9t>#80ZJT0;S9oQy9zNB(MjTGZy@_W3;iIz#_aC*i$I{ZR$u=KXN?vJU zw27aO%i8-69n-HrAMqh$o!^4qd5Qn7q|+bI^df=z(lYuE8JIO<%)jqKlv%!f);5#bwi!G&T+HU#iY(MyAe$7(M*&%Rcf?FwjR*9?yo_wuT zAC4Cyq){UUPkAER^c_8-RZHJwIO(~>!-pBcS_La{Szlrl&O3i+iMgzJPZ3q+DJzyP zcw2$LkJbi(D>uZr_3&f*Tip7zvMgXdYaf>1}ieGcBT5tSqO3SXTWzXm9WN zh-bco!E;k98kvL6+cquPiJSH@{vo+S~jzRdM`nH>`N^ zU;{5mEHD~s0j=r&Y2@5m6@|a0hV>%8VSqETHGQ@ag)i1xsXhVz={Jg&OR@vsQ^RV# zwE42(_%yL-8+vJ_%PBvu$GadNzRedyMT1+@^gWWFKU@B+8b<0Ref2enFyCV9^0Jl6 z*i&SCR{^Ou#RvmZle7=V#QOF9o`Phu| zCc=I#hw~(ojSiD;PoiFLVBNW=U!rclM7B7x4f0LEUXV|U-9LE^V-feu#VF|qvn;Ks zYed*qa1M>=UR|StZMh%!C4StqWmvmhn|ge$ccg<|jlwp31J3C%Gp@^@v3QE29cn|< zUo;|Pzd-j~hTpm`J;>~_bdWyCz+CP$kbGW3>0sx1?!LcigTD*u^mjL7Q}JA2(Dyrk zWaLl$cNc&Co!5bH@eDub_vy5-f+M=3^9E2Z=S}?2ao&>Q+xSn%$G`I74*q*Ab^Z+C zyw`?;dl((DQphrT1_DSayMX=PlEn=+I>^Hfw2-!{@lSY)#iu}8Hy*BnX#0ODRj4Xe zTw7Tx6t%}QeL_#Cr(l&CUxojw;V*B&FaR2j`tw!YOaFgLSF`Q1@kRrzK|o4x;UKIm zoG!7R{teeO^STC~)}VE^ia0zBoq0!9#CAxBtP!c0{}X zOKnH0+Ah`3s%`dL=EveiMqDagIn!v~+*9whnW8TL)yLoS_1^lw*EfBVX*8vxQ;igl z{X#-67ww*Gqv_srsosFxu zsh(oZV7giSH;4b`^51;^TgZRe{P!CFE#<%E{P#Nko-h9Vp!WTTW{mFNFQM~@tRepg z;}7z+?Kj)egf2!?d~uCZdd(k&m37`(Vm;cqsD^iW?#PE$otM;%=C%)%igqFuoBtyX zKJY~lu=#)1PWdtCB#rHB$x)gAY0$&`!|knFHgE6qNB+)}QaLlWM=JRrd6UZ}+}1iK z-|_AJvnxQ-i7DJ(4a2d3?ACLJewNMhvSsg(Og*I>s4QEaq|zB&*@<~t-KeE?w79iv zuZsC`4J@#Xv+^C#o|0-}d>m~NjkK~H4q|TNF{yAw-tZCQvxp>(EaIil5%;ad?b}EE zSuLZ2w$~zdKS#W&Hr6$AeZ+blEQnpUh`&|D*c5H>rf+a-$4@o2)-uxT@Is+8h7y;f@R&!`L9@P3@DL&xSZjBoGVD>CsnjOjp++hpCIEp{@HReYfa!c>?p%>UQ8Y#1<4Z24BiM-^B`HKTgv~>(D`&ONPp?r(b^EWZ2Vu!9iADEs6C= z(Vfn?%+^$}KAg6dN{UI9Aw|pf_I#9GAIpa;Bx7wklC!NgYXG74tGwUqK${vE<*|(> z%ld)jtW0$$$hjJ4r@?)?>Lvd%4ID2i@{9k0{6s^z2O6DOi;{tRu|`G-Y@tc+fBy&a zCylVASi(#GQe&fxR>9#rG*;(#WWCYKdU+?J-*L>u z+de{kMJ7dE4SHS?>|M*SQ`SSgt$)Io=-flR40+6#Nc+U%{#Jma5N-KGcW8Hf)PMg0 zS#ao@SA{>QEUqCD+xpEv@%cmWi%R7XsqJ5SRh$qqavM}$e~S@JW4B?|jj8=~!8x)n zSWafLPL_FZ9MdTa&tYfy-$()@Ys8>vUhpD)n4%ADjXSY zw6VE;47FV^sw!*|gPHiZR?f#?r1ddqq33;sSXY!ep8-9qW@0S7jDLLe7h^GpdhAF4 zr)mnE^Hd%TV_SHsPS@-QiudKprgCkYe!&TNpK#F%5srza; zqU0lee>GP3mnzc5{-kwi&Kj85ULWcAYp~wvR;0V~k{(zK0WSMUqt`)zZx!izAE{s2 zS#)lNSTa5CTP+J!MVHGVk+k>>N}kdRu6P7B_!{L6?W)RaZw&*%_XcNR&&9hE2C_=n zG+`23B?i`9vOLH?*XxCLYSh5*MVFVn>0WPx0(Da9+CP`hPgKs8MGcZ9o(=;~KiGY5 zz$Qd4>FU{HUXLTN{=LPV&B@gk^SlyRs$C#6*5-EQE#^V+uw-#Ib)_98;c$JRVs~~` z8_O@3!Un@7Cc)=hALFnI>t)xA9;Q*YP1NoRwxv%M(RC_Y8VWimG{PN#Jc>>zgVp&6IF>w9fi&Nj!BSKx9r+ge59-GHAFfsQMH}U?epE?D#@|qRk_P^{)xw-;2MaC%l ztmo+cs*DBYmW4v`rZF|WidB0QhF`y>Jy(s<93$o97j9{0u8QXUVS1EnMf>qXB}o&Q zEmh|+fet)7Xid)RNZldYopT*;x*{My@N@t4z0p!W9V%!>x!c?@a^w?EjESeK>m3H& zEg&53q+3|l;54U7no$&(&vf`jX5WVCUjN1wm1|ful-neZ9x+~s=@gnZpI1?u({)v~|+C~dIbsvi3NMh|~pnJZCJgA@V}p)@>3 zdT^Qr&LSkHWR#F^2% zpO}fZFkULG&|~ScKcv>PHx2dT)XWh~|18v$nhd0{Oi{oMwKQb3Ph~&{ zx|itYJfPk2rrE{DJbE7mk8EM~Wnx+EdZrmd6XQT!A)i^B(JaccCuRYP&u8j%HBRX6 zHGyUwo9&@mSt%QArfUze@p;`S>|PRV+HL$4{s?vwA7)0nPllMujQSwVoM^K>QPzN? zI&mOVxLFMdSVNqLK;=1H`YLqOKwL=T3Ze>R8BIhcv%owM7ftGn>}Ru z0cM;#EX73A>8rGeLrx=TeidjDx355plv~A2i~f&m%%5Yo@upeG-La~<$%b7k*(Px? zYDRl!F!lKpF4pNlN&4(<-K<`Rd^hB%VG+cCU-C+XMrFze@$ zp4M_k=Z`@qNs!d*Ife!3Syd6@ey=wSofV2IL@UJ$vExvFsn6H@nve0lzFa29S-Bng z;9S|(+xIs^Z2VL=71esUx+vw|I>2npDEG60<~AAFKG^(32F46g7(&fT>H?HdON6?I z4&%NENsbLS-;#kLnPznxUc8l6kHdJIBP>m{a~3kh11sANWy7d$#=6mxE7+tcSY6gf zM7ZN7a`*89B`z`1G{1JlxYtiIn=ocl8>r^cV$IlCoo$wL z@0iJL@dY;?7BYmO817E;ve-K9q*aRSxn_WkpD++hQ5=-n5P6=Q2mLWInaQ;Gf+N!1 zV*&SaC*A88qO$@lk!?<53NDr##mZnLN{!}+BaVA2ktDZ3s^0`Ge_Cp`ky)YMeObv! zgHAR<>z}<`X6i4N+W$5XAbhSZm@^Ew1-F&5a z*~WA|b?7H)2L_&B7QjM#uQuTY9Hk>QAkn>jP&Lpov~UBO@vSxHd`>%h9lCl>i*X{3 z4jeXvY0Ww_j6zz7eC|r?%{Qzp%h9EU7$qI=$Set2mT`~RVCFE7#7*e6nFrdJ#beqc zcp7h{V+fbIU3eGWijp1o&1^OEyEnYY^FrOHx0%hn zrE{ZnJLOYO95lKAFbY+FF+`1hA2rNr(B)V%0Pk>5+iAWj@zQ`=9)fO8FUC;aez(#y zv{{ZZ`6%HvPyVMrFqg1wUcI>&?J-|sOr2CPmze?+EtN!2QlPuuUSAS7R6QUs_1ZQf znsWEU&B|VB2D!H#FlTv%aziK##Yf!`<*dYdsxh3}v=b3HtlYed)3IgS#_8DU2+OwJ z;S)2^hU;$Ja7o77fW?p-N0W}4fi%25y2G$zNOw+I5)RRB#+Tv9UMS}?9=GtsI&q&p z&eER4DeFi*_eU&|jsD!cOQ(4S8Ha5*r-UUqj^prkBiJ2v($sAH96@~EgFERH* zRnQEgd0!!BQAdnZyH26qsu+B0Yx1b9%V>A8GiD1bCi5tCfizGpzK7>kLY(DYfEs^; zt_C;nNLg2WW7=%|q>dWt1U()Hn= z%P@vi}z%s(!~@{y)-8{|UWN@K0us|BYhS{}x%4>i=w>lBcz&+vQR1>6$#J z9e@vM2jCOh0r+@!06v=?fDdK|;8WQF_(*mDK93z-_%QbL0C^HSp7<1Y06u~pBz*ol zp7`)}Jn_lvc#=2b0P>;h!19Ufc;e&M@x*7X1MorX0DQ_i;`oSlJn`}B0DQJOkbJN@ z^5s+2@x(`}BaY8g2jClV0Qe+z06s(`a-&p=b!`dA?PRtpMZ`?KK?x2CeJ=k*X6;;)9C3WCIgos&`BaF{Cz_|5@;Gyd&u5uK7`_n)Dfkd` z6oyYQM?yZn91`-`<>?M5A6yP3pIV+CEsrcm9G_Q?CqAqkS@22a5R{K8Pmhpil!Nt6 zehQF>lc!hF%=%4*qI3oXQH~*G&9h zBIIppR>yyO{e<uw@>>fBEs(AM)?L zXO5rBa^OxhC%hM)K?8{8wA=ZRmf@x`$&_~|fUwtTbF_jDys zTuB0Dj{439{vj0=_4HW5D;suMYU0_#Fb@6TeL0d&+Ky zbMk$U{CB(Wlqw5q(Ez^~cM%i~48CEI^ z()WQP4WAv{d1$uf8>zI%W*feTD)BG#4n83n{KzEjw;1a1*xY5SK=Ab zhhnL@DYoGvsk(OYlJ+o`25Dk1HoEIO#BS|r43!EJ4Q-!Nu>f&Qs~=56o|+xB<*~~l z4&L&9?QgTCHXwFcj`#v!Ne4YLJ4GyuvR0r58LdYz&A^~RX+q$nRh-)O)ciyH6z>-N zgB1aT{&0vJT7hW#`46zX6TK{0bg`YFOZh}wESHNXW_NsJGsPzM(WOUl&gD5n-8GR< zs~fv)5R~ytG!1xS{-BkMp^AZGm+dRM`nOqMn-@((gG67PZ1tTG{j?&{)ZkC^ik2Bm zwf``;X@5r3L?L=(TH znG`9Cx_2R`G2Nvr-D=nJyTHE0?!~|Ctg2I|$;?=l}=&$oC z%$ACxzTicXU#f{ac3$Q9ww92q9HNf+m{%N-Lo8iP6QP9l1-tuE9dXo-dHbO>vDJ?0 z*RZDIiGyzsm3gPP$82y(J8{os7XXG$CrhJ8db_>&T^kYYexrjpCZ{ERJBhV$@a->( zHqw=KNl(@#9a)$3V_njXbxAMQC7oE8^kH4ng>^{})+HTSm-Js<(tUMF@6{!pSC{l% zUD9=RNzc_K?+bECx78)RR+qCrUk~b%POD4$tS;%Yx}?X7%w#P4t4M$%xum!1lFq72 z`l>GJs=B17>XMEsih&Ar$$NfW(n)nmAJrvYRG0KnUD82y!9T@->XQDcOS-2n>79a| zWWm0vOS+~m*?%B=DFpW(F4=jwq*sb^D?ueacNi|&U$|s<;gY?DOLi76*;lw^SK(q; zbSg;M_kuEIVzz6SG;5c%YL_%>m$Ye@G-;Q#XqPl-m$YY>G-sEzW|uT(m$YSV(_`4$9+C_vL zapi%)u4`9OG<4`vrwcU%caM?XsZBpjrGvVPC`HwaN_Q2-sBs32{6ZHIf*rRJ86ttq zt|B6Aj3@1sRHO}?Ouu%+a_|=r$kqjHLnHu#|DD z7udhnO~e^T`8pq+c6SpgDlF)iZlatq3%AfXgA~7%?kMasF8yMK7~EatH)>S?VxU4S z?=E5$!b!Wki%KdyjP7uF9Ou5#V$}npNyKLA-b2(>;jNr!G`-&g1u?3D`YT19+e5@F z#93O|UnHslH>sz{r?3~Oeos-#h^&MpQ&p1bJw+jfc!l2TDUwxqCSB|)${IT>f)ID5 za1F-w5(!3TDIgLQqH`}%)VRo%(pMou`{EF~*L#Ub<0F>olENNCItpO@*?Nm2MwQZt zDy^a*u1zrmIb1LLL43pvh}^8LWylei~68wS8%yauw@z& z-<0n47G;dDSj6HgWl9F>&Nc{nOCJ3)z$3Rh;_oURIGZlml!$wiXkj*N4Y2Tk%Jzdma zn5K*hm`tnsiz@2Dm`vGypqO9!gLjYq5I24RDy%qbF;_8#{2?)81`i+ItKaDHnf*O& zPLh1jB`Qv<20&{Pag%lr5ao>&ZXF9$`X>X>4A)+C}Q9}ea%xUuw zQNxfInr)y7!$euN170zTS9*sEQ$^vrfJ{-&yEz_#bR&j}G!?m>rj3MTpAQv$)zxo9 zMPq;(!$fU>F~dY7MTN8InZ=!9A_{oha8K$ZDs_+HFe53(CoD#J`Xv^-ONWPhB)|u7 zoV?x$obLE^xCjG}&=DRUCl!w&BScx?myZz50dhx(bb#`iqKPRPUz|*<`@*yqWr}!2 zY|q3bN5Y!|te+)PusJ(AOQZs9&k`*RdEwh5 zrSsWYB94+qq2H5OoOQ!>)p3-hUNlNHRd|g?js^bSD3Js%iK8LEq{l0bjGsIjeV{}H zDn#mNQJ5}|Mg>c3h{D>(h-wNEt`ITfK!#1_I51r}1`3zd(HxmX`-+PKo_3#vqQ z#)^udA37FOrzdn^EQKFx@RF0`suIWj7ot#XB`l1S93;aiSeS zrI#h2kuQs`c>3aHXsz$^@z5ze(puw13x>1Dix(MQ9WOE%rcDst7_OOsY3qsDG>l|`b%>f}N6>lD#M5sgzsZKk5iB+m(yGg(wp zJFY(;bp#9LG$7H{siGz4P+^*Asc2uNb#u_FS5HIr%EYr2w}Dg8%-c@KXmbI(s6GyH z(>*EYD?%7dAT6AZ79x``vLv1^Dse_nr$b@bD{bMO*13K2IGoyyHvN}Y)a_R^g1tB9pDVT=;7 zTOod!iLoJrj9JhWJ91b>lg83#mPo+1I#`SMxlFIT0Bg2Jle z7ighN)U%zWFI_O(lN2^rbToK<(|May#8dZ1q6BT5i%v*le^Pu-%@xU@w#`EabCO!k zLv6|E-&OR^d7>upcjt+&3XivRxw({?3y#y~i^7OpH6NYtQTk>+mPC$H;RSGCl+ zE@CN0fi|nn2v3WX_*uXQZ2xE$S$;(kfkUwx|Sr z*kaK@;VUZq(8Z{wqqKH0YF-LaMdANhEUExs`8Cl-;ZqfUPd?vViup0%rKM>7fQidQW!|dmv`o~I zQ&DFRE5(*&qJqNowlFZ}Kzh1NgkgqCVawqG$vZR$PNnTmD0y5*QQXrBfMC&b(SQlR zS`JwxVdhljqf{jk&0B7*NmOMxlSJ)!c}wVPSb@R!mxgOJ?m=??I1Lt6>s6jqU|1p) z03*sXf+0Mi!mp#-?n|iv+^KbWT@>yn8+orO{w(5O@v@LDe0iSOy1rQ16u0MzZSITB zpwpb+3-k+vlN7W9;3$;^U?nzRAqv-(H;Z<~6v$VAc*t%QKq{bLp4iI1SSVrr3ek1y z2$X*o)~c}P?aWl+0Zi4-58vJo-_;M_%@3dEhi~YI@9T%}=ZEjC!c%3&FZo4u^h?mm z51;ObZ|R5c?T63s!}svR_w>Uz_QN-s4E3P&vc%2&BAWXpsNsjN>4(qq!;kXA*Y?BL z@xu@B!w>Y}k-u|{U&L5X1n@)s@WcG@_5ASl{qTeR@J>H`Yd?G&Km5xGJ3Mti-mR?^ zcbFV^0yw!!^bb@Mbu6M{wq9qo=ocgruQTHHNi_W;M#X!pM0I+$T0|=1H#zQ2 zieDpM1e39A#1IWfZ-2i=3}o1Ht>_o1CiP7BJJZ#tr?}W9Ds}XT?!EdA&BS39OP!Kr zKkSh1uMz3gDl5Qr6vGi1nDXPMu`%ngmJN7no#+~(Rs@(^7yQwP2N*fpz9s4gs#O7w z=uW5K7LBM)7H&Ja{+5Ugl~KJoivMO)&Uh`F6P0nKdNXOW9=^_$RNAs0nE@JaBQv>L zkPmuu@}J5qGb^A1?Rr~;2g%rAjt!nnXWkY)Lao&WV8Vd5GD3nfH2EE2GTT}2Kts6r z@WDGG)4@v*gAC`*SE=r5=;caQKp5@cAo2&QH3=3tm8RWhACh_O*dW3wX`_fy@pU-9 z4kg}0t$5-Et=Wj)6B*=e6#e9w0w}_#kYJr851<7QIlaZ|V7Lh`|w~BBk8?{wT^(00+AVd4(aJ5VjuaFT&EABYf%a594bXzc~m+Nm8_ zk8PeKB0^>CFplNF*<`Z^)a7V{w&e&1bNw(!jMH%IOy&2*6bCQnp!O@zpy{_E4z7$S zK%qNDbf8-HVLlrvd8Zhy5StmXnRe_HFNaEst&HG5XzpjIAZ)RgOjCCWe6n7d-rOa| z^Q{h1yG54Zl_BKRfYxmh4b|Ng({@9w?{~x2)Upxt`ig8Hh@n9eah4HhC()?~O0;|= zQ+)n`hzpYh7np$mW-ldMEDlXa_9+pmeX>Sm^y`~3YIJvOm0^da8g+1sVSM%2M{Y5I zVc9*RUx-?GVir^Jrxf{1(Evdc_uviiyL&`fkR*A9NnVj%Pa1g$@==cuA-E)%$pkaG zUn#^Al#)atseLnsckjhwz@jVB*B^=z8m?q(v{#G>c`rx4bVs;=eeSv|K8QA{hcDr9BORO`286;59$6x?#ej0H= z#Bf5_0kKdnkeh@R=l!IcFgO|*}Xv_@C*@*j~HVZUMK5qb!wpjOqG zYhOw}Bt|O4Xk40m@ilPUOP zv=`7%{8-G=a4m4aCt|vTm-JAeGB!UY1tqZBOKNhGo3q)-mz<#AX zAa_vLqYw&AvyOr}F4lZ}6v6>c`xLgXRtPz5Cz-avLY1~AC(B1MPed@&W*&pt;fB_$ z$3zc?bw3k5gVbUor)@BalJ`LA2`{4q%l-`dzQPUl>1Vd&9&?3I(;Yh04`aPWTrmTuNd0V1}~QBBMfdmr$SU13plPAA| zVgSp34aKOHS7tWSQVedebi@@KJa&A=jI6AT@fFpLmrk`9%Y>tqf|!n4d?TU)Wz;y1 z8mDx_mtf{g^(LhK--tD{uTLrFp%1`mKSq#D1BT6GSM zAF18v#1ySXNveJxZ4z+Xd9=wEB|%+)lklIXP2QW0D&OSs#FqJ4V}J-GO-0096YL5pAjR5dRAc7YBH1WqoLo5tT1ay z8Hj@_-)oZt>QL?l5ll6{6A_$G%kLmB?)>_~f-Ns$3{tDl%qWM)poZ!KvLcs72^F=A zqjpj2%VMBI(iWMC`n&cWI=gQ!V@&<4G*!ET@&N9*A~J*I!gLZRO0q_o%!vUJxTsPT z3Y2jv9GAiaU_*RfprZ8UxuRgGTGQs}YWSN?>rTJ`>*tDQ%zSRHn69N&rQmA{W?vIy zL)FSRr#K-~$o{77HBp25T}M{~@=4dl1iozKuj}wM0Ed1rhDNCMaqjV6V0Uim{Jxa& zgJ|bfv|o>At(Suoi{^6BymuRSn7sRgNDP&62D9P6*(4p7dq0RqoKdwK@Kv^yq@5N_ zx+${g!uRm>cHYFQ8)6FFf@sC7Q}!(}M)1-(jIcLNyNJ5ayoILO_qK=#RLk&O!dy0s z;R^9RBfjT~w`kk^C<=$E<#&#{$=X;-(gfPxh6x<~5hj4VF8+wB!hMt-?!fc_PuzjY zs-=2Pw?L(n!${^`Q6+zBX4Z&dBS!bfsE>tz_>oBS&QD@K-(#5avsfZ{RUdLsplc6N zpST+nFOd9<4zm1RQ6xew`7`4+lJWdubmS+|p0?e^>=ztP-i1NpTIp85U>pZL_=|8x z$VLBjPQ-uG*Ic(x$Q!G}=-V9_3bKDi|0u~?GZ`)>x{bVXqjeZP`4wg+quOy)J0A19 zGwZ4M#6m5#7KPpyD;RFRFJ^_N^2k?!E0F(Y)9DW&{ zy;+{a;O$^p>7k%RgFhs!59>5Tn^L9*m&XWJEflqRx-yxBVUd>FxX`RgxNxKe; zI+Q&%Ac&IwfY{|8idgOKs?_A6SiC``B4a3Z*VlLgjD8jMF zoAbF=iwO!*pJ!Mi?#)|TXF2(=|6u6Y`V6^0t+g!HF+1?7@@lSer1aa6O5I~ahabQc zFFb|A#@E_}EOj!ivoP0qVd?8M;4CcSNj67}LlWeI)v{zqEPY^eG}mynf=zS0!f>YM zsKM}%=4j6_e}H4SvAmNsj!Xj|M6U~QbmfSD0vw|lX4xJ68D6wI+Au7uJ9;ymuRFRk zyrVmsI+%g;A&Z~+5T0LK!%>Ul78s5m41YEpT^Kes9jzEHHy!mEUN9XE`8tX?;b_3H zw*}V=M+biXOMnhA)#2#IkQ|N)4D;u6j540qgV6bDWIlYNv^F1vL&W`jieOlvV+}ut z1UX(;gk|XRZJauDE(oPUM0&6zo8jeP#~X?O+p!^z67*JxqkTTfI$&_WDobg^FDOre zP)ALsZWHPl#_(XM19exA%7!^`Aw)gO3Uf4NxX*eH2zPYi=dR(7o(%VfJ6>`yQ)j(d z&=I7Kr797QWR4pc;TXX1RD@#;!zTG1V;LUI?---fbl@~2f+1W+0f)T4V`BlwIHpO6 zbo5g+y(A6Gx<1lTh2t(pI=ZO1fgE=w)R9Qtqa0~`O3d0QM=yr9Xcz}z%V@{|xGUO` z!7w@o`Ue~ugK`31h;dA1*dTWgh=`ylNUs(U(D#|0-BI2jfAHLVc6PSh-QIm+?rxf2 zaeRSPMLBS9I=~<0uv_4nSY9n5eW8LHPdcRn+a)Su7sDP`5mN{Kp`waZ6w!M|gDNx4 zucVHuq}oy0`byYs&&1NT?-`sz5A zQFgUD&Piyi8tl8E2KMDQ-So8@s(*e;M#eJS54Esr*Vmi=!ACh$YO2EIF}o%v8}FRE zR#WvLZ5lw`>#ko9P|2kK1mG>|F-UU8*%=Xtv-6EW%n=Ii1*$00KDE#k^rKqL^VU{F z$sSP~OAGXLZ52r`)@W1*4MBAsGz7g-2g8K+sf)b~{i?1SPTHg%_Ad0TdWZvkS`Q~V zbVPlXO8RSk^%|+yKzV+#ebKQ(x^^>M!|pafgDB|HkOP0-5IY8TwMJ|&X@s>9_Jc;4 zS7^7!?7yio+xePcYw$GcZfHpe*$Z5)K94LTBoI=>O;%+#RU>Nzc1oJFZRX32yN022Rn3mKkRPk(|)-7z)QTl_eUq8i~Fk(zqOq) zJtg$(%o4Zy*Of}vQyNDmKCeHA%)YBu&+a8JK-I%FVb0%h|D;>fPtL;o}o`vO{O zkg7=mEZ@d3`)m?pbJN;2$TGSMK3%Oi{64r)tfOL}8Xyx`(;6h@6$7;PCH5{*M21_s*oMb0XsF}_Z}Kd2XYwPq>( zI9e4Ur-Cs!prAuyFh1zU7_3rI6^ru>8X1eD7`ihSmo^h@vd%hG;chpM4%Y#?a~zgU ze0VU;>ajT0knEiCm_TTkcuW`+UF$?@ravrBm47LKKU3&&o)dMkoUY-iI^-4ZVL5`X z^srl?=RMV!6QVX!^Ht2J6!SKT9vhLEOz$&C5FI)UC*bfNdeJcS2zquHZs4FQ0mpJ^ zs2-evAwoAK;N};4D?v5P8;YBsv_dIk@Yc+cHFZP+F2Fq!aYCYeW+HYy^g^Oa@cR-^ zzTm1}W-->vmKqZ{HA&T{H(P#|gad}&a5)?k3GHfi>2Os)uc=kqMgO<*i^(`j;5;Z9 zs~GgtWUP+Re=P4b0$mPorZ+B8)%BMnus>lu8i5&w2BqNY3|*Xp%Fuf$7&o-`NR>dk zVkB37I1;A->}ILx8FY3kY<%D7=3*Qq_fxSx!zeil3kEc76oNrN8-?J|f}>gEM&nWs z`{-y~vZ1ZV;A#e4F^2vB8iPwb>|tZoY|=l*GVk#!uGFx1zlvJ{Xzg*BOz4bp9QTKD z9H+^6EJWb5$FqHPJnm#+$4P3HL9CS#IdXM2t3qy1}KfBtLS&Y9OR$tW)} z1qTr{ZVHd{izyfvUP0Aq32y(JPgT{)@TTGjgl0^|(hvP>Dmo8sKMjpT-=2n}9C~yb zZdagz({XM<$4$q%0{whCIswf(1D%IMHV+(fa& zT%ChuGiU+m?fyBC2sKmrWy71``_9Db2wgi99fAHnQ`IG{HVc;pXvQoo|Il2sxxCM8 zbOiRQ*(xO)Udp~ft6&{I2j?P;m22D9HP|>XpwF6r77OWbYS(59qBzUoWPqS8~QiMlSN;wfS|dJQW7$mT#%L zI%uA%lfMElpVd$a3s);0F&sZnHY~(DJKmqCUMAlI^Kh>P4V;fIKojPx38XjX<8lV= z`UbAG&=qgsD8`o_cE6>X>sAY}Lctif0J|9a#R3c-TJTLAI?(VpRRh0rcwR59tWKVf zCTqQomyvz`CJtznR$GWGBy`q7oU+gp3pq;hMK}QQ^7q6=xF?1lS%j&CV%4drn=Qr; zg)wQ0`kBa*RN1igc^10{3c!BS{SX6ZZgu?m)0hFy$;@MS87tGqE+Z<>XY8_RI#fVXsF z$bovua#f3rH&|R$%`?)k+*%(1evZL7*#Fs#L$ty)cR$dQUoz znEI=58;63_RXDJr2Uc;w7vII~!;X0uXBu?#yBH$!VRNs>EeEv2YFf*S>UUP-hc)!s zY78A3`W`v}-TWS|GtgV_sUgT14PK)t-*v$n)faMojf#YHd0$24F-fNxbg{~qsPBBN z@F4eERb2&)OvT%m@#K(xX{{Ov=izHr6y%$=Y5*i~or$n;oq>ADXg@AF4381g%$bkhSYoJfvWTaT%SV`olVrp@!x*-MK{Fxukc0pgQZBAF2E( z)E}Ape}1GW9k%Jm_{D(qq*WhdZ$W?kSPjZe&u)0PsOl}fX+3UC3T#ld^9F>4#V5t5 zhJ`Ki;J9G}j$5u+RQqp4uqV3fM%4l`Z=(u@T;7QOKGAJ9sXmbOO)5T*Nl5*N0{=5n z-}^+h*LdGj?rh!@J#@1Q%WaBZKr$1afbeZm9dbpF7!`qRjVHR~77Xl(9<@dFgB;tU zq9OIRVhWz>PxPa$Dh3j^O$~;8zD>n&b7d)B*-1;TtCw||ZK_&M+!Wxh;EA5_ ziK%|&6E&Dyu1cO&P0Jc-t~n9roljLPhY6&@!2g6vO&Nu~idQ^sSIO`^x?MGgU zJ+Vu@nVX)Q@j|Hm5bZmt8tTcraN=~`t#aj9gokSMrO)xh3mUmwO((svTTLX5-=k)d zKG=gBHYi#iLkXmrdvQiUi|@mQ8#-?vF09b}`%#bV{p^?X3;gzmJ?9H_66$|IjU}CS zfa^UzfcUVdWU~L0O#I6X?9m5V?;pg!=)q1r#Px39Y@t_vWFZ~$XF<$ z?;pc&aVUa?Q6}r%6S#jqc^toaVLUpHH2~V<1TF^9Z6|P!vr{;dS-YQ99UyO=#F-MI zADzS*Z{W*%z$w)U>2&X%0?MLqoWjYMMfW<5!!e8g>@?0n{Ik(FIQcl6m3G+?J><0N zVBXq;N9y&pZ*X{K(e2NuB*?ZiDi%`etdZ$wRRXLBXK^xR(G9-EadlL${Z{pWJpL9- z!BIWQy!$qc{L0&<-8gJ`R%-V6_WJ5sc`vw)eRPcy`n=e zAbzIS7jUv>>TfULEX~x7en8uqdd&}NNFL5WrKB={pWb^0D|W3PRVCf?qACuTgo~!a z(Tiw1Q#ZVXer4*VmrV6sKVpT;)KNcTCNlL`Kbo?dKbf-hpHy$adp}_r&D7m4N4q{u$Gesq6ltlDRLv#X|!rB`uEX6o;*;{LIHaoylo+^j%H|BBNAdg52yr$MV5%R0v&M!cL>nEH*ooemcEG_8ytaGHsl)1-urY7y{qa1<$j>*>1B6S32bk_YrJmURW)H1yJw;Y-BT4{ zMcz}jAZVnN-gHkD#Wq@cSzo!QO68=UdcAV!yWK%5-d8W8w9$PNCFVZX$6b0M3tH|B z3ypSy^nPH9s&w-3Np0dFz*L;&R! z!ehGt8*wKANfm_09tTVl`=-+VlWaqjf8okK$}I#qNWf$R9%69V0TbbfvrKLw{ErD3 z#CkA; z6u`$Reb2B7mn=w>Fu+8}<}4%-n&KP+C|3~vegY^R5FnQT8!>z+L1L5CE03`te1W&{9|6Itf;5#f-N6hA{;SoL^{jl_Mtdh0962pBVe9p zjc1VHfC-S~ER)*@|6~Eye(gx7=l&NAtHC|)4I`Y$42vho&V3m$JdV7id* zER(N?;&%jC{}lv$CO2;-HsP|G2mupejk8SF9*Wlru>KzsFsXOzu?3Hh9WVhlIt!_L zrg*b}whXpTqxIiJpjN`*+;+eOxa%zB-WmV<3~2sSnLHF1 z%CAGn-v!u^j|iA2q90=m9#0)GZT#&llUIl0EJ%EK&ObW=lSY>VTky!~bHqeY&N3Nx zD9()dB*f*%7Cc^bzyv7dERXW-P+Ua7P6ovUP%<5@|0RUjkfjJnLL7p;;(%$R zytBMb9I~PS%BX{XWdW2?2T+ZG$$_iRAix2i30cdT$gDFJ>Ik5mIz*@^fD-5c8VIl< z8xt^Db4{=XkLC`TCR#Ylt6_zS>r3OT=WpwZj%%Iyzt?bas|WtwV8$fb4wN z(^UXv&B3F)02?usKt?6})eBqj@bz`Xw9(&LUNIi#KmoSG5CSG0E(}|UFw_APAj(QFpNfb}0sz@*5%iY<6d zaKHqZk1WX%mIm@Kbp*URtCCvdWBOnQI0IM7@0aiQ9WX_>@jQ~oR16Vhm)*q7% z_W_d(av@+MeC#ZfCx;3f1z7(r1We-FR&2rJQwL0d9nSJz=2_S&fc<^mZX%KahY0%} zFcA(o%Vf-<_@ID2*aG;9faJgd9Cg41IPNTOHh1Bq0OZV>-yh!)ku*3&IOl+gaNb$o zQ;u*!0Hw{r{}KVoZv*(*0TbYgvrK**ihmX0ql7q+8$?XD+D!&`954~?Im^4x#lH!l z>^1~=B;YZFrvjca$b!5dZXzqTP$dV%$K(Yjxx_^=$RogZE588SkrxHnjuaMPJ5o%5 z?MO)hS!dw*Lr+Qzu^o9ufbB>H0wzk zE|5;n=AX-F0ykvGCeG1o${6k>a^ zTYznMp8(tL0Rgt%Ljr8OhXvSnj|!l6(d-EVKFVqIPBQt12mv$tv(ECq<>K=KzGrYz zz$FHk1=xsJ1lSnY1aJ(WcTLxArECb@(t26+VJWl%tX?bb^IY)6U+upKEbz;@(i0k$J$d_rtT$_cO? zsVKm9qzVD^so<*E!f0wZVCE;lS)MJfO~7Pa)?xqp4!|Eb;SHT>GBOdbseoo&p@o2! z4B7~2%boc$vmF#gfb@?y9+ekPs&rh>;LQCyN3j1Z8*V3Yvc##jM1>UaS*=p+F)=xYK} zX#Zni(}`U@3#;1bn8^6-?e0m(>j3 z7eGm)=;wz5)-(86zy=1J1#DsPiGWWTd?sKg%|D{<7Gg)gPk;O$9q|T9q$zZ7%vU?8iB9+;IHd5 z`6lR=BW7>kah7+ND?AYJkij1U{$%i%fa?sN39vD;Ag`1gwK1|A;G=HXAbvzLI^eII z*g{AB9WdR><18;P7Z(sf*|_j8B%m;ZVghW$k^*cDUuhvW$SVSDkO~A${%l2Tp_wWU zm~K^bmRFsN0|W#zs3U+9a1o$^fQCLMO@uUM5F~&Sa#5$XfHn-;3+TY0vw&a*T?KSw z&{IGtgFdt9N0=E~UnT>@Wgvqg0_^A`1laLL39#dh6=28f322Bd3?@;4&yF`)h#l`p z0d~Bj1=#VvD!`6+f&e>Snp_^89q$wYcDU33b+O}}MJ|+;?9Ij&`kLl|+1vA+<;~~f zHw7$Yutb1nkS<^;gXIEN(EOu~cZIBGm-hv%W$>W@+pUiT*p6%zU^}u!fbGa90&GWi z%%ba$8SDy_p(DG*#dc(m0NauM1k8J3zThec9We9rrL#O+{51i3J-c^={f|3f{Cy{# z>B_$$P?;W(Il~psIbbTBca|&ufj}|jXWzT04xU*vub^M4BFg?%ZER)}j;yeQK zvVQ>qHo!{)C?yL3BOt6>6cSBDC)U5zGS61!vQ~vjxPkN16cJv-tvS z&)yVZd$w4B?b%xbsAqKkEfr$Bwp@Vi*(w4iY5iSnp~@Nu%!I9VmbZ?J*9*vCutC5^ z23st^`nQ$Ir{YqMN54aWZFH9a+sqyTwwe6`Y%`exY%5<9pbtxUUtx>>6Y7W~W+=y; zWy`&j1Sns)uhv~kl} z-YqV^E8rf3hXQ_M@TY)B44w$EP5jM(?mukQtVpQlUf8HP1lXuK34}MpU%9Y_!yvZ< zrk{D8<>lkzf&yM-P*^|_2E~0sN-!xUz_w9VfQ?#SfQ?#7fQ?#}KtgN$RSjF{XH5r8 zKLefR)tbZSe_bK7y)A$j2AG0f!US+ zo%Jc=QHwpM3$W8Xi{_svz|Qkrak29}Pk^201p@3mFA`wqSqrf9oG!pl^D+TGJI^bH z*m+(pz|Qmg0_;40Ai&OZh5$Ry8w4a^3)8$=fSu-T|4y2n=k4NR=XocA$o}|i7YEtn zfH|1=Im_G6#hC&QGWbfsVFpJ99J9y&Ng=1$<%|H^=s5wlnePSIW-bb_&HNPLVd>%bN~{2ee;p2t~UUM?;mfS&e%e<1;d859#xoWaW$;QY_Yq>Q-OsO1FM zs1*g+s8tBiBO_i_Y@yv64w!xhILiy<;yMEAGH5WD&OZ~OA(JNJVna3;V1u+2V1u+F zKo5_2ZLx)3ba24*qLZ_{&RpC@K-al^{p%s5C%g0((1$^P0k(}n0&LVU0f}cK>U`O+T06Urt z0cJG#ERX;@n9Tz0V73XM!O;1)od`ejf-Qhu4w(J2+gaWoF5WNT3kC-T9Aa=-z}F0p z2{_K+lm$5dPBS?xE;|@}C&0FQL4a-dk^tN8WdXL`D*|l0*9geFb?N@|rXyysx1HrJ z;k)3w0^VkDU%)#I9tv2&;CBJ^{$9-IBLe2Rnbi!QI1uNfbmM2v^xo(4e*}EMAZwb7 zKo0_;N_GJo7`z~0GlQH0wlPowwll~L;NyPnWRh20b~DH?U>}2m0uC^ENx&fng#{dD zP*lKC2E_%Ou&=l+DdaS}loD{3K^XzxF?dD51qS5>(8EcXqKX18GpH=!3WKU?bpQ9? z9aDo`%wtN|*(J~cb9B^pmU)T^ZPXQTm;LJtumKtoFb^O-WRIo}n25gS&h-A^@)iOf zGiW8?DT6iw=#eM%qMd+jcr*l{g8+K!380gJTnvIO!1!}B=^`%q7<3a*kUfD#P)3Mj>(zW{oEiq5}*LdvttU;&jFgbAQ0sW6%d0W}yz3ZTcS;1MmL4ue<$ z^%=x7pzE*QF$qK>>FI(*Y#~Up17=U9ILj4}B4D1OYR)0YI$-?AIm>Iw#S;XyVK4~* zNto1PdnS{`r4xfG0_Zs{^l6%aZVYA!=*eJ~fZhz|2QD>kaUE$Ar+!;L)#>1myki z0N*%Z`gzt_-e&ecCtw?c^8z+7_eQvu&I_*=k5 z23cNzZX~$>%ud97_~A0U_&H$4mdjb*6)yG{aE(D80XG@s6L5z?0Ri_Jyy$?>`;AE< zN4!576cO+jgJJ@nF(@IxcDxh;^ORp!URTOGU`A5TSzZnpY1$DombiVT_vsKTI`fa(l_ z1OzZ>DWEok)~`c(0_rhoD=rNgv=`8XK}P}f_##HrSwKq$Ap+Vk=qjK+gYE)+otX3# z62hRD0J|^y5@=7$b$9j{;DFh=gPi4sa`6xWeHerbumK_geC9iR9(^YQLx~|5`f!8^ z8Rsl~gToYi0>T+22(ST$6OeC9AYzIGCSt0yyjTt}+9$+gGFAXRTZstc1SB(6o0 zW(VRlhPKU||K@>CJGSkv+_PibDZq|xw*Wh~eFE&*4hXPAJ0!pk?XZA)Ex6}Lh1jv3 z5Mal4T7VtfSp)Rt8va%N_yZ-nU`_wRP0Tiblq4-L-tSyCCS`b1YIIT*UJhW&_`@V= zDkdc&F`C{2WO*AMUemwm0OP|SBjNgys2&lY6rE!I`k9;lv^*3$a(H5Le1a75CrQ%s z#im3g$Nm4p5Ph@5xJEQgE05_6ET_VuGbYn9T{`N>(o}`G>_|eg2 z%}ciJ1bRG3MHBd6-c64P^e@ko^6IDQf&Mk}WjhkA_XhdXQ^mhG_wSYM>tG!m*w&v){N`7@tUuoT?t^cs+y{@(OuSDc!E H#k2n(XI4Z% delta 95996 zcmZ^sbzoQ3|NniTd-sm@h!wTbIX1c(-7vb@#x};@tk^~=Fc5Q+GI<#w!%jj)Y{3Q< z5W5IFNI}Jd-}8CSeQ)^j`{R%I9`|+fo_L+tsmq3qtu}0IwcxJAO50Q9QXh_x z#!m)~l?(G#f7w33a?6Pms+p^$w4JQtB!8q8VO6ePBR~l-jg-WxaGyCz z1@q18%HD~pqr92|PsOLaon%`vBfH1jN=}riq4ly#ib_i>SJ%$YDJUv!zbLP`J<>1C zDN9f3##d@83FWGXD$bO1hgB@&Y9q(DDz|HjM5S93?Ae*6IWo(Q68);mN)0V5Sx}gj zo}ITaFFQx7=BSnu)zfM(PgEiwkrPx((8A0@xXf>0#YypXs^tqUuX|XDeL3-hh}gs#IH*S16ZTTaBf(lQqrGEXZ6e zFYQ*Xr2lf1+TrCYL3-b4)ibpfv0l}Zdmn);b*j}&&c<6oa%;YtWtC-S$(RkQt-SoK z3X=JqtQmGr$($_tJRGl?o6DpgLsLp9vqB{;Gbl}-tU~3Z0os!E0vgHJWoocg)v-LT ze)j}swiu=BzLhqa_kdi4Y{4M=>j@U%1jha$EQuTwvny(Dvvz*ofl>G zv^ChuDz22svsM$`jDLR|6|L(X<=9RpO;p2V`5h`$c9mOoH@&5Ls_Z#3zp>Rbq!iVi zSC&&yxw=G7OjYUfYd@>5tA}KEvg^v2dFW-e-%!y~bq7i+b(`|awiDtt5nlX zM^p!S`AI8GR`$1ICGvo3H_%Bs&J2_*nx#h) z($qv(7a9A4uf6OY=kaVhs%A)&chQ+sJ6gS2CQwi}S%_?xijwma(LZ&Eqek)N6OYIf|n$3IV$5O;p>)aBGk>oQ_JZH4!;rEASMRl;suXR?5zDB#V3zqKAlzl>aK zb&yYgQ;B$^WU5#wu7|C5l9sNh(vwVkI6e-gbGfT^4SRd4g&xVb7$k}7(JSxsSgDeB z7Cv0*cmd?gU6{$Dmdmr8YQN(zly!$?D7Rp%r>D3mue7wNkhK}3b&wouXS=0u5>z{S z(*SAYv%GS?4RSWJn;mSL1DbUUDf~x;x<*l*4w4tAT3+OEs8O!TUewy&-6}4$L;8Zk zyg5tKvx=bBc2z-#tzL&Vi6)RNb+Vx>j)mA!I%{(Hm`ainEzv-=%F520Ge^em#7MXH zQFQ%#i`n*kR+}q&_n}s3g|8e{rBpOEIzGnASzIYAY#YtCq1{|=Y6!wm&_)hF1=W#1 z%nm_)rYvKDx3qc%rKIN9+ zDt5+N1K3B|bi#*O5gey`Nc%c=6mqJSpw>~BJJ_KzKho-?n?0Ltds%7Q-DGPew9fHR zySB9c5m7)BwUeq7RuDqJ_l%?ObhReD2#-ff-A$zyRTf%$q7+x4whlb0BDLNPLgQTB z+O)Kc=b>BQ@5G^zmPO<<(CHtnLT7$5+G-q7As!j=Bz&y6g#N7?WNucroa=@DhtA(j zP7k0dFa=d`w$c~Hu|Gy;^|KqhGxPH+S2vYigRQ14>ZTmuyUX4$kR(R8Zj#p)O+oj^ zoptSGdHFtHL%BK_#h(^!O_$UvWpj)}6Ez)O(mJ8V?yOX4R6pIN_zBeYQ!ldBU{JP8 ziWU?~$7(lPkaUCq5$;sg`SQT1P9DfjP;7dPx*MI|T zaqOH`T@j3ylU4#r&p{2raU3+kw(C@F`RQSd%}1KDD^nW>yP$J1!t|2lpS)o*>!deC zPRy_dOU4Z<%;?AUZLPLJ^A}{InQVIm?f=g6aOw9AhEi8I%P)n)ZJGqlrQh|a!HlWM zn=cm%t7g1;mQ8=x8K=7+eFD9NN{YIttGxUc)ErHlpt6$8tQ=Zt{q3^M!b)j$t-GCA zzo@CIL$+)SM{n%7N=*ySE6qaxz^L6=`bGNcNYD3Gq^qI4H{5C{M{Y9~P(NdkoGr6D z%8DebQBdZRoD%5UbPVQbcRnd;44doPOQ@@i98@9Oi4DyRHTbyGJR5z9;!b%QK6H(o zd{ITXCdjtws^_LD&{q-nqY!>S==3Nxzl04gP8xiL*q}R6x}~U^;|=U+luZ_muPj+P zDG0h9a?1}xW>+*!hBZYnb>0hwF2L|I%5)=if|l;gtg@mK-PeYAv-2`@iwZOIS!%iF z%~&U%1+!UXWz|LNEiTGmvM@6rovbPBlo$KhElo3ls%UBF70xNrrE6tDz4SYvdP>GJ zWO-FRt5t9*EWxZY7?yptVPwI?koSJDV~uIH?gqTj*k|0GrSma1(KV`*u~cXyTG{Xm z(=$uL?^2D-Fsp6HVyGFs!5piVB=wa4zvnMppA@Ss@-H{Hrny3NkK3>`q@o_GfQ$yF%Va-o*?~RMt7Ta z(3pC#26LgGAIwEfjo+zy`?533GSkbJ6z9l>51q!C^c14f+WM?*H&PFZpLmYQZJOQ{#F-U`~hW~4j#60(ZXM$aw!NbRX=q?~^PQ=EHiV-(f4wAPS&u0^NS zc95QBY~GIsS!b-%7G=j=*!w+b2lX&bPKRlKGum@PXRDcOqMR6oiaMHs!inEV18{(y z642{ai=eB1`C1K>j6V^8vn21F5_XNia9`XJ{r8C%QATDG(;a2B@+SmX(Fy_5HozpF z)eA#3Y|A-vPaRv^uCo5HWrr*%EG{a_r$Tp3$+SCRYG_@cXL$!NTRwD`esW^Gg`etr z(2D+x*HnblB3fH*t?UI^Qv5q~eDM!3bC3Q8lYiw}R@_18vYiDe>2V{ico{SqGU_+< z+Bjpv6t6>bJM|C-9_W+CCj3LcTeZV0SBID}6lQ16Vvc$JrDv$^L)r9OPWz41l+D*; znxbb~96a46Ir$5^VD$F0;U2X5>bKFF_r>S+%QTj;lkCQ3T+sSC;x|lZV3GIm$$l$9>2$dSwqYUpeiw>qzn@cN_U?2JD&bQ_z8ED4XdpMw=j&S;%Qep>9l=AM|7A zh&Cq1=<_J6w->>h@AE4=17~3vE0VP-BjL*-)3b_sR%hA10zHi;j$FP3Ip+YF^TOUR z({1!Hncg4ceBbeEj;kXF;+ArJKf<8WV@+p$@lMotQ3Jded+es$(P2}P&4l>!1l#9B z4_#1@Q&?6i>rdJf<;XK=;R)Ya!%^3b&8SrVGe&V(=mTW$ooHTqaMOCX;98{Ae;f*9 ze?2H67?HDOtetbE~=B z6UEoyOmWTY%Dd?-tQI|9XwBcJfo?bRi{0(z`YveATiD=qMFhG{ghC?=^x{OBxe*bg z(@c}F9n4@Ym>^YND=9dqV0KP+ww`AMMkn9AlA^+#ta&*lv@mKG8+_8ciOnw5N>&Vk z-qlrza%?J>BDIwnu-&@X%(_CKgE9%MwDgy2laMYJbB4?1xhOGAebZ#!evZ*xh&Wu| zZeg;v^KGlM>Xim3&sf9yzh0Zrj^ZLHM5#I)E4 zTj$s))m=J$?M#-AA4jc}G(hL&kR*-rIklOE%pxCy^fX@a{!uy~*{^b+S&Ha?&Qo9F(@!Y_z09=VlfbrZ0jfELv14uDw%u7m&afA`Z$P~QV%LE%3qixhaXTG(q}qU43`SI zpkdFMQ`W&O0qW_*jvG*P$kGhmp=3uR)SX_I(?vIP73^9)W3E_$qJvr-Eafw;;K<6= z;n_u5rS0<;E=gi#$%l_pLz-zznasT%Hg0hS31VVlL)7nI~1gJb5NCbS(aj7IYQNsk`4r z{`K@kH?|4!))?vg2fDpB2w{Y^koDzI(V356O=8tgsCsScPVlL!JNDnmFR_^mB+0N8GIc~4Xg|l$^0>vSuS&%_A2wAfG$LLZ7MC2 zkU_3XaCNMeq_+%mySmc`NS2Ig7_#*^ySJ9zMtan?LyRim*yf#^S(2@d94u&#Hocj1 zmpZTp3Q{Tq6VBWPSUfD14dK?1pzNH5c~=h0AqsWIvBjRl6+hh%0&f%Hs&6!N`-$ix zdgRm7#?>L1L2wl*Xik1!aXuFx(eF-pyRqP#>LrlWY3S(MIAne>alk4jdnFb;Il*4r z0I%`OeAKb-g4%jGJq|%OZbK7H`w#=nhHYw|DO^sWLNGurnwwLCNku1PzEMY81)0Sh zVa=MV{CF1cf|3~E%PB2Q&%uN!pO5`zMNiaUQHg1r{}iHs=mlUjx2{s>YSbSaHw=a1 zoGbd5%nL)UJT-u|LM!#1JhU;Ep%h?B?24vE87=SiMkCiRdU!QfV8%pSGkkg4e6C#G zfs5}geN>oOg~EynRt(bJ*=7;wL@IPxjTUNTqljl+f&$PMcH|eTv)r111|9Vg>|ec> zq5Ig`RmcSvIfhg3UpW`;yc3Id-Nkh`jHnTV(bQn~>fx!69NFdQTHRm~ZU&cxd&`Jg zC@6j~R0yT79+xZbg8tct_b5-Yih z68VRf(v5jBwOHJF7v{kzOY zX0b5R#gko9R9v*6OfJt>4W)QHhF};KqF33TS^|GbY#`=B@jR2Fhzs-FYGa6v!wXIc#2swkI zQ6P;j!bE^lnII8+(EU=MMoWZ|i%o$g=x4(s?K)@>j!|DY9%jzoqiDoBcLismPW23Q z?`hf@tx&hHQ@aMtJFfG|nN-_d6GJ3oz*8fczZ;{!uJMFXh_t3>_-=rvn%y*LobR@l zSGlg@KNV+0KkLygzk=!QLUy)VpEG3(w}x+t?ab8${7*0Fx{#LBp-?jBe4 z`BMdGK`!hVda;!`2OYD-OdPSFX=P(eQZE(h+8o&om8*@9!yjWi5Do*J2^41@>%Xxg z@pgK}uKc}#w&W1Y*$*ZSh^iiJ7QGD59aooLve1j0-Rvy%SN5G5(o0~vl!iL$SdtrI z1bt!v?M|+&uNZ}j#R`2dY51PE9(%*g8bie@UFfW@?)=KzkqxwyEbE1Cn}^lBbEDN1 zt`+vKHlycHgSE1%78(g>5PIujY?jqZ(tgH*ueMl|PpQEwZ?T-2j=5gwQM4KNZ`egE zbqDp31I5sv=iX4=bVujH;7h46_PCkJ&9xwTX(QT<&bb~|8~M?CICH^1PBZp*J@3Q5 zMrZluFbo8(=2w)Vu{`+?UR3vijK91+&?I81cw?zrWAuj3vSLJqoz2!YYqDO9S{<@; za-C(v+7?#6KfttL!Zvh0lw4EK+{|Ja75&9^$k(4nqK?X)iMq+vOPxc^if+0e#edmt zdr+5pj&}r`f7s*bu5FOBaWp;Oho!1lgZ2EeO)sqA{xTXFOnuwxsj|vAgJ`N3GeYt^ zq!+?U%*@ZbTB63ni`Eh}gF>;^pOsgdlMaQGBk40R=cuXl2TRd@vOcm0%Z0C1|4{7P z!Ir?Jy>hj)N1Z&&^8QO3H2Ma{PC}Y7ru!IOmWlmx)3w=jyk!N&m=IzmQ?HODypI)< zKN{k7^upEJ#`b^I3+F!bC;6ICOQ*{VdyyyDF+C)yFFKlTNnGs1Y?z4*P(`_BF(&OX ztEVeZc73h}a3Qw?Ej+UV9{e$;T+qp|whwrdxp7%z7e-)J{GZ`gJE!3#T7xWh3D&u; zKRJ3o#&FC*x=B(2`oO(MIbZt+HK9AGF4tavq3*Pu1FOHAbnOB=2O1#BhAKCD62oV2 zy&AHq80I<(yqnzI-NF_mxBK-RvoNO=>z4^~ZiHP=itqIW$@UMhm!f0UT3}N%yS_7@ zdmr8KqqkJJt3p;DQibxv1#Tpyh*y)#fd zQ?8>moQ2M$ElNx?TSdpBKuRYW(H0WWRgK~}13Bo~u z)otbPktj%5aycy#CY=M+!mMp1U z-OJ46{?346#EbPd`vcHx?c8(n3UN$;YNv;6J_ut2bI$$}ejlm|3z$$TUc0UM4`bWs zme(*1m_NjB#Vtu#K``kh;U}0%ctNVHRyEZw$*UE|&qOnMwScv|8~bor`XXh?moSIMr%oL|+JHJSPVQEfRf+gBU0jWZjyd#739c)~U~EkKM+ z&U)wGeW=YN52$QcyiV3*8WVO&Ck6GgGfPS`&3u>Y9HSc603tWKTN>L*Px~(>!%D1H z<;hUxwJKLfm?ftI>?pM_$}Yte@^>|ki(Othdl-E{k9h0<@z!%=T?I=Fa*pffurE49 zMVg@V7vyElgO)5Q<7ic)+n+X;v8d`cHU!oZ+Do(ju;e(eFl(d5vbG9`sU}FuW7yM3 z{}%crFn@2Ws|#yNUVSEj2P=A@B~_midH9Hm!NeJpm-=S!QY%tj3|KEKlMP$~#WAL~ zDmySL@5E$JPX%EXB*`yvR()3kmU{zZ66=+BEGUP__;8G(+GoaFUSx#Fts)27?d94T zY%QFo9?ONs*PE$&6qTbugi_ay2i57ORMDxcDO{&!n)+EJVbz)gv)OxI(*fNG zOE~>+OSVIh*E(`;td9n#6WfmED5v>Ntr_ygA!G{s&LxuA#%hTY0-L~u6F|Bbv8o6W}{PbSIQW&drw*1bqMS#^m1dRjDc4E z>K!8McLYV~^(RgMJv8#TTcKyItav#+A8pT7g+oSXXIr%;(v80J#6@&#Z8)rrvg&Xy z3RmoSMMAZuFU;X)qqZ50&eC@Hj?ZCERi8T9(i?WzhXbvq4dUajx+>6h%wdD1g6vBF zEin++H#Sq!Aj{o(Dg8P9#HnWA1bRAgifsfgBx-$xHm*Dl|CYwmeQQ4Z#gSGw z*9Vd^%4(;cj+2a0R$EmTCu>Jp9UBd1PU}`L@j~5}<;+=-Z<@_VadLc=73;o-Mb<>h zx2i@F#$^K~%^kI!5Te`ORq>GNwa?C>#@E&K)w_B%G}x#8JrAj*JqoL2#itkw8;-Hu z?pl1q)aubT%%gpN1}N>~)+<4>bi5U!4#vsON$`T~w35@=mfNmf9d&~Vh`KTJWnN7D6Rc2o14dyALDuiA z&e3-)_tbAxp9t&%ndE<9uFNY%IF`S0*z6Pvj-!Og_KC>X3pHM&oLw8^bzXH<1O^== zZ^Y&>-k2VkJ%@OWc&2`xaqcCI&vC|am_YqLC$lD7lie0w$C|*GCtDFJDV_y2!M%?! z>jcBTZIr94?44pwcU_S6Gp%7VOId+>@iBcJg+8$st`^70yHl<4>H=0frof){PeWOK z%J?Q#8%TB3d0itzc^ENNO^T6y^oqroP+5WFiSE8ETW7pF3@9D} z(&xN+3n<_*tVo=@4X&<&`cB4|!cIw=i4=0LD469l(b>1f%7&TNMDFjEXy z8{#B&mNnZBfp1A2uO`XgvrtS|#Y$MZRbYSWh$qWGe<`oiB)?!y!S7`0lYuB+ij&b9 z);#wB7QwjcrQXi&Un!VcEodVH##&MCx|BArwlM3Wn?z>8Ovmw)P@@3OGUuJlX)=tt z5vpsvG@Nbqa}`R)Y^#U6H*3Uk$Kixv)5#NXfHE7_4_1{tZr$yNG2-58O{|Q;UstHS zGzaP6B&64*Gw+IYa9-AlCpCugAV1kwi0wjBvg-iGWj##eV0?renq~#5pQ7ojt7;g- z$lJ)-6l__Y$+m)m2J-!`7}|04*zMz(+Lp;(;gIpP3NjgKL6>An$-$Q6`W!1*Md&=V z;Ta9Lqp)BNW?F4G%|UT2iIu21RwvgM^Flb3;59GYNmk6k3*QtgFVC^Msd)J7gCRv5 zg}q=DV#i|TLYxwZpoi-bNxsIgwiqK_adI{n&Eqd@I8=wKn2S*FNMs*dhiVhbIge?b zN8{wgO3R78Wu6tL+Q(cWY3Q>&PS!C=x-F0rwot-dpGe{Z0Ra|&!qvjKP1jkm)ke9~ z(Cv6>zpO^=ljDBNt@_5w*m5l$pdO8rm91?ZFg$NgdQN_6j>+6eS-H}R(-EGYXGN;o zak6b5&Te75JlM(AJV}hOJ!F!$`TXFMZDo6q{NfL?QrtL$yT8$ zAhX_7fTg_|QtU?gz;bRb@8Y1a3r8^{1APILsl2n0e?xVA(n*;tsv&d22kY*qN=ZU_{rDk=)E?HpnDI&U;pBBPu) z!sIDj{e6WuER2P_mPyq0C=~|78eJ__QvHH0rQv+EySp$@BW?I-<;3}uNqgsfE5em0 zuDW=wz;o?!UFmNeC)>-B5*E*6@YvHdAHjZjFR6OT z>vpBFgN%3O$m8X(7Y@JTjX~01iz^;U2X@VIkkWsLM74kj2eJCPVlb7nMyQy0*>E#n z1q)bR)HYqReI@xFZ;1K^X6rJfigj6^?A@gzoy>KKmmPoL4Up+%d2Few<;ZiKz>VJb zhG0=dXCEZUR?Y)fykJGRD+*(-u7wGzz7xNmBI3eNINVO+$P&}kmt7Km z_S%r)m?V1V4E3z;^?fDjv=_TT{x{_4GAmv6h?l4iXvMlh^a1Dw7rZ_MtI)yv@=$b) zl)vJ2t0^(M6JOyqwH*CmsP5;})y`Pf*%WmRPFk?EaD8d0x@;_dl_?}z2_0r zOjFQWinE^~CjJjiijZPWY!OPZWh|9}j!9pHigf)T$5&co?YB6v^?ONm6-+UMo!V%F z;dVZJ>lG^;>Z^_J9oYdzss-31h;d4Kl4;{wjB^lm)Ye!z)D&f)C6BGLeClh{zl;R? zxZ&#CSZKbf>fJahwK#Kn4a;KnW#@G`SnYwNIKvX=yugi4FV*tFHz3iqvFvb8YB)DqPyLAg!|Kw0u-6&mgbi|fh?e8> zPa@WKv@#DI(+-#RI0^2$$F#D*&5ejnH=&%z#;`|p7hDwzw8na-Vq@uN{?a< zx6qVsvYbXJSGv)rIz^m^j8L^_%#;b3(>Z;Sxd>EsCjg}M+UpVX2oafL@KGa=k zOJzpfOI?cw>%^TXINekiOLQoqfgw02W;Fa1NBd$*-rjlRKd=PNKw31{cq=xFPfy$< zR^uQ+q}JZrQ(Kw28p|zvBQaWG|G&NLT#c8gl%hfw@M^1z`oc*hVGX8HKbz<`y^fXR zyVqDA)z1`w7M!LaBTmlcA_F{36oTy`lZC}`67eu%)VDouUkjVEl^F-Mzo`72Ic4dk zbMxjn2Kii5ANmyK=yk~P`>}c~rSE~te`OLluVj+IW{Mv8^`g<3^%%$gpz?>p*W2vt z(SE;m)U1}AgcsE-){Oa)8(?t!td%~pz6L8CYd4^JXE{}%1003K^|!79NxBt_Ck4)c z!uXd$ppIM_|AAYPg{`I_b@;fAi1FnsW7NAzg&Wb7n z_Ks@kBquloQ6irSjG7~+wArC8l!wE!nWgKApsg#U4oqC1h1C$!}m@E)c{{Ex4Y>LxkJ zXADDRNI)lsFnr_);hzXqI4}##O<9`PoSqtrka>m|Ju?PDdQ-=tKqy;~f-72W)qm z8_puO^W{1%1iZ(5rk~g47g6e5 zS1`g8HT^RLyNpKodQGF(*H!~B8hk~r1-Gn%oC3J^3c0z}GU(=LcKA$^J|~pVWFXd2G8Fp)i#ETR7O1_x`zLymj&!ol>txlYrZ)Ph zwz{8;bFG9$h4Geqn4vtEV6vBqVfbmxDJTxEmfk1DpE-VO)odJ?5DD>;_?#0WGH`;? zIK7DV#z(EWuDeZeY#9$#4Yh10H^u{Lu9JTIoY=$k@qQCJDONI1nTWgd;CZ08jj7If zFX_7-{hYR;3Ew>ghqFxR2V!LYXMxb+J79Zcnv`Yf4h%imv!|8#O8 z6L(q>_CHubm9x`v@FcL$8?bzy(q1?1vWD2lG2P#kuA1n}aM*PVS7)%mjPlR|+yxAG z)cI=tl3H5!gcW61VrfBEZcq~i_p`#>uW;F*RL)gk%NW;k^_{wUYAa6A?Xf0PQrk5| zGEP~|bqu&g6XnGFPffgcJ%xBb4#XSfY*d)y=*h(oo!q?L=ow#OKlW*BmM^Q=IH$;o z-By7bq-%eUI;Q`od!06WK=!@rq>Lj%UMb&$5|l5aWhi5sP%a%K<4?vfaJ`3*-p z`Wbi&ftk#DSn-TC%5{T`{a!~j(3j_^pr!%QfM6W;Gr74WjrLem1PA47tGTf(&UtD# z4E|Se4Cd$OF!INmhtSM|Ks0@zGygOfI0Y9$B47%jQOuGyFTgAqC<)J5vmyf*J53@t zVF&6HCj^cxgh}{|$bVIwP9~JMPmRBFT?hJVsC@Av%5Jvfg*V}imqxlYwU>}Nd5ev( zC{8zDefICvht+GHr<~9{pKCn6s@tUw9j0&o7;&6_@tJ~igW;H_?0pmk#{)0>_o7sP z$2RvKllgGxex3=npUojpwT?Hh!Ly6T0Xz1(x^N#XOrLi&;&Zwrb5$x1-mo^2LYTQP zY~1IwVVHz*y*aRKnRP{(GQoCv3(uF$U_$*)@j)G4R_ zc)8Z3b90Pj{)%SO^r-6M3^t>2Y4;6lsoE3ACN*14(@krtEPWG(-Myy1^>u1riZiIr z(V3;JpA*MJHQw~i$4J+!a`-LFuY$0zz2BN%9W-CI9kwQzz39KOA?ROCikj#8ZzE@&W8}=+*0kV2rV8TBa|b8O`0;WDcB_@?qHgn^;gYs>^M&DJGpZuAF)0AN;s})}BHGMb_F;k|r+ROp6TMOf#?A z$f+h=gYM@vmknmsk0ru8Y{uU}*?Ppvh0&?sZ~FUqrA?gY>sNa2eRPaJ^#TFb18@i= zxX{rtpXk=9OQ@IAFn%<}5?WdoDDEDZF@IuZ@wj@JdKc^JA6g4lzjzK4S^VUQEqy*h zX`hRhL(ib2@IxpMe*}HM(a}5<)c+U_Vu~3Z@EnnomuoWq6Bm+8&Br4yer!dnWSFp@ zSjDb`vhowFTy@ZG-Nc&nsTHTXqKABHU2U&I(Qy#Ul=RQA_SszzTLtP_tyN20xa0Z> zw!U#lp{}!_AId65fZ0;m8rS&ye1ROblYY;lLo$ar$sbr^+|O=`&!~Kf2KauAB!6iw zQm}XMH;bnL>$r*~@u+n*mi+>uaX=tkCB{q2H%$qsT12nNVA0 zT=7zauvzaE{nMts>g?dUP^jw~ww4yvmvMrfO|%M@*;F|ZZjA{yx13B_7RPe&sF^uN zog9I&GW;u4%#D~eer1j47X$)}a?7f$hhpov`pJr~&_i$tJK#4GbK|eA zB6Taw&~Gf9*VWG%;{6uI^PKargb%%)hoAUxyY`+g)4s#^I)<74sZVyjd=f^l$?&66 zb>7Ml9PSECL7wNJSK_*p1#G^xAx(d<;#D&&ZJ)Q&c||JJwcG>?{Skc3@Di{ZfJI7< zsHyF&Ax;V%jO~IGL_^e%P8@Ijgm7=_aN*{Zv&l`083<%&9KLLV@8}q5tRAh>CF~?# zD$0o>2^O+bX}>w5pH3pyyNtob_YBTUHW9?>2ntoVczN%XRp9Dnj5=KwTTi1A;wblb zCc;PQpO~2AVjvv>vhf)F5_{6P|IvW5EoTiD-Bb~Fxsy$}7)5(UGWzKWvkfUQ|^eoN9@=GC`uYq^?TAsFzxRm*jY$*m58d$n<{)>rtzji69T zxCk@(6?y3mM8q2pa?M4UNOP!09l^1S7`T1aK6>K<$LK$>_UqOwwHY{LLpwlloPP+; zi|W|`j$`+CT1Td_`l?T82X>3b%GkfGCGKEU(dq>}Jvp6MMx&h$p2iMdq7PL%lJ*>n z)>a?0tnWnsq%o<@RotilffBl^Mw06Efjk-WG;)a3RXuzQO+l}BYI*M^ER=Ob!-Rz+ zc<2=zFdGH>^fIb4(ecT%S-17Vsmp#pQzPLi%$%w>5vH1w4xHc$@&zW+-6X+f7pS^U z8UYWsoORh)_;-%6`yVlOlX;O0WrwL>YhFZubPMwbtj}{e$E})y&a3^#T?y<)@G2+n z=lUEmP6s&BlUYsfWoUJt;z+6bqX9(U%e+9xjd z$GR?Y`FEJ>A+tZUqP5l0$@%qW^$e1>p}1G>^uDHnnJvY<8D!q*FK5jgzMINV9$c%n z&AJCZV~`@LUfZqCYXcnnmtK1`IzMb>Y&czc*fPq=TMdQ)F6*g zoz0qn_NYH-g$v^GE__rCMXqm*hw_V1CWlR&Wt4#DTIxq^Dcg2WbF~~_eyZ)Lp`O)+ zt^MMVsMpECw_eCEtgjBA1y-J_J2f+gRBZhXnKuzICB?sQTSm z71sXoDVR800*T=)esk#_W{0S2OilwISqgIMW1_BfE!}c8b|#O9p-`VNOD~Z2QhmTq zoi~%E;dU)-vCdD#1|?4U%e&#W*Iwl8w?tDER+^QWpXn@t{lPLDt{#V-#JyQqfs`l5A|ngdCc zJ;HUrX&FdEf1W6?@3Sa|d(uq0g_Ivqb)46J+O%~oE@*4vK$~7Rc`#6JCcx%ecChN= zR57k?c2*BKEj@6DGfKVSRF;k^En9^-DO|iFh2ypH&e>*-O8a|g7G|BPbx_nBofU6f z>+P*>$GXR_Cbt8eXqHuX;T93j0e_R#+b~hDYY)a^j^3ldS1-DtyJ5q%cVt=S?EIW` zT*)#%cXRU=8=ua1F#;=k9`0G`lELR;mR0W+eRpMx#uxZPomTocHfr5ycDQ#H(D67g z5vaw$&FsLzo$GXOfizqNV{bd4a=}*q>B4 z+p5*7jZ;vM<1^>JyEB6 zy0UuT?=fesk(t4FF9L7S)0CX{jT6IlRFingV29^{X(u<~m~{^}q83imPH=Wd-cTuy zr{OT798b+;N22Y8@xikW<_ZhGy%MmiBUwa!swd{}U*QWEU1}+DT8BQdjW0t+tIKG< zt*A*B$c)MjWKyY#*wG(NtZ5Rrv%T;`O{ zbB?cIK{gj9ps%^lXpSM!lE5_p4+qUZF9 zARSw9^%V6fQ-4e%1j4x{$|xR=7%rnTs|TuIqRkq<&I`Wn7#KsE)^l2=|X4Tlxt34=)%CqE%;<`JjyX$d}GR}0(e`p|(EOz8;2m-}qovTUU@dd!*gZcZCiZJ+$lmBME zK+-o#WKVk}mJY}AOqtFBR*6I8?w;r?&p3OETKsuW-PpcUjMMv)Qu6otI9k zo^xIU4{fDaFEooh$Ed&5%Wm%qH~GTVo3@SyuH{r5FX`$HHeAv*RXWQ=O9#Q{J_3hq zUemQUO6|skqK`d5U5qw0kMFxBVN+QjXVV`7jOb$p`sL@^0L4s&9|&C17kxL>jObeM zMqjkNL#6^CNOD?9Z9Un93j3*#SMDM0tK~Hrxk+FNShM+Em{sDaUAh`caYs%(gvd?KdxI| z&k%m(%lPVO-f-j-u+zR6YzMo0uyb@VHwNqA#-RHs2bNSLz!!G|V|L#dDI8+=cYn-v zi;l+m=n#}>x||$h4{~3iyr+@lLj!f)?XD2y@2TGMaLKMAcDvfnxBg6~zGohsBol_& z@$Mh42pjl5X_UGlMqI<~0y#O%uC4O*!wUCH47-%+>TiJSuQk+l*JlLRR7-n1YboFJ z0tng!Z@A*KnE{*p;Z39L1lb;}f*t+!5B1mH`*1t$pA*#=7`|oTHr1C4YpK&X7(UW& zgZ1iBBke@lnuJ?iRU>V;?MLuUS*k%T^IZz_l69G-rq#D=@qsM=4%{_C!no@n=^9N= zRxMzfk46)0wA+VEi2hNsW|ZARJs2maDLpg_(}ozF0vu(xb9I%l(fFpzI2J%#*>?n= z0xcfk4KaJ?MN%}{Zmk}KDr3O3AAG@^e(>>J<5#h`(E`!2(daC%>xf&pCo^;SKpa2U zfU9c}syQ}V#@GYhwb&Z;cl`ACjJ@V+$|$6{X|FFu_ICBwk;pVV$bBtiz{1Us9>kCa z4LL!&rr8bL`zXi9`O4gNEdMXqfKIcc-IEwAtO;Ce+cd^!dn^6zxXM*m4vq8G#nTA} ziopqaPi?2>JVwHsnvUcblc2trcW|E1?QYB{+L#>l8EeP7TT#%`2=@PjlkF?UVl=p# z;T&&~AE{bSbl)&bO^xRd#@bQtDweAeY#N8>_iCP{Ed=UgY$;8&V>b1yUhP>ID+S~1 zCaxZ`VH~C?!!d}Dv%9+XNX7&VlK9F)qI@9Pl1X@cEeUBU=G0Sc`MR?h@9mvONW#|W>* z$|Do(2zv-#P7>PS!xUQf`2^TnCt;i;Teuq;Z8zWuoY)!e_zqHp>vicn5&1uW3{A9K zyX&xMTAOdxyj#zTa7t_x#f_>zVdHgI`u}7)hzE_>=kuW=!&n8a$|GhMw{hxqYK>>C+nx!E!=gO-v*L7*Vh2j+VOI93O=~)kQZ zXR7T9VvHz3=i{`|?w3stHdLtuXGHes&{+Aw7d%3Y#u&#?l39V6PEUnaJj>@Ej0HKl z#n%J{K9OmiD2I=}@44$Z1@#6a?e!n-Ld>4%4osr$aLIG zE6gm&NiXAt(6YIe%PL#?d9%_#5HF@LQ~C#yc#G0Mn8bUN{vjk@mGloK@s6Z_7)kMG zIDZyUHiERAVMmg@q*0)9KQBZ2M^m_y!ZD=#k!yb%sV-?OiFY9V<4A8&HlD=GkNycH z-g@*;B<&?lBJsMTe=>>p9Q{*Baipmv-f8qtD<|?cqklSy*BAXWNVicolf;{g{#hiO zLDEV8&|e0L*B1Smq*p1MO*%_|S){k=noZ)>MSl+IG-Y#0(_*hGzsjFW^invN#EXmm zJW@ExPnyUG=aG1A(VtIhL0JLGO)4aPzz{{Gr%A=6GSYk!?=AXENFPyFN-F0)MSmHQ z_Y?gKNW7KkU&tTcM)WTt@dl!QF^TsM{Yyw+k*+4)N7rjeyk+QLs{Jv!Wh7oB^e-p9 zLRVep=NMu|d^vu3NzlKN&b$}szm~Luw2H)Afd1=9br|@15-NW5R?-%L8s zgtw3;(cj%9-lp?!C56&o6^Xa!{M$$^_;U|`>Qi}k$8d4|2%(w zVlR1t)R3+(l6Y6m{}PFp)BG=!TEwvZ?IlJ~xR2C;9$z6XA-zi4Lf6+wohW;qbQ9?f zQatHRQZzID7U>bn_LJiHbAUg8F_yPU@6g{npmP6F;=2^Kr}IJ50@5MUCyeGWX(9c+ zN3!{Igg<@h`abDVx_&?!$*>=iYE$+RX&(K3OjT~=O}+}rR*5#1JZHQUPgF=H>72xZ%HL_Y=7So@1pQ~ z(oduxNO=tWBk5r#@)OBT+0Uevq?4r28R8UaI_WfN9qA0oBAq2AGQ>I3bBym7Quzfo zmGi`R>3o6o8iV{wYE1f#)RXi(DUEcIl*15zkiKRtf0FKC)PIp;NPlbM&p-Ux#;})2 z-!SZDt^d04`Ko&O$)U50)Su3Z6hc>vG>xt{=`bmX)R_L!`mo%3$AE`cL z2_~InRzpZZ2wUzCB|gh&!bop0NI0nngG7)j=o(3yLW&{{Wg@jmJ4v-k*D!1y(q&Rz z(oBYkCVfbXA+=V+9O}dBFhBTJc zmQ;__j&ziiL`o;MC)H-m$)wYK;S|!Zr1B2LyXdha=~{a1L@FV5CQTuAA^pK1T}j0Z z(Txn@P_911&QUCQNE@qHaQY!}ON198I{Ymdr zHh|=(zk#IHlno;NLD^u^w+u0a)Qhe|Nk3CIj5Ld~;iSJwBS7W;0y>YR@Ca!XX)7Zf zO?sIg$B>fgnnqec*RiDDl#SD_l#M5Cqih0c1Zg5EiZqGTpZ+G3z9CI1CoW_nQ%RjD zoJO)4WIE|O%4TR+7Vu2c5r&vW+CtZK(qPImNN)PeB(-8Jvq`^_vPdt{Up8riw*PX7 zPf$3AG=h{%8bq2)YRL%mNV^z~pA=8oJkogj%O^!qRzUiivO-dOX0V8qNGc|kljdt$ zLM$P6V$`Lip`cG3b;KSsEabTerY=`S{^#iW-R%M#M_3~@E-1nC;m>!hWmVA3+u zwWQ_s*!~VMLR}GI6t1B2Riu@q^^E#jQg_N$k-nqsI?{`z>q%ddZXjLH_--WCC*4H) znXWgJo?Ok2#Qa8%hlVT~`K>CegZzWA8Z6viJ zRg&7WN^T>qWQa|qOvWOl`*cm*PE4T3J4i3mG3X7L&`Rj)-mcWq$JAjCXFF& zC54cxNDt88Hc}>K_mC9nUQ&0)e4o~TJjd_9pTegoe1LSEfgdEDq3j{jYRVoaRWh1K zNUu=#C}}I{G13sy(j_MRJZUcJ1=4PYeUTKa?Z20Zedzo$DVemFG>{(m zk!~WrLaJiauadOs{u*gEWv`PO(cc@SBFf$*og%$OdX+KnC&iHtfXe+5bbgz{-}!d$ zkoGg0cS)^TTn9-$`a48AN7uuoR7Ue2X+C8~NLi%!NsSod1Cm95ACgv3_7Uk6{e7&v z-Oa>LC>%}tl(dH)KO;?}>~qq+jOGi{9Ll~VJw(}2(yNpmBLy+j$4U8gJwbYtu3wQZ zG3KvH725v$hS-_T-;xUG{2ggH>3dQkqxpd}oAe_om5KaB+DzHcq|2m}q!@-hMQTsk zX;OEFI79N1&XUS`klTNbxQX-&X)`l(p7b+i7f7us`<2v)vfoG>DEpl>kjY&nJwf_| zw2Aa5=}-Fmi}VR)f0KS>EdOZz*MoS8!gooRN&T3^tLo$D99xBpw2`igG=Bo78~`dq`bLUJ_4C`+cPD@K^2+CO*puLr7T+97+mhgkhw13=&S-PuB?2 z`;9~xu7gPpC>ug*%1jR>dFeU~RPKL_ zIGn;}q!FZBnA}KGYsyBEULlPp&7tcUl8>@9QcKFllH8oRaQ=@I5Ihx98w&LN$l4#*|_#%Sh}Mw0SKV;I6uIzibyQYk5)w2!U@ zq{E~_(s8;Lk;?lr;bP+BOm05u51xu4q-#i>NlWXq{dHzE%P4HZz{^QL@{M)n^rUPBW#2N$O41t)aV=>XU00FX zQg$8bchdDFp78YFK)Qx>BWWV(Cejn2a{tZ5J``4vRx$7`q(w|_HR%t^){q`2ttGuc z*L9@hr1hl1qz$A~^mi+14rwFle!5nY7BRKkNKb1cViWN}3Wd~#bUWz*2DyXu0;9Q; zbdj!ik+SK!nY59zEu`D&?{3mE(pJ)K^jAe%N!mtwh#~IL`foRd_fqI#ko!pA(fNMT z->irSNNwovLDF^f_Yf(Vt>lP(6xLA@ooxt zlA2Jsi?o_So*-SO>yxBW8|Ec^Kp)3Qv+gCUvC8Pe{io`;_z)llzPmMf#ld3$ywKsVV(^ zNm@%fN?K1kM*58L9Vcxhogh7|?Z2;xV;SMsq$f$=kbY<2Z%JoJ-;q8deNWm>e?O4! zB>hOrWz;{BmQwaJ=@3JlB$bg)kzOO6CY47L&k%Po$XQY_=^W_+(l4YBN#{xTlP-|{ zVsgKd9wGfks>AqxC*{)LMbdQ2{vaKpzduQpl>Mdk-$(TLH-%eB|B%|!<0aCg^mv)n zk#to9{LCh~NaN{Gk-lL?SfoEmHmNh~IEeHMV|J6eF|3EQ3$k**m)M6MeWW0I3?>bt z#}Lv&QYh&4nCEd*Tj3d=!R^v%|l+`1J(_ej3ExI-!&7x~V(ra{WMA}VCAYEh`B{rb__cfDi zOyTErZbAxW;HIQQlr2f7X>-9Xt8P`N*!IF!PdNW)0=>2WxTr*!-yNDtF>B*%8M0$p_m^6g6g!DV<>ISs`9wS~uVF%`GDd`exb{VON zQ79nH<7x~ z`DRiIsX`N7Zy~K=gsVw+lGc!Jp})1HnWS~3pXj=tG=a2%w1!!|m2?MbBdNKz|0;<$ zQFt4v4wKtNs!bBopLD&Q^eO2M(#wqcPLhZI?jnt&>t@nf(iYN0(%qyt7-B2wZOW<| zTon$}kHT#fUX0yyaw$$7m2*3*!sFYsefNW5ZoQ>d;h8sKhkjZK?-icCRd?$r?oL&B zZunuhewvF|D?AAsp4CrD`YHI9XY>=dm?}KCjC)=`eXiX$UcFU6RcN=5Jum8~7;Z{d zc)IwX(2rBJfbp({7fICcNi8`YBQSd~B0>dKk4);TduFX6@EkyS;he z9{t4aunJGTA5BJQYPU&eUea#Ya8snhvuv(;4t9}(c!rNSm9X^eV=}MO~?6r3lnDyl|qFl@}Md1H0}7* z>c_R$p*rC1Crw$rq1_rzenGpf(@*Q(-=?3qsaWCJ9`=-e3ew5{_?;;=w|+|8wMDy4 z)8Sqn__ThSj;Hbp&vPxS^dmO`D?C{{O%j*2*H^Zi_wBEvX}!eM{bB9)`3V!vTRNjN zzA<(GjrQrk=SdysHtn<10aLw=_0z34nYYj3Q@Llw0+Vkx>c*`hKLJs2D0d(;j?FKT!`?c%B*e zo_?ZAsqkF&)$96+nz_PrpwPInM^<<)J^P7vYp$O@F5h!RKT=^=c;>D%Ii<#_@T7lX zlAzMB@Z|q+So>sWukbV;WTK(UukbweqltxzrNZ<0-|uUmDLUM#8%@bjCsla9xXEOO znxMjS_UiIawO8sAYTt9MvM)Gfdr=MErr>n2|UO#c1hS!^Z z)K3rUrwZ3k`U#^d+;oe&SG%tS$OSKXJIP@Epsyq@OtCS9r4TGEW@#D?E)J zxvbqd^jCPE{@gspYqt+ScRh{t7Vy8XEY87yoluDX_v1Rdr}{ctc3qFN<~Q7c|1|LE z^>#CBz5fo`dA;4fM&w(s&q1uK#DDsBJ&q68-+)guH@_WMky~xBTk-p;|BeFwsiWzC z*GAkyIdd~^zMj1e|83)XeSqM<4oLJ_IkEA|MD6uBa$zE#vl^ESkX{pbtN0&ph%yH6 zTOH-w6?PAJoAO_8)aljUs*Rhmij|AT#*i5dPI*@PcXoN1liNk2j>n!R5bE!hz!q9sZA;D}3hn zKjjhh-%R^tv$y_R z7#zU<>lZ2FOBV+^D z5*FQq6ZY|P*FAOzZL_Y!fo=Wrj#ku%ryw*s&(U!DuoHwdLGg#SC;k{!r4Kma$!H{f zb_`FnEAfX0CH~No#2=cF_(R(ff3D#|2L2jNp-+q9iS{A>&@jXw)8+L!Gd!8Ttk0U^ z305Dy(AvWvntAwRx}ekH{IuvGq$!6#rVHsaVR)KOn-za)uHg^uH2g75U!NAk6HPMw zF-=*YM8gxUFZ`j|g+Da6@P~F5{?Nd}A6i!U^Zz(|@4zUFCVt#|a?kVZkscC4fB>PF z5E6QCp(hZUAU&aTw9tF6M@Py4QblP30R)cT1OcU4P>NI=q9UN8puqPtyU&&2`>XjQ zv(N18?Ck99?rgbTcBuf^mjYlX3V^*Q0Ju#P8M40wz>X3Cdq@E68Ue6R1i;P^fT_ON z{lOReJpk$?6=eaWQPTSJrw|UQ2^LC0br*D zfV~j_c0&Nz{{YBC`up}N(t^e-3j*MI4ggPZ0N8>6cuE7na~S}(AON-?0Jb0io~{6} z1p)8`1%NFGfGr4sEeL=u2!JgJKw1zWTMz(GGyvFw0N8>6*n$9fd;nkz0^q(MfGr4s zEeL=u2!JgJfV*q}wjcnuAON-?0CxWYqy+)81p%-H0k8!Da90Vy76iZ+1i)@Q09z0M zTMz(S5CB^c09z0MTMz(S5CB^c09z0MTM&S>AV9Vt0Jb0iwjcnuAON-?0Jb0iwjcnu zAON-?0Jb0iwjcnuAON-?0Jb0iwjcnuAON-?0BJ#hY(W5QK>%z)0Bk`3Y(W5QK>%z) z0Bk`3dFa?C<+9m!qDwonTQ5k(H``m;R#4J*bbJ^7#`|dl|3YZXW_vYUNAY+!!jpF3 zM?bd@;Azu>TY$w=dl!J+u?LRaY)15%5W^kyr) zD6R{M+hVVZ>&RrHTifvKn&b~aGh5LV`^TQ2b~6GGv~WJ71NAV9+Xlp2isHd2y(rBC zLc<;SvK*;y{9OJilLRQP3peA}V(qpA5vS4|-G#C17$df*lIGrzJ8_Co-Q5tSkfM2% zuE*jDWQoeB^1iVJ$+Rpa>uk}ub%W;Y!?lAw7&}&FSE>&5cp3HAS zu80nAg}&b2iBvn42nF`S{|(p$1m1gPJztxu$JlVeD9hBBCLhP|q2hOA5WUVc7ZlCt zeb85(-9Q{vTs|$XhtobroKpEr*oh?39|94rD8hEw3(z!1v``dxcHlYRCyZ#UC`$c; zfw}V@{2a0OPGq`yJN{k7r)_~sAijch$$NpQr1bK9GyL)0jL?->ZFWK7CH4VfC0SeOXAP{i8*=D(uoR0bwf9c0SRgXy+j`l)qJ0h0oe!wXfmhpR`xORT9!r8y&%I z8Q)pB=Zdc8CZoLe*up(gs>wWsU*f&AaMx6hw|g3e(6H{DM0s;EyPS0V6MF=eIE?Eq z@)n{xhw-!g+=XcJ5j}|}eS`;ZJ5$mTG_MuI4Zb8*CTyelciwH}wc$6(%qvNW@ifrL zV{58VkzV%kT8BdP@Dtp`Q@9XiL>d*ecK$gWQ|y`@)bmo@2`FQpLX7$tt!*YF?keHe zd<1cyFrt#m?$S~N?_!^XJyke^nmgLqh@#v0w0*2NoVsijuw^N6im{=Wrd=N)x{y-j z>eKdU+c_1zQl&UD(1@kUr$B?}-MCliSi;CfKLA1PPa%swt&M_|dK&RhDDE`)?cwk& zme11U+@tn= zDHYWIyCGua?C#)iCbSn z)FzeH+n4M$;dskI>A^?%eeORTd0H__Icr8x>SZ9>DMZ$JWVMD7#guj2yo?gysv@qK z#Lw(arO)K-Qvi#{?07rJa)>=A=PVA%-!3fW5c^NgcR9o^lrxJ%>_s^bbBG-&=Q$3s zFXjA-L+nmDzvU2nRL(~nVyDXafcCwtc zIK+OIGlfHAIq_Q@VrR?QlSAxpIfrnFT`uQD4zbteoXa70yqqgI#J-nvBZt`in&|wH zgY1Gik8_B*PK&1#4ek2A&1y&bFStP zJ8sUc9Ae+i>E@8!NI1nI_TZdfbBLWd=XV@pKhF7>L+r{qU&g`fSNjoxh43wRD{^y4 zZiFOqNN#`BY04qFztN6EatC7|huFn)j^z-0dCplJVn@%pltb+6Ip5_FyL-+o z4zb7QoOqana%1ZphvcrzR~%yB&-pEf*!^=p;t+d)&KDeFC(xOrF#fS0=#1kKyMoRH z4#^#n>KtN!(Ak(nauelE4zXA0?8c!_<9Fn_}lQ?8G^PX4i^>{6^ zZbiK?oxg(H{n)$J_7$P<(RwnaKLQ4iN9CmD>+x*U!LRHCsl`e?m8k?J?$LA8+^_A+ zsLmWXc(?cH1*q0l`*K=(6|0Xuzp;-OW>NeAxf@nC>r~X6`5a|DVB7L0?$4MvT$lU> z-T4SlN+FZHTArdb`44*)ExITrjnFgb;@=oGaA(AIdsVGwQObzclePGwlsHn)MN^)^ zp{Q1r?*3^{(<&FGxR!bqtwK@S^^HBr!Fl(|>ja;>4S|kSXpcyf>F%2l$?K)#*$XLB z=goS1ZJZ^;=%N&!U++onw&=ll8c52p){C$`aqA@&RJ$#M&&Ca$vUIV2k^`$)`FpY@SdJu`>~j+weO0_TBC%YA)!pY z@qN9pmZ!K(&C{93Fcg`1QfDMi->4U|!5e#w1>kkf^f+5MB|WuQRq6NrXfGp+fqEy} z^&{}_{%kMrDOrLl8PBk^_QjQnH+*I9X@hU@)LxF#TkEFQ8WH*RjHQiXi{mUQMoTHQ zKE;=QrzhG*_~kxS=B{NH=SuHSm+)?)w#7=d(UXb>-@uT%_Zddyz7Mfpx51CWIxmCI z3YaZvXMkQr`^sYQg_ptcKj66av+G6R#`}tX!JF3KJWv2O56oM*P@b}5ouBQUCzD!K z2`>9YN_>FV*t`6KXX|se*7Lw&dHl?yh0qdo;(L2Koofwws+3TbQIQD}D088nODj@> z3Yze2rnS)v+sdhkox!M^vK+2ziZM*vGFor zN!qzl2s&Wsd2PdFDpfs$L5J$0!MJNdTWJYKOkfE%qXZ?~hPvZ~o*VaV$p|UfA`Vy8 z=9f_IGnWHqcBTZ`D(h9VC(rDRuH~`=WjW!O{HQm%zp^2YEZ9Jf^(uQdedaQoQ}KV$ zJsBmHp~=3kU_V?<(fkEWy_y@1v8PSPb3N^JVZ#GO+}X|l7b!}XRO&_xv7-S?bw`y{ zJzl*R_Na)Z!gHtY8T93_^}>o$7PBCStMa4kcDF9zzJcuI%VO5@!S!5Tjkq(^9TEZHzg@X9u_BrQsW$})rXaNMvcBcv#Ba#@s# zw9cltq%I*kE>FJ#!wttV_iAcTVvR`;^x7tBwCSDTw}X1p@|FkC?P*y*5>xm zWenOwBi!(Tt_@FX>|vPJu$%6O;lptL!9F1`%eTapW226AjG(N7Pd7IV=J z;Kf*}iZ^I|K98+J0@*dZn2WCAg&&vaUM~I>g2KoO87~Xy=^Fx6-@t29TD{V$2^Aa< zjeIgRAc$_>#KmZ}IZw+-Ym`>?v*Z@&dtzoh8!GmR)Uq^p3JJKwO5&t-c2ddj+{U^< zdl~jr5tvDdBnPjFVC{iTgcrrM_biFNxDN*j&wZA{T8T#(VY6hhH_`KHXG*Ic#wW{% zrSWLGo`lZDC(BVkSq^2BWsN1vJ3cH7W(%(Fu4Oc%nEhBiG2)eaZY|aE+;hBgpWeVt zQEaeRm!XzQ#>-mLip4AcDJq@@kzQIW9Ipo9g7M0AijB|aI)R7O!wZ?Wr)IDS#CqU` zKdq0Ib>0rB8Gfvj)?{GZ?5TvnoINbR-i_LJ(_`tQIDMivGM|KFobjB*2IZKEN1_D-`3=whdh2#68Tc2Qauu z#(CWigcGR69ngj_9^q|v?6E1Y6MR{9+CwFfM|aqgmb&vSh{EuYWqs+cdENjusk&Q_ zflnftrvHsAoLXc3hAZ=t8%w4aN%@>_liy1_*CwNIoVxhS=sUI6bQ17|7dij^}f z=yNOVry%f^0`7h-3blsiU|DN&IXITW6QSG0SFjpbS#K>*f;B%#P<>#5j#z-M!&I0b zBv|u<1Z8HCABu45(p3-Cs$q3qP7>e)%1J_kGQ0Dg&_@kWshz&mZ~>}ly{$AoUQ08* zi(cHeQl%kZ8fmJ@U16$Atb~hv3H>{~Xhh2yNrG%`o_fJB!G1Tdc-yY|l^T;Ur}mXq z>Ms(MC4dTh4v(=e_OBA;nI*{m1U8IZ6#K+pKznKl^1CI-BbB4aNWn}Bayh#oJJoEB zSK77eWmVsDbg(`^t5Q~}zG7Kgzt_y5vqSVkT9>k_Z|PW8>Aq=Mk`C18eMB^Mm;>Fv zRaWW#&9X}Ot;+h!4dx|)@i zOjMQ?lR;IcBf)V?rX!Y2+se}C)Ah32K}!<1CCMJYJmr)@O0vWc3rYGaNlNd=_1Uj1 zNzm0+BfKT;piN(4t@P1N+`;&-CCM|;@Zh{76@zFYife+x6-ZRd2}$IR7Ynh?^e8P~ zqS8xDqS8w)TyPc&N2z&p4EJd&VX8`qE@oX5J$hLhO5DUs*3g$sj_S|S&;rM)WTSog zNo&Yzff0X%m2jvpA)BSNKa~ENs)wi9OMgL?o_A2tTc9vjTf|u0UE80i3}SDhDssUI z=sj*J5pGx_e3GdA@yiq7{#~_1xMGR$d7^5Drzc`AdMXti8^{OMf`-OU!nQJRhV9-2YTo2PmCMm=I zq9!iG!|UB8scQ-7Zx{`3h9b&dcQ8n}BJ-Bib80KG$HhJ$F##^0d<<)tkwjS~^%9t6 z0N28{NTuZ=L7ShX3bv;dw)cK*4WU8Yyfj#EY6E#a(e2|gi2h-*ew>}P94Ld!U`q^l z&@%s@v-9`wQXs1AO$S;e=x9CN$|=>Y@CKJwzMLxbysCOv?0?kl(fcu1KYxYsE92KYzC#QwNN%yH4hpTE$%c+7Es{zxTT23ixQueebYhczq-Y@N# z>}fC6gmvz;(r(Y57RFG)w$(4~CU07Q1)u;@0dQ(jC{NjOabrbvBD|NU{brT@Y>eL5 z_KPG_^P8W_sV)^%g0AGzqqT_gs!IzkuUhTPa>^#Z`xq->vP%mpubQr-ylT2ed7q`B zDS@Sw=7((3v`{s{8;M%W@~S4f6~WY|d3n{0QpzhyKq2VwqauVR71e{NR1cU>dU*;i zrdOsPd%%49WX}%iWIx_mp*^KicdF=ZBG18?&s zl*@gNTxcy_t%RLkOBfK1&LH<7s0#UPjE1T%4uYz{*WXScpj1^5azNMMQPl!fHFC># z^kAq8EdW_M{x$Ys9t?rf7Jh(*sS;O#+b|TL zauuu4HO%DWDk=@+uP8M@eTV81bomj{1^x&n3v>s`er|y2Y>>jquE)XQawKPNh75a5 z7VKp8{-9*@NMR@`cza!ISxFf$7J6&afmn2}%@sSj`j>*({Q3}DF`3(3C9)ULi&3j7 z+~z7N12qf6de>W$u2E9SB^pp;akl^+Er`Y9cT|KFce&!v;(EDYr8gwBe~FSyrZ1U{ z>p0P8T(nqznw=$9feTabLST8;kLBs?Ed4DUC6IkjV@cxCKnG>ue4aoHuBKD$hOEc9+;Kc9>!>il~s*k7Bm;me!j|d_y^oGUW(%8VL&R*DXQW?2q*MZ z0g}r6@z6K0p8Pwi{Q3BTHpt3UonV`ts9Uw6IGM3D;rFVr zx{KR(`w5dJv!df;u}WD*H36*TnY1cN57)l0qU__IO5kB4yZQR%u%LI_kJC5VIKkEJ zNXg}K4(HTL)HJe|6KyQz<)ta_puugclC9^4=(6Z@B^OW8FLOQgrgE!M$I_nfT*ZRf zrqN*X(`wYQ+_8||^~K&;aNWKJ6+OBST4}$v2z{T^Y{si$4w~2(%OvaJ^YE6%nyRY1 zj$aEq#NJjYRdgcy9V}b&khL6(cRYvegY_Za>A`AP5$&Rt_EZ0~i6#!pU>Pi!9`yr* zvlfHXiUE#*C9TuT!LmxN^I6teYt+WE94)w-vMj6}_tA1xlYKSFA8*FsB!}=tBj6>U zdmsAChg;D{Vl{cnMyRexHQ(rluEnIg+bw(2?0!*bDc>p6k!OB#Z-x@3-6Woe-PBwF zCGOj-uckj2Ko32(Kw--l>d_RqRlmurxh5@Mgz9^>6%h+7WBjWAHe$DZfY`E&vA*-( zHbm?Q!-1tW8N#5Z+x2s@+8`0;R33?_%?{nWL$h8rD|zB5APeGPJ0OGhXX&db@1GcM z$L!?1c(^_HCx+WfyY!=;ey1o-jA2$y6?gmCVfMvSYVUa^ZC-VyP%J9I@I~utG&s+FpGC)O}>HuXcJWj`FP2`}-gu8vRgu)2+Y5=bs$Z_cC0> z{VP%9;rsQ4RBJ6n?f4FQoHP6NBOXzIvP3<7z&AwWT4=eVw;ku9sLw%g9>2)QK`Ym3 zF;wPvh=^F z<0x<&o&q=Ss6K{{9YOCi=r634-=uYi^tSZ%Ul@3=*Pxc?ux0c$O**2Fq78pz>*Nhu zbP8@l+EHW{@eGS|FD#k+(EvoM%RV{jYRNtxv*CyvcqYV`~i?!CmwW;L*BbnY`Yt)BL z-2IYmqBcGL#7M(03XBLX8H@Lau#;b|HeFa}l)(ZX)8GJJ+;xyvL-H4J&$h2O@VuRm zRDahfiTAoBX?ix&oJN~IeFt_g=<}yszGPK5AlVF+4BIIFIYhl@L~7f7q?zv-WpUb7 z=CILA`kCFRMXle5+?RZ$b!QlHw)2YgoR>7CxRK-tt}VCaxWrS9DtxBuON`-+MVA|F zIVbYuqgh8OD(eQCpPl0Fp`WgE7~9a$NZmsi)CYfqd3EtRN?W<=&==q63GleQguF|2 z4=T$KMy#?uH!*{6>Z6xZHu9sd@1x&iR$q3_w9^l_&<70grJ4LtkEDq+jbNM8mr(0% zNz^Uek(Yw*=nie3FG;66dSx6&_K7u9Wi!nZtKnVjw(j)N@4Ty5vTgUH-|A0ai&oyl zRPPHPJ$!>G8kWNm9yGj9b!WF4Qok7dJ^Hd?hly^JNPH8uuSpN-unq`Ct9@QUZef|0XC4{_tG}~S+AqL zYtgRt(fS)Bs*jD)Ybd*ZfkwXcvMBzmUQheXVsX)8p^T~)#XiIu`(IvK*hif9hei81 z8*NQ`^EXVXu#@sgX>$K>$Odm=KSt}0WKfP4eh&Ng*z3widNDM654p*7)f74A9{%M1 zh2aB1+_GNEmL;r~^_(7UG$z@GGq+^gvk3%46stir`FBj-M{GtnyHsU1tsY(8Y!tJ- zttb}wGQ%*F^cT!+(iWq!ZNHZ~bgPkM+pDN|D}JAB#VORQlEOBPY|n5;s?i5VQQH+o z^|>F8Avs=j38Sx5Anh*qZH0GOX5c4Pds2Jbd%|! zJF^q28KCH#l1`hOU8X^nO#P+Uo+@~vX4-sO+qN0Zl4e`NRUaGf+r->}3>efoEN6c%=jpGC4 z+8gz`bFJc7>UpV{f~Om8uyHL#ex9uQ;h(1)p;|#nnyiJ^C)uyYlFc+!hYgcQxT+Ri zU-iRLGeMv1qxbcxb^H?5%$}(BEFSM(OZ34kbj02L5~X_+`P&Etl?DCFS9}aMc&h|6 z;U-it(uk1f;&ZOA|Hd0byJhszorQ2%5}m1atlNgQ4AV%!){35D!}5ivVA}HfbhomZ zN(DbMbn0^g6UQ@_g!}5#i4&MEp7NtU0UU2t$}{*6kn|*0*$Q(`d7VG19M=7Yxe(Iw zp^=E;1N-(Gy~M9m|4tDdxQes=cR5@YI|?j~XH-QFTu|+(rRhnh^f34s;Xy`nfD>%L zK7}p4SUM5vs~Lo=dg-^H)}!Epdg<5PHcFsB@zJ90WyO`hePGeJqv2dkn9$n%ylKZbU-i;E6}XhNGK#$Hz}w-hc*=F#6bzT6u17Km|v_ zN5W>Uw@m1kSjN2#q_r&@1t0dVkG#hyBat_2z2rCi$!k-S(MCSa-cUIeV83lNx;7hy zN2C7JKgQz6OMm*Bv~Y|8C&WkpWQ@U1h>t!_gCou~fsnj$CrLEbB(!y{~aCC@~yHNc`Rx_U)o}S)!#OQ~x)DtcLvQN&kqGcNeet;{DBQ@e&1ppO;YJaEqFLd{e8_(@|2Z6e@F2g;`^(I+ zC6Hd+*B3-LQd*Ccgq|J(8kBYMhp#R?&Ud7zKfGeZ=e+6BkuxKES9qP-$*wRLUA+R8 zf9)s8m#p$)vU*m1g&AK!V^uv*8qvRB;VjP2#f&=CwlID`B9~}ReT`}_);L>7SeQ=4 zgTGWXl6Ad`pS%=QIN9%^_llPl4dCtfUZ}Ea&l^!oc1-WCsRVZQbAb)%p*&PTHL8~n~F^M(C|o0r~Sm5@xDI>s}oz*92(28$0*@Ndqv2Uf{u&Niys ze)KWazLSM&PN{R?>gAyDYH%l?HK7A@;F6luvNp76r|^0x6C6faruB0%<1OQ*bj-sj zQ%X_d(6o=T7X3O815yhwWy|>(zM3h@rv8*QDQSU`i{H4ma-Y8d9(AUo#IYQUr+gzW=nnM{iZV5Hit_`NUr;T%88=2cZC)j9Kz@6gI+ znr#R5K&r6}{x+IA)S!LVREhO)$}E~wgQ73dS6b$D+2gIm<(r2v}>i2OH219 z3V8=B9i0{7q?-RTp9k+4MYXBEByCrrpp*Ra8UH`>sk<5u!$x1C_f}(>WP@L#b=ed7 zR~WP>E9_!6y_+<+vC&Ptm7?0+gK=2wEOj6Al`>86Grk)>*4ot+9uM)TZhV?;OS*9dmT^LAP)@OJ)Z;9pPYHQ?p+!Fe5_xjE`( zbnn-D$e`f^dn|E&1B}ag6aQy9Z^`g&{7=D^rt;%1{&!yD{1(9JNTs|fMguGka%Ff1 z9Ed23ctv78t?*;j3i)@NTJcm>&Jv#)4dFT6ZDrM}7MH4Q>u)^kr!`7d7E>veun?7- z`h9Lh}PsEy1I?KUnMIs;#mFzh2uYrJc00-<3)!bzo2ET0JGi7~qrnfF*OKx<(1@ zdtV|f?_k-yF52Kdzm&JLr}P&bxl6%UND|NJUPzAa&1lVO`~Wx>9S*NSib+P2mIohL z;nt#?{cmH6kj50>%rYieP;&}jY!q|bCmXkI6FpW{mkE;jUjzQvi2pU=e<}R08UIV; ze=Yf6YyS5p{{6@Lf?D|MwE;7 zp+zdRrzTfgHHjYrYa=Xu!1b)94Yl-<`G290AgPb(T!Kr<^zR^Jb1{z&Rx)xG|6B7v z%0{+R_NavaFHLHFGYTGTw9)2eFA*e@B^uy|#)P(vtm0JpQ)ca$Riu3-j706QRipzr znZzrnnI+NgZZ}gc>S8lWyPMAf}%>*pY;7BAh@8-w6E5&t(+#AY5mN~vOfr*d>Kha?F>Hj5v zk_gT0@R7fj1gG%>MZVcbu61pmZHfa4WsQ8*EE^j7mgs$|qCBRD1yiCSe((6lNCJRa0IhO2~NwnW^=m$imsyhpuuGIVmd5(wg)% z67J9yRo>6j)FKf@8M!rheppdU)*hwN(x!n|oAD;Og#k}BHKj!}CiQ;&R?ww3U zwDi^hPo}8IM5LBpWDxC|;Av9OmTyv3(U(L{s&ELD2{{q%oZ!hEN&GWMwM%olB+bdr z3m&wfhuKoz2%!yVsha)e@>rI2`uJ(RTdFE}rvmz|c~-{bT2eqo^jouigtnPJX?cNt z7W%pe715#W^rdN837yw=zcgF_o2F7_qpQ8vnrP2W2ogUOr=nqcGV2*BDJ!1kiAX( z`*|xu^THcg5`@TB?uuXm=>NiACJ-HDb98Fvv&zvWJnN^|y%ozD6uJ4&L?= zH|}Lr)D~F8b6+Fo8%?ymKH_(K!vWiE5of(dEN2T>eZ-I(~-rn2_m4&~_j$C)l z*AWGM7kiWDbU?q4)6j_K%Z0W8;HNhqpf~H)(Fnn1PhQGH9kImHPEoeWM!BF9D98IK zzv~3bF^Y1eq|_4L%+@(W5ZO70aIAO113$uKzf3mNy-Ipd6$Vqa{*GX(v=}SWyH#Pb z-efw23w#ppMwz4M)4QP^_?6Zk7GK=;VTMm8=prjUF zTKI-J!@7_1-(G5FrEL0I%C8#Y)XY$C%J@cD%g(fD2l#0H%>$B3^RUZkuX(KC;x(tv zsql_IV1~(bFx9A|ZML|*-&Q&L)0@G3KUFy%Y)f~Vp(i_Q(VVt&Jc(~E*P-T^(?9gm zmP|9MX+K-E_g|yU)dFj8;Z*kk^aZ|STEHs}p~nYNJArg!A1u_vwNp!&5X{n|Jk=7T zZ<3kuImw1j^LzA~HVLSMMDsdnktl$Wvth$aI^iLs}RA0$j>jm>> z|7%@gG>W+@_p$9LvyFzL<(BM}^^0Ns3l_;G z0?$3g;L=@El;^#a{w0Di(n7JHx6ju`+NuKaT~S(&x0Dl8{2YGigOilUpg{XustDK4 z;aps)x75%T^AMRc$-RU+|r6f)=bAk zKlnU;UYF^kzkXh?h&_4c4sYte^d~RiWcp$seZh-3P_j_c)B7L2F3pRJSoYrMqwabM z2a7&b+;{#D?sYEXM>^Mh^cyeh%mKPg`$9*1Z?8IqnD(ljdsNf#OWaaZ&quudOTD~S+aj*<8u8*Q_=QSOFY&Uk za1x=LMcef?+F!oHxuIEJT1xvGKO3BG5l?xIIO!@B{(+Bp!BxGKw%H(jz;99ML_cLPj4a|YWGj{)+sE-WcU&tJ%!l} z4uXPyS%0kGXCvNl8Z|!6M~pq9NXqpwX301d>dj$7_C$9OPwj3S4K!FltuyfcKfY}Y z^GcoftdWQ2-cixx&KhOt*&P+_Z-}rc+3~-ScIqAKveZb9+wvNse;)k6h;?7MXBako zB;+!q-9LY8r1HnnJorfa-q^(-$Nn%1((MfngMN(^4tL^@=*@w?Sj@!H@*JkaFK*#| zEMVaGIdZ85yYo$L&E3c)ALGELG_{BpcK4B=u@3``heM=9Ljr;G)Ax-)cfzlzIS||( zi7c}IGAx2l{c-b6jNJ@$Z+i%>gWyDACJ2EHiO-Bc#XaPavCyV9kKx}y<#O+PjK%-g zS?TWh-;K9{c0;I+9PJaunHxXjlTvhj>XX6^Dblm$=thofn8l^%ud}EzwD`Nvk?~FC0_x@wX*&ItFtxIBP*KbA{F2JKnW-hl=GY4^TmW7!G=+$p1 zWmu+&bVCiv9`;H_KnJ=P>*gF5s(@*>=jg7dQIQLU*_}VQkZ#mi7yjUkm;Pf$Qh^+% zPPbzr^4dVNrj1Xg@j@ByOKi$vwvolbrkx{L-EOEm&88KP*%xMxwPBM`QsXkkNV*kn zR$>GvDHmbt91F85>+YS?OtERWEgi=+bGpw&n!OO^M$}Y^T|3Ln=e`te4&Ve3GQr(1 z#%#qTutS+gdIFGr@|iHMW^PD6oGB%;O#!ntfBZJgjHSc-9N|=OI8O9WC#og;lE4C~t z{aOrKFHpv;!yF*dRHi*q1sQ(hb`&Gf2D-~7niaeZ2@G?&mnNB=nX+azGu9ne-b4%8 zq}nE~qKu%q6`;vYQj>J2f>}@VY^9yVp|Ky#yzVv?&CNDk03{Eq;Ks^SEh0DVx@Y8b z@2PACamxz@}_ zD2<@wt?(}`QRJcnX`rar+^otJ?(u2nY#D%*i)0!Wo*=w%BTWy^B5tuKi_BB76v<#< z8_0~fjQi+z#}CDiOD=ru$VofO3E{r^rrAdFEZ@#Vp8|=IOFS*CAndfQya-Ypg4&za zW#qc!$ngBf4z#HX=tLy@w>!KRS;!sSN!l@m&V)3QyyF>1s3Kq28J5Hud4;ESoYB{3 zAd_U6*!4Ark@Tvf2yuUq4y$HGpc=w1WFV`rc}fO`_X7sRT^lLlNGe!egu43= zKzG9_&I~l)m4SYlW@Q_8(B;M?E=g^Iu&n%cLpVEZtwY~#=o_XLjaD|yEMvnATuO&4 zRMU7i&i%;M5vD+d8$&^H8y4CmKU}Grn+A@CMYU2)PmVUDI2JZknih_Oh1B`N5#f#< z%bLa-$YK*s@e4<8_l9w1Lz~u0RwS;OwWCi*2# zY;M=7SsjtnU1qXbTat%A!_h5cGIU)1io@aFFol%{&agkl#$8~V*^{$JMVEH(oX-7j zD>pvoGlZz+Y?N^x*N)*{*fuoab2FTd-!p>U3ul`FHvW#F+r`Wv7Rf=G$;kV{9OzNT zxJ%44$5_EV^UX{vSZN_TE0uI!ni=Fq0W;M1vdP%K0+T>G(?A5fyDmoI6ybo(K^XXoyZ?<}!~k1Yz(yqDCT$qL-V$YMZRfj#{rUoAQV3mkzBk z!?}|~Z&8w7&P6{Q^p05r7p^9?pYBr>`;L1#EJoC%Z1=<>)bMJ&MHC z7&T()$Z<26)~+|hD5R;#;V!$uTxn%en!cHjankX=%!H6hN%x?QCOn!=?zqiR6Y~h; zCMbDKS^(9oOo0b7e>V;G?? zFTxnpYOh(|D-kd`sNmb4{4eh_7jqmmRocB^zxkGAfIi>K5U6OWAcBGd-L((;$Z1^~ zI$H=6=#D$gy*DKCB}8O2-8l^VTeu45wBv|5!z-H`vSEY0pB8)=5Q-p&<3N~o=e=W+r{v&d!u=f)@7u-@MrLYK+d_iK@Qy(v$nKx|8gWX z_|mMz7+J6tUz#=``B%^TIC((Zx~UuVMdr z+>Nes+44}EYvwb6=GV=Cflaw#cC~4FV))>8PWQ2I%=(~l+i#hs#A4^C0L9-n?*kci z#|-Ak!gtM~G7{6re6;7D`2fhZ-=b3i+YR5DlV9^D@&n!BdvnqMK*#-H9{3;Vupi9} z{{x-#zPb0mX!pze$oju{s{FuQ=8vBIGkS*LpUuv%A!oeyjeFvMF)zu>u2VF5(=`BJ zbDd(BcUtb;*HHuTUDQDGMbrR%3pJ2@1vS3p10jHX`!oPQ5CXv0PJ@Q;oCe?v zr-9_#rt!sBP2-F2nFioXrUCed>6A!$y>yBp@0LypmlsQ?2zje?icQ`qjpTftG)VX^ z=@eZ(5CSY;BMrcJNT)dD1=9H9+oM6lS4Sf~-y5A`I{DIQeDRIZ&?R3N4Zv4L1IhP9 z1Mnr$$d_-31{b~_8c4nyIwgm^7#eYWD>RUNCG^CUKzSiFa^l;dk%F&+Mw$455Pb0+ z(1_y;pz+1GKc|GqtDgb*-e<(|rOzqR^2TQf!`D6Ii|=|y7JSh&a%je)MaV0jkv%_A z2TFcwDW!tu%kSWS%o|9hB;^~>q4gFw~1CxKYU9P#?e1=a!M!+U`=g8${jzn+l);3ISN zM3x)RLOI=l3*`@gd|&(vAm10~$X|ReX`wuWNW@JaC~r2k86a1A)G; zJri-@fj{|B#zJ}E!uQ1|FMMCDF#h6WVhiOlFy9xS2lIXL!7$$!pAhqX@li3~SF>gl z{XhBim@kr#k@>#(Jelu{50?49Shf7cs$M8{?E7M6`@Vw4s;@kfGGwfL+^K|9edf;= zSuopIp=@7C*}lqW`>L1itA4hxhS|Ov<7*k~tja)?`6LJU=ZW>JvT|4jSGYRHq*3dJSp_t+=I7ygdsZdi#!WV@g3gb>H8G(iMXX_L@IuS zT*@KpXoYa;L4eq(;VR3Hf0-#-=V%%i1PR8*EG-3qyAr2p;;DwW3T=Ozt+k!Gsk1KH zYdxc>p(z?^eWNMLCeGU~P)|b~@>>)tXo?~lZbbXwg?SJ^;L3Pqp1~}t`M>bN_`Hkx zmex2oZT`z_hv!Fz{bODW=1~MiRAr>~f0}3HgMd%Xu9_abbRzP?g!kQl%^eyZ`HT3= zY^32~zb2Zftl>76j{`+lJWzAlA$s6tnqDu>y*PdmXBXew&XQXfEwt~VX}A!3aE

L|0{GtOQdEf@%fg6Ayasc3Q z8-T}c03Npic-#iyaT|cgZ2*3<0U#^Josm;q;04aIQR1+`k|bbZcW8d0W62|i1~w7} zXl?;auWA<%vmBTboh>1n@Z#3-dWZ?GjH@Wa8e*=~prq)j^J>Yq1W`xu%EiM<;(?u) zBCb~#aw$U86d&59+~U{KofMKgvdkhwGw||cHv&xTAYzHgzj&Ob#T1xZAF@NWnI#fbxB9o zCH+{JbYor8i*-pS)+K#dmvmuW(t~wL2i7J1SC@2OUDA7XN$1rieOH%sU0u?1b;;*e zT+(fINw3xA+&K|Sc1fqzC4E+xbXi@}V|7V~6`4sIc2`}}TXjii)g^sZmvmKK(o=Ow zN7W_$RF`}v#U-6om-JCx(nWPi57i|dR2TeH45%*YpF&=l0ehz|>72S`7vhpVh)Z@L zF4=#$WcT5cZYfG8h2yTnC3_B+>^NM~A$7^_!X@2N2r4Prwow2{56hm254LQVG;Ei& zYnL=@WF|@33k7RQ!=~(#mh6&-?2>j2;Uu1|7*#3%vkkkX3A>~PyQJgkl76R4x}7fR zb+&X#H^3#GPN1Y*{Hh4lF2n3_A~P9gZxi&AH9sEWlCGvpdYUfjXu9C1t$RzfGeQ#K zxy_=aZX%Mx+lzb(F^9^x7v)rVKJ{xaN*Gb`And3Jx3?GJMtUV6t}4XU_99v#Zcthe zjFUkfL@tH6MI}0j!p3}Dq3q1zr49)lzQpN5rIv8Ym|$P#NJL6!Q$Ge$)re>Ftgp*0@svQRirHM^Rpd&ojT$M$6K` zw^m8YcS5;8WJEiK=-Wx;G-f0Lu}UG9brLZOv6l9B5@l8RU3$Rb_yiCRu~>D6Xc94; zI&~IRRd|#t!*T=HSRLyuOyd*Q`r9hWoz9|wDG^J@(dwS)9uiH9&h`l=~q^Q60g-mM-!e@my_&ih`gz)k+t6jF&75-tOy$${3k0f{l?S zfvB#?j`s!GhID99Vr$WYZX%8^@;8F58khLGxNIC3wA#3)%4c9HD5V2JGI5U#?9Pnq zfHkK?cxJRD11iYk&$SEjc{W4D8LKKH!^9OQIwAK5S3N91U>H| z5{-P-Kxj})*g4hjiNff;pbzLgkf!t$k><8yh|eo6q=F$o@^fjT>0wW_J);a_dwGS= zV=OHNL=%M=*&WMep+W?DDnLf2a#4!V>R!;9M5NK)ULxLj$*RR2B3zt*dZBd{;g%M! z5VC%1^@c)=aKk#Ru>E?&R3zdUE$A&OsPIV~Lx6mDdZYRqWS}s4`+zKpO{KC**SZhb zmuE>ED8!;Zq7ZfN4%!QS(2$z4VNOy}Ir_q&KjC5yREYY0(JR&C%6_O2Gnk?eQ#cg@ z!sa#}VYcU-qV)QtFM6dX_<=BP1(%90Cj|68_a_l+tgFzw;JVFO~cwA6C`VA7LfL}HU6Qt&JXOKt%h|d%a zO<9O*<7rKIY^W{B6a^5Gl_`<|e$SNhRvj$r;%n?+Q5BoMv~Mt!2l(e;_*H;)hKTam zJsUPeR0GHwBAOb!kb=vpWhKlUB4R0VsK}wP|0-;op^|#RP|--?HC&(oO+6Ya5_y|$ z8042+gu;&>CQ2zpph8p|Ci2nEVd$MCS%|{ghl@%I5v~xqM}iD{zOi6Be>fB_siQeE zkq#9Rk)B2)@mP*!A!?2g383#kLbL!lG6KbKMz2PQRw{KdFI7Id`J0VJNfjx@yEIY+ zBjwGJq9s7tQIgN#QKAFB&X0oDHZ2qL2MFEogtb5d^Q7139TsqOp#)+!w3IH zQmK;8L`fy~yuzYx%7fZA3$`uspDR3Sv|h6aA+$Q7h2M3Uc7;5ccn$cM<)bJ6*3qA%wP{v}kt zd2nOpV|gaUEfFOsZH*b>X>k&t1Gm0nFYd}bQ3doN^F?DtAExkw=cA|DMBC;=osu5! zOwB_lik(1YiGwkSY_UKjtH^vR(T)Y8qCym)UGves^9G>9nMf+G*V))Vve|H(@jW#UfDw_;PQHG=;CG@T=a2(l^m9 z-~kdAW07MM&0Z|(0bE!tngirpg3ep=N}WhaJ=v#PB4T+b?VTl}Hp6e0p!EaBEfwXo z(=qhsQc+V*Nu8ao6x)`HG76J!VPMRG^m3^P<9)EOWpIXg{o2`kB4s%t@5nZyh^G?( z!GdL?E)#yf46;bV%!#zH8wQe!Byf%qdsrkYGMrALMgjTQ;@eoI>0|UUT*GjUvh$}& z;9h+y&lE5$5ek42<;a*JD%n#q(58u`g-_8$T%MV}M58u@fpYDfmt-=#! z#%=r}TKFYs>4$IRhi~kM@8pN??1yjfhwtEruj_}eHy-Li>1B!Q`$aVHOHjcNU(pXg z&<{Vz4`0O(U)2xa%@5z*gGc_(!F~}#JQ2Y6@x%A^!&mpi*YLyl^uzb^!#DNAr}*KA zA?)zf{cyLoN@Un@&cDZM(FfqdYSA-LP1vy{jahrmHKIq5M9g8toN+Yy8b-xOt3_pc zwMIlK;`tmmp9-uMZNX&3TG3C#TT$Px6?hvco>JF|9)W6d&vYG`t`5D#Gbp*L4I9*{ zYmfe!xK&|^Q<5Bp9n#~qB88d_2{0Xnam`!*B~DzDK774+i?3F{v|e-wQ7Z$??JEA! zpx-faw0Kw43X%~wIO4`Q`s_WCOld;`bh`JhhzgZ)w>Xaf;WvUQdW~S_U(K6I+6MSK zctmsC24n_kyob!x!UCtufqyEq%pn0~XwQ2hJV-4raBQ&5v2&=zgfWKyseEYk`vT8< z6r~yOLpd`_(C_byOb4$p^f8=2Or=_Dppsid0>bF}SPhS*J+k0{ z9b!nJT6*Dh?P&WCq8>lK7E0B#L?n~8%z^`khgObdiFAf>J4Je+TAbk|t7t9|Ari5c z5&VzVT}6#u+KD1H*(D-EW$e2g%l~H5iKKvN^+3$lT_Tvd9@r&DYViqFZnv1=-~}Ai ze7R{f`98!sJ}e-TLO&GIfoiFT`Cz^0LorMthBIO~?fg)T3Y8S27{UK$(%=fnDY1iI znWpbSd62_9d&Fpd5hvGPF+}jX4|1wY>$jmbgss$qsKq|vp!<78NT6CJVqUoEeV^zb zWUUebfu*8Lze6-%ip%>%?odgvoKx^W{2qKhD(=y+fbtR5x(ykW(W86D&|#ghQMSYh z0b0Ao0Igm*I_Va@7?#>EdW5J|Cg!ja|CAn&9KdSG*!>Xe*Zm?aNRn(}k}a~ssYf1y z9Mt&$+J_|A#su5AH_1y2cWK3$D3Y`J;(!>Wt*TD-4~jv7tE$WLcb(?R>*YZa7sgm; zZuEun-%M=VIq_?H$p!I&H1d!LWfrpzi76T$#|kCbWR#{MC4`;t|MZ;TpgPmwd^Rolk!K!PzSG;f#dLLwCh9YT0T;B zyG%eZtviZYe%KStJwlJcD%7eP=YgfQV`8vE41*wZqv-Kbctt@kMO~F1k6bw@@;G_{ zykAx9xERiG^>HyURIS1>muXVcur82vXPJPqlzu|wVzN;u#5C=65qfz7#XVg_3OC1F zT!@zx%2=nyO!%KwT*)MMWI!Nge1zhH!`P3+41RDq;FOr`;59xJbJ;XyQnHwMx;cab zk6{&I_A`5qAg5XfWWEN4-}5L#KJeV(G^7KsA*aC;uj)KM4JiR9eT?RyRth=YPASjj zT`1JLkpWc+$#PKcf6)3sn|TJNh$lyHpAnrI);cS?1gS+uPFo#onER1w!BObX7M_LP zZ|&rzjI+WFREvyERg1#TiEau}ml1Vo{5ec(!SCWZbe7esQ?*Y-e@8WCbBCr;_&I@# z+Wx??&2^ukMqhm*!oxV$8OgTC|6qIJTlgl2vzQP_%HE%f5N0*kf1MY>iXfN?g2!|A^~gt%egOlP!7H+D=^W=V3z+g*Xb}9=~W=cNzOl)v4}hVooTlAs@@Z|DcAjN2&=X z(zbD01g8w7TAzztf(dW46&}Bgg}(8hV*vs0K3w=5Y5|P@0%}o9vMj(8t0wV?g(J2w zUtyRrWJt#7gubeHYL%7=|K!R{=Ep7^)bvY{D^N!L%~5}IwbqmGVC1OgO-P5o6yvm} z#i-g9w2r1&Ernj5ds_#d&CW>$z7qLEIm#KyjQF3`L>`R}s79;5LhAqr_g7+qhG$VK ze~sn|xZ`UyPqjSE$?nNyvUy(qT2!DBS24DM%ym_a($cF^z%?WT9CJ+!43sOy|8lZ_ z*;i;tmwwiA;JF|ai)}bh-=ST*4I0$HYmZ^0Gke07stU?iO#X`cUl&6{t(9gVG_D7l z9D(tq&K)c@N=8*~hzQOr^#(-7)0*cknEDL{C$%um%)0X6l&l`}%zsl9RZ-nIsv9-G zDSA63ZT{(~#=AGr|9yEAgKeMUROuGV1i15-$P7|z*_^15HT-0b4Tzvgw?*DSwXDr? zc;cP&@q-?|9CtKh=BVnnD~4`%~3WWkfB zB1Mb4q6+o6hYkni#S5+{8;W9(^dB5o*(bQyk_L?18R7Bx+E?L#X5W zPLyHcZz4EQZ6z?-G1f`4ivQ;~*qMwv$x$cSx9-HOCq5GMwL6t5^s!jMaO-0+Bj`?L z&^%zm2ji&56EQkaViv>1=f+U@EPPw> zGR?9la8EBk#c+ZIcbqC1E`tch2 z_qYFsYkac&vS&z(Cpwor6AKv@doCsgs=X7=d=l+?E`~WI;uyE^tY?_BH2nudA|86( z_m7y#u=c-VOsLvl;Y0(a#L`nXEH3_oIbD&_;{afMm^_5#Dk_E(UmPno4Lj+ueH zg#&ZD%aQEJdEU^~>GY-9|QruSjjIeZoqpd>3P^RI?L+b+^9hmY( zfMckNh@vh#@WYO|c1H?FT(djU7?#o<=?v%Uj!q08=#EAXX6^iw%L2wR^nDC|`tzIS z5H!eewp-D$e9Cj%ZQvbI0v#{mjm)5;&Beg7={A^9cvke1UZ&7+#KXs z&oCv}v5?`-UJR0h7GAtG5z#TbtXh@i& z5yL~)cR;w~P5$l>?&!ksV7TKg2Qzloo&g0xt{AEi;Yd=rWX9e7R*$495l}SfFGV

8yF^0il4m={efB^vNnZoU^aZ0FJycv*j(Zt`{5D28 zk~r>Kl%u_h>&+$98(n91H4(((VbzvVvgPnKPcuH>EMJ;eJ0BGO;!9RxNUJqRgPO!+|iHW%i_?u zJDFOSa3nCCTEbD3;not4rhMV;(-IICuyIL8it(%oguqtM2K>@{S4l@ljtD7*ssbES zN_~G_3e|w`;-wuO9Gt*eg);|v9DPvQQB~n;FmBykBL=s`LLkuBjaTUw#iKf>H>3OU zj`pE^lo?g?7O2tp;n~6pjzaW*$~y1Btcsj_-Wsg?kL~&51yUh&d!!o-#F)- zlv=8Uq8g_sMWI(Jx+`npnBLIFy;VzfC2i`9VM9OgRmr4(`>K&X8`@y_#oS0g9J(L+ zVeL@y&`%8_?NJ-uLO0ZAUa*deB70~ZoQk05>tJp1jCkX^*vL?~E;@o{*TwXqJ?dej zL%*u0l1Q7>$HsyAVCLWvO>h>3?rnkzLCZB&F^W2J zvS`)5K8S~5vYO(Ihq~KM*(azO4|YQ{?n5=_Nepg|T_3NOKieFKEA$B;oMn#h@ZKJySl6l z-VPT!Xp8n7XmxuWUa*S>VULAI260DAgH%g{2V-Fnq&`LdVO@*fSL_FxVp4b_oO?qKxhc51g z%?*9t3)f=2qPI(L3=%r8w+i;zf~O(U%DVjneag8x``{=+MN}W`<j3m_1SSFXkHjX0z8{HIhweA}!f4Yd zObT!3pB$xv3sWW#CN&t7!fCpW+cip6c25sf`8?4nwIY+_kgwbhxnU|&=M3RY*WwD^ zwK994>dv49IhS;E4#Ev1#lm0vwp_&}K6MZ_F`6D9gwp~PGp*ymp2`3yqhBm zkAGK;#jc5p4zV~z;=3tnMo-16Mr7xW!@5C3;;>Fo3@wOMuX=c_s$9&MKi-0mu3&U; z(-7ZwYdWefc||xl^+1<8*c#9)j(UgFr#4gfRgrh8@)T?mJt{IGIi7w=!Y6D94z`*h zZpILd2zqe{?zf;S9{VlcH`YHMQ-p4c$9)m>ZoFz#@JM&8X7QAfc$4z5T5e=KF2Y?C zaPXmiY67-6^lE~N_bH4);>zxqh})k)7YjHsQ8l11`Rqx=ege&rgoT85GP)p1H7KZC zRj|?jY5Zz3b`CiAOU4-s`e`!GgwVeY4;qRg<1+!9=c^j-mqW2VVLTm*6@~hz;7Sag zmx9L7hbfphw9YUb2GAwLxbc%=*!^KQOU1~b(^FwbG;{CF!%p%j73X3Y<%Z+r01Y3G zV9-6o5gb}{1Z(UFT-ITq9D&O-wB<-#xu8o%vj1NraXE)QWR#jt`o}2dUEjr38TP(+ zaoLB~c@K*To$?;X{r)|U(_}PGI^fesv;E6x<@JeZhQ%)9MtXekf9uDndgQQY40d&B zk+C>AL;H=zxT}Rcxd}6 zYJg7;oFQ=nNS}f;Lcfo34*PzJs+XTAPBFjCz$NoXdfveU2jbC=?(WtPa0;pei^<4j1s&3(ixX55`)zJuNuoiA)k}Bl} z;Fb68+F7bJ`5u{t8!V__I)(s^Pse=`G&>#FFleU_ae;*{`4GD^UIV!ABh}n(F&n2U z81K!-CWaoKjmblc&cUt&jhLev`n=WyBdz2nr=!auj*rLvd=B<()K;I1%OZ5zTpYX5 zGjlmgnGEcJcuQtN25y9*Co-^L0vP=y`PR#VA)03tf+`sq++MW2)79MI47p*=MGq`YLoHdVk|H8+G5NV+GYtB2>QtqY!j$jironszZ3@r zbm>x+>QgrWBiZfl&%|ERU>T-@iqvJ;nW0CPalluXW5r>|EXUCW-MSo8Me1z+6}ZoU zwp)Sy6S{B(eq2LetiaTvVV__C(5;`~A_Kkqi5h_9(vB+?rN+))sd_?guT%peA*zDt8U*Ht=19duGaAB zY83(4dyTH!zDC!TUaRZIuGMwd)~ay0_^(s3kgRno4pMZzb{Vl=^@eq3y^6}OhjX2V zbKTvyMs;wfZcv3$>2A>N|JVyrsdo9IhYpWKVn>Ku zZW|^R;tt=YdO=QYQ_+z6+pz>8?xO8jtPuC&mPrM(R154agD&2 zdk(9H?)cACK<*4YSmRdMt7eev+Px}+H1IPui}cKAYEFJ?POq9YK896TV>o|9pWTp|D3BWqouMf2V<+ zaE#mEJH|ZrOZ+hn{Q8&pX%FrG6)v67tgqBe%4_X=T2*qp9ml~7W9f06=%97JRtrc^ zeXUlK4nLu`kXAj(^}A216=V-MrDl^pI)$I$Py`F76xau6@VA1qr}0x4#?#X{BS5>J z!Q}wD;|z{?c8Wk2Y?rgD9pt04IBpubPtW4`*YGvB&p8#8Bh>xm98jp6eGZ3WsN3y4 zcFs_D&v_h?p>D-*a42#bEN!wA?tt^EoqjtHp2>G_eS@7f)NOk~B|>&wP=g`mFKU^5 zQN_c0d=ZCMsN3*c>}5%A*0-uFzMHJ|{e zu2MFd$Lk)rfb)0lAJkiJ=rvUaF7elNgOk_Lcb41eI>wddF1W6n=lcQYyDWFm4_JvT z_p2XtU9BH=UFMIfJK)0~aZ=54JKwBr_* zy|h6#t|`!=*|~T899rQHZf$hdWdaSJ{&Bk=$KUkxXXBm7S$EW1C&p+J}1MKtLByNJ%bq#Jlo6|Y23w#T|@K4G}T3?G((+aHf#T;ibUQNAg| zQZw*uUFtnm1y62f-ct=AXYMKb!k_0p&P!$8p!?dIcwg0pwe!BJ1G&X=;1OL>AEKzhMBj3!uD2fSm#;84+NY026U90m(6h$9@ZR7Y8TO_LDS4 z)E~C>4kaZ593`N$2#+y1Zh?+)!df~h5&owHP(~ua83B}m2yjjSB6^8jAfht}FQNo+ z*#h0ich=Imh^YQvKtT?9T>xbt!sAB)CgRTobcW$gl;ClT0p_p!$d-D_Kt%mr0hDqG za9@Cl@Q8p;E_{p*` zK$(W{_YpuDg#h^kn27la=nTRFD8Zw!1-gr(UTf;)Lev)%U>cMppmPaJp#+bz7U&4C zSz365Yo@Yw0XOR7VS-1^}@HbOvA?gLn&cfJAHQ+(7sz3o!n}2$qY_=9M{dDzK0saiOPond`jzFn>h_F*!Ovv2?boSmJ zl;H8X1-g&@*3x->s6Hsb_#Yvl^Y6Yu2_9csKmokYack-fKh&QPKpA}irvy+2AHW#_ zCggbnIv?*Fl;H8L1$vN|t)(;dQ2m_%uW4|N$bW6p9b9f$pdR$w0M+x9I z0i8{k&ETE|I=};KAy-fPKVm@Z|2vZ>;zId&2>H7J6Y?nmooM$AC3rlyK=<)qYv~j` zRKJ4!h?o3x5zr}jxlw{gUauuOg0hy*#zTF60j5DA0y=xHFiP-v)dC%$xV0Qg&O>!c z0hE3RP+9J}P!DYex! zXiY?C%C$iWF6}MQ5jt4Qp+r1X2MZ|2ppyW~vV%t#0VZM?0i9IW4JCMZds?FV=xr@0 zh9mS9U>Xb{pfl#eQ9^_$3v_@%)^dV4K#TxNzJq_P0Lr$b>yIPEgiIiyGwTvjg2zw` zbRWa4rE~63JzRkCA4Ndt(Y=cjJjPg{1B|nlQ`5_X8ZX2&n5aR0gqegAB22YFN0@Fc zopFcinF986#18}zL?nw25e`|PBOI}oGoB+H6|f&A_1e9>4Z8||0=*snRFo8 zM08Ty9R~L;&=DS5%X!4rzX_luI0Seq;2DGG0$wn91u0G3MGlnEBsav%BoC8(;-VN7 z5MYK?Sb!PGs{+hGN(e9mDJ{SZq?~{pQ?UPGBo&01fxIrj4CGA$I{&N+N@!Bm0=+)f zt>x6V0kiFI_EGVm8b>2&D2r2xvM186It z9fJ-6Ix^@apfiI|0m!k_J7EtYlwpUceFXGnFhBt1*})@9z(58u0w~)K9*zLBYzYF) zLL~!ud1cK?4HFkyAOsm9z%0?b0?ZPP5nz_cE5Iz#1OaA=CJX3jc7ka_%o@!UfHk6l z%o1RhXtn^eL>U6i61f7*5@iZ7OSFjA-;s1ebhC_H2ebZGX%Vp z+31{Q@(mHrf<*mAYdPO?^%Vi%F}Nn+I)fVmOvIZ4OpIFsIEL4`Bg6!`Pe5lYK0pZr zd2E5+D8E_D`JJnu3V6ogxquf8UYTkm=0FJ%a|`fNMkGi+A&Nl(0RN*5;0%l$I zZ(srZaTDIinmR!f@tO*t>`Z_F0f7u!324orodDBE2LY7zi5MXQOwcYGcquW|L=6)c z6SW5cN$^CFJ{IVi_Oq7G|3q~-femf&PXtN;11-@0(bjTexH@hs9sjz4!z4jm5*Z8? zkiuZN0Mo}P0Ve8b0Ve1;0Ve4C0#a!EW1y3W=%mca45nG2M?S+^&P=YJB_N%_9079~ z%opG?$P}=E!D0el-RTl0%f)2{gH-}3R}|x1D_|XijRH0?*eYNfgPj6CWw1xUURr-d z-6zD%{-6Le-y;Ide2)n*^F1!W%=e@KGv6};%yiEKczM;$d@qWNneSx*X1-SinE758 zVCH*6fSK=20hljM_ZES~w)p4vRK5wiYl+_4_pRkT;0BKcJYn#MfIk`hCEzxL7XnO- zSCCH1othZAH1N_eOb{O;I;l1ye_~5d6R%no2`Npx~Xb`9#(a0IW@T2SAZXbx&kQg76BRxXyj$mL`YKx{sJfu z7j0S!XvLtdfOZTz2E@r;d z$c1u_o#`lHtZ5eLtv$ z)&>D)Ae#l4fov0C2C`Ft8OZKwbp6qjU4l9cD!c6lJ+A%iCZOdo#;Fj1cgpr{D?T!0Dsw*V6~C$f|sFC}(6 zxllwKA0hKtTpY1egHD1ehiz1(+sf2+%w9ow6v=AHmC8qC2fVrr0d*ME7tmljUw<15d52w^324qBP(TX?tp&7U z&|Ux~m}4h!RyIV9vqZ1y5NkQ{D4{w@Kr(}20#X@_6flaxXaQpwcm<4SFi`_ogkvUvi`$UYK4BctPQfe&UMFBZgG~Z9GuUPT&VSpPd@3%KBac3I3oxC2Cct#FUx4Z6kO0%o7XnN# zUlO1%Q#fCtM91F=OY~GuS^UCWdSDY zTLMhfY6K#h;h*X#VVt!r(Bt&8mQ#BMAOH1))aM3`1T<#QR6sKZ0RjRUv=Y#oK|2BM z8FUm7%%JlOy8i2dc3~1GF5MXP6wr%7Ujh9XgbRpZFi^lC27?8}G8iHtp4J}=lq4jX z!7u@-3`PnV#bC66F%0yk{P(I)5RcmIFGI?onh);U9f zS!Y*(S?5dvW|lH5LbU8;3$Ky1RQ5@Qot#*|DP3dj$JMYFr8i! zV7mEEfa&I%0MpHn0#2cX+5b#{p5Jh8GPtGpe}19^_1RK?hwJYPc);MXfF}(85b!61 zzXX^*UI;KjU%}HAJPHa**S}msOjI8N{9p%4@bFlmm%M z7GV15C%{Av7l5cViYNglXfy%+Tt^Ih#6i58=z$KA`gpES5|GSbn1ECUBL$3NFj~ME z23`T<8B7!~i2(loI#tLtc9|(4jX}DA4;joAkiozeVCI%7z)WV505h4T8hGi4o|(-G zaWS)5CBV#PjQ}&7^#b&4@Ua*HW-?m^n91xAK$D^4Zx<1M00t$1&n(c}WuLX2{ak%W zz+nbQ1sr2=T)@{1P6;^8;G6+C{?0SGC@#AhToz#Zy(+-;dtHF(_l5w|?@a-w-&+La zrMz_idB+kx*?ZP<=JQ?f0|6g1cqCvUgC_!(F!)^nz4#aF`ILZuie?3a|5y;~rF7#L z)^t{J{oexCFvyW+BhX_(Xp&37CI)!~Y-NyFzzzmVz%B;)0lYk}y-W&<%RUB$1sr5h zRKO7i#RME`BfF4!C5>*j! zgTdPZZZfErM)!aJ-Y_-EML)E3n_c`Y(0fN6Yw2g2&__K157@tf0281w0sT1A6ZU9o zfsW{HZcXP8t`89Kj6n+l&l$85Ko3A+6m10L#G@eq?F7&>Pyj&!@-gUW0Op^cNr<=< zV$fMYQ3hQF6lV}7pcI4d0?IPzDWE)q-U8@pDmwo93aQL4{ROM|HCpaFw826X*38z!De7Cl{%fD(cvTcEd8inVO@a02=ns^%PWlm*)V zJ!?6ETs=lWD+c2Lyd0q|lkwsb#9)E|dQJ;tnk1kzgDC<+8B7z}!-Hs4xK6o>psKs19)0kI4g3K+s*u?F5!=qQoNQgIo|V7Y)) z2A>ER$zYX$_ZX}eFqXku0pl607cdcku74YaOktPJ0;V(ADjy_0*&a%+Rfkx3;6nX!rBG z)8JPE`r)?&?2&DO9@AZGIfuFWzJQ|)9t!x1!D9w={GVX*o4A~2@P~kN44w+Oz~CJl}Z-qnY>{wCpTBW`2k&j zb%VT2-VzrNgQ@}wGN>+~2!omeiZSpNP?AAy0c9A}74VvuNqr#|88j5|27|@|sxW9G zpeloA0%|bu7vRevP(U39EkA(r0@P>HT3i}2Xe*!zgZ2XG@kJb-9Rvh22o}(aK_>xi z8FUfg4Pp{1B$z=r0cKnFBtYNZbGooc9}D!x?Po0~jH?F-=)oXDfC(@Vz^gyxr#~=( zsl<>AeQ`pEjI|a%-l1pe2#8=1FMz&KfdEMa9W%GR0?gd@2{3azD8S6^hyXLSV*8a+krvtWMyj!%Er$iH7=C7Hg6~z0XE5)QF zC8kCv4#KMfbRB=uBu&MnL?%Sj3xNy|a3gAYO7+n`{1p>!KM>6$;}WA&j9)i>)1Ov= zVh>D8NREq_D*l#9TA{%yk;$?Dzp}l1ww9+DkF~#>UCUFB%YEGZzMisg>V8{t?7~s_ zLI#FhDK;{3&_ChZxIw<2%KSMM{z^$&(d3l4gvb=ka(Lpv)VQQXJ4^mrNm?lyVbZWT zs)~&NA20rPNm}8AxKYuA{->6|V3JlG@4ZMI6d9kC7)>sPUg{^sedcRt66con^Hg|8 z&!m}IrNqe8xDnBn^h>$T0`hlD(iAP=zj;S@sGp}YFUs&wGyOa@3*|iA%01xkp{I&} zZ|>=q^H3|dqrYd^zwkYOPZZ&<0iKwD;a>t6cL;n5Uk_y5s>MtAQVYh-TE2wOwq)F( zm1mZTUCsSFJ8vHMNh?o1bqG0#vE`g8Q4zGP(W_{W2%$ diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html index 5cd66e4c11..e7fa833766 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html @@ -1389,7 +1389,7 @@

Meta#

variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7ff564112e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f0c57e72e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1520,7 +1520,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7ff564112e60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f0c57e72e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index 61fe20971a..ad603a7ab8 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1392,7 +1392,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7ff564112e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f0c57e72e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index 57eee33c38..8ac5721874 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1392,7 +1392,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7ff564112e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f0c57e72e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index ada520768e..1641dbfe5c 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1389,7 +1389,7 @@

    reptile_stepContainer) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7ff564112e60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f0c57e72e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index 01046bd3ad..0b7b11022b 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1378,7 +1378,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7ff55763dce0>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f0c4b5add10>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index 748309c180..2fe3843a53 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1505,8 +1505,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff564418340>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff5644186d0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89fc0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a89f60>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1543,8 +1543,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff564418730>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff5644196c0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89f00>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a89ea0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1582,8 +1582,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff564419720>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff564418100>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89e40>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a89de0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1620,8 +1620,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff56441b220>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff56441ba00>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89d80>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a89d20>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1659,8 +1659,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff56441bb20>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff56441bb80>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89c00>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a89ba0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1697,8 +1697,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff56441bbe0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff56441bc40>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89b40>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a89ae0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1761,8 +1761,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff56441ba60>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff56441bac0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89cc0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a89c60>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1918,7 +1918,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff56441bca0>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a89a80>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -1977,8 +1977,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7ff56441b1c0>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7ff56441ae60>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f0c57a8a080>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f0c57a8a020>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index fd54534d2b..754433cada 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 806, 811, 819, 828], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 813, 814, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7ff564112e60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7ff55763dce0": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7ff564418340": 779, "0x7ff5644186d0": 779, "conv1dtranspos": 779, "0x7ff564418730": 779, "0x7ff5644196c0": 779, "filter_shap": 779, "0x7ff564419720": 779, "0x7ff564418100": 779, "0x7ff56441b220": 779, "0x7ff56441ba00": 779, "0x7ff56441bb20": 779, "0x7ff56441bb80": 779, "conv3dtranspos": 779, "0x7ff56441bbe0": 779, "0x7ff56441bc40": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7ff56441ba60": 779, "0x7ff56441bac0": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7ff56441bca0": 779, "get_initial_st": 779, "0x7ff56441b1c0": 779, "0x7ff56441ae60": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "thread": [802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 837, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"default_float_dtype": [[155, "default-float-dtype"]], "default_int_dtype": [[156, "default-int-dtype"]], "triu": [[141, "triu"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "triu_indices": [[142, "triu-indices"]], "set_default_dtype": [[177, "set-default-dtype"]], "dtype": [[158, "dtype"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "as_native_dtype": [[146, "as-native-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "is_complex_dtype": [[167, "is-complex-dtype"]], "is_native_dtype": [[171, "is-native-dtype"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "default_dtype": [[154, "default-dtype"]], "ones_like": [[138, "ones-like"]], "broadcast_to": [[149, "broadcast-to"]], "astype": [[147, "astype"]], "can_cast": [[150, "can-cast"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "result_type": [[175, "result-type"]], "zeros_like": [[144, "zeros-like"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "promote_types": [[173, "promote-types"]], "tril": [[140, "tril"]], "invalid_dtype": [[165, "invalid-dtype"]], "zeros": [[143, "zeros"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "iinfo": [[163, "iinfo"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "finfo": [[160, "finfo"]], "dtype_bits": [[159, "dtype-bits"]], "check_float": [[151, "check-float"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "Frameworks": [[855, "frameworks"], [861, "frameworks"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "Wrapper Frameworks": [[862, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [30, "Round-Up"], [32, "Round-Up"], [22, "Round-Up"], [20, "Round-Up"], [31, "Round-Up"], [19, "Round-Up"], [13, "Round-Up"], [21, "Round-Up"], [33, "Round-Up"], [11, "Round-Up"], [23, "Round-Up"], [28, "Round-Up"], [29, "Round-Up"], [40, "Round-Up"], [17, "Round-Up"], [27, "Round-Up"], [18, "Round-Up"]], "Design": [[833, "design"]], "Compiler Infrastructure": [[853, "compiler-infrastructure"], [861, "compiler-infrastructure"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "Sharp bits": [[850, "sharp-bits"], [849, "sharp-bits"], [848, "sharp-bits"]], "Examples": [[850, "examples"], [849, "examples"], [848, "examples"], [821, "examples"], [799, "examples"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [17, "Ivy-Stateful-API"], [26, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "Exchange Formats": [[854, "exchange-formats"], [861, "exchange-formats"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "Glossary": [[842, "glossary"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "Motivation": [[843, "motivation"]], "Vendor-Specific APIs": [[859, "vendor-specific-apis"], [861, "vendor-specific-apis"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "Related Work": [[851, "related-work"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "ML-Unifying Companies": [[857, "ml-unifying-companies"], [861, "ml-unifying-companies"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "One liners": [[847, "one-liners"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "ML Explosion": [[844, "ml-explosion"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "API Standards": [[861, "api-standards"], [852, "api-standards"]], "Graph Tracers": [[861, "graph-tracers"], [856, "graph-tracers"]], "Multi-Vendor Compiler Frameworks": [[861, "multi-vendor-compiler-frameworks"], [858, "multi-vendor-compiler-frameworks"]], "Vendor-Specific Compilers": [[861, "vendor-specific-compilers"], [860, "vendor-specific-compilers"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "Array API Standard": [[852, "id1"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "for_loop": [[117, "for-loop"]], "if_else": [[118, "if-else"]], "empty_like": [[126, "empty-like"]], "empty": [[125, "empty"]], "frombuffer": [[129, "frombuffer"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "log_softmax": [[108, "log-softmax"]], "relu": [[110, "relu"]], "full_like": [[131, "full-like"]], "linspace": [[132, "linspace"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "leaky_relu": [[107, "leaky-relu"]], "Nested array": [[100, "nested-array"]], "softplus": [[113, "softplus"]], "copy_array": [[124, "copy-array"]], "native_array": [[135, "native-array"]], "softsign": [[114, "softsign"]], "eye": [[127, "eye"]], "hardswish": [[106, "hardswish"]], "while_loop": [[120, "while-loop"]], "meshgrid": [[134, "meshgrid"]], "ones": [[137, "ones"]], "arange": [[121, "arange"]], "cmp_isnot": [[116, "cmp-isnot"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Array": [[97, "array"]], "Factorized tensor": [[99, "factorized-tensor"]], "Functions": [[104, "functions"]], "asarray": [[123, "asarray"]], "full": [[130, "full"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [74, "module-ivy.data_classes.container.elementwise"], [51, "module-ivy.data_classes.array.elementwise"]], "sigmoid": [[111, "sigmoid"]], "try_except": [[119, "try-except"]], "Container": [[98, "container"]], "gelu": [[105, "gelu"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "array": [[122, "array"]], "logspace": [[133, "logspace"]], "softmax": [[112, "softmax"]], "mish": [[109, "mish"]], "one_hot": [[136, "one-hot"]], "Data classes": [[103, "data-classes"]], "from_dlpack": [[128, "from-dlpack"]], "cmp_is": [[115, "cmp-is"]], "Backend": [[786, "backend"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [83, "module-ivy.data_classes.container.norms"], [60, "module-ivy.data_classes.array.norms"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Exception Handling": [[823, "exception-handling"], [818, "exception-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Error Handling": [[802, "error-handling"]], "Continuous Integration": [[813, "continuous-integration"], [820, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Array API Tests": [[813, "array-api-tests"], [808, "array-api-tests"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "Setting Up": [[819, "setting-up"], [805, "setting-up"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Nestable Functions": [[822, "nestable-functions"], [812, "nestable-functions"], [821, "nestable-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Helpful Resources": [[803, "helpful-resources"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Arguments in other Functions": [[814, "arguments-in-other-functions"], [815, "arguments-in-other-functions"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "PyCharm": [[805, "pycharm"], [820, "pycharm"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Deep Dive": [[807, "deep-dive"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "Docstrings": [[817, "docstrings"]], "Ivy Frontends": [[826, "ivy-frontends"]], "Introduction": [[826, "introduction"], [827, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "Logging": [[796, "module-ivy.utils.logging"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[799, "contributing"], [800, "contributing"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Device handling": [[815, "device-handling"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Lint Formatting": [[820, "lint-formatting"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "tile": [[699, "tile"]], "argwhere": [[733, "argwhere"]], "reshape": [[693, "reshape"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "where": [[735, "where"]], "roll": [[694, "roll"]], "map": [[711, "map"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "prune_empty": [[719, "prune-empty"]], "multinomial": [[725, "multinomial"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "repeat": [[692, "repeat"]], "copy_nest": [[706, "copy-nest"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "nested_argwhere": [[716, "nested-argwhere"]], "argmax": [[731, "argmax"]], "permute_dims": [[691, "permute-dims"]], "argmin": [[732, "argmin"]], "nested_multi_map": [[718, "nested-multi-map"]], "stack": [[697, "stack"]], "layer_norm": [[724, "layer-norm"]], "nonzero": [[734, "nonzero"]], "reptile_step": [[704, "reptile-step"]], "seed": [[729, "seed"]], "nested_any": [[715, "nested-any"]], "unstack": [[700, "unstack"]], "random_uniform": [[728, "random-uniform"]], "nested_map": [[717, "nested-map"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "squeeze": [[696, "squeeze"]], "multi_index_nest": [[714, "multi-index-nest"]], "swapaxes": [[698, "swapaxes"]], "maml_step": [[703, "maml-step"]], "zero_pad": [[701, "zero-pad"]], "fomaml_step": [[702, "fomaml-step"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "random_normal": [[727, "random-normal"]], "split": [[695, "split"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "index_nest": [[708, "index-nest"]], "shuffle": [[730, "shuffle"]], "randint": [[726, "randint"]], "all_nested_indices": [[705, "all-nested-indices"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "flip": [[690, "flip"]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "unique_values": [[739, "unique-values"]], "Data-dependent output shape": [[739, null], [738, null], [737, null], [736, null], [632, null], [632, null], [632, null], [632, null]], "Framework classes": [[772, "framework-classes"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "all": [[754, "all"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Utils": [[773, "utils"]], "Converters": [[776, "module-ivy.stateful.converters"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "min": [[749, "min"]], "einsum": [[746, "einsum"]], "argsort": [[740, "argsort"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "unique_inverse": [[738, "unique-inverse"]], "load": [[756, "load"]], "cumprod": [[744, "cumprod"]], "mean": [[748, "mean"]], "max": [[747, "max"]], "prod": [[750, "prod"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [81, "module-ivy.data_classes.container.losses"], [58, "module-ivy.data_classes.array.losses"]], "sort": [[743, "sort"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "var": [[753, "var"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "std": [[751, "std"]], "searchsorted": [[742, "searchsorted"]], "unique_counts": [[737, "unique-counts"]], "Module": [[781, "module-ivy.stateful.module"]], "cumsum": [[745, "cumsum"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "unique_all": [[736, "unique-all"]], "msort": [[741, "msort"]], "save": [[757, "save"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [46, "module-ivy.data_classes.array.activations"], [68, "module-ivy.data_classes.container.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [567, "parameter"], [572, "parameter"], [576, "parameter"], [566, "parameter"], [575, "parameter"], [573, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [618, "parameter"], [205, "parameter"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "any": [[755, "any"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "Testing": [[774, "testing"], [40, "Testing"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "sum": [[752, "sum"]], "det": [[655, "det"]], "vander": [[679, "vander"]], "dropout": [[646, "dropout"]], "matrix_power": [[666, "matrix-power"]], "clip": [[686, "clip"]], "pinv": [[670, "pinv"]], "concat": [[687, "concat"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "outer": [[669, "outer"]], "matmul": [[664, "matmul"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "diag": [[656, "diag"]], "cross_entropy": [[684, "cross-entropy"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "inv": [[662, "inv"]], "expand_dims": [[689, "expand-dims"]], "lu_factor": [[663, "lu-factor"]], "constant_pad": [[688, "constant-pad"]], "lstm_update": [[648, "lstm-update"]], "trace": [[678, "trace"]], "inner": [[661, "inner"]], "eigvalsh": [[660, "eigvalsh"]], "slogdet": [[672, "slogdet"]], "vector_norm": [[681, "vector-norm"]], "linear": [[647, "linear"]], "vecdot": [[680, "vecdot"]], "cholesky": [[653, "cholesky"]], "eigh": [[659, "eigh"]], "matrix_transpose": [[668, "matrix-transpose"]], "eig": [[658, "eig"], [421, "eig"]], "tensordot": [[676, "tensordot"]], "svdvals": [[675, "svdvals"]], "qr": [[671, "qr"]], "matrix_norm": [[665, "matrix-norm"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "diagonal": [[657, "diagonal"]], "roi_align": [[651, "roi-align"]], "tensorsolve": [[677, "tensorsolve"]], "cross": [[654, "cross"]], "matrix_rank": [[667, "matrix-rank"]], "nms": [[650, "nms"]], "multi_head_attention": [[649, "multi-head-attention"]], "solve": [[673, "solve"]], "svd": [[674, "svd"]], "scatter_nd": [[565, "scatter-nd"]], "to_numpy": [[586, "to-numpy"]], "is_ivy_container": [[554, "is-ivy-container"]], "isscalar": [[558, "isscalar"]], "to_list": [[584, "to-list"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "unset_min_base": [[592, "unset-min-base"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "is_ivy_array": [[553, "is-ivy-array"]], "multiprocessing": [[561, "multiprocessing"]], "stable_pow": [[580, "stable-pow"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "scatter_flat": [[564, "scatter-flat"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "isin": [[557, "isin"]], "strides": [[581, "strides"]], "itemsize": [[559, "itemsize"]], "shape": [[578, "shape"]], "match_kwargs": [[560, "match-kwargs"]], "is_array": [[552, "is-array"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "try_else_none": [[588, "try-else-none"]], "set_min_denominator": [[571, "set-min-denominator"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "set_item": [[569, "set-item"]], "unset_array_mode": [[589, "unset-array-mode"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "is_native_array": [[556, "is-native-array"]], "stable_divide": [[579, "stable-divide"]], "to_native_shape": [[585, "to-native-shape"]], "to_scalar": [[587, "to-scalar"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "set_array_mode": [[566, "set-array-mode"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "set_precise_mode": [[573, "set-precise-mode"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "set_min_base": [[570, "set-min-base"]], "gather": [[540, "gather"]], "inplace_decrement": [[548, "inplace-decrement"]], "optional_get_element": [[521, "optional-get-element"]], "default": [[532, "default"]], "inplace_update": [[550, "inplace-update"]], "container_types": [[530, "container-types"]], "einops_repeat": [[535, "einops-repeat"]], "arg_info": [[523, "arg-info"]], "inplace_increment": [[549, "inplace-increment"]], "fourier_encode": [[537, "fourier-encode"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "get_num_dims": [[544, "get-num-dims"]], "bincount": [[508, "bincount"]], "nanmedian": [[517, "nanmedian"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "current_backend_str": [[531, "current-backend-str"]], "quantile": [[520, "quantile"]], "gather_nd": [[541, "gather-nd"]], "exists": [[536, "exists"]], "corrcoef": [[509, "corrcoef"]], "nanmean": [[516, "nanmean"]], "get_item": [[543, "get-item"]], "has_nans": [[546, "has-nans"]], "igamma": [[514, "igamma"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "arg_names": [[524, "arg-names"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "array_equal": [[525, "array-equal"]], "median": [[515, "median"]], "native_sparse_array": [[506, "native-sparse-array"]], "einops_rearrange": [[533, "einops-rearrange"]], "cache_fn": [[527, "cache-fn"]], "cummax": [[511, "cummax"]], "nanprod": [[519, "nanprod"]], "nanmin": [[518, "nanmin"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "all_equal": [[522, "all-equal"]], "histogram": [[513, "histogram"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "cov": [[510, "cov"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "cummin": [[512, "cummin"]], "einops_reduce": [[534, "einops-reduce"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "hstack": [[469, "hstack"]], "dirichlet": [[498, "dirichlet"]], "local_response_norm": [[494, "local-response-norm"]], "partial_fold": [[474, "partial-fold"]], "put_along_axis": [[478, "put-along-axis"]], "flipud": [[465, "flipud"]], "partial_unfold": [[476, "partial-unfold"]], "fill_diagonal": [[462, "fill-diagonal"]], "take_along_axis": [[482, "take-along-axis"]], "vstack": [[488, "vstack"]], "gamma": [[499, "gamma"]], "group_norm": [[490, "group-norm"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "beta": [[497, "beta"]], "instance_norm": [[491, "instance-norm"]], "dstack": [[460, "dstack"]], "unique_consecutive": [[486, "unique-consecutive"]], "flatten": [[463, "flatten"]], "vsplit": [[487, "vsplit"]], "batch_norm": [[489, "batch-norm"]], "invert_permutation": [[502, "invert-permutation"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "rot90": [[479, "rot90"]], "heaviside": [[467, "heaviside"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "soft_thresholding": [[480, "soft-thresholding"]], "unfold": [[485, "unfold"]], "l2_normalize": [[493, "l2-normalize"]], "fold": [[466, "fold"]], "lexsort": [[503, "lexsort"]], "i0": [[470, "i0"]], "hsplit": [[468, "hsplit"]], "matricize": [[471, "matricize"]], "lp_normalize": [[495, "lp-normalize"]], "moveaxis": [[472, "moveaxis"]], "poisson": [[500, "poisson"]], "take": [[481, "take"]], "pad": [[473, "pad"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "expand": [[461, "expand"]], "fliplr": [[464, "fliplr"]], "top_k": [[483, "top-k"]], "trim_zeros": [[484, "trim-zeros"]], "unravel_index": [[501, "unravel-index"]], "bernoulli": [[496, "bernoulli"]], "l1_normalize": [[492, "l1-normalize"]], "conv3d": [[641, "conv3d"]], "conv": [[636, "conv"]], "adam_step": [[602, "adam-step"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "Sorting": [[633, "sorting"], [378, "sorting"], [87, "module-ivy.data_classes.container.sorting"], [64, "module-ivy.data_classes.array.sorting"]], "Control flow ops": [[615, "control-flow-ops"]], "conv2d": [[639, "conv2d"]], "vmap": [[601, "vmap"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "value_and_grad": [[612, "value-and-grad"]], "stop_gradient": [[611, "stop-gradient"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "General": [[621, "general"], [366, "general"], [76, "module-ivy.data_classes.container.general"], [53, "module-ivy.data_classes.array.general"]], "Searching": [[631, "searching"], [376, "searching"], [85, "module-ivy.data_classes.container.searching"], [62, "module-ivy.data_classes.array.searching"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [86, "module-ivy.data_classes.container.set"], [63, "module-ivy.data_classes.array.set"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [50, "module-ivy.data_classes.array.device"], [73, "module-ivy.data_classes.container.device"]], "value_is_nan": [[600, "value-is-nan"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "lars_update": [[609, "lars-update"]], "grad": [[605, "grad"]], "jac": [[607, "jac"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "Utility": [[635, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "Statistical": [[634, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "optimizer_update": [[610, "optimizer-update"]], "Random": [[630, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "Creation": [[616, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [49, "module-ivy.data_classes.array.data_type"], [72, "module-ivy.data_classes.container.data_type"]], "Experimental": [[620, "experimental"], [75, "module-ivy.data_classes.container.experimental"], [52, "module-ivy.data_classes.array.experimental"]], "conv1d": [[637, "conv1d"]], "lamb_update": [[608, "lamb-update"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "adam_update": [[603, "adam-update"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "adjoint": [[416, "adjoint"]], "eigvals": [[423, "eigvals"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "initialize_tucker": [[426, "initialize-tucker"]], "l1_loss": [[444, "l1-loss"]], "partial_tucker": [[435, "partial-tucker"]], "kronecker": [[429, "kronecker"]], "cond": [[418, "cond"]], "khatri_rao": [[427, "khatri-rao"]], "stft": [[415, "stft"]], "svd_flip": [[437, "svd-flip"]], "truncated_svd": [[439, "truncated-svd"]], "check_scalar": [[455, "check-scalar"]], "kron": [[428, "kron"]], "kl_div": [[443, "kl-div"]], "atleast_2d": [[452, "atleast-2d"]], "mode_dot": [[432, "mode-dot"]], "tensor_train": [[438, "tensor-train"]], "atleast_1d": [[451, "atleast-1d"]], "choose": [[456, "choose"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "matrix_exp": [[431, "matrix-exp"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "tucker": [[441, "tucker"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "sliding_window": [[414, "sliding-window"]], "multi_dot": [[433, "multi-dot"]], "general_inner_product": [[424, "general-inner-product"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "dsplit": [[459, "dsplit"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "higher_order_moment": [[425, "higher-order-moment"]], "as_strided": [[449, "as-strided"]], "solve_triangular": [[436, "solve-triangular"]], "dot": [[420, "dot"]], "atleast_3d": [[453, "atleast-3d"]], "huber_loss": [[442, "huber-loss"]], "column_stack": [[457, "column-stack"]], "associative_scan": [[450, "associative-scan"]], "diagflat": [[419, "diagflat"]], "batched_outer": [[417, "batched-outer"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "xlogy": [[354, "xlogy"]], "diff": [[335, "diff"]], "allclose": [[328, "allclose"]], "lgamma": [[347, "lgamma"]], "reduce": [[356, "reduce"]], "vjp": [[359, "vjp"]], "binarizer": [[331, "binarizer"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "amax": [[329, "amax"]], "copysign": [[333, "copysign"]], "zeta": [[355, "zeta"]], "fix": [[338, "fix"]], "erfc": [[337, "erfc"]], "jvp": [[358, "jvp"]], "sinc": [[352, "sinc"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "vorbis_window": [[327, "vorbis-window"]], "lerp": [[346, "lerp"]], "trilu": [[323, "trilu"]], "isclose": [[344, "isclose"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "nextafter": [[350, "nextafter"]], "amin": [[330, "amin"]], "ldexp": [[345, "ldexp"]], "float_power": [[339, "float-power"]], "hypot": [[343, "hypot"]], "gradient": [[342, "gradient"]], "modf": [[348, "modf"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "frexp": [[341, "frexp"]], "fmax": [[340, "fmax"]], "nansum": [[349, "nansum"]], "tril_indices": [[322, "tril-indices"]], "signbit": [[351, "signbit"]], "conj": [[332, "conj"]], "digamma": [[336, "digamma"]], "count_nonzero": [[334, "count-nonzero"]], "ifftn": [[401, "ifftn"]], "interp": [[402, "interp"]], "fft2": [[396, "fft2"]], "rnn": [[413, "rnn"]], "reduce_window": [[410, "reduce-window"]], "idct": [[399, "idct"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "rfftn": [[412, "rfftn"]], "dropout1d": [[391, "dropout1d"]], "embedding": [[394, "embedding"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "avg_pool2d": [[387, "avg-pool2d"]], "avg_pool1d": [[386, "avg-pool1d"]], "dropout3d": [[393, "dropout3d"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "Sparse array": [[379, "sparse-array"]], "max_pool3d": [[406, "max-pool3d"]], "max_pool1d": [[404, "max-pool1d"]], "pool": [[409, "pool"]], "dropout2d": [[392, "dropout2d"]], "interpolate": [[403, "interpolate"]], "dct": [[389, "dct"]], "dft": [[390, "dft"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "max_pool2d": [[405, "max-pool2d"]], "rfft": [[411, "rfft"]], "ifft": [[400, "ifft"]], "avg_pool3d": [[388, "avg-pool3d"]], "max_unpool1d": [[407, "max-unpool1d"]], "fft": [[395, "fft"]], "area_interpolate": [[385, "area-interpolate"]], "trapz": [[287, "trapz"]], "relu6": [[297, "relu6"]], "square": [[283, "square"]], "kaiser_window": [[312, "kaiser-window"]], "softshrink": [[301, "softshrink"]], "random_tr": [[319, "random-tr"]], "thresholded_relu": [[305, "thresholded-relu"]], "hamming_window": [[308, "hamming-window"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "random_tucker": [[321, "random-tucker"]], "prelu": [[296, "prelu"]], "indices": [[310, "indices"]], "ndenumerate": [[314, "ndenumerate"]], "stanh": [[302, "stanh"]], "tan": [[285, "tan"]], "tanhshrink": [[303, "tanhshrink"]], "hardshrink": [[292, "hardshrink"]], "selu": [[299, "selu"]], "eye_like": [[307, "eye-like"]], "sign": [[279, "sign"]], "random_parafac2": [[318, "random-parafac2"]], "sinh": [[281, "sinh"]], "sqrt": [[282, "sqrt"]], "threshold": [[304, "threshold"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "random_cp": [[317, "random-cp"]], "reciprocal": [[276, "reciprocal"]], "hardtanh": [[293, "hardtanh"]], "silu": [[300, "silu"]], "random_tt": [[320, "random-tt"]], "sin": [[280, "sin"]], "blackman_window": [[306, "blackman-window"]], "logsigmoid": [[295, "logsigmoid"]], "round": [[278, "round"]], "subtract": [[284, "subtract"]], "scaled_tanh": [[298, "scaled-tanh"]], "tanh": [[286, "tanh"]], "ndindex": [[315, "ndindex"]], "polyval": [[316, "polyval"]], "logit": [[294, "logit"]], "trunc_divide": [[289, "trunc-divide"]], "celu": [[290, "celu"]], "remainder": [[277, "remainder"]], "trunc": [[288, "trunc"]], "hann_window": [[309, "hann-window"]], "elu": [[291, "elu"]], "deg2rad": [[234, "deg2rad"]], "minimum": [[267, "minimum"]], "greater_equal": [[247, "greater-equal"]], "greater": [[246, "greater"]], "less_equal": [[255, "less-equal"]], "equal": [[236, "equal"]], "fmod": [[244, "fmod"]], "negative": [[270, "negative"]], "positive": [[272, "positive"]], "logaddexp": [[260, "logaddexp"]], "divide": [[235, "divide"]], "isnan": [[251, "isnan"]], "multiply": [[268, "multiply"]], "floor_divide": [[242, "floor-divide"]], "isfinite": [[249, "isfinite"]], "real": [[275, "real"]], "rad2deg": [[274, "rad2deg"]], "cosh": [[233, "cosh"]], "log2": [[259, "log2"]], "maximum": [[266, "maximum"]], "not_equal": [[271, "not-equal"]], "isinf": [[250, "isinf"]], "lcm": [[253, "lcm"]], "logical_not": [[263, "logical-not"]], "imag": [[248, "imag"]], "erf": [[237, "erf"]], "floor": [[241, "floor"]], "exp": [[238, "exp"]], "gcd": [[245, "gcd"]], "logical_xor": [[265, "logical-xor"]], "log10": [[257, "log10"]], "less": [[254, "less"]], "ceil": [[231, "ceil"]], "logaddexp2": [[261, "logaddexp2"]], "logical_or": [[264, "logical-or"]], "expm1": [[240, "expm1"]], "isreal": [[252, "isreal"]], "fmin": [[243, "fmin"]], "bitwise_xor": [[230, "bitwise-xor"]], "pow": [[273, "pow"]], "log": [[256, "log"]], "cos": [[232, "cos"]], "nan_to_num": [[269, "nan-to-num"]], "exp2": [[239, "exp2"]], "logical_and": [[262, "logical-and"]], "log1p": [[258, "log1p"]], "gpu_is_available": [[197, "gpu-is-available"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "abs": [[215, "abs"]], "bitwise_invert": [[226, "bitwise-invert"]], "default_device": [[191, "default-device"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "add": [[218, "add"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "bitwise_or": [[228, "bitwise-or"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "atan": [[222, "atan"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "set_split_factor": [[206, "set-split-factor"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "dev": [[192, "dev"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "split_func_call": [[208, "split-func-call"]], "bitwise_and": [[225, "bitwise-and"]], "asinh": [[221, "asinh"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "tpu_is_available": [[211, "tpu-is-available"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "as_native_dev": [[189, "as-native-dev"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "dev_util": [[193, "dev-util"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "unset_default_device": [[212, "unset-default-device"]], "acos": [[216, "acos"]], "to_device": [[209, "to-device"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "set_default_device": [[204, "set-default-device"]], "acosh": [[217, "acosh"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "valid_dtype": [[187, "valid-dtype"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "asin": [[220, "asin"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "split_factor": [[207, "split-factor"]], "function_supported_devices": [[194, "function-supported-devices"]], "angle": [[219, "angle"]], "num_gpus": [[200, "num-gpus"]], "atan2": [[223, "atan2"]], "atanh": [[224, "atanh"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "Conversions": [[70, "module-ivy.data_classes.container.conversions"], [47, "module-ivy.data_classes.array.conversions"]], "Wrapping": [[67, "module-ivy.data_classes.array.wrapping"], [90, "module-ivy.data_classes.container.wrapping"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Unify": [[32, "Unify"], [22, "Unify"], [31, "Unify"], [21, "Unify"], [33, "Unify"]], "Compile": [[32, "Compile"], [31, "Compile"], [33, "Compile"]], "Transpile": [[32, "Transpile"], [22, "Transpile"], [31, "Transpile"], [21, "Transpile"], [33, "Transpile"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Trace": [[22, "Trace"], [21, "Trace"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Transpile code": [[20, "Transpile-code"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "Guides": [[15, "guides"], [10, "guides"]], "Examples and Demos": [[15, "examples-and-demos"], [2, "examples-and-demos"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Trace code": [[19, "Trace-code"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Data Preparation": [[4, "Data-Preparation"], [3, "Data-Preparation"], [5, "Data-Preparation"], [7, "Data-Preparation"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Transpile any library": [[23, "Transpile-any-library"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Installation": [[3, "Installation"], [7, "Installation"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Imports": [[9, "Imports"], [5, "Imports"], [7, "Imports"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "0.0: Unify": [[28, "0.0:-Unify"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[5, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [7, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[5, "Visualise-image"], [7, "Visualise-image"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[39, "Installs-\ud83d\udcbe"], [38, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[39, "Imports-\ud83d\udec3"], [38, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[39, "Define-Model"], [38, "Define-Model"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Ivy Backend Handler": [[17, "Ivy-Backend-Handler"], [26, "Ivy-Backend-Handler"]], "Data Structures": [[17, "Data-Structures"], [26, "Data-Structures"]], "Ivy Functional API": [[17, "Ivy-Functional-API"], [26, "Ivy-Functional-API"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Resnet 18": [[45, "Resnet-18"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "Unify code": [[18, "Unify-code"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 806, 811, 819, 828], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 813, 814, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7f0c57e72e60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7f0c4b5add10": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7f0c57a89fc0": 779, "0x7f0c57a89f60": 779, "conv1dtranspos": 779, "0x7f0c57a89f00": 779, "0x7f0c57a89ea0": 779, "filter_shap": 779, "0x7f0c57a89e40": 779, "0x7f0c57a89de0": 779, "0x7f0c57a89d80": 779, "0x7f0c57a89d20": 779, "0x7f0c57a89c00": 779, "0x7f0c57a89ba0": 779, "conv3dtranspos": 779, "0x7f0c57a89b40": 779, "0x7f0c57a89ae0": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7f0c57a89cc0": 779, "0x7f0c57a89c60": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7f0c57a89a80": 779, "get_initial_st": 779, "0x7f0c57a8a080": 779, "0x7f0c57a8a020": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "thread": [802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 837, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"zeros_like": [[144, "zeros-like"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "invalid_dtype": [[165, "invalid-dtype"]], "is_native_dtype": [[171, "is-native-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "default_int_dtype": [[156, "default-int-dtype"]], "set_default_dtype": [[177, "set-default-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "triu_indices": [[142, "triu-indices"]], "dtype": [[158, "dtype"]], "result_type": [[175, "result-type"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "tril": [[140, "tril"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "astype": [[147, "astype"]], "iinfo": [[163, "iinfo"]], "check_float": [[151, "check-float"]], "can_cast": [[150, "can-cast"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "promote_types": [[173, "promote-types"]], "as_native_dtype": [[146, "as-native-dtype"]], "ones_like": [[138, "ones-like"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "zeros": [[143, "zeros"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "default_dtype": [[154, "default-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "finfo": [[160, "finfo"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "triu": [[141, "triu"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "Exchange Formats": [[854, "exchange-formats"], [861, "exchange-formats"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "Sharp bits": [[850, "sharp-bits"], [848, "sharp-bits"], [849, "sharp-bits"]], "Examples": [[850, "examples"], [848, "examples"], [849, "examples"], [821, "examples"], [799, "examples"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Frameworks": [[855, "frameworks"], [861, "frameworks"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [27, "Ivy-as-a-Transpiler"], [26, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "Vendor-Specific Compilers": [[860, "vendor-specific-compilers"], [861, "vendor-specific-compilers"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "Motivation": [[843, "motivation"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "ML-Unifying Companies": [[857, "ml-unifying-companies"], [861, "ml-unifying-companies"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "Multi-Vendor Compiler Frameworks": [[858, "multi-vendor-compiler-frameworks"], [861, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "API Standards": [[861, "api-standards"], [852, "api-standards"]], "Wrapper Frameworks": [[861, "wrapper-frameworks"], [862, "wrapper-frameworks"]], "Graph Tracers": [[861, "graph-tracers"], [856, "graph-tracers"]], "Compiler Infrastructure": [[861, "compiler-infrastructure"], [853, "compiler-infrastructure"]], "Vendor-Specific APIs": [[861, "vendor-specific-apis"], [859, "vendor-specific-apis"]], "Glossary": [[842, "glossary"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Design": [[833, "design"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "One liners": [[847, "one-liners"]], "Related Work": [[851, "related-work"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "ML Explosion": [[844, "ml-explosion"]], "Array API Standard": [[852, "id1"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [31, "Round-Up"], [28, "Round-Up"], [27, "Round-Up"], [19, "Round-Up"], [40, "Round-Up"], [23, "Round-Up"], [22, "Round-Up"], [33, "Round-Up"], [13, "Round-Up"], [17, "Round-Up"], [30, "Round-Up"], [32, "Round-Up"], [29, "Round-Up"], [18, "Round-Up"], [11, "Round-Up"], [21, "Round-Up"], [20, "Round-Up"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [17, "Ivy-Stateful-API"], [26, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "cmp_isnot": [[116, "cmp-isnot"]], "leaky_relu": [[107, "leaky-relu"]], "Array": [[97, "array"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "native_array": [[135, "native-array"]], "Container": [[98, "container"]], "if_else": [[118, "if-else"]], "copy_array": [[124, "copy-array"]], "arange": [[121, "arange"]], "from_dlpack": [[128, "from-dlpack"]], "gelu": [[105, "gelu"]], "logspace": [[133, "logspace"]], "cmp_is": [[115, "cmp-is"]], "ones": [[137, "ones"]], "mish": [[109, "mish"]], "frombuffer": [[129, "frombuffer"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "asarray": [[123, "asarray"]], "empty_like": [[126, "empty-like"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [74, "module-ivy.data_classes.container.elementwise"], [51, "module-ivy.data_classes.array.elementwise"]], "softplus": [[113, "softplus"]], "log_softmax": [[108, "log-softmax"]], "Factorized tensor": [[99, "factorized-tensor"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "one_hot": [[136, "one-hot"]], "while_loop": [[120, "while-loop"]], "full": [[130, "full"]], "for_loop": [[117, "for-loop"]], "meshgrid": [[134, "meshgrid"]], "full_like": [[131, "full-like"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "relu": [[110, "relu"]], "sigmoid": [[111, "sigmoid"]], "Functions": [[104, "functions"]], "softmax": [[112, "softmax"]], "eye": [[127, "eye"]], "Nested array": [[100, "nested-array"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "linspace": [[132, "linspace"]], "softsign": [[114, "softsign"]], "empty": [[125, "empty"]], "try_except": [[119, "try-except"]], "hardswish": [[106, "hardswish"]], "Data classes": [[103, "data-classes"]], "array": [[122, "array"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "Deep Dive": [[807, "deep-dive"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Introduction": [[827, "introduction"], [826, "introduction"], [41, "Introduction"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Contributing": [[800, "contributing"], [799, "contributing"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Nestable Functions": [[821, "nestable-functions"], [822, "nestable-functions"], [812, "nestable-functions"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Array API Tests": [[808, "array-api-tests"], [813, "array-api-tests"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Exception Handling": [[818, "exception-handling"], [823, "exception-handling"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [77, "module-ivy.data_classes.container.gradients"], [54, "module-ivy.data_classes.array.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "Helpful Resources": [[803, "helpful-resources"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Setting Up": [[805, "setting-up"], [819, "setting-up"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "PyCharm": [[805, "pycharm"], [820, "pycharm"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Backend": [[786, "backend"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "Continuous Integration": [[813, "continuous-integration"], [820, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Docstrings": [[817, "docstrings"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Arguments in other Functions": [[815, "arguments-in-other-functions"], [814, "arguments-in-other-functions"]], "Device handling": [[815, "device-handling"]], "Error Handling": [[802, "error-handling"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Lint Formatting": [[820, "lint-formatting"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Logging": [[796, "module-ivy.utils.logging"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [83, "module-ivy.data_classes.container.norms"], [60, "module-ivy.data_classes.array.norms"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Ivy Frontends": [[826, "ivy-frontends"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "seed": [[729, "seed"]], "repeat": [[692, "repeat"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "prune_empty": [[719, "prune-empty"]], "nested_multi_map": [[718, "nested-multi-map"]], "argwhere": [[733, "argwhere"]], "map": [[711, "map"]], "flip": [[690, "flip"]], "nested_map": [[717, "nested-map"]], "swapaxes": [[698, "swapaxes"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "multi_index_nest": [[714, "multi-index-nest"]], "nested_any": [[715, "nested-any"]], "squeeze": [[696, "squeeze"]], "all_nested_indices": [[705, "all-nested-indices"]], "fomaml_step": [[702, "fomaml-step"]], "nested_argwhere": [[716, "nested-argwhere"]], "shuffle": [[730, "shuffle"]], "zero_pad": [[701, "zero-pad"]], "randint": [[726, "randint"]], "reshape": [[693, "reshape"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "unstack": [[700, "unstack"]], "multinomial": [[725, "multinomial"]], "argmax": [[731, "argmax"]], "layer_norm": [[724, "layer-norm"]], "nonzero": [[734, "nonzero"]], "permute_dims": [[691, "permute-dims"]], "argmin": [[732, "argmin"]], "reptile_step": [[704, "reptile-step"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "random_normal": [[727, "random-normal"]], "where": [[735, "where"]], "maml_step": [[703, "maml-step"]], "index_nest": [[708, "index-nest"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "roll": [[694, "roll"]], "random_uniform": [[728, "random-uniform"]], "tile": [[699, "tile"]], "split": [[695, "split"]], "stack": [[697, "stack"]], "copy_nest": [[706, "copy-nest"]], "Utils": [[773, "utils"]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "unique_counts": [[737, "unique-counts"]], "Data-dependent output shape": [[737, null], [738, null], [739, null], [736, null], [632, null], [632, null], [632, null], [632, null]], "save": [[757, "save"]], "sum": [[752, "sum"]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "sort": [[743, "sort"]], "Testing": [[774, "testing"], [40, "Testing"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "max": [[747, "max"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "any": [[755, "any"]], "unique_inverse": [[738, "unique-inverse"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "Framework classes": [[772, "framework-classes"]], "einsum": [[746, "einsum"]], "mean": [[748, "mean"]], "cumsum": [[745, "cumsum"]], "Converters": [[776, "module-ivy.stateful.converters"]], "unique_values": [[739, "unique-values"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [56, "module-ivy.data_classes.array.layers"], [79, "module-ivy.data_classes.container.layers"]], "Module": [[781, "module-ivy.stateful.module"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "prod": [[750, "prod"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "cumprod": [[744, "cumprod"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "min": [[749, "min"]], "searchsorted": [[742, "searchsorted"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "std": [[751, "std"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [81, "module-ivy.data_classes.container.losses"], [58, "module-ivy.data_classes.array.losses"]], "var": [[753, "var"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [573, "parameter"], [572, "parameter"], [575, "parameter"], [567, "parameter"], [566, "parameter"], [576, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [618, "parameter"], [205, "parameter"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "unique_all": [[736, "unique-all"]], "argsort": [[740, "argsort"]], "all": [[754, "all"]], "load": [[756, "load"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "msort": [[741, "msort"]], "roi_align": [[651, "roi-align"]], "matrix_power": [[666, "matrix-power"]], "matrix_transpose": [[668, "matrix-transpose"]], "eigvalsh": [[660, "eigvalsh"]], "slogdet": [[672, "slogdet"]], "matmul": [[664, "matmul"]], "concat": [[687, "concat"]], "cholesky": [[653, "cholesky"]], "lstm_update": [[648, "lstm-update"]], "expand_dims": [[689, "expand-dims"]], "solve": [[673, "solve"]], "diag": [[656, "diag"]], "inv": [[662, "inv"]], "cross": [[654, "cross"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "matrix_norm": [[665, "matrix-norm"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "outer": [[669, "outer"]], "linear": [[647, "linear"]], "nms": [[650, "nms"]], "svd": [[674, "svd"]], "eig": [[658, "eig"], [421, "eig"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "det": [[655, "det"]], "vecdot": [[680, "vecdot"]], "cross_entropy": [[684, "cross-entropy"]], "vander": [[679, "vander"]], "matrix_rank": [[667, "matrix-rank"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "constant_pad": [[688, "constant-pad"]], "eigh": [[659, "eigh"]], "inner": [[661, "inner"]], "clip": [[686, "clip"]], "dropout": [[646, "dropout"]], "diagonal": [[657, "diagonal"]], "pinv": [[670, "pinv"]], "trace": [[678, "trace"]], "tensorsolve": [[677, "tensorsolve"]], "svdvals": [[675, "svdvals"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "qr": [[671, "qr"]], "tensordot": [[676, "tensordot"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "lu_factor": [[663, "lu-factor"]], "vector_norm": [[681, "vector-norm"]], "multi_head_attention": [[649, "multi-head-attention"]], "set_precise_mode": [[573, "set-precise-mode"]], "multiprocessing": [[561, "multiprocessing"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "stable_divide": [[579, "stable-divide"]], "set_min_denominator": [[571, "set-min-denominator"]], "isscalar": [[558, "isscalar"]], "to_scalar": [[587, "to-scalar"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "unset_min_base": [[592, "unset-min-base"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "is_ivy_array": [[553, "is-ivy-array"]], "is_native_array": [[556, "is-native-array"]], "scatter_flat": [[564, "scatter-flat"]], "isin": [[557, "isin"]], "stable_pow": [[580, "stable-pow"]], "scatter_nd": [[565, "scatter-nd"]], "unset_array_mode": [[589, "unset-array-mode"]], "to_native_shape": [[585, "to-native-shape"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "is_array": [[552, "is-array"]], "strides": [[581, "strides"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "is_ivy_container": [[554, "is-ivy-container"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "shape": [[578, "shape"]], "set_array_mode": [[566, "set-array-mode"]], "to_numpy": [[586, "to-numpy"]], "set_item": [[569, "set-item"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "to_list": [[584, "to-list"]], "itemsize": [[559, "itemsize"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "set_min_base": [[570, "set-min-base"]], "try_else_none": [[588, "try-else-none"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "match_kwargs": [[560, "match-kwargs"]], "bincount": [[508, "bincount"]], "get_num_dims": [[544, "get-num-dims"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "inplace_update": [[550, "inplace-update"]], "nanprod": [[519, "nanprod"]], "array_equal": [[525, "array-equal"]], "exists": [[536, "exists"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "nanmedian": [[517, "nanmedian"]], "all_equal": [[522, "all-equal"]], "cummin": [[512, "cummin"]], "container_types": [[530, "container-types"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "einops_rearrange": [[533, "einops-rearrange"]], "fourier_encode": [[537, "fourier-encode"]], "gather": [[540, "gather"]], "inplace_increment": [[549, "inplace-increment"]], "arg_names": [[524, "arg-names"]], "nanmean": [[516, "nanmean"]], "igamma": [[514, "igamma"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "cache_fn": [[527, "cache-fn"]], "optional_get_element": [[521, "optional-get-element"]], "median": [[515, "median"]], "nanmin": [[518, "nanmin"]], "current_backend_str": [[531, "current-backend-str"]], "corrcoef": [[509, "corrcoef"]], "einops_repeat": [[535, "einops-repeat"]], "quantile": [[520, "quantile"]], "default": [[532, "default"]], "inplace_decrement": [[548, "inplace-decrement"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "get_item": [[543, "get-item"]], "cummax": [[511, "cummax"]], "cov": [[510, "cov"]], "gather_nd": [[541, "gather-nd"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "arg_info": [[523, "arg-info"]], "einops_reduce": [[534, "einops-reduce"]], "has_nans": [[546, "has-nans"]], "histogram": [[513, "histogram"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "native_sparse_array": [[506, "native-sparse-array"]], "flipud": [[465, "flipud"]], "unravel_index": [[501, "unravel-index"]], "lexsort": [[503, "lexsort"]], "l1_normalize": [[492, "l1-normalize"]], "fliplr": [[464, "fliplr"]], "soft_thresholding": [[480, "soft-thresholding"]], "dstack": [[460, "dstack"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "gamma": [[499, "gamma"]], "lp_normalize": [[495, "lp-normalize"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "trim_zeros": [[484, "trim-zeros"]], "unfold": [[485, "unfold"]], "instance_norm": [[491, "instance-norm"]], "poisson": [[500, "poisson"]], "invert_permutation": [[502, "invert-permutation"]], "partial_fold": [[474, "partial-fold"]], "batch_norm": [[489, "batch-norm"]], "fill_diagonal": [[462, "fill-diagonal"]], "i0": [[470, "i0"]], "bernoulli": [[496, "bernoulli"]], "hsplit": [[468, "hsplit"]], "pad": [[473, "pad"]], "unique_consecutive": [[486, "unique-consecutive"]], "flatten": [[463, "flatten"]], "local_response_norm": [[494, "local-response-norm"]], "expand": [[461, "expand"]], "matricize": [[471, "matricize"]], "take_along_axis": [[482, "take-along-axis"]], "hstack": [[469, "hstack"]], "heaviside": [[467, "heaviside"]], "vstack": [[488, "vstack"]], "fold": [[466, "fold"]], "l2_normalize": [[493, "l2-normalize"]], "beta": [[497, "beta"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "group_norm": [[490, "group-norm"]], "vsplit": [[487, "vsplit"]], "dirichlet": [[498, "dirichlet"]], "take": [[481, "take"]], "top_k": [[483, "top-k"]], "rot90": [[479, "rot90"]], "put_along_axis": [[478, "put-along-axis"]], "partial_unfold": [[476, "partial-unfold"]], "moveaxis": [[472, "moveaxis"]], "Creation": [[616, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "lamb_update": [[608, "lamb-update"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "adam_step": [[602, "adam-step"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "conv2d": [[639, "conv2d"]], "stop_gradient": [[611, "stop-gradient"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "General": [[621, "general"], [366, "general"], [76, "module-ivy.data_classes.container.general"], [53, "module-ivy.data_classes.array.general"]], "conv": [[636, "conv"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [50, "module-ivy.data_classes.array.device"], [73, "module-ivy.data_classes.container.device"]], "conv3d": [[641, "conv3d"]], "adam_update": [[603, "adam-update"]], "lars_update": [[609, "lars-update"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "optimizer_update": [[610, "optimizer-update"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "Random": [[630, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "Experimental": [[620, "experimental"], [75, "module-ivy.data_classes.container.experimental"], [52, "module-ivy.data_classes.array.experimental"]], "value_is_nan": [[600, "value-is-nan"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "Statistical": [[634, "statistical"], [380, "statistical"], [65, "module-ivy.data_classes.array.statistical"], [88, "module-ivy.data_classes.container.statistical"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "vmap": [[601, "vmap"]], "jac": [[607, "jac"]], "Control flow ops": [[615, "control-flow-ops"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [86, "module-ivy.data_classes.container.set"], [63, "module-ivy.data_classes.array.set"]], "conv1d": [[637, "conv1d"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "Searching": [[631, "searching"], [376, "searching"], [62, "module-ivy.data_classes.array.searching"], [85, "module-ivy.data_classes.container.searching"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "grad": [[605, "grad"]], "Sorting": [[633, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "Utility": [[635, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "value_and_grad": [[612, "value-and-grad"]], "associative_scan": [[450, "associative-scan"]], "solve_triangular": [[436, "solve-triangular"]], "column_stack": [[457, "column-stack"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "diagflat": [[419, "diagflat"]], "multi_dot": [[433, "multi-dot"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "cond": [[418, "cond"]], "atleast_3d": [[453, "atleast-3d"]], "l1_loss": [[444, "l1-loss"]], "svd_flip": [[437, "svd-flip"]], "kronecker": [[429, "kronecker"]], "tucker": [[441, "tucker"]], "dsplit": [[459, "dsplit"]], "kron": [[428, "kron"]], "truncated_svd": [[439, "truncated-svd"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "partial_tucker": [[435, "partial-tucker"]], "eigvals": [[423, "eigvals"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "dot": [[420, "dot"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "khatri_rao": [[427, "khatri-rao"]], "stft": [[415, "stft"]], "matrix_exp": [[431, "matrix-exp"]], "batched_outer": [[417, "batched-outer"]], "atleast_1d": [[451, "atleast-1d"]], "as_strided": [[449, "as-strided"]], "mode_dot": [[432, "mode-dot"]], "kl_div": [[443, "kl-div"]], "sliding_window": [[414, "sliding-window"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "atleast_2d": [[452, "atleast-2d"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "higher_order_moment": [[425, "higher-order-moment"]], "tensor_train": [[438, "tensor-train"]], "check_scalar": [[455, "check-scalar"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "general_inner_product": [[424, "general-inner-product"]], "initialize_tucker": [[426, "initialize-tucker"]], "choose": [[456, "choose"]], "adjoint": [[416, "adjoint"]], "huber_loss": [[442, "huber-loss"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "rnn": [[413, "rnn"]], "avg_pool3d": [[388, "avg-pool3d"]], "max_pool1d": [[404, "max-pool1d"]], "avg_pool1d": [[386, "avg-pool1d"]], "ifftn": [[401, "ifftn"]], "dft": [[390, "dft"]], "ifft": [[400, "ifft"]], "rfft": [[411, "rfft"]], "dropout2d": [[392, "dropout2d"]], "idct": [[399, "idct"]], "max_pool2d": [[405, "max-pool2d"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "pool": [[409, "pool"]], "embedding": [[394, "embedding"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "fft2": [[396, "fft2"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "reduce_window": [[410, "reduce-window"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "dct": [[389, "dct"]], "avg_pool2d": [[387, "avg-pool2d"]], "Sparse array": [[379, "sparse-array"]], "max_unpool1d": [[407, "max-unpool1d"]], "fft": [[395, "fft"]], "dropout1d": [[391, "dropout1d"]], "area_interpolate": [[385, "area-interpolate"]], "max_pool3d": [[406, "max-pool3d"]], "dropout3d": [[393, "dropout3d"]], "rfftn": [[412, "rfftn"]], "interp": [[402, "interp"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "interpolate": [[403, "interpolate"]], "amax": [[329, "amax"]], "fix": [[338, "fix"]], "lgamma": [[347, "lgamma"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "vjp": [[359, "vjp"]], "signbit": [[351, "signbit"]], "nextafter": [[350, "nextafter"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "float_power": [[339, "float-power"]], "copysign": [[333, "copysign"]], "nansum": [[349, "nansum"]], "count_nonzero": [[334, "count-nonzero"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "lerp": [[346, "lerp"]], "vorbis_window": [[327, "vorbis-window"]], "frexp": [[341, "frexp"]], "allclose": [[328, "allclose"]], "gradient": [[342, "gradient"]], "digamma": [[336, "digamma"]], "conj": [[332, "conj"]], "trilu": [[323, "trilu"]], "xlogy": [[354, "xlogy"]], "tril_indices": [[322, "tril-indices"]], "isclose": [[344, "isclose"]], "jvp": [[358, "jvp"]], "hypot": [[343, "hypot"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "diff": [[335, "diff"]], "fmax": [[340, "fmax"]], "ldexp": [[345, "ldexp"]], "amin": [[330, "amin"]], "reduce": [[356, "reduce"]], "erfc": [[337, "erfc"]], "sinc": [[352, "sinc"]], "modf": [[348, "modf"]], "binarizer": [[331, "binarizer"]], "zeta": [[355, "zeta"]], "tan": [[285, "tan"]], "subtract": [[284, "subtract"]], "ndenumerate": [[314, "ndenumerate"]], "random_parafac2": [[318, "random-parafac2"]], "square": [[283, "square"]], "softshrink": [[301, "softshrink"]], "stanh": [[302, "stanh"]], "random_tt": [[320, "random-tt"]], "tanh": [[286, "tanh"]], "blackman_window": [[306, "blackman-window"]], "random_tr": [[319, "random-tr"]], "trapz": [[287, "trapz"]], "tanhshrink": [[303, "tanhshrink"]], "sqrt": [[282, "sqrt"]], "hann_window": [[309, "hann-window"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "hamming_window": [[308, "hamming-window"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "thresholded_relu": [[305, "thresholded-relu"]], "kaiser_window": [[312, "kaiser-window"]], "ndindex": [[315, "ndindex"]], "sinh": [[281, "sinh"]], "celu": [[290, "celu"]], "indices": [[310, "indices"]], "eye_like": [[307, "eye-like"]], "logsigmoid": [[295, "logsigmoid"]], "random_tucker": [[321, "random-tucker"]], "elu": [[291, "elu"]], "hardtanh": [[293, "hardtanh"]], "logit": [[294, "logit"]], "prelu": [[296, "prelu"]], "relu6": [[297, "relu6"]], "round": [[278, "round"]], "polyval": [[316, "polyval"]], "random_cp": [[317, "random-cp"]], "reciprocal": [[276, "reciprocal"]], "sign": [[279, "sign"]], "scaled_tanh": [[298, "scaled-tanh"]], "silu": [[300, "silu"]], "trunc_divide": [[289, "trunc-divide"]], "remainder": [[277, "remainder"]], "threshold": [[304, "threshold"]], "selu": [[299, "selu"]], "sin": [[280, "sin"]], "trunc": [[288, "trunc"]], "hardshrink": [[292, "hardshrink"]], "expm1": [[240, "expm1"]], "negative": [[270, "negative"]], "log10": [[257, "log10"]], "fmin": [[243, "fmin"]], "pow": [[273, "pow"]], "exp": [[238, "exp"]], "logical_not": [[263, "logical-not"]], "logical_and": [[262, "logical-and"]], "greater": [[246, "greater"]], "cosh": [[233, "cosh"]], "lcm": [[253, "lcm"]], "logaddexp2": [[261, "logaddexp2"]], "less_equal": [[255, "less-equal"]], "imag": [[248, "imag"]], "greater_equal": [[247, "greater-equal"]], "logical_xor": [[265, "logical-xor"]], "multiply": [[268, "multiply"]], "real": [[275, "real"]], "equal": [[236, "equal"]], "bitwise_xor": [[230, "bitwise-xor"]], "isnan": [[251, "isnan"]], "floor": [[241, "floor"]], "log1p": [[258, "log1p"]], "nan_to_num": [[269, "nan-to-num"]], "isinf": [[250, "isinf"]], "isreal": [[252, "isreal"]], "logaddexp": [[260, "logaddexp"]], "isfinite": [[249, "isfinite"]], "log2": [[259, "log2"]], "positive": [[272, "positive"]], "divide": [[235, "divide"]], "maximum": [[266, "maximum"]], "rad2deg": [[274, "rad2deg"]], "ceil": [[231, "ceil"]], "logical_or": [[264, "logical-or"]], "exp2": [[239, "exp2"]], "less": [[254, "less"]], "not_equal": [[271, "not-equal"]], "minimum": [[267, "minimum"]], "erf": [[237, "erf"]], "log": [[256, "log"]], "deg2rad": [[234, "deg2rad"]], "floor_divide": [[242, "floor-divide"]], "cos": [[232, "cos"]], "gcd": [[245, "gcd"]], "fmod": [[244, "fmod"]], "acosh": [[217, "acosh"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "atanh": [[224, "atanh"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "set_split_factor": [[206, "set-split-factor"]], "dev_util": [[193, "dev-util"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "valid_dtype": [[187, "valid-dtype"]], "to_device": [[209, "to-device"]], "tpu_is_available": [[211, "tpu-is-available"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "angle": [[219, "angle"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "unset_default_device": [[212, "unset-default-device"]], "atan": [[222, "atan"]], "dev": [[192, "dev"]], "num_gpus": [[200, "num-gpus"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "add": [[218, "add"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "bitwise_or": [[228, "bitwise-or"]], "as_native_dev": [[189, "as-native-dev"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "abs": [[215, "abs"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "bitwise_invert": [[226, "bitwise-invert"]], "acos": [[216, "acos"]], "function_supported_devices": [[194, "function-supported-devices"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "gpu_is_available": [[197, "gpu-is-available"]], "asin": [[220, "asin"]], "set_default_device": [[204, "set-default-device"]], "atan2": [[223, "atan2"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "asinh": [[221, "asinh"]], "bitwise_and": [[225, "bitwise-and"]], "split_func_call": [[208, "split-func-call"]], "default_device": [[191, "default-device"]], "split_factor": [[207, "split-factor"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "Wrapping": [[67, "module-ivy.data_classes.array.wrapping"], [90, "module-ivy.data_classes.container.wrapping"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "Image": [[55, "module-ivy.data_classes.array.image"], [78, "module-ivy.data_classes.container.image"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Unify": [[31, "Unify"], [22, "Unify"], [33, "Unify"], [32, "Unify"], [21, "Unify"]], "Compile": [[31, "Compile"], [33, "Compile"], [32, "Compile"]], "Transpile": [[31, "Transpile"], [22, "Transpile"], [33, "Transpile"], [32, "Transpile"], [21, "Transpile"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Installation": [[3, "Installation"], [7, "Installation"]], "Data Preparation": [[3, "Data-Preparation"], [5, "Data-Preparation"], [7, "Data-Preparation"], [4, "Data-Preparation"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Resnet 18": [[45, "Resnet-18"]], "Guides": [[10, "guides"], [15, "guides"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Imports": [[5, "Imports"], [7, "Imports"], [9, "Imports"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[5, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [7, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[5, "Visualise-image"], [7, "Visualise-image"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "Any function": [[27, "Any-function"], [26, "Any-function"]], "Any library": [[27, "Any-library"], [26, "Any-library"]], "Any model": [[27, "Any-model"], [26, "Any-model"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Trace code": [[19, "Trace-code"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "Transpile any library": [[23, "Transpile-any-library"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Trace": [[22, "Trace"], [21, "Trace"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Ivy Backend Handler": [[17, "Ivy-Backend-Handler"], [26, "Ivy-Backend-Handler"]], "Data Structures": [[17, "Data-Structures"], [26, "Data-Structures"]], "Ivy Functional API": [[17, "Ivy-Functional-API"], [26, "Ivy-Functional-API"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Unify code": [[18, "Unify-code"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "Transpile code": [[20, "Transpile-code"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7ff564112e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f0c57e72e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1443,7 +1443,7 @@